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Abstract. LetR be a semisimple ring. A pair .A; C / is called almost-Koszul ifA is a connected
gradedR-ring and C is a compatible connected gradedR-coring. To an almost-Koszul pair one
associates three chain complexes and three cochain complexes such that one of them is exact
if and only if the others are so. In this situation .A; C / is said to be Koszul. One proves that a
connected R-ring A is Koszul if and only if there is a connected R-coring C such that .A; C / is
Koszul. This result allows us to investigate the Hochschild (co)homology of Koszul rings. We
apply our method to show that the twisted tensor product of two Koszul rings is Koszul. More
examples and applications of Koszul pairs, including a generalization of Fröberg Theorem [12],
are discussed in the last part of the paper.
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1. Introduction

Koszul algebras were introduced by Priddy in [18]. By definition, the N-graded
algebraA WD ˚n2NA

n over a field k is said to be (left) Koszul ifA is connected, that
is A0 D k, and there is a resolution P� of A0 by projective graded left A-modules
such that each Pn is generated by homogeneous elements of degree n. This class of
algebras has outstanding applications in numerous fields of Mathematics, including
Representation Theory, Algebraic Geometry, Algebraic Topology, Quantum Groups
and Combinatorics; see [17] and the references therein.

Koszul algebras have been generalized by Beilinson, Ginzburg and Soergel.
Following [5], we say that a graded ring A is Koszul if A0 is a semisimple ring
and it has a resolution P� with the same properties as above. Many fundamental
properties of Koszul algebras still hold in this more general setting. For instance,
such a ring is always quadratic. The Koszulity of a ring is equivalent to the exactness
of the Koszul complex. Moreover, for any Koszul ring A such that An is a finitely
generated left A0-module, the graded ring A# WD Ext�A.A0; A0/ is Koszul as well
and .A#/# D A. Here the functors Ext�A.�;�/ are defined on the category of all left
A-modules. The opposite ring Aop of a left Koszul ring A is left Koszul over .A0/op.
Thus, a left Koszul ring is right Koszul, and conversely.
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TheHochschild cohomology of an algebraAwith coefficients in anA-bimoduleM
is defined by the relation HH�.A;M/ WD ExtA˝Aop.A;M/. Hochschild cohomology
may also be defined using the standard Hochschild complex [25, Chapter 9.1]. Rather
recently, a lot of effort has been paid to the explicit calculation of these cohomology
groups, see for example [8–10,14,20,21,24]. Although the standard complex is
an important tool for the study of Hochschild cohomology, it is not helpful for
computational purposes. In general, in order to compute Hochschild cohomology, ad
hoc complexes are constructed, depending on the algebra that one works with. One
of our main goals is to show that in the case of Koszul rings such complexes can be
obtained using Coring Theory.

In order to explain our approach we need some terminology and notation. Let R
be a given ring and let .RModR;˝; R/ denote the tensor category of R-bimodules
with respect to the tensor product ˝ of R-bimodules. Note that a graded ring
A WD ˚n2NA

n with A0 D R may be seen as a connected graded algebra in this
tensor category, and conversely. For short, we shall say that A is a connectedR-ring.
A connected R-ring is said to be strongly graded if, in addition, AnAm D AnCm,
for any n;m 2 N. Connected and strongly graded R-corings can be defined by
duality, as coalgebras in the tensor category RModR. Since we work with graded
structures, the multiplication of a ring A and the comultiplication of a coring C are
uniquely determined by some R-bimodule morphismsmp;qWAp˝Aq ! ApCq and
�p;qWCpCq ! Cp ˝ Cq .

We can now introduce almost-Koszul pairs, one of the the main tools that we
use for studying Koszul rings. By definition, such a pair consists of a connected
R-ringA and a connectedR-coringC , together with an isomorphism ofR-bimodules
�C;AWC1 ! A1 which satisfies the relation

m1;1 ı .�C;A ˝ �C;A/ ı�1;1 D 0: (1.1)

To every strongly graded R-ring A corresponds a canonical almost-Koszul pair
.A; T .A//. By construction, the homogeneous component of degree n of T .A/ is
the R-bimodule Tn.A/ WD TorAn .R;R/. Note that TorA� .R;R/ is the homology of
the chainR-coringR˝Aˇ l�.A/, where ˇ l�.A/ denotes the normalized bar resolution
of R regarded as a left A-module. Thus T .A/ has a natural connected R-coring
structure. In this example, the fact that A is strongly graded guarantees the existence
of theR-bimodule isomorphism �T.A/;AWT1.A/! A1. By duality, to every strongly
graded R-coring C corresponds an almost-Koszul pair .E.C /; C /, where E.C/ WD
Ext�C .R;R/. Here, the functors Ext�C .�;�/ are defined on the category of right
C -comodules.

For each almost-Koszul pair .A; C / we associate three chain complexes:
Kl�.A; C /, Kr�.A; C / and K�.A; C /. The first and the second are complexes of
graded left and right A-modules, respectively. The third one lives in the category of
graded A-bimodules. By duality, we also define three cochain complexes K�

l
.A; C /,

K�r .A; C / and K�.A; C / in the categories of left, right and two-sided comodules
over C .
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By Theorem 3.3, all six complexes associated to an almost-Koszul pair .A; C /
are exact, provided that one of them is so. In this case we shall say that .A; C / is
a Koszul pair. Note that, for any Koszul pair .A; C /, the complexes Kl�.A; C /
and Kr�.A; C / provide projective resolutions of R in the categories of left and right
graded A-modules, respectively. Similarly, K�

l
.A; C / and K�r .A; C / are injective

resolutions of R in suitable categories of C -comodules. Supposing in addition
that R is a separable algebra over a field k, then K�.A; C / is a resolution of A by
projective gradedA-bimodules and K�.A; C / is a resolution ofC by injective graded
C -bicomodules.

Some useful properties of Koszul pairs are investigated in the second section of
the paper. In Theorem 3.9 one shows that, for such a pair .A; C /, both components
are strongly graded and, moreover, .A; T .A// and .E.C /; C / are Koszul as well.
Moreover, in this situation, it follows that C and T .A/ are isomorphic as graded
corings. The relationship between Koszul pairs and Koszul rings is explained in
Theorem 3.13: A is such a ring if and only if there exists a Koszul pair .A; C /.
Taking into account that the components of a Koszul pair uniquely determine each
other, it is easy to see that

E.T .A// Š A and T .E.C // Š C;

without any finiteness condition imposed on A or C . These isomorphisms suggest
that the coring T .A/ and the ring E.C/ may be thought of as (Koszul) duals of A
and C , respectively. For example, the Koszul dual of a tensor R-ring T aR.V / is the
unique connected R-coring C WD R ˚ V , which is concentrated in degree 0 and 1.
In the last part of the paper we compute the dual coring for other Koszul R-rings,
such as: trivial extension, multiparametric quantum spaces and quotients of quiver
algebras by ideals generated by 2-paths.

On the other hand, in view of Theorem 3.13, we say that a strongly graded
R-coring C is Koszul if and only if .E.C /; C / is a Koszul pair. With this definition
in hand, it follows that the functors T and E preserve Koszulity. Multiparametric
quantum spaces are Koszul both as a ring and a coring, cf. Theorem 7.2 and §7.7.
Since Koszul corings might be useful for the study of other quantum groups, their
properties will be investigated in a subsequent article.

We have already noticed that K�.A; C / is a resolution ofA as a projective (graded)
bimodule over itself, for any separable algebra R over a field k and any Koszul pair
.A; C /. In the third section we use this resolution to get a new (co)chain complex
that computes the Hochschild (co)homology of A with coefficients in an arbitrary
bimodule. As an immediate corollary we show that, for any Koszul R-ring A,
the projective dimension of A in the category of A-bimodules (i.e. the Hochschild
dimension of A) can be computed using the formula

Hdim.A/ D supfn j Tn.A/ ¤ 0g:
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It is well known that the class of Koszul algebras is closed under twisted tensor
products. As another application of Koszul pairs we prove a similar result for Koszul
rings. Let A and B be two strongly graded R-rings. To every invertible graded
twisting map � WB ˝ A ! A ˝ B we associate an invertible graded twisting map
of R-corings � WT .A/˝ T .B/ ! T .B/˝ T .A/. Thus the twisted tensor products
A˝� B and T .A/˝� T .B/ make sense and, in fact, they always define an almost-
Koszul pair .A˝�B; T .A/˝� T .B//. By Theorem 5.18 this pair is Koszul, provided
that A and B are Koszul R-rings. In particular, A ˝� B is Koszul too. We have
already mentioned that, for any Koszul pair .A; C /, the coring structure of T .A/ is
captured on the fly by the isomorphism T .A/ Š C . In particular, for a twisted tensor
product of two Koszul rings we get T .A˝� B/ Š T .A/˝� T .B/.

We next use the above Koszul pair to identify the Hochschild (co)homology of
a twisted tensor product A ˝� B with the total (co)homology of a certain double
complex. In homology, the column-wise and row-wise filtrations of the double
complex lead us to two spectral sequences converging to the Hochschild homology
of A ˝� B , see Theorem 6.2. Under some additional conditions, similar spectral
sequences are obtained in cohomology. By definition generalized Ore extensions
are examples of twisted tensor products. We specialize our results on Hochschild
homology to this more particular setting in the last part of the fifth section.

Our method based on coring techniques is also useful for the investigation of
the Gerstenhaber structure of HH�.A;A/, in the case when A is a Koszul ring (for
example the smashed product between a Koszul ring and a finite dimensional group
algebra over a field of characteristic zero). Details about these results will be given
in a sequel of this paper.

