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Abstract.This paper is motivated by the question of howmotivic Donaldson–Thomas invariants
behave in families. We compute the invariants for some simple families of noncommutative
Calabi–Yau threefolds, defined by quivers with homogeneous potentials. These families give
deformation quantizations of affine three-space, the resolved conifold, and the resolution of the
transversal An-singularity. It turns out that their invariants are generically constant, but jump at
special values of the deformation parameter, such as roots of unity. The corresponding generating
series are written in closed form, as plethystic exponentials of simple rational functions. While
our results are limited by the standard dimensional reduction techniques that we employ, they
nevertheless allow us to conjecture formulae for more interesting cases, such as the elliptic
Sklyanin algebras.
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1. Introduction

Donaldson–Thomas (DT) invariants were introduced by Donaldson and Thomas
in [19,34] to give a numerical count of sheaves on three-dimensional projective
Calabi–Yau varieties. One of the fundamental results of [34] was the statement that
these integer quantities are indeed invariants, in the sense that they are unchanged
when the underlying Calabi–Yau threefold moves in a connected projective family.
It was later realized that DT-like invariants can be defined by counting objects in
more general 3-Calabi–Yau categories, such as categories defined by a quiver with
potential [33]. In a different direction, building on work of Behrend [5], DT-like
invariants taking values in more general rings and not just in Z, such as rings of
(naive) motives [6,25], were defined.

In this paper, we are interested in howmotivic DT invariants behave in families. In
the projective case, this problem seems difficult to study, since it is hard to compute
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motivic DT invariants of projective Calabi–Yau varieties in all but a handful of
cases. Here, we instead study deformation properties of motivic DT invariants for
some families of noncommutative Calabi–Yau threefolds, defined by quivers with
homogeneous potentials. The motivic invariants we look at are attached to moduli
spaces of finite-dimensional representations of the Jacobian algebra associated to
the quiver with potential; this should be seen as the noncommutative analogue of
studying moduli of finite sets of points on commutative threefolds. Moduli spaces of
homogeneous potentials were studied recently in [32] in a specific example, where
the question of the behaviour of motivic DT invariants was also raised. We can
regard a family of graded deformations of a homogeneous potential as an analogue
of a projective family in the local noncommutative situation.

The results we are reporting on here are rather limited. In particular, we do not
introduce any new techniques for computing DT invariants in this paper; rather we
use the dimensional reduction technique already used in [6], and systematized in [28],
to see what we can learn about the structure of the invariants and their deformation
properties. Thus, the cases in which we have been able to compute the generating
series for the motivic DT invariants are the cases in which the potential is linear with
respect to one of the generators of the algebra.

We explore only the simplest deformations of potentials for some well-studied
quivers of geometric origin: the three-loop quiver underlying the Hilbert scheme of
points on threefolds; the conifold quiver; and, generalizing the first, the cyclic quiver
with loops. In the case of undeformed potentials, corresponding to commutative
Calabi–Yau threefolds, the motivic invariants in these examples were computed
in [6,29] and [9,28], respectively. We study some simple perturbations of these
potentials, corresponding to certain deformation quantizations of the commutative
threefolds, and compute or conjecture the corresponding motivic DT invariants. One
reason for focusing on the three-loop quiver, in particular, is that such homogeneous
deformations of the potential correspond to marginal deformations of N D 4 super
Yang–Mills theory [7]; our formulae therefore correspond to refined BPS counts for
these deformed theories [18].

ThemotivicDT invariants for our families are certainly not deformation-invariant.
However, we find that they behave in rather well-controlled ways, having constant
generic value, but jumping at special values1 of parameters (such as roots of unity)
for which the quantized algebras become finite modules over their centres. At
least for our simple quivers, the generating series of motivic DT invariants have a
surprisingly simple form: they are motivic “Exponentials” of rather simple rational
functions of the vertex variables. The fact that generating functions of DT invariants
are Exponentials is now well known and underlies rationality (also known as BPS)
conjectures and theorems [23,25]. However, the fact that inside the Exponential we

1This jumping behavior was also observed in a very recently proposed formula [24] for refined
invariants of the product Calabi–Yau threefoldE � S , whereE is an elliptic curve and S a K3 surface.
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often have simple rational functions seems not to have been observed before in this
generality.

The rational functions, including their coefficients, appear to be governed by
simple finite-dimensional representations of the corresponding Jacobi algebra. In the
case of the three-loop quiver, based on our results (Theorems 3.1–3.2) we are able to
articulate a somewhat more precise conjectural formula (3.5), and use it to predict
the answer in some cases which we cannot access via dimensional reduction — the
homogenized Weyl algebra and the elliptic Sklyanin algebras (Conjectures 3.3–3.4).
In multi-vertex cases, our results (Theorems 3.5–3.6) do not lead to any precise
conjecture. Nevertheless, the coefficients in the rational functions still have intriguing
geometric interpretations: they seem to correspond to the degeneracy loci of the
Poisson structures that are quantized in order to produce the given families of
noncommutative algebras. We thus uncover an intriguing landscape, which we
leave for further study.

In a recent paper [26], Le Bruyn has introduced a new technique to compute
motivic Donaldson–Thomas invariants of Jacobi algebras associated to homogeneous
potentials inductively via computing motives of Brauer–Severi schemes of Cayley-
smooth algebras. His computation of the degree-two invariant of the homogeneous
Weyl algebra agrees with the prediction of our conjecture.

The paper is organized as follows. In Section 2, we give a brief review of the
necessary preliminaries about quiver representations; the ring of motivic classes; and
the definition of motivic DT invariants and their generating series. In Section 3,
we summarize our computations and conjectures for the generating series in the
examples of interest, and we discuss their geometric interpretations. We finish in
Section 4 with the proofs.

Acknowledgements. A.C. and B.Sz. were supported by EPSRC Programme Grant
EP/I033343/1 during the preparation of this paper, and B.P. was supported by EPSRC
Grant EP/K033654/1. A.C. is funded by a Claude Leon Foundation Postdoctoral
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correspondence with Ivan Cheltsov, Ben Davison, Tommaso de Fernex, Kevin De
Laet, Dominic Joyce, Toby Stafford and Chelsea Walton. We also thank Lieven Le
Bruyn for his interest in our work and extensive correspondence.

