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Representability of cohomological functors over extension fields

Alice Rizzardo

Abstract. We generalize a result of Orlov and Van den Bergh on the representability of a
cohomological functor H W Db

Coh.X/ ! modL to the case where L is a field extension of the
base field k of the variety X , with trdegkL � 1 or L purely transcendental of degree 2.

This result can be applied to investigate the behavior of an exact functor F W Db
Coh.X/ !

Db
Coh.Y / with X and Y smooth projective varieties and dim Y � 1 or Y a rational surface.

We show that for any such F there exists a “generic kernel” A in Db
Coh.X � Y /, such that F

is isomorphic to the Fourier–Mukai transform with kernel A after composing both with the
pullback to the generic point of Y .
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1. Introduction

Let X be a smooth projective variety over an algebraically closed field k. In this
paper we will generalize a result of Orlov and Van den Bergh [4, Lemma 2.14] on
the representability of a functor H W Db

Coh.X/ ! modk to the case of an extension
field k � L:

Theorem 1.1. Let X be a smooth projective variety over a field k. Let L be a
finitely generated separable field extension of k with trdegk L � 1, or a purely
transcendental field extension of transcendence degree 2 over k. Consider a
contravariant, cohomological, finite type functor

H W Db
Coh.X/! modL

Then H is representable by an object E 2 Db
Coh.XL/, i.e. there exists E such that

for every C 2 Db
Coh.X/ we have

H.C/ D MorDb
Coh.XL/

.j �C;E/

where j � W XL ! X is the base change morphism.
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An interesting example of a functor as in Theorem 1.1 can be obtained from an
exact functor F W Db

Coh.X/! Db
Coh.Y / between the bounded derived categories of

two smooth projective varietiesX and Y , where dimY � 1 or Y is a rational surface.
To produce a functor as in the above theorem, we compose F with the pullback to
the generic point of Y , take cohomology, then dualize to get a contravariant functor:

Db
Coh.X/

H

44
F // Db

Coh.Y /
i� // Db

Coh.�/
H0
// modK.Y /

D // modK.Y /

Theorem 1.1 will thus allow us to tackle the question of whether a functor between
the bounded derived categories of two smooth projective varieties is representable
by a Fourier–Mukai transform. When dimY � 1 or Y is a rational surface we can
answer positively to the question above after restricting to the generic point of Y :
Theorem1.2. LetX ,Y be smooth projective varieties over a fieldk, where dimY � 1
or Y is a rational surface. Consider a covariant exact functor

F W Db
Coh.X/! Db

Coh.Y /

let i W � ! Y the inclusion of the generic point of Y . Then there exists an object
A 2 Db

Coh.X � Y / such that

i� ı F D i� ıˆA;

where ˆA.�/ WD Rp2�.A
L
˝ Lp�1 .�// is the Fourier–Mukai trasform with kernel A

and p1 W X � Y ! X , p2 W X � Y ! Y are the projection morphisms.
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2. The base change category

In what follows, an abelian category A does not automatically have any limits or
colimits apart from the finite ones.

Given a field K, we will denote with modK the category of finite dimensional
K-vector spaces, whereas ModK will denote the category of possibly infinite-
dimensional K-vector spaces. D.A/ will denote the derived category of an abelian
category A.
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Given an R-linear abelian category A and an inclusion of rings R ,! S , we can
define the base change category AS as in [6, §4]:
Definition 2.1. The category AS is given by pairs .C; �C / where C 2 Ob.A/ and
�C W S ! HomA.C; C / is an R-algebra map such that the composition R ! S !

HomA.C; C / gives back the R-algebra structure on A. The morphisms in AS are
the morphisms in A compatible with the S -structure.
Definition 2.2. For each element C 2 A, the functor

C ˝R � W mod.R/! A

is the unique finite colimit preserving functor with C ˝R D C .
This gives for each finitely presented R-algebra S a functor

�˝ S W A! AS

to the base change category AS .
Proposition 2.3 ([6, Proposition 4.3]). The functor � ˝ S is left adjoint to the
forgetful functor

Forget W AS ! A

.C; �C / 7! C

Whenever the context is clear, given an object B 2 AS , we will still denote by B
the corresponding object of A obtained via the forgetful functor.

For the purposes of this discussion we will need a more general setting for base
change — specifically, we need to be able to talk about base change for a bigger
category of rings and not just the ones that are finitely presented over the base. Let
us extend Definition 2.2 as follows:
Definition 2.4. Let A be an R-linear abelian category satisfying AB5. Using the
fact that anyR-module is the filtered colimit of finitely presentedR-modules, we can
extend definition 2.2 to the general case of

�˝ S W A! AS

for any R-algebra S .
The notion of base change category can be extended to the case of the derived

categoryD.A/ of an abelian R-linear category A in the obvious way:
Definition 2.5. Given an inclusion of rings R ,! S , the category D.A/S is given
by pairs .C; �C / where C 2 Ob.D.A// and �C W S ! HomD.A/.C; C / is an R-
algebra map such that the composition R ! S ! HomD.A/.C; C / gives back the
R-algebra structure onD.A/. The morphisms inD.A/S are the morphisms inD.A/
compatible with the S -structure.
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Again, we have a notion of tensor product:
Definition 2.6. LetR be a ring, letA be anR-linear abelian category satisfying AB5,
and let C � be a complex of objects in A:

