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Abstract. We study realizations of pseudodifferential operators acting on sections of vector-
bundles on a smooth, compact manifold with boundary, subject to conditions of Atiyah–Patodi–
Singer type. Ellipticity and Fredholm property, compositions, adjoints and self-adjointness of
such realizations are discussed. We construct regular spectral triples .A;H ;D/ for manifolds
with boundary of arbitrary dimension, where H is the space of square integrable sections.
Starting out from Dirac operators with APS-conditions, these triples are even in case of even
dimensional manifolds; we show that the closure of A in L.H / coincides with the continuous
functions on the manifold being constant on each connected component of the boundary.
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1. Introduction

Spectral triples play a fundamental role in non commutative geometry and provide
a new approach to several fields in mathematics and physics. One of the
most striking results involving spectral triples is Connes’ famous reconstruction
theorem [10], which shows that one can .re-/construct from a commutative spectral
triple .A;H ;D/, satisfying certain axioms, a compact oriented manifold without
boundaryM such that A is isomorphic to C1.M/. In the past years, the definition
of spectral triple has been extended to different settings. For example by Lescure [21]
to manifolds with conical singularities, by Lapidus [20], Cipriani et al. [6], and
Christensen et al. [9] to fractals. Our paper provides a contribution to the analysis
of spectral triples for manifolds with .smooth/ boundary, mainly motivated by the
recent work [17] of Iochum and Levy.

The central analytic tool our approach relies on is Boutet de Monvel’s algebra
of pseudodifferential boundary value problems [5], respectively a suitable extension
of it going back to Schulze [24], cf. also Seiler [26]. This calculus provides an
efficient framework for the application of microlocal methods in partial differential
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equations, geometric analysis and index theory for manifolds with boundary. We
shall use this calculus for a systematic study of realizations .i.e. closed extensions/
of .pseudo/differential operators on compact manifolds subject to homogeneous
boundary conditions. This study is inspired by and extends work of Grubb [16].
In comparison to her results, we allow a wider class of boundary conditions which
we named APS-type conditions, since the classical spectral boundary conditions of
Atiyah–Patodi–Singer [1] are a particular example of such conditions. Specifically,
these boundary conditions are of the form

C1.�;E/ �! C1.@�; F /; u 7! T u WD P.S�C T 0/u;

where � is a smooth Riemannian manifold with boundary, E is a hermitian vector
bundle over �, F D F0 ˚ � � � ˚ Fd�1 with Fj hermitian vector bundles over @�
.possibly zero-dimensional/, T 0 D .T 00; : : : ; T

0
d�1

/ with trace operators T 0
k
W

C1.�;E/! C1.@�; Fj / of order jC1=2, � D .
0; : : : ; 
d�1/t with 
j denoting
the operator of restriction to the boundary of the j th derivative in direction normal to
the boundary, S D .Sjk/0�j;k�d�1 with Sjk 2 L

j�k
cl .@�IEj@�; Fj / being classical

.i.e. step one poly-homogeneous/ pseudodifferential operators of order j � k on the
boundary, and an idempotent P D .Pjk/0�j;k�d�1 with Pjk 2 L

j�k
cl .@�IFk; Fj /.

We then consider operators with domain fu 2 Hd .�;E/ j T u D 0g and with action
given by a d th order operator from Boutet de Monvel’s calculus acting between
sections of E. In Section 3 we discuss ellipticity and Fredholm property, the adjoint
.in particular, self-adjointness/ and composition of such realizations.

In this context we prove andmake use of a result on the invariance of the Fredholm
index and the existence of inverses .parametrices/modulo projections onto the kernel
for operators acting in families of Banach spaces, generalizing known, analogous
results for pseudodifferential operator algebras to an abstract setting. This result is of
independent interest as it applies to any operator algebra satisfying some very natural
conditions, and is presented in the Appendix.

The framework developed in Section 3 allows us to introduce and analyze, in
Section 4, spectral triples for manifolds with boundary. At a first glance, the approach
is very similar to that of Iochum and Levy [17], however it provides a true extension of
their results. The main example of [17] are spectral triples based on Dirac operators
equipped with chiral boundary conditions; there are good physical and mathematical
motivations to consider this kind of boundary conditions, as it has been already done
in several other works, see [2] and [7] for example. Being local conditions, Iochum
and Levy could rely on the results of Grubb [16] mentioned above. However, it is
well known that chiral boundary condition cannot be defined in all settings. Indeed,
it is always possible only in case the underlying manifold is of even dimension, in
general a chirality operator is not naturally defined. In view of this lack of generality
it seems natural to make use of non-local APS-type boundary conditions and, in
fact, this is what our approach permits to do. We show how to define regular
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spectral triples
�
A1

D
;H ;D

�
on every compact manifold with boundary, including,

as particular example, those triples starting from Dirac operators equipped with APS
boundary conditions. In the case of even-dimensional manifolds we show that the
latter spectral triples respect the natural grading defined by the chirality, and therefore
define so-called even spectral triples, see Remark 4.5.

Analogously to the case of chiral boundary conditions, the algebra A1
D

is not the
whole space C1.�/, but a true subalgebra. In general, it is difficult to describe this
algebra in explicit terms, but, in the case of a Dirac operator with APS conditions, we
prove that the closure of A1

D
with respect to the supremum norm is theC �-algebra of

continuous functions being constant on each connected component of the boundary.
The knowledge of this closure is important, since it plays a key role in Connes’
reconstruction Theorem. In this context, our result implies that the spectral triple
does not fulfill the so-called Finiteness Axiom in [10], cf. Section 4.3. Roughly
speaking, A1

D
results to be too small to see the geometric properties of the boundary.

This kind of negative result actually indicates that the correct notion of spectral
triple able to reconstruct manifolds with boundary, taking properly into account the
geometry of the boundary, still has to be found. For the time being we have to leave
this as an open problem for future research.

Convention. Throughout the text, we denote by � a smooth, compact, Riemannian
manifoldwith boundary. On a collar-neighborhoodU of the boundary, identifiedwith
@� � Œ0; "/ and using the splitting of variables x D .x0; xn/, we assume the metric
to be of product-form g@� C dx

2
n. Vector bundles over � mean smooth, hermitian

vector-bundles that respect the product structure near the boundary, i.e. if E denotes
such a bundle, then EjU D ��Ej@� with �.x0; xn/ D x0 the canonical projection of
the collar-neighborhood onto the boundary. In writing C1.�/ we mean functions
smooth up to .i.e. including/ the boundary.

2. Boutet de Monvel’s calculus for Toeplitz type operators

Boutet de Monvel’s algebra for boundary value problems on � consists of certain
operators in block-matrix form,

A D

�
AC CG K

T Q

�
W

C1.�;E0/

˚

C1.@�; F0/

�!

C1.�;E1/

˚

C1.@�; F1/

; (2.1)

where Ej and Fj are vector bundles over� and @�, respectively, which are allowed
to be zero dimensional. Every such operator has an order, denoted by � 2 Z, and a
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type, denoted by d 2 N0.1 To fix some terminology:
� AC is the “restriction” to the interior of � of a �th order, classical pseudodiff-
erential operator A defined on the smooth double 2�, having the .two-sided/
transmission property with respect to @�,2

� G is a singular Green operator of order � and type d ,
� K is a �th order potential operator,
� T is a trace operator of order � and type d ,
� Q is a �th order, classical pseudodifferential operator on the boundary @�.
The space of all such operators we shall denote by B�;d .�I .E0; F0/; .E1; F1//.

As a matter of fact, with A is associated a .homogeneous/ principal symbol

��.A/ D
�
�
�
 .A/; �

�

@
.A/

�
;

where
�
�
 .A/ D �

�
 .A/ W �

�
�E0 �! ���E1

is the usual principal symbol of the pseudodifferential operatorA .restricted to T ��/,
while

�
�

@
.A/ W

��
@�
.S.RC/˝E0/
˚

��
@�
F0

�!

��
@�
.S.RC/˝E1/
˚

��
@�
F1

is the so-called principal boundary symbol; here �M W T �M ! M denotes the
canonical projection of the tangent bundle to the manifold and ��M indicates pull-
back of vector-bundles and S.RC/ ˝ E denotes the bundle with fibre S.RC; Ey/
in y 2 @�.

For convenience of the reader, in the following subsectionwe shall shortly describe
the above mentioned structures in the model case of � being a half-space and the
bundles involved being trivial one-dimensional. For more complete descriptions we
refer the reader to the existing literature on Boutet de Monvel’s calculus, for instance
[5,16,22], and [23].