Some more examples of Koszul pairs, related to braided bialgebras in the tensor
category RModR, are discussed in the last section. First of all, in Theorem 7.2 we
prove that any couple of strongly graded braided commutative bialgebras in RModR,
under some conditions on their braidings, defines a Koszul pair. In particular we
prove that any symmetric braided bialgebra in RModR is Koszul, provided that the
braiding is an involution. The incidence algebra of the power set of a finite set is
a nontrivial example of such bialgebras, cf. Theorem 7.9. For a different approach
to Koszulity of (reduced) incidence algebras the reader is referred to [19]. As a last
application, in Theorem 7.11, we extend a result of Fröberg [12].

2. Almost-Koszul pairs

In this section we introduce almost-Koszul pairs and we investigate their basic prop-
erties. We start by fixing the terminology and the notation that we use. Throughout,
R will denote a semisimple ring.
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2.1. R-rings. The main objects that we work with are (co)unital and (co)associative
(co)algebras in the tensor category of R-bimodules .RMR;˝; R/. For the tensor
product of two R-bimodules we shall always use the unadorned tensor product
symbol˝. The unit object in RMR is R, regarded as a bimodule with respect to the
left and right actions induced by the multiplication of R.

By definition, an R-ring is an associative and unital algebra in RMR. Therefore
an R-ring consists of an associative and unital ring A together with a morphism of
unital rings uWR! A. AnR-ringA is graded if it is equipped with a decomposition
A D ˚n2NA

n in RMR; such that the multiplicationmWA˝A! A maps Ap ˝Aq
to ApCq . If A0 D R, then we shall say that A is connected. The multiplication m
induces an R-bilinear mapmp;qWAp ˝Aq ! ApCq; for all non-negative integers p
and q. The R-ring A is said to be strongly graded if and only if it is connected and
all maps mp;q are surjective. Obviously, A is strongly graded if and only if mp;1 is
surjective, for all p. The projection of A onto An will be denoted by �nA.

We denote the ideal ˚n>0An by xA. The multiplication of A induces a bimodule
map xmW xA ˝ xA ! xA. Let Rop be the opposite ring of R. If V and W are
R-bimodules, then they become Rop-bimodules by interchanging their left and
right module structures. The group morphism ƒV;W WV ˝Rop W ! W ˝R V

that maps v˝Rop w to w˝R v is an isomorphism. If .A;m; u/ is anR-ring, then the
multiplication and the unit of the oppositeRop-ringAop are themapsmop WD mıƒA;A
and u, respectively.

2.2. R-corings. An R-coring is a coassociative and counital coalgebra in RMR.
Thus, anR-coring is anR-bimoduleC together with a coassociative comultiplication
�WC ! C˝C and a counit "WC ! R;which aremorphisms in RMR. AnR-coring
.C;�; "/ is said to be graded if, in addition, C is the direct sum of a family fCngn2N

of sub-bimodules, such that the counit vanishes on Cm, for any m > 0, and

�.Cn/ �

nM
pD0

Cp ˝ Cn�p:

The comultiplication of a graded coring is defined by a family of R-bilinear maps
�p;qWCpCq ! Cp˝Cq . In the graded case we shall use a special form of Sweedler
notation, namely �p;q.c/ D

P
c.1;p/ ˝ c.2;q/. Therefore, in a graded coring,

coassociativity is equivalent to the following relationsX
c.1;pCq/.1;p/ ˝ c.1;pCq/.2;q/ ˝ c.2;r/

D

X
c.1;p/ ˝ c.2;qCr/.1;q/ ˝ c.2;qCr/.2;r/; (2.1)

where p; q; r are arbitrary non-negative integers and c 2 CpCqCr . For short, we
shall write the sums from equation (2.1) as

P
c.1;p/ ˝ c.2;q/ ˝ c.3;r/. The counit

satisfies the relationsX
".c.1;0//c.2;n/ D c D

X
c.1;n/".c.2;0//; (2.2)
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for every c 2 Cn. By definition, a graded R-coring C is connected if C0 is
isomorphic as an R-bimodule to R. Thus, �0;0 and the restriction of " to C0 are
uniquely determined by

�0;0.c0/ D r0c0 ˝ c0 and ".c0/ D r
�1
0 ;

where c0 is a certain element in C0 that commutes with all r 2 R, and r0 is an
invertible element in the center ofR. In this paper we shall always assume that c0 is a
group-like element, that is r0 D 1. For such a connected coring we shall identify C0
withR via the counit of C . In conclusion, without loss in generality, we may assume
that C0 D R and that the restriction of the counit to the zero degree component is
the identity map of R. Of course, the counit vanishes on all other homogeneous
components of C . It is easy to see that for any c 2 Cn we have

�0;n.c/ D 1˝ c and �n;0.c/ D c ˝ 1:

For any graded R-coring .C;�; "/ the comultiplication � factors through a map
x�W xC ! xC ˝ xC , where xC WD C=C0. Note that x� is coassociative. Let pC WC ! xC
and �Cn WC ! Cn denote the canonical projections. The comultiplication and the
counit of the opposite Rop-coring C op are the bimodule maps �op WD ƒ�1C;C ı �

and ", respectively.
For a connected R-coring C one defines the maps �.n/WCn ! C˝n1 by setting

�.1/ WD IC1 and then using the recursive relation

�.n/ D
�
IC1 ˝�.n � 1/

�
ı�1;n�1: (2.3)

A graded coring C is said to be strongly graded if and only if it is connected
and �.n/ is injective for all n > 0. By induction, it follows that �.p C q/ D
.�.p/˝�.q// ı�p;q , hence C is strongly graded if and only if�p;q is injective for
all p and q. To check that a coring is strongly graded it is enough to prove that �1;n
is injective for all n or, equivalently, that �n;1 is injective for all n.

2.3. Almost-Koszul pairs.We can now introduce one of the main tools that we
shall use to investigate Koszul rings. An almost-Koszul pair .A; C / consists of a
connected R-ring A and a connected R-coring C , together with an isomorphism
of R-bimodules �C;AWC1 ! A1 that satisfies the relation (1.1). Using Sweedler
notation this is equivalent to the fact that, for any c 2 C2,X

�C;A.c.1;1//�C;A.c.2;1// D 0: (2.4)

Remark 2.4. Let .A; C / be an almost-Koszul pair. We have noticed thatAop andC op

are an Rop-ring and an Rop-coring, respectively. Obviously, .Aop; C op/ is an almost-
Koszul pair over the ring Rop, with respect to �C op;Aop WD �C;A, regarded as an
Rop-bimodule map in the canonical way.
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2.5. The normalized bar resolution of R (as a right A-module).We now want to
show that, for every strongly graded R-ring A, there is a canonical graded coring C
such that .A; C / is almost-Koszul. By [25, p. 283], the groups TorA� .R;R/ may be
computed using the normalized right bar resolution ˇ r� .A/, that is the exact sequence

0 � R
ı0
 � A

ı1
 � xA˝A � � � �  � xA˝n�1˝A

ın
 � xA˝n˝A � � � � ; (2.5)

where ı0 D �0A and, for n > 0, the arrows are given by

ın.a1 ˝ � � � ˝ an ˝ anC1/ WD

nX
iD1

.�1/ia1 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ anC1:

Note that, since R is semisimple, xA˝n ˝ A is a projective right A-module. Hence
TorA� .R;R/ is the homology of the normalized bar complex .��.A/; @�/

0 � �0.A/
@1
 � �1.A/ � � � �  � �n�1.A/

@n
 � �n.A/ � � � � ; (2.6)

where �0.A/ D R and �n.A/ WD xA˝n; for n > 0. The differential map @1 is zero,
and @n is the restriction of ın�1 to �n.A/ � xA˝n�1 ˝ A. We shall use the notation

Tn.A/ WD Hn.��.A// and T .A/ WD
L
n2N

Tn.A/:

The homology class of x 2 xA in T1.A/ will be denoted by Œx�.
The normalized left bar resolution is defined by ˇ l�.A/ WD ˇ r�.A

op/. Note that
ˇ ln.A/ Š A˝

xA˝n.

2.6. TheR-corings T c
R
.V / and�.A/. Let V denote anR-bimodule. On T cR.V / WD

˚n2NV
˝n one defines a gradedR-coring structure such that�p;q is the isomorphism

V ˝pCq Š V ˝p ˝ V ˝q . The counit of T cR.V / is the projection onto V
˝0 WD R, the

zero degree homogeneous component of T cR.V /.
The coring �.A/ WD T cR. xA/ will play an important role in our work. Let us first

show that�.A/ is a chain coring, i.e. it is a coalgebra in the tensor category of chain
complexes of R-bimodules.
Lemma 2.7. The comultiplication and the counit of �.A/ are chain maps. In par-
ticular, T .A/ is a connected R-coring, and T1.A/ is the cokernel of

xmW�2.A/! �1.A/:

Proof. By definition, the n-chains set of ��.A/ ˝ ��.A/ is the R-bimoduleLn
pD0�p.A/˝ �n�p.A/, while the restriction of the differential dn to �p.A/˝

�n�p.A/ is given by

dn D @p ˝ I�n�p.A/ C .�1/
pI�p.A/ ˝ @n�p:
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Proceeding as in [17, Chapter 1.1] one shows that the comultiplication of �.A/
is a chain map. Clearly the counit is a chain map, regarding R as a complex
concentrated in degree zero. In conclusion, �.A/ is a chain R-coring and T .A/ is a
graded R-coring, as the homology of a chain coring always inherits a graded coring
structure. Since �0.A/ D R, the map @1 is trivial and @2 D xm, it follows that T .A/
is connected and T1.A/ D Coker xm.

Proposition 2.8. If A is a connected strongly graded R-ring, then .A; T .A// is
almost-Koszul.