C � D � � � ! C i�1
d i�1

���! C i
d i

�! C iC1 ! � � �

Let S be a ring, with a map R ,! S . Then we can define C � ˝ S , as an object
ofD.AS /, as

C � ˝ S D � � � ! C i�1 ˝ S
d i�1˝1
�����! C i ˝ S

d i˝1
���! C iC1 ˝ S ! � � �

The complex C � ˝ S can also be considered as an object ofD.A/S .
Remark 2.7. Suppose that A is a k-linear abelian category satisfying AB5 and
k � K is an extension of fields. In the situation of Definitions 2.4 and 2.6, similarly
to the case of 2.3, it is easy to show that again tensoring with K is left adjoint to the
forgetful functor
� as a functor A! AK ;
� as a functorD.A/! D.AK/;
� as a functorD.A/! D.A/K .
Remark 2.8. Let R be a ring, let A be an R-linear abelian category satisfying AB5,
and let C � be a complex of objects in A,

C � D � � � ! C i�1
d i�1

���! C i
d i

�! C iC1 ! � � �

Let S � R a multiplicative system. In this case C �˝R S�1R, as an object ofD.A/,
is the same as

� � � ! colim
f 2S

f �1C i�1
d i�1

���! colim
f 2S

f �1C i
d i

�! colim
f 2S

f �1C iC1 ! � � �

where colimf 2S f �1C i is obtained by taking for every f 2 S a copy of C i and as
morphisms only the maps

f �1 C i �! .fg/�1 C i

given by multiplication by g W C i ! C i .
Lemma 2.9. In the situation of the remark above, if for every element f 2 S the
multiplication by f is a quasi-isomorphism of C �, then the map

C � ! C � ˝R S
�1R

is a quasi-isomorphism inD.A/.
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Proof. Since taking cohomology commutes with directed colimits we have

H i .C � ˝R S
�1R/ D colim

f 2S
f �1H i .C �/

but since multiplication by any g 2 S is a quasi-isomorphism we get

f �1H i .C �/
Š

g
// .fg/�1H i .C �/

hence the cohomology of C � ˝R S�1R consists of only one copy of H i .C �/, and
the map C � ! C � ˝R S

�1R is a quasi-isomorphism.

3. A result on base change for derived categories

The purpose of this section is to analyze the functor D.AK/ ! D.A/K that sends
an object in D.AK/ to the same object considered as an object of D.A/, together
with its K-action. Specifically, we will prove the following:

Theorem 3.1. Let A be a k-linear abelian category satisfying AB5, where k is a
field. Let K D k.T / or K D k.T; T 0/. Then the functor

D.AK/! D.A/K

C � 7! .C �; �C /

is essentially surjective, where �C W K ! Aut.C �/ is the obvious map.
Moreover, if L is a finite separable extension of K D k.T / with L D K.˛/ D

KŒT �=P.T / then we can lift an object .C �; �C / 2 D.A/L to an objectN � ofD.AK/

endowed with a map  ˛ 2 End.N �/ such that P. ˛/ is zero on all cohomology
groups, and the action of  ˛ on N � corresponds to the action of ˛ on C �.

A stronger results for the case of a finite extension K=k was obtained in [8]. In
this case, there is actually an equivalenceD.AK/! D.A/K .

The proof of this theorem will be carried out in several steps. First we will notice
that, in the purely transcendental case K D k.T; T 0/, this comes down to lifting the
actions of the two variables T and T 0 on a complex C � 2 D.A/K , given by �C .T /
and �C .T 0/, to actions coming from morphisms in A that commute with each other.

Then in Lemma 3.3 we will tackle the case of one variable and obtain a complex
M � 2 D.AkŒT �/ with a quasi-isomorphism to C � as objects of D.A/, and such
that the T -actions on M � and C � cohincide. At this point, since �C .T / is an
automorphism of C �, tensoring with k.T / will give us a complex in D.Ak.T //

which is still quasi-isomorphic to C �.
A similar process can be repeated twice, as we will show in Lemma 3.4.
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Lemma 3.2. Let enD.A/ be the category whose
(1) Objects are pairs

.C; '1; : : : ; 'n/

where E 2 Ob.D.A//, 'i 2 EndD.A/.C / for all i , and 'i commutes with 'j
for all i; j ;

(2) Morphisms
a W .C; '1; : : : ; 'n/! .C 0; '01; : : : ; '

0
n/

are elements a 2 HomD.A/.C; C 0/ such that a ı 'i D '0i ı a.
Consider the full subcategory enD0.A/ � enD.A/ whose objects consist of those
pairs .C; '1; : : : ; 'n/ such that for every nonzero f 2 kŒT1; : : : ; Tn� the map

f .'1; : : : ; 'n/ W C ! C

is an isomorphism inD.A/.
The category D.A/k.T1;:::;Tn/ is equivalent to the category enD0.A/. The

equivalence is given by the functor

D.A/k.T1;:::;Tn/ �! enD0.A/; .C; �C / 7�! .C; �C .T1/; : : : ; �C .Tn//:

Proof. The equivalence is given by the inverse functor

enD0.A/ �! D.A/k.T1;:::;Tn/

.C; '1; : : : ; 'n/ 7!

