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Abstract.We compare representations of the real and complex general linear groups and special
linear groups in the framework of K-theory, using base change on L-parameters. We introduce
a notion of base change on K-theory involving the fixed point set of the reduced dual of a
complex group. For general linear groups, we prove that the base change map is compatible with
the Connes–Kasparov isomorphism.
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1. Introduction

Local Langlands correspondence (LLC), proposed by Langlands [20,21] and then
verified formany algebraic groups (see for example [8,9,11,22,23]), roughly speaking,
is a deep philosophy connecting arithmetics and representation theory. The
philosophy claims that the irreducible admissible representations of a reductive
algebraic group G over a local field F are parametrised by L-parameters

� W WF !
LG

whereWF is the Weil group (for F being an archimedean field) or the Weil–Deligne
group (for F being non-archimedean) and LG is the so-called L-group. In this paper,
we will only investigate the case of archimedean local fields. When the group G is a
general linear group, LLC gives rise to a bijective map

f W ….G/! ˆ.G/; (1.1)
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where

….G/ WD
˚
equivalence classes of irreducible admissible representations of G

	
I

ˆ.G/ WD
˚
G_-conjugacy classes of L-parameters: � W WF !

LG
	
:

Here, G_ is the Langlands dual group. For a general algebraic group, the map f
fails to be one-to-one. This means that two distinct representations �; � in….G/may
share the same L-parameter, i.e. � and � are in the same L-packet. LLC states that
there is a bijection between ˆ.G/ and equivalence classes of ….G/ determined by
L-packets.

Thanks to the philosophy of Langlands, comparisons of irreducible admissible
representations of algebraic groups G.C/ and G.R/ can be made by comparing the
corresponding L-parameters. The inclusion of Weil groupsWC ! WR gives rise to
a well defined base change map on L-parameters over different fields:

bc W
˚
L-parameters of G.R/

	
!
˚
L-parameters of G.C/

	
:

Because of LLC (1.1), there is a base change map on admissible representations
between G.C/ and G.R/ (see Section 5.1):

bc W ….G.R//! ….G.C//:

The induced base change map on representations gives rise to the commutative
diagram:

f W ….G.R//
LLC
����! ˆ.G.R//??ybc ??ybc

f W ….G.C//
LLC
����! ˆ.G.C//

In this paper, we study the above diagram using K�.C �r .G//, the K-theory for
group C �-algebras. Because C �r .G/ encodes information of the tempered dual ofG,
we consider admissible representations that are tempered representations.

The first main result of our paper is Theorem 6.9. When G is a general linear
group or a special linear group, there is a nontrivial base change map on operator
algebra K-theory,

bc W Ki .C
�
r .G.C///! Kj .C

�
r .G.R///; (1.2)

where i (resp. j ) has the same parity as dimŒG.R/=K.R/� (resp. dimŒG.C/=K.C/�).
A featured treatment of our K-theory characterisation of base change is the

possible degree shift in K-theory of (1.2). Namely, i and j may not be the same.
This is a finer definition than that of Mendes and Plymen [25]. In fact, in their
formulation in our archimedean examples, their base change map is trivial when
n > 1. In our modified definition of base change on K-theory, we have taken into
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account the subset of ….G.C// fixed by the Galois group Gal.C=R/, and obtain
a nontrivial base change map on K-theory. The Galois fixed point set has lower
dimension than the connected component where it locates, causing the degree shift
in K-theory. Another feature of our formulations is that for the case SL.n/, the
L-packet information is encoded in the base change map (1.2) on K-theory (see for
example Corollary 6.11).

Our second main result is Theorem 7.7. Let G be a general linear group andK a
maximal compact subgroup, then through the Connes–Kasparov isomorphism

R.K/ Š K�.C
�
r .G//; (1.3)

there is a base change map on the representation ring R.K/ of K:

bc� W R.KG.C//! R.KG.R//:

We show that the base change maps (1.2) on GL.n/ and on its maximal compact
subgroup K are compatible with the Connes–Kasparov isomorphism (1.3).

This paper is the first series of papers about functorality of K-theory for
C �-algebras. Our second paper in the series will be focused on the case of general
classical groups.

We would like to mention a recent preprint by Mendes–Plymen [26]. The paper
has some common terms as ours in the exposition part. However, our results are
parallel to theirs and represents an independent work.

Acknowledgements. We are grateful to Prof. King Fai Lai for his encouragements
and suggestions. We would like to thank Shanghai Center of Mathematical Sciences
at Fudan University and University of Adelaide for the hospitality and support, during
our visits to each other. A large part of this work is completed during these visits.
We appreciate the very helpful comments and suggestions from the referee of our
article.

2. L-parameters

In this section, we review L-parameters and some examples. Details can be found in
notes such as [16,17].

Let F be an archimedean local field and F be the algebraic closure. Recall that a
Weil groupWF is an extension of the multiplicative group of F

� by the Galois group
Gal.F=F/, i.e.

1! F
�
! WF ! Gal.F=F/! 1:

Example 2.1. (1) If F D C, the Galois group Gal.C=C/ is trivial, so

WC D C�:
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(2) If F D R, then Gal.C=R/ D f1; �g Š Z2 and WR is C� [ kC� subject to
relations

k2 D �1 and kz D zk:

The action on C by conjugacy of z (resp. kz) corresponds the trivial element 1
(resp. nontrivial element� ) ofGal.C=R/. This determines amap j WWR!Gal.C=R/
with kernel C� and defines a nontrivial extension.

Denote by G_ the Langlands dual group of G. It is a simply connected complex
reductive group whose root datum is dual to that of the group G. For the field F , the
L-group associated to G.F/ is defined by the crossed product,

LGF D G
_ Ì Gal.F=F/:

Example 2.2. (1) For G D GL.2/, the Langlands dual group is G_ D GL.2;C/.
When F D C or R, we have

LGC D GL.2;C/;
LGR D GL.2;C/ Ì Gal.C=R/:

Here, the nontrivial element � of the Galois group Gal.C=R/ acts on G_ by the
following outer involution

� W g 7! J.g�1/T J�1

where g 2 GL.2;C/ and J D
�
0 �1
1 0

�
.

(2) For G D SL.2/, the Langlands dual group is G_ D PGL.n;C/ and the
L-groups for G.C/ and G.R/ are

LGC D PGL.2;C/;
LGR D PGL.2;C/ Ì Gal.C=R/:

Definition 2.3. An L-parameter is a G_-conjugacy class of homomorphisms

� W WF !
LGF

where the image contains only semisimple elements and is compatible with the
canonical projections from LGF to Gal.F=F/, i.e. the diagram commutes:

WF ����! LGF

j

??y ??y
Gal.F=F/

D
����! Gal.F=F/:

Example 2.4. When F D R, there is a canonical map

j W WR ! Gal.C=R/:

Thus, an L-parameter can also be expressed in the form �.w/ D �0.w/ � w for
w 2 WR where �0 is a continuous 1-cocycle ofWR into semisimple elements ofG_.
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2.1. L-parameters of GL.2/. For F D C, L-parameters for GL.2;C/ are given
by theG_-conjugacy classes of homomorphismsWC ! GL.2;C/ with semisimple
images. AsWC D C� is abelian, all its irreducible representations are 1-dimensional.
Also, denoting a complex number by z D �ei� , a group homomorphism C� ! C�

has the form

��;n W C
�
! C�; z 7! ��ein� ; for some n 2 Z, � 2 C:

Hence, Langlands parameters forGL.2;C/ up to conjugacy have the following form

��1;n1;�2;n2.z/ D

�
��1;n1.z/ 0

0 ��2;n2.z/

�
for some �1; �2 2 C and n1; n2 2 Z. Note also that up to conjugacy

��1;n1;�2;n2 ' ��2;n2;�1;n1 :

Remark 2.5. In this note, we are interested in tempered representations (hence
unitary). With these requirements the corresponding L-parameters are bounded and
unitary, i.e. �1; �2 2 iR. We shall assume this condition for L-parameters for
GL.2;C/ and for later cases: GL.2;R/; SL.2;C/ and SL.2;R/.

The case for F D R is slightly complicated. A bounded and unitary L-parameter
WR ! GL.2;C/ for GL.2;R/ up to conjugacy has the following two forms:

(1) For some �1; �2 2 iR and m1; m2 2 Z2,

��1;m1;�2;m2.z/ D

�
��1;0.z/ 0

0 ��2;0

�
; (2.1)

��1;m1;�2;m2.�/ D

�
.�1/m1 0

0 .�1/m2

�
: (2.2)

Note that ��1;m1;�2;m2 ' ��2;m2;�1;m1 .