Proof. We have proved that T .A/ is connected. SinceA is strongly graded, T1.A/ D
xA= xA2 D A1 and the projection �1A induces an R-bimodule isomorphism �T.A/;AW

T1.A/ ! A1. Every ! 2 T2.A/ is the homology class of a certain � 2 Ker xm.
Hence � D

Pn
iD1 xi ˝ yi ; for some x1; : : : ; xn and y1; : : : ; yn in xA that satisfy the

equation
Pn
iD1 xiyi D 0. Note that xiyi � �1A.xi /�

1
A.yi / belongs to

P
n>2A

n and

�1;1.!/ D

nX
iD1

Œxi �˝ Œyi �:

Thus, the relation (2.4) follows by the following computation

nX
iD1

�T.A/;A
�
Œxi �

�
�T.A/;A

�
Œyi �

�
D

nX
iD1

�1A.xi /�
1
A.yi / D �

2
A

� nX
iD1

xiyi

�
D 0:

Our goal now is to associate to an almost-Koszul pair .A; C / three cochain
complexes: one in the category of graded left C -comodules and, symmetrically, one
in the category of graded right C -comodules. By combining these constructions,
we shall get the third cochain complex, that lives in the category of graded
C -bicomodules.

2.9. The categoriesMC , CM and CMC . LetC be anR-coring. The pair .M; �M /
is a rightC -comodule ifM is a rightR-module and �M WM !M˝C is amorphisms
of rightR-modules such that, using the Sweedler notation �M .m/ D

P
mh0i˝mh1i,

the relations below hold true for any m 2MX
mh0ih0i ˝mh0ih1i ˝mh1i D

X
mh0i ˝mh1i.1/ ˝mh1i.2/X

mh0i"
�
mh1i

�
D m:

Amorphism of comodules is a rightR-linear map that commutes with the comodule
structure maps. The category MC of right C -comodules is Grothendieck, as C is
flat as a left R-module [6, p. 264].
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A right comoduleM is graded ifM WD˚n2NMn, and�M.Mn/�˚
n
pD0Mp˝Cn�p ,

for all n. Then �M is uniquely defined by the induced R-linear maps

�Mp;qWMpCq !Mp ˝ Cq:

The category CM of left C -comodules is constructed in a similar way. For a left
C -comodule .N; �N / we use the Sweedler notation �N .n/ D

P
nh�1i ˝ nh0i.

AC -bicomodule is a triple .M; �M
l
; �Mr / such thatM is anR-bimodule, .M; �M

l
/

is a left comodule, .M; �Mr / is a right comodule and, for every m 2M ,X
mh�1i ˝mh0ih0i ˝mh0ih1i D

X
mh0ih�1i ˝mh0ih0i ˝mh1i:

Note that, by definition, the structure maps �M
l

and �Mr must be morphisms of
R-bimodules, otherwise the above compatibility relation does not make sense. A
morphism of C -bicomodules is a map which is left and right C -colinear. For the
category of C -bicomodules we shall use the notation CMC .
Lemma 2.10. If V is a rightR-module, then V ˝C is an injective rightC -comodule.
A similar result holds for left C -comodules and C -bicomodules.

Proof. For any C -comodule .M; �M / the natural transformation

‚M;V WHomR.M; V /! HomC .M; V ˝C/; ‚M;V .f / WD .f ˝ IC /ı�M (2.7)

is an isomorphism. The inverse of‚M;V maps g 2 HomC .M; V ˝C/ to .IV ˝"/ıg.
Let U denote the functor that associates to a right C -comodule the underlying
R-module structure, forgetting the coaction. Therefore the functorsHomC .�; V˝C/
and HomR.�; V /ıU are isomorphic. AsR is semisimple, HomR.�; V /ıU is exact.
Thus HomC .�; V ˝ C/ is exact as well meaning that V ˝ C is injective.

For any injective R-bimodule W the functorial isomorphism

‚0M;W WHomR;R.M;W /! HomC�C .M;C ˝W ˝ C/;

‚0M;W .f / WD .IC ˝ f ˝ IC / ı .�Ml ˝ IC / ı �Mr

can be used as above to show that C ˝W ˝ C is injective as a bicomodule.

2.11. The complexes K�
l
.A;C / and K�r .A;C /. Let .A; C / be an almost-Koszul

pair. We set
K�1l .A; C / WD R and Knl .A; C / WD C ˝ A

n;

for any n � 0. We regard R as a graded left C -comodule with respect to the
trivial coaction. On the other hand, it is easy to see that �˝ IAn defines a graded
C -comodule structure on Knl .A; C /, whose homogeneous component of degree p
is Cp�n ˝ An (by convention, Ck D 0 for any k < 0). The differential maps
dn
l
WKnl .A; C /! KnC1

l
.A; C / are defined as follows. If n D �1, then we take dn

l
to
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be the canonical bimodule morphismsR! C ˝A0 that maps 1 to 1˝1 2 C0˝A0.
For n � 0 the map dn

l
vanishes on C0 ˝ An and, if p > 0 and c ˝ a 2 Cp ˝ An,

then
dnl .c ˝ a/ WD

X
c.1;p�1/ ˝ �C;A

�
c.2;1/

�
a:

Obviously, dn
l
respects the gradings on Knl .A; C / and KnC1

l
.A; C /.

Recall that .Aop; C op/ is an almost-Koszul pair (overRop), see Remark 2.4. Hence
we may consider

K�r .A; C / WD K�l .A
op; C op/:

For any n � 0, in view of the isomorphismC op˝Rop .Aop/n Š An˝RC;we identify
Knr .A; C / andAn˝RC . Through this identification the differential of K�l .A

op; C op/

in degree n corresponds to the map dnr WAn ˝ C ! AnC1 ˝ C which is zero on
An ˝ C0 and, for p > 0 and a˝ c 2 An ˝ Cp; is given by

dnr .a˝ c/ D
X

a�C;A
�
c.1;1/

�
˝ c.2;p�1/:

Note that d�1r WR! A0 ˝ C is uniquely defined by the relation d�1r .1/ D 1˝ 1.

Proposition 2.12. If .A; C / is an almost-Koszul pair, then .K�l .A; C /; d
�
l
/ and

.K�r .A; C /; d�r / are cochain complexes of graded C -comodules (left and right,
respectively).

Proof. Clearly d0
l
ı d�1

l
D 0, as d0

l
vanishes on C0 ˝ A0. Let us show that

dnC1
l
ı dn

l
.c ˝ a/ D 0; for any n � 0 and c ˝ a 2 Cp ˝ An. We may assume that

p � 2; otherwise the relation is trivially satisfied, as dk
l
.1˝ a/ D 0, for any a 2 A

and k > 0. Let � WD �C;A. Coassociativity and the relation (2.4) imply�
dnC1
l
ı dnl

�
.c ˝ a/ D

X
c.1;p�1/.1;p�2/ ˝ �

�
c.1;p�1/.2;1/

�
�
�
c.2;1/

�
a

D

X
c.1;p�2/ ˝ �

�
c.2;2/.1;1/

�
�
�
c.2;2/.2;1/

�
a D 0:

Hence K�l .A; C / is a complex. Let us prove that the maps dn
l
are morphisms of

C -comodules. For n D �1 we have nothing to show. Let n � 0 and p > 0. For
c ˝ a 2 Cp ˝ A

n; we have

�
IC ˝ dnl

��
�.c ˝ a/

�
D

pX
rD0

c.1;r/ ˝ d
n
l

�
c.2;p�r/ ˝ a

�
D

p�1X
rD0

X
c.1;r/ ˝ c.2;p�r/.1;p�r�1/ ˝ �

�
c.2;p�r/.2;1/

�
a:
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For the second identity we used that �p;0.c/ D c ˝ 1 and the fact that dn
l
vanishes

on C0 ˝ An. Since the comultiplication of C is coassociative we get

�
�
dnl .c ˝ a/

�
D �

�X
c.1;p�1/ ˝ �

�
c.2;1/

�
a

�
D

p�1X
uD0

X
c.1;p�1/.1;u/ ˝ c.1;p�1/.2;p�1�u/ ˝ �

�
c.2;1/

�
a:

Thus .IC ˝ dnl /.�.c ˝ a// D �.dn
l
.c ˝ a//. We conclude the proof that dn

l
is a

morphism of C -comodules, by remarking that the above relation trivially holds for
c ˝ a 2 C0 ˝ A

n, as dn
l
.c ˝ a/ D 0.

2.13. The complex K�.A;C /.We are going to construct a cochain complex
.K�.A; C /; d�/ in the category of C -bicomodules. By definition, K�1.A; C / WD C
and Kn.A; C / D C ˝ An ˝ C . The differential maps are defined by the relations
d�1 WD � and

dn D dnl ˝ IC C .�1/nC1IC ˝ dnr ; (2.8)

for n � 0. Since dn
l
is left C -colinear and dnr is right C -colinear it follows that dn

is a morphism of bicomodules. It is not difficult to show that .d0 ı d�1/.c/ D 0, for
any c 2 Cp . Indeed, for p D 0 the relation is obvious. Let us assume that p > 0.
Thus, d�1.c/ D

Pp
iD0 c.1;i/ ˝ c.2;p�i/. Henceforth,

�
d0 ı d�1

�
.c/ D

pX
iD1

c.1;i�1/ ˝ �C;A
�
c.2;1/

�
˝ c.1;p�i/

�

p�1X
iD0

c.1;i/ ˝ �C;A
�
c.2;1/

�
˝ c.1;p�i�1/ D 0:

Let n � 0. Since K�l .A; C / and K�r .A; C / are complexes, that is dnC1
l
ı dn

l
D

dnC1r ı dnr D 0; we get

dnC1 ı dn D .�1/nC1
��
dnC1
l
˝ IC

�
ı
�
IC ˝ dnr

�
�
�
IC ˝ dnC1r

�
ı
�
dnl ˝ IC

��
:

Using the formulae that define d�
l
and d�r and the fact that the multiplication in A is

associative, it follows that dnC1 ı dn D 0. Hence .K�.A; C /; d�/ is a complex.