�
C;

�C W k.T1; : : : ; Tn/ ! Aut
Ti 7! 'i

�
:

Lemma 3.3. Let A be a k-linear abelian category satisfying AB5, where k is a
field. Let C � be a complex in D.A/. Let ' 2 HomD.A/.C �; C �/. Then there
exists a complex M � 2 D.AkŒT �/ and a quasi-isomorphism C � ! M � as objects
ofD.A/ such that the action of multiplication by T onM � corresponds to the action
of multiplication by ' on C �.

Note that when A is a Grothendieck category, the same result can be achieved by
considering the morphism corresponding to ' on a K-injective replacement of C �
(which exists by [5, Prop. 3.2]) and defining the action of T accordingly. However,
in what follows we will need this specific form for the complexM �.

Proof. The map ' W C � ! C � in D.A/ corresponds to a diagram of complexes
inD.A/

Q�

u

}}

'0

!!
C �

' // C �

where u is a quasi-isomorphism.
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Let C �ŒT � D C � ˝k kŒT � as a complex inD.AkŒT �/. Consider the morphism

' ˝ 1 � 1˝ T W C �ŒT �! C �ŒT �

inD.AkŒT �/. This can be represented by actual maps of complexes

Q�ŒT �

u˝1

zz

'0˝1�u˝T

$$
C �ŒT �

'˝1�1˝T // C �ŒT �

The map '0˝ 1� u˝ T is injective on all cohomology objects: to prove this we
need to show that

'0 ˝ 1 � u˝ T W H r.Q�ŒT �/! H r.C �ŒT �/

is injective for every r .
Let ˛ 2 H r.Q�ŒT �/, ˛ ¤ 0, then

˛ D

nX
iD0

˛iT
i

where all of the ˛i are different from zero inH r.Q�/. If

0 D .'0 ˝ 1 � u˝ T /˛ D

nX
iD0

'0.˛i /T
i
�

nX
iD0

u.˛i /T
iC1

then the only term of degree nC1 in T , u.˛n/T nC1, must be zero inH r.C �/, hence
u.˛n/ D 0, hence ˛n D 0 since u is a quasi-isomorphism. This contradicts our
assumption that ˛i ¤ 0 8i , and so this proves injectivity.

Now set
M � D Cone.Q�ŒT �

'0˝1�u˝T
��������! C �ŒT �/

Then we have a distinguished triangle

Q�ŒT �
'0˝1�u˝T
��������! C �ŒT � �!M � �! .Q�ŒT �/Œ1� (3.1)

and by injectivity of the map '0 ˝ 1 � u˝ T on the cohomology objects we get a
short exact sequence in cohomology

0! H r.Q�ŒT �/
'0˝1�u˝T
��������! H r.C �ŒT �/ �! H r.M �/! 0

hence we get

H r.M �/ D Coker.H r.Q�ŒT �/
'0˝1�u˝T
��������! H r.C �ŒT �//

for any r .
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Now consider the composition

C � �! C �ŒT �
c
�!M �:

This map is a quasi-isomorphism; to prove this we just need to show that under
the map above,

H r.C �/ Š Coker.H r.Q�ŒT �/
'0˝1�u˝T
��������! H r.C �ŒT �//

for every r .
Proceed as follows: first of all, considered as a sub-object of H r.C �ŒT �/ via

the obvious map C � ! C �ŒT �, H r.C �/ is not in the image of '0 ˝ 1 � u ˝ T ,
since, for any element ˛ D

Pn
iD1 ˛iT

i of H r.Q�ŒT �/, its image
Pn
iD1 '.˛i /T

i �Pn
iD0 u.˛i /T

iC1 is either zero or has a nonzero term of positive degree. To prove
that any term of positive degree ˇ D

Pn
iD1 ˇiT

i is in the image up to an element
of degree zero, notice that it can be written as an element of lower degree plus an
element of the image as follows:

nX
iD0

ˇiT
i
D

nX
iD0

ˇiT
i
� .'0 ˝ 1 � u˝ T /.u�1.ˇn/T

n�1/

C .'0 ˝ 1 � u˝ T /.u�1.ˇn/T
n�1/

D

nX
iD0

ˇiT
i
� '0.u�1.ˇn//T

n�1

C ˇnT
n
C .'0 ˝ 1 � u˝ T /.u�1.ˇn/T

n�1/

D

n�1X
iD0

ˇiT
i
� '0.u�1.ˇn//T

n�1
C .'0 ˝ 1 � u˝ T /.u�1.ˇn/T

n�1/

Hence we found a complexM � 2 D.AkŒT �/ which is quasi-isomorphic to C � as
an object of D.A/; moreover the action of multiplication by ' on C � corresponds
to the action by multiplication by T on M �, because the following diagram is
commutative inD.A/:

C � //

'

��

C �ŒT �
c //

'˝1

��

M �

T

��
C � // C �ŒT �

c //M �

this follows from the fact that

c ı .1˝ T / � .' ˝ 1/ ı c D .1˝ T / ı c � .' ˝ 1/ ı c

D .1˝ T � ' ˝ 1/ ı c D 0

since those are two consecutive maps in a triangle.
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Lemma 3.4. Let A be a k-linear abelian category satisfying AB5, where k is a field.
Let C � be a complex inD.A/.

