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(Almost) C*-algebras as sheaves with self-action

Cecilia Flori and Tobias Fritz

Abstract.Via Gelfand duality, a unital C*-algebraA induces a functor from compact Hausdorff
spaces to sets, CHaus ! Set. We show how this functor encodes standard functional calculus
in A as well as its multivariate generalization. Certain sheaf conditions satisfied by this functor
provide a further generalization of functional calculus. Considering such sheaves CHaus! Set
abstractly, we prove that the piecewiseC*-algebras of van den Berg andHeunen are equivalent to
a full subcategory of the category of sheaves, where a simple additional constraint characterizes
the objects in the subcategory. It is open whether this additional constraint holds automatically,
in which case piecewise C*-algebras would be the same as sheaves CHaus! Set.

Intuitively, these structures capture the commutative aspects of C*-algebra theory. In order to
find a complete reaxiomatization of unital C*-algebras within this language, we introduce almost
C*-algebras as piecewise C*-algebras equipped with a notion of inner automorphisms in terms
of a self-action. We provide some evidence for the conjecture that the forgetful functor from
unital C*-algebras to almost C*-algebras is fully faithful, and ask whether it is an equivalence
of categories. We also develop an analogous notion of almost group, and prove that the forgetful
functor from groups to almost groups is not full.

In terms of quantum physics, our work can be seen as an attempt at a reconstruction
of quantum theory from physically meaningful axioms, as realized by Hardy and others in a
different framework. Our ideas are inspired by and also provide new input for the topos-theoretic
approach to quantum theory.

Mathematics Subject Classification (2010). 46L05, 46L60; 18F20, 20A05.
Keywords. Axiomatics of C*-algebras, sheaf theory, algebraic quantummechanics, topos quant-
um theory.

1. Introduction

C*-algebra theory is a blend of algebra and analysis which turns out to be much more
than the sum of its parts, as illustrated by its fundamental results of Gelfand duality
and the GNS representation theorem. Nevertheless, the C*-algebra axioms seem
somewhat mysterious, and it may not be very clear what they mean or where they
actually “come from”. To see the point, consider the axioms of groups for comparison:
these have a clearmeaning in terms of symmetries and the composition of symmetries,
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and this provides adequate motivation for these axioms. Do C*-algebras also have
an interpretation which motivates their axioms in a similar manner?

A plausible answer to this question would be in terms of applications of
C*-algebras to areas outside of pure mathematics. The most evident application of
C*-algebras is to quantum mechanics and quantum field theory [7,16,29]. However,
also in this context, the C*-algebra axioms do not seem well-motivated. In fact,
not even the multiplication, which results in the algebra structure, does have a
clear physical meaning. This is in stark contrast to other physical theories, such as
relativity, where the mathematical structures that come up are derived from physical
considerations and principles, often via the use of thought experiments. A similar
derivation of C*-algebraic quantum mechanics does not seem to be known.

For these reasons, it seems pertinent to try and reformulate the C*-algebra axioms
in a more satisfactory manner that would allow for a clear interpretation. This was
our motivation for developing the notions of this paper.

For technical convenience, our C*-algebras are assumed unital throughout.

Summary and structure of this paper. We start the technical development in
Section 2 by assigning to every C*-algebra A 2 C�alg1 the functor CHaus !
Set induced via the Yoneda embedding and Gelfand duality. It takes a compact
Hausdorff spaceX and maps it to the set of �-homomorphismsC.X/! A. In terms
of quantum mechanics, this is the set of projective measurements with outcomes
in X , while the functoriality corresponds to post-processings or coarse-grainings of
these measurements. We explain how this functor captures functional calculus for
(commuting tuples of) normal elements ofA, and how this encodes the “commutative
aspect” of the structure ofA. The physical interpretation is in terms of measurements
with values in X on the level of objects and post-processings between these on the
level of morphisms.

Section 3 investigates which properties distinguish these functors from arbitrary
functors CHaus! Set. These properties take the form of sheaf conditions. Starting
with the commutative case, we consider sheaf conditions satisfied by all hom-functors
CHaus.W;�/ W CHaus ! Set. These can be interpreted in a manner similar to a
conventional sheaf condition: while we think of the latter as identifying functions on
a space with consistent assignments of values to all points, we now identify points
with consistent assignments of values to all functions (Lemma 3.8). We then move
on to consider sheaf conditions satisfied by the functors CHaus! Set associated to
arbitrary A 2 C�alg1. Roughly, the question is how to “guarantee commutativity”:
under what conditions is a colimit of commutative C*-algebras itself commutative?
We introduce directed cones as a class of colimits that satisfy this, so that every
C*-algebra becomes a functor CHaus! Set that satisfies the sheaf condition on all
directed cones. The resulting category of sheaves Sh.CHaus/ does not seem to be a
category of sheaves on a (large) site since the directed cones do not form a coverage
(Proposition 3.28). Nevertheless, we show that Sh.CHaus/ is at least locally small
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(Corollary 3.39) and well-powered (Proposition 3.43). Furthermore, Lemma 3.41 is
a key technical result on the representability of our sheaves, which can be understood
as a new characterization of commutative C*-algebras.

In Section 4, we relate our sheaves CHaus ! Set to the piecewise C*-algebras
of van den Berg and Heunen [31] (originally called partial C*-algebras). The
main result is Theorem 4.5, which identifies piecewise C*-algebras with a full
subcategory of Sh.CHaus/, the objects of which are characterized in terms of a
simple additional condition. Since we do not know of any sheaf that would not
satisfy this condition, Sh.CHaus/may even be equivalent to the category of piecewise
C*-algebras (Problem 4.8).

Section 5 asks which additional structure a piecewise C*-algebra (or suitable
sheaf CHaus! Set) could be equipped with such as to recover the noncommutative
structure of a C*-algebra as well, i.e. to obtain an equivalence with the category of
C*-algebras. Our proposal is to consider the additional structure of a self-action,
in the sense of a notion of inner automorphisms: every unitary element should give
rise to an automorphism, and these automorphisms should satisfy suitable conditions
on commuting unitaries. Introducing such a self-action is motivated by the physical
interpretation: it is one of the essential features of quantum mechanics that real-
valued observables generate one-parameter families of inner automorphisms, by first
exponentiating to a unitary (functional calculus) and then conjugating by that unitary
(self-action). In this way, we obtain the category of almost C*-algebras aC�alg1, and
we ask whether the forgetful functor C�alg1 ! aC�alg1 is an equivalence. While
it is clearly faithful, Theorem 5.4 shows that it is also full on morphisms out of
W*-algebras.

In order to understand better whether the forgetful functor aC�alg1 ! C�alg1
could indeed be an equivalence, Section 6 investigates an analogous question for
groups instead of C*-algebras. We ask whether the forgetful functor Grp ! aGrp
from the category of groups to the category of almost groups is an equivalence.
Theorem 6.5 shows that this is not the case, since the functor is not full on morphisms
out of a free group.

How about other kinds of operator algebras? We expect that many of the ideas
developed in this paper apply mutatis mutandis to other kinds of operator algebras
as well, and in particular to W*-algebras. In this sense, focusing on C*-algebras has
been a somewhat arbitrary choice made in the present work. In fact, as indicated
by Lemma 3.9 and especially by Theorem 5.4, the W*-algebra case allows for the
derivation of more powerful results than we have been able to prove in the C*-algebra
setting. The main reason for us to treat the C*-algebra case in this paper is the greater
technical simplicity of topology over measure theory. For example, a W*-algebra
version of Gelfand duality in terms of an equivalence of the category of commutative
W*-algebras with a suitable category of measurable spaces is not readily available in
the literature.
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Relation to topos quantum theory. The present ideas have commonalities with
and were partly inspired by the topos-theoretic approach to quantum physics [2,3,11].
Nevertheless, there are important differences, whichmay also provide a new direction
for topos quantum theory. Crucially, topos quantum theory is formulated in terms of
a topos that depends on the particular physical system under consideration, namely
the category of presheaves on the poset of commutative subalgebras of the algebra of
observables A. Instead of working with commutative subalgebras only, we consider
all �-homomorphisms C.X/ ! A for all commutative C*-algebras C.X/. Doing
so means that A becomes a functor CHaus ! Set. In this way, we can consider all
physical systems as described on the same footing as objects in the functor category
SetCHaus or the category of sheaves Sh.CHaus/.

Notation and terminology. For us, “C*-algebra” alwaysmeans “unital C*-algebra”.
Likewise, our �-homomorphisms are always assumed to be unital, unless noted
otherwise (as in the proof of Theorem 5.4). This already applies to the following
index of our notation, which lists the conventions for our most commonly used
mathematical symbols:

W;X; Y;Z W compact Hausdorff spaces.
1; : : : ; 4 W A compact Hausdorff on the corresponding number of points, where

we write e.g. 4 D f0; 1; 2; 3g.
w; x; y; z W points in a compact Hausdorff space.
f; g; h; k W continuous functions between compact Hausdorff spaces.
�;;T W unit square, unit disk and unit circle, considered as compact subsets

of C.
A;B W C*-algebras or piecewise C*-algebras (Definition 4.1).
Mn W The C*-algebra of n � n matrices with entries in C.

˛; ˇ; ; �; � W normal elements in a C*-algebra, or (more generally)
�-homomorphisms of the type C.X/! A.

� W a �-homomorphism or piecewise �-homomorphism of the type
A! B .

a; b W self-action of a piecewise C*-algebra (Definition 5.1) or a piecewise
group (Definition 6.3).

The normal part of a C*-algebra A is

C.A/ WD f ˛ 2 A j ˛˛� D ˛�˛ g:

We also think of it as the set of “A-points” of C. More generally, for A 2 C�alg1 and
a closed subset S � C, we also write

S.A/ WD f ˛ 2 C.A/ j sp.˛/ � S g
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for the set of normal elements with spectrum inS , and similarlyS.�/ W S.A/! S.B/

for the resulting action of a �-homomorphism � W A ! B on these elements. For
example, R.A/ denotes the self-adjoint part of a C*-algebra, and similarly T .A/ is
the unitary group. This sort of notation may be familiar from algebraic geometry,
where for a ring A, the set of A-points of a scheme S is denoted S.A/. We also
use the standard notation C.X/ for the C-valued continuous functions on a space X .
Unfortunately, this is very similar notation despite being different in nature.

We work with the following categories:

CHaus W compact Hausdorff spaces with continuous maps.
CGHaus W compactly generated Hausdorff spaces with continuous maps.

C�alg1 W C*-algebras with �-homomorphisms.
cC�alg1 W commutative C*-algebras with �-homomorphisms.
pC�alg1 W piecewise C*-algebras (Definition 4.1) with piecewise

�-homomorphisms (Definition 4.2).
aC�alg1 W almost C*-algebras (Definition 5.1) with almost �-homomorphisms

(Definition 5.2).
Grp W groups with group homomorphisms.

pGrp W piecewise groups (Definition 6.1) with piecewise group
homomorphisms (Definition 6.2).

aGrp W almost groups (Definition 6.3) with almost group homomorphisms
(Definition 6.4).

Throughout, all diagrams are commutative diagrams, unless explicitly stated
otherwise.

2. C*-algebras as functors CHaus ! Set

In this section, we explain how to regard a C*-algebra as a functor CHaus! Set, and
how this encodes the usual functional calculus for normal elements in a C*-algebra,
as well as its multivariate generalization.