2.14. The subcomplexes K�
l
.A;C;m/ and K�r .A;C;m/. The complex K�l .A; C /

decomposes as a direct sum of subcomplexes in the category of R-bimodules
˚m2N K�l .A; C;m/. By definition, K�l .A; C; 0/ is the complex

0 �! R
Š
�! C0 ˝ A

0
�! 0:

By construction, the elements ofR are cochains of degree�1. Note that K�l .A; C; 0/
is always exact. Ifm > 0, then dn

l
maps Cm�n˝An to Cm�n�1˝AnC1. Therefore,
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Knl .A; C;m/ WD Cm�n ˝A
n define a subcomplex K�l .A; C;m/ of K

�
l .A; C /, which

can be displayed as follows

0 �! Cm ˝ A
0
�! � � � �! Cm�n ˝ A

n
dn
l
�! Cm�n�1 ˝ A

nC1
�! � � �

� � � �! C0 ˝ A
m
�! 0:

Obviously, K�l .A; C / D ˚m�0K
�
l .A; C;m/. The complex K�r .A; C / admits a

similar decomposition as a direct sum of subcomplexes˚m�0K�r .A; C;m/.

2.15. The normalized bar resolution ofR (as a right C -comodule).We are going
to sketch how the preceding constructions and results can be dualized. Let C be
an R-coring. We assume that C is connected. Then R is a right C -comodule with
respect to the trivial coaction. Recall that xC WD C=C0 and that x�W xC ! xC ˝ xC

is the unique map such that x� ı pC D .pC ˝ pC / ı�, where pC is the canonical
projection. We also use the notation z� WD .pC ˝ IC / ı�.

The right normalized bar resolution ˇ �r .C / of R is the exact sequence of right
C -comodules

0 �! R
ı�1

�! C
ı 0

�! xC ˝ C �! � � � �! xC˝n ˝ C
ı n

�! xC ˝nC1 ˝ C �! � � � ;

(2.9)
where ı�1 is the canonical inclusion and, for n � 0,

ı n D

nX
iD1

.�1/i�1I xC˝i�1 ˝ x�˝ I xC˝n�i˝C C .�1/
nI xC˝n ˝ z�:

The normalized resolutionˇ �
l
.C / ofR in the category of leftC -comodules is defined

in a similar way.
We use ˇ �r .C / to compute Ext�C .R;R/. Applying the functor HomC .R;�/ and

using the isomorphisms ‚R;�; we obtain the normalized bar complex .��.C /; @�/

0 �! �0.C /
@0

�! �1.C /
@1

�! � � � �! �n.C /
@n

�! �nC1.C / �! � � � ; (2.10)

where �0.C / D R and �n.C / WD xC ˝n, for each positive n. The differential
morphisms are defined by the formulae @0 D 0 and, for n > 0,

@n D

nX
iD1

.�1/i�1I xC ˝i�1 ˝ x�˝ I xC ˝n�i :

We shall use the notation En.C / WD Hn.��.C // and E.C/ WD ˚n2NE
n.C /. Thus

En.C / Š ExtnC .R;R/.

2.16. TheR-ringsT a
R
.V / and�.C /. LetV be anR-bimodule and letT aR.V / denote

the freeR-ring generated by V . Therefore, T aR.V / WD ˚n2NV
˝n and the graded ring
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structure is defined by the bimodule isomorphisms mp;qWV ˝p ˝ V ˝q ! V ˝pCq .
The unit of R is a unit for T aR.V / too. In particular, to every connected coring C we
associate a connected R-ring �.C/ WD T aR. xC/.
Lemma 2.17. The multiplication and the unit of �.C/ are cochain maps. Thus
E.C/ WD Ext�C .R;R/ is a connected R-ring and E1.C / D Ker x�.

Proof. As in the ordinary case of algebras over a commutative ring, one shows that the
multiplication is a morphism of cochain complexes from��.C /˝��.C / to��.C /,
where the set of n-cochains of the former complex is˚npD0�p.C /˝�n�p.C / and
the differential dn on �p.C /˝�n�p.C / is given by

dn D @p ˝ I�n�p.C/ C .�1/pI�p.C/ ˝ @n�p:

Clearly, the unit of �.C/ is a morphism of cochain complexes, where R is regarded
as a complex concentrated in degree zero. Since the cohomology of a cochainR-ring
inherits a canonical graded R-ring structure, @0 D 0 and @1 D x�, it follows that
E.C/ is a connected graded R-ring and E1.C / D Ker x�.

Proposition 2.18. Let C be a strongly graded R-coring. Then .E.C /; C / is an
almost-Koszul pair.

Proof. We already know that E.C/ is a connected R-ring. Let xCn WD pC .Cn/.
Hence, xC D ˚n>0 xCn and pC is injective on each component of positive degree. In
particular, Cn Š xCn.

Let � WC1 ! xC1 denote the restriction of pC to C1. Since �0;1.c/ D 1˝ c and
�1;0.c/ D c ˝ 1 it follows that the image of � is included into Ker x� D E1.C /; so
we may regard � as a map from C1 to E1.C /. We claim that the pair .E.C /; C /
satisfies the identity (2.4) with respect to �C;E.C/ WD � . If B2.C / is the group of
2-coboundaries in the normalized bar complex ��.C / and c 2 C2; thenX

�
�
c.1;1/

�
� �
�
c.2;1/

�
D

X
pC
�
c.1;1/

�
˝ pC

�
c.2;1/

�
C B2.C /

D x�
�
pC .c/

�
C B2.C / D @1

�
pC .c/

�
C B2.C / D 0:

Note that the first equality is a consequence of the definition ofmultiplication inE.C/;
while for the second identity we used the definition of x� and the relations�0;2.c/ D
1 ˝ c and �2;0.c/ D c ˝ 1. It remains to prove that � is bijective. Let pC .c/ be
an element in Ker x� and let c D

Pd
nD1 cn, where cn 2 Cn. We claim that cn D 0

for n � 2. We have

dX
nD2

n�1X
rD1

.pC ˝ pC /
�
�r;n�r.cn/

�
D

dX
nD0

nX
rD0

.pC ˝ pC /
�
�r;n�r.cn/

�
D .pC ˝ pC /

�
�
�
c
��
D x�

�
pC .c/

�
D 0:
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We fix n � 2. Since .pC ˝ pC /.�r;n�r.cn// belongs to xCr ˝ xCn�r ; in view of
the foregoing remarks, we deduce that this element vanishes for every 0 < r < n.
Since pC ˝pC is an R-bimodule isomorphism between Cr ˝Cn�r and xCr ˝ xCn�r
it follows that �r;n�r.cn/ D 0. As C is strongly graded, we get that the kernel of x�
is included into xC1. The other inclusion is obvious, so � is an isomorphism.

2.19. The cotensor product. Recall that the cotensor product N�CM between a
right C -comodule .N; �N / and a left C -comodule .M; �M / is defined as the kernel
of �N ˝ IM � IN ˝ �M .

For any right R-module V the tensor product V ˝C is a right C -comodule with
respect to the coaction given by IV ˝�. IfM is a left C -comodule, then

�W .V ˝C/�CM ! V ˝M; �

� nX
iD1

vi ˝ ci ˝mi

�
D

nX
iD1

vi ˝ ".ci /mi (2.11)

is an isomorphism. The inverse of � maps v˝m to
P
v˝mh�1i˝mh0i. In particular,

for V D R, we get that C�CM andM are isomorphic as R-bimodules.
In the case whenC is connected, we know thatR is a left and a rightC -comodule

with respect to the trivial coactions. For such a coring C , there is a canonical
isomorphism R�CM Š M coC ; where the set of coinvariant elements M coC

contains all m 2 M such that �M .m/ D 1 ˝ m. Of course, the above discussion
applies for right C -comodules as well.

2.20. The complexes Kl
�.A;C /;Kr

�.A;C / andK�.A;C /. For any almost-Koszul
pair .A; C /, by duality, we can also construct three chain complexes. We first
define a complex Kr�.A; C / of graded right A-modules. Let Kr�1.A; C / WD R and
Krn.A; C / WD Cn ˝ A. The differential d r0 WC0 ˝ A ! R maps x ˝ a to x�0A.a/.
For n > 0 one defines d rn WCn ˝ A! Cn�1 ˝ A by

d rn .c ˝ a/ D
X

c.1;n�1/ ˝ �C;A
�
c.2;1/

�
a:

To show that Kr�.A; C / is a complex one proceeds as in §2.11, so we omit the
proof. Applying the previous construction to the opposite almost-Koszul pair
.Aop; C op/we obtain a complex .Kl�.A; C /; d l�/ of graded leftA-modules. Explicitly,
Kl�1.A; C / WD R and Kln.A; C / WD A ˝ Cn. The differential d l0 maps a ˝ x

to �0A.a/x. For n > 0 the maps d ln are given by

d ln.a˝ c/ D
X

a�C;A
�
c.1;1/

�
˝ c.2;n�1/:

By combining the above two constructions we obtain a new complex .K�.A; C /; d�/
in the category of A-bimodules. By definition, K�1.A; C / WD A and Kn.A; C / WD
A ˝ Cn ˝ A. The map d0 is induced by the multiplication of A and, for n > 0,
we have

dn D d
l
n ˝ IA C .�1/nIA ˝ d rn :
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2.21. The subcomplexes Kr
�.A;C;m/ and Kl

�.A;C;m/. The complex Kr�.A; C /
can be written as a direct sum of subcomplexes ˚m2N Kr�.A; C;m/. In the case
when m D 0 we take Kr�.A; C; 0/ to be the exact cochain complex

0 �! R
Š
�! C0 ˝ A

0
�! 0:

If m > 0, then Krn.A; C;m/ WD Cm�n ˝ A
n. Therefore in this case Kr�.A; C;m/ is

the complex

0 � C0 ˝ A
m
 � � � �  � Cn�1 ˝ A

m�nC1
drn
 � Cn ˝ A

m�n
 � � � �

� � �  � Cm ˝ A
0
 � 0:

Analogously, Kl�.A; C / decomposes as a direct sum of subcomplexes Kl�.A; C / Š
˚m2N Kl�.A; C;m/.
Proposition 2.22. Let .A; C / be an almost-Koszul pair. Then the following
statements are true.
(1) There are canonical isomorphisms

K�.A; C /˝A R Š Kl�.A; C / and R˝A K�.A; C / Š Kr�.A; C /:

(2) There are canonical isomorphisms

K�.A; C /�CR Š K�l .A; C / and R�C K�.A; C / Š K�r .A; C /:

Proof. We shall only prove the isomorphisms for Kl�.A; C / and K
�
l .A; C /. The other

two isomorphisms can be proved in a similar way.
The relation ��1.r/ D 1˝A r defines a left A-module bijective map ��1WR !