(2) For some � 2 iR; n 2 Z,

��;n.z/ D

�
��;n.z/ 0

0 ��;�n.z/

�
;

��;n.�/ D

�
0 .�1/n

1 0

�
:

Note that ��;n ' ��;�n and on the intersection of (1) and (2)

��;0 ' ��;1;�;0 ' ��;0;�;1:
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2.2. L-parameters of SL.2/. L-parameters for SL.2/ are homomorphisms from
the Weil group WF to the L-group PGL.2;C/ Ì Gal.F=F/. Notice that an
L-parameter for GL.2/ gives rise to an L-parameter for SL.2/ by the natural
projection GL.2;C/! PGL.2;C/:

WF

((

// GL.2;C/ Ì Gal.F=F/

��
PGL.2;C/ Ì Gal.F=F/

The converse is also true due to the following theorem:

Theorem 2.6 ([22], [18, Theorem 7.1]). Let F D R or C. Every projective rep-
resentation of WF can be lifted to a representation of WF . Moreover, there is a
surjective map of L-parameters for GL.n;F/ and SL.n;F/:

ˆ.GL.n;F//! ˆ.SL.n;F//: (2.3)

Because of this theorem, all L-parameters for SL.2/ are obtained from
L-parameters of GL.2/ composed with the projection GL.2;C/ ! PGL.2;C/.
As above, let z D �ei� and ��;n.z/ D ��ein� .

When F D C, a bounded unitary L-parameter for SL.2;C/ has the following
form:

(1) For some � 2 iR and m 2 Z,

��;m.z/ D

�
��;m.z/ 0

0 1

�
:

Note that ��;m ' ���;�m.

When F D R, a bounded L-parameter for SL.2;R/ has either of the following
forms up to conjugation.

(1) For some � 2 iR and m 2 Z2,

��;m.z/ D

�
��;0.z/ 0

0 1

�
; ��;m.�/ D

�
.�1/m 0

0 1

�
:

(2) For some n 2 Z,

�n.z/ D

�
�0;n.z/ 0

0 �0;�n.z/

�
; �n.�/ D

�
0 .�1/n

1 0

�
:

Note that �n ' ��n.
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3. Representations

In this section, we recall the classification of irreducible tempered representations
of general and special linear groups. Without loss of generality, we shall focus
on the example when G D GL.2;F/ or SL.2;F/ for F D R or C. By Harish-
Chandra’s subquotient theorem, all such representations (admissible representations
in general) arise as subquotients of some principal series representations. A principal
series representation p.�1; �2/ is a representation induced from the Borel subgroup
P D MAN of G (upper triangular matrices) determined by unitary characters
�1; �2 of F� Š MA. HereMA is the Levi subgroup with a maximal torusM and
an abelian group A. The induced representation p.�1; �2/ 2 IndGP .�1; �2/ consists
of functions on G where

f

��
a x

0 b

�
g

�
D �1.a/�2.b/

ˇ̌̌a
b

ˇ̌̌ 1
2

f .g/ 8g 2 K:

Denote the character �1��12 of F� by �.
When F D R, any character � W R� ! C� has the form

�.x/ D Œsign.x/�mjxj� for some m 2 Z2, � 2 C:

Here, sign is the sign character where sign.x/ D 1 when x > 0 and sign.x/ D �1
when x < 0.

When F D C, any character � W C� ! C� has the form

�.�ei� / D ein��� for some n 2 Z, � 2 C:

In general, all irreducible representations of G can be constructed using
characters �. In a particular case when G is a complex semisimple Lie group,
e.g. SL.n;C/, every principal series representation

p.�1; �2; : : : ; �n/

is irreducible. Thus, all irreducible tempered representations of G can be identified
as the irreducible principal series up to the action by the Weyl group W of G:bG Š .bA �cM/=W:

In the case when a principal series is reducible, it corresponds more than one
irreducible representations.

3.1. Representations of GL.2; F/. When F D R, consider the character

� D �1�
�1
2 W R

�
! C�
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where �.x/ D Œsign.x/�mjxj� for some m 2 Z2; � 2 C. It can be verified that

�n

��
a x

0 b

� �
cos � sin �
� sin � cos �

��
D �1.a/�2.b/

ˇ̌̌a
b

ˇ̌̌ 1
2

ein�

form a basis for the principal series p.�1; �2/. According to [12], if ��m is not an
odd integer or if � D 0, p.�1; �2/ are irreducible. If � � m is an odd integer and
� ¤ 0 the principal series p.�1; �2/ is reducible and we have two cases:

(1) If � > 0, then the submodule

�.�1; �2/ WD
M

n��C1;
n����1

C�n

is irreducible and the quotient representation �.�1; �2/ is a finite dimensional
irreducible representation.

(2) If � < 0, then
�.�1; �2/ WD

M
1C��n��1��;

n����1

C�n

is a finite dimensional irreducible representation and the quotient representation
�.�1; �2/ is also irreducible.

As we shall focus on irreducible tempered representations, we disregard finite
dimensional representations, the trivial representation and complementary series,
because they do not contribute to generators of K-theory.

Theorem 3.1. The irreducible tempered representations of GL.2;R/ up to unitary
equivalence are:

(1) Discrete series given by the subquotient �.�1; �2/ of the principal series
p.�1; �2/ where

�.x/ D jxjnŒsign.x/�nC1 n ¤ 0:

Note: Œsign.x/�nC1C2k D Œsign.x/�nC1.

(2) Irreducible principal series defined by p.�1; �2/ where

�.x/ D jxji� Œsign.x/�m .if � D 0, m is not odd/:

The representations are also equivalent under permutation of �1; �2.

When F D C, consider the character

� D �1�
�1
2 W C

�
! C�
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where �.z/ D zpzq; p; q 2 C; 2p � 2q 2 Z. According to [12], the principal
series p.�1; �2/ is irreducible whenever p; q are not both positive or both negative.
When p; q are both positive or both negative, p.�1; �2/ splits into two irreducible
subquotients, one finitely dimensional, the other is isomorphic to p.�3; �4/ for some
�3,�4 where�3��14 D �. From this we see that in this case all irreducible tempered
representations come from irreducible principal series.
Theorem 3.2. The irreducible tempered representations of GL.2;C/ up to unitary
equivalence are: Irreducible principal series, obtained fromp.�1; �2/where�.z/ D
�i�ein� with � 2 R and n 2 N.

3.2. Representations of SL.2; F/. For SL.2;F/, we only need one character
� D �1�

�1
2 . A principal series �.�/ is a representation induced from the Borel

subgroup P D MAN determined by a unitary character � of R� Š MA and the
principal series p.�/ 2 IndGP .�/ consists of functions f on SL.2;R/ where

f

��
a x

0 a�1

�
g

�
D �.a/jajf .g/; g 2 K:

The unitary character � is parametrised by .m; �/ 2 Z2 �C, i.e.

�.x/ D Œsign.x/�mjxj� x 2 R�:

Note that � is determined by m D Z2 D f˙g and � 2 C. Denote

I˙;� D p.�/:

Note that for �.�/ to be a unitary representation, we need � 2 iR. The represent-
ation I�;0 splits into direct summandsD�0 ˚D

C
0 underlie two limit of discrete series

representations. When n is a positive integer and ˙ is the parity of n C 1, I˙;n
has two irreducible submodulesD�n ;DCn underlie discrete series. All other I˙;� are
irreducible. Thus, the space of irreducible unitarisable representations of SL.2;R/
are classified as follows:
Theorem 3.3 ([15, Theorem 16.3]). The irreducible tempered representations of
SL.2;R/ up to unitary equivalence are:
(1) Discrete seriesD˙n .n > 0/ obtained from I˙;n or �.x/ D jxjnŒsign.x/�nC1.
(2) Limit of discrete seriesD˙0 obtained from I�;0 or �.x/ D sign.x/.
(3) Irreducible principal series IC;i�.� 2 R/ and I�;i�.� 2 R�/ (or �.x/ D
jxji� Œsign.x/�m). Denote them by PSi�;1, PSi�;�1, � 2 R.
Admissible representations of SL.2;C/ are much easier. The reason is that the

principal series p.�/ depending on a unitary character � of C� Š AM is always
irreducible. Let z D �ei� and denote by In;�, n 2 N, � 2 iR, the principal series
p.�/ is induced by

�.z/ D ��ein� :
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The space of irreducible tempered unitary representations of SL.2;C/ is classified
as follows.

