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Representability of cohomological functors over extension fields

Alice Rizzardo

Abstract. We generalize a result of Orlov and Van den Bergh on the representability of a
cohomological functor H : Dgoh (X) — mod; to the case where L is a field extension of the
base field k of the variety X, with trdeg, L < 1 or L purely transcendental of degree 2.

This result can be applied to investigate the behavior of an exact functor F : D3 (X) —
Dgoh(Y) with X and Y smooth projective varieties and dim Y < 1 or Y a rational surface.
We show that for any such F there exists a “generic kernel” A in Dgoh(X x Y), such that F
is isomorphic to the Fourier—Mukai transform with kernel A after composing both with the
pullback to the generic point of Y.
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1. Introduction

Let X be a smooth projective variety over an algebraically closed field k. In this
paper we will generalize a result of Orlov and Van den Bergh [4, Lemma 2.14] on
the representability of a functor H : Dgoh(X ) — mod, to the case of an extension
field k C L:

Theorem 1.1. Let X be a smooth projective variety over a field k. Let L be a
finitely generated separable field extension of k with trdeg, L < 1, or a purely
transcendental field extension of transcendence degree 2 over k. Consider a
contravariant, cohomological, finite type functor

H : DZq(X) — mod,

Then H is representable by an object E € Dgoh(X L), L.e. there exists E such that
for every C € Dgoh(X) we have

H(C) = Mongoh(XL)(j*C, E)

where j* 1 X1 — X is the base change morphism.
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An interesting example of a functor as in Theorem 1.1 can be obtained from an
exact functor F : Dgoh(X ) — Dgoh(Y) between the bounded derived categories of
two smooth projective varieties X and Y, where dimY < 1 or Y is a rational surface.
To produce a functor as in the above theorem, we compose F with the pullback to
the generic point of Y, take cohomology, then dualize to get a contravariant functor:

F j * HO° D
Dgoh(X) - Dgoh(Y) — Dgoh(n) ——modgy) —> m_OdK(Y)

H

Theorem 1.1 will thus allow us to tackle the question of whether a functor between
the bounded derived categories of two smooth projective varieties is representable
by a Fourier—Mukai transform. When dimY < 1 or Y is a rational surface we can
answer positively to the question above after restricting to the generic point of Y:

Theorem 1.2. Let X, Y be smooth projective varieties over afield k, wheredimY < 1
or'Y is a rational surface. Consider a covariant exact functor

F Dgoh(X) - D(bioh(Y)

leti : n — Y the inclusion of the generic point of Y. Then there exists an object
A€ Dgoh(X x Y') such that

iYoF =i*o®y,

L
where @ 4() := Rpa«(A ® Lpj(-)) is the Fourier—-Mukai trasform with kernel A
and p1: X XY — X, po: X XY — Y are the projection morphisms.
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2. The base change category

In what follows, an abelian category + does not automatically have any limits or
colimits apart from the finite ones.

Given a field K, we will denote with mody the category of finite dimensional
K-vector spaces, whereas Mody will denote the category of possibly infinite-
dimensional K-vector spaces. D(+) will denote the derived category of an abelian
category .
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Given an R-linear abelian category + and an inclusion of rings R < S, we can
define the base change category +g as in [6, §4]:
Definition 2.1. The category sy is given by pairs (C, pc) where C € Ob(+A) and
poc S — Homy(C, C) is an R-algebra map such that the composition R — S —
Homy (C, C) gives back the R-algebra structure on +. The morphisms in #g are
the morphisms in 4 compatible with the S-structure.

Definition 2.2. For each element C € A, the functor
C ®g — :mod(R) —> A

is the unique finite colimit preserving functor with C ® R = C.
This gives for each finitely presented R-algebra S a functor

—R® S A — Ag

to the base change category #Ags.

Proposition 2.3 ([6, Proposition 4.3]). The functor — ® S is left adjoint to the
Jforgetful functor

Forget : As — A
(C,pc) = C

Whenever the context is clear, given an object B € Ag, we will still denote by B
the corresponding object of «# obtained via the forgetful functor.

For the purposes of this discussion we will need a more general setting for base
change — specifically, we need to be able to talk about base change for a bigger
category of rings and not just the ones that are finitely presented over the base. Let
us extend Definition 2.2 as follows:

Definition 2.4. Let A be an R-linear abelian category satisfying AB5. Using the
fact that any R-module is the filtered colimit of finitely presented R-modules, we can
extend definition 2.2 to the general case of

—®S5:A > Ag

for any R-algebra S.