A ˝A R. For n � 0, let �nWKln.A; C / ! Kn.A; C / ˝A R be the left A-module
isomorphism �n.a˝c/ D .a˝c˝1/˝A1:One can prove easily that .d0˝AIR/ı�0 D
��1 ı d

l
0. Furthermore, for n > 0,��

dn ˝A IR
�
ı �n

�
.a˝ c/ D

X�
a�C;A

�
c.1;1/

�
˝ c.2;n�1/ ˝ 1

�
˝A 1

C .�1/n
X�

a˝ c.1;n�1/ ˝ �C;A
�
c.2;1/

��
˝A 1:

Since the left A-module structure of R is induced by the algebra morphism
�0AWA! R and �C;A.c.2;1// is an element in A1; it follows that the second sum
in the right-hand side of the above relation is zero. Hence �� is a morphism of chain
complexes between Kl�.A; C / and K�.A; C /˝A R, as��

dn ˝A IR
�
ı �n

�
.a˝ c/ D

X�
a�C;A

�
c.1;1/

�
˝ c.2;n�1/ ˝ 1

�
˝A 1

D
�
�n�1 ı d

l
n

�
.a˝ c/:
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In order to prove the second part of the proposition, we define ��1WR! C �CR
by � �1.r/ D 1 ˝ r . If n � 0, then �nWKnl .A; C / ! Kn.A; C /�CR is given by
�n.c ˝ a/ D .c ˝ a ˝ 1/˝ 1. Clearly, �n is a morphism of left C -comodules and
it is bijective by §2.19. To check that �� is a morphism of complexes we first notice
that �

�0 ı d�1l
�
.1/ D .1˝ 1˝ 1/˝ 1 D

��
d�1�C IR

�
ı �0

�
.1/:

Let n � 0. Since dnr .a ˝ 1/ D 0, for any a 2 An, we conclude the proof by the
computation below��
dn�C IR

�
ı �n

��
c ˝ a

�
D
�
dnl .c ˝ a/˝ 1

�
˝1C .�1/nC1

�
c ˝ dnr .a˝ 1/

�
˝1

D
�
dnl .c ˝ a/˝ 1

�
˝1 D

�
�nC1 ı dnl

�
.c ˝ a/: �

Let us regard the graded R-bimodule A� as a cochain complex with trivial
differential maps. Let R �! A� denote the augmented complex with respect to the
identity ofR D A0 (we regardR as the component of degree�1). The coaugmented
complex R � C� is defined similarly.
Proposition 2.23. Let .A; C / be an almost-Koszul pair.

(1) The complexesR˝AKl�.A; C / andK
r
�.A; C /˝AR are isomorphic toR � C�.

(2) The complexes HomC .R;K�l .A; C // and HomC .R;K�r .A; C // are isomorphic
to R �! A�.

Proof. Let  �1WR! R˝A R be the canonical isomorphism. For n � 0 we define
the isomorphism  nWCn ! R ˝A Kln.A; C / by  n.c/ D 1 ˝A .1 ˝ c/. Since
 �1 D .IR ˝A d l0/ ı  0 and for n > 0 we have��

IA ˝ d ln
�
ı  n

�
.c/ D 1˝A d

l
n.1˝ c/

D

X
�0A
�
�C;A

�
c.1;1/

��
˝A

�
1˝ c.2;n�1/

�
D 0;

it follows that  � is a morphism of complexes.
Let �1WR!HomC .R;R/ be the bijectivemap �1.r/Dfr , wherefr.x/Dxr .

For n � 0 we define  �WAn ! HomC .R; C ˝ An// by  n.a/ D fa; where fa is
the unique C -comodule map such that fa.1/ D 1 ˝ a. Obviously  n is bijective.
It is easy to see that  0 D HomC .R; d�1

l
/ ı  �1. By the definition of dn

l
we have

dn
l
.1˝ a/ D 0. Thus HomC .R; dn

l
/ ı  n D 0; for any n � 0. In conclusion,  � is

an isomorphisms of complexes.
The other two isomorphisms can be proved in a similar way.

Let .A; C / be an almost-Koszul pair. Our next goal is to compare the complexes
Kl�.A; C / and K�r .A; C / with the bar resolutions ˇ l�.A/ and ˇ �r .C /, respectively.
We start by introducing some notation. For n > 0, let x� Cn W xC ! Cn be the map
induced by the projection �Cn WC ! Cn and let x� WD �C;A ı x�

C
1 . If x is a class
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in xC then we introduce the Sweedler notation x�.x/ D
P
x.1/ ˝ x.2/. Note that, if

x D pC .c/ then
P
x.1/ ˝ x.2/ D

P
pC .c.1//˝ pC .c.2//.

To relate ˇ �r .C / and .K
�
r .A; C /; .�1/

�d�/ we construct the maps �nWˇnr .C /!
Knr .A; C /, for any n � �1. By definition, ��1 and �0 are IR and the canonical
isomorphism C Š A0 ˝ C , respectively. Furthermore, for n > 0, we define
�nW xC ˝n ˝ C ! An ˝ C by

�n.x1 ˝ � � � ˝ xn ˝ c/ D x�.x1/x�.x2/ � � � x�.xn/˝ c:

For every n � �1 we now construct a map �nWKln.A; C / ! ˇln.A/, as follows.
First, we set ��1 WD IR and we take �0 to be the canonical isomorphismA˝C0 Š A.
Then, for n > 0, we define �n by

�n.a˝ c/ WD
X

a˝ �C;A
�
c.1;1/

�
˝ �C;A

�
c.2;1/

�
˝ � � � ˝ �C;A

�
c.n;1/

�
;

where in the above equation we used the Sweedler notation

�.n/.c/ D
X

c.1;1/ ˝ c.2;1/ ˝ � � � ˝ c.n;1/:

Proposition 2.24. If .A; C / is an almost-Koszul pair, then

��Wˇ �r .C /!
�
K�r .A; C /; .�1/

�d �r
�

and ��WKl�.A; C /! ˇ l�.A/

are morphisms of complexes.

Proof. We need the relation �nC1 ı ı n D .�1/nd nr ı �
n, for all n � �1. Let x D

pC .c/ be some class in xC . Since x� ıpC D � ı�C1 and�.c/ D
P
u;v�0 c.1;u/˝c.2;v/,

we get X
x�.x.1//x�.x.2// D

X
u;v�0

�
�
�C1

�
c.1;u/

��
�
�
�C1

�
c.2;v/

��
D

X
�
�
c.1;1/

�
�
�
c.2;1/

�
D 0:

(2.12)

We can now prove the claimed relation. Let x 1; : : : ; xn be elements in xC . If p > 0
and c 2 Cp , then

.�nC1 ı ın/.x 1 ˝ � � � ˝ x n ˝ c/

D

nX
iD1

X
.�1/i�1x�.x1/ � � � x�.xi�1/x�.xi.1//

x�.xi.2//
x�.xiC1/ � � � x�.xn/˝ c

C .�1/n
X
x�.x1/ � � � x�.xn/x�

�
pC .c.1//

�
˝ c.2/:

The double sum is zero, by (2.12). As�.c/ D
Pp
uD0

P
c.1;u/˝ c.2;p�u/; it follows

that X
x�
�
pC .c.1//

�
˝ c.2/ D

X
�.c.1;1//˝ c.2;p�1/:
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Using this relation we get

.�1/n.d nr ı�
n/.x 1˝� � �˝x n˝c/ D .�1/n

X
x�.x1/ � � � x�.xn/x�

�
pC .c.1//

�
˝c.2/:

To complete the proof of the fact that�� is amorphismwe remark that both .�1/nd nr ı
�n and �nC1 ı ı n vanish on xC ˝n ˝ C0.

Let us now show that �� is a morphism of complexes. We have to prove that
�n�1 ı d

l
n D ın ı �n. For n D 0 this relation is obvious. Let a ˝ c be a tensor

monomial in A˝Cn. In the case when n D 1, both sides of the equation map a˝ c
to a�.c/. Let us assume that n > 1. By (2.3), we get�

�n�1 ı d
l
n

�
.a˝ c/ D

X
a�
�
c.1;1/

�
˝ �

�
c.2;1/

�
˝ � � � ˝ �

�
c.n;1/

�
:

On the other hand, by the definition of �n and ın, we have

.ın ı �n/.a˝ c/ D
X

a�
�
c.1;1/

�
˝ �

�
c.2;1/

�
˝ � � � ˝ �

�
c.n;1/

�
C

n�1X
iD1

X
.�1/ia˝ �

�
c.1;1/

�
˝ � � � ˝ �

�
c.i;1/

�
�
�
c.iC1;1/

�
˝ � � � ˝ �

�
c.n;1/

�
:

By coassociativity and using the condition (2.4), it follows that the double sum
vanishes.

3. Koszul pairs

In this section we shall investigate the exactness of the (co)chain complexes that we
have associated to an almost-Koszul pair .A; C /. Roughly speaking, we shall show
that one of these complexes is exact if and only if the other five are so. Furthermore,
these complexes are exact precisely when A is a Koszul R-ring.

Lemma 3.1. Let .A; C / be an almost-Koszul pair.

(1) If A is strongly graded, then H0.K�.A; C // D 0.

(2) If C is strongly graded, then H0.K�.A; C // D 0.