2. Preliminaries

2.1. Quivers and their representations. Let Q be a finite quiver, with vertex set
V.Q/ and arrow set E.Q/. For an arrow a 2 E.Q/, denote by s.a/ 2 V.Q/,
respectively t .a/ 2 V.Q/, the vertex at which a starts, respectively ends. The
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Euler–Ringel form � on ZV.Q/ is

�.˛; ˇ/ D
X

i2V.Q/

˛iˇi �
X

a2E.Q/

˛s.a/ˇt.a/; ˛; ˇ 2 ZV.Q/:

Given a Q-representation M , its dimension vector dimM 2 NV.Q/ is defined by
dimM D .dimMi /i2V.Q/.

Let ˛ 2 NV.Q/ be a dimension vector and let Vi D C˛i , i 2 V.Q/. Let

R.Q; ˛/ D
M

a2E.Q/

Hom.Vs.a/; Vt.a//

and
G˛ D

Y
i2V.Q/

GL.Vi /:

Then G˛ naturally acts on R.Q; ˛/, and the quotient stack

M.Q; ˛/ D ŒR.Q; ˛/=G˛�

gives the moduli stack of representations ofQ with dimension vector ˛.
Let W be a potential on Q, a finite linear combination of cyclic paths in Q.

Denote by JQ;W the Jacobian algebra, the quotient of the path algebra CQ by the
two-sided ideal generated by formal partial derivatives of the potential W . Let

f˛ W R.Q; ˛/! C

be the G˛-invariant function defined by taking the trace of the map associated to the
potential W . A point in the critical locus crit.f˛/ corresponds to a JQ;W -module.
The quotient stack

M.JQ;W ; ˛/ D
�
crit.f˛/=G˛

�
gives the moduli stack of JQ;W -modules with dimension vector ˛.

2.2. The ring of motivic classes. LetK O�.VarC/ be the ring of isomorphism classes
of reduced varieties over C, equipped with a good action of a finite group of roots
of unity, respecting the scissor relation and the relation ŒAn; �k� D ŒAn� for a linear
representation of the group �k on affine space An, as in [27]. Here �k denotes the
group of kth roots of unity.

Let L D ŒA1� 2 K O�.VarC/ be the class of the affine line with trivial action. Then
it is known that L admits a square root L

1
2 2 K O�.VarC/. We work in the motivic

ring
M D

�
K O�.VarC/=Ann.L/

�
ŒL�

1
2 ; .1 � Ln/�1 W n � 1�;

where Ann.L/ denotes the annihilator [8] of L in K O�.VarC/. We have the Euler
characteristic specialization defined on classes of varieties by ŒX� 7! �.X/ (with or
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without compact support, which agree), and L
1
2 7! �1; this is of course well-defined

only on a subset of elements of M which we call motives without denominators.
For a regular function f W X ! C on a smooth variety X , Denef and Loeser

[17,27] define the motivic nearby cycle Œ f � 2 M and the motivic vanishing cycle
Œ'f � D Œ f � � Œf

�1.0/� 2 M of f (at the value 0 2 C, the only case that will be
relevant to us since all our functions f will be homogeneous). For f D 0, we have
Œ'0� D �ŒX�. Given a global critical locus Z D fdf D 0g � X for f W X ! C on
a smooth complex variety X , define the virtual motive of Z by

ŒZ�vir D �.�L
1
2 /� dimX Œ'f � 2M: (2.1)

Thus for a smooth variety X with f D 0, we have

ŒX�vir D .�L
1
2 /� dimX

� ŒX�:

The ring M is a so-called pre-�-ring, with operations �n W M ! M for n � 0
satisfying certain natural compatibilities [14,21]. For classes ŒX� 2 M represented
by quasiprojective varieties X , we have �n.ŒX�/ D ŒSymn.X/�. We therefore have
�n.L/ D Ln and �n.�L

1
2 / D .�L

1
2 /n. There is an induced pre-�-ring structure

on the power series ring MŒŒt1; : : : ; tk�� defined by �n.rt ij / D �n.r/t
ni
j . Denoting

finally by MŒŒt1; : : : ; tk��C � MŒŒt1; : : : ; tk�� the ideal generated by t1; : : : ; tk , we
define the plethystic exponential

Exp WMŒŒt1; : : : ; tk��C ! 1CMŒŒt1; : : : ; tk��C

by the formula
Exp.r/ D

X
n�0

�n.r/:

See [6, Section 2.5] as well as [13, Section 3] and [14, Section 2] for a more leisurely
introduction to aspects of this formalism and some more explicit formulae.
Remark2.1. We remind the reader that themainmotivation for definition (2.1) comes
from the work of Behrend [5], who showed that Donaldson–Thomas type invariants
can always be computed by integrating a certain specific constructible function on
the relevant moduli scheme (or stack). He further proved that if the moduli scheme
can (locally) be written as a critical locus Z of some regular function f on a smooth
varietyX , then the value of this constructible function at a point ofZ can be evaluated
in terms of the Euler characteristic of the Milnor fibre of f at this point. Taking
the motivic vanishing cycle of f is the right lift of Behrend’s constuction to the ring
of motivic classes. The prefactor .�L

1
2 /� dimX shifts this motive in the appropriate

way to be self-dual with respect to Verdier duality. This makes the motive ŒZ�vir
behave like that of a smooth 0-dimensional variety with respect to duality, which
is one expression of the fact that these invariants come from a moduli problem of
virtual dimension 0.
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2.3. Statement of the problem. Given a quiver with potential .Q;W /, we define
motivic Donaldson–Thomas invariants

ŒM.JQ;W ; ˛/�vir D
Œcrit.f˛/�vir
ŒG˛�vir

; (2.2)

where ŒG˛�vir refers to the virtual motive of the pair .G˛; 0/. We package these
invariants into a generating series by introducing a set t D .ti W i 2 V.Q// of
auxiliary variables, and setting

UQ;W .t/ D
X

˛2NV.Q/

ŒM.JQ;W ; ˛/�vir � t
˛;

where we use multi-index notation for monomials t˛ . Our aim is to compute the
series UQ;W .t/ in closed form for some interesting classes of pairs .Q;W /. We will
particularly be interested in how UQ;W .t/ changes for a fixedQ under homogeneous
deformations of the potential W .