Let ' 2 HomD.A/.C �; C �/ such that f .'/ is an isomorphism for all f 2 kŒT �
monic. Then there exists a complex N � 2 D.Ak.T // and a quasi-isomorphism
C � ! N � as objects of D.A/ such that the action of multiplication by T on N �
corresponds to the action by multiplication by ' on C �.

Likewise, let '; 2 HomD.A/.C �; C �/ such that ' and  commute with
each other and such that f .';  / is a quasi-isomorphisms for all f 2 kŒT; T 0�
nonzero. Then there exists a complex N � 2 D.Ak.T;T 0// and a quasi-isomorphism
j W C � ! N � as objects ofD.A/ such that the action ofmultiplication byT (resp.T 0)
on N � corresponds to the action by multiplication by ' (resp.  ) on C �.

Proof. By Lemma 3.3 we can find a complexM � 2 AkŒT � and a quasi-isomorphism
j W C � ! M � as objects of D.A/ such that the action of multiplication by T
on M � corresponds to the action by multiplication by ' on C �. This implies that
multiplication by f .T / gives a quasi-isomorphism ofM � for all f monic.

Now let N � WD M � ˝kŒT � k.T / as in Definition 2.6 above. This is a complex in
D.Ak.T // and it is quasi-isomorphic to C � as objects ofD.A/, by Lemma 2.9. The
action of ' on C � corresponds to the action of T on N �.

For the second case, again by Lemma 3.3 we can find a complex M � 2 AkŒT �

and a quasi-isomorphism j W C � ! M � as objects of D.A/ such that the action of
multiplication by T onM � corresponds to the action by multiplication by ' on C �.

Moreover, we have an exact triangle

C �ŒT �
'˝1�1˝T
�������! C �ŒT � �!M �

inD.AkŒT �/, see (3.1).
Then, since ' and  commute with each other, we get a diagram inD.AkŒT �/:

C �ŒT �
'˝1�1˝T //

 ˝1

��

C �ŒT �

 ˝1

��
C �ŒT �

'˝1�1˝T // C �ŒT �

This diagram is commutative: this follows from the fact that ' ı D  ı' inD.A/,
hence ' ˝ 1 D  ' ˝ 1 in D.AkŒT �/. Therefore we can find a map Q onM � so
that the following diagram commutes:

C �ŒT �
'˝1�1˝T //

 ˝1

��

C �ŒT �

 ˝1

��

//M �

Q 

��

// .C �ŒT �/Œ1�

 ˝1

��
C �ŒT �

'˝1�1˝T // C �ŒT � //M � // .C �ŒT �/Œ1�
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it follows that the action of Q onM � is the same as the action of  on C �, thanks to
the commutativity of

C � //

 

��

C �ŒT � //

 ˝1

��

M �

Q 

��
C � // C �ŒT � //M �

taking into account the fact that, as we mentioned already, the composition of the
two horizontal maps is a quasi-isomorphism. As before we can then construct
P � D M � ˝kŒT � k.T /, which is quasi-isomorphic to M � and hence we get a
corresponding map Q W P � ! P �.

So we are in the following situation: we have a complex P � 2 D.Ak.T // and a
map Q W P � ! P � so that f . Q / is a quasi-isomorphism for all f 2 k.T /ŒT 0�monic.
By Lemma 3.3 again, we get a complex Q� 2 D..Ak.T //k.T /ŒT 0�/ D D.Ak.T /ŒT 0�/

which is quasi-isomorphic to P �.
Then define

N � WD Q� ˝k.T /ŒT 0� k.T; T
0/:

ByLemma2.9, sincef .T;  / is a quasi-isomorphisms for all nonzerof2k.T /ŒT 0�,
the complexN � 2 D.Ak.T;T 0// is quasi isomorphic toQ� as objects ofD.Ak.T /ŒT 0�/

hence it is quasi-isomorphic to C � as objects of D.A/. The action of ' and  
correspond to the action of T and T 0 respectively.

The last thing we need to do is to tackle the case of a general separable field
extension of transcendence degree one, corresponding to the last statement of
Theorem 3.1:
Lemma 3.5. Let A be a k-linear abelian category satisfying AB5, where k is a
field. Let C � be a complex in D.A/. Let '; 2 HomD.A/.C �; C �/ such that '
and  commute with each other, and such that f .'/ is a quasi-isomorphisms for all
f 2 kŒT � monic and there exists an irreducible P 2 kŒT; T 0� with P.'; / D 0.