Theorem 3.4 ([15, Theorem 16.2]). The irreducible tempered representations of
SL.2;C/ up to unitary equivalence are: Irreducible principal series are obtained
from Ii�;n D �.�/ where �.z/ D �i�ein� with � real and n 2 N. Denote them by
PSi�;n, � 2 R, n 2 N. Note that PSi�;n ' PS�i�;�n.

4. Local Langlands correspondence

In this section, we review the local Langlands correspondence. The correspondence
was conjectured by Langlands [20,21]. The conjecture is proved for GL.n/ over
archimedean fields [22] and over p-adic fields [8,9], and proved for SL.n/ in [11,
23]. Following from the Langlands program, the study of admissible irreducible
representations of an algebraic group can be parametrised by L-parameters.

Recall that all admissible irreducible representations of a group G over an
archimedean field can be characterised by irreducible .g; K/-modules. In the
philosophy of Langlands, L-parameters produce a way to classify admissible
representations of G in the sense that each L-parameter corresponds a finite set
of irreducible .g; K/-modules, called anL-packet. This bijection betweenL-packets
of admissible irreducible representations of GF and conjugacy classes of admissible
homomorphisms of the Weil group WF in the L-group LGF , satisfying some other
suitable conditions, is called a local Langland correspondence.

For example, due to the local Langlands correspondence, the surjective map (2.3)
from L-parameters of GL.2;F/ to that of SL.2;F/ implies that every class of
irreducible admissible representations of SL.2;F/ can be constructed from an
element in ….GL.2;F//. For GL.2;F/, each L-packet contains only one element
from ….GL.2;F//. But for SL.2;F/, an L-packet may contain more than one
elements of ….SL.2;F//. Therefore, in view of Theorem 2.6, different classes
of representations from a same L-packet for SL.2;F/ in fact come from a same
representation of GL.2;F/. These facts are related deeply to the reason why the
unitary dual of GL.2;F/ is Hausdorff but the topology for the unitary dual of
SL.2;F/ is slightly more complicated (see Section 6).

We shall review local Langlands correspondence in the context of the following
examples.

4.1. Local Langlands correspondence forGL.2; F/. Let us first consider F D R.
The central object constructing local Langlands correspondence for a group over R
is the characters of R�. For GL.2;R/, we know that an irreducible tempered
representation is either a principal series p.�1; �2/ or its subquotient (as discrete
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series), depending on the parameter � 2 iR; m 2 Z2 for the character

� W R� ! C� x 7! jxj�Œsign x�m:

Here, � D �1��12 and �1; �2 are characters of R� given by

�i .x/ D jxj
�i Œsign x�mi

for some �i 2 C; mi 2 Z2. We will only need to construct a unique L-parameter

� W WR ! GL.2;R/ Ì Gal.C=R/

associated to the characters �1; �2 of R�. Note there is a natural map WR !

Gal.C=R/ coming from the extension

0! R� ! WR ! Gal.C=R/! 0:

Thus, we only need to construct a homomorphism WR ! GL.2;C/. There are two
facts to be used in the construction:

(1) The norm map given by the homomorphism

N W WR ! R� z 7! jzj; � 7! �1:

gives rise to a bijection between the characters of WR and characters of R�:

WR

N
��

O� // C�

R�
�

==

(2) The character �1�2 W R� ! C� lifted to the character of WR determines a
homomorphism WR ! GL.2;C/ through the determinant map:

WR
� //

b�1�2 %%

GL.2;C/

det
��

C�

Bearing these two facts in mind, there are two cases for constructing the
homomorphism

� W WR ! GL.2;C/:
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(1) � is made up of characters of WR. In other words, it is given by 1-dimensional
representations:

� W WR ! GL.2;C/ w 7!

�
�1.N.w// 0

0 �2.N.w//

�
:

Thus, an irreducible principal series p.�1; �2/, where �i .x/ D jxj�i Œsign x�mi
and � D jxji� Œsign x�m, corresponds uniquely to the L-parameter given by
��1;m1;�2;m2 in the notation of (2.1).

(2) � is not made of characters. In other words, it is a 2-dimensional irreducible
representation. In this case, � is always induced from a character � of C� where
� ¤ Id, i.e.

� D IndWR
C� �:

The induced representation is given by

�.z/ D

�
�.z/ 0

0 �.z/

�
�.�/ D

�
0 �.�1/

1 0

�
:

Let �.z/ D jzj�ein� . Then the character of WR obtained by taking the
determinant of the above induced representation

z 7! jzj2� � 7! .�1/nC1

corresponds to the character x 7! jxj2�Œsign x�nC1 which we requested to be
�1�2. Therefore, a discrete series �.�1; �2/ where �i .x/ D jxj�i Œsign x�mi
and� D jxjnŒsign x�nC1 corresponds uniquely to��;nwhere�; n are determined
by �1�2 D jxj2�Œsign x�nC1.
We summarise this construction in the following lemma:

Lemma 4.1. The local Langlands correspondence between irreducible tempered
representations of GL.2;R/ and L-parameters is the following:

….GL.2;R// �1; �2; � D �1�
�1
2 ˆ.GL.2;R//

�.�1; �2/ �1�2.x/ D jxj
2�Œsign x�nC1 ��;n

� D jxjnŒsign x�nC1

p.�1; �2/ �.x/ D jxji� Œsign x�m ��1;m1;�2;m2
�i .x/ D jxj

�i Œsign x�mi (� D 0) m even)

Table 1.

This is a one-to-one correspondence.
When F D C, life is much simpler. An L-parameter WC ! GL.2;C/ can be

diagonalised, which corresponds to two characters �1; �2 of C�. This L-parameter
corresponds to the irreducible principal series p.�1; �2/ of GL.2;C/ uniquely.
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Lemma 4.2. The local Langlands correspondence between irreducible tempered
representations of GL.2;C/ and L-parameters is the following:

….GL.2;C// �1; �2; � D �1�
�1
2 ˆ.GL.2;C//

p.�1; �2/ �.�ei� / D �i�ein� ��1;n1;�2;n2
�i .�e

i� / D ��i eini�

Table 2.

This is a one-to-one correspondence.

4.2. Local Langlands correspondence for SL.2; F/. From the previous subsec-
tion, we find that the local Langlands correspondence is constructed using characters
�1; �2 of F�. The same idea can be applied to SL.2;F/, but by definition we restrict
only to the case �1 D ��12 . Thus, an irreducible representation of SL.2;F/ depends
only on �. Because the composition ofGL.2;F/! PGL.2;F/withL-parameters
of GL.2;F/ gives rise to L-parameters of SL.2;F/, so we have

��1;n1;�2;n2 D ��1��2;n1�n2;0;0;

i.e. an L-parameter for SL.2;F/ depends only on � as well. Hence, we only need
the character � D �1��12 to parametrise the representations and L-parameters.

Relative to the example of SL.2;R/, the parameter for the principal series �.�/
where �.x/ D jxj�Œsign.x/�m is defined by ��;m; � 2 C; m 2 Z2.
Lemma 4.3. The local Langlands correspondence between irreducible tempered
representations of SL.2;R/ and the space of L-parameters is the following:

….SL.2;R// �.x/ ˆ.SL.2;R//

D˙n , n > 0 jxjnŒsign.x/�nC1 �n
D˙0 sign.x/ �0
PSi�;˙1 Œsign.x/�mjxji� �i�;m

Table 3.

The correspondence is 2 to 1 on (limit of) discrete series.

Remark 4.4. Therefore, the principal series PSs;˙1 corresponds one-to-one with
L-parameters, while the (limit of) discrete series corresponds two-to-one with
L-parameters, i.e. two (limit of) discrete series D˙n have the same L-parameter.
This situation is more complicated than the case of GL.2;R/. The reason follows
from the fact that principal representations for some character � corresponds to
more than one irreducible representations of SL.2;R/, while only one irreducible
representations for GL.2;R/.
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For F D C, all principal series are irreducible. Irreducible tempered represent-
ations of SL.2;C/ are in one-to-one correspondence with their L-parameters.
Lemma 4.5. The local Langlands correspondence of SL.2;C/ is a bijection between
irreducible tempered representations of SL.2;C/ and the space of L-parameters,
given by the following table:

….SL.2;C// �.z/ ˆ.SL.2;C//

PSi�;m eim��i� �i�;m

Table 4.

5. Base change on L-parameters and representations

In this section, we first recall base change on L-parameters. Then in view of the
local Langlands correspondence, base change is obtained as a map from admissible
representations ofG.R/ to the fixed point set ofG.C/ under the Galois group action
of Gal.C=R/. We work out explicitly the examples of GL.2/ and SL.2/ over R and
over C.