2.1. A few details on the structure of the operators. Let � D Rn�1 � .0;C1/
with variable x D .x0; xn/ and corresponding co-variable � D .� 0; �n/. With Œ � �
denote a smooth, positive function that coincides with the Euclidean norm outside a
neighborhood of the origin. Let

k.x0; � 0Iyn/ D k0.x
0; � 0I Œ� 0�yn/;

1It is possible to introcduce operators with negative type, cf. [16]. However, for our purpose it is
sufficient to consider non-negative types only.

2AC D rCAeC, where rC denotes the operator of restricting distributions from 2� to int� and eC
denotes the operator of extending .sufficiently regular/ distributions by 0 from int� to 2�. If A is
differential, AC coincides with the standard action of A on distributions; occasionally we will therefore
drop the subscriptC when dealing with differential operators.
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where k0.x0; � 0I t / behaves like a classical pseudodifferential symbol of order�C1=2
in the variables .x0; � 0/, while in t like a rapidly decreasing function .smooth up to
t D 0/. Then

K'.x0; xn/ D .2�/
�nC1

Z
Rn�1

eix
0�0k.x0; � 0I xn/F '.� 0/ d� 0

defines a Poisson operator of order �, while

T0u.x
0/ D .2�/�nC1

Z
Rn�1

Z 1
0

eix
0�0k.x0; � 0Iyn/Fy0!�0u.�

0; yn/ dynd�
0

defines a trace operator of order � and type 0 .note that taking formal adjoints with
respect to the corresponding L2-scalar products gives a one-to-one correspondence
between these two types of operators/. A trace operator of order � and type d is of
the form

T u D

d�1X
jD0

Sj

�
d ju

dx
j
n

ˇ̌̌̌
xnD0

�
C T0u

with classical pseudodifferential operators Sj of order � � j � 1=2 on the
boundary Rn�1. A singular Green operator of order � and type 0 has the form

G0u.x
0; xn/ D .2�/

�nC1

Z
Rn�1

Z 1
0

eix
0�0k.x0; � 0I xn; yn/Fy0!�0u.�

0; yn/ dynd�
0;

where
k.x0; � 0I xn; yn/ D g0.x

0; � 0I Œ� 0�xn; Œ�
0�yn/

with a function g0.x0; � 0I s; t/ that behaves like a classical pseudodifferential symbol
of order � C 1 in .x0; � 0/, while in .s; t/ like a rapidly decreasing function .and
smooth up to s D 0 and t D 0/. A singular Green operator of order � and type d is
then of the form

Gu D

d�1X
jD0

Kj

�
d ju

dx
j
n

ˇ̌̌̌
xnD0

�
CG0u

with Poisson operators Kj of order � � j � 1=2.
The corresponding principal boundary symbols are defined as

�
�

@
.K/.x0; � 0/ W C �! S.RC/; c 7! c k

.�C1=2/
0 .x0; � 0I j� 0j�/

�
�

@
.T0/.x

0; � 0/ W S.RC/ �! C; u 7!

Z 1
0

k
.�C1=2/
0 .x0; � 0I j� 0jyn/u.yn/ dyn

for potential and trace operators of type 0, where k.�C1=2/0 denotes the homogeneous
principal symbol of k0 with respect to .x0; � 0/. Moreover,

�
�

@
.T /.x0; � 0/u D

d�1X
jD0

�
��j�1=2
 .Sj /.x

0; � 0/
d ju

dx
j
n

.0/C �
�

@
.T0/.x

0; � 0/u:
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Concerning the singular Green operators, we similarly have

�
�

@
.G0/.x

0; � 0/ W S.RC/ �! S.RC/;

u 7!

Z 1
0

g
.�C1/
0 .x0; � 0I j� 0j�; j� 0jyn/u.yn/ dyn;

and

�
�

@
.G/.x0; � 0/u D

d�1X
jD0

�
��j�1=2

@
.Kj /.x

0; � 0/
d ju

dx
j
n

.0/C �
�

@
.G0/.x

0; � 0/u:

2.2. Basic properties of Boutet’s calculus. The above described class of operators
forms an “algebra” in the sense that composition of operators induces maps

B�1;d1.�I .E1; F1/; .E2; F2// �B�0;d0.�I .E0; F0/; .E1; F1//

�! B�;d .�I .E0; F0/; .E2; F2//;

where the resulting order and type are

� D �0 C �1; d D max.d0; d1 C �0/:

The operators, initially acting on smooth sections, extend by density and continuity
to Sobolev spaces, i.e. A 2 B�;d .�I .E0; F0/; .E1; F1// induces maps

H s
p.�;E0/

˚

B
s�. 1p�

1
2 /

pp .@�; F0/

�!

H
s��
p .�;E0/

˚

B
s���. 1p�

1
2 /

pp .@�; F1/

; s > d � 1C
1

p
; (2.2)

where 1 < p < 1 and H s
p denotes the standard Sobolev .Bessel potential/ spaces,

while Bspq are the usual Besov spaces. Similarly, the boundary symbol extends to
maps

��
@�
.H s

p.RC/˝E0/
˚

��
@�
F0

�!

��
@�
.H

s��
p .RC/˝E1/
˚

��
@�
F1

: (2.3)

We shall employ these properties only in the Hilbert space case p D 2; in this case
Bspp D H

s
2 and we eliminate the index p D 2 from the notation.

2.3. Toeplitz type operators and ellipticity. In this paper we shall need an extended
version of Boutet de Monvel’s calculus. As described here, this calculus was
introduced in [24]; it can be also obtained as a special case from a general approach
to operator-algebras of Toeplitz type developed in [26].
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Let Pj 2 L0cl.@�IFj ; Fj /, j D 0; 1, be two pseudodifferential projections on
the boundary of �. We then denote by

B�;d .�I .E0; F0IP0/; .E1; F1IP1//

the space of all operators A 2 B�;d .�I .E0; F0/; .E1; F1// such that

A.1 �P0/ D .1 �P1/A D 0; Pj WD

�
1 0

0 Pj

�
:

Being projections, the range spacesH s.@�; Fj ; Pj / WD Pj
�
H s.@�; Fj /

�
are closed

subspaces ofH s.@�; Fj /, and any such A induces continuous maps

H s.�;E0/

˚

H s.@�; F0; P0/

�!

H s��.�;E0/

˚

H s��.@�; F1; P1/

; s > d �
1

2
; (2.4)

according to (2.2). With Pj also the principal symbols �0 .Pj / are projections .as
bundle morphisms/ and thus define a subbundle Fj .Pj / of ��@�Fj . We then set

��.AIP0; P1/ WD
�
�
�
 .A/; �

�

@
.AIP0; P1/

�
with ��

@
.AIP0; P1/ being the principal boundary symbol of A considered as a map

��
@�
.H s.RC/˝E0/

˚

F0.P0/

�!

��
@�
.H s��.RC/˝E1/

˚

F1.P1/

; s > d �
1

2
; (2.5)

.or, alternatively, replacing the Sobolev spaces by S.RC//.
Definition 2.1. A 2 B�;d .�I .E0; F0IP0/; .E1; F1IP1// is called elliptic if both
components of the principal symbol ��.AIP0; P1/ are isomorphisms.3

The following result is the main theorem of elliptic theory of Toeplitz type
operators. For details see Section 2.1 of [24] and Theorem 6.1 of [26].
Theorem 2.2. For A0 2 B�;d .�I .E0; F0IP0/; .E1; F1IP1// the following state-
ments are equivalentW
(1) A0 is elliptic.
(2) There exists an s > max.�; d/�1=2 such that the map (2.4) associated with A0

is Fredholm.
(3) For every s > max.�; d/ � 1=2 the map (2.4) associated with A0 is Fredholm.
(4) There is an A1 2 B��0;max.d��;0/.�I .E1; F1IP1/; .E0; F0IP0// such that

A1A0 �P0 2 B�1;max.�;d/.�I .E0; F0IP0/; .E0; F0IP0//;

A0A1 �P1 2 B�1;max.d��;0/.�I .E1; F1IP1/; .E1; F1IP1//:

Any such operator A1 is called a parametrix of A0.
3Invertibility of the principal boundary symbol as a map (2.5) is independent of the choice of s and,

equivalently, one may replace the Sobolev spaces by S.RC/.
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3. Realizations subject to APS-type boundary conditions

In this section we shall study certain closed extensions of unbounded operators of
the form

AC CG W C
1.�;E/ � L2.�;E/ �! L2.�;E/

withACCG 2 Bd;d .�IE;E/ WD Bd;d .�I .E; 0I 1/; .E; 0I 1//, subject to .a vector
of/ boundary conditions of APS-type, which we shall describe in the following
subsection. Our results extend those of Sections 1.4 and 1.6 of [16]; for convenience
of the reader we shall employ similar notation.