The series UQ;W is called the universal DT series in [29]. Generating series of
framed invariants are related to UQ;W by wall crossing [23,25,30,31].
Remark 2.2. Our definition (2.2), associatingmotivicDT invariants ŒM.JQ;W ; ˛/�vir
to moduli spaces M.JQ;W ; ˛/ of representations of the associative algebra JQ;W
appears to depend on a particular presentation of this algebra as a quiver algebra with
relations. In fact, our definition of the motivic invariant is almost independent from
this presentation. Namely, in the cases we study, JQ;W is a 3-Calabi–Yau algebra.
As discussed by [25], moduli spaces of representations of 3-Calabi–Yau algebras can
always be described locally as critical loci, in a way that is intrinsic to the algebra
only. After fixing a Z=2-ambiguity on the moduli spaces, called orientation data
by [25], motivic DT invariants can be defined. The choice of orientation data is
implicitly fixed by the quiver description, and with this choice, our DT invariants
agree with the invariants of [25], as proved by [11, Thm. 7.1.3]. See [12] for more
details and a concrete example.

3. Results and interpretations

3.1. Deformations of affine three-space. Let Q1 be the quiver corresponding to
affine three-space [6], with V.Q1/ containing a single vertex andE.Q1/ D fx; y; zg
consisting of three loops based at the vertex as shown in Figure 1.

When the potential on Q1 is W D xyz � xzy, the Jacobian algebra JQ1;W is
simply the polynomial ring CŒx; y; z�, corresponding to the simplest commutative
Calabi–Yau threefold: affine three space C3. This perspective was used in [6] to
compute the motivic DT invariants of Hilbert schemes of threefolds.

We will consider homogeneous cubic deformations of the potential W , resulting
in flat deformations of the polynomial ring as a graded Calabi–Yau algebra. These
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algebras correspond to quantizations (i.e. noncommutative deformations) of C3 and
its projectivization P2. Such deformations have received substantial attention in the
noncommutative geometry literature, starting with [2,3]. In particular, considerable
work has been done on their representation theory [4,15,16,36].

xy

z

Figure 1. The quiverQ1.

3.1.1. Quantum affine three-space. Start with the potential

Wq D xyz � qxzy

on Q1, where q 2 C� is a constant. The corresponding Jacobian algebra JQ1;Wq
is

the coordinate ring of quantum affine three-space

JQ1;Wq
D C hx; y; zi =

�
Œx; y�q; Œy; z�q; Œz; x�q

�
with Œa; b�q D ab � qba. The requirement that q be nonzero is important, as it
ensures that the algebra is Calabi–Yau.

Since the quiver has only one vertex, a dimension vector is just a single number,
indicating the dimension of the representation, so that the universal series is a function
of a single variable t . Corresponding to the fact thatWq is linear in the generator z, the
algebra JQ1;Wq

has an extra C�-symmetry, given by rescaling z. In Subsection 4.2.1,
we exploit this symmetry to prove the following.
Theorem 3.1. If q 2 C� is a primitive r th root of unity, then

UQ1;Wq
.t/ D Exp

�
2L � 1

L � 1

t

1 � t
C .L � 1/

t r

1 � t r

�
:

Otherwise,

UQ1;Wq
.t/ D Exp

�
2L � 1

L � 1

t

1 � t

�
:

3.1.2. The Jordan deformation. Up to isomorphism, the only other deformation
of W that is linear in one of the generators is given by

WJ D xyz � xzy � zy
2:
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One of the relations of the Jacobian algebra JQ1;WJ
is Œx; y� D y2, which is

precisely the relation between the generators x; y of the non-commutative affine
plane commonly known as the Jordan plane. In Subsection 4.2.2, we prove:
Theorem 3.2. For the Jordan deformation, we have

UQ1;WJ
.t/ D Exp

�
L

L � 1

t

1 � t

�
:

3.1.3. The homogenized Weyl deformation. Consider now the potential

WhW D xyz � xzy �
1

3
z3

on the three-loop quiver. One of the relations of the Jacobian algebra JQ1;WW

is Œx; y� D z2, the homogenization of the Weyl algebra relation Œx; y� D 1. In
Subsection 3.4 below, we will explain the motivation for
Conjecture 3.3. The generating series of motivic DT invariants of the homogenized
Weyl algebra is given by

Exp
�

L.1 � Œ�3�/

L � 1

t

1 � t

�
;

where by slight abuse of notation we denote by Œ�3� the equivariant motivic class of
fz3 D 1g � C carrying the canonical action of �3.

In [26], this conjecture is verified up to degree two.

3.1.4. Sklyanindeformations. Consider finally the family of Sklyanin deformations

Wa;b;c D a xyz C b xzy C
c

3
.x3 C y3 C z3/;

for Œa W b W c� 2 P2. We assume that abc ¤ 0 and .3abc/3 ¤ .a3C b3C c3/3. The
relations in the Jacobian algebra JQ1;Wa;b;c

are given by

axy C byx C cz2 D ayz C bzy C cx2 D azx C bxz C cy2 D 0:

As explained in [3, p. 38], to each such algebra is associated a pair of smooth cubic
curves in P2. The first is the point scheme Ept , which parametrizes isomorphism
classes of graded modules with Hilbert series .1 � t /�1; it is given explicitly by

Ept D
˚
.a3 C b3 C c3/XYZ � abc.X3 C Y 3 CZ3/ D 0

	
� P2;

using homogeneous coordinates ŒX W Y W Z� on P2. The functor which shifts the
grading of a module induces a translation � W Ept ! Ept in the group law of the cubic
curve. The second cubic curve, which typically has a different j -invariant, is the
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curveEDT defined by the vanishing of the potential f W C3 ! C for one-dimensional
representations:

EDT D
˚
.aC b/XYZ C c

3
.X3 C Y 3 CZ3/ D 0

	
� P2:

Two Sklyanin algebras determine the same pair .Ept; EDT/ if and only if they are
either isomorphic or opposite as graded algebras. In Subsection 3.4, we explain the
following conjecture.