The Yoneda embedding realizes a C*-algebra A as the hom-functor

C�alg1.�; A/ W C�algop1 ! Set:

We are interested in studying this hom-functor on the commutative C*-algebras,
meaning that we consider its restriction to a functor cC�algop1 ! Set. Applying
Gelfand duality, we can equivalently consider it as a functor

�.A/ W CHaus! Set;
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assigning to every compact Hausdorff spaceX 2 CHaus a setX.A/, which is the set
of all �-homomorphisms C.X/! A. Our notation X.A/ suggests thinking of it as
the set of generalized A-points of X .
Example 2.1. If X is finite, a �-homomorphism C.X/! A or generalized A-point
in X corresponds to a partition of unity in A indexed by X , i.e. a family of pairwise
orthogonal projections summing up to 1.
Example 2.2. If A is a W*-algebra, the spectral theorem [4, Theorem 1.44] implies
that X.A/ is precisely the collection of all regular projection-valued measures on X
with values in A.
Remark 2.3. In terms of algebraic quantum mechanics, where a physical system is
described by a C*-algebraA of observables [16,29], we interpret a �-homomorphism
˛ W C.X/ ! A as a projective measurement with values in X , described in the
Heisenberg picture. So the physical meaning of our X.A/ is as the collection of all
measurements with outcomes in the space X .
Remark 2.4. Those �-homomorphisms C.X/ ! A whose image is in the center
ofA are called C.X/-algebras, and they correspond exactly to upper semicontinuous
C*-bundles over X [20]1.

At the level of morphisms, every f W X ! Y acts by composing a �-homo-
morphism ˛ W C.X/! A with C.f / to ˛ ı C.f / W C.Y /! A, so that

f .A/ W X.A/ �! Y.A/

˛ 7�! ˛ ı C.f /
(2.1)

is the action of f on generalized A-points.
Remark 2.5. The physical interpretation of f .A/ is as a post-processing or coarse-
graining of measurements. Under f .A/, a measurement ˛ W C.X/! A with values
inX becomes a measurement ˛ ıC.f / W C.Y /! A with values in Y , implemented
by first conducting the original measurement ˛ and then processing the outcome via
application of the function f . Since we work in the Heisenberg picture, the order of
composition is reversed, so that C.f / happens first.

This construction is also functorial in A: for any �-homomorphism � W A ! B

and X 2 CHaus, we have X.�/ W X.A/! X.B/. Furthermore, for any f W X ! Y

there is the evident naturality diagram

X.A/

X.�/

��

f .A/ // Y.A/

Y.�/

��
X.B/

f .B/
// Y.B/

which expresses the bifunctoriality of the hom-functor C�alg1.�;�/ in our setup.
1We thank Klaas Landsman for pointing this out to us.
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Before proceeding with technical developments in the next section, it is
worthwhile pondering how these considerations relate to functional calculus.

Functoriality captures the “commutative part” of the C*-algebra structure. In
a somewhat informal sense, the functor �.A/ captures the entire “commutative part”
of the structure of a C*-algebra A. We will obtain a precise result along these lines
as Theorem 4.5. Here, we perform some simple preparations.
Lemma 2.6. For any compact set S � C, evaluating an ˛ W C.S/ ! A on
idS W S ! C,

˛ 7�! ˛.idS /; (2.2)

is a bijection between S.A/ and the normal elements of A with spectrum in S .

Proof. If ˛; ˇ W C.S/! A coincide on idS , then theymust coincide on the �-algebra
generated by idS . Since idS separates points, this �-algebra is dense in C.S/ by the
Stone–Weierstrass theorem, so that ˛ D ˇ by continuity. This establishes injectivity
of (2.2).

Concerning surjectivity, applying functional calculus to a given normal element
with spectrum in S results in a �-homomorphism C.S/ ! A which realizes the
given element via (2.2).

Due to this correspondence, we will not distinguish notationally between a
�-homomorphism ˛ W C.S/ ! A and its associated normal element, i.e. we also
denote the latter simply by˛ 2 A. Moreover, we can also think of a�-homomorphism
C.X/! A for arbitraryX 2 CHaus as a sort of “generalized normal element” ofA.

For any two compact S; T � C and f W S ! T , functional calculus — in the
sense of applying f to normal elements with spectrum in S — is encoded in two
ways:
F in evaluating an ˛ W C.S/! A on f W S ! C, as in the proof of Lemma 2.6;
F in the functoriality f .A/ W S.A/! T .A/, since applying this functorial action to
˛ results in the same normal element of A,

f .A/.˛/.idT /
(2.1)
D .˛ ı C.f //.idT / D ˛.C.f /.idT // D ˛.idT ı f / D ˛.f /:

(2.3)
From now on, what we mean by “functional calculus” is the functoriality, i.e. the
second formulation.

Writing� C for the unit disk, the normal elements of norm� 1 are identified
with the �-homomorphisms ˛ W C./ ! A. For every r 2 Œ0; 1�, we have the
multiplication map r � W  !, so that .r �/.A/ W .A/!.A/ represents scalar
multiplication of normal elements by r . Based on this, we can recover the norm of a
normal element ˛ 2 .A/ as the largest r for which ˛ factors through C.r/,

jj˛jj D max f r 2 Œ0; 1� j ˛ 2 im..r �/.A// g :
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As we will see next, the functoriality also captures part of the binary operations
of a C*-algebra.
Lemma 2.7. For S; T � C, applying functoriality to the product projections

pS W S � T �! S; pT W S � T �! T (2.4)

establishes a bijection between .S�T /.A/ and pairs of commuting normal elements
.˛; ˇ/ 2 A � A with sp.˛/ � S and sp.ˇ/ � T .

This generalizes Lemma 2.6 to commuting pairs of normal elements. Of course,
there are analogous statements for tuples of any size (finite or even infinite), and this
encodes multivariate functional calculus.

Proof. We need to show that the map

.pS .A/; pT .A// W .S � T /.A/ �! S.A/ � T .A/

is injective, and that its image consists of precisely the pairs .˛; ˇ/with˛ W C.S/! A

and ˇ W C.T / ! A that have commuting ranges. Injectivity holds because pS W
S � T ! C and pT W S � T ! C separate points, so that the same argument as in
the proof of Lemma 2.6 applies. For surjectivity, let ˛ and ˇ be given. Since their
ranges commute, we can find a commutative subalgebra C.X/ � A that contains
both, so that the pair .˛; ˇ/ has a preimage in the upper right corner of the diagram

.S � T /.C.X// //

��

S.C.X// � T .C.X//

��
.S � T /.A/ // S.A/ � T .A/

Now the upper row is equal to the canonicalmapCHaus.X; S�T /! CHaus.X; S/�
CHaus.X; T /, which is a bijection due to the universal property of S �T . Hence we
can find a preimage of .˛; ˇ/ also in the upper left corner, and then also in the lower
left corner by commutativity of the diagram.

Remark 2.8. In the physical interpretation, the elements of .S � T /.A/ are
measurements that have outcomes in S�T (Remark 2.3). Lemma 2.7 now shows that
such a measurement corresponds to a pair of compatiblemeasurements taking values
in S and T , respectively, and one obtains these measurements by coarse-graining
along the product projections (2.4), i.e. by forgetting the other outcome.

As part of bivariate functional calculus, we can now consider the addition map

S � T �! S C T; .x; y/ 7�! x C y; (2.5)

where S C T is the Minkowski sum

S C T D f x C y j x 2 S; y 2 T g;



(Almost) C*-algebras as sheaves with self-action 1077

again considered as a compact subset of C. Under the identifications of Lemmas 2.6
and 2.7, the addition map

C .A/ W .S � T /.A/ �! .S C T /.A/ (2.6)

takes a pair of commuting normal elements with spectra in S and T and takes it to a
normal element with spectrum in S C T .
Lemma 2.9. On commuting normal elements, this recovers the usual addition in A.

Proof. By Lemma 2.7, it is enough to take a  2 .S � T /.A/ and to compute the
resulting normal element that one obtains by applying C.A/ in a manner analogous
to (2.3),

.C.A//./.idSCT /
(2.1)
D . ı C.C//.idSCT / D .idSCT ı C/
D .idS ı pS C idT ı pT /
D .idS ı pS /C .idT ı pT /
D . ı C.pS //.idS /C . ı C.pT //.idT /
(2.1)
D .pS .A//./.idS /C .pT .A//./.idT /;

where the crucial assumption of additivity of  has been used to obtain the expression
in the third line.

In the analogous manner, one can show that the multiplication map

S � T �! ST; .x; y/ 7�! xy; (2.7)

lets us recover the product of two commuting normal elements in A. More generally,
we can recover any polynomial or continuous function of any number of commuting
normal elements.

In summary, we think of the functor �.A/ W CHaus ! Set associated to
A 2 C�alg1 as a generalization of functional calculus, which remembers the entire
“commutative structure” of A. The generalization is from applying functions
to individual normal elements — as in the conventional picture of functional
calculus — to applying functions to “generalized” normal elements in the guise of
�-homomorphisms of the form C.X/! A. In particular, the C*-algebra operations
acting on commuting normal elements are encoded in the functoriality. In the
remainder of this paper, we will always have this point of view in mind, together with
its physical interpretation:

functorialityD generalized functional calculusD post-processing of measurements.

Remark 2.10. In Section 3, we will also consider functors F W CHaus ! Set that
do not necessarily arise from a C*-algebra in this way. In terms of the physical
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interpretation, this means that we attempt to model physical systems not in terms of
their algebras of observables as the primary structure, but in terms of a functor F
as the most fundamental structure that describes physics. This is motivated by the
fact that the C*-algebra structure of the observables is (a priori) not physically well-
motivated, as discussed in the introduction. Thanks to Remarks 2.3 and 2.5, our
functors F W CHaus! Set do have a meaningful operational interpretation in terms
of measurements: F.X/ is the set of (projective) measurements with outcomes inX ,
and the action of F on morphisms is the post-processing. This bare-bones structure
turns out to carry a surprising amount of information about the algebra of observables.
We will try to equip F with additional properties and structure such as to uniquely
specify the algebra of observables.

In spirit, this approach is similar to the existing reconstructions of quantum
mechanics from operational axioms [6]. In recent years, a wide range of
reconstruction theorems with a large variety of choices for the axioms have been
derived, as pioneered by Hardy [9,10]. In these theorems, “quantum mechanics”
refers to the Hilbert space formulation in finite dimensions, and the reconstruction
theorems recover the Hilbert space structure within the framework of general
probabilistic theories. In contrast to this, our work focuses on the C*-algebraic
formulation of quantum mechanics and is not limited to a finite-dimensional setting.
Also, we do not make use of the possibility of taking stochastic mixtures: since we
are (currently) only dealing with projective measurements, taking stochastic mixtures
is not even possible in our setup.

3. C*-algebras as sheaves CHaus ! Set

Functional calculus lets us apply functions to operators, or more generally to
�-homomorphisms C.X/ ! A as in the previous section. In some situations,
one can also go the other way: for certain families of functions ffi W X ! Yigi2I
with common domain, a collection of �-homomorphisms fˇi W C.Yi / ! Agi2I
arises from a unique �-homomorphism ˛ W C.X/! A by functoriality along the fi
if and only if the ˇi satisfy a simple compatibility requirement. This property is a
sheaf condition, and it turns our functors �.A/ into sheaves on the category CHaus.

Remark 3.1. We emphasize already at this point that the sheaf conditions that we
consider do not arise from a Grothendieck topology (on CHausop), since the axiom
of stability under pullback fails to hold. Also, while sheaf conditions are typically
formulated for contravariant functors (i.e. presheaves), our sheaves live in a covariant
setting. While we could speak of “cosheaves” to emphasize this distinction, this term
usually refers to dualizing the standard notion of sheaf on the codomain category,
while we dualize on the domain category.
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A good way of talking about sheaf conditions on large categories is not in terms
of sieves or cosieves, which would usually have to be large, but in terms of cocones
or cones [26]:
Definition 3.2. A cone inCHaus is any small family of morphisms ffi W X ! Yigi2I
with common domain.
Definition 3.3. A functor F W CHaus ! Set satisfies the sheaf condition on a
cone ffi W X ! Yigi2I if the F.fi / implement a bijection between the sections
˛ 2 F.X/ and the families of sections fˇigi2I with ˇi 2 F.Yi / that are compatible
in the following sense: for any i; j 2 I and any diagram

X
fi //

fj

��

Yi

g

��
Yj

h
// Z

(3.1)

we have F.g/.ˇi / D F.h/.ˇj /.
Since CHaus has pushouts, the compatibility condition holds if and only if it

holds on every pushout diagram

X
fi //

fj

��

Yi

��
Yj // Yi qfi fj

Yj

Hence the sheaf condition holds on ffig if and only if the diagram

F.X/ //
Y
i2I

F.Yi /
//
//

Y
i;j2I

F.Yi qfi fj
Yj /:

is an equalizer in Set, where the arrows are the canonical ones [19, p. 123]. At times
it is convenient to apply the compatibility condition as in (3.1) instead of considering
the pushout, while at other times it is necessary to work with the pushout explicitly.