5.1. Base change on L-parameters. Let F be a local field and E be a field
extension. Then the Weil groupWE is a subgroup ofWF . Let GE ; GF be reductive
groups over E;F and LGE and LGF be their respective L-groups. Recall that a map
u WLGE !

LGF is an L-homomorphism if it is a continuous homomorphism over
Gal.F =F /, i.e. the following diagram commutes:

LGE
u

����! LGF??y ??y
Gal.E=E/ ����! Gal.F =F /:

and the restriction ujLGE W
LGE !

LGF is analytic. An L-parameter �E is a lift of
an L-parameter �F if there is an L-homomorphism from LGE to LGF such that the
following diagram commutes:

WF
�F // LGF

��
WE

OO

�E // LGE

(5.1)

In our situation we are mainly interested in F D R, E D C and G D GL.2/

or SL.2/, the projection map from LGR D
L GC Ì Gal.C=R/ to the first factor
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is an L-homomorphism making the above diagram commute. Therefore, every
L-parameter WR !

LGR gives rise to a unique L-parameter WC !
LGC . This is

defined as the base change map on L-parameters.

Definition 5.1. A base change is a map

bc W ˆ.G.R//! ˆ.G.C//

fromanL-parameter' D �R W WR !
LGR to anL-parameterˆ D �C W WC !

LGC

where the restriction of�R toWC has images inLGC , i.e. the diagram (5.1) commutes.

Remark 5.2. The base change map is not onto, i.e. not every L-parameter ˆ W
WC !

LGC extends to an L-parameter ' W WR !
LGR such that 'jWC D ˆ. If ˆ

is in the image of � under the base change map, it is called a lift of '.

5.2. Galois fixed points and base change on representations. An element being
in the image of a base changemap or not is closely related to theL-parametersˆ fixed
by the action of the Galois group Gal.C=R/. Given a representation… 2 ….G.C//
and the Galois group Gal.C=R/ D f1; �g, the action of � on… is defined by

…� .g/ D ….g/ g 2 G.C/:

Let ˆ.z/ D .a.z/; j.z// 2 G_ Ì Gal.C=C/ be the L-parameter corresponding
to the representation …. Then according to [30, Proposition 1], the corresponding
L-parameter ˆ� is given by

ˆ� .z/ D .� � a.z/; j.z// z 2 WC D C�:

Suppose ˆ is in the image of the base change map, i.e. a lifting of �. Let
'.1; �/ D .h; j.1; �// and g D � � h. Then

ˆ� D Ad.g/ˆ g 2 G_;

i.e. ˆ� and ˆ represent the same L-parameter. So ˆ is fixed by � . If G D GL.n/,
the converse is true as well, i.e. Ifˆ� D ˆ, thenˆ is a lift of some '. This is not true
in particular for G D SL.2/. Repka has a criteria of ˆ being a lift. We summarise
it into the following proposition.

Proposition 5.3 ([30]). Suppose ˆ is an L-parameter of GL.n;C/ being the fixed
point under the action of the Galois group Gal.C=R/. Then a lift ' of ˆ always
exists, i.e. there exists ' such that

bc.'/ D ˆ:
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Suppose ˆ is an L-parameter of SL.n;C/ being the fixed point under the action of
the Galois group Gal.C=R/. Then ˆ is a lift of ' if
(1) '.1; �/ˆ.z/'.1; �/�1 D ˆ.z/;
(2) '.1; �/2 D ˆ.�1/.

Through the local Langlands correspondence, the base change map between
L-parameters gives rise to the base change correspondence on representations

bc W ….G.R//! ….G.C//:

Remark 5.4. We use “correspondence” instead of “map” here because of the
existence of L-packets. But for all the examples discussed in this paper, the base
change on representations is in fact a map.

As the images of the base change map on ˆ.G.R// is a subset of the Galois
fixed point sets ˆ.G.C//Gal.C=R/, in the definition of base change map the range is
contained in the Galois fixed point set of admissible representations of the complex
group G.C/:
Definition 5.5. The base change between representations is a correspondence from
representations of G.R/ to the Galois fixed point of representations of G.C/

bc W ….G.R//! ….G.C//Gal.C=R/ (5.2)

which is compatible with the base change between L-parameters.

5.3. Base change for ….GL.2; F//. In view of Lemma 4.1 and Lemma 4.2, we
obtain the following base change map on the L-parameters and irreducible tempered
representations of G D GL.2/.
Theorem 5.6. Under the local Langlands correspondence, the base change map from
ˆ.GL.2;R// to ˆ.GL.2;C// gives rise to a base change map on the irreducible
tempered unitary representations of GL.2/:

bc W ….GL.2;R//! ….GL.2;C//Gal.C=R/:

The base change map is explicitly described in the following table:

� 2 ….GL.2;R// ' 2 ˆ.GL.2;R// ˆ 2 ˆ.GL.2;C// … 2 ….GL.2;C//

p.�1; �2/ �R
�1;m1;�2;m2

�C
�1;0;�2;0

p.�1; �2/

�i .x/ D jxj
�i Œsign x�mi �i .�e

i� / D ��i

�.�1; �2/ p.�1; �2/

�1�2 D jxj
2�Œsign x�nC1 �R

�;n
�C
�;n;�;�n

�1.�e
i� / D ��ein�

�1�
�1
2 D jxj

nŒsign x�nC1 �2.�e
i� / D ��e�in�

Table 5.

This map is onto.
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Proof. We only need to restrict anL-parameter �R toWC D C�. The discrete series
�.�1; �2/ for GL.2;R/ corresponds the L-parameter �R

�;n
W WR !

LGR given by

�R
�;n.z/ D

��
��ein� 0

0 ��e�in�

�
; j.z/

�
�R
�;n.�/ D

��
0 .�1/n

1 0

�
; j.z/

�
where z D �ei� 2 C�. The restriction of �R

�;n
to C� is the same as the complex

L-parameter �C
�;n;�;�n

evaluated at z 2 C�. The irreducible principal series
p.�1; �2/ ofGL.2;R/ corresponds theL-parameter �R

�1;m1;�2;m2
whose restriction

to C� is �C
�1;0;�2;0

.

5.4. Base change for ….SL.2; F//. With the preparation of Lemma 4.3 and Lem-
ma 4.5, we obtain the following base changemap on theL-parameters and irreducible
tempered representations of G D SL.2/.
Theorem 5.7. Under the local Langlands correspondence, the base change map from
ˆ.SL.2;R// to ˆ.SL.2;C// gives rise to a base change map on the irreducible
tempered unitary representations of SL.2/:

bc W ….SL.2;R//! ….SL.2;C//Gal.C=R/:

The base change map is explicitly described in the following table:

� 2 ….SL.2;R// ' 2 ˆ.SL.2;R// ˆ 2 ˆ.SL.2;C// … 2 ….SL.2;C//

D˙n ; n > 0 �R
n �C

0;2n PS0;2n
D˙0 �R

0 �C
0;0 PS0;0

PSi�;˙1 �R
i�;m �C

i�;0 PSi�;0

Table 6.

This map is not onto.

Proof. We only need to restrict an L-parameter �R to WC D C�. For the (limit
of) discrete series DCn and D�n for SL.2;R/, they are in the same L-packet and
correspond to the L-parameter �R

n W WR !
LGR W

�n.z/ D

��
ein� 0

0 e�in�

�
; j.z/

�
�n.�/ D

��
0 .�1/n

1 0

�
; j.z/

�
where z D �ei� 2 C�. Because we consider the matrix to be an element of
PGL.2;C/, the restriction of �R

n to C� is the same as�
ei2n� 0

0 1

�
z 2 C�;

which is equal to the complex L-parameter �C
0;2n evaluated at z 2 C�. Other cases

are obvious.
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Remark 5.8. (1) The base change map is not onto forG D SL.2/. In particular,
the .2n � 1/-th lines corresponding the principal series PSi�;2n�1 are never images
of the base change map (cf. [30]).

(2) The base change maps on ˆ.SL.2;R// and on….SL.2;R// are not one-to-
one. In particular, the base change map cannot distinguish representations from the
same L-packet.

6. Base change on K -theory

This section is the central part of the paper. Tempered representations of an almost
connected reductive group over local field can be classified by theK-theory of group
C �-algebra. Together with our study on the Galois group action on the reduced dual
of G.C/, we define a base change map on the level of K-theory.

6.1. K -theory and unitary representations. Let G be an almost connected red-
uctive Lie group, i.e. the quotient of G by the connected component of the group
identity is finite. Let bG be equivalence classes of irreducible unitary representations
of G. The set bG equipped with Fell topology is a T0 space and is called the unitary
dual of G. The space bG carries a Plancherel measure �, supported on the subset bGt ,
the tempered dual of G, of irreducible tempered representations of G. The Fell
topology on bGt is not Hausdorff in general. Group C �-algebras are introduced and
extensively studied (cf. [7]) as an important tool to cope with the poor topology of bG
and bGt .