The notion of base change category can be extended to the case of the derived
category D(-4) of an abelian R-linear category + in the obvious way:

Definition 2.5. Given an inclusion of rings R < S, the category D(#A)s is given
by pairs (C, pc) where C € Ob(D(+)) and pc : S — Homp4)(C,C) is an R-
algebra map such that the composition R — S — Homp)(C, C) gives back the
R-algebra structure on D(+). The morphisms in D(+4)g are the morphisms in D (A)
compatible with the S-structure.
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Again, we have a notion of tensor product:
Definition 2.6. Let R be aring, let 4 be an R-linear abelian category satisfying ABS,
and let C'* be a complex of objects in +A:

. o1 4T d i
C°*=-..>C" —C'—C — ..

Let S be aring, with a map R < S. Then we can define C* ® S, as an object
of D(+Ags), as

di—'e1 dl
e

C*®S=->Clgs Ciesil citlgs ...

The complex C* ® S can also be considered as an object of D(#A)s.

Remark 2.7. Suppose that + is a k-linear abelian category satisfying AB5 and
k C K is an extension of fields. In the situation of Definitions 2.4 and 2.6, similarly
to the case of 2.3, it is easy to show that again tensoring with K is left adjoint to the
forgetful functor

¢ as a functor A — Ag;

e as a functor D(A) — D(Ak);

* as a functor D(A) — D(A)k.

Remark 2.8. Let R be aring, let 4 be an R-linear abelian category satisfying ABS,

and let C*® be a complex of objects in A,

. i 47 d i
C*=...->C"7" —C'—C — ..

Let S C R a multiplicative system. In this case C* ® g S~ R, as an object of D(A),
is the same as

i AT . 1 d . 1 i
..« = colim f71C'™! —— colim f~!1C! = colim f~!C'*! — ...
fes fes fes

where colim res f~1C? is obtained by taking for every f € S a copy of C' and as
morphisms only the maps

et —(fo'
given by multiplication by g : C* — C".

Lemma 2.9. In the situation of the remark above, if for every element f € S the
multiplication by f is a quasi-isomorphism of C*, then the map

C*>C*®rS'R

is a quasi-isomorphism in D (A).
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Proof. Since taking cohomology commutes with directed colimits we have
H'(C*®r ST'R) =colim f~! H'(C®)
fes
but since multiplication by any g € S is a quasi-isomorphism we get
STUHN(C) 2 (fo) T HI(C)

hence the cohomology of C* ® g S™! R consists of only one copy of H'(C*), and
the map C* — C*® ®g S~ R is a quasi-isomorphism. O

3. A result on base change for derived categories

The purpose of this section is to analyze the functor D(+4g) — D(sA)k that sends
an object in D(+4Ak) to the same object considered as an object of D(#4), together
with its K-action. Specifically, we will prove the following:

Theorem 3.1. Let A be a k-linear abelian category satisfying ABS, where k is a
field. Let K = k(T) or K = k(T, T"). Then the functor

D(Ag) - D(A)k
C*— (C.’ IOC)

is essentially surjective, where pc : K — Aut(C*) is the obvious map.

Moreover, if L is a finite separable extension of K = k(T) with L = K(a) =
K[T]/P(T) then we can lift an object (C*, pc) € D(A)L to an object N® of D(Ak)
endowed with a map ¥, € End(N°®) such that P(yy) is zero on all cohomology
groups, and the action of Yo on N*® corresponds to the action of o on C*°.

A stronger results for the case of a finite extension K/k was obtained in [8]. In
this case, there is actually an equivalence D(Ag) — D(A)k.

The proof of this theorem will be carried out in several steps. First we will notice
that, in the purely transcendental case K = k(T, T”), this comes down to lifting the
actions of the two variables 7" and T’ on a complex C*® € D(A)k, given by pc (T)
and pc (T”), to actions coming from morphisms in 4 that commute with each other.

Then in Lemma 3.3 we will tackle the case of one variable and obtain a complex
M* € D(Agr)) with a quasi-isomorphism to C* as objects of D(+4), and such
that the 7'-actions on M*® and C*® cohincide. At this point, since pc(T) is an
automorphism of C*, tensoring with k(7") will give us a complex in D (A (T))
which is still quasi-isomorphic to C*°.

A similar process can be repeated twice, as we will show in Lemma 3.4.
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Lemma 3.2. Let e" D(A) be the category whose
(1) Objects are pairs
(C.o1,....0n)

where E € Ob(D(A)), ¢; € Endpa)(C) foralli, and ¢; commutes with ¢;

foralli, j;
(2) Morphisms

a:(Cop1,....0n) > (C' 01, ....00)
are elements a € Homp)(C, C’) such that a o ¢; = ¢] o a.