Effective-monic cones in CHaus. Since we are interested in sheaf conditions satis-
fied by a functor of the form �.A/ W CHaus ! Set for A 2 C�alg1, it makes sense
to consider the commutative case first. Then our functor takes the form �.C.W //,
which is isomorphic to the hom-functor CHaus.W;�/.
Definition 3.4 (e.g. [26, Definition 2.22]). A cone ffi W X ! Yigi2Y in CHaus
is effective-monic if every representable functor CHaus.W;�/ satisfies the sheaf
condition on it.
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Hence ffig is effective-monic if and only if X is the equalizer in the diagram

X //
Y
i2I

Yi
//
//

Y
i;j2I

.Yi qfi fj
Yj /;

or equivalently the limit in the diagram

Yi

##

:::

X

fj
$$

fi

::

::: Yi qfi fj
Yj

Yj

<<

:::

(3.2)

Example 3.5. Let ƒ be a small category and L W ƒ ! CHaus a functor of which
we consider the limit limƒL 2 CHaus. The limit projections p� W limƒL! L.�/

assemble into a cone fp�g�2ƒ, which is effective-monic.
Fortunately, it is not necessary to consider arbitrary W in Definition 3.4:

Lemma 3.6. A cone ffig is effective-monic if and only if CHaus.1;�/ satisfies the
sheaf condition on it.

Proof. CHaus is well-known to be monadic over Set, with the forgetful functor being
precisely the functor of points CHaus.1;�/ W CHaus ! Set. In particular, this
functor creates limits.

So in words, X must be the subspace of the product space
Q
i2I Yi consisting of

all those families of points fyigi2I such that the image of yi 2 Yi coincides with the
image of yj 2 Yj in the pushout space Yi qfi fj

Yj . This condition also applies for
j D i , in which case it is equivalent to yi 2 im.fi /.
Remark 3.7. For a given Y , the cone of all functions ff W X ! Y gf WX!Y is
effective-monic for every X if and only if Y is codense.

While these categorical considerations have been extremely general, we now get
into the specifics of CHaus. We write � WD Œ0; 1� � Œ0; 1� for the unit square, and
consider it as embedded in � � R2 D C, where the unit interval Œ0; 1� � R is an
edge of �.
Lemma 3.8. For everyX 2 CHaus, the cone ff W X ! �gf WX!� consisting of all
functions f W X ! � is effective-monic.

By Remark 3.7, this is a restatement of the known fact that � is codense in
CHaus [13].
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While one thinks of a conventional sheaf condition as saying that a function
is uniquely determined by a compatible assignment of values to all (local
neighbourhoods of) points, this sheaf condition says that a point is uniquely
determined by a compatible assignment of values to all functions.

Proof. We need to show that the diagram

X //
Y

f WX!�

�
//
//

Y
g;hWX!�

.� q
g h

�/

is an equalizer. Since functions X ! � separate points in X , it is clear that the map
X !

Q
f � is injective.

Surjectivity is more difficult. Suppose that v 2
Q
f WX!� � is a compatible

family of sections. Then in particular, we have

v.hf / D h.v.f // for all h W �! � (3.3)

as an instance of the compatibility condition, since the square

X
hf //

f

��

�

�
h
// �

(3.4)

commutes.
We have to show that there exists a point x 2 X with v.f / D f .x/ for all

f W X ! �. This set of equations is equivalent to x 2
T
f f

�1.v.f //. Hence it
is enough to show that

T
f f

�1.v.f // is nonempty. By compactness, it is sufficient
to prove that any finite intersection

f �11 .v.f1// \ � � � \ f
�1
n .v.fn//

for a finite set of functions f1; : : : ; fn W X ! � is nonempty. Using induction on n,
the induction step is obvious if for given f1; f2 we can exhibit g W X ! � such that

g�1.v.g// D f �11 .v.f1// \ f
�1
2 .v.f2//:

First, by (3.3), we can assume that both f1 and f2 actually take values in Œ0; 1�, e.g. by
considering

h1 W � �! Œ0; 1�; t 7�! jt � v.f1/j

and replacing f1 by h1f1, which results in

.h1f1/
�1.v.h1f1//

(3.3)
D f �11 .h�11 .h1.v.f1//// D f

�1
1 .h�11 .0// D f

�1
1 .v.f1//;

and similarly for f2. After this replacement, we can take g.t/ WD .f1.t/; f2.t//, and
the induction step is complete upon applying (3.3) to the two coordinate projections.
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Finally, we need to show that any individual set f �1.v.f // is nonempty as the
base of the induction. For given s 2 Œ0; 1�nim.f /, chooseh such thath.im.f // D f0g
and h.s/ D 1 by the Tietze extension theorem. Then

0 D v.0/ D v.hf / D h.v.f //;

and hence v.f / ¤ s. Therefore v.f / 2 im.f /, as was to be shown.

For us, this effective-monic cone is the most important one. We now consider
some other examples of effective-monic cones in CHaus, which shed some light on
their general behaviour. This is relevant for our main line of thought only as a source
of examples.

As the counterexample given in the proof of [13, Theorem 2.6] shows, this does
generally not hold with Œ0; 1� in place of �. However, at least if X is extremally
disconnected, then it is still true, as an immediate consequence of the following result:
Lemma 3.9. If X is extremally disconnected, then ff W X ! 4g is effective-monic.

Here, wewrite 4 WD f0; 1; 2; 3g, and the proof uses indicator functions�Y WX ! 4
of clopen sets Y � X .

Proof. Since the clopen sets separate points, the injectivity is again clear and the
burden of the proof is in the surjectivity. So let v W 4X ! 4 be a compatible family
of sections.

As in the proof of Lemma 3.8, we show that the intersection\
Y clopen;
v.�Y /D1

Y

is nonempty. Again by compactness and an induction argument as in the proof of
Lemma 3.8, it is enough to show that for any clopen Y1; Y2 � X with v.�Y1/ D 1

and v.�Y2/ D 1, we also have v.�Y1\Y2/ D 1. To see this, we consider the function

f WD �Y1 C 2�Y2 ;

and apply the compatibility condition in the form (3.3) for various h. Choosing h such
that 0; 2 7! 0 and 1; 3 7! 1 results in hf D �Y1 , and hence v.f / 2 f1; 3g. Similarly,
mapping 0; 1 7! 0 and 2; 3 7! 1 yields hf D �Y2 , and therefore v.f / 2 f2; 3g.
Overall, we obtain v.f / D 3, and apply h with 0; 1; 2 7! 0 and 3 7! 1 to conclude
v.�Y1\Y2/ D 1 from hf D �Y1\Y2 .

So there is at least one point x0 2 X such that v.�Y / D 1 implies x0 2 Y for all
clopen Y � X . We then claim that v.f / D f .x0/ for all f W X ! 4. This follows
from writing

f D 0�Y0 C 1�Y1 C 2�Y2 C 3�Y3

for a partition of X by clopens Y0; Y1; Y2; Y3 � X , and applying (3.3) with h such
that v.f / 7! 1, while the other three integers map to 0.



(Almost) C*-algebras as sheaves with self-action 1083

A singleton cone ff W X ! Y g is effective-monic if and only if f is injective.
For cones consisting of exactly two functions, the necessary and sufficient criterion
is as follows:
Lemma 3.10. A cone ff W X ! Y; g W X ! Zg consisting of exactly two functions
is effective-monic if and only if the pairing .f; g/ W X ! Y �Z is a Mal’cev relation,
meaning that f and g are jointly injective and their joint image

R WD im..f; g// � Y �Z

satisfies the implication

.y; z/ 2 R; .y0; z/ 2 R; .y; z0/ 2 R H) .y0; z0/ 2 R: (3.5)

For the notion of Mal’cev relation, see [5].

Proof. We use the criterion of Lemma 3.6. The injectivity part of the sheaf condition
is equivalent to injectivity of .f; g/ W X ! Y � Z. Assuming that this holds, we
identify X with the joint image R � Y �Z.

Now if ff; gg is effective-monic and we have y; y0 2 Y and z; z0 2 Z as in (3.5),
then each of the three pairs .y; z/, .y0; z/ and .y; z0/ represents a point of X . So
since .y; z/ is in particular a compatible pair of sections, in Y q

f g
Z the image

of y coincides with the image of z. By the same reasoning applied to .y0; z/, also y0
maps to the same point in Y q

f g
Z, and by .y; z0/ so does z0. Hence also .y0; z0/

is a compatible pair of sections, which must correspond to a point of X due to the
sheaf condition.

Conversely, suppose that (3.5) holds. The pushout Y q
f g

Z is the quotient of
the coproduct Y q Z by the closed equivalence relation generated by f .x/ � g.x/
for all x 2 X , i.e. by y � z for all .y; z/ 2 R. In terms of relational composition, it
is straightforward to check that

idYqZ [R [Rop
[ .R ıRop/ [ .Rop

ıR/

is already an equivalence relation thanks to (3.5). As a finite union of closed sets, it
is also closed, and hence two points in Y qZ get identified in Y q

f g
Z if and only

if they satisfy this relation. In particular, y 2 Y and z 2 Z map to the same point in
Y q
f g

Z if and only if .y; z/ 2 R.

In general, the pushout of an effective-monic cone along an arbitrary function
is not effective-monic again. The following example shows even that the effective-
monic cones on CHaus do not form a coverage; an even more drastic example can be
found in the proof of Proposition 3.28.
Example 3.11. Take X WD 4 D f0; 1; 2; 3g, and consider two maps to spaces with 3
points,

f W f0; 1; 2; 3g �! f01; 2; 3g; g W f0; 1; 2; 3g �! f0; 1; 23g;



1084 C. Flori and T. Fritz

as illustrated by the projection maps in Figure 1. By Lemma 3.10, this cone is
effective-monic. However, taking the pushout along the identification map

h W f0; 1; 2; 3g �! f0; 12; 3g

results in a cone consisting of f 0 W f0; 12; 3g ! f012; 3g and g0 W f0; 12; 3g !
f0; 123g. Since the criterion of Lemma 3.10 fails, the cone ff 0; g0g is not effective-
monic. In particular, the pushout of an effective-monic cone is not necessarily
effective-monic again. Worse, the collection of all effective-monic cones is not
a coverage: for our original ff; gg, there does not exist any effective-monic cone
fki W f0; 12; 3g ! Yigi2I such that every kih would factor through f or g,

f01; 2; 3g

‹

��

f0; 1; 2; 3g

f

33

g
//

h

��

f0; 1; 23g

‹
&&

f0; 12; 3g
ki

// Yi

The reason is as follows: for every i 2 I , we would need to have ki .0/ D ki .12/ or
ki .12/ D ki .3/. If the former happens, consider the point yi WD ki .3/ 2 Yi , while if
the latter happens take yi WD ki .0/. (If both cases apply, these two prescriptions result
in the same point yi D ki .0/ D ki .3/.) It is easy to check that the resulting family
of points fyigi2I is compatible. However, it does not arise from a point of f0; 12; 3g:
since the ki must separate points, there must be i with ki .0/ D ki .12/ ¤ ki .3/, and
another i with ki .0/ ¤ ki .12/ D ki .3/. Hence neither of x 2 f0; 12; 3g results in
the given compatible family, and the cone fkig is not effective-monic.

�3 �3

�2
f // �2

�
0
�
1

�01

g

��

�
0
�
1
�
23

Figure 1. Illustration of the cone ff; gg of Example 3.11.