3.1. APS-type boundary conditions. Let d 2 N be a positive integer and let @=@�
denote the derivative in direction of the outer normal to @�. We define, for s >
d C j � 1

2
,


j W H
s.�;E/! H s�j� 12 .@�;Ej@�/; u 7!

@ju

@�j

ˇ̌̌
@�
;

and � D .
0; : : : ; 
d�1/t , whereEj@� indicates the restriction of the bundleE to the
boundary. Moreover,

Tj D

d�1X
kD0

Sjk
k C T
0
j W H

s.�;E/ �! H s�j� 12 .@�; Fj /; (3.1)

with vector bundles Fj over @� .possibly zero-dimensional/, pseudodifferential
operators Sjk 2 L

j�k
cl .@�IEj@�; Fj / and trace operators T 0j of order j C 1=2 and

type 0. We write T 0 D .T 00; : : : ; T 0d�1/
t and further introduce

H s.@�;E/ D
d�1
˚
jD0

H sCd�j� 12 .@�;Ej@�/;

H s.@�; F / D
d�1
˚
jD0

H sCd�j� 12 .@�; Fk/:

Definition 3.1. Using the previously introduced notation, an APS-type boundary
condition T is an operator of the form

T D P.S�C T 0/ W H s.�;E/ �! H s�d .@�; F /; s > d � 1=2;

where S D .Sjk/0�j;k�d�1 and a projection .i.e. idempotent/

P D .Pjk/0�j;k�d�1 with Pjk 2 L
j�k
cl .@�IFk; Fj /:

To give an example, let Bj be a pseudodifferential operator of integer order
0 � j < d on the double of � satisfying the transmission condition with respect
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to @� and Tj WD 
0 ıBj;C. Then Tj is as in (3.1), even with Sjk D 0 for k > j and
all Sjj are zero-order differential operators, i.e. induced by a bundle homomorphism
sj W Ej@� ! Fj . Hence, T D S�C T 0 with a left-lower triangular matrix S whose
diagonal elements are zero-order differential.

The classical Atiyah–Patodi–Singer conditions are included in this setting by
taking d D 1, T 0 D 0 and S equal to the identity in Definition 3.1.
Definition 3.2. Let AC C G 2 Bd;d .�IE;E/ and T be an APS-type boundary
condition as described above. We write .AC C G/T for the operator acting like
AC CG on the domain

dom..AC CG/T / D
˚
u 2 Hd .�;E/ j T u D 0

	
:

The operator .ACCG/T is often called the realization of ACCG subject to the
boundary condition T . We call two boundary conditions T0 and T1 equivalent, if
they have the same kernel as maps on Hd .�;E/; then, obviously, .AC C G/T0 D
.AC CG/T1 .

3.2. Elliptic and normal realizations. Now let ƒ D diag.ƒ0; : : : ; ƒd�1/ be a
.d � d/-diagonal matrix with invertible components ƒj 2 L

d�j� 12
cl .@�IFj ; Fj /.

Note that then

Pƒ WD ƒPƒ
�1
2 L0cl.@�IF@; F@/; F@ WD F0 ˚ � � � ˚ Fd�1;

is a zero order projection.
Definition 3.3. Consider the realization .AC CG/T with T D P.S�C T 0/.
(1) The realization is called elliptic if�

AC CG

ƒT

�
D

�
1 0

0 Pƒ

��
AC CG

ƒ.S�C T 0/

�
is an elliptic element in Bd;d .�I .E; 0I 1/; .E; F@IPƒ//.

(2) The boundary condition T is called normal if there exists a matrix

R D .Rjk/0�j;k�d�1; Rjk 2 L
j�k
cl .@�IFk; Ej@�/;

such that PSR D P . As way of speaking, we occasionally will call R the
right-inverse of PS .
Note that ellipticity of .AC CG/T is equivalent to the Fredholm property of�

AC CG

T

�
W H s.�;E/ �!

H s�d .�;E/

˚

H s�d .@�; F; P /
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for some .and then for all/ s > d � 1=2, where, by definition,

H s.@�; F; P / D P
�
H s.@�; F /

�
:

By abstract and well-known results on Fredholm operators (see, for example, Theo-
rem 8.3 in [11]), this in turn is equivalent to the Fredholm property of

.AC CG/T W dom..AC CG/T /! L2.�;E/

together with the finiteness of the codimension of T .Hd .�;E// in H0.@�; F; P /.
It is useful to observe that realizations with a normal boundary condition can

be represented in a certain canonical form: If T D P.S� C T 0/ is normal as in
Definition 3.3, then eT WD RT is a boundary condition equivalent to T in view of the
injectivity of R on the range of P . Moreover,

eT D eP .�C eT 0/; eP D RPS; eT 0 D RT 0; (3.2)

where eP is a projection with components eP jk 2 Lj�kcl .@�IEj@�; Ej@�/ and trace
operators eT 0j W H s.�;E/! H s�j� 12 .@�;Ej@�/ of order j C 1=2 and type 0.

Lemma 3.4. A normal boundary condition T D P.S� C T 0/ induces surjective
mapsH s.�;E/! H s�d .@�; F; P /, s > d � 1=2.

Proof. With the previously introduced notation, T D PS.� C RT 0/. By Prop-
osition 1.6.5 of [16] we know that � C RT 0 W H s.�;E/ ! H s�d .@�;E/ is
surjective. It remains to observe that PS W H s�d .@�;E/ ! H s�d .@�; F; P /

surjectively, due to the existence of R with PSR D P .

Lemma 3.5. Let T D P.S� C T 0/ be a normal boundary condition and eT DeP .�C eT 0/ associated with T as in (3.2). Then

H s.@�;E;eP / D R�H s.@�; F; P /
�
:

In particularW The canonical form of a normal, elliptic realization is elliptic.

Proof. Applying the previous Lemma 3.4 with T 0 D 0, we obtain

eP �H s.@�;E/
�
D RPS

�
H s.@�;E/

�
D RPS�

�
H sCd .�;E/

�
D R

�
H s.@�; F; P /

�
:

This shows the first claim and that eT D RT W H s.�;E/ ! H s�d .@�; F;eP /
surjectively. Thus the ellipticity follows from the relation with the Fredholm property
of the realization, described after Definition 3.3.
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3.3. Key properties of realizations. In this section we are going to investigate
compositions and adjoints of realizations. First, let us observe that normal realizations
are always densily defined. In fact, writing T D P.S� C T 0/ D PS.� C eT 0/, we
see that the kernel of T on Hd .�;E/ contains the kernel of � C eT 0; this kernel,
however, is known to be dense in L2.�;E/, cf. Lemma 1.6.8 of [16].

Theorem 3.6. Let Bj WD .Aj;C CGj /Tj , j D 0; 1, be two realizations of order dj
subject to APS-type boundary conditions Tj D Pj .Sj�C T 0j /. Moreover, let

A D A1A0; G D .A1;C CG1/.A0;C CG0/ � AC;

and define the boundary condition

T WD

�
T1

T0.A1;C CG1/

�
:

Then the following statements are valid:

(1) If B0 is elliptic, then B1B0 D .AC CG/T .

(2) If both B0 and B1 are elliptic, then so is B1B0.

(3) If both T0 and T1 are normal .and Rj denotes the right-inverse of PjSj /, then
the boundary condition eT WD � R1T1

R0T0.A1;CCG1/

�
is normal and equivalent to T .

Proof. The case of trivial projections, P0 D 1 and P1 D 1, is Theorem 1.4.6 of [16].
For (1) and (2) the same proof works also in the general case. Concerning (3), it is
clear that eT is equivalent to T , due to the injectiveness of diag.R1; R0/. Moreover,

eT D �eP 1 0

0 eP 0
��

�C eT 01
.�C eT 00/.A1;C CG1/

�
with eP j D RjPjSj and eT 0j D RjT

0
j . According to Theorem 1.4.6 of [16],

.� C eT 00/.A1;C C G1/ is a normal boundary condition of the form S� C T 0. This
yields the normality of eT .