Consider the full subcategory e™ D'(A) C e" D(A) whose objects consist of those
pairs (C, @1, ..., ¢n) such that for every nonzero f € k[T1, ..., T,] the map

flo1,...,00): C > C

is an isomorphism in D (A).
The category D(A)k(r,,...T,) IS equivalent to the category e" D'(+A). The
equivalence is given by the functor

D(A)(ry,.. T,y —> €"D'(A),  (C,pc) —> (C,pc(Th).....pc(Th)).

Proof. The equivalence is given by the inverse functor

e"D'(A) —> D(A)i(r,,....T,)

oc :k(Ty,...,T,) — Aut
(C’(pl,---’(pn)H(C’ T‘l = (pl ’

O
Lemma 3.3. Let A be a k-linear abelian category satisfying ABS5, where k is a
field. Let C* be a complex in D(A). Let ¢ € Homps)(C*®,C®). Then there
exists a complex M* € D(Ak[r)) and a quasi-isomorphism C* — M* as objects
of D(A) such that the action of multiplication by T on M'® corresponds to the action
of multiplication by ¢ on C*°.

Note that when # is a Grothendieck category, the same result can be achieved by
considering the morphism corresponding to ¢ on a K-injective replacement of C*®
(which exists by [5, Prop. 3.2]) and defining the action of T" accordingly. However,
in what follows we will need this specific form for the complex M *®.

Proof. The map ¢ : C* — C*® in D(#A) corresponds to a diagram of complexes
in D(A)

’
N
O

where u is a quasi-isomorphism.
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Let C*[T] = C*® ® k[T] as a complex in D(Ak[r]). Consider the morphism
pR1—1QT:C*[T]— C°[T]

in D(Ag[r7). This can be represented by actual maps of complexes

Q°[T]
u®1 w:um
C*[T] - - yo1718T C*[T]

The map ¢’ ® 1 —u ® T is injective on all cohomology objects: to prove this we
need to show that

¢'®1—u®T:H (QT]) - H"(C*[T])

is injective for every r.
Leta € H'(Q°[T]), a # 0, then

n
o= E o; T
i=0

where all of the «; are different from zero in H"(Q°®). If

n

n
0= ®l-u®Ta=Y ¢@)T — ul)T*!
i=0 i=0

then the only term of degree n + 1in T', u(a,) T 1, must be zero in H” (C*®), hence
u(ay) = 0, hence o, = 0 since u is a quasi-isomorphism. This contradicts our
assumption that o; # 0 Vi, and so this proves injectivity.

Now set

M* = Cone(Q°[T] L22®%, c*117)

Then we have a distinguished triangle

0°[1] L278%, ¢ 1] — M* — (Q°[T)[1] 3.1)

and by injectivity of the map ¢’ ® 1 —u ® T on the cohomology objects we get a
short exact sequence in cohomology

0 = H'(Q°[T]) L2 2T, Hr(C*[T]) —> H(M*) — 0

hence we get

o' ®1—u®
—_—

H"(M*®) = Coker(H' (Q*[T}) L omrcer)

for any r.
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Now consider the composition
C* — C*[T] > M".
This map is a quasi-isomorphism; to prove this we just need to show that under
the map above,

0’ ®1—u®T
-

H'(C*®) = Coker(H"(Q*[T]) H(C*[T)))

for every r.

Proceed as follows: first of all, considered as a sub-object of H"(C*[T]) via
the obvious map C* — C°[T], H"(C*®) is not in the image of ¢’ ® 1 —u @ T,
since, for any element o = Y i, o; T* of H"(Q*[T)), its image > /_, ¢(a;)T" —
o u(oy)T'H! is either zero or has a nonzero term of positive degree. To prove
that any term of positive degree § = Y '_, B;T" is in the image up to an element
of degree zero, notice that it can be written as an element of lower degree plus an
element of the image as follows:

BT =Y BT — (0 ® 1 —u g ) (Ba) ")
=0 =0 F@®1—u® ) (B)T"")
= S BT g (BT
= F BT + (¢ ® 1 —u® T)(u™ ()T )

n—1
=Y BT = BT + (¢ @ 1—u@ T (B)T")
i=0

Hence we found a complex M *® € D (A (7)) which is quasi-isomorphic to C* as
an object of D(+A); moreover the action of multiplication by ¢ on C*® corresponds
to the action by multiplication by 7 on M*®, because the following diagram is
commutative in D(+4):

C*—~C*[T] -~ M*
lt/) lw@l jT
C*— = C*[T] -~ M"*

this follows from the fact that

co(1®T)—(p®1)oc=(1QRT)oc—(pQ1)oc
=(1®T—¢®1)oc=0

since those are two consecutive maps in a triangle. O
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Lemma 3.4. Let A be a k-linear abelian category satisfying ABS, where k is a field.
Let C*® be a complex in D(A).