A unitary representation � ofG in a Hilbert spaceH gives rise to a representation
of the convolution algebra L1.G/ by

�.f / D

Z
G

f .g/�.g/dg f 2 L1.G/:

The maximal group C �-algebra C �.G/ is the enveloping algebra of L1.G/,
i.e. completion of L1.G/ under the C �-norm given by

kf k WD sup
.�;H/

k�.f /kL.H/:

If we choose the left regular representation � represented in L2.G/, then the reduced
group C �-algebra C �r .G/ is the completion of the image of

� W L1.G/! L.L2.G// f 7! .g 7! f � g/

under the operator norm. C �.G/ is universal in the sense that every unitary
representation of G gives rise to a representation of C �.G/. In particular, there
is a surjective homomorphism C �.G/! C �r .G/.
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WhenG is a reductive group over an archimedean field, bG (resp. bGt ) corresponds
bijectively to primitive ideals ofC �.G/ (resp.C �r .G/). (Reduced) groupC �-algebras
are algebraic analogue of (tempered) unitary dual. Philosophically speaking, we have

C �r .G/ is Morita equivalent to C0.bGt /: (6.1)

Then becauseK-theory is stable underMorita equivalence, we have the isomorphism

K�.C
�
r .G// Š K

�
�bGt� : (6.2)

The right hand side of (6.2) is the topological K-theory of bGt . Unfortunately, (6.1)
and (6.2) are false in general. (See [3, Section 9] for examples of this isomorphisms
and a counterexample.) However, for the examples considered in our paper, bGt is
almost Hausdorff and C �r .G/ is Morita equivalent to a C �-algebra which is almost
C0.bGt / (quote from [10, Section 6]). Being more explicit, when G is a complex
semisimple group, (6.1) and (6.2) are proved by Plymen [28]. This covers the case
when G D SL.n;C/. When G is GL.n/, the Morita equivalence (6.1) is proved
by Plymen [29] (see also [24]). A case we are interested but not included in the
above examples is a connected real reductive group (for example, G D SL.n;R/),
where the right hand side in (6.1) does not make sense because bGt is not Hausdorff.
However, bGt has an orbifold structure whose K-theory can be locally calculated
by equivariant topological K-theory [5,31]. Therefore, it is possible to compute
K-theory for GL.n/ and SL.n/ over an archimedean field explicitly.

K-theory for complex semisimple Lie groups was studied by Penington and
Plymen [28]. Let G be a complex semisimple group with the Borel (minimal
parabolic) subgroup P and Langlands decomposition P D MAN . In this case, all
principal series are irreducible. Thus, the tempered dualbGt is parametrised bybA�cM .
Note also that the principle series are equivalent for each orbit of parameters inbA�cM
under the action of the Weyl group W D NK.A/=ZK.A/. Therefore,bGt Š �cM �bA� =W Š M

�2bM=W

bA=W� (6.3)

Here, W� is the stabiliser of � 2 cM . It is a subgroup of W . It can be observed
that bGt is Hausdorff. This leads to the calculation of K-theory (cf. [28]):

K�.C
�
r .G// Š

M
�2bM=W

K�
�bA=W�� (6.4)

where

Kj
�bA=W�� D (Z W� D f1g and j � dim.G=K/ mod 2;

0 otherwise :
(6.5)
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When G is in general a connected reductive group, the situation is more
complicated in the sense that bGt consists of not only irreducible principal series.
Moreover, principal series are not always irreducible (G D SL.2;R/, for example).
This more general case was studied by Wassermann in his short note [31]. We also
refer to the recent paper by Clare–Crisp–Higson [5, Theorem 6.8 and Remark 6.9]
for a proof with full details.
Theorem 6.1 ([5,31]). Let G be a connected reductive group. Then

Ki .C
�
r .G// Š

M
P

M
�2bMd

KiR�

�bA=W 0��: (6.6)

The first summand is over all cuspidal parabolic subgroup P of G, i.e. when cM in
the Langlands decomposition of P has discrete series. The second summand is over
all discrete series ofM , denotedcM d . TheR-groupR� andW 0� are subgroups ofW�
where W� D W 0� ÌR� (cf. [15]). Moreover,

KiR�

�bA=W 0�� D Z i � dim.G=K/ mod 2:

Remark 6.2. General linear groups over R are not connected, but almost
connected. From investigating the topological structure of the reduced dual, the
same formula (6.6) still applies to G D GL.n;R/. For GL.n;R/, the R-group is
always trivial. Hence, W� D W 0� .
Example 6.3 (GL.2/). For GL.2;C/, its only cuspidal parabolic subgroup is the
upper triangular invertible matrices. In this case,

A D

� �
r1 0

0 r2

�
W r; s > 0

�
; M D

� �
ein1� 0

0 ein2�

� �
; N D

� �
1 �

0 1

� �
andbA Š R2;cM Š Z2. TheWeyl group is S2 where the nontrivial element identifies
.�1; n1; �2; n2/ and .�2; n2; �1; n1/ in bA �cM . Thus,cM=W D

˚
.n1; n2/ 2 Z2 W n1 � n2

	
:

When n1 D n2 2 Z, the corresponding character � 2cM has the stabiliser subgroup
of W� Š Z2 and so bA=W� is a closed half plane. When n1 > n2, W� is trivial and
then bA=W� Š R2. Note also that every R-group R� is trivial because all principal
series of GL.2;C/ are irreducible. Therefore according to Theorem 6.1,

3GL.2;C/t Š .˚n1Dn2R2=Z2/
M

.˚n1>n2R
2/

and the K-group is

Ki .C
�
r .GL.2;C/// D

(
˚n1>n2Z; i D 0;

0; i D 1:
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For GL.2;R/, its cuspidal parabolic subgroups are the Borel subgroup (upper
triangular matrices)P1 andP2 D GL.2;R/ itself. ForP1, similar as abovebA Š R2,cM Š Z22. For m1 D m2 2 Z2, the corresponding principal series are irreducible
and parametrised by points on a closed half plane R2=Z2. For m1 > m2 in Z2 the
corresponding principal series is parametrised by R2, providing a generator for K0.
(Even though the principal series is reducible when �1 D �2, there are no double
points here). For P2, A consists of positive scalar matrices,M consists of matrices
with ˙1 determinant and N is trivial. The discrete series incM are indexed by Z>0
The Weyl group and the R-group are trivial. Thus, group C �-algebra of GL.2;R/
is morita equivalence to

.C0.R
2=Z2/˚ C0.R

2//
M

.˚Z>0C0.R//

and the K-group is

Ki .C
�
r .GL.2;R/// D

(
˚Z>0Z; i D 1;

Z; i D 0:

Example 6.4 (SL.2/, see also [2]). The space 3SL.2;R/t consists of the following
components: principal seriesPSi�;C, � � 0 (parametrised byR=Z2), principal series
PSi�;�; � > 0 and limit of discrete seriesD˙0 (parametrised by an open rayR>0 with
double points attached at 0, or equivalently, by R Ì Z2), discrete series D˙n , n > 0

(pairs of points indexed by ˙n). Hence, the topological K-theory of 3SL.2;R/t is
given by

Ki .C
�
r .SL.2;R/// D K

i
�3SL.2;R/t� D (˚n2ZZ; i D 0;

0; i D 1:

The space 3SL.2;C/t consists of the following components: principal series
PSi�;n; n > 0 (parametrised by R) and principal series PSi�;0, � � 0 (parametrised
by R=Z2). Hence, the topological K-theory of 3SL.2;C/t is given by

Ki .C
�
r .SL.2;C/// D K

i
�3SL.2;C/t� D (0; i D 0;

˚n2Z>0Z; i D 1:

6.2. Base change onK -theory. WhenG is a general linear group,K-theory of red-
uced group C �-algebras is related to the topological K-theory of the space of
irreducible tempered representations. So we can use base change on representations,
i.e. topological space of tempered dual of a group to define a base change map on
K-theory:

Ki .C
�
r .G.C/// Š K

i
�1G.C/t� �! Ki

�1G.R/t� Š Ki .C �r .G.R///: (6.7)
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Such a base change map on K-theory was defined by Mendes and Plymen [25] for
GL.n/ for Galois extensions of p-adic fields. This gives an important arithmetic
method for comparing operator K-theory for group C �-algebras over different
number fields. However, for archimedean fields the K-theory base change map is 0
forGL.n/; n > 1, thus the base changemap (6.7) does not provide useful information
for this arithmetic invariant. To cope with this problem, we use Galois fixed point
set of 1G.C/t to include the image of base change map on representations (5.2). This
gives rise to a new map on topological K-theory:

Ki
�1G.C/Gal.C=R/t

�
! Ki

�1G.R/t�: (6.8)

Then, we extend the definition of base change to K-theory of operator algebras. In
particular, we look for a C �-algebra analogue for the Galois fixed points of 1G.C/t .
Using (6.3) we can find the Galois fixed point set of 1G.C/t by finding fixed point set
in each summand:

1G.C/Gal.C=R/t D ˚
�2bM=W

�bA=W��Gal.C=R/ : (6.9)

In view of (6.5), whenW� D f1g, the Galois group Gal.C=R/ acts onbA by reflection,
and then the fixed point set bAGal.C=R/, if exists, is a subspace of bA.
Remark 6.5. When G D SL.n/, the space 1G.R/t is not Hausdorff. We can replace
the last isomorphism in (6.7) by the isomorphism (6.6). Note that on the level of
characters the base change map (5.2) gives rise to

Ki
�1G.C/Gal.C=R/t

�
!