Incidentally, the cone ff 0; g0g from above is arguably the simplest example of a
cone that separates points (is jointly injective) without being effective-monic.
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Remark 3.12. The previous example can also be understood in terms of effectus
theory [14, Assumption 1]: the relevant pushout square is of the form

W C Y
idCf //

gCid
��

W CZ

gCid
��

X C Y
idCf

// X CZ

where “C” is the coproduct in CHaus and both f and g are the unique map 2! 1.
In general, any cone consisting of idCf W W CY ! W CZ and gC id W W CY !
X C Y is effective-monic by Lemma 3.10.

It is conceivable that there are deeper connections with effectus theory than just
at the level of examples, but so far we have not explored this theme any further.

Starting to get back to C*-algebras, we record one further statement about cones
for further use.

Lemma 3.13. A cone ffi W X ! Yig separates points if and only if the ranges of the
C.fi / W C.Yi /! C.X/ generate C.X/ as a C*-algebra.

Proof. By the Stone–Weierstrass theorem, the C*-subalgebra generated by the ranges
of the C.fi / equals C.X/ if and only if it separates points (as a subalgebra). This
C*-subalgebra is generated by the elements gi ı fi 2 C.X/, where gi W Yi ! Œ0; 1�

ranges over all functions, and hence the subalgebra separates points if and only if
these functions separate points. This in turn is equivalent to the fi separating points,
since the gi W Yi ! Œ0; 1� also separate points.

How to guarantee commutativity? The previous subsection was concerned with
sheaf conditions satisfied by the functors �.A/ for commutative A. Now, we want to
investigate which of these sheaf conditions hold for general A.

Definition 3.14. An effective-monic cone ffi W X ! Yigi2I in CHaus is guaranteed
commutative if every functor �.A/ satisfies the sheaf condition on it.

In detail, �.A/ satisfies the sheaf condition on ffig if and only if restricting a
�-homomorphism ˛ W C.X/ ! A along all C.fi / W C.Yi / ! C.X/ to families
ˇi W C.Yi / ! A that are compatible in the sense that ˇi ı C.g/ D ˇj ı C.h/ for
every diagram of the form (3.1),

X
fi //

fj

��

Yi

g

��
Yj

h
// Z
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results in a bijection. In terms of the functor C W CHausop ! C�alg1, this holds if
and only if the diagram

::: C.Yi /

&&
C.Yi / �

C.fi / C.fj /
C.Yj /

C.fi /

77

C.fj /
''

::: C.X/

::: C.Yj /

88

which is the image of (3.2) under C , is a colimit in C�alg1. Here, we have used the
canonical isomorphism C.Yi qfi fj

Yj / Š C.Yi / �
C.fi / C.fj /

C.Yj /, which holds
because C is a right adjoint. So we are dealing with an instance of the question,
which limits does C turn into colimits?

Remark 3.15. In terms of the physical interpretation of Remarks 2.3 and 2.10, the
sheaf condition on a cone ffi W X ! Yig states that every compatible family of
measurements with outcomes in the Yi corresponds to a unique measurement with
values in X which coarse-grains to the given measurements via the fi .

The terminology of Definition 3.14 is motivated by the following observation:

Lemma 3.16. An effective-monic cone ffi W X ! Yigi2I is guaranteed commutative
if and only if for everyA 2 C�alg1 and compatible familyˇi W C.Yi /! A, the ranges
of the ˇi commute.

Proof. Suppose that the criterion holds. For A 2 C�alg1, we show that restricting
a �-homomorphism C.X/ ! A to a compatible family of �-homomorphisms
C.Yi / ! A is a bijection. We first show injectivity, so let ˛; ˛0 W C.X/ ! A

be such that the resulting families coincide, ˇi D ˇ0i . In particular, this means that
the range of each ˇi coincides with the range of ˇ0i , and hence im.˛/ D im.˛0/ by
Lemma 3.13. Hence we are back in the commutative case, where Gelfand duality
and the effective-monic assumption apply.

For surjectivity, let a compatible familyˇi W C.Yi /! A be given. By assumption,
there is some commutative subalgebraB � Awhich contains the ranges of all ˇi , and
it is sufficient to prove the sheaf conditionwithB in place ofA. The claim then follows
from Gelfand duality together with the assumption that ffig is effective-monic.

Conversely, if the sheaf condition holds on a functor�.A/, then theˇi WC.Yi /!A

all arise from restricting some ˛ W C.X/ ! A along C.fi / W C.Yi / ! C.X/. In
particular, the range of everyˇi is contained in the range of ˛, which is a commutative
C*-subalgebra.
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The crucial ingredient here is the fact that commutativity is a pairwise property,
in the sense that if any family of elements in a C*-algebra commute pairwise, then
they generate a commutative C*-subalgebra. We will meet this property again in
Definition 4.1.

In the sense of Lemma 3.16, the question is under what conditions an effective-
monic cone “guarantees commutativity” of the ranges of a compatible family.
Example 3.17. The effective-monic cone of Example 3.11 is guaranteed commuta-
tive: in terms of indicator functions of individual points, the compatibility assumption
on a pair of �-homomorphisms ˇf W C.f01; 2; 3g/! A and ˇg W C.f0; 1; 23g/! A

is that

ˇf .�01/ D ˇg.�0/C ˇg.�1/; ˇg.�23/ D ˇf .�2/C ˇf .�3/:

So ˇg.�0/ is a projection below ˇf .�01/, and in particular orthogonal to ˇf .�2/
and ˇf .�3/, so that it commutes with every element in the range of ˇf . Proceeding
like this proves that the ranges of ˇf and ˇg commute entirely.
Example 3.18. Let T � C be the unit circle, and p<; p= W T ! Œ�1;C1� the two
coordinate projections. Then the cone fp<; p=g is effective-monic by Lemma 3.10,
or alternatively since applying p< and p= establishes a bijection between points
of x and pairs of numbers y<; y= 2 Œ�1;C1� with y2

<
C y2

=
D 1. Hence

compatible families fˇ<; ˇ=g are �-homomorphisms ˇ< W C.Œ�1;C1�/ ! A and
ˇ= W C.Œ�1;C1�/! A that correspond to self-adjoint elements ˇ<.id/; ˇ=.id/ 2
Œ�1;C1�.A/ with ˇ<.id/2 C ˇ=.id/2 D 1. Such a pair of self-adjoints arises from a
unitary by functional calculus if and only if they commute. For example, choosing
any A with non-commuting symmetries s< and s= provides a compatible family that
does not arise in this way upon putting ˇ< WD s<=

p
2 and ˇ= WD s==

p
2. Therefore

fp<; p=g is not guaranteed commutative.
So far, we know of one powerful sufficient condition for guaranteeing

commutativity:
Definition 3.19. An effective-monic cone ffi W X ! Yigi2I in CHaus is directed if
for every i 2 I there is a cone fgji W Yi ! Z

j
i gj2Ji which separates points, and such

that for every i; i 0 2 I and j 2 Ji , j 0 2 Ji 0 there is k 2 I and a diagram

X
fi

}}
fk
��

fi0

!!
Yi

g
j

i ��

Yk

��   

Yi 0

g
j 0

i0��

Z
j
i Z

j 0

i 0

(3.6)
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Note that this definition can be considered in principle in any category.
Proposition 3.20. If ffig is effective-monic and directed, then it is also guaranteed
commutative.

Proof. By Lemma 3.16, it is enough to show that the ranges of a compatible family
fˇi W C.Yi /! Ag commute. By Lemma 3.13, it is enough to prove that the range of
ˇi ıC.g

j
i / W C.Z

j
i /! A commutes with the range ofˇi 0 ıC.gj

0

i 0 / W C.Z
j 0

i 0 /! A for
any i; i 0 2 I and j 2 Ji , j 0 2 Ji 0 . Thanks to (3.6) and the compatibility, both of these
ranges are contained in the range of ˇk W C.Yk/! A, which is commutative.

Example 3.21. Let 2N be the Cantor space, with projections pn W 2N ! 2n for every
n 2 N. Then the cone fpngn2N is effective-monic and directed. Therefore it is also
guaranteed commutative.

More generally, letƒ be a small cofiltered category andL W ƒ! CHaus a functor
of which we consider the limit limƒL 2 CHaus. The cone of limit projections
fp� W limƒL ! L.�/g is effective-monic (Example 3.5). With the trivial cones
fidg on the codomains L.�/, the cofilteredness implies that the cone is also directed,
and therefore guaranteed commutative. What we have shown hereby in a roundabout
manner is that a filtered colimit of commutative C*-algebras is again commutative.

Unfortunately, the converse to Proposition 3.20 is not true:
Example 3.22. The effective-monic cone ff; gg of Examples 3.11 and 3.17 is not
directed, despite being guaranteed commutative. The reason is that the additional
cones as in Definition 3.19 would have to contain some h W f12; 3; 4g ! Z12 with
h.3/ ¤ h.4/, and similarly some k W f1; 2; 34g ! Z34 with k.1/ ¤ k.2/. By (3.6),
this would mean that the cone ff; gg would have to contain a function that separates
both 1 from 2 and 3 from 4, which is not the case.

So while Proposition 3.20 is sufficiently powerful for the remainder of this
paper, it remains open to find a necessary and sufficient condition for guaranteeing
commutativity.
Lemma 3.23. For any X 2 CHaus, the cone ff W X ! �g of all functions
f W X ! � is directed.

By Lemma 3.8, we already know that this cone is effective-monic. By
Proposition 3.20, we can now conclude that it also is guaranteed commutative.

Proof. In Definition 3.19, take every fgji gj2Ji to be the cone consisting of all
functions � ! Œ0; 1�. Since the pairing of any two functions X ! Œ0; 1� is a
function X ! �, the cone ff W X ! �g is directed.

Remark 3.24. In terms of Remark 3.15, this lemma “explains” why physical
measurements are numerical: for every conceivable measurement with values in
some arbitrary space X , conducting that measurement and recording the outcome
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in X is equivalent to conducting a sufficient number of measurements with values
in � and recording their outcomes, which are now plain (complex) numbers.

Lemma 3.25. If two cones ffi W W ! Yigi2I and fgj W X ! Zigj2J are effective-
monic and directed, then so is the product cone

ffi � gj W W �X ! Yi �Zj g.i;j /2I�J :

Proof. Let fhki W Yi ! U ki gk2Ki and fklj W Zj ! V lj gl2Lj be the families of
additional cones that witness the directedness. Then for .i; j / 2 I � J , consider the
cone at Yi �Zj given by

fhki pYi W Yi �Zj ! U ki g [ fk
l
jpZj W Yi �Zj ! V lj g (3.7)

with index set Ki q Lj . This cone separates the points of Xi � Yj , since any two
different points differ in at least one coordinate. The condition of Definition 3.19 is
easy to check by distinguishing the cases of the left and the right morphism in (3.6)
belonging to either part of (3.7). The only interesting case that comes up is when
one considers a hki pYi W Yi �Zj 0 ! U ki together with a kljpZj W Yi 0 �Zj ! �V

l
j ,

resulting in a diagram of the form

W �X
fi�gj 0

yy
��

fi0�gj

%%
Yi �Zj 0

hk
i
pYi
�� yy %%

Yi 0 �Zj

kl
j
pZj

��
U ki V lj

where indeed the central vertical arrow can be taken to be fi � gj .

In combination with Lemma 3.23, we therefore obtain:

Corollary 3.26. For any X; Y 2 CHaus, the cone ff � g W X � Y ! � � �g
indexed by all functions f W X ! � and g W Y ! � is directed.

Another simple class of examples is as follows:

Lemma 3.27. Let ffi W X ! Yigi2I be an effective-monic cone on X 2 CHaus.
Then the cone ˚

.fi1 ; : : : ; fin/ W X ! Yi1 � � � � � Yin
	

consisting of all finite tuplings of the fi is effective-monic and directed.