Let ¢ € Homp)(C*, C*®) such that f(p) is an isomorphism for all f € k[T]
monic. Then there exists a complex N* € D(Akr)) and a quasi-isomorphism
C*® — N°* as objects of D(A) such that the action of multiplication by T on N°®
corresponds to the action by multiplication by ¢ on C*.

Likewise, let ¢, € Hompu)(C*®, C*®) such that ¢ and  commute with
each other and such that f(@, V) is a quasi-isomorphisms for all f € k[T, T’]
nonzero. Then there exists a complex N°® € D(Agr,17)) and a quasi-isomorphism
j : C* — N°*asobjects of D(A) such that the action of multiplication by T (resp. T')
on N°® corresponds to the action by multiplication by ¢ (resp. ) on C*°.

Proof. By Lemma 3.3 we can find a complex M *® € s [7] and a quasi-isomorphism
j 1 C* — M?* as objects of D(+) such that the action of multiplication by T
on M* corresponds to the action by multiplication by ¢ on C*®. This implies that
multiplication by f(7T') gives a quasi-isomorphism of M * for all f monic.

Now let N® := M*® ®r] k(T) as in Definition 2.6 above. This is a complex in
D (g (r)) and it is quasi-isomorphic to C* as objects of D(+), by Lemma 2.9. The
action of ¢ on C* corresponds to the action of 7 on N°.

For the second case, again by Lemma 3.3 we can find a complex M*® € Ag[r]
and a quasi-isomorphism j : C* — M* as objects of D(+) such that the action of
multiplication by 7 on M *® corresponds to the action by multiplication by ¢ on C*.

Moreover, we have an exact triangle

oR1—-1T
_—

C*[T] C°[T] — M*

in D(Ag[r), see (3.1).
Then, since ¢ and ¥ commute with each other, we get a diagram in D (Ax[7]):

e®1—-1QT
—_—

C*[T] C*[T]
mll jml
C*[T] e®1-1QT Co[T]

This diagram is commutative: this follows from the fact that ¢ oy = 1 o ¢ in D(A),
hence ¢y ® 1 = Y ¢ ® 1 in D(Ak[7]). Therefore we can find a map ¥ on M* so
that the following diagram commutes:

OO Co[T] ——= M* —— (C*[T))[1]

lW@l 7 lw@n

ORIOT, C* [T —= M* —— (C*[T][1]
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it follows that the action of ¥ on M*® is the same as the action of ¥ on C*, thanks to
the commutativity of
C*——C*T] —=M"*

Lrlf LW@I l{,
C*——C*[T] —=M"*

taking into account the fact that, as we mentioned already, the composition of the
two horizontal maps is a quasi-isomorphism. As before we can then construct
P* = M*® ®gr) k(T), which is quasi-isomorphic to M* and hence we get a
corresponding map ¥ : P* — P*.

So we are in the following situation: we have a complex P* € D(Ax(r)) and a
map ¥ : P* — P*®sothat f(V) is a quasi-isomorphism for all f € k(7)[T’] monic.
By Lemma 3.3 again, we get a complex Q° € D((Ax))k()r]) = D(Arr)r)
which is quasi-isomorphic to P°.

Then define

N®:=0° Rk(T)[T’] k(T, T/).

By Lemma?2.9, since (T, ) is a quasi-isomorphisms for all nonzero fek(7T)[T’],
the complex N* € D(Ag(r,77)) is quasi isomorphic to Q* as objects of D (A (7)[17])
hence it is quasi-isomorphic to C* as objects of D(+). The action of ¢ and
correspond to the action of T and T’ respectively. O

The last thing we need to do is to tackle the case of a general separable field
extension of transcendence degree one, corresponding to the last statement of
Theorem 3.1:

Lemma 3.5. Let A be a k-linear abelian category satisfying ABS, where k is a
field. Let C* be a complex in D(A). Let ¢, € Hompu)(C*, C*®) such that ¢
and  commute with each other, and such that f(p) is a quasi-isomorphisms for all
f € k[T] monic and there exists an irreducible P € k[T, T'] with P(¢, V) = 0.