M
P

M
�2bMd

KiR�

�bA=W 0�� :
Thus, base change map onK-theory can also be developed for special linear groups.
This is not the focus of the paper but we will do some calculations. (See Example 6.8
and Corollary 6.11.)

Due to (6.5), we know that when fW�g ¤ f1g, the corresponding component does
not contribute to a nontrivial element in K-theory. So when we compare K-theory
of bA=W� and that of its Galois fixed point set, we only consider the case when
W� D f1g.

The following two lemmas are the key tool to determine the Galois fixed points.
Here, the group G is assumed to be GL.n;C/ or SL.n;C/.

Lemma6.6. LetP DMAN be theBorel subgroup of a complex connected reductive
group G. Let bA be the component indexed by the character � D .n1; : : : ; nk/ 2cM
where W� D f1g. Then

(1) ni ¤ nj for all i ¤ j .
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(2) If we fix a discrete series .n1; : : : ; nk/ incM , the Galois group action on bA has
a nonempty fixed point set only when fn1; : : : ; nkg up to permutation satisfies
ni D �nkC1�i for all i D 1; : : : ; k and all ni s are distinct.

Proof. (1) If ni D nj for some i ¤ j , then .i j / 2 W fixes the character � D
.n1; : : : ; nk/ 2 cM , i.e. the stabiliser W� ¤ f1g. This is a contradiction to our
assumption. So (1) is proved.

(2) For a character � D .�1; : : : ; �k/ 2 bA, the action on .�; �/ 2cM �bA by the
nontrivial element of the Galois group Gal.C=R/ is

.n1; : : : ; nk; �1; : : : ; �k/ 7! .�n1; : : : ;�nk; �1; : : : ; �k/ (6.10)

because the action is given by complex conjugation. bA over � having a Galois
fixed point means that the characters � D .n1; : : : ; nk/ and �� D .�n1; : : : ;�nk/

are related by a Weyl group element, i.e. f�n1; : : : ;�nkg is a permutation of
fn1; : : : ; nkg. This together with (1) prove (2).

Lemma6.7. Assume all conditions in Lemma 6.6. If dimRbADk andbAGal.C=R/¤¿,
then

dimRbAGal.C=R/
D dk=2e:

Denote j D dimRbA � d.dimRbA/=2e, then
K�
�bA� D K�Cj�bAGal.C=R/

�
:

Proof. Using the notation from the proof of Lemma 6.6(2), the fixed point set of bA
over � 2cM is the subspace determined by the subspace˚

�i D �kC1�i ; i D 1; 2; : : : ; bk=2c
	
;

which has dimension dk=2e. Noting thatK�.X�Rj / D K�Cj .X/ for anyHausdorff
space X , the lemma is then proved.

Example 6.8. When G D SL.2/, each component bA Š R (where W� D f1g)
possess a Galois fixed point, i.e. dimbAGal.C=R/ D 0. Then

KiC1
�1G.C/Gal.C=R/t

�
D Ki

�1G.C/t�:
In general, when K�.bA=W� / ¤ 0, i.e. � � dim.G=K/ and W� D f1g, we have

K�.bA=W� / D (K�Cj��bA=W��Gal.C=R/�; bAGal.C=R/ ¤ ¿;
0; otherwise:
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Here, j D dimRbA � ddimRbA=2e. This together with (6.3), (6.9) and (6.4) or (6.6)
give rise to a map

K�.C
�
r .G.C///! K�Cj

�1G.C/Gal.C=R/t

�
:

This composed with (6.8) gives rise to the desired base change map

bc W K�.C
�
r .G.C///! K�Cj .C

�
r .G.R/// (6.11)

as is concluded in the following theorem.

Theorem 6.9. Let G be a general linear group or a special linear group. There
exists a base change map on K-theory of operator algebras

bc W Ki .C
�
r .G.C///! Kj .C

�
r .G.R/// (6.12)

where i D dim.G.C/=K.C// mod 2 and j D dim.G.R/=K.R// mod 2. This map
is compatible with the base change map (6.8) on topological K-theory.

Proof. We need only to verify that the degrees of K-theory in (6.11) and in (6.12)
are compatible. As we know from the Connes–Kasparov isomorphism, for a general
linear group or a special linear group G and its maximal compact subgroup K, we
have

Kj .C
�
r .G// Š R.K/ dim.G=K/ � j mod 2:

Let P be the maximal cuspidal parabolic subgroup of G and P DMAN . Then

dimG=K � dimbA mod 2:

For a groupG.C/ over the complex field, the maximal cuspidal parabolic subgroup is
the Borel subgroup andAC is the diagonal matrix subgroupwhose entries are positive
real numbers. For a group G.R/ over the real field, the maximal parabolic subgroup
is the upper triangular matrices where we have the maximal possible number of 2�2
blocks on the diagonal. In this case, AR has the form diagfc1I2; c2I2; : : : ; cnI2g or
diagfc1I2; c2I2; : : : ; cnI2; cnC1gwhere ci 2 RC. Hence dimRbAR D ddimRbAC=2e

and

dimG.C/=K.C/ � dimRbAC mod 2;

dimG.R/=K.R/ � ddimRbAC=2e mod 2:

Therefore j � i in (6.12) is equal to dimRbAC�ddimRbAC=2emod 2, the same parity
as j in (6.11). The theorem is then proved.
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We examine the base change map on K-theory on two typical examples.
Corollary 6.10. The base change map K0.C �r .GL.2;C///! K1.C

�
r .GL.2;R///

for G D GL.2/ is explicitly calculated as follows: In ˚n1>n2Z ! ˚n>0Z, the
generator corresponding to .n1; n2/ is mapped to 0 unless n1 C n2 D 0 and the
generator parametrised by .n;�n/ is mapped to the generator parametrised by jnj.

Proof. From Lemma 6.6, when W� D f1g a component of 3GL.2;C/t has a Galois
fixed point set only when n1 D �n2. In this case the Galois fixed point set has
co-dimension one in bA. Thus, we have a map

K0.C
�
r .GL.2;C///! K1

�3GL.2;C/Gal.C=R/t

�
which is non-vanishing and isomorphic on components with Galois fixed points.
Then applying Theorem 5.6 to the base change for topological K-theory leads to the
result.

Corollary 6.11. The base change map K1.C �r .SL.2;C/// ! K0.C
�
r .SL.2;R///

on for G D SL.2/ is explicitly calculated as follows:

˚n2ZCZ!˚n2ZZ .x1; x2; : : :/ 7! .: : : ; x4; x2; 0; x2; x4; : : :/:

Proof. This follows from Example 6.8 and adapting Theorem 5.7 to topological
K-theory.

7. Base change on representations of maximal compact subgroups

In this section, we investigate base change maps in relation to the Connes–Kasparov
isomorphism. The groups under consideration are general linear or special linear
groups.