Let us now turn to the analysis of adjoints. First recall Green’s formula .for details
see Section 1.3 of [16], for example/: If A 2 Ld .2�; 2E/ has the transmission
property with respect to @�, then there exists a matrix

A D .Ajk/0�j;k�d�1; Ajk 2 L
d�1�j�k
cl .@�;Ej@�/;

whose components are differential operators .in particular, Ajk D 0 if j C k � d/
such that

.ACu; v/� D .u; A
�
Cv/� C .A�u; �v/@� 8 u; v 2 Hd .�;E/I (3.3)
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here .�; �/� indicates the inner product ofL2.�;E/, while .�; �/@� is the inner product
of ˚d�1jD0L

2.@�;Ej@�/. The skew-diagonal elements Aj.d�1�j / are induced by
endomorphisms inEj@�, acting like id .�1/d�1�j�d .A/.x; �.x// in the fibre over x.
The boundary @� is called non-characteristic for A if all these endomorphisms are
isomorphisms. In this case, A is invertible.
Theorem 3.7. Let .AC C G/T be a realization with G D K� C G0 and boundary
condition T D P.�C T 0/ in canonical form .recall that any normal realization can
be represented in this way/. Assume that the boundary @� is non-characteristic forA
and define

Gad D �.AT
0/��CG0� � .KT 0/�; Tad D Pad

�
�C .KA�1/�

�
;

with the so-called adjoint projection

Pad D
�
A.1 � P /A�1

��
:

The following is then true:
(1) dom..AC CG/�T / \H

d .�;E/ D dom..A�C CGad/Tad/.
(2) If .AC CG/T is elliptic, its adjoint coincides with .A�C CGad/Tad .

Proof. For convenience set B WD .AC CG/T .
.1/ Let u; v 2 Hd .�;E/. Using Green’s formula and writing �u D .�CT 0/u�

T 0u we obtain�
.AC CG/u; v

�
�
D
�
u; .A�C CG

0�/v
�
�
�
�
u; T 0�.A��CK�/v

�
�

C
�
.�C T 0/u; .A��CK�/v

�
@�
: (3.4)

Now recall that v 2 dom.B�/ if and only if u 7!
�
.AC C G/u; v

�
�
is continuous

on dom.B/ with respect to the L2.�;E/-norm. Since the first two terms on the
right-hand side of (3.4) are continuous in this sense, it follows that v 2 dom.B�/ if
and only if there exists a constant C � 0 such thatˇ̌�

.�C T 0/u; .A��CK�/v
�
@�

ˇ̌
� CkukL2.�;E/ 8 u 2 dom.B/:

According to Proposition 1.6.5 of [16], for every u 2 Hd .�;E/ and " > 0 there
exists an u" 2 Hd .�;E/ with ku"kL2.�;E/ < " and .� C T 0/u" D .� C T 0/u.
Hence v 2 dom.B�/ if and only if�

.�C T 0/u; .A��CK�/v
�
@�
D 0 8 u 2 dom.B/:

The surjectivity of �C T 0 W Hd .�;E/! H0.@�;E/ implies that

.�C T 0/.dom.B// D kerP D im .1 � P /:
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We conclude that v 2 dom.B�/ if and only if�
�; .1 � P �/.A��CK�/v

�
@�
D 0 8 � 2 H0.@�;E/:

Now the claim immediately follows, since Tad D .A�1/�.1 � P �/.A��CK�/.
.2/ If the realization is elliptic, by Proposition 3.8, proved below, there exists

an operator R 2 B�d;0.�IE;E/ such that R.L2.�;E// � dom.B/ and C WD
.AC C G/R � 1 is smoothing, i.e. has range in C1.�;E/. By general facts on the
adjoint of compositions, R�B� � .BR/� D ..AC C G/R/

� D 1C C �. Thus the
result follows from .1/.

Proposition 3.8. Let .AC C G/T be elliptic. Then there exists an operator R 2
B�d;0.�IE;E/ such that
(1) TR D 0; in particular, R mapsHd .�;E/ into the domain of .AC CG/T .
(2) C0 WD .AC CG/R � 1 is a finite-rank smoothing Green operator of type 0.
(3) C1 DW R.AC C G/ � 1 coincides on every space fu 2 H s.�;E/ j T u D 0g,

s > d � 1=2, with a finite-rank smoothing Green operator of type d .

Proof. It is a well-known fact that there exists aƒ� 2 Bd;0.�IE;E/ having inverse
ƒ�1� 2 B

�d;0.�IE;E/. Employing the notation from Definition 3.3, let us define

A0 D

�
A0
T0

�
WD

�
AC CG

ƒT

�
ƒ�1� 2 B0;0.�I .E; 0I 1/; .E; F@IPƒ//:

By assumption, A0 is elliptic. We shall now define various projections; note that
they all are smoothing Green operators of type 0, since they are integral operators
with smooth kernels. Applying Theorem 2.2 and the results of the Appendix, or
referring to Theorem 2.3 of [24], there exists a parametrix A1 D .A1 K1/ 2

B0;0.�I .E; F@IPƒ/; .E; 0I 1// of A0 such that

A1A0 D 1 � �0; A0A1 D 1 � �1;

with projections of the form

�0 D

n0X
jD1

�
�; v0j

�
L2.�;E/

v0j ; �1 D

n1X
jD1

�
�;P �ƒv

1
j

�
L2.�;E/˚L2.@�;F@�/

v1j

with functions fv01 ; : : : ; v0n0g � C1.�;E/ being an L2-orthogonal basis of
V0 WD kerA0, with fv11 ; : : : ; v1n1g � C1.�;E/ ˚ C1.@�; F@�; Pƒ/ being an
L2-orthogonal basis of a space V1 that complements A0.H

s.�;E// inH s.�;E/˚

H s.@�; F@�; Pƒ/ simultaneously for all s, and with Pƒ WD diag.1; Pƒ/. Note that
.1 �Pƒ/�1 D �1.1 �Pƒ/ D 0. If we represent �1 in block-matrix form,

�1 D

�
�11 �12
�21 �22

�
W

H s.�;E/

˚

H s.@�; F@�; Pƒ/

�!

H s.�;E/

˚

H s.@�; F@�; Pƒ/

;
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then

�21u D

n1X
jD1

.u; uj /L2.�;E/wj

provided v1j D uj˚wj with suitableuj 2 C1.�;E/ andwj 2 C1.@�; F@�; Pƒ/.
Now let U D span.u1; : : : ; un1/ have the L2-orthonormal basis fe1; : : : ; eng and
define

�U D

nX
jD1

.�; ej /L2.�;E/ej :

Then, by construction, �21.1��U / D 0. We now claim that R WD ƒ�1� A1.1��U /
is the desired operator. In fact,�

AC CG

T

�
R D

�
1 0

0 ƒ�1

�
A0A1.1 � �U /

D

�
1 0

0 ƒ�1

��
1 � �11
��21

�
.1 � �U / D

�
.1 � �11/.1 � �U /

0

�
shows that TR D 0 and that C0 is a finite-rank smoothing Green operator of type 0.
This shows .1/ and .2/. Finally, onH s.�;E/ \ kerT ,

C1 D ƒ
�1
� A1.1 � �U /.AC CG/ � 1 D ƒ

�1
� A1.1 � �U /A0ƒ� � 1

D ƒ�1� .A1A0 �K1T0/ƒ� � 1 �ƒ
�1
� A1�UA0ƒ�

D ƒ�1� .A1A0 � 1/ƒ� �ƒ
�1
� A1�UA0ƒ�

D �ƒ�1� .�0 C A1�UA0/ƒ�;

proving claim .3/.

Corollary 3.9. If .AC CG/T is elliptic, it is a closed operator in L2.�;E/.

Proof. Let .un/ be a sequence in dom..ACCG/T / such that both u WD limn!C1 un
and v WD limn!C1Aun exist in L2.�;E/.

Let R 2 B�d;0.�IE;E/ be the parametrix constructed in Proposition 3.8 and
C1 the respective smoothing Green operator. Then C1un D R.AC C G/un � un
is convergent in L2.�;E/. Since C1 maps the domain of .AC C G/T into a
finite-dimensional subspace of C1.�;E/, the sequence .C1un/ is also convergent
in Hd .�;E/. Thus un D R.AC C G/un � C1un converges in Hd .�;E/. We
conclude that u 2 Hd .�;E/, v D .ACCG/u, and T u D limn!C1 T un D 0.

3.4. Self-adjoint realizations. A realization may be represented in many different
ways. In the present section we analize this fact systematically and then characterize
the self-adjoint realizations.
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Proposition 3.10. Let Tj D Pj .� C T
0
j /, j D 0; 1, be two boundary conditions in

normal form. Then T0 and T1 are equivalent if, and only if, Pj .1 � P1�j / D 0 and
PjT

0
j D PjT

0
1�j for j D 0; 1.

Note that the property Pj .1 � P1�j / D 0 for j D 0; 1 is equivalent to kerP0 D
kerP1 for P0 and P1 considered as maps on H s.@�;E/ for some .and then every/
choice of s. Then P0T 00 D P0T 01 is equivalent to P1T 01 D P1T 00.

Proof of Proposition 3:10. Recall that the boundary conditions are called equivalent
if their kernels onHd .�;E/ coincide.

First let us show that the stated conditions imply the equivalence. Clearly T0u D 0
means .� C T 00/u 2 kerP0. Thus, by assumption, also 0 D P1.� C T 00/u D

P1.�C T
0
1/u D T1u. Interchanging roles of T0 and T1 thus shows kerT0 D kerT1.