Then there exists a complex N � 2 D.Ak.T // and a quasi-isomorphism
j W C � ! N � as objects ofD.A/ such that the action of multiplication by T on N �
corresponds to the action bymultiplication by' onC �. Moreover there is amorphism
Q 2 End.N �/ such that the action of  on C � corresponds to the action of Q onN �
and P.T; Q / induces the zero map on all cohomology groups of N �.

Proof. By Lemma 3.3 we can find a complexM � 2 AkŒT � and a quasi-isomorphism
j W C � !M � as objects ofD.A/ such that the action of multiplication by T onM �
corresponds to the action by multiplication by ' on C �.

Moreover, we have an exact triangle

C �ŒT �
'˝1�1˝T
�������! C �ŒT � �!M �

inD.AkŒT �/, see (3.1).
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Then, since ' and  commute with each other, we get a commutative diagram
inD.AkŒT �/

C �ŒT �
'˝1�1˝T //

 ˝1

��

C �ŒT �

 ˝1

��
C �ŒT �

'˝1�1˝T // C �ŒT �

Therefore we can find a map Q onM � so that the following diagram commutes:

C �ŒT �
'˝1�1˝T //

 ˝1

��

C �ŒT �

 ˝1

��

//M �

Q 

��

// .C �ŒT �/Œ1�

 ˝1

��
C �ŒT �

'˝1�1˝T // C �ŒT � //M � // .C �ŒT �/Œ1�

Since P.T; / D 0, we obtain that P.' ˝ 1;  ˝ 1/ D 0 in D.AkŒT �/, hence
P.T; ˝ 1/ is zero on C ŒT �.

As before we can construct N � D M � ˝kŒT � k.T /, which is quasi-isomorphic
to M � and hence we get a corresponding map Q W N � ! N � and the action of  
on C � corresponds to the action of Q on N �.

Finally, since P.T; ˝ 1/ is zero on C ŒT �, it follows that P.T; Q / D 0 induces
the zero map on all cohomology ofM � and hence of N �.

We are now ready to prove Theorem 3.1:

Proof of Theorem 3.1. By Lemma 3.2, we just need to show that the functors

D.AK/! e1D0.A/

C � 7! .C �; �T /

and

D.AK/! e2D0.A/

C � 7! .C �; �T; �T 0/

are essentially surjective.
Let .E; '/ 2 e1D0.A/. Then by Lemma 3.4 there existsN � 2 Ak.T / such thatN

is quasi isomorphic to E and the action of ' on E� corresponds to the action of T
on N �. This proves the case i D 1.

Similarly, let .E; '; '0/2e2D0.A/. Then byLemma3.4 there existsN �2Ak.T;T 0/

such thatN is quasi isomorphic to E and the action of ' and '0 on E� correspond to
the action of T and T 0 respectively on N �. This proves the case i D 2.

The last part follows from Lemma 3.5 by setting  ˛ WD Q .
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Let us now apply this theorem to the case A D QCoh.X/, where X is a
quasi-compact, separated scheme over a field k. This is possible since QCoh.X/
satisfies AB5. Moreover, note that in this case we have an equivalence DQcoh.X/ Š

D.Qcoh.X//. As a preliminary step, we will prove the following technical lemma:
Lemma 3.6. Let k � K be a field extension, X a quasi-compact and separated
scheme. Let XK

j
! X the base change morphism. Then there is an equivalence of

categories
DQCoh.XK/

‰
�! D.QCoh.X/K/

under this equivalence, the functors

Lj �; � ˝K W DQCoh.X/! D.QCoh.XK//
and Rj�;Forget W DQCoh.XK/! D.QCoh.X//

coincide.
In other words,

Rj� D Forget ı‰ W D.QCoh.X/K/! DQCoh.X/

‰ ı Lj � D �˝K W DQCoh.X/! .DQCoh.X//K :

This is summarized in the following diagram:

DQCoh.X/

˝K

		
Lj�

vv

.DQCoh.X//K

Forget

JJ

DQCoh.XK/ D D.QCoh.XK//

‰

OO
j�

66

Proof. There is an equivalence of categories induced by j� between quasi-coherent
OXK

-modules and quasi-coherent j�OXK
-modules on X. But j�OXK

D OX ˝ K

and an .OX ˝ K/-module is the same thing as an OX -module with a K-structure
which is compatible with its k-structure.

Hence we get an equivalence

‰ W QCoh.XK/! QCoh.X/K
C 7! .j�C; �C /

where �C is the composition K ! OX ˝K ! End.j�C/.
Under this equivalence, the two functors j� and “Forget” coincide; moreover,

always under the same equivalence, both j � and �˝K are left adjoint to j�, hence
they also coincide.
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Thus all of this also holds for the corresponding derived categories; hence
the statement follows since DQCoh.X/ D D.QCoh.X// for X quasi compact and
separated.