Alternatively, we could phrase this as saying that if an effective-monic cone is
closed under pairing, then it is directed.
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Proof. Mapping points of X to compatible families of points in all finite productsQn
mD1 Yim is trivially injective, since it already is so on single-factor products

due to the effective-monic assumption. Concerning surjectivity, the compatibility
assumption guarantees that the component .y1; : : : ; yn/ 2 Yi1 � � � � �Yin is uniquely
determined by the components in every individual yi , since this is precisely the
compatibility condition on diagrams of the form

X

fim

��

.fi1 ;:::;fin / //

nY
mD1

Yim

pm

��
Yim Yim

Hence the new cone is also effective-monic.
The condition of Definition 3.19 holds by construction, with the trivial cone fidg

on the codomains.

Next, we briefly investigate the collection of directed effective-monic cones in its
entirety.

Proposition 3.28. The collection of all directed effective-monic cones on CHaus is
not a coverage.

Results along the lines of [23, Theorem 1.1] indicate that this is not due to the
potential inadequacy of our definitions, but rather due to fundamental obstructions
related to the noncommutativity.

Proof. Consider X WD f0; 1g3 with the three product projections p1; p2; p3 W
f0; 1g3 ! f0; 1g. By reasoning analogous to the proof of Lemma 3.8, their three
pairings ˚

.p1; p2/; .p1; p3/; .p2; p3/ W f0; 1g
3
�! f0; 1g2

	
(3.8)

form an effective-monic cone. By reasoning analogous to the proof of Lemma 3.23,
this cone is directed.

Now consider the function f W f0; 1g3 ! 4 defined by mapping every element of
f0; 1g3 to the sum of its digits. In any square of the form

f0; 1g3
.p1;p2///

f

��

f0; 1g2

g

��
4

h
// Z
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we necessarily have

h.f .000//™
Dh.0/

D g.00/ D h.f .001// D h.f .010// D g.01/

D h.f .010//™
Dh.1/

D � � � D h.f .110//™
Dh.2/

D � � � D h.f .111//™
Dh.3/

;

and therefore h must be constant. By symmetry, the same must hold with .p1; p3/
or .p2; p3/ in place of .p1; p2/. Hence any cone on 4 that factors through (3.8) must
identify all points of 4. In particular, no such cone can even be effective-monic, let
alone directed.

We close this subsection with another potential criterion for guaranteeing
commutativity. This is not relevant for the remainder of the paper.

Lemma 3.29. The following conditions on a cone ffi W X ! Yig in CHaus are
equivalent:

(a) For every x 2 X and neighbourhood U 3 x there exists i 2 I with

f �1i .fi .x// � U:

(b) For every x 2 X and neighbourhood U 3 x there exist i 2 I and a
neighbourhood V 3 fi .x/ with

f �1i .V / � U:

(c) The sets of the form f �1i .V / for open V � Yi form a basis for the topology
on X .

Proof. (a))(b): Since X n U is compact, fi .X n U/ is a closed set, and disjoint
from fxg by assumption. Now take V to be any open neighbourhood of fi .x/ disjoint
from fi .X n U/.

(b))(c): Suppose x 2 f �1i .Vi /\ f
�1
j .Vj /. Then by assumption, there is k and an

open Vk � Yk with fk.x/ 2 Vk such that

f �1k .Vk/ � f
�1
i .Vi / \ f

�1
j .Vj /:

(c))(a): There must be a basic open f �1i .Vi / with x 2 f �1i .Vi / � U .

Definition 3.30. If the above conditions hold, we say that the cone ffig is locally
injective.
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Clearly, a locally injective cone separates points. However, it is not necessarily
effective-monic:

Example 3.31. The cone consisting of all three surjective functions 3! 2 is locally
injective. However, it is not effective-monic: the pushout of any two different maps
3! 2 is trivial, and hence there are 23 compatible families of points in the cone, but
only 3 points in X .

Example 3.32. The cone fp<; p=g from Example 3.18 is not locally injective: for
any angle 0 < ' < �=2, the point .cos'; sin'/ 2 T cannot be distinguished from
.cos';� sin'/ 2 T under p<, and not from .� cos'; sin'/ under p=.

Conjecture 3.33. An effective monic cone ffi W X ! Yig that is locally injective is
also guaranteed commutative.

Since the cone of all functionsX ! � is an effective-monic and locally injective
cone, proving this conjecture would again show that ff W X ! �g is guaranteed
commutative. Furthermore, this would detect some cones as guaranteed commutative
that are not detected as such by Proposition 3.20: the effective-monic cone of
Examples 3.11 and 3.17 is one of these.

Example 3.34. In the setting of Example 3.21, the topology of limƒL is generated
by the preimages of opens in all the L.�/. The cofilteredness assumption implies
that these opens form a basis: for U� � L.�/ and U�0 � L.�0/, we have O� and
morphisms f W O�! � and f 0 W O�! �0 such that

limƒL
p�

{{
p O�
��

p�0

$$
L.�/ L. O�/

L.f /
oo

L.f 0/

// L.�0/

commutes. In particular, f �1.U�/\ f 0�1.U�0/ is an open in L. O�/ whose preimage
in limƒL is exactly the intersection of the preimages of U� and U�0 . Hence the
limit cone fp�g is also locally injective. By Example 3.21, this is in accordance with
Conjecture 3.33.

Similar to the situation with Proposition 3.20, being locally injective is also not a
necessary condition for guaranteeing commutativity:

Example 3.35. There are effective-monic cones that are directed and hence
guaranteed commutative, but not locally injective. For example with� WD Œ0; 1�3 the
unit cube, the three face projections p1; p2; p3 W � ! � form a cone fp1; p2; p3g
that is effective-monic but not locally injective. Nevertheless, considering copies of
the cone fp<; p= W � ! Œ0; 1�g in Definition 3.19 shows that the cone is directed,
and hence guaranteed commutative. In particular, the converse to Conjecture 3.33 is
false.
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The category of sheaves and its smallness properties. Now that we have some
idea of which sheaf conditions are satisfied by C*-algebras, we investigate completely
general functors CHaus! Set satisfying (some of) these sheaf conditions.

Definition 3.36. A functor F W CHaus ! Set is a sheaf if it satisfies the sheaf
condition on all effective-monic cones that are directed.

We write Sh.CHaus/ for the resulting category of sheaves, which is a full
subcategory of SetCHaus. Due to Proposition 3.28, the sheaf conditions are not those
of a (large) site. Nevertheless, we expect that Sh.CHaus/ is an instance of a category
of sheaves on a quasi-pretopology or on a Q-category, whose categories of sheaves
were investigated by Kontsevich and Rosenberg in the context of noncommutative
algebraic geometry [24,25]2.

A priori, Sh.CHaus/ may seem rather unwieldy, and it is not even clear whether
it is locally small.

Lemma 3.37. Let F;G 2 Sh.CHaus/. Evaluating natural transformations on � is
injective,

Sh.CHaus/.F;G/ �
� // Set.F.�/; G.�//:

Proof. SinceF andG satisfy the sheaf condition on ff W X ! �g byCorollary 3.23,
the canonical map

F.X/ //
Y

f WX!�

F.�/

is injective. Hence for any � W F ! G, the naturality diagram

F.X/ //

�X

��

Y
f WX!�

F.�/

Q
f ��

��

G.X/ //
Y

f WX!�

G.�/

shows that every component �X is uniquely determined by ��.

Corollary 3.38. Sh.CHaus/ is locally small.

Proof. Lemma 3.37 provides an upper bound on the size of each hom-set.

2It is natural to suspect that the reason for why Grothendieck topologies do not apply is in both cases
due to the noncommutativity, as has been formally proven in [23]. However, so far we have not explored
the relation to the work of Kontsevich and Rosenberg any further.
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With functors �.A/ and �.B/ for A;B 2 C�alg1 in place of F and G,
Lemma 3.37 also follows from the Yoneda lemma and the fact that C.�/ is a
separator in C�alg1. The latter is true more generally:

Corollary 3.39. �.C.�// is a separator in Sh.CHaus/.

Recall that as functors CHaus! Set, we have �.C.�// Š CHaus.�;�/.

Proof. By the Yoneda lemma,

Sh.CHaus/.�.C.�//; F / D SetCHaus.CHaus.�;�/; F / D F.�/; (3.9)

and hence the claim follows from Lemma 3.37.

The following stronger injectivity property will play a role in the next section:

Lemma 3.40. For F 2 Sh.CHaus/, the following are equivalent:

(a) The canonical map

.F.p1/; F .p2// W F.� ��/ // F.�/ � F.�/ (3.10)

is injective.

(b) For every X 2 CHaus and effective-monic ffi W X ! Yig, the canonical map

F.X/ //
Y
i2I

F.Yi /

is injective.

In (b), the point is that the cone may not be directed, so generically F does
not satisfy the sheaf condition on it. The intuition behind the lemma is that these
(equivalent) conditions hold in the C*-algebra case, and then the image of (3.10)
consists of precisely the pairs of commuting normal elements. In terms of the
interpretation as measurements on a physical system, this image consists of the pairs
of measurements (with values in �) that are jointly measurable.

In the proof, we can start to put the seemingly haphazard lemmas of the previous
subsection to some use.

Proof. Since the cone fp1; p2 W � ��! �g is effective-monic, condition (a) is a
special case of (b).



(Almost) C*-algebras as sheaves with self-action 1095

In the other direction, we first show that for every X; Y 2 CHaus, the canonical
map F.X � Y / ! F.X/ � F.Y / is injective. By Corollary 3.26, the left vertical
arrow in

F.X � Y / //

��

F.X/ � F.Y /

��Y
f WX!�;gWY!�

F.� ��/ //
� Y
f WX!�

F.�/
�
�

� Y
gWY!�

F.�/
�

is injective. Since the lower horizontal arrow is injective by assumption, it follows
that the upper horizontal arrow is also injective. By induction, we then obtain that
F.
Qn
jD1Xj /!

Qn
jD1 F.Xj / is injective for any finite product.

Now let ffig be an arbitrary effective-monic cone on X . By Lemma 3.27,
F satisfies the sheaf condition on the cone consisting of all the finite tuplings
.fi1 ; : : : ; fin/. Hence we have the diagram

F.X/ //

��

Y
i2I

F.Yi /

��Y
n2N

Y
i1;:::;in2I

F

� nY
mD1

Yim

�
//
Y
n2N

Y
i1;:::;in2I

nY
mD1

F.Yim/

where the left vertical arrow is injective due to the sheaf condition, and the lower
horizontal one due to the first part of the proof. Hence also the upper horizontal
arrow is injective.

So far, we do not know of any sheaf CHaus ! Set that would not have the
property characterized by the lemma.

By Gelfand duality, the commutative C*-algebras are precisely the representable
functors CHaus.W;�/ W CHaus ! Set. These are characterized in terms of a
condition similar to the previous lemma:
Lemma 3.41. For F 2 Sh.CHaus/, the following are equivalent:
(a) The canonical map

.F.p1/; F .p2// W F.� ��/ // F.�/ � F.�/

is bijective.
(b) F satisfies the sheaf condition on every effective-monic cone ffi W X ! Yig in

CHaus.
(c) F is representable.
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Proof. By the definition of effective-monic, (c) trivially implies (b). Also if (b) holds,
then it is easy to show (a): the empty cone is effective-monic on 1 2 CHaus, which
impliesF.1/ Š 1. With this in mind, (a) is the sheaf condition on the effective-monic
cone fp1; p2 W � ��! �g.

The burden of the proof is the implication from (a) to (c). By the representable
functor theorem [18, p. 130] and the generation of limits by products and equalizers,
it is enough to show that F preserves products and equalizers, which we do in
several steps. First, the functor � � Y preserves pushouts for any Y 2 CHaus:
the functor � � Y W CGHaus ! CGHaus preserves colimits as a left adjoint [18,
Theorem VII.8.3], and the inclusion functor CHaus ! CGHaus also preserves
finite colimits, since it preserves finite coproducts and coequalizers (the latter by the
automatic compactness of quotients of compact spaces).