Conjecture 3.4. Let JQ1;Wa;b;c
be a Sklyanin algebra as above, let .Ept; EDT/ be

the associated elliptic curves, and let � W Ept ! Ept be the induced automorphism.
Let SDT be the affine cubic surface

SDT D
˚
.aC b/xyz C c

3
.x3 C y3 C z3/ D 1

	
� A3;

the universal cover ofP2nEDT, carrying the canonical action of�3 Š �1.P2nEDT/.
Define the virtual motive

M1 D L�
3
2 .ŒSDT; �3� � ŒEDT�.L � 1/ � 1/ :

Then we have the following conjectural formulae for the universal series:

(1) If j� j D 1, then

UQ1;Wa;b;c
.t/ D Exp

�
�

M1

L
1
2 � L�

1
2

t

1 � t

�
:

(2) If j� j is finite but not a multiple of three, then

UQ1;Wa;b;c
.t/ D Exp

 
�

M1

L
1
2 � L�

1
2

t

1 � t
�

M�

L
1
2 � L�

1
2

t j� j

1 � t j� j

!
;

where the virtual motive M� D L
1
2 .ŒP2� � ŒEpt=��/ involves the elliptic curve

Ept=� isogeneous to Ept.

(3) If j� j is a multiple of three, then

UQ1;Wa;b;c
.t/ D Exp

 
�

M1

L
1
2 � L�

1
2

t

1 � t
�

X
r

Mr

L
1
2 � L�

1
2

t r

1 � t r

!
:

where the summation index r ranges over a subset of fj� j=3; : : : ; j� jg and Mr

are virtual motives without denominators.
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3.2. A deformation of the conifold algebra. LetQcon be the conifold quiver, with
two vertices V.Qcon/ D fv1; v2g, and four arrows E.Qcon/ D fa1; a2; b1; b2g with
head and tail as indicated in Figure 2.

v1 v2

a1

b1

a2

b2

Figure 2. The quiverQcon.

The standard quartic potential of the conifold quiver

W D a1b1a2b2 � a1b2a2b1

gives a Calabi–Yau algebra JQcon;W whose centre is given by

Z D CŒx; y; z; t �=.xt � yz/:

In thisway, JQcon;W is a noncommutative crepant resolution of the conifold singularity
SpecZ in the sense of [35]. In particular, JQcon;W is derived equivalent to a standard
(commutative) crepant resolution of Z.

We may therefore think of the one-parameter deformation

Wq D a1b1a2b2 � qa1b2a2b1

with q 2 C� as a quantization of the resolved conifold. The condition q ¤ 0 once
again corresponding to the Calabi–Yau property for the Jacobian algebra.
Theorem 3.5. If q 2 C� is not a root of unity, then

UQcon;Wq
.t0; t1/ D Exp

 
3L

1
2 � L�

1
2

L
1
2 � L�

1
2

t0t1

1 � t0t1
�

1

L
1
2 � L�

1
2

t0 C t1

1 � t0t1

!
:

If q is a primitive r th root of unity, then the above expression is multiplied by a further
factor

Exp
�
.L � 1/

t r0 t
r
1

1 � t r0 t
r
1

�
:

More general deformations of the conifold potential are studied in [10,32]. We
leave the investigation of motivic DT invariants for these deformations for future
work.
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3.3. A deformation of the cyclic quiver. Finally let n � 1 and consider the quiver
QnC1 with V.QnC1/ D fv0; : : : ; vng and arrows depicted as in Figure 3.

v0

v1

v2vn�1

vn

a0

a�0

an

a�n

a�n�1 a�1

an�1 a1

: : :

b0

b1

b2bn�1

bn

Figure 3. The An-quiverQnC1.

As iswell known,QnC1 is theMcKay quiver for the embedding�nC1 < SL.3;C/
with weights .1;�1; 0/. We are interested in deformations of the potential

W1 D

nX
iD0

�
biC1a

�
i ai � biaia

�
i

�
; (3.1)

where the index labels are to be understood modulo nC 1. Once again, the Jacobi
algebra JQnC1;W1

is a non-commutative crepant resolution of its center

Z Š CŒx; y; z; t �=.xy � znC1/:

The threefold SpecZ has transverse An singularities along a line.
We concentrate on the family of homogeneous deformations of the potential W1

given by

Wq D

n�1X
iD0

�
q0ibiC1a

�
i ai � qibiaia

�
i

�
; (3.2)

where we assume
Q
j q
0
j qj ¤ 0. It is straightforward to verify that any such potential

is equivalent (by rescaling variables) to a member of the one-parameter family

Wq D

n�1X
iD0

�
biC1a

�
i ai � qbiaia

�
i

�
;
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parametrized by q 2 C�. The condition q ¤ 0 is still equivalent to the Jacobian
algebra being Calabi–Yau.

Let t D .t0; : : : ; tn/ be the variables in the universal DT series; we continue to use
multi-index notation for monomials in these variables. Let ıi be dimension vector
which takes the value 1 on i th vertex and 0 otherwise. Define

� D
˚
ıi C � � � C ıiCk W i 2 f0; : : : ; ng; k 2 f0; : : : ; n � 1g

	
;

where we read the indices modulo nC 1. Thus, for example, the vector ın C ı0 lies
in �. Finally, we let ı D

Pn
iD0 ıi .

Theorem 3.6. If q 2 C� is not a root of unity, then

UQnC1;Wq
.t/ D Exp

 
.nC 1/L

1
2 � L�

1
2

L
1
2 � L�

1
2

tı

1 � tı
C

X
˛2�

L
1
2

L
1
2 � L�

1
2

t˛

1 � tı

!
:

If q is a primitive r th root of unity, then the above expression is multiplied by a further
factor

Exp

 
.L � 1/

t rı

1 � t rı

!
:

3.4. Interpretations. In this section, we analyze the results stated above. The patt-
ern that will emerge is that, at least in our examples, the universal series has the shape
of an Exponentiated rational function in the vertex variables with coefficient motives
closely related to motives of spaces of simple representations of the corresponding
algebra.