Now let us assume that the kernels coincide. According to Lemma 1.6.8 of [16]
there exists a right-inverse K to � such that ƒ WD 1 C KT 00 is an isomorphism
in H s.�;E/ simultaneously for all s � 0. Note that P0�ƒ D T0. Thus, for
u 2 Hd .�;E/,

P0�ƒu D 0 ” T1u D 0

” P1�ƒuC P1
�
�.1 �ƒ/C T 01

�
u D 0

” P1�ƒuC P1.T
0
1 � T

0
0/u D 0:

(3.5)

This equivalence implies, in particular, that

P1.T
0
1 � T

0
0/u D 0 8 u 2 U WD ƒ�1

�
C10 .int�;E/

�
:

Since U is dense in L2.�;E/ and T 0j is of type 0, it follows that P1.T 01 � T 00/ D 0,
i.e.P1T 00 D P1T 01. Then (3.5) and the surjectivity of �ƒ W Hd .�;E/! H0.@�;E/

show that P0 and P1 have the same kernel on H0.@�;E/. Interchanging roles of T0
and T1 yields also P0T 01 D P0T 00.

LetB D .ACCG/T with T D P.�CT 0/. One can always chooseG D K�CG0
in a certain reduced form, namely with K satisfying KP D 0. In fact, if initially
G D K0�CG

0
0 and T u D 0 .i.e. P�u D �T 0u/, we can write

Gu D K0.P�uC .1 � P /�u/CG
0
0u D K0.1 � P0/�uC .G

0
0 �K0PT

0/u

and then set K WD K0.1 � P / and G0 WD G00 �K0PT 0.
Proposition 3.11. With j D 0; 1 let Bj D .AC C Gj /T be two realizations with
T D P.� C T 0/ and Gj D Kj� C G

0
j in reduced form, i.e. KjP D 0. Then

B0 D B1 if, and only if, K0 D K1 and G00 D G
0
1.

Proof. Clearly B0 D B1 if, and only if,

.AC CG0/u D .AC CG1/u 8 u 2 Hd .�;E/ \ kerT:
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If ƒ is an isomorphism associated with T as in the proof of Proposition 3.10, this is
equivalent to

.G0 �G1/ƒ
�1v D 0 8 v 2 Hd .�;E/ \ kerP�:

For such v we can write

.G0 �G1/ƒ
�1v D .K0 �K1/�v CGv

with G WD .K0 � K1/�.ƒ
�1 � 1/ C .G00 � G

0
1/ƒ

�1 having type 0, according to
Lemma 1.6.8 of [16]. Choosing v 2 C10 .int�;E/ we derive that G D 0 and that

.K0 �K1/�v D 0 8 v 2 Hd .�;E/ \ kerP�:

since � W Hd .�;E/! H0.@�;E/ surjectively, this means

.K0 �K1/� D 0 8 � 2 H0.@�;E/ \ kerP:

Since kerP D im .1�P /wederive that .K0�K1/.1�P / D 0 and thusK0�K1 D 0,
since .K0 �K1/P D 0 by assumption. From G D 0 we then obtain G00 D G01.

As a consequence we obtain the following description of self-adjointness for
realizations:

Theorem 3.12. Consider an elliptic realization B D .AC C G/T with A being
symmetric, T D P.�C T 0/ and G D K�CG0 in reduced form. Assume that @� is
non-characteristic for A. ThenW

(1) dom.B�/ D dom.B/ if, and only if, A W kerP ! .kerP /? isomorphically and
P.T 0 C A�1K�/ D 0.

(2) If dom.B�/ D dom.B/ then B D B� if, and only if,

G0 D G0� � .KT 0/� � T 0�AT 0:

Let us note that one always may assume that T 0 D PT 0 in the representation of T .
In this case, the term .KT 0/� in .2/ vanishes, since KP D 0 by assumption.

Proof. We have B� D .AC C Gad/Tad as described Theorem 3.7. The symmetry of
A implies that A� D �A and therefore

Gad D T
0�A�CG0� � .KT 0/�;

Tad D Pad
�
� � A�1K�

�
;

Pad D A�1.1 � P �/A:
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Hence, by Proposition 3.10 and the comment given thereafter, the domains of B
and B� coincide if, and only if, kerPad D kerP and PT 0 D �PA�1K�. Now .1/
follows, since

u 2 kerPad ” Au 2 ker .1 � P �/ D imP � D .kerP /?:

Let us now show .2/. We have B� D .AC CGad/T , since T and Tad are equivalent
by assumption. Writing � D .1 � P /� C P� and using the fact that P�u D �T 0u
provided T u D 0, the reduced form of Gad is

Gad D T
0�A.1 � P /�CG0� � .KT 0/� � T 0�AT 0:

According to Proposition 3.11, B D B� is equivalent to

K D T 0�A.1 � P / and G0 D G0� � .KT 0/� � T 0�AT 0:

Since KP D 0 by assumption,

K D T 0�A.1 � P / ” .K � T 0�A/.1 � P / D 0

” .1 � P �/.K� C AT 0/ D 0

” Pad.T
0
C A�1K�/ D 0:

However, this is true by .1/ .Pad can be equivalently replaced by P , since Pad and P
have the same kernel/.

Theorem 3.12 in case of B D .AC/T with symmetric A and T D P�, states
that the self-adjointness of B is equivalent to A W kerP ! .kerP /? being an
isomorphism.

4. Spectral triples for manifolds with boundary

A triple .A;H ;D/ is called a spectral triple of dimension n 2 N if
(a) H is a Hilbert space and A is a unital, involutive algebra, faithfully represented

in L.H/,
(b) D is a closed, self-adjoint operator in H with compact resolvent and such that

the sequence of eigenvalues �1 � �2 � � � � of jD j satisfies �j � j 1=n.
(c) for every a 2 A, application of a preserves dom.D/ and the commutator

ŒD ; a�, initially defined on dom.D/, extends by continuity to an operator in
L.H/, denoted by da .thus da D ŒD ; a�/.

To define the notion of regular spectral triple, we shall need the operator

ı W dom.ı/ �! L.H /; L 7! ı.L/ WD ŒjD j; L�;

whose domain consists of those operators L 2 L.H / that map dom.D/ into itself
and whose commutator ŒjD j; L� extends by continuity to a bounded operator in H .
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Definition 4.1. A spectral triple .A;H ;D/ is called regular if, for every a 2 A,

a; da 2 dom.ık/ 8 k 2 N:

In the sequel we shall focus on the case thatH WD L2.�;E/with n D dim� and
thatA � C1.�/, represented inL.H / as operators of multiplication with functions.
We now shall analyze when a first order, elliptic, self-adjoint realization D D

.ACCG/T subject to APS-type conditions leads to a spectral triple of dimension n.
First of all we note that if A0

D
is defined as

A0
D WD

˚
a 2 C1.�/ j both a and a� map dom.D/ into itself

	
; (4.1)

then .A0
D
;H ;D/ is a spectral triple provided G is a Green operator of order and

type 0. In fact, for any a 2 A0
D
,

ŒAC CG; a� D ŒA; a�C C ŒG; a� 2 L.H /;

since ŒA; a� is a pseudodifferential operator of order 0 and ŒG; a� is Green
operator of order and type 0. Moreover, by self-adjointness, .D � i/n induces a
bijection dom.Dn/ ! H . The fact that dom.Dn/ � Hn.�;E/ together with a
general, functional-analytic result .see e.g. Lemma A.4 in [16]) now implies that
�j .jD j/ � j

1=n.
The situation for regular spectral triples is more complicatedW

Theorem 4.2. Let H D L2.�;E/ and D WD .AC/T be an elliptic, self-adjoint4
realization of first order with boundary condition of the form T u D P.Suj@�CT 0u/
.cf. Definition 3:1 with d D 1/. Assume thatA2 has scalar principal symbol and that

ACPC D .AP /C 8 non-negative order pseudodifferential operators P :5 (4.2)

Let A1
D

be defined as

A1D WD
˚
a 2 A0

D j both a and a� map H1D into itself
	
;

where A0
D

is as in (4.1) and

H1D D
\
k2N

dom.Dk/

.note that in the definition of H1
D

one may also use the operator jD j in place of D/.
Then .A1

D
;H ;D/ is a regular spectral triple. Moreover, A1

D
is the largest sub-

algebra of A0
D

that, together with D , leads to a regular spectral triple.
4Recall that D is self-adjoint if, and only if, A is symmetric and kerT D kerTad.
5For example this is the case if A D A0 C A1 where A0 is a differential operator and A1 is

pseudodifferential with A1 D A1' with a smooth function ' supported in the interior of�. Also more
general A1 are possible, but we shall not enter details here.
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Proof. The proof is along the lines of that of Theorem 4.5 in [17]. Clearly,
.A1

D
;H ;D/ is a spectral triple of dimension n, since A1

D
is a �-subalgebra of A0

D
.