Corollary 3.7. Let X be a quasi compact, separated scheme over a field k. Let
K D k.T / or K D k.T; T 0/. The map

DQCoh.XK/ �! .DQCoh.X//K

C � 7! .Forget.C �/; �C /

is essentially surjective, where �C is the obvious K-structure on C .
Moreover, if L is a finite separable extension of K D k.T / with L D K.˛/ D

KŒT �=P.T / then we can lift an object .C �; �C / 2 .DQCoh.X//L to an object N �
of DQCoh.XK/ endowed with a map Q 2 End.N �/ such that P. Q / induces the zero
map on all cohomology groups of N �.

Proof. ByLemma3.6, there is an equivalence betweenDQCoh.XK/ andD.QCoh.X/K/,
hence it is sufficient to show that the map

D.QCoh.X/K/! .D.QCoh.X///K
C � 7! .Forget.C �/; �C /

is essentially surjective.
Let A D QCoh.X/. This category satisfies AB5, hence Theorem 3.1 applies in

this case.

4. A representability theorem for derived categories

The results of the previous section will become handy to study functors from
Db

Coh.X/, where X is defined over a field k, to a vector space over a bigger field in
light of the following theorem:
Theorem 4.1. Let k be a field, A be a k-linear abelian category satisfying AB5, and
let k ,! K an inclusion of fields. LetD.A/c denote the full subcategory of compact
objects inD.A/.

Given an exact, contravariant functor

F W D.A/c ! modK

there exists a T 2 D.A/K such that

F.C/ D MorD.A/K .C ˝K;T /

for all C 2 D.A/c .
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To prove this we will use the ideas from [4, Lemma 2.14] where the version of
this theorem with k D K has been proved for a general triangulated category.

Proof of Theorem 4.1. Let D be the functor taking a K-vector space to its dual.
Then G D D ı F is exact and covariant. Let T be the cocomplete triangulated
subcategory generated by D.A/c , i.e. the smallest full triangulated subcategory
ofD.A/ containingD.A/c which is closed under colimits.

Let QG W T ! ModK be the Kan extension of G to T : this is defined as

QG.C/ D colim
B!C

B2D.A/c

G.B/:

Since QG is exact and commutes with coproducts, it follows that D ı QG is exact
and takes coproducts to products. Hence by the Brown representability theorem
[7, Theorem 8.3.3] the functor D ı QG is representable, as a functor to Modk , by an
object U 2 T � D.A/.

TheK-action on ModK induces aK-action Q� onD ı QG D hU , hence by Yoneda
we get a K-action � on U , given by K

�
! Nat.hU ; hU / D Aut.U /. Therefore we

obtain an object .U; �/ 2 D.A/K . We need to show that

D ı QG.C/ D MorD.A/K .C ˝K; .U; �//

for all C 2 D.A/c .
To do so, first of all notice that as k-vector spaces

D ı QG.C/ D MorD.A/.C; U / D MorD.A/K .C ˝K; .U; �//

because K ˝k � is left adjoint to the functor forgetting the K-structure. By our
definition of the K-action on MorD.A/.C; U /, this is the same as the K-action on
D ı QG.C/; moreover the k-vector space map

MorD.A/.C; U /

! MorD.A/K .C ˝K; .U; �//

f 7! f ˝ �

is compatible with the K-action since, for any ˛ 2 K,

.˛ � f / D . Q�.˛/f / D Q�.˛/f ˝ �.�/ D f ˝ �.˛/�.�/ D ˛ � .f ˝ �.�//

hence we found that the two actions coincide and so

D ı QG.C/ D MorD.A/K .C ˝K; .U; �//:

Let T D .U; �/. Now since F is of finite type, we get

F.C/ D .D ıD ı F /.C / D .D ıG/.C /

D .D ı QG/.C / D MorD.A/K .C ˝K;T /:
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Lemma 4.2. Let k and K be two fields, k ,! K. Consider the equivalence of
categories

Db.mod.ƒ//
�
�! Db.Coh.Pnk //

as described in [1].
Then there is also an equivalence of categories

Db.mod.ƒ˝K//
�K
��! Db.Coh.PnK//

and the diagram

Db.mod.ƒ//

��

� // Db.Coh.Pn
k
//

��
Db.mod.ƒ˝K// �K // Db.Coh.PnK//

is commutative.

Proof. By [1], we have ƒ D End.M/ where M D
Ln
iD0 OPn

k
.i/. Set MK DLn

iD0 OPn
K
.i/, then

EndPn
K
.MK/ D EndPn

K

� nM
iD0

OPn
K
.i/

�
D

nM
i;jD0

EndPn
K

�
OPn

K
.i/;OPn

K
.j /
�

D

nM
i;jD0

KŒx0; : : : ; xn�j�i D

nM
i;jD0

kŒx0; : : : ; xn�j�i ˝K

D

� nM
i;jD0

kŒx0; : : : ; xn�j�i

�
˝K D ƒ˝K

Moreover, the equivalence � is induced by the map

mod.ƒ/
�˝ƒM
�����! Coh.Pnk /

and if we let h W PnK ! Pn
k
be the base change morphism, we obtain the following

commutative diagram:

mod.ƒ/ �˝ƒM //

˝K

��

Coh.Pn
k
/

h�

��
mod.ƒ˝K/

�˝ƒ˝KMK // Coh.PnK/

this proves the last assertion.
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We are now almost ready to prove Theorem 1.1, but first we will prove the version
of the theorem for the purely transcendental case. The following proof uses ideas
from [3, Theorem A.1].
Theorem 4.3. Let X be a smooth projective variety over a field k. LetK D k.T / or
K D k.T; T 0/. Consider a contravariant, cohomological, finite type functor

H W Db
Coh.X/! modK

Then the complex T of Theorem 4.1 lifts to a complex S 2 Db
Coh.XK/ such thatH is

representable by S , i.e. for every C 2 Db
Coh.X/ we have

H.C/ D MorDb
Coh.XK/

.Lj �C; S/

where j W XK ! X is the base change morphism.