Proof. Let � WD �C;A. Since C is connected we haveA˝C0˝A Š A˝A. Via this
isomorphism, one identifies d0 with the multiplicationm of theR-ringA. Moreover,

d1.a˝ c ˝ b/ D a�.c/˝ b � a˝ �.c/b;

for any a; b 2 A and c 2 C1. Let us assume that z D
Pd
iD1 ai ˝ bi is an element

in the kernel of m. We have to show that z is in the image of d1. Since A is
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strongly graded and � is bijective we may assume that bi D �.ci1/ � � � �.c
i
ni
/; for

some ci1; : : : ; cini 2 C1. It is easy to see that z D d1.x/, where

x WD �

dX
iD1

niX
jD1

ai�.c
i
1/ � � � �.c

i
j�1/˝ c

i
j ˝ �.c

i
jC1/ � � � �.c

i
ni
/:

Let us now prove the second part of the lemma. Let �WC ˝ C ! C ˝ C1 ˝ C be
the unique bimodule morphism such that

�jCp˝Cq D �p�1;1 ˝ ICq � ICp ˝�1;q�1;

where �u;v D 0 whenever u < 0 or v < 0. Let us consider the following diagram

0 // C
d�1 // C ˝ A0 ˝ C

d0 // C ˝ A1 ˝ C

0 // C
�

// C ˝ C
�

//

Š

OO

C ˝ C1 ˝ C

IC˝�C;A˝IC

OO

Since the squares are commutative and the vertical arrows are isomorphisms it is
enough to prove that Ker � D Im�. We claim that the sequence

C
�
�! C ˝ C

�
�! C ˝ C ˝ C

is exact, where � D �˝ IC � IC ˝�. Indeed, the inclusion Im� � Ker� is trivial
as the comultiplication is coassociative. Let s�1 WD IC ˝ " and s0 WD IC ˝ IC ˝ ".
Since

�s0�C�s�1 D IC˝C ;

any element in the kernel of � belongs to the image of �, so our claim has been
proved. Summarizing, we must show that Ker� D Ker �. Let x be an element
in C ˝ C . There are finitely many non-zero elements xp;q 2 Cp ˝ Cq such that
x D

P
p;q�0 xp;q . Note that C ˝C ˝C D

L
u;v;w�0 Cu˝Cv ˝Cw . Computing

the component of �.x/ in Cu ˝ Cv ˝ Cw , we deduce that x is in the kernel of � if
and only if

.�u;v ˝ ICw /.xuCv;w/ D .ICu ˝�v;w/.xu;vCw/; (3.1)

for any u; v;w � 0. Proceeding similarly, we deduce that x is in the kernel of � if and
only if (3.1) holds for v D 1 and any u;w � 0. Thus the inclusion Ker� � Ker � is
trivial.

To prove the other inclusion we pick x 2 Ker �. Since C is connected the
equation (3.1) holds for v D 0 and any u;w � 0. As x is in the kernel of �,
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it remains to prove (3.1) for any v � 2. By induction, let us assume that (3.1) holds
for some v � 1. By coassociativity and the induction hypothesis we have�
.ICu ˝�1;v ˝ ICw / ı .�u;vC1 ˝ ICw /

�
.xuCvC1;w/

D
�
.�u;1 ˝ ICv ˝ ICw / ı .�uC1;v ˝ ICw /

�
.xuCvC1;w/

D
�
.�u;1 ˝ ICv ˝ ICw / ı .ICuC1 ˝�v;w/

�
.xuC1;vCw/

D .�u;1 ˝�v;w/.xuC1;vCw/:

On the other hand, using coassociativity once again and then the fact that x 2 Ker �,
we get�
.ICu ˝�1;v ˝ ICw / ı .ICu ˝�vC1;w/

�
.xu;vC1Cw/

D
�
.ICu ˝ IC1 ˝�v;w/ ı .ICu ˝�1;vCw/

�
.xu;vCwC1/

D .�u;1 ˝�v;w/.xuC1;vCw/:

We conclude the proof of the lemma by remarking that ICu˝�1;v˝ ICw is injective,
sinceC is strongly graded and anyR-bimodule is flat as a left and a right module.

Proposition 3.2. Let .A; C / be an almost-Koszul pair.
(1) The complexes Kl�.A; C /, K

r
�.A; C / and K�.A; C / are exact, provided that one

of them is so.
(2) The complexes K�l .A; C /, K

�
r .A; C / and K

�.A; C / are exact, provided that one
of them is so.

Proof. Assuming that K�.A; C / is exact we deduce that it splits in the category of
right A-modules, as Kn.A; C / is projective in this category for any n � �1. By
Proposition 2.22 (1) we have

K l
�.A; C / Š K�.A; C /˝A R;

so this complex is exact too. Let us now suppose that Kl�.A; C / is exact. We first
remark that, by construction, d l0 is zero on An ˝ C0 for any n > 0. Moreover, for
c 2 C1 and a 2 A we have

d l1 .a˝ c/ D a�C;A.c/˝ 1:

Therefore the exactness of Kl�.A; C / in degree 0 and the fact that �C;A is bijective
imply the relationAn D An�1A1; for all n > 0. HenceA is strongly graded. In view
of the preceding lemma we get that K�.A; C / is exact in degree 0.

Since d0 is surjective it remains to show that Hn.K�.A; C // D 0; for all n > 0.
For short, let K� WD K�.A; C /. For n; p � 0 we define Xn;p WD Ap�n ˝ Cn; where
Ap�n D 0 in the case when p < n. Thus Kn WD ˚p�0Xn;p ˝ A. Obviously, the
following relations hold

.d ln ˝ IA/.Xn;p ˝ A/ � Xn�1;p ˝ A

.IA ˝ d rn /.Xn;p ˝ A/ � Xn�1;p�1 ˝ A:
(3.2)
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Taking into account the above inclusions we get that Ki� WD ˚ipD0X�;p ˝ A is
a subcomplex of K�. Let Li� WD Ki� =K

i�1
� . For any k � 0 we can identify Li

k

and Ai�k ˝ Ck ˝ A as R-bimodules. By (3.2) it follows that Li� is isomorphic to
Kl�.A; C; i/˝A; see §2.21 for the definition of the latter complex. We deduce thatLi�
is exact, being isomorphic to a direct summand of the exact complex Kl�.A; C /˝A.
We now fix n > 0. Note that K0n D 0. In particular, K

0
� is exact in degree n. Writing

the long exact sequence in homology for

0 �! Ki�1� �! Ki� �! Li� �! 0

we deduce by induction that Ki� is exact for any i � 0. We can now prove that K� is
exact in degree n. Indeed, if ! is an n-cycle in K�, then there is i such that ! 2 Kin.
Since ! is a cycle in Ki� it follows that ! is a boundary in this complex. Thus, a
fortiori, ! is a boundary in K�, so K�.A; C / is exact.

To show that K�.A; C / is exact if and only if Kr�.A; C / is exact we proceed
as follows. By definition, the latter sequence is equal to Kl�.Aop; C op/ which, in
turn, is exact if and only if K�.Aop; C op/ is so. Let d op

� denote the differential of
K�.Aop; C op/. For every n � 0; the map

�nWA
op
˝Rop .C op/n ˝Rop Aop

! A˝R Cn ˝R A;

�n.a˝Rop c ˝Rop b/ D b ˝R c ˝R a

is bijective and �n�1 ı d op
n D .�1/ndn ı �n: In conclusion, the homology of

K�.Aop; C op/ is trivial if and only if the homology groups of K�.A; C / vanish
as well.

We begin the proof of the second part of the proposition by showing that K�l .A; C /
is exact, provided that K�.A; C / satisfies this property. The latter complex splits in
the category of right C -comodules, as it is exact and Kn.A; C / is injective as a right
comodule for any n. In view of Proposition 2.22 (2) we conclude that K�l .A; C / is
exact.

Let us now assume that K�l .A; C / is exact. Since the comultiplication of a coring
is always injective, this property holds in degree �1.

Since A is connected we identify K0l .A; C / with C . Via this identification, d0
l
is

a map from C to C ˝ A0 which vanishes on C0. On the other hand, for p > 0 and
c 2 Cp , we have d0l .c/ D

P
c.1;p�1/˝ �C;A.c.2;1//. Since �C;A is an isomorphism

it follows

H0.K�l .A; C // Š
L
p�1

Ker�p�1;1:

By assumption we get that C is strongly graded, so K�.A; C / is exact in degree zero,
cf. Lemma 3.1 (2).
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It remains to show that K�.A; C / is exact in degree n > 0. For the sake of
simplicity, let us denote this complex by .K�; d�/. If Xn;p WD Cp�n ˝ A

n; then
Kn D ˚p�0Xn;p ˝ C . Moreover,

.dnl ˝ IC /.Xn;p ˝ C/ � XnC1;p ˝ C

.IC ˝ dnr /.Xn;p ˝ C/ � XnC1;pC1 ˝ C:

In particular, K�i is a subcomplex of K�; where Kni WD ˚p�iXn;p ˝ C . Let L�i WD
K�i =K

�
iC1.

Note that XnC1;iC1 ˝ C is a subset of KnC1iC1 and the differential of L�i maps an
n-chain x ˝ c C KniC1 to dn

l
.x/˝ c C KnC1iC1 . Thus the R-bilinear isomorphism

Lni Š Knl .A; C; i/˝ C

allows us to identify the complexes L�i and K
�
l .A; C; i/˝ C . Since K�l .A; C; i/ is a

direct summand of K�l .A; C / and C is flat as a left R-module we conclude that L�i
is exact. Our goal now is to show that all quotients K� =K�i are exact. We proceed
by induction. Clearly K� =K�0 D 0. Let us assume that K� =K�i is exact. Since in
the short exact sequence

0 �! L�i �! K� =K�iC1 �! K� =K�i �! 0

L�i is also exact we deduce that the middle term has the same property. We can
now prove that K� is exact. Let ! be an n-cocycle in K�. We choose a positive
integer i such that ! belongs to M n

i WD
L
p�i Xn;p ˝ C . The projection induces

an R-bimodule isomorphism �nWKn =KniC1 ! M n
i . Using �� one transports the

differentialmaps ofK�=K�iC1 to get a cochain complex .M �i ; @
�/which is isomorphic

to K�=K�iC1. Clearly, M �i is exact and ! is a cocycle in M �i . Hence, there
is � 2 M n�1

i such that ! D @n.�/. On the other hand @n.�/ D dn.�/ as, by
construction, @n and dn are equal onM n

i . Thus the proposition is proved.