Now observe that, by construction, if b D a or b D ŒD ; a� with a 2 A1
D
, then b

maps H1
D

into itself. Thus we can define the iterated commutators

b.k/ WD ŒD2; ��k.b/ W H1D �! H1D ; k 2 N:

By Lemma 2.6 of [17], to prove regularity of the spectral triple, it suffices to show
that

kb.k/ukL2.�;E/ � CkkukHk.�;E/ 8 u 2 H1D ; 8 k 2 N; (4.3)

with constants Ck not depending on u.
Due to assumption (4.2), .AC/` D .A`/C for every ` 2 N. Therefore, in case

b D a, property (4.3) immediately follows, since

b.k/ D .ŒA2; ��.k/.a//C

is .the restriction to � of/ a pseudodifferential operator of order k, since A2 has
scalar principal symbol.

To verify (4.3) in case of b D ŒD ; a� D ŒAC; a� D ŒA; a�C, first observe that
with A also b satisfies condition (4.2), since

ŒAC; a�PC D ACaPC � aACPC

D AC.aP /C � a.AP /C

D .AaP /C � .aAP /C D .ŒA; a�P /CI

here we have used that a is zero order differential. Then b.k/ D .ŒA2C; ��
k.b/ is a

linear combination of terms A2k1C bA
2k2
C with k1 C k2 D k. Applying repeatedly

Property (4.2), any such term equals .A2k1 ŒA; a�A2k2/C. We conclude that

.ŒA2C; ��
k.b/ D

�
ŒA2; ��k.ŒA; a�/

�
C
;

and then can argue again as before to obtain the mapping property (4.3).
For the last affirmation of the theorem, assume that .A;H ;D/ is a regular spectral

triple with A being a �-subalgebra of A0
D
. Then, for b D a or b D a� with a 2 A,

the following identity holds .see Lemma 2.1 in [10])W

jD jn.bu/ D

nX
jD0

 
n

j

!
ıj .b/jD jn�ju 8 u 2 dom.jD jn/:

This shows at once that bu 2 H1
D

provided u 2 H1
D
. Thus A � A1

D
.

The precise description ofA1
D

is in general very cumbersome and even in specific
examples it appears very difficult to provide an explicit expression of this algebra.
However, the following is valid:
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Lemma 4.3. Let D D .AC/T be as described in Theorem 4.2withA differential and
assume that the boundary condition is of the form T u D PSuj@� with a projectionP
and a bundle homomorphsm S on the boundary. Let a 2 C1.�/ and assume that
there exists a smooth function ' which is constant near every connected coponent of
the boundary of � such that a � ' vanishes to infinite order at @�. Then a 2 A1

D
.

Proof. Since ' belongs to A1
D
, we may assume that ' � 0. If u 2 H1

D
then au

also vanishes to infinite order at the boundary, hence so does ANC .au/ for arbitrary
N 2 N. Therefore

T .ANC .au// D PS.A
N
C .au/j@�/ D 0;

showing that au 2 dom.DNC1/. For the same reason, a�u 2 dom.DNC1/. SinceN
is arbitrary it follows that both a and a� preserve H1

D
.

As we shall see in the sequel, cf. Theorem 4.9 below, it seems easier to describe
the closure in L.H / of A1

D
.or, if we consider A1

D
as a subspace of the continuous

functions on �, its closure with respect to the supremum-norm/. As already said,
this is of significance in view of Connes’ reconstruction Theorem; in fact, in case
a spectral triple .A;H ;D/ satisfies Connes’ axioms, the reconstructed manifold is
homeomorphic, as a topological space, to Spec.A/. We finish this subsection with a
technical lemma which we shall employ below in this context.
Lemma 4.4. Let .AC/T be as described in Theorem 4.2 with A differential and
assume that the boundary condition is of the form T u D PSuj@� with an orthogonal
projection P and a bundle isomorphism S on the boundary. Let a 2 C1.�/ and
assume that both a and a� preserve dom ..AC/T /. Then aj@� commutes with P .

Proof. Let ' 2 C1.@�;Ej@�/ arbitrary and u be some function in C1.�;E/ such
that uj@� D S�1.1 � P /'. Then u 2 Dom.D/ and hence, by assumption,

0 D T .au/ D P.ea.1 � P /'/; ea WD aj@�:
ThusPea.1�P / D 0, i.e.Pea D PeaP . Replacing a by a� shows thatPea� D Pea�P .
Passing to adjoints yieldseaP D PeaP D Pea.
4.1. Self-adjoint realizations of Dirac operators. In order to define a Dirac oper-
ator we suppose that .�;E/ is a Clifford module and that the bundle E has an
Hermitian structure h�; �i and a connection r compatible with the Clifford module
structure. We call D the associated Dirac operator; it is symmetric and locally has
the form

.Du/ .x/ D

nX
jD1

c
�
ej
� �
rej u

�
.x/; u 2 C1 .�;E/

where fe1; : : : ; eng is an orthonormal frame of T� at x 2 � and c.�/ is the Clifford
multiplication.
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Depending on the parity of the dimension of�, we can completeDwithAPS-type
boundary conditions to an elliptic, self-adjoint realization.

The case of even dimension. In this case the bundle E canonically splits in two
subbundles EC and E� via the chirality operator, i.e. E D EC ˚ E�, and D W
C1.�;E/! C1.�;E/ can be identified with

D D

�
0 D�

DC 0

�
; D˙ W C1.�;E˙/! C1.�;E�/; (4.4)

where
�
DC

��
D D�. Recall that, in a collar neighborhood of the boundary @�,

the metric is assumed to be of product type .in case of Dirac operators this is not
a restrictive assumption as it can be always achieved up to conjugation by unitary
isomorphism, see the appendix of [3], for instance/. Then one can write, near the
boundary,

D D �.x0/ .@xn C B/ (4.5)
where .x0; xn/ are the normal and tangential coordinates, respectively, and an
endomorphism � W EC ˚ E� ! E� ˚ EC which inverts the chirality and does not
depend on the normal direction. In fact, it corresponds to the Clifford multiplication
with the inward normal vector; in particular, �2 D �IdE . The so-called tangential
operator

B W C1.@�;ECj@� ˚E�j@�/! C1.@�;ECj@� ˚E�j@�/

is a self-adjoint elliptic differential operator of first order preserving the splitting
E D EC˚E�. SinceB is elliptic and self-adjoint, there are well defined eigenvalues
f�kgk2Z and eigenfunctions ffkgk2Z which form an orthonormal base ofL2.@�;E/.
We consider

P� W L
2 .@�;E/ �! L2 .@�;E/ ; u 7!

X
�k�0

hu; fkifk;

that is the orthogonal projection onto the span of the eigenfunctions corresponding
to non-negative eigenvalues. We set P< D 1 � P�. The APS boundary condition is
then defined as

TAPS D

�
P�
0 0

0 P<�
�
0

�
W H s.�;EC ˚E�/ �! H s�1=2.@�;EC ˚E�/:

Thenwe letD D DAPS denote the realization ofD with subject to the condition TAPS.
The splitting E D EC ˚ E� induces an identification DAPS D

�
0 D�APS

D
C
APS 0

�
with

the operatorsD˙APS given by the action ofD˙ on the domains

dom.DCAPS/ D
˚
u 2 H 1.�;EC/ j P�uj@� D 0

	
;

dom.D�APS/ D
˚
u 2 H 1.�;E�/ j P<.�

�uj@�/ D 0
	
:

(4.6)
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Theorem 3.12 implies that DAPS is self-adjoint. Moreover, by Theorem 4.2, both
.A0

D
;H ;D/ and .A1

D
;H ;D/ with H D L2.�;E/ and D D DAPS are spectral

triples of dimension n, the second one being regular.

Remark 4.5. If � were without boundary, it is known that .C1.�/; L2.�;E/;D/

defines a regular spectral triple. Moreover, in the even dimensional case, it is possible
to define a grading 
 of L2.�;E/ such that the spectral triple is even, i.e. 
2 D Id,

� D 
 , 
a D a
 for all a 2 C1.�/ and 
D CD
 D 0. The grading is related to
the splitting induced by the chirality.

The spectral triples .A0
D
;H ;D/ and .A1

D
;H ;D/ introduced above are also

even, since the grading operator preserves the domain of DAPS. This is not true for
the spectral triples introduced in [18], based on chiral boundary conditions. Dealing
with local boundary conditions, as chiral boundary conditions, the grading does not
preserve the domain of the Dirac operator, see e.g. the example on the disk in [8].