3.4.1. Interpreting the results on the three-loopquiver. Let us start by interpreting
our results on the quiver Q1 that leads to variants of affine three-space. For the
potentialWq D xyz�qxzy at q D 1, we recover the result of [6] for the commutative
case:

UQ1;W1
.t/ D Exp

 
�
�L3=2

L
1
2 � L�

1
2

t

1 � t

!
:

Here the motive appearing in the numerator, �L3=2, is the virtual motive of affine
three-space C3, the moduli space of simple one-dimensional modules of the algebra
UQ1;W1

. These are clearly the only simple modules.
For generic quantum three-space, with parameter q 2 C� not a root of unity, by

Theorem 3.1 above we have

UQ1;Wq
.t/ D Exp

 
�
�2L

1
2 C L�

1
2

L
1
2 � L�

1
2

t

1 � t

!
: (3.3)
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The only simple modules are still the one-dimensional modules by Lemma 3.8 below;
these are parametrized by the subscheme fdf D 0g � C3 where f W C3 ! C is
given by f .x; y; z/ D xyz. The motivic vanishing cycle of f is 2L2 � L, so its
critical locus has virtual motive �2L 1

2 CL�
1
2 , which is the expression appearing in

the numerator of (3.3).
Let us now turn to the Jordan deformation, with

JQ1;WJ
D Chx; y; zi=.Œx; y� � y2; Œy; z�; Œz; x� � 2yz/:

Here we have, by Theorem 3.2,

UQ1;WJ
.t/ D Exp

 
�
�L

1
2

L
1
2 � L�

1
2

t

1 � t

!
: (3.4)

On the other hand, we still only have one-dimensional simple representations.
Lemma 3.7. Every finite-dimensional simple module for JQ1;WJ

has dimension one.

Proof. Let V be a finite-dimensional simple module. We have the relation

ynC2 D ynŒx; y� D Œynx; y�;

which implies that every positive power of y2 is a commutator, and therefore acts
with trace zero on V . Hence y2 acts nilpotently on V , and so the action of y on V
must have a nontrivial kernelK � V . But the relations for JQ1;WJ

then imply thatK
is actually a JQ1;WJ

-submodule. Since V is simple, we must therefore haveK D V .
Hence y acts trivially on V , so that V descends to a representation of the quotient

JQ1;WJ
=.y/ Š CŒx; z�;

which is commutative, and therefore only has one-dimensional simple modules.

One-dimensionalmodules are parametrized by the critical locus fdfJ D 0g � C3,
where fJ W C3 ! C is given by f .x; y; z/ D zy2. The motivic vanishing cycle of
this function is L2, so the corresponding virtual motive is .�L/�

3
2 L2 D �L

1
2 , the

numerator of (3.4).
In the cases discussed in this section so far, the Jacobian algebra has only one-

dimensional simple representations. Quantized affine three-space at roots of unity
behaves differently (see [7,15]):
Lemma 3.8. The algebra

JQ1;Wq
D Chx; y; zi=.Œx; y�q; Œy; z�q; Œz; x�q/

corresponding to the potential W D xyz � qxzy on Q1 has simple modules of
dimension r > 1 if and only if q is a primitive r th root of unity. Moreover, the space
of one-dimensional representations is independent of q provided q ¤ 1.
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Note that the formula in Theorem 3.1 has terms in precise correspondence with
the possible dimensions of simple representations. Indeed, when q is a primitive r th
root of unity, we have

UQ;W .t/ D Exp
�
2L � 1

L � 1

t

1 � t
C .L � 1/

t r

1 � t r

�
D Exp

0@��2L 1
2 C L�

1
2

L
1
2 � L�

1
2

t

1 � t
�
�L�

3
2 � L.L � 1/2

L
1
2 � L�

1
2

t r

1 � t r

1A :
The first summand is again given by the virtual motive of one-dimensional
representations, which are, of course, all simple. But there are also simple
representations of dimension r , and they contribute the rational function tr

1�tr
to

the generating series. Our aim now is to provide a geometric interpretation of this
contribution.

The coefficient of tr

1�tr
has a factor .L�1/2. In our calculation in Subsection 4.2.1,

this factor will be obtained by a dimensional reduction procedure, in which the
problem is reduced to studying representations of the simpler algebraC hx; yi =.xy�
qyx/. The simple r-dimensional modules of the latter are parametrized by a copy
of .C�/2, which is naturally obtained by removing the coordinate axes in A2. So in
that sense, the motive is explained geometrically by dimensional reduction. But it
is unclear how to generalize this interpretation to potentials for which dimensional
reduction is not applicable. We therefore propose another interpretation that is better
suited to generalizations, based on the noncommutative projective geometry approach
of [1,4,15].

We observe that the moduli stackM.JQ1;Wq
; r/ of r-dimensional representations

has a Zariski-open substack Minv �M.JQ1;Wq
; r/ consisting of simple representa-

tions on which the central element g D xyz acts invertibly. Let us denote by A3q the
noncommutative affine space defined by JQ1;Wq

. Thus elements ofMinv correspond
to skyscraper sheaves on the noncommutative variety A3q n fg D 0g, obtained by
removing the coordinate planes.

According to [15], the stack Minv has a coarse moduli space X that is a smooth
threefold, and the stabilizers at each point are the scalars C�. Moreover, the grading
on JQ1;Wq

gives rise to a C�-action on representations, and this action makesX into
a principal C�-bundle over P2 n Y , where Y � P2 is a triangle. This fibration has
the following interpretation: starting with a skyscraper sheaf F on A3q n fg D 0g,
we take its direct image ��F along the quotient map � W A3q n f0g ! P2q to the
corresponding noncommutative P2. The support of ��F is a point in the “centre”
of P2q n fg D 0g, which is the commutative variety P2 n Y .

Assembling these facts, we can easily compute the virtual motive of this open
substack:

ŒMinv�vir D
ŒX�vir

ŒC��vir
D
ŒA1 n f0g�virŒP2 n Y �vir

ŒC��vir
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On the other hand, the coefficient of tr

1�tr
in the exponential UQ;W .t/ above is given

by
�L�

3
2 � L.L � 1/2

L
1
2 � L�

1
2

D
ŒA1�virŒP2 n Y �vir

ŒC��vir
:

Thus this coefficient is the virtual motive of a line bundle over P2 n Y , rather than
a C�-bundle. We expect that this discrepancy can be explained by considering the
closure Minv �M.JQ1;Wq

; r/.