Second, we prove that the canonical map F.X � �/ �! F.X/ � F.�/ is a
bijection for every X 2 CHaus. To this end, we consider the effective-monic cone
ff � id� W X �� ! � ��g indexed by f W X ! �. We know that this cone is
directed by Lemmas 3.23 and 3.25. This entails that F.X ��/ is equal to the set of
compatible families fˇf gf WX!� of elements of

Q
f WX!� F.� ��/. Since ���

preserves pushouts as per the first observation, the compatibility condition is the one
associated to the squares of the form

X ��
f �id� //

g�id�
��

� ��

��
� �� // .� q

f �id g�id �/ ��

By using the fact that the maps � q
f �id g�id � �! � separate points, it is sufficient

to postulate the compatibility on all commuting squares of the form

X ��
f �id� //

g�id�
��

� ��
h�id�
��

� ��
k�id�

// � ��

So upon decomposing ˇf D .ˇ1
f
; ˇ2
f
/ via F.� � �/ D F.�/ � F.�/, the

compatibility condition is precisely that F.h/.ˇ1
f
/ D F.k/.ˇ1g/ and that ˇ2

f
D ˇ2g

for all h; k W �! � with hf D kg. Since the family of first components therefore
corresponds precisely to an element of F.X/, we conclude that the canonical map
F.X ��/ �! F.X/ � F.�/ is an isomorphism.

Third, we use this result to show that F.X � Y / �! F.X/ � F.Y / is an
isomorphism for all X; Y 2 CHaus; the proof is the same as above, just with � ��
replaced by � � Y . The case of finite products F.

Qn
iD1Xi / Š

Qn
iD1 F.Xi / then

follows by induction, and the case of infinite products by the sheaf condition.
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The preservation of equalizers also takes a bit of work. Since every
monomorphism f W X ! Y in CHaus is regular, the singleton cone ff g is effective-
monic. Since this cone is trivially directed, F satisfies the sheaf condition on it,
which entails that F.f / W F.X/! F.Y / must be injective.

Second, a diagram

E e // X
f //

g
// Y

is an equalizer if and only if

E
e //

e

��

X

.idX ;f /
��

X
.idX ;g/

// X � Y

is a pullback. By constructing the pushout X qe e X as a quotient of X q X and
doing a case analysis on pairs of points in X qe e X , the induced arrow k in

E
e //

e

��

X

i

�� .idX ;f /

��

X
j
//

.idX ;g/ //

X qe e X

k

&&
X � Y

is seen to be a monomorphism, and therefore so is F.k/. So if ˇ 2 F.X/ is such that
F.f /.ˇ/ D F.g/.ˇ/, then also F.i/.ˇ/ D F.j /.ˇ/. But by the sheaf condition
on the singleton cone feg, this means that ˇ is in the image of F.e/, as was to be
shown.

ForF 2 Sh.CHaus/, anyW 2 CHaus and any ˛ 2 F.W /, letF˛ W CHaus! Set
be the subfunctor of F generated by ˛. Concretely, over every X 2 CHaus, the set
F˛.X/ consists of all the images F.f /.˛/ for f W W ! X .
Proposition 3.42. If the canonical map

F.� ��/ // F.�/ � F.�/ (3.11)

is injective, then such an F˛ is representable.

Proof. It is straightforward to verify that F˛ is also a sheaf. Lemma 3.41 and the
injectivity assumption on F then complete the proof if we can show that every pair of
elements .ˇ1; ˇ2/ 2 F˛.�/�F˛.�/ actually comes from an element of F˛.���/.
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To this end, we write ˇ1DF.f1/.˛/ and ˇ2DF.f2/.˛/ for certain f1; f2 W W !�.
Now considering ˛ transported along the pairing .f1; f2/ W W ! � �� results in
an element of F.� ��/ that reproduces .ˇ1; ˇ2/.

Here is another smallness result:
Proposition 3.43. Sh.CHaus/ is well-powered.

Proof. Let � W F ! G be a monomorphism in Sh.CHaus/. Then upon composing
morphisms of the form �.C.�// �! F with �, the Yoneda lemma (3.9) shows that
the component �� W F.�/! G.�/ is injective, since the diagram

Sh.CHaus/.�.C.�//; F /
Š

(3.9) //

�ı�

��

F.�/

��
��

Sh.CHaus/.�.C.�//; G/
Š

(3.9) // G.�/

commutes.
Again using the sheaf condition on all functions X ! � and the fact that � is

a coseparator in CHaus, we can identify the ˛ 2 F.X/ with the families fˇf g with
ˇf 2 F.�/ that are indexed by f W X ! � and satisfy the compatibility condition
that F.h/.ˇf / D ˇhf for all f and h W �! �. Hence we have the diagram

F.X/ //

�X

��

Y
f WX!�

F.�/

Q
f ��

��

//
//

Y
f WX!�;hW�!�

F.�/

Q
f;h ��

��

G.X/ //
Y

f WX!�

G.�/
//
//

Y
f WX!�;hW�!�

G.�/

in which both rows are equalizers. So for fixed G, the set F.X/ is determined by
the inclusion map �� W F.�/ ! G.�/. Hence the number of subobjects of G is
bounded by 2jG.�/j.

Corollary 3.44. Every sheaf F W CHaus ! Set for which (3.11) is injective is a
(small) colimit in Sh.CHaus/ of representable functors.

Proof. We show thatF is the colimit in Sh.CHaus/ of the subfunctors of the formF˛
fromProposition 3.42, as ordered by inclusion; thanks to Proposition 3.43, this colimit
is equivalent to a small colimit.

To show the required universal property, suppose first that�; �02Sh.CHaus/.F;G/
coincide upon restriction to all F˛ . Then in particular, ��.˛/ D �0

�
.˛/ for all

˛ 2 F.�/, and hence � D �0 by the previous results. Conversely, let f�˛g˛ be a
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family of natural transformations �˛ W F˛ ! G that are compatible in the sense that
if Fˇ � F˛ , then �˛jFˇ D �ˇ . Then define the component �X W F.X/! G.X/ on
every ˛ 2 F.X/ as

�X .˛/ WD �
˛
X .˛/:

The commutativity of the naturality square

F.X/
�X //

F.f /

��

G.X/

G.f /

��
F.Y /

�Y
// G.Y /

on some ˛ 2 F.X/ follows from

G.f /.�˛X .˛// D �
˛
Y .F.f /.˛// D �

F.f /.˛/
Y .F.f /.˛//;

where the first equation is naturality of �˛ and the second one is the assumed
compatibility.

To see that � restricts to �˛ on every F˛ , we show that the components coincide,
i.e. �Y D �˛Y for all Y 2 CHaus and ˇ 2 F˛.Y /. Now we must have ˇ D F.f /.˛/
for suitable f W X ! Y , and consider the diagram

F˛.X/ //

��

F.X/
�X //

F.f /

��

G.X/

G.f /

��
F˛.Y / // F.Y /

�Y
// G.Y /

Starting with ˛ in the upper left, we have �˛X .˛/ in the upper right, and hence

G.f /.�˛X .˛// D �
˛
Y .F.f /.˛// D �

˛
Y .ˇ/

in the lower right, where the first equation is as above. Since we also have ˇ in the
lower left, we obtain the desired �Y .ˇ/ D �˛Y .ˇ/.

In light of the upcoming Theorem 4.5, this result is closely related to [31,
Theorem 5]. The only potential difference is that our colimit is taken in Sh.CHaus/,
while van den Berg and Heunen consider it in pC�alg1, and it is not clear whether
these are equivalent.

Since it is currently unclearwhetherDefinition 3.36 is themost adequate collection
of sheaf conditions that one can postulate, we do not investigate the categorical
properties of Sh.CHaus/ any further in this paper.
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4. Piecewise C*-algebras as sheaves CHaus ! Set

In this section, we will establish that Sh.CHaus/ contains the category of piecewise
C*-algebras introduced by van den Berg and Heunen [31] as a full subcategory. The
following definition was inspired by Kochen and Specker’s consideration of partial
algebras [15].3

Definition 4.1 ([31]). A piecewise C*-algebra is a setA equipped with the following
pieces of structure:

(a) a reflexive and symmetric relation y � A � A. If ˛yˇ, we say that ˛ and ˇ
commute;

(b) binary operationsC; � W y! A;

(c) a scalar multiplication � W C � A! A;

(d) distinguished elements 0; 1 2 A;

(e) an involution � W A! A;

(f) a norm jj � jj W A! R;

such that every subset C � A of pairwise commuting elements is contained in some
subset NC � A of pairwise commuting elements which is a commutative C*-algebra
with respect to the data above.

The piecewise C*-algebras in which the relation y is total are precisely the
commutative C*-algebras C.X/. Our choice of the symbol “y” is explained by the
special case of rank one projections, which commute if and only if they are either
orthogonal (?) or parallel (k).

Definition 4.2 ([31]). Given piecewise C �-algebras A and B , a piecewise �-homo-
morphism is a function � W A! B such that

(a) If ˛yˇ in A, then

�.˛/y �.ˇ/; �.˛ˇ/ D �.˛/�.ˇ/; �.˛ C ˇ/ D �.˛/C �.ˇ/: (4.1)

(b) �.z˛/ D z�.˛/ for all a 2 A and z 2 C,

(c) �.˛�/ D �.˛/� for all ˛ 2 A.

(d) �.1/ D 1.

Example 4.3. It is well known that there is no �-homomorphismMn ! C for n � 2.
The Kochen–Specker theorem [15] states that for n � 3, there does not even exist a
piecewise �-homomorphismMn ! C.

3For this reason van den Berg and Heunen introduced their definition as partial C*-algebras, but the
term was subsequently changed to piecewise C*-algebra [12].
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So piecewise C �-algebras and piecewise �-homomorphisms form a category
pC�alg1. Still following [31], there is a forgetful functor C.�/ W C�alg1 ! pC�alg1
sending every C*-algebra A to its normal part,

C.A/ D f ˛ 2 A j ˛˛� D ˛�˛ g: (4.2)

This set forms a piecewise C*-algebra by postulating that ˛yˇ holds whenever ˛
and ˇ commute. C.�/ is easily seen to be a faithful functor that reflects
isomorphisms. In the language of property, structure and stuff [21], this means
that it forgets at most structure. So we may think of a C*-algebra as a piecewise
C*-algebra together with additional structure, namely the specifications of sums and
products of noncommuting elements.
Example 4.4. For A;B 2 C�alg1, any Jordan homomorphism R.A/ ! R.B/
extends linearly to a piecewise �-homomorphism C.A/ ! C.B/. For example,
the transposition map �T W Mn ! Mn yields a piecewise �-homomorphism
C.Mn/! C.Mn/.

The discussion of Section 2 extends canonically to piecewise C*-algebras. To wit,
Gelfand duality still implements an equivalence of CHausop with a full subcategory
of pC�alg1, so that for every A 2 pC�alg1 we can restrict the hom-functor

pC�alg1.�; A/ W pC�algop1 ! Set

to a functor CHaus ! Set, which maps X 2 CHaus to the set of piecewise �-
homomorphisms C.X/ ! A. For A 2 C�alg1, this results precisely in the functor
CHaus! Set that we already know from Section 2, since then pC�alg1.C.X/; A/ D
C�alg1.C.X/; A/. In other words, we have a diagram of functors

C�alg1

C.�/ %%

// SetCHaus

pC�alg1

99

In fact, the proof of Proposition 3.20 still goes through for piecewise C*-algebras.
Hence the functor pC�alg1 ! SetCHaus actually lands in the full subcategory
Sh.CHaus/ as well, and the commutative triangle of functors can be taken to be

C�alg1

C.�/ %%

// Sh.CHaus/

pC�alg1

88

We now investigate the functor on the right a bit further, finding that it is close to
being an equivalence. In the following, we use the unit disk  � C. Since it is
homeomorphic to the unit square � that we have been working with until now, all
previous statements apply likewise with � replaced by.



1102 C. Flori and T. Fritz

Theorem 4.5. The functor pC�alg1 �! Sh.CHaus/ is fully faithful, with essential
image given by all those F 2 Sh.CHaus/ for which the canonical map

F.�/ // F./ � F./ (4.3)

is injective.
So this functor forgets at most property, namely the property of injectivity of (4.3)

as investigated in Lemma 3.40. This property is equivalent to F being separated (in
the presheaf sense) on the effective-monic cones. It seems natural to suspect that not
every sheaf on CHaus is separated in this sense, but this remains open. So it is also
conceivable that pC�alg1 ! Sh.CHaus/ actually is an equivalence of categories.