The case of odd dimension. We suppose again that the metric is of product type
near the boundary and thus D has the form (4.5). Also in this case it is well known
that the APS boundary conditions define elliptic realizations of the Dirac operator.
SinceD is essentially self-adjoint,

�B D B�� D �B�; (4.7)

i.e. � inverts the splitting induced by the spectrum of B . For Green’s formula (3.3)
we find A D �� D �� . By (4.7), we obtain

A D �� W kerP� �! kerP�:

In case B is invertible, kerP� D kerP< D .kerP�/?. Hence, by Theorem 3.12,
the realization D D DAPS of D subject to the boundary condition T D P�0
0 is
self-adjoint.

In case B is not invertible, the usual APS-boundary condition does not give a
self-adjoint realization and one has to proceed differently, as is discussed in detail
in [12]. Let a2 2 R n �.B2/ and let E.�/ � L2.@�;Ej@�/, denote the eigenspace
associated to the eigenvalue � 2 �.B/. Since the boundary is even dimensional,
there is a splitting Ej@� D EjC

@�
˚ Ej�

@�
, inducing a splitting of each eigenspace.

We set
K˙@�.a/ D

M
�a<�<a

E˙.�/

and let Pg 2 L.L2 .@�;Ej@�// be the orthogonal projection onto the graph of an
L2-unitary map g W KC

@�
.a/! K�

@�
.a/. Then the trace operator

T D
�
P>a C Pg

�

0



APS-type boundary conditions and spectral triples 909

is an APS-type boundary condition as defined in Section 3 .note that P>aPg D
PgP>a D 0, hence P>a C Pg indeed is a projection/ and induces an elliptic, self-
adjoint realization of the Dirac operator, again denoted by D .of course this operator
depends on the choice of a and g/.

In any case, by Theorem 4.2, we can conclude that both .A0
D
; L2 .�;E/ ;D/

and .A1
D
; L2 .�;E/ ;D/ are spectral triples of dimension n, the second one being

regular.
Remark 4.6. In [25], the realizations of the Dirac operator subject to APS-type
conditions T D P
0 are analyzed, where P is a zero order pseudodifferential
projection on the boundary. In case of odd dimension and invertible tangential
operator, it is proven that such a realization is elliptic and self-adjoint if, and only if,
P D Pg is the orthogonal projection onto the graph of an L2-unitary isomorphism
g W EC

@�
! E�

@�
. The case of a non-invertible tangential operator is studied in [12].

It is proven that T D P
0 leads to a elliptic and self-adjoint extension of DP>�a
0
if and only if P D P>a C Pg with Pg described above.

We want to stress once more that all these boundary conditions are of APS-type
and fit in our general framework.

4.2. Spectral triples based on Dirac operators. We shall now study A0
D

and A1
D

in case of D being an above described realization of the Dirac operator.
Proposition 4.7. Let .A0

D
;H ;D/ be the spectral triple associated with a Dirac

operator D and APS-type boundary conditions as described in the previous
Subsection 4:1. Let a 2 A0

D
such that both a and a� preserve Dom.D/. Then

aj@� is locally constant.

Proof. In case � is of even dimension, both a and a� preserve the domain ofDCAPS,
cf. (4.6). In the case of odd dimension let us first assume that the tangential operator
is invertible. In both cases, the boundary condition is T D P�
0 and Lemma 4.4
implies that both a and a� commute with P�.

It is well known, see [4, §14], that P� is a classical pseudodifferential operator of
order zero, having principal symbol

p0.x
0; � 0/ D

b0.x0; � 0/C 1

2
; (4.8)

where b0.x0; � 0/ is the principal symbol of the operator .1 C B2/�1=2B . In the
even dimensional case, B can be identified with a Dirac operator on the boundary,
therefore

b0.x0; � 0/ D
i� 0�

j� 0j
; � 0 � being the Clifford multiplication on @�:

In particular, b0.x0; � 0/ is not constant as a function of � 0. In the odd dimensional
case it is also possible to give the explicit expression of the principal symbol of B
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and state that it is not constant, see e.g. [13].6 For notational convenience, let us now
simply write a instead of aj@�. Since aP� D P�a, in particular, the local symbols
of aP� and P�a are equal. Let us suppose that the symbol of P� has the asymptotic
expansion into homogeneous components

PC1
jD0 p�j .x

0; � 0/. Then we obtain

a.x0/

C1X
jD0

p�j .x
0; � 0/ �

C1X
j˛jD0

1

˛Š
@˛�0

� C1X
jD0

p�j .x
0; � 0/

�
D˛
x0a.x

0/:

The components of zero order coincide, since a is scalar-valued. Equality of the
components of order �1 meansX

j˛jD1

@˛�0p0.x
0; � 0/D˛

x0a.x
0/ D .r�0p0.x

0; � 0/;ra.x0// D 0: (4.9)

Since both a and a� preserve the domain also aC a� and .a � a�/=i preserves the
domain. Therefore, it is not a restriction to suppose that a is real valued. Since p0 is
not constant, the following Lemma 4.8 implies ra D 0, i.e. a is locally constant on
the boundary.

In the odd case, if B is not invertible, the involved projection is P D

P>0 C Pg . Since it differs from P� by a finite-dimensional, smoothing operator,
the homogeneous components of P coincide with those of P� and we can argue as
above.

Notice that Proposition 4.7 holds infact true for all boundary conditions described
in Remark 4.6.

Lemma 4.8. Let q 2 C1.Rm n f0g/ be positively homogeneous of degree 0, v 2 Rm,
and �

rq.�/; v
�
D 0 8 � 6D 0:

Then either v D 0 or q � const.

Proof. Assume v 6D 0. Let V denote the span of v. Then, for arbirary � 2 Rm n V ,

d

dt
q.�C tv/ D

�
rq.�C tv/; v

�
D 0 8 t 2 R:

Thus t 7! q.�C tv/ is constant in t . Hence, using the homogeneity,

q.�/ D q.�C tv/ D q.�=t C v/
t!C1
�����! q.v/ 8 � 2 Rm n V:

By continuity of q on Rm n f0g, it follows that q � q.v/.
6Here, we are supposing the dimension to be at least two. The one dimensional case is trivial: clearly

the restriction to the boundary is constant since it is the evaluation at one point.
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Theorem 4.9. Let .A1
D
;H ;D/ be the spectral triple associated with a Dirac oper-

ator D and APS-type boundary conditions as described in the previous Sub-
section 4:1. Then the closure of A1

D
in L.H / is isomorphic to

C@.�/ WD
˚
a 2 C.�/ j aj@� is locally constant

	
:7

Proof. Let us introduce the space V consisting of those functions a 2 C1.�/ \

C@.�/ such that a � aj@� vanishes to infinite order at the boundary. Then, by
Lemmas 4.3 and 4.7, V � A1

D
� C@.�/. However, it is an elementary fact that the

closure of V with repect to the supremum norm coincides with C@.�/.

Denoting by b� the topological space obtained from � by collapsing each
connected component of @� to a separate, single point,C@.�/ is isomorphic toC.b�/.
In this sense, the spectral triple constructed above does not see the boundary of the
manifold.

4.3. Example: A spectral triple on thedisk. It is natural to askwhich of the hypoth-
eses of Connes’ reconstruction theorem are not met when considering the regular
spectral triple of a manifold with boundary .A1

D
;H ;D/ introduced above. The

answer is that the so called finiteness axiom is violated. Indeed, it is not true
that H1

D
is a finitely generated projective A1

D
-module. Indeed, if this were true,

then
H1D Š p.A

1
D ˚ � � � ˚A1D / (N summands)

for a suitable N and a suitable projection p given by an N � N -matrix with entries
from A1

D
. Therefore, in view of Theorem 4:9, restricting H1

D
to the boundary would

give a finite-dimensional space. However, as we shall verify in an explicit example,
this is not true in general.

Following the exposition in [14], we consider onB WDf.x; y/ 2 R2 j x2 C y2�1g
the Dirac operator

D D i

�
0 1

1 0

�
@x C i

�
0 �i

i 0

�
@y ;

acting on C2-valued functions. Passing to polar coordinates .r; �/,8

D D i

�
0 e�i�

ei� 0

�
@r C

i

r

�
0 �ie�i�

iei� 0

�
@� ;

respectively

D D

�
0 ie�i� .@r C B.r//

�iei� .�@r C B.r// 0

�
; B.r/ D �

i

r
@� :

7Here, we identify functions from C.�/ with their operators of multiplication; the operator norm as
an element in L.L2.�;E// then coincides with the supremum norm of the function. Hence taking the
closure refers to uniform convergence on�.