3.4.2. The conjectures. Notice that in all cases studied in the previous section, the
answer had the general rational form

UQ1;W .t/ D Exp

 
�

kX
iD1

Mi

L
1
2 � L�

1
2

tmi

1 � tmi

!
; (3.5)

wherem1 D 1; : : : ; mk 2 N are the dimensions in which there exist simple modules
for the algebra JQ1;W , andMi 2M are motivic expressions without denominators,
with M1 being the virtual motive of the scheme parametrizing one-dimensional
simple modules.

For the homogenized Weyl case, we have

JQ1;WhW
D Chx; y; zi=.Œx; y� � z2; Œx; z�; Œy; z�/:

Lemma 3.9. Every finite-dimensional simple module for JQ1;WhW
has dimension

one.

Proof. For n � 0, we have

znC2 D znŒx; y� D Œznx; y� � Œzn; y�x D Œznx; y�

in JQ1;WhW
. Thus znC2 is a commutator for n � 2. The rest of the proof follows

that of Lemma 3.7 above.

One-dimensional representations of JQ1;WhW
are parametrized by the (scheme-

theoretic) critical locus of the function fhW D z3 on C3, the double plane fz2 D 0g.
The motivic vanishing cycle of fhW is L2.1 � Œ�3�/, and thus the corresponding
virtual motive is �L

1
2 .1 � Œ�3�/. Using Lemma 3.9, formula (3.5) leads to the

expectation Conjecture 3.3 above.
Let us finally turn to the Sklyanin algebras, with potential

Wa;b;c D a xyz C b xzy C
c

3
.x3 C y3 C z3/:

The only one-dimensional representation of these algebras is the trivial one, but the
moduli space is highly non-reduced; it is the critical locus of the function

f .x; y; z/ D .aC b/xyz C
c

3
.x3 C y3 C z3/;
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i.e. it is the scheme-theoretic singular locus of a simple elliptic surface singularity of
type eE6, and therefore has length eight.

One-dimensional representations have the following motivic DT invariant:
Lemma 3.10. The virtual motive for the moduli space of one-dimensional represent-
ations is given by

ŒM.JQ1;Wa;b;c
; 1/�vir D L�

3
2 .ŒSDT; �3� � ŒEDT�.L � 1/ � 1/

where, as before, SDT is the affine triple cover of P2 nEDT with its canonical action
of �3.

Proof. The function f has an isolated critical point at the origin, and f �1.0/ is the
cone over the elliptic curve EDT � P2. Blowing up the origin in C3 gives a normal
crossings resolution of f onX D Tot.OP2.�1//, whose irreducible components are
given by the zero section (with multiplicity three), and the total space of OEDT.�1/.
The result is then an immediate consequence of Denef and Loeser’s formula [17,
Thm. 3.3].

To motivate Conjecture 3.4, we recall some basic facts about simple representa-
tions of the Sklyanin algebras [1,4,16,36]. Let r D j� j be the order of the translation
� W Ept ! Ept. Then higher-dimensional simple representations exist if and only
if r < 1. In this case, there are explicit bounds on the dimensions [36], which
depend on whether of not r is divisible by three. Combining these bounds with (3.5),
explains the rough shape of the expressions appearing in Conjecture 3.4.

When r is not divisible by three, somewhat more information is available. In this
case, all nontrivial simple representations have dimension r . As in the discussion
following Lemma 3.8, we can consider themoduli stackMinv of simple r-dimensional
representations on which a certain cubic central element g is invertible. Its coarse
moduli space is a C�-bundle over the complement of the elliptic curve Ept=� � P2.
The similarity betweenEpt=� and the triangle Y � P2 that appeared for quantumC3

explains the appearance of the isogenous curve in part (ii) of the conjecture.

3.4.3. Interpreting the results for the conifold quiver. For the undeformed coni-
fold, the formula of Theorem 3.5 includes [29, Thm. 2.1]:

UQ;W .t1; t2/ D Exp

 
.LC L2/t1t2 � L

1
2 .t1 C t2/

L � 1

X
n�0

.t1t2/
n

!

D Exp

 
�
�.L

3
2 C L

1
2 /

L
1
2 � L�

1
2

t1t2

1 � t1t2

�
1

L
1
2 � L�

1
2

t1

1 � t1t2
�

1

L
1
2 � L�

1
2

t2

1 � t1t2

!
:
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In this case, there are two vertex simples, the representations with dimension
vectors .1; 0/ and .0; 1/; there are also simples of dimension vector .1; 1/. We
are unable to give a systematic explanation of the denominators of these rational
functions: for all three dimension vectors, we get the denominator 1 � t1t2. The
numerators are clear: they simply record the dimension vectors. As for the motivic
coefficients, for .1; 0/ and .0; 1/ the moduli space is a reduced point, in agreement
with the coefficients above. On the other hand, it can be checked that a representation
with dimension vector .1; 1/ is simple if and only if there is a nonzero arrow in each
direction, and thus the parameter space of simple representations is .C2 n pt/2=C�
which is the complement of the zero section in the resolved conifold. Thus its virtual
motive is �L�

3
2 .L C 1/2.L � 1/ which is close to, but not quite, the numerator

above. Instead, the numerator �.L 3
2 C L

1
2 / is the virtual motive of the resolved

(commutative) conifold X , the resolution � W X ! Z of the singular conifold
Z D SpecCŒx; y; z; t �=.xt � yz/.

For the generic deformed conifold, we have

UQcon;Wq
D Exp

 
3L

1
2 � L�

1
2

L
1
2 � L�

1
2

t0t1

1 � t0t1
�

1

L
1
2 � L�

1
2

t0 C t1

1 � t0t1

!
:

Once again, the numerator of the first term is not the motive of the space of simples
of dimension vector .1; 1/. But it can be interpreted geometrically in the following
way. We begin by considering the global function f D xt D yz on the conifold
singularity Z, and its pullback g D ��.f / along the resolution � W X ! Z. A
straightforward calculation using the standard charts on the conifold shows that the
virtual motive of crit.g/ is the desired expression �3L 1

2 C L�
1
2 .

Now, since X is a smooth Calabi–Yau threefold, a choice of global holomorphic
volume form gives rise to an isomorphism�1X Š ^

2TX between forms and bivectors.
Under this isomorphism, the form dg gives a Poisson structure � 2 H 0.X;^2TX /.
Via the derived equivalence D.X/ Š D.JQcon;Wq

/ for q D 1, the q-deformation
of the Jacobi algebra corresponds to a noncommutative deformation of X that we
expect to be a deformation quantization of this Poisson structure. In particular,
the critical points of g are exactly the zero-dimensional symplectic leaves of � ,
which are precisely the points one expects to quantize to skyscraper sheaves on the
noncommutative deformation.