In particular, this shows that cC�alg1 is dense in pC�alg1, i.e. that the canonical
functor pC�alg1 ! SetcC�algop

1 is fully faithful. For a potentially related result of a
similar flavour, see [27, Corollary 8].

Proof. A piecewise �-homomorphism � W A ! B is determined by its action on
the unit ball, which is the set of elements with spectrum in . In particular, � is
uniquely determined by the associated transformation �.�/ W �.A/! �.B/, so that
the functor under consideration is faithful.

Concerning fullness, let � W �.A/ ! �.B/ be a natural transformation. Its
component at is a map � W .A/!.B/. The pairs of commuting elements
˛; ˇ 2 .A/ are precisely those that are in the image of the canonical map

.�/.A/ �!.A/ �.A/;

and hence the requirements (4.1) follow from naturality and the consideration of
functions like (2.5) and (2.7). The other axioms are likewise simple consequences
of naturality. This exhibits a piecewise �-homomorphism � W A ! B such that �
coincides with.�/. Then by Lemma 3.37, we have � D �.�/.

Finally, we show that every F 2 Sh.CHaus/ for which (4.3) is injective is
isomorphic to �.A/ for some A 2 pC�alg1. Concretely, we construct a piecewise
C*-algebra A by first defining its unit ball to be

.A/ WD F./:

This set comes equipped with a commutation relation: ˛yˇ is declared to hold for
˛; ˇ 2 A precisely when .˛; ˇ/ is in the image of (4.3). In this case, we can define the
sum ˛Cˇ and the product ˛ˇ using the functoriality on maps such as (2.5) and (2.7).
Likewise there is a scalar multiplication by numbers z 2  and an involution arising
from functoriality on the complex conjugation map!.

Now definingA to consist of pairs .˛; z/ 2 F./�R>0, modulo the equivalence
.˛; z/ � .sa; sz/ for all s 2 .0; 1/, results in a piecewise C*-algebra: the relevant
structure of Definition 4.1 extends canonically from.A/ to all of A, and we also



(Almost) C*-algebras as sheaves with self-action 1103

claim that any set figi2I � .A/ of pairwise commuting elements is contained in
a commutative C*-subalgebra. We write this family as a single element of the I -fold
product,

 2 F./I :

The cone f.pi ; pj / W I !�gi;j2I consisting of all pairings of projections
pi W 

I !  is effective-monic and directed. By the commutativity assumption
on  , the pair .i ; j / 2 F./�F./ comes from an element ofF.�/. Hence
by the sheaf condition,  is actually the image of an element  0 2 F

�
I

�
under the

canonical map. The subfunctor F 0 � F , as in Proposition 3.42, is representable. It
corresponds to the commutative C*-subalgebra generated by the i .

The following criterion, due to Heunen and Reyes, describes the image of the
functor C.�/ W C�alg1 ! pC�alg1 at the level of morphisms.
Lemma4.6 ([12, Proposition 4.13]). ForA;B 2 C�alg1, a piecewise�-homomorph-
ism � W C.A/ ! C.B/ extends to a �-homomorphism A ! B if and only if it is
additive on self-adjoints and multiplicative on unitaries.

By faithfulness of C�alg1 ! pC�alg1, we already know such an extension to be
unique if it exists.

Proof. The “only if” part is clear, so we focus on the “if” direction. Every element
of A is of the form a C ib for a; b 2 R.A/, and linearity forces us to define the
candidate extension of f by

O�.aC ib/ WD �.a/C i�.b/:

In this way, O� becomes linear due to the first assumption, and is evidently involutive
and unital. On a unitary �, we have O�.�/ D �.�/, since

O�.�/ D O�

�
� C ��

2
C i

� � ��

2

�
D
1

2
�.� C ��/C

1

2
�.� � ��/

D
1

2
�.�/C

1

2
�.��/C

1

2
�.�/ �

1

2
�.��/ D �.�/;

where the third step uses � y ��.
We finish the proof by arguing that O� is multiplicative on two arbitrary elements

˛; ˇ 2 Œ�1;C1�.A/, which is enough to prove multiplicativity generally, and hence
to show that O� is indeed a �-homomorphism. By functional calculus, we can find
unitaries �; � 2 T .A/ such that ˛ D � C �� and ˇ D � C ��. Then

O�.˛ˇ/ D O�
�
.� C ��/.� C ��/

�
D O�

�
�� C ��� C ��� C ����

�
D O�.��/C O�.���/C O�.���/C O�.����/

D �.��/C �.���/C �.���/C �.����/
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D �.�/�.�/C �.�/�.��/C �.��/�.�/C �.��/�.��/

D .�.�/C �.��//.�.�/C �.��//

D . O�.�/C O�.��//. O�.�/C O�.��//

D O�.� C ��/ O�.� C ��/ D O�.˛/ O�.ˇ/;

where we have used that O� coincides with � on unitaries (third and sixth line) and the
assumption of multiplicativity on unitaries (fourth line).

In fact, this result can be improved upon:
Proposition 4.7. A piecewise �-homomorphism � W C.A/ ! C.B/ extends to a
�-homomorphism A! B if and only if it is multiplicative on unitaries.

Proof. By the lemma, it is enough to prove that such a � is additive on self-adjoints.
We use the following fact, which follows from the exponential series: for every

˛; ˇ 2 R.A/ and real parameter t 2 R, the unitary

eit.˛Cˇ/e�it˛e�itˇ

differs from 1 by at mostO.t2/ as t ! 0. Since � preserves the spectrum of unitaries,
we conclude that also

�
�
eit.˛Cˇ/e�it˛e�itˇ

�
D eit�.˛Cˇ/e�it�.˛/e�it�.ˇ/

is a unitary that differs from 1 by at most O.t2/. By the same argument as above,
this implies �.˛ C ˇ/ D �.˛/C �.ˇ/, as was to be shown.

As the proof shows, we actually only need multiplicativity on products of
exponentials, i.e. on the connected component of the identity 1 2 T .A/. Also,
the method of proof suggests a relation to the Baker–Campbell–Hausdorff formula,
which may be worth exploring further.

Finally, it is worth noting that a piecewise �-homomorphism � W C.A/! C.B/
is additive on self-adjoints if and only if it is a Jordan homomorphism: the condition
�.˛2/ D �.˛/2 for ˛ 2 R.A/ is automatic since � preserves functional calculus.

Let us end this section by stating its main open problem:
Problem 4.8. Is the functor pC�alg1 ! Sh.CHaus/ an equivalence of categories,
i.e. does every sheaf on CHaus satisfy the injectivity condition of Lemma 3.40?

5. Almost C*-algebras as piecewise C*-algebras with self-action

What we have learnt so far is that considering a C*-algebra A as a sheaf
�.A/ W CHaus ! Set, or equivalently as a piecewise C*-algebra, recovers the
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entire “commutative part” of the C*-algebra structure ofA. Nevertheless, the functor
C�alg1 ! pC�alg1 is not full, which indicates that part of the relevant structure is lost:
for example, a C*-algebra A is in general not isomorphic to Aop [22], although the
two are canonically isomorphic as piecewise C*-algebras. This raises the question:
which natural piece of additional structure on a sheaf CHaus ! Set or piecewise
C*-algebra would let us recover the missing information?

Of course, what kind of additional structure counts as “natural” is a subjective
matter. But again, we can take inspiration from quantum physics: which additional
structure would have a clear physical interpretation? Our following proposal is based
on a central feature of quantum mechanics: observables generate dynamics, in the
sense that to every observable (self-adjoint operator) ˛ 2 R.A/, one associates the
one-parameter group of inner automorphisms given by

R � A �! A; .t; ˇ/ 7�! ei˛tˇe�i˛t : (5.1)

For example, if˛ is energy, then the resulting one-parameter family of automorphisms
is given precisely by time translations, i.e. by the inherent dynamics of the system
under consideration. If ˛ is a component of angular momentum, then the resulting
family of automorphisms are the rotations around that axis. As is obvious from (5.1),
this natural way in which A acts on itself by inner automorphisms is a purely
noncommutative feature, in that it becomes trivial in the commutative case.

More formally, the construction of (5.1) really consists of two parts: first, for
every t 2 R, one forms the unitary � WD e�i˛t ; since this is functional calculus,
it is captured by the functoriality CHaus ! Set. Second, one lets � act on A via
conjugation, as ˇ 7! ��ˇ�. This part is not captured by what we have discussed so
far, and hence we axiomatize it as an additional piece of structure. Our definition
is similar in spirit to the “active lattices” of Heunen and Reyes [12] and also seems
related to [1, Section VI].
Definition 5.1. An almost C*-algebra is a pair .A; a/ consisting of a piecewise
C*-algebra A 2 pC�alg1 and a self-action of A, which is a map

a W T .A/ �! pC�alg1.A;A/

assigning to every unitary � 2 T .A/ a piecewise automorphism a.�/ W A! A such
that
F � commutes with � 2 T .A/ if and only if a.�/.�/ D � ;
F in this case, a.��/ D a.�/a.�/.

So a must satisfy two equations on commuting unitaries. The first equation
implies that a commutative C*-algebra, considered as a piecewise C*-algebra, can
act on itself only trivially; and conversely, if the self-action is trivial in the sense that
every a.�/ is the identity, then Amust be commutative. The second equation implies
that if � and � commute, then also their actions commute:

a.�/a.�/ D a.��/ D a.��/ D a.�/a.�/:
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While introducing a self-action a W T .A/ �! pC�alg1.A;A/ can be physically
motivated by the above discussion; we expect the appearance of T to be related to
Pontryagin duality. The physical interpretation of the first axiom could be related to
Noether’s theorem.

Almost C*-algebras form a category denoted aC�alg1 as follows:
Definition 5.2. An almost �-homomorphism � W .A; a/ ! .B; b/ is a piecewise
�-homomorphism � W A! B which preserves the self-actions in the sense that

b.�.�//.�.˛// D �.a.�/.˛//: (5.2)

The forgetful functor C�alg1 ! pC�alg1 factors through aC�alg1 by associating
to every C*-algebra A and unitary � 2 T .A/ its conjugation action,

a.�/.˛/ WD ��˛�:

Every �-homomorphism � W A ! B is compatible with the resulting self-actions:
the condition (5.2) becomes simply

�.�/��.˛/�.�/ D �.��˛�/: (5.3)

Ourmain question iswhether the additional structure of a self-action that is present
in an almost C*-algebras is sufficient to recover the entire C*-algebra structure:
Problem 5.3. Is the forgetful functor C�alg1 ! aC�alg1 an equivalence of
categories?

In order for this to be the case, one would have to show that the functor is both fully
faithful and essentially surjective. While the latter question is wide open, it is clear
that the functor is faithful, since already the forgetful functor C�alg1 ! pC�alg1 is.
We can also prove fullness in a W*-algebra setting:
Theorem 5.4. C�alg1 ! aC�alg1 is fully faithful on morphisms out of any W*-
algebra.

This result is similar to [12, Theorem 4.11], but does not directly follow from it4.

Proof. We need to show surjectivity, i.e. if � W C.A/ ! C.B/ for a W*-algebra A
is a piecewise �-homomorphism which satisfies (5.3), then � extends to a
�-homomorphism A ! B . Let us first consider the case that A contains no direct
summand of type I2. Then for every state � W B ! C, the map

˛ C iˇ 7�! �.�.˛/C i�.ˇ// (5.4)

4This is because the notion of “active lattice” of [12] includes a group that acts on the lattice, and a
morphism of active lattices in particular is assumed to be a homomorphism of the corresponding groups.
If we assumed something analogous in our definition of almost C*-algebra, the fullness of the forgetful
functor would simply follow from Proposition 4.7.
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for ˛; ˇ 2 R.A/ is a quasi-linear functional onA in the sense of [8, Definition 5.2.5],
and therefore is uniquely determined by its values on the projections 2.A/ [8,
Proposition 5.2.6]. On the other hand, by the generalized Gleason theorem [8,
Theorem 5.2.4], this map 2.A/ ! R uniquely extends to a state A ! R. In
conclusion, composition with � takes states on B to states on A, and hence
R.�/ W R.A/! R.B/ is linear.