8In the literature sometimes a different sign convention is used, cf. [8] for example. This is due to the
change of coordinates � ! �

2
� Q� .
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The operator B WD B.1/, acting as unbounded operator in L2.@B/, has spectrum
consisting of the eigenvalues n 2 Z, with corresponding eigenfunctions ein� . If P�
and P� denote the orthonormal projections in L2.@B/ onto the span of the ein� with
n � 0 and n � 0, respectively, then D WD DAPS has domain

dom .D/ D
˚
 D . 1;  2/ 2 H

1.B;C2/ j P�
0 1 D P�
0 2 D 0
	
;

where 
0u D uj@B is the restriction to the boundary of B.

Proposition 4.10. The restriction of H1
D

to the boundary of B is an infinite-
dimensional space.

Proof. With an integer k > 0 let us consider  k D . k;1; 0/ 2 C1.B;C2/ with

 k;1.r; �/ D �.r/ .cosh.�k log r/C sinh.�k log r// e�ik� ; (4.10)

where � is a smooth function identically equal to 1 near r D 1 and identically equal
to zero near r D 0. Obviously,  kj@B D .e�ik� ; 0/ and  k belongs to the domain
of D . Moreover,D k D .0; 'k;2/ with

'k;2.r; �/ D �ie
i�
�
� @r �

i

r
@�

�h
�.r/ .cosh.�k log r/C sinh.�k log r// e�ik�

i
:

A straightforward calculation now reveals that

'k;2.r; �/ D ie
i� .@r�/ .r/

��
cosh.�k log r/C sinh.�k log r/

�
e�ik�

�
:

Therefore D k is supported in the interior of B, since @r� vanishes near r D 1.
Since D is a differential operator, this is then also true for Dn k for every n � 1,
hence the APS-boundary conditions are trivially fulfilled.

A. Ellipticity and Fredholm property

Let † � Rn and assume we have two families of Banach spaces

fH s
j gs2†; j D 0; 1;

having the following properties, for every s:

(1) H1j WD \s2†H
s
j is a dense subspace ofH s

j .

(2) Any continuous operator T W H s
j ! H s

j with imT � H1j is compact.
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A.1. Invariance of the index. Let us consider two operators

Aj W H
1
j �! H11�j ; j D 0; 1;

that extend by continuity to operators

Asj W H
s
j �! H s

1�j ; s 2 †;

and such that
Cj WD 1 � A1�jAj W H

1
j �! H1j

are regularizing operators, in the sense that the extensions C sj satisfy

imC sj � H
1
j ; s 2 †:

Due to assumption .2/ on the compactness, eachAsj is a Fredholm operator. We shall
see, in particular, that the corresponding index does not depend on s 2 †. This has
already been observed in Lemma 1.2.94 of [19] in case of one-parameter scales of
Hilbert spaces .requiring, in particular, continuous embeddingsH s ,! H t for s � t ,
which are compact in case s > t/; the proof we give here extends to multi-parameter
families of Banach spaces.
Example A.1. In connection with boundary value problems, typical families arising
are of the form † D

˚
s D .r; p/ j p > 1; r > 1=p

	
� R2 and

H s
j D H

r
p.�;Ej /˚ B

r�1=p
pp .@�; Fj /; s D .r; p/ 2 †;

with a smooth compact manifold with boundary � and vector-bundles Ej and Fj
.direct sum of Sobolev .Bessel potential/ and Besov spaces/. Then

H1j D C1.�;Ej /˚ C1.@�; Fj /

and .1/, .2/ hold due to well-known embedding theorems.
Let us first observe the following consequence, refered to as elliptic regularity

in the sequel: Let f 2 H11 and As0u D f with u 2 H s
0 for some s 2 †. Then

u 2 H10 and f D A0u. In fact,

A1f D A
s
1f D A

s
1A

s
0u D .1 � C

s
0 /u D u � C

s
0u

shows that u D A1f C C s0u belongs toH10 .
Lemma A.2. Let V1 be a finite-dimensional subspace ofH11 such that

(1) V1 \ imAs0 D f0g, (2) V1 C imAs0 D H s
1

for some fixed value s D s0. Then both .1/ and .2/ hold for arbitrary s 2 †.
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Proof. .1/ is a direct consequence of elliptic regularity: If f D As0u 2 V1 then
u 2 H10 and, in particular, f D As00 u 2 V1 \ imAs00 D f0g.

For .2/ let f 2 H s
1 with some s 2 † be given. Choose a sequence .fn/ � H11

converging to f inH s
1 . By .2/ for s D s0 and elliptic regularity, we can write

fn D vn C A0un; vn 2 V1; un 2 H
1
0 :

Since As0 is a Fredholm operator, imAs0 is a closed subspace of H s
1 . By .1/ it has

a complement of the form V1 ˚ V with some finite-dimensional V ; this is then a
topological complement. It follows that .fn/ converges in H s

1 if, and only if, both
.As0un/ and .vn/ converge in H s

1 . Thus there exists a u 2 H s
0 and a v 2 V1 such

that, inH s
1 ,

fn
n!C1
�����! f; fn D vn C A

s
0un

n!C1
�����! v C As0u:

Therefore f D v C As0u 2 V1 C imAs0.

Proposition A.3. Under the above assumptions there exist finite-dimensional
subspaces Vj � H1j such that, for every s 2 †,

kerAs0 D V0; H s
1 D V1 ˚ imAs:

In particular, indAs0 D dimV0 � dimV1 does not depend on s. Moreover, if As0 is
invertible for some s 2 † then it is for all s.

Proof. By elliptic regularity, V0 WD kerAs0 is independent of s. Due to the Fredholm
property it is finite-dimensional.

By the previous Lemma A.2 it suffices to find a subspace V1 � H11 that is a
complement to imAs0 for some fixed choice of s. Let W D spanfw1; : : : ; wng be a
complement to imAs0 inH s

1 . Write

wk D .C
s
1 C A

s
0A

s
1/wk D vk C A

s
0uk; k D 1; : : : ; n;

with vk WD C s1wk 2 H
1
1 and uk WD As1wk 2 H

s
0 . Then V1 D spanfv1; : : : ; vng is

the desired complement.

A.2. Inverses modulo projections. Now let L0
jk
, j; k 2 f0; 1g, denote certain

vector spaces of operators H1j ! H1
k
, whose elements extend by continuity to

operators in L.H s
j ;H

s
k
/ for every s 2 †. Let L�1

jk
be subspaces of regularizing

.in the sense described above/ operators. Assume that, for every choice of j; k; ` 2
f0; 1g, compostion of operators induces maps

.A;B/ 7! AB; Lsk` � L
t
jk �! LsCt

j`
; s; t 2 f�1; 0g:

By definition, a parametrix to A0 2 L001 is any operator A1 2 L010 such that

1 � A10A01 2 L
�1
00 and 1 � A01A10 2 L

�1
11 :

An operator possessing a parametrix is called elliptic.
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Proposition A.4. LetA0 2 L001 be elliptic and Vj � H1j be two spaces as described
in Proposition A:3. Assume that �j 2 L�1jj are projections with im�j D Vj .
Furthermore assume that, for every s 2 †, compostion of operators induces maps

.A;B; C / 7! ABC; L�100 �L.H s
1 ;H

s
0 / � L

�1
11 �! L�110 ; (A.1)

i.e. sandwiching a continuous operator between two smoothing operators results in
a smoothing operator. Then there exists a parametrix A1 2 L010 such that

A1A0 D 1 � �0; A0A1 D 1 � �1:

Proof. Fix some s 2 †. Then �sj are projections in H s
j with image Vj . Note that

As0 W ker�s0 ! imAs0 is bijective, hence has an inverse. Let As1 2 L.H s
1 ;H

s
0 / be the

operator acting like this inverse on imAs0 and vanishing on V1. By construction we
thus have

As1A
s
0 D 1 � �

s
0; As0A

s
1 D 1 � �

s
1:

Now let eA1 be a parametrix to A0 and C0 D 1 �eA1A0 and C1 D 1 � A0eA1. Then
As1 �

eAs1 D �eAs1As0 C C s0 ��As1 �eAs1� D eAs1�C s1 � �s1�C C s0 �As1 �eAs1�
As1 �

eAs1 D �As1 �eAs1��As0eAs1 C C s1 � D �C s0 � �s0�eAs1 C �As1 �eAs1�C s1 :
Substituting the second equation into the first yields

As1 �
eAs1 D eAs1�C s1 � �s1�C C s0 �C s0 � �s0�eAs1 C C s0 �As1 �eAs1�C s1 :

Hence the desired parametrix is

A1 D eA1 CeA1�C1 � �1�C C0�C0 � �0�eA1 C C0�As1 �eAs1�C1;
since the last term belongs to L�110 due to assumption (A.1).
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