7.1. Connes–Kasparov isomorphism. Elements of K�.C �r .G// for a reductive
group G can be realised as higher indices of Dirac operators via Dirac induction
based on representation of a fixed maximal compact subgroup K in G. Let R.K/
be the ring of irreducible representations of K. To each .�; V�/ 2 R.K/, there is an
associated Dirac operator,

D� D

dimG=KX
iD1

Xi ˝ c.Xi /˝ 1 W .L
2.G/˝ S ˝ V�/

K
! .L2.G/˝ S ˝ V�/

K ;

where fXig is an orthonormal basis for p D g=k and S is the spin representation ofK
in p. The Dirac operator D� is essentially selfadjoint. The structure of S depends
on dim p. The higher index �.D�/ is an element of K�.C �r .G//, where � is equal
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to the parity of dim p. This is known as the Connes–Kasparov conjecture [6,13,14]
and proved for almost connected groups and all reductive groups respectively by
Charbert–Eschterhoff–Nest [4] and Lafforgue [19].
Theorem 7.1 (Connes–Kasparov isomorphism). The higher index map gives rise to
an isomorphism

R.K/! K�.C
�
r .G// Œ�� 7! �.D�/ � D dim p mod 2: (7.1)

The theorem reveals further a striking correspondence between the representations
of G and the representations of its maximal compact subgroup K. This is
observed using representation theory by Parthasarathy [27], then Atiyah–Schmid
developed a geometric approach using Dirac operator [1] for semisimple groups.
We shall use Atiyah–Schmid’s construction to describe the Connes–Kasparov
isomorphism (7.1) for semisimple groups. The Dirac operator D� gives rise to
elements of K�.C �r .G// Š K�.bGt / via Fourier transformation. Applying the
Plancherel theorem to the Hilbert space on which D� acts gives rise to the direct
integral decomposition (see also [28])

.L2.G/˝ S ˝ V�/
K
Š

Z
bG H� ˝W�d�.�/ W� D .H

�
� ˝ S ˝ V�/

K :

The G-invariant differential operatorD� acting on the left thus decomposes as

bD� D

Z
bG 1˝ �.�/d�.�/

where �.�/ 2 End.W� / if dim p is odd and �.�/ 2 Hom.W ˙� ; W �� / if p is even.
The Fourier transform bD� is a family of endomorphisms indexed by � 2 bGt . It
determines naturally an unbounded KK-cycle

ŒC0.bGt ;H ˝W /; bD� � 2 KK
�.C; C0.bGt // � D dim p mod 2:

Here, H ˝ W stands for the family of Hilbert spaces fH� ˝ W�g�2bGr . We only
care the tempered representation because the the points outside bGt have 0 Plancherel
measure.

Note that if the dimension of W� vanishes or if bD� is invertible on a “connected
component” in bGt containing � (when it makes sense), then ŒbD� � does not generate
the K-element corresponding to the component containing � .
Theorem 7.2 ([1]). Let G be a connected noncompact semisimple Lie group with
finite center and a maximal compact subgroup K. Denote by �c the half sum of
compact positive roots ofG. SupposeG has discrete series, i.e, rank.G/ D rank.K/.
Then for each discrete series representation �� ofG labeled by a regular character �
of a maximal torus T of G, it can be realised by the the kernel of Dirac operator
twisted by the irreducible representation of K with highest weight � � �c , i.e.

KerDC���c Š �� KerD����c D 0:
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Remark 7.3. This theorem is stated only for semisimple groups having discrete
series. But this follows from a general observation for any reductive groupG, themap
R.K/! K�.C

�
r .G// reveals a connection of the highest weights of characters of a

maximal torus of K and characters of the torusM in the Langlands decomposition
of the maximal cuspidal parabolic subgroup of P (see [31] for example). This
philosophy is used in the following example (see also [2]) and in the proof of
Theorem 7.7.

Example 7.4. The K0-group of SL.2;R/ is isomorphic to the representation ring
R.SO.2// of themaximal compact subgroupSO.2/. Denote by�k the representation
of SO.2/ with weight k. Then the isomorphism is given by the following:

R.SO.2//! K0.C
�
r .SL.2;R///;

Œ�1� 7! ŒPSi�;�D
˙
0 �;

Œ�k� 7! ŒD�k�1�; k > 1

Œ�k� 7! ŒDC
1�k

�; k < 1:

TheK1-group of SL.2;C/ is isomorphic to the representation ringR.SU.2// of the
maximal compact subgroup SU.2/. Denote by �k the representation of SU.2/ with
highest weight k; k � 0. Then the isomorphism is given by the following:

R.SU.2//! K0.C
�
r .SL.2;C///;

Œ�k� 7! ŒPSi�;kC1�:

7.2. Base change on maximal compact subgroup. The base change map on K-
theory given by Theorem 6.9 leads to a base change on the representation of maximal
compact subgroups via the Connes–Kasparov isomorphism:

Ki .C
�
r .G.C///

Š
����! R.KC/??ybc ??ybc

Kj .C
�
r .G.R///

Š
����! R.KR/:

Example 7.5. The base change map on the representation of the maximal compact
spaces is defined by the diagram:

K1.C
�
r .SL.2;C///

Š
����! R.SU.2//??ybc ??ybc

K0.C
�
r .SL.2;R///

Š
����! R.SO.2//:
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Using Corollary 6.11, the map between generators of R.SU.2// and R.SO.2// is
given by

R.SU.2//! R.SO.2//;

.xkŒ�k�/k>0 7! .: : : ; x5Œ��2�; x3Œ��1�; x1Œ�0�; 0Œ�1�; x1Œ�2�; x3Œ�3�; x5Œ�4�; : : :/:

Remark 7.6. Note that SU.2/ is not a complex Lie group and is not the same
type as SO.2/. Thus, for SL.2/, the induced base change on its maximal compact
subgroups is different from the base change discussed in previous sections.

Nevertheless, the case whenG D GL.n/ is particular interesting as the respective
maximal compact subgroups U.n/ and O.n/ have the same type and defined over C
and R, respectively. For this situation, we can directly define base change map on
representation

bc W1O.n/! bU.n/Gal.C=R/ � bU.n/
and the corresponding base change map on K-theory

bc W R.U.n//! R.O.n//:

Note that in this case, our definition and the one used in [25] to such case of compact
groups coincide, because the reduced dual of a compact group are 0 dimensional
(and discrete), causing no degree shift when comparing K-theory of bU.n/Gal.C=R/
and bU.n/.

We conclude the paper with the following compatibility theorem. Namely,
base change maps on GL.n/ and on their maximal compact subgroups are
homomorphisms compatible with the Connes–Kasparov isomorphism.

Recall that a character of the maximal torus T of a compact Lie group K is
regular if its stabiliser in the Weyl group W is trivial. An irreducible representation
ofK is called a regular element of bK if it corresponds a regular character of T in the
identification: bK D bT =W:
Theorem 7.7. Over regular points of bU.n/, the following diagram commutes:

R.U.n//
CK
����! Ki .C

�
r .GL.n;C///??ybc ??ybc

R.O.n//
CK
����! Kj .C

�
r .GL.n;R///

(7.2)

where i � n2; j � n2Cn
2

mod 2. The vertical maps are base change maps defined in
Theorem 6.9 and the horizontal maps are the Connes–Kasparov isomorphisms.
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Proof. To prove the theorem we study explicit maps involved in the diagram over
regular points.

The representation of a compact group is characterised by the characters of its
maximal torus up to a Weyl group action. Recall that the unitary group U.n/ has
maximal torus

T D
˚
diag.z1; : : : ; zn/ W zi 2 C; jzi j D 1

	
:

and Weyl groupW D Sn, the permutation group. The dual of U.n/ is labeled by the
highest weight � D .m1; : : : ; mn/ 2 Zn of an element in bU.n/:

bU.n/ D bT =W Š ˚.m1; m2; : : : ; mn/ 2 Zn W m1 � m2 � � � � � mn
	
:

An element � 2 bT is regular if the stabiliser W� of W at � is trivial, i.e. mi ¤ mj

for all i ¤ j . Then the regular elements of bU.n/ is indexed by˚
.m1; : : : ; mn/ 2 Zn W m1 > m2 � � � > mn

	
:

Recall also that the Galois group action on T is given by conjugation on fzig. Then
over bT , the nontrivial element of Gal.C=R/ acts by

.m1; : : : ; mn/ 7! .�m1; : : : ;�mn/:

Similar to the proof of Lemma 6.6, � 2 bU.n/ is fixed by the Galois action if
mj D �mnC1�j for j D 0; 1; : : : ; n � 1.