Theorem 3.3. If one of the six complexes from the preceding proposition is exact,
then all are so.

Proof. Recall that for the complexes K�l .A; C / and Kr�.A; C / we have the
decompositions

K�l .A; C / D
L
m2N

K�l .A; C;m/ and Kr�.A; C / D
L
m2N

Kr�.A; C;m/:

Let m > 0. By construction, Kp
l
.A; C;m/ D Krm�p.A; C;m/ and d

p

l
D d rm�p , for

any integer p. Thus

Hp.K�l .A; C;m// D Hm�p.Kr�.A; C;m//:
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Since, by definition, both K�l .A; C; 0/ and Kr�.A; C; 0/ are always exact, it follows
that the cohomology groups of K�l .A; C / vanish if and only if the homology groups
of Kr�.A; C / vanish as well. We conclude the proof of the theorem by applying
Proposition 3.2.

Definition 3.4. An almost-Koszul pair .A; C / is said to be Koszul if and only if the
complexes from Proposition 3.2 are exact.
Corollary 3.5. Let .A; C / be a Koszul pair. Then the following statements hold:

(1) The complexK�l .A; C / is a resolution ofR by injective graded leftC -comodules.

(2) The complex K�r .A; C / is a resolution of R by injective graded right C -
comodules.

(3) The complex Kl�.A; C / is a resolution of R by projective graded left A-modules.

(4) The complexKr�.A; C / is a resolution ofR by projective graded rightA-modules.

(5) If A is an injective R-bimodule, then K�.A; C / is a resolution of C by injective
graded C -bicomodules.

(6) If C is a projectiveR-bimodule, thenK�.A; C / is a resolution ofA by projective
graded A-bimodules.

Proof. The first four statements are immediate consequences of the preceding
theorem. Let us assume that C is projective as an R-bimodule. Thus the sub-
bimodule Cn is also projective. It follows that A ˝ Cn ˝ A is projective as
an A-bimodule, so K�.A; C / is a resolution of A by projective A-bimodules.
Analogously, by Lemma 2.10, if A is an injective R-bimodule then C ˝ An ˝ C is
an injective bicomodule. Therefore, the last statement holds as well.

Remark 3.6. Note that, although R is semisimple, there might exist R-bimodules
which are neither projective nor injective. However, if R is a separable algebra over
a field k (i.e. R is projective as a bimodule over itself), then every R-bimodule
is both projective and injective. Henceforth, for a Koszul pair .A; C /, under this
additional assumption on R, the complex K�.A; C / is a resolution of C by injective
C -bicomodules and K�.A; C / is a resolution by projective A-bimodules.
Corollary 3.7. Let .A; C / be a Koszul pair. Then the R-ring A and the R-coring C
are strongly graded. In particular, .A; T .A// and .E.C /; C / are almost-Koszul
pairs.

Proof. The complex Kl�.A; C / is exact, as .A; C / is Koszul. Hence, by the proof
of Proposition 3.2, it follows that A is strongly graded. By Proposition 2.8, the pair
.A; T .A// is almost-Koszul. The statements concerning the coring C can be proved
in a similar way.
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Corollary 3.8. The pair .A; C / is Koszul if and only if .Aop; C op/ is Koszul too.

Proof. The homology of K�.Aop; C op/ is trivial if and only if the homology groups
of K�.A; C / vanishes, by the proof of Proposition 3.2.

Theorem 3.9. Let .A; C / be a Koszul pair. The gradedR-coring T .A/ is isomorphic
to C and .A; T .A// is a Koszul pair. Dually, E.C/ and A are isomorphic as graded
R-rings and .E.C /; C / is Koszul.

Proof. We know that A is strongly graded and that .A; T .A// is almost-Koszul.
Let �� be the morphism of complexes from Kl�.A; C / to ˇ l�.A/; that we constructed
in Proposition 2.24. Since Kl�.A; C / is a projective resolution of R and ��1 D IR is
invertible, there exists amorphism�0�Wˇ l�.A/! Kl�.A; C / that lifts the identity ofR.
By the Comparison Theorem [25, Theorem 2.2.6] it follows that �� ı �0� and �0� ı ��
are homotopic to Iˇ l�.A/ and IKl�.A;C/; respectively. Obviously, IR˝A�� and IR˝A�

0
�

are inverses of each other up to a homotopy. We deduce that Hn.IR ˝A ��/ is an
isomorphism between Hn.R˝A Kl�.A; C // and Hn.��.A//, for any n � 0. On the
other hand, by Proposition 2.23, the former homology group is isomorphic to Cn. In
conclusion, the map 
nWCn ! Tn.A/ defined by


n.c/ WD �.n/.c/C Bn.A/

is an R-bimodule isomorphism. Here, �.0/ WD IR and Bn.A/ denotes the group of
n-boundaries in�n.A/. Now it is not difficult to see that f
ngn2N is an isomorphism
of gradedR-corings between C and T .A/. In conclusion IA˝ 
� is an isomorphism
of chain complexes fromKl�.A; C / to K

l
�.A; T .A//. Thus the complex Kl�.A; T .A//

is exact, meaning that .A; T .A// is Koszul.
We have seen that C is strongly graded and that .E.C /; C / is an almost-Koszul

pair. The morphism �� from Proposition 2.24 lifts the identity of R. By hypothesis
ˇ �r .C / and .K�r .A; C /; .�1/�d �r / are resolutions of R in the category of right
C -comodules, so HomC .R; ��/ is a quasi-isomorphism of complexes. By applying
the functor HomC .R;�/ to ˇ�r .C / and K�r .A; C / we get an isomorphism 
� of
cochain complexes from .��.C /; @�/ to .A�; 0/.

Of course, 
0 WD IR. Let us recall that x�C1 W xC ! C1 denotes the map induced
by the projection �C1 and x� WD �C;A ı x�

C
1 . For n > 0 the map 
nW xC ˝n ! An is

explicitely given by the formula


n.x1 ˝ � � � ˝ xn/ D x�.x1/ � � � x�.xn/:

As ��.C / is the free R-ring generated by xC , it follows that 
� is a morphism of
cochain R-rings. Thus, it induces an isomorphism of graded R-rings E.C/ Š A,
which in turn can be used to identify K�r .E.C /; C / and K�r .A; C /.
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Corollary 3.10. Let .A; C 0/ and .A; C 00/ be Koszul pairs. Then C 0 Š C 00 as graded
R-corings. Dually, if .A0; C / and .A00; C / are Koszul, then A0 Š A00 as graded
R-rings.

Proof. By the preceding theorem, there are canonical coring isomorphisms C 0 Š
T .A/ and C 00 Š T .A/. Analogously, we have A0 Š E.C/ and A00 Š E.C/.

Corollary 3.11. If .A; C / is a Koszul pair then E.T .A// Š A and T .E.C // Š C .

Proof. By Theorem 3.9, both .A; T .A// and .E.T .A//; T .A// are Koszul. Using
the preceding corollary we conclude that A Š E.T .A//. The proof of the second
isomorphism is similar.

3.12. Koszul rings. LetA be a connectedR-ring. Following [5] we shall say thatA is
a left Koszul ring if R has a resolution P� ! R by projective graded left A-modules
such that every Pn is generated by its homogeneous elements of degree n.

Theorem 3.13. Let A be a connected R-ring. Then the following assertions are
equivalent:

(1) A is Koszul.

(2) A is strongly graded and .A; T .A// is Koszul.

(3) There exists a graded R-coring C such that .A; C / is Koszul.

Proof. Let us assume that A is strongly graded and that .A; T .A// is Koszul. Then
Kl�.A; T .A// is a resolution of R by graded projective A-modules. Clearly, by
definition, every Kln.A; T .A// is generated as an A-module by A0 ˝ Tn.A/; its
homogeneous component of degree n. Hence A is Koszul.

Let A be a Koszul ring and let V WD A1. By [5], any Koszul ring is quadratic and
generated by V , so there isW � V ˝V such thatA is isomorphic as a gradedR-ring
with the quotient of T aR.V / by the two-sided ideal generated byW . Furthermore, we
define C0 WD R; C1 WD V and

Cn D

n�2\
pD0

V ˝p ˝W ˝ V ˝n�p�2;

for every n � 2. We claim that the R-bimodule C WD
L
n2N Cn is a graded

subcoring of T cR.V /: It is enough to prove that�p;q.c/ 2 Cp˝Cq , for any p; q � 0
and c 2 CpCq . In the case when p D 0 or q D 0; we have nothing to prove. Let us
assume that p > 0 and q > 0. Obviously,�p;q.c/ 2 Cp˝T q; if p D 1. In the case
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when p � 2 we have �p;q.c/ D c; where in the right-hand side of this identity c is
regarded as an element in V ˝p ˝ V ˝q . Thus

�p;q.c/ 2

pCq�2\
iD0

V ˝i ˝W ˝ V ˝pCq�i�2

�

p�2\
iD0

V ˝i ˝W ˝ V ˝pCq�i�2 D Cp ˝ V
˝q:

Similarly, �p;q.c/ 2 V ˝p ˝ Cq . Thus �p;q.c/ 2 Cp ˝ Cq; that is our claim is
proved.