Then there exists a complex N°®* € D(Arr)) and a quasi-isomorphism
j 1 C* — N°* as objects of D(A) such that the action of multiplication by T on N*®
corresponds to the action by multiplication by ¢ on C*. Moreover there is a morphism
¥ € End(N*®) such that the action of  on C* corresponds to the action of Y on N*®
and P(T, ) induces the zero map on all cohomology groups of N°.

Proof. By Lemma 3.3 we can find a complex M ® € 4[] and a quasi-isomorphism
j 1 C* — M?* as objects of D(-) such that the action of multiplication by 7" on M *
corresponds to the action by multiplication by ¢ on C*.

Moreover, we have an exact triangle

e®1-1®@T
—_—

C*[T] C*T] — M*

in D(Ag[r), see (3.1).
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Then, since ¢ and ¥ commute with each other, we get a commutative diagram
in D(Ak[r])
e®1—-1QT
B —

C*[T] C*[T]
Wl jw«m
Co [T 22T ooy

Therefore we can find a map 1} on M * so that the following diagram commutes:

oR1—-1QT
—_—

C*[T] C*T] —=M*——(C*[TDH1]

W®1l LW@] 1; lW@l
° PR1-18T ° ° °

ClT] —————=C*[T]| —= M*—— (C*[T)D[1]

Since P(T,v¥) = 0, we obtain that P(¢ ® 1,¥ ® 1) = 0 in D(Ak[7]), hence
P(T,v ® 1) is zero on C[T].

As before we can construct N®* = M*® ®gr) k(T), which is quasi-isomorphic
to M* and hence we get a corresponding map ¥ : N®* — N*® and the action of v
on C* corresponds to the action of 1 on N°.

Finally, since P(T, ¥ ® 1) is zero on C[T1], it follows that P(T,v/) = 0 induces
the zero map on all cohomology of M*® and hence of N°. O

We are now ready to prove Theorem 3.1:

Proof of Theorem 3.1. By Lemma 3.2, we just need to show that the functors

D(Ag) — e' D' (A)
C*— (C*,-T)
and
D(Ag) — 2D’ (A)
C*— (C*,-T,-T)

are essentially surjective.

Let (E, ¢) € e! D’(+). Then by Lemma 3.4 there exists N® € A7) such that N
is quasi isomorphic to £ and the action of ¢ on E*® corresponds to the action of T
on N°. This proves the case i = 1.

Similarly, let (E, ¢, ¢') € €2 D’(+). Then by Lemma 3.4 there exists N *€ A (7,17
such that N is quasi isomorphic to E and the action of ¢ and ¢’ on E*® correspond to
the action of T and 7" respectively on N°. This proves the case i = 2.

The last part follows from Lemma 3.5 by setting ¥/, := V. 0
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Let us now apply this theorem to the case A4 = QCoh(X), where X is a
quasi-compact, separated scheme over a field k. This is possible since QCoh(X)
satisfies ABS5. Moreover, note that in this case we have an equivalence Dgcon(X) =
D(Qcoh(X)). As a preliminary step, we will prove the following technical lemma:

Lemma 3.6. Let k C K be a field extension, X a quasi-compact and separated

J . . .
scheme. Let Xg — X the base change morphism. Then there is an equivalence of
categories

Docon(Xx) —> D(QCoh(X)k)

under this equivalence, the functors

Lj*,-® K : Dgcon(X) = D(QCoh(Xk))
and Rj«, Forget : Docon(Xx) — D(QCoh(X))

coincide.
In other words,

Rj« = Forgeto W : D(QCoh(X)x) = Dqgcon(X)
Volj*=—-®K: Docon(X) = (Docon(X))k-

This is summarized in the following diagram:

Dqcon(X)

Forget /( ) ®K

J (Dqcon(X)) & Ly~

T\p
Dqcon(Xk) = D(QCoh(Xg))

Proof. There is an equivalence of categories induced by j. between quasi-coherent
Ox . -modules and quasi-coherent j+Ox,-modules on X. But j+Ox, = Ox ® K
and an (Ox ® K)-module is the same thing as an (x-module with a K-structure
which is compatible with its k-structure.

Hence we get an equivalence

¥ : QCoh(Xx) — QCoh(X)x
C = (]*C’ IOC)

where pc is the composition K — Oy ® K — End(j.C).