The dual of O.n/ is similar to that of bU.n/. It has maximal torus

T D

(
diag.O.2/; : : : ; O.2/;˙1/; n odd;
diag.O.2/; : : : ; O.2//; n even;

and Weyl group Sbn2 c � Z2 (odd case) or Sbn2 c (even case). Recall that all
irreducible representations of O.2/ is labeled by Z��1 where n > 0 corresponds
the induced representation IndO.2/

SO.2/
�n and �1; 0 accommodate two irreducible sub-

representations of IndO.2/
SO.2/

�0. Thus,

1O.n/ D bT =W D ˚.m1; : : : ; mbn2 cI s/ 2 Z
bn2 c

��1 � Z2 W m1 � � � � � mbn2 c � �1
	

when n is odd. In the even case, remove label s 2 Z2.
The base change map 1O.n/! bU.n/Gal.C=R/ is then given by

.m1; : : : ; mbn2 c/ 7! .l1; : : : ; lbn2 c;�lb
n
2 c
; : : : ;�l1/

when n is even and by

.m1; : : : ; mbn2 cI s/ 7! .l1; : : : ; lbn2 c; 0;�lb
n
2 c
; : : : ;�l1/
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when n is odd. Here lk D mk if mk � 0 and lk D 0 if mk D �1. Note that
preimage(s) of a regular element in bU.n/Gal.C=R/ is(are) regular in 1O.n/, i.e. m1 >
m2 > � � � > mbn2 c > 0.

Because K0.C �r .G// Š R.G/ for a compact group G, we can describe the base
change map

bc W R.U.n//! R.O.n//

over regular elements .m1; : : : ; mn/ 2 Zn of bU.n/. The base change vanishes unless
mi D �mnC1�i for all i . Otherwise, it is the projection map to the firstmbn2 c entries:M

m1>���>mn;
miD�mnC1�i

Z !

M
m1>���>mbn

2
c>0;s

Z:

Note, s 2 Z2 only appears in the odd case and if m1; : : : ; mbn2 c are fixed, the labels
.m1; : : : ; mbn2 cI 1/ and .m1; : : : ; mbn2 cI �1/ have the same value in the image.

Now we will describe the Connes–Kasparov isomorphism in the complex case.
Similar to Example 6.3, we have

3GL.n;C/t Š
M
bM=W

bA=W�
where bA Š Rn andcM=W is labeled by˚

� D .m1; : : : ; mn/ 2 Zn W m1 � m2 � � � � � mn
	
:

and W� D f1g if and only if m1 > � � � > mn. The K-theory of the component of �
vanishes if W� is not trivial. So

K0.C
�
r .GL.n;C/// D

M
m1>���>mn

Z: (7.3)

The isomorphism is given by translating the labels by �c D .n�1
2
; n�3
2
; : : : ;�n�1

2
/,

half sum of the compact positive roots of GL.n;C/:

R.U.n// �! K�.C
�
r .GL.n;C///M

m1�����mn

Z 7!

M
.m1;:::;mn/C�c

Z:

It is straight forward to verify that .k1; : : : ; kn/ D .m1; : : : ; mn/ C �c satisfies
k1 > � � � > kn and the map is an isomorphism. But note that when n is even, the
labels .m1; : : : ; mn/C �c are not exactly the same as labels in (7.3) but differ by a
half integer lattice, but this will not affect K-theory calculation.

The Connes–Kasparov isomorphism for the real case is more complicated to
describe (not all principal series are irreducible). But as we only need to consider
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regular elements in1O.n/, we only need to understand labels coming from a maximal
cuspidal parabolic subgroup Pmax of GL.n;R/. Denote by M0 the group of real
2�2matrices whose determinant is˙1, i.e. a double cover of SL.2;R/. Then Pmax
consists of upper block diagonal matrixes where the dimension of each block is at
most 2 and there is at most one 1-dimensional block. Thus, in a similar fashion as
Example 6.3, we have

M D

(
diag.M0; : : : ;M0;˙1/; n odd;
diag.M0; : : : ;M0/; n even;

andbA Š Rb
n
2 c. The discrete series ofM0 is induced by discrete seriesDS˙n.n > 0/

of SL.2;R/ but the induced representation is the same for n and �n. So cM d D

Z
bn2 c

>0 ˝ Z2 if n is odd and Z
bn2 c

>0 if n is even. So when n is odd

K�.C
�
r .GL.n;R/// D

� M
Z
bn
2
c

>0
˝Z2

Z

�M
� � � : (7.4)

where � � � stands for generators contributed by nonmaximal cuspidal parabolic
subgroups. In the even case we just drop Z2 in (7.4). In the odd case and over
regular points of 1O.n/, the Connes–Kasparov isomorphism is given by translating
labels by �c D .n�12 ; n�3

2
; : : : ; 1/:

1O.n/ �! K�.C
�
r .GL.n;R/// (7.5)M

m1>���>mbn
2
c>0;s

Z 7!

M
.m1;:::;mbn

2
c/C�c Is

Z: (7.6)

In the even case, the isomorphism is also given by (7.5)–(7.6) but s 2 Z2 in the
parameter is dropped.

The last step is to describe the base change map on the right hand side of (7.2).
The case n D 2 is described in Corollary 6.10. For the general case, we do not need to
reexamine base changes onL-parameters. This is because images ofWeil groupsWR

or WC in GL.n;C/ are isomorphic to direct sum of irreducible representations of
at most dimension 2. Thus, from Corollary 6.10, the base change is defined by (we
only list those corresponding to regular points of bU.n/):

Ki .C
�
r .GL.n;C/// �! Kj .C

�
r .GL.n;R/// (7.7)M

m1>m2>���>mn;
miD�mnC1�i

Z 7!

M
.m1;:::;mbn

2
cIs/

ZI (7.8)

M
m1>m2>���>mn;others

7! 0: (7.9)

Again, s is removed from (7.7)–(7.9) in the even case.
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In summary, over regular point .m1; : : : ; mn/ 2 Zn wherem1 > m2 > � � � > mn,
if mi D �mnC1�i for all i we have a diagramL

m1>m2>���mn;miD�mnC1�i
Z

CK
����!

L
.m1;:::;mn/C�c

Z??ybc ??ybcL
m1>���mbn

2
cIs

Z
CK
����!

L
.m1;:::;mbn

2
c/C�

0
c Is

Z

where �c ; �0c are half sums of compact positive roots of GL.n;C/, GL.n;R/
respectively. (Drop s 2 Z2 when n is even.) The diagram commutes because
the first bn

2
c entries of �c and �0c are identical. If mi D �mnC1�i for all i is not

satisfied, the diagram commutes because both base changemaps vanish. The theorem
is then proved.

Example 7.8. For G D GL.3/, in the complex case we have

R.U.3// Š
M

m1�m2�m3

Z;

K1.C
�
r .GL.3;C/// Š

M
m1>m2>m3

Z

and the Connes–Kasparov isomorphism is to translate the label by .1; 0;�1/. In the
real case we have

R.O.3// Š Œ˚m��1Z�
M

Z2;

K0.C
�
r .GL.3;R/// Š Œ˚m>0Z�

M
Z2

where the isomorphism is to translate the first label by 1. Vertically, the base
change maps vanishes if m1 D �m3 � 0;m2 D 0 are not satisfied. Otherwise, the
commutative diagram (7.2) for GL.3/ is described in Figure 1. In the figure, “�”
stands forK-theory generator and ı in the up-left corner stands for the regular points
in bU.3/ fixed by the Galois group action, and ı elsewhere is to label the image of the
regular points in bU.3/Gal.C=R/.

This example also shows that over singular points, Theorem 7.7 is not true. For
GL.3/, .0; 0; 0/ is the only singular point of bU.3/ fixed by Gal.C=R/ (labeled by ?
in Figure 1). Through the down-right arrows, the value in Z at .0; 0; 0/ should be
transferred to the value at 0; 1 in K0.C �r .GL.3;R///. But through the right-down
arrows , it is transferred to the value at 1 in K0.C �r .GL.3;R///, while the value at 0
in K0.C �r .GL.3;R/// is always 0. This problem could be solved if in our definition
of base change on K-theory (6.12), instead of considering Galois fixed point of bGC ,
we consider the crossed product of bGC by Z2. But we shall treat the issue here in a
future paper.
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Figure 1. Commutative diagram for GL.3/.

7.3. On SL.n/: inductive method. As in the above section, we can combine the
Langlands classification and the criterion of discrete series. We have:

Lemma 7.9. The tempered representations of G are parametrised by � 2 cM and
� 2 bA, where � D .�11; : : : ; �1r I �21; : : : ; �2q/, �1i is a character of F , and �2j is a
discrete series ofM . The pattern is the combination of several pieces of rank 2 and
rank 1.

The above lemma serves as the building blocks of tempered representations.
Using this we have the following:

Lemma 7.10. Let G D SL.n;C/, n � 3, and P be a parabolic subgroup of G. A
tempered representation of G is built up by representations of SL.2/ and SL.1/.

Remark 7.11. We could also give the corresponding relation in terms of
L-parameters due to the local Langlands correspondence of special linear groups.
This is just a game of combination. The key point is to determine the corresponding
R-groups R� . Referring the construction of Galois fixed point of bGt , we can work it
out in the same way.
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