Proof. By Lemma 4.1, the functor H is representable by an element T 2

.DQCoh.X//K , i.e.

H.C/ D Mor.DQCoh.X//K .C ˝K;T /

Let S be a lift of T to DQCoh.XK/ (this is possible by Corollary 3.7). Let C be
an element of Db

Coh.X/. By applying the functors in Lemmas 3.1 and 3.6 we get a
K-linear map

MorDQCoh.XK/.Lj
�C; S/

‰.�/
��! Mor.DQCoh.X//K .‰ ı Lj

�C; T /

and, since by Lemma 3.6, ‰ ı Lj �C D C ˝K, we have

Mor.DQCoh.X//K .‰ ı Lj
�C; T / D Mor.DQCoh.X//K .C ˝K;T / D H.C/

Hence to show that H is represented by S we just need to show that ‰.�/ is an
isomorphism. It suffices to show that it is an isomorphism of k-vector spaces, which
follows from the following diagram of k-vector spaces:

MorDQCoh.XK/.Lj
�C; S/

‰.�/ // Mor.DQCoh.X//K .‰ ı Lj
�C; T /

MorDQCoh.X/.C;Rj�S/ Mor.DQCoh.X//K .C ˝K;T /

MorDQCoh.X/.C;Forget.‰.S/// Mor.DQCoh.X//.C;Forget.T //

here we used the fact that Rj� D Forget ı‰, again from Lemma 3.6.
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So ‰.�/ is an isomorphism, and henceH is represented by S 2 DQCoh.XK/. We
still have to show that S is actually inDb

Coh.XK/.
Choose an embedding � W X ! Pn

k
: LetH 0 D H ı L��. Let

� WDb.mod.ƒ//! Db.Coh.Pnk // and �K WD
b.mod.ƒ˝K//! Db.Coh.PnK//

as defined in Lemma 4.2 above. Let H 00 D H 0 ı � . Let h W PnK ! Pn
k
be the base

change morphism.
Consider the following diagram:

Db.mod.ƒ// � //

H 00

$$

�˝K

��

Db.Coh.Pn
k
//

L�� //

H 0

''

h�

��

Db
Coh.X/

H //

Lj�

��

VectK

Db.mod.ƒ˝K// �K // Db.Coh.PnK//
L��

K // Db
Coh.XK/

and let C 2 Db.Coh.Pn
k
//.

H 0.C / D H.L��.C // D MorDQCoh.XK/.Lj
�L��C; S/

D MorDQCoh.XK/.L�
�
Kh
�C; S/ D MorDQCoh.Pn

K
/.h
�C;R�K�S/

soH 0 is represented by R�K�S 2 DQCoh.PnK/.
Let V D ��1K .R�K�.S// so thatH 00 is represented by V . Then

H 00.ƒ/ D Morƒ˝K.ƒ˝K;V /

and X
n

dimH 00.ƒŒn�/ D
X
n

dimMor.ƒŒn�˝K;V /

D

X
n

dimMor..ƒ˝K/Œn�; V / <1

sinceH 00 is of finite type. Therefore V 2 Db.mod.ƒ˝K//.
This implies that R��S 2 Db.Coh.PnK// hence S 2 D

b.Coh.XK//.

Proof of Theorem 1.1. The case where L is purely transcendental of degree 2 over k
was treated in Theorem 4.3. Let L be a finitely generated separable field extension
of k with trdegkL � 1. There exists a field K such that K is a purely transcendental
extension of k of degree less than or equal 1, and K � L is a finite extension.
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SetL D K.˛/ D KŒT �=P.T /, where P.T / is a separable polynomial. Consider the
composition

Db
Coh.X/

H //

H 0

$$
modL

Forget // modK

By Theorem 4.3, H 0 is representable by an object S 2 Db
Coh.XK/. Moreover, by

Corollary 3.7, S is endowed with a map  ˛ such that P. ˛/ D 0 is zero on all the
cohomology groups of S .

First of all, this implies that there exists an n such that P. ˛/n D 0. In fact,
considering the good truncations ��iS ,

� � � ! S i�1 ! Zi ! 0;

the claim follows inductively considering the distinguished triangles

��i�1S ! ��iS ! H i .S/Œ�i �

and recalling the fact that if .f1; f2; f3/ is a morphism between two triangles and
two of the morphisms are nilpotent, then so is the third.