3.4.4. Interpreting results for the cyclic quiver. We will be brief, since the inter-
pretations we can offer are analogous to the cases already studied. We refer for the
details to [10]. As usual, at q D 1 the formula in Theorem 3.6 recovers the result of
Bryan and Morrison [9,28]

UQnC1;W1
.t/ D Exp

 
L

3
2 C .n � 1/L

1
2

L
1
2 � L�

1
2

yı

1 � yı
C

X
˛2�

L
1
2

L
1
2 � L�

1
2

y˛

1 � yı

!
:
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The first coefficient here, up to sign, is the motive of the (unique) crepant resolution
of the quotient singularity SpecZ. The other coefficients are all virtual motives of
the affine line. For ˛ D ıi , it is indeed clear that the moduli space is simply the affine
line, parameterized by the value of the loop arrow bi . For generic q on the other
hand, the coefficient .nC 1/L 1

2 �L�
1
2 of the first term in Theorem 3.6 can again be

interpreted, up to sign, as the virtual motive of the zero-set of a natural one-form on
the crepant resolution.

4. Proofs

4.1. Quivers with cuts. A subset I � E.Q/ is called a cut of .Q;W /, if the po-
tentialW is homogeneous of degree 1 for the arrow grading ofQ where arrows in I
have degree 1 and arrows not in I have degree zero. Given a cut I of .Q;W /, let
QI D .V .Q/;E.Q/nI /, and let JW;I be the quotient of CQI by the ideal

.@IW / D .@W=@a; a 2 I /:

Then by [29, Prop. 1.7],

UQ;W .t/ D
X

˛2NV.Q/

.�L
1
2 /�.˛;˛/C2dI .˛/

ŒR.JW;I ; ˛/�

ŒG˛�
t˛; (4.1)

where dI .˛/ D
P
.aWi!j /2I ˛i˛j for any ˛ 2 ZV.Q/.

4.2. Deformations of affine three-space.

4.2.1. Quantum affine three-space. In this section, we prove Theorem 3.1. The
proof will make heavy use of the assumption q ¤ 0. As already observed, this is
precisely the condition for the Jacobian algebra JQ1;Wq

to be 3-Calabi–Yau, although
we will not use this fact directly.

We begin by applying the cut I D fzg to .Q1; Wq/, which reduces the problem
to studying representations of the algebras

CqŒx; y� D C hx; yi =.xy � qyx/

for q 2 C�. More precisely, using formula (4.1), we have

UQ1;Wq
.t/ D

X
n�0

ŒRq.n/�

ŒGL.n/�
tn

where the variety

Rq.n/ D
˚
.A;B/ 2 End.V / � End.V / W AB D qBA
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is the set of pairs of q-commuting .n � n/-matrices, and V D Cn is a fixed n-
dimensional vector space. We think of CqŒx; y� geometrically as functions on a
quantum plane A2q , so that finite-dimensional representations of CqŒx; y� correspond
to torsion coherent sheaves on A2q; compare [9].

For the calculation, it will be useful to consider the four subvarieties

RI;Iq .n/ D
˚
.A;B/ 2 Rq.n/ j A;B are invertible

	
RI;Nq .n/ D

˚
.A;B/ 2 Rq.n/ j A is invertible and B is nilpotent

	
RN;Iq .n/ D

˚
.A;B/ 2 Rq.n/ j A is nilpotent and B is invertible

	
RN;Nq .n/ D

˚
.A;B/ 2 Rq.n/ j A;B are nilpotent

	
The geometric interpretation of these subvarieties is as follows. The quantum
plane A2q contains a privileged pair of commutative affine lines Lx; Ly � A2q
corresponding to the two-sided ideals .x/; .y/ � CqŒx; y�. These lines intersect
in the point 0 2 A2q corresponding to the ideal .x; y/. This gives a stratification
of A2q , and points of the varieties R�;�q above correspond to sheaves on A2q whose
supports are completely contained in one of the four strata.

Define the generating series

U I;Iq .t/ D
X
n�0

ŒR
I;I
q .n/�

ŒGL.n/�
tn;

and define UN;Iq ; U
N;N
q and U I;Nq similarly. Then we have the following basic

Lemma 4.1 (cf. [20, Lemma 1]). For all q 2 C�, there is a factorisation

UQ1;Wq
D U I;Iq � U I;Nq � UN;Iq � UN;Nq

of the universal generating series.

Proof. Suppose given a point .A;B/ 2 Rq.n/ corresponding to a representation of
CqŒx; y� on the vector space V D Cn. Then the kernel and image of AN for N � 0

decompose V into direct summands on which A acts nilpotently and invertibly,
respectively. Since qN ¤ 0, the relation ANB D qNBAN implies that B preserves
the kernel and image of AN . Decomposing further using the action of B , we obtain
a canonical decomposition

V D VI;I ˚ VI;N ˚ VN;I ˚ VN;N

into subrepresentations, corresponding to sheaves whose supports lie on a single
stratum in A2q . The result now follows easily.
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Lemma 4.2. The series UN;Nq , UN;Iq and U I;Nq are independent of q 2 C�, namely

UN;Nq .t/ D Exp
�

1

L � 1

t

1 � t

�
;

and
UN;Iq .t/ D U I;Nq .t/ D Exp

�
t

1 � t

�
for all q 2 C�.

Proof. The formulae in question for the case q D 1 are easily extracted from the
results of [9], so it suffices to demonstrate that the series are independent of q.
Moreover, since the equations definingRq.n/ � End.V /�End.V / are symmetric in
the two factors, it is enough to show that the series UN;Iq and UN;�q D U

N;N
q � U

N;I
q

are independent of q. Notice that, by the argument in Lemma 4.1, the series UN;�q is
the universal series for the sequence of varieties

RN;�q .n/ D
˚
.A;B/ 2 Cq.n/ j A is nilpotent

	
:

So, we must show that the motivic classes ŒRN;�q .n/� and ŒRN;Iq .n/� are independent
of q. To do so, we consider the maps from R

N;�
q and RN;Iq to the nilpotent cone in

End.V / Š gl.n;C/, given by projection on the first factor. We will show that, when
restricted to a fixed nilpotent orbit, these maps are Zariski-locally trivial fibrations,
and that their fibres are independent of q.