Under this equivalence, the two functors j, and “Forget” coincide; moreover,
always under the same equivalence, both j* and — ® K are left adjoint to j., hence
they also coincide.
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Thus all of this also holds for the corresponding derived categories; hence
the statement follows since Dqcon(X) = D(QCoh(X)) for X quasi compact and
separated. O

Corollary 3.7. Let X be a quasi compact, separated scheme over a field k. Let
K =k(T)or K =k(T,T'). The map

Dqcon(Xk) —> (Docon(X))k
C* — (Forget(C*), pc)

is essentially surjective, where pc is the obvious K-structure on C.

Moreover, if L is a finite separable extension of K = k(T) with L = K(a) =
K[T]/P(T) then we can lift an object (C*®, pc) € (Dqcon(X))r to an object N*®
of Dqcon(X k) endowed with a map ¥ € End(N*®) such that P(V) induces the zero
map on all cohomology groups of N°.

Proof. By Lemma 3.6, there is an equivalence between Dqcon(X k) and D(QCoh(X) k),
hence it is sufficient to show that the map

D(QCoh(X)k) — (D(QCoh(X)))k
C*® + (Forget(C®), pc)
is essentially surjective.

Let A = QCoh(X). This category satisfies AB5, hence Theorem 3.1 applies in
this case. O

4. A representability theorem for derived categories

The results of the previous section will become handy to study functors from
Dgoh (X), where X is defined over a field &, to a vector space over a bigger field in
light of the following theorem:

Theorem 4.1. Let k be a field, A be a k-linear abelian category satisfying ABS, and
let k — K an inclusion of fields. Let D(A)€ denote the full subcategory of compact
objects in D(A).

Given an exact, contravariant functor

F : D(A)° — modg
there exists a T € D(A)k such that
F(C) =Morp)(C ® K, T)
forall C € D(A)°.
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To prove this we will use the ideas from [4, Lemma 2.14] where the version of
this theorem with & = K has been proved for a general triangulated category.

Proof of Theorem 4.1. Let D be the functor taking a K-vector space to its dual.
Then G = D o F is exact and covariant. Let 7 be the cocomplete triangulated
subcategory generated by D(#4)¢, i.e. the smallest full triangulated subcategory
of D(+A) containing D ()¢ which is closed under colimits.

Let G : T — Mod x be the Kan extension of G to 7: this is defined as

G(C) = coli .
(&) %ogrcn G(B)
BeD(A)°

Since G is exact and commutes with coproducts, it follows that D o G is exact
and takes coproducts to products. Hence by the Brown representability theorem
[7, Theorem 8.3.3] the functor D o G is representable, as a functor to Mod, , by an
object U € T C D(A).

The K-action on Mod g induces a K-action p on D o G = hy, hence by Yoneda

we get a K-action p on U, given by K 2 Nat(hy, hy) = Aut(U). Therefore we
obtain an object (U, p) € D(4)k. We need to show that

D 0 G(C) = Morp(a), (C ® K, (U, p))

for all C € D(A)°.
To do so, first of all notice that as k-vector spaces

D 0 G(C) = Morp)(C.U) = Morp() (C ® K. (U, p))

because K ®; — is left adjoint to the functor forgetting the K-structure. By our
deﬁni~tion of the K-action on Morp)(C, U), this is the same as the K-action on
D o G(C); moreover the k-vector space map

Mor ) (C, U) 5 Morpy  (C ® K, (U, p))
f=f®p
is compatible with the K-action since, for any o € K,
v(a- f) =y@@)f) =p)f@pC)=f&p@pl)=a- (fp()
hence we found that the two actions coincide and so
D o G(C) = Morp . (C ® K, (U, p)).
Let T = (U, p). Now since F is of finite type, we get

F(C)=(DoDoF)C)=(DoG)C)
= (Do G)(C)=Morpu(C®K,T). O
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Lemma 4.2. Let k and K be two fields, k — K. Consider the equivalence of
categories

0
D®(mod(A)) = D®(Coh(P}))
as described in [1].
Then there is also an equivalence of categories
b Ok b n
D®(mod(A ® K)) — D”(Coh(Pg))
and the diagram

DP(mod(A)) —— D?(Coh(P}))

| |

D?(mod(A ® K)) %> D?(Coh(P}))

Is commutative.

Proof. By [1], we have A = End(M) where M = P]_, (9]}»]1(1 (i). Set Mg =
B o Opx (i), then

Endpy, (Mx) = Endpy, ( D 0py (z')) — @ Endpy (951, (). Op, ()
i=0 i,j=0
n

n
= P Kixo.....xn)j—i = @ klxo.....xn] ;- ® K

i,j=0 i,j=0
n
= ( . k[xo,...,xn]j_i)(X)K:A@K
i,j=0

Moreover, the equivalence 8 is induced by the map

- M
mod(A) —2% Coh(P}")

and if we let h : Pg — P! be the base change morphism, we obtain the following
commutative diagram:

mod(A) Lf“’“)

@Kl

mod(A ® K)

Coh(P})

I

Coh(P2)

—®AQK Mx
—_—

this proves the last assertion. O
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We are now almost ready to prove Theorem 1.1, but first we will prove the version
of the theorem for the purely transcendental case. The following proof uses ideas
from [3, Theorem A.1].