Now let h W XL ! XK be the base change morphism, and consider the pullback
Lh�S 2 Db

Coh.XL/. It has an LŒT � action induced by the morphism Lh� ˛ , and
P.Lh� ˛/

n D 0 so Lh�S has in fact an LŒT �=P n.T /-action. But since P is
a separable polynomial, the map LŒT �=P n.T / ! LŒT �=P.T / splits as L-algebra
map hence LŒT �=P.T / also acts on Lh�S .

Since, over L, P.T / factors as .T � ˛/Q.T /, we can find two elements e1; e2
of LŒT �=P.T / such that e21 D e1, e22 D e2, e1e2 D 0, e1 C e2 D 1. But
since LŒT �=P.T / acts on Lh�S , this gives two idempotent operators e1; e2 in
AutDb

Coh.XL/
.Lh�S/ such that e1e2 D 0, e1 C e2 D idLh�S .

Now sinceDb
Coh.XL/ is Karoubian by [2, Proposition 3.2] we have obtained that

Lh�S D E ˚ S2 and Lh� ˛ acts as multiplication by ˛ on E.
We claim that Rh�E D S . Consider the map

S ! Rh�Lh
�S

pr1
��! Rh�E

Under the identificationDQCoh.XL/
‰
�! D.QCoh.X/L/ this corresponds to

S ! S ˝ L! Forget.E/;

so this is actually the identity map on S .
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Then for every C 2 Db
Coh.X/ we have a map of L-vector spaces

MorDQCoh.XL/.Lj
�C;E/! Mor.DQCoh.X//L.C ˝ L; T / D H.C/

where j W XL ! X is the base change morphism, since E is a lift of S toDb
Coh.XL/

with the correct L-action. This map is an isomorphism because it is an isomorphism
of K-vector spaces:

MorDQCoh.XL/.Lj
�C;E/ D Mor.DQCoh.XK//.Li

�C;Rh�E/

D Mor.DQCoh.XK//.Li
�C; S/ D H 0.C /

where i W XK ! X is the base change morphism.

Proof of Theorem 1.2. Consider the composition

Db
Coh.X/

H

44
F // Db

Coh.Y /
i� // Db

Coh.�/
H0
// modK.Y /

D // modK.Y /

where H 0.�/ D H 0.�;�/ and D is the dual as K.Y /-vector space. H is an
exact contravariant finite type functor, hence by Theorem 1.1 it is representable by
E 2 Db

Coh.XK.Y //.
Now consider the following diagram:

XK.Y /
p //

g

��
j

  

�

i

��
X � Y

�2 //

�1

��

Y

��
X // Spec k

Both squares are cartesian because XK.Y / D X �Spec k K.Y / D X � Y �Y �.
Note that g is a flat map, so the derived pullback is just regular pullback in every
degree. Also, g is an affine map so that pushforward is also exact.

Let E_ D RHomXK.Y /
.E;OXK.Y /

/. Let us construct a complex

A 2 Db
Coh.X � Y /

such that
Lg�A D E_ ˝ !XK.Y /

ŒdimXK.Y /�:

Let L 2 Coh.X � Y / be a line bundle such that

E_ ˝ !XK.Y /
ŒdimXK.Y /�˝ g�L˝n 2 Db

Coh.XK.Y //
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is generated by its global sections in each degree. Let fsi;`g be a set of generators in
degree `. Consider the complex

g�.E
_
˝ !XK.Y /

ŒdimXK.Y /�˝ g�L˝n/

onDb
Coh.X � Y /. Then take the subcomplex generated in each degree by

fg�si;`g [ fg�dsi;`�1g;

and twist it down by L�n. This gives the desired complex A 2 Db
Coh.X � Y /.

Then we get the following:

H 0
ı i� ıˆA.C / D H

0i�R�2�.A˝ �
�
1C/

D H 0Rp�.g
�A˝ g���1C/ (by flat base change)

D H 0Rp�.E
_
˝ !XK.Y /

Œdim XK.Y /�˝ j
�C/

D Mor.O�; Rp�.E_ ˝ !XK.Y /
Œdim XK.Y /�˝ j

�C//

D Mor.p�O�; E_ ˝ !XK.Y /
Œdim XK.Y /�˝ j

�C/

D Mor.OXK.Y /
; E_ ˝ !XK.Y /

Œdim XK.Y /�˝ j
�C/

D Mor.E; !XK.Y /
Œdim XK.Y /�˝ j

�C/

D D ıMor.j �C;E/
D D ıH.C/

D H 0
ı i� ı F.C/

for every C 2 Db
Coh.X/.

Now since F is an exact functor,

H i
ı i� ı F D H 0.i� ı F.C/Œi �/ D H 0.i� ı F.C Œi �//

D H 0.i� ıˆA.C Œi �// D H
0.i� ıˆA.C /Œi �/

D H i
ı i� ıˆA.C /

Hence, since all cohomology groups agree and Db
Coh.K.Y // is equivalent to the

category of graded vector spaces over K.Y /, F and ˆA agree after restricting to the
generic point of Y .
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