On R.A/, we furthermore have �.˛2/ D �.˛/2, which makes � into a Jordan
homomorphism. By a deep result of Størmer [28, Theorem 3.3], this means that
there exists a projection � 2 2.B/, commuting with the range of �, such that
˛ 7! ��.˛/ uniquely extends to a (generally nonunital) �-homomorphism, and
similarly ˛ 7! .1 � �/�.˛/ uniquely extends to a (generally nonunital) �-anti-
homomorphism. In other words, � decomposes into the sum of the restriction (to
normal elements) of a �-homomorphism and a �-anti-homomorphism. So far, we
have only made use of the assumption that � is a piecewise �-homomorphism.

Hence in order to complete the proof in the case of A without type I2 summand,
working with the corner .1� �/A.1� �/ in place of A itself shows that it is enough
to consider the case � D 0, i.e. that � is the restriction of a �-anti-homomorphism.
In particular,

�.�/��.˛/�.�/
(5.3)
D �.��˛�/ D �.�/�.˛/�.�/�;

and therefore �.˛/�.�2/ D �.�2/�.˛/ for all � 2 T .A/ and ˛ 2 C.A/. Since
every exponential unitary eiˇ is the square of another unitary, we know that �.˛/
commutes with every exponential unitary. Since every element of A is a linear
combination of exponential unitaries, we conclude that �.˛/ commutes with �.ˇ/ for
every ˇ 2 C.A/. Hence the range of � is commutative. In particular, � is also the
restriction of a �-homomorphism, which completes the proof in the present case.

Now consider the case of an almost �-homomorphism � W C.M2/! C.B/. Due
to the isomorphism M2 Š Cl.R2/ ˝ C with a complexified Clifford algebra, M2

is freely generated as a C*-algebra by two self-adjoints �x and �y subject to the
relations

�2x D �
2
y D 1; �x�y C �y�x D 0:

Since � commutes with functional calculus, the first two equations are clearly
preserved by � in the sense that �.�x/2 D �.�y/

2 D 1. Concerning the third
equation, we know

��.�x/ D �.��x/ D �.�y�x�y/
(5.3)
D �.�y/�.�x/�.�y/:

Hence �.�x/�.�y/C�.�y/�.�x/ D 0 due to �.�y/2 D 1. Therefore the values �.�x/
and �.�y/ extend uniquely to a �-homomorphism O� W M2 ! B; the problem is to
show that this coincides with the original � on normal elements. Since any symmetry
� 2 f�1;C1g.M2/ is conjugate to �x , we certainly have O�.�/ D �.�/ by (5.3) and
the assumption O�.�x/ D �.�x/. But because in the special case ofM2, every normal
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element can be obtained from a symmetry by functional calculus, and both � and O�
preserve functional calculus, this is sufficient to show that O� D � on normal elements.
This finishes off the case A DM2.

A general W*-algebra of type I2 is of the formA Š L1.�;�;M2/ for a suitable
measure space .�;�/. Let � W C.A/! C.B/ be an almost �-homomorphism. We
first show that � uniquely extends to a bounded �-homomorphism on the �-subalgebra
of simple functions. For a measurable set � � �, let �� W � ! f0; 1g be the
associated indicator function. For nonempty � , the algebra elements of the form ˛��
for ˛ 2 M2 form a C*-subalgebra isomorphic to M2 itself (with different unit).
By the previous, we know that � uniquely extends to a �-homomorphism on this
subalgebra. Furthermore, � behaves as expected on a simple function

Pn
iD1 ˛i��i :

assuming that the �i ’s form a partition of �, we have ˛i��i � ˛j��j D 0 for i ¤ j ,
and hence � is additive on the sum, which implies

�

� nX
iD1

˛i��i

�
D

nX
iD1

�.˛i /�.��i /: (5.5)

We show that � is linear on the sum of two self-adjoint simple functions. By choosing
a common refinement, it is enough to consider the case that the two partitions are the
same. But then additivity follows from (5.5) and additivity onM2. Multiplicativity
on unitary simple functions is analogous. Since the proof of Lemma 4.6 still goes
through in the present situation (where the �-algebra of simple functions is generally
not a C*-algebra), we conclude that � extends uniquely to a �-homomorphism on the
simple functions. By construction, this �-homomorphism is bounded. Therefore it
uniquely extends to a �-homomorphism O� W A ! B which coincides with � on the
normal simple functions. It remains to be shown that O�.˛/ D �.˛/ for all ˛ 2 C.A/.

To obtain this for a given ˛ 2 C.A/, we distinguish those points x 2 � for
which ˛.x/ is degenerate from those for which it is not. Since degeneracy is detected
by the vanishing of the discriminant tr2 � 4 det, the relevant set is

� WD f x 2 � j tr.˛.x//2 � 4 det.˛.x// D 0 g:

This set is measurable since both trace and determinant are measurable functions
M2 ! C. For every x 2 � n �, there is a unique unitary �.x/ 2 T .M2/

such that �.x/�˛.x/�.x/ is diagonal. Since the eigenbasis of a nondegenerate
self-adjoint matrix depends continuously on the matrix, it follows that the function
x 7! �.x/ is also measurable. By arbitrarily choosing �.x/ WD 1 on x 2 �, we have
constructed a unitary � 2 T .L1.�;�;M2// such that ��˛� is pointwise diagonal.
Thanks to (5.3), it is therefore sufficient to prove the desired identity O�.˛/ D �.˛/

on diagonal ˛ only. But since these diagonal elements generate a commutative
C*-subalgebra, which contains a dense �-subalgebra of simple functions on which O�
and � are known to coincide, we are done because both O� and � are �-homomorphisms
on this commutative subalgebra.
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Now a general W*-algebra A is a direct sum of a W*-algebra without I2
summand and one that is of type I2 [30, Theorems 1.19 & 1.31]. Again by
considering corners, it is straightforward to check that if the fullness property holds
on almost �-homomorphisms out of A;B 2 C�alg1, then it also holds on almost
�-homomorphisms out of A˚ B .

In general, the problem of fullness is related to the cohomology of the unitary
group T .A/ as follows. Let � W C.A/ ! C.B/ be an almost �-homomorphism
between C*-algebras. We can assume without loss of generality that im.�/
generates B as a C*-algebra. For unitaries �; � 2 T .A/ and any ˛ 2 .A/,
we have

�.˛/ D �
�
����.��/˛.��/���

�
(5.3)
D �.�/��.�/��.��/�.˛/�.��/��.�/�.�/

D
�
�.��/��.�/�.�/

��
�.˛/

�
�.��/��.�/�.�/

�
Hence the unitary �.��/��.�/�.�/ commutes with �.˛/. By the assumption that
im.�/ generates B , this means that there exists c.�; �/ in the centre of T .B/ such
that

�.��/ D c.�; �/�.�/�.�/:

As in the theory of projective representations of groups, we can use this relation to
evaluate � on a product of three unitaries �; �; � 2 T .A/, resulting in

c.��; �/c.�; �/�.�/�.�/�.�/ D �.���/ D c.�; ��/c.�; �/�.�/�.�/�.�/:

This establishes the cocycle equation

c.�; �/c.��; �/�c.�; ��/c.�; �/� D 1;

showing that c is a 2-cocycle on T .A/ with values in the centre of T .B/, which is
equal to the unitary group of the centre ofB . Unfortunately, we do not know whether
this can be used to show that T .�/ W T .A/ ! T .B/ is a group homomorphism,
which would be enough to prove fullness in general by Proposition 4.7.

Let us now restate the remaining part of Problem 5.3:
Problem 5.5. Is the functor C�alg1 ! aC�alg1 full in general? If so, could it even
be essentially surjective?

6. Groups as piecewise groups with self-action

In order to get a better intuition for the relation between C*-algebras and
almost C*-algebras, it is instructive to perform analogous considerations for other
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mathematical structures. In this section, we investigate the case of groups, which
may also be of interest in its own right.

By analogy with piecewise C*-algebras, we have:
Definition 6.1 ([12]). A piecewise group is a set G equipped with the following
pieces of structure:
(a) a reflexive and symmetric relation y � G � G. If x yy, we say that x and y

commute;
(b) a binary operation � W y! G;
(c) a distinguished element 1 2 G;
such that every subset C � G of pairwise commuting elements is contained in some
subset NC � G of pairwise commuting elements which is an abelian group with
respect to the data above.

Abelian groups are precisely those piecewise groups for which the commutativity
relation y is total. Piecewise groups form a category pGrp in the obvious way:
Definition 6.2. Given piecewise groupsG andH , a piecewise group homomorphism
is a function � W G ! H such that if gy h in G, then

�.g/y �.h/; �.gh/ D �.g/�.h/: (6.1)

It is straightforward to show that a piecewise group homomorphism satisfies
�.1/ D 1.

Considering every group as a piecewise group results in a forgetful functor
Grp ! pGrp, which is faithful and reflects isomorphisms. Since it is not full
(taking inverses g 7! g�1 is a piecewise group homomorphism for every G, but a
group homomorphism only ifG is abelian), this functor forgets some of the structure
that groups have. By analogy with Definition 5.1, we try to recover this structure by
equipping a piecewise group with a notion of inner automorphisms:
Definition 6.3. An almost group is a pair .G; a/ consisting of G 2 pGrp and a
self-action on G, which is a map

a W G �! pGrp.G;G/

assigning to every element g 2 G a piecewise automorphism a.g/ W G ! G such
that
F g commutes with h if and only if a.g/.h/ D h;
F in this case, a.gh/ D a.g/a.h/.

Almost groups form a category denoted aGrp as follows:
Definition 6.4. An almost group homomorphism � W .G; a/! .H; ˇ/ is a piecewise
group homomorphism � W A! B such that

a.�.g//.�.h// D �.a.g/.h//: (6.2)



(Almost) C*-algebras as sheaves with self-action 1111

The forgetful functor Grp ! pGrp factors through aGrp by associating to every
group G and element g 2 G the conjugation action,

a.g/.h/ WD g�1hg:

Every group homomorphism � W G ! H respects the resulting self-actions: the
condition (5.2) becomes simply

�.g/�1�.h/�.g/ D �.g�1hg/: (6.3)

One can ask whether this forgetful functor Grp ! aGrp is an equivalence of
categories. In contrast to the discussion of Section 5, and in particular Theorem 5.4,
here we know the answer to be negative:
Theorem 6.5. The forgetful functor Grp! aGrp is not full.

So in general, going from a group to an almost group still constitutes a loss of
structure.

Proof. We provide an explicit example of an almost group homomorphism between
groups that is not a group homomorphism.

Let F2 be the free group on two generators a and b. For any word w 2 F2, let Ow
be the cyclically reduced word associated to w. Then consider the map � W F2 ! Z
defined as �.w/ being the number of times that the generator a directly precedes
the generator b in Ow, minus the number of times that the generator b�1 directly
precedes the generator a�1 in Ow. By construction, this is invariant under conjugation
and therefore satisfies (6.3). If v;w 2 F2 commute, then they must be of the form
v D um and w D un for some u 2 F2 and m; n 2 Z [17, Proposition 2.17].
Hence to verify that � is a piecewise group homomorphism, it is enough to show that
�.uk/ D �.u/k for all k 2 Z. This is the case because we have Ouk D Ouk at the level
of reduced cyclic words.

On the other hand, � is not a group homomorphism since �.a/ D �.b/ D 0, while
�.ab/ D 1.

As the second half of the proof indicates, part of the problem is that a free group
has very few commuting elements. One can hope that the situation will be better for
finite groups:
Problem 6.6. Is the restriction of the functor Grp! aGrp from finite groups to finite
almost groups an equivalence of categories?
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