Theorem 4.3. Let X be a smooth projective variety over a field k. Let K = k(T) or
K = k(T, T’). Consider a contravariant, cohomological, finite type functor

H : D¢y (X) — modg

Then the complex T of Theorem 4.1 lifts to a complex S € Dgoh (Xk) such that H is
representable by S, i.e. for every C € Dgoh (X) we have

H(C) = MongOh(XK)(Lj CS)
where j : Xxg — X is the base change morphism.

Proof. By Lemma 4.1, the functor H is representable by an element 7 €
(Dqcon(X)) k. ie.

H(C) = MOI‘(DQCOh(X))K(C ® K, T)

Let S be a lift of T to Dgcon(X k) (this is possible by Corollary 3.7). Let C be
an element of Dgoh(X ). By applying the functors in Lemmas 3.1 and 3.6 we get a
K-linear map

. w() .
MorDQCDh(XK)(L-] *C, S) — Mor(DQCoh(X))K (WolLj *C, T)
and, since by Lemma 3.6, Vo Lj*C = C ® K, we have
Mor(DQCOh(X))K(\IJ O Lj*C, T)= Mor(DQCoh(X))K (C®K,T)=H(C)

Hence to show that H is represented by S we just need to show that W(-) is an
isomorphism. It suffices to show that it is an isomorphism of k-vector spaces, which
follows from the following diagram of k-vector spaces:

. w() .
MorDQCoh(XK)(L-] *C, S§)——— Mor(DQCoh(X))K (Vo Lj *C, T)

Morp e, (x)(C. RjxS) Mor(pocon(x))x (C ® K, T)

Mor p e (x) (C, Forget(W(SS))) === Mor(pyc,,(x)) (C, Forget(T))

here we used the fact that Rj, = Forget o W, again from Lemma 3.6.
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So W(-) is an isomorphism, and hence H is represented by S € Dqcon(Xk). We
still have to show that S is actually in Dgoh (Xk).
Choose an embedding 7 : X — P!'. Let H' = H o Lm™. Let

0: D®(mod(A)) — D®(Coh(P})) and Og: D®(mod(A®K)) — D?(Coh(PL))

as defined in Lemma 4.2 above. Let H” = H' o 6. Let h : P — P} be the base
change morphism.
Consider the following diagram:

H//
H/

0

D?(mod(A)) D?(Coh(P)) £~ Db (X) —> Vect

—®Kl h*l LJ*L
L *

D?(mod(A ® K)) —X~ Db (Coh(PL)) —% Db, (X)

and let C € D?(Coh(PP})).

H'(C) = H(L7*(C)) = Morpyc,(xg)(Lj*L7*C, S)
= MOrDQCOh(XK)(LT[I*(h*C, S) = MorDQCoh(PIn()(h*C’ RJTK*S)

so H' is represented by Rg«S € Dqcon(PR).
Let V = 0 (Rg+«(S)) so that H” is represented by V. Then

H"(A) = Morpagx (A ® K, V)
and

Y dimH"(A[n]) = ) dimMor(A[n] ® K. V)

- ZdimMor((A ® K)[n],V) < o0

since H" is of finite type. Therefore V € D?(mod(A ® K)).
This implies that RS € D?(Coh(P2)) hence S € D?(Coh(Xk)). O

Proof of Theorem 1.1. The case where L is purely transcendental of degree 2 over k
was treated in Theorem 4.3. Let L be a finitely generated separable field extension
of k with trdeg;, L < 1. There exists a field K such that K is a purely transcendental
extension of k of degree less than or equal 1, and K C L is a finite extension.
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Set L = K(x) = K[T]/P(T), where P(T) is a separable polynomial. Consider the
composition

H/

H Forget
Dgoh(X) —mod; — modg

By Theorem 4.3, H’ is representable by an object S € Dgoh(X k). Moreover, by
Corollary 3.7, S is endowed with a map 1, such that P(y,) = 0 is zero on all the
cohomology groups of .