To this end, choose a nilpotent orbit O � End.V / and a matrix A0 2 O.
Since A0 is nilpotent and q ¤ 0, we may choose an element P 2 GL.V / such that
PA0P

�1 D q�1A0. Let H � GL.V / be the stabilizer of A0 under the conjugation
action, and let h � End.V / be its Lie algebra. Acting by conjugation on A0, we have
a principal bundle GL.V / ! O with structure group H , which is Zariski-locally
trivial since H is special. Given a local section s W U ! GL.V / over a subvariety
U � O, consider maps

U �H ! RN;Iq

and
U � h! RN;�q ;

both defined by the formula

.A; h/ 7! .A; s.A/hP s.A/�1/:

One easily checks that these maps give local trivializations ofRN;Iq andRN;�q overU .
Since the fibres are independent of q, the lemma follows.
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In order to complete the proof of Theorem 3.1, it remains to compute the
seriesU I;Iq . We remark that the varietiesRI;Iq parametrizemodules over the localized
algebra CqŒx˙1; y˙1�, which we can think of as functions on the quantum torus Tq
obtained by removing the lines Lx; Ly � A2q . As is well known, the algebra
CqŒx˙1; y˙1� is isomorphic to the skew group ring Z � .CŒx; x�1�/ associated with
the Z-action on the variety C�, where the generator 1 2 Z acts by multiplication
by q. If we denote by ŒC�=Z�q the quotient stack, then finite-dimensional modules
over CqŒx˙1; y˙1� are equivalent to torsion coherent sheaves on ŒC�=Z�q .

When q is not a root of unity, the orbits of the Z-action are infinite, and hence
there can be no nontrivial equivariant sheaves of finite length. We therefore have

U I;Iq .t/ D 1

if q is not a root of unity.
On the other hand, if q is a primitive r th root of unity, we have an isomorphism

of stacks ŒC�=Z�q Š ŒC�=Z�1 induced by the r th-power map C� ! C� and the
inclusion Z Š rZ � Z of the stabilizer of the action. Thus, there is an equivalence
between finite-length sheaves on Tq and finite-length sheaves on the commutative
torusT1 D SpecCŒu˙1; v˙1�. Since pulling back along the r th powermapmultiplies
the length of a sheaf onC� by r , this equivalence takes n-dimensional representations
of CŒu˙1; v˙1� to rn-dimensional representations of CqŒx˙1; y˙1�. We therefore
have

U I;Iq .t/ D U
I;I
1 .t r/ D U

N;N
1 .t r/.L�1/

2

D Exp
�
.L � 1/

t r

1 � t r

�
;

where the last two identities use the power structure and the results of [9].

4.2.2. The Jordan plane. We now prove Theorem 3.2. Applying a cut along
I D fzg again, we reduce to representations of the algebra

CJ Œx; y� D C hx; yi =.xy � yx � y2/;

the ring of functions on the Jordan plane. We define the representation varieties

RJ .n/ D
˚
.A;B/ 2 End.V / � End.V / j ŒA; B� D B2

	
for n � 0, where once again V denotes a fixed n-dimensional vector space.
Using (4.1), we have the equality

UQ1;WJ
.t/ D

X
n�0

ŒRJ .n/�

ŒGL.n/�
tn:

The series on the right can be easily computed using the results in the previous
section.
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Indeed, if .A;B/ 2 RJ .n/ then B is nilpotent, as observed in Lemma 3.7;
see also [22, Lemma 2.1]. Projection on the second factor therefore gives a map
from RJ .n/ to the nilpotent cone in End.V /. Over a fixed nilpotent orbit O � gln
this map is an affine bundle for the vector bundle over O whose fibre at B 2 O is the
centralizer of B in End.V /. Hence RJ .n/ has the same motivic class as the variety
of pairs of commuting matrices, the second of which is nilpotent. But these varieties
are precisely those considered in the proof of Lemma 4.2 in the case q D 1. We
therefore conclude that

UQ1;WJ
.t/ D UN;Iq .t/ � UN;Nq .t/ D Exp

�
L

L � 1

t

1 � t

�
;

proving Theorem 3.2.

4.3. The deformed conifold. In this section, we sketch the proof of Theorem 3.5,
which follows that of Theorem 3.1 and [29, Sect. 2.2]. We refer the reader to [10] for
full details.

Using I D fa1g as the cut, we are lead to considering representations of the
quiver in Figure 4, with the single relation b1ab2 D qb2ab1, where a D a2.

v1 v2

b1

a

b2

Figure 4. The cut ofQ2 along a1

Thus, to compute the generating series, we must consider the varieties˚
.A;B1; B2/ 2 Hom.V1; V2/ � Hom.V2; V1/�2 W B1AB2 � qB2AB1 D 0

	
;

where d D .d1; d2/ is a dimension vector for the quiverQ2, and Vi are fixed vector
spaces of dimension di . Given an element .A;B1; B2/ of such a variety, consider
the linear map

A2 ˚ B2 2 Hom.V0; V1/˚ Hom.V1; V0/ � End.V /;

where V D V0 ˚ V1. As in Lemma 4.1, the relation implies that we can decompose
V D V N ˚ V I into subrepresentations on which A ˚ B2 acts nilpotently and
invertibly, respectively, so that the generating series factors

UQ2;Wq
D UN � U I

into nilpotent and invertible contributions.
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Once again, one shows that the series UN is independent of q, while the
computation of the seriesU I can be reduced to the study of the q-commuting varieties
of Subsection 4.2.1. Combining that calculation with the formulae in [29, Sect. 2.2]
for the undeformed conifold yields the result.

4.4. The cyclic quiver. The proof of Theorem 3.6 proceeds analogously to the coni-
fold case, using dimensional reduction and appropriate splittings, reducing the
calculation to the case q D 1 already done in [9,28]. Once again, we refer for
the details to [10].
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