First of all, this implies that there exists an n such that P(y¥,)" = 0. In fact,
considering the good truncations 7<; S,

N e A |}
the claim follows inductively considering the distinguished triangles
T<i1S = 1< S — H'(S)[~i]

and recalling the fact that if (f1, f2, f3) is a morphism between two triangles and
two of the morphisms are nilpotent, then so is the third.

Now let & : X1 — Xk be the base change morphism, and consider the pullback
Lh*S € ch’oh(XL). It has an L[T] action induced by the morphism LA*,, and
P(Lh*vyry)" = 0 so Lh*S has in fact an L[T]/P"(T)-action. But since P is
a separable polynomial, the map L[T]/P"(T) — L[T]/P(T) splits as L-algebra
map hence L[T]/P(T) also acts on Lh*S.

Since, over L, P(T) factors as (T — «) Q(T), we can find two elements e, e,
of L[T]/P(T) such that ef = ey, e% = ey, e1ep = 0, e + e, = 1. But
since L[T]/P(T) acts on Lh*S, this gives two idempotent operators e;, e, in
AuthOh(XL)(Lh*S) such that eje; = 0, €1 + e = idpp+s.

Now since Dgoh (X) is Karoubian by [2, Proposition 3.2] we have obtained that
Lh*S = E & S, and Lh*y, acts as multiplication by « on E.
We claim that Rh« E = S. Consider the map

S — RhoLh*S £ Rh,E
Under the identification Dqcon(X 1) N D(QCoh(X)y) this corresponds to

S - S ® L — Forget(E),

so this is actually the identity map on S.
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Then for every C € Dgoh (X) we have a map of L-vector spaces
MOI‘DQCUh(XL)(Lj*C, E) — Mor(DQCnh(X))L(C ® L, T) = H(C)

where j : X; — X is the base change morphism, since E is a lift of S to Dgoh(X L)
with the correct L-action. This map is an isomorphism because it is an isomorphism
of K-vector spaces:

MOI‘DQCOh(XL)(Lj*C, E) = MOI’(DQCUh(XK))(Ll'*C, Rh*E)
= Mor(DQCOh(XK))(Li*C, S) = H/(C)

where i : Xg — X is the base change morphism. O

Proof of Theorem 1.2. Consider the composition
F j* HO D
D(bioh(X) - Dgoh(y) — Dgoh(n) —— mod g (yy —> mod gy,

H

where H%(—) = H°(n,—) and D is the dual as K(Y)-vector space. H is an
exact contravariant finite type functor, hence by Theorem 1.1 it is representable by
E € D&, (Xk))-

Now consider the following diagram:

Xk() n
oo

il Xxy 25y
o

X ——— Speck

Both squares are cartesian because Xgy) = X Xgpeex K(Y) = X x Y xy n.
Note that g is a flat map, so the derived pullback is just regular pullback in every
degree. Also, g is an affine map so that pushforward is also exact.

Let EY = RHomy .. (E,Oxgy,)- Letus construct a complex

Ae Db, (X xY)

such that

Let £ € Coh(X x Y) be a line bundle such that

EY ® wx g, [dimX g ® g*£®" € DEy (X k)
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is generated by its global sections in each degree. Let {s; ¢} be a set of generators in
degree £. Consider the complex

g*(EV ® WX kv [dimXK(Y)] by g*;ﬁ@n)
on Dgoh (X x Y). Then take the subcomplex generated in each degree by

{gxSi 0} Uigsdsi1},

and twist it down by £7". This gives the desired complex A € Dgoh (X xY).
Then we get the following:
H®o0i*o®4(C) = HY%*Rmau(A @ 1} C)
= H°Rp.(g*A® g*n}C) (by flat base change)
= HRp«(EY ® wx gy, [dim Xg(r)] ® j*C)
= Mor(Qy. Rp«(EY ® wx gy, [dim Xgy)] ® j*C))
= Mor(p* Oy, EY ® wx gy, [dim Xg)] ® j*C)
= Mor(Ox gy, EY ® 0x gy, [dim Xgyy] ® j*C)
= Mor(E, wx gy, [dim Xgy)]| ® j*C)
= D oMor(j*C, E)
= Do H(C)
=H%i*o F(C)
for every C € Dgoh (X).
Now since F is an exact functor,
H'oi*oF = H°i* o F(C)[i]) = H°(* o F(C[i]))
= H(i* 0 ®4(C[i])) = H°(i* o D4(O)[i])
= H' 0i* o ®4(C)
Hence, since all cohomology groups agree and Dgoh(K (Y)) is equivalent to the

category of graded vector spaces over K(Y), F and ® 4 agree after restricting to the
generic point of Y. O
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