By construction C is connected and A1 D C1 D V . Let c 2 C2 D W .
Since �1;1.c/ D c and the multiplication of T aR.V / is defined by the canonical
isomorphisms V ˝p ˝ V ˝q Š V ˝pCq , we have m1;1A .�1;1.c// D c C W D 0.
Thus .A; C / is almost-Koszul with respect to �C;A D IV . Taking into account the
definition of C it follows that Kl�.A; C / coincides up to a degree shifting with the
Koszul complex [5, p. 483], which is exact by assumption. In conclusion if A is
Koszul, then there is a Koszul pair .A; C /. Finally, by Theorem 3.9 we deduce
thatA is strongly graded and .A; T .A// is Koszul, provided that there exists a Koszul
pair .A; C /.

Corollary 3.14. If A is left Koszul, then A is right Koszul, and conversely.

Proof. Let A be a left Koszul ring. Then, by the preceding theorem, A is strongly
graded and .A; T .A// is Koszul. Since Aop is strongly graded and .Aop; T .A/op/ is
Koszul, it follows that Aop is a left Koszul ring. Of course, this is equivalent to the
fact that A is right Koszul.

Remark 3.15. The results of this section suggest the following definition. A
connected coringC is calledKoszul if and only ifC is strongly graded and .E.C /; C /
is a Koszul pair. Koszul corings and some of their applications will be investigated
in a sequel of this paper.

4. Hochschild (co)homology of Koszul rings

In this sectionR denotes a separable algebra over a field k. Therefore, for any Koszul
pair .A; C / the complex K�.A; C / is a projective resolution of A in the category of
right A-modules, cf. Corollary 3.5. We shall use this resolution to investigate the
Hochschild (co)homology of A with coefficients in an A-bimoduleM .

4.1. The cyclic tensor product. The tensor product algebra Re WD R ˝k R
op,

between R and its opposite algebra Rop; is called the enveloping algebra of R.
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Since R is an algebra over the field k, we have to adapt the definition of
R-bimodules to reflect this extra structure. By an R-bimodule we mean a left
(or a right) Re-module V . Equivalently, V is a left and a right R module which
satisfies the usual associativity relation .rv/s D r.vs/ and, in addition, the condition
xv D vx holds for all x 2 k and v 2 V .

For an R-bimodule V let ŒR; V � be the linear space spanned by all commutators
Œr; v� WD rv � vr; with r 2 R and v 2 V . Let VR WD V=ŒR; V �.

Recall that ˝ D ˝R. For any R-bimodules V1; : : : ; Vn the tensor product
V1˝� � �˝Vn is a bimodule, so we may define the cyclic tensor product of V1; : : : ; Vn
by the relation

V1 b̋ � � � b̋ V n WD .V1 ˝ � � � ˝ Vn/R:
For the equivalence class of v1 ˝ � � � ˝ vn in the cyclic tensor product we use the
notation v1 b̋ � � � b̋ vn. If V andW areR-bimodules, then the map vb̋w 7!v˝Re w

is an isomorphism V b̋W Š V ˝Re W , so

V1 b̋ � � � b̋ V n Š .V1˝ � � � ˝ V i /˝Re .ViC1˝ � � � ˝ V n/:
The cyclic tensor products V b̋W and W b̋ V are isomorphic via the linear map
v b̋w 7! w b̋ v: Thus
V1 b̋ � � � b̋ V n Š V2 b̋ V 3 b̋ � � � b̋ V n b̋ V 1 Š � � � Š V n b̋ V1 b̋ � � � b̋ V n�1:

4.2. The complex K�.A;M/. Let A be a Koszul ring over a separable k-algebra R.
The R-ring structure of A induces a canonical ring morphism from k to A. Since
we are interested in the Hochschild (co)homology of A, we assume that the image
of this map is central in A, that is A is a k-algebra. In this setting we also define
an A-bimodule as a left module over the enveloping algebra Ae WD A˝k A

op of A.
We fix a connected R-coring C such that .A; C / is Koszul. Recall that C Š T .A/

as R-corings. By the above assumption, T .A/ is an Re-module, so we may assume
that C has the same property.

The Hochschild homology of A with coefficients in an A-bimoduleM is defined
by the relation HH�.A;M/ WD TorAe� .A;M/. Let K0�.A; C / denote the complex
obtained from K�.A; C / by dropping the part of degree �1. Thus the Hochschild
homology of A with coefficients in M may be computed as the homology of the
complex K0�.A; C / ˝Ae M . We identify the vector spaces Kn.A; C / ˝Ae M and
M b̋ Cn Š Cnb̋M via the map 'n defined by

'n
�
.x ˝ c ˝ y/˝Ae m

�
D .ymx/b̋ c:

Its inverse is given by '�1n .m b̋ c/ D .1 ˝ c ˝ 1/ ˝Ae m. Let @nWM b̋ Cn !
M b̋ Cn�1 be the map

@n WD 'n�1 ı .dn ˝Ae IM / ı '�1n ;
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where dn denotes the differential of K�.A; C /. It is easy to see that @n satisfies the
following equation

@n.m b̋ c/ DXm�C;A
�
c.1;1/

� b̋ c.2;n�1/

C .�1/n
X

�C;A
�
c.2;1/

�
m b̋ c.1;n�1/: (4.1)

Clearly, '�WM ˝Ae K0�.A; C /! .M b̋ C�; @�/ is an isomorphism. Hence we have
the following result.
Theorem 4.3. Let .A; C / be a Koszul pair over a separable k-algebra R. The
Hochschild homology of A with coefficients in M is the homology of the chain
complex K�.A;M/ D M b̋C�. For m 2 M and c 2 Cn; the differential @n of this
complex is given by equation (4.1).

Recall that theHochschild cohomology ofAwith coefficients in anA-bimoduleM
is defined by HH�.A;M/ WD Ext�Ae .A;M/. For a Koszul pair .A; C /, proceeding as
in the proof of the preceding theorem, we obtain a complex to compute Hochschild
cohomology of A.
Theorem 4.4. Let .A; C / be a Koszul pair over a separable k-algebra R. The
Hochschild cohomology ofA with coefficients inM is the cohomology of the cochain
complex K�.A;M/ D HomRe .C�;M/. For c 2 CnC1 and f 2 HomRe .Cn;M/

the differential @n of this complex is given by

@n.f /.c/ D
X

�C;A
�
c.1;1/

�
f
�
c.2;n/

�
C .�1/nC1

X
f
�
c.1;n/

�
�C;A

�
c.2;1/

�
: (4.2)

As an application of our previous results, we compute HdimA, the Hochschild
dimension of a Koszul ring A. By definition, HdimA is the projective dimension
of A as a left (or right) Ae-module. Hence HdimA D n if and only if
HHnC1.A;M/ D 0 for any bimodule M , but there is at least one bimodule M0

such that HHn.A;M0/ ¤ 0. Of course, if such an n does not exist, then we say that
the Hochschild dimension of A is infinite. The projective dimension of R as a left
A-module will be denoted by pd.AR/. For the projective dimension of the right
A-module R we shall use the notation pd.RA/.
Theorem 4.5. If .A; C / is a Koszul pair over a separable k-algebra R, then

HdimA D pd.AR/ D pd.RA/ D supfn j Cn ¤ 0g:

Proof. Obviously, pd.AR/ D pd.RA/. Let us assume that CdC1 D 0, for some d .
ThenKl�.A; C / provides a projective resolution ofR in the category of leftA-modules
of length at most d . Thus, for n > d , we have Cn Š TorAn .R;R/=0. It follows that
S WD supfn j Cn ¤ 0g � d . In particular, if pd.RA/ � d , then S � d . On the other
hand, assuming that the latter inequality holds, we get CdC1 D 0. Thus, in view of
the foregoing remarks, pd.RA/ � d . In conclusion, S D pd.RA/.
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It remains to prove that HdimA � d if and only if pd.RA/ � d . Let us
suppose that the Hochschild dimension of A is less than or equal to d . Therefore,
the d -syzygyM of the resolution K�.A; C / is a projective A-bimodule such that the
sequence

0 � A � K0.A; C / �� � � �Kd�2.A; C / � Kd�1.A; C / �M �0:

is exact. Proceeding as in the proof of Proposition 3.2, one shows that this sequence
splits in the category of rightA-modules. Hence, by applying the functor .�/˝ARwe
get a resolution ofR by projective leftA-modules. Since the length of this resolution is
at most d we conclude that pd.RA/ � d . Conversely, if the projective dimension ofR
as a leftA-module is less than or equal to d , thenCdC1ŠTd .A/D0. Thus K�.A; C /
is a resolution of A of length less than or equal to d , that is HdimA � d .

We conclude this section by giving a first example of Koszul pair, which we
shall use later for the computation of Hochschild (co)homology of generalized Ore
extensions. For every R-bimodule V let T WD T aR.V /. Let C D R ˚ V denote the
connected coring with the comultiplication � uniquely defined such that �.v/ D
v ˝ 1C 1˝ v; for any v 2 V . We take �T;C to be the identity map.

Proposition 4.6. The pair .T; C / is Koszul.

Proof. The identity from the definition of almost-Koszul pairs is automatically
verified, as C2 D 0. Thus .T; C / is such a pair. Furthermore, Kl�.T; C / is the
complex

0 � R � T  � T ˝ V  � 0;

whose non-zero arrows are the projection �0T of T on T 0 and d l1. Since the multi-
plication in T is given by concatenation of tensor monomials, and �1;0.v/ D v ˝ 1
we deduce that d l1.x˝v/ D x˝v. Therefore, d l1 is the identity map of T ˝V D xT .
Hence Kl�.T; C / is exact.

Remark 4.7. By Theorem 4.5 it follows that HdimT aR.V / D 1, for any separable
algebra R and any R-bimodule V . This property of tensor algebras was proved
in [11], where the algebras ofHochschild dimension one are called quasi-free and they
represent the key ingredient in the definition of nonsingularity in Noncommutative
Geometry. The Koszulity of tensor algebras is also proved in the last section of the
paper, as a consequence of the fact that they are braided bialgebras.

5. Almost-Koszul pairs associated to twisted tensor products

We keep the notation and the assumptions from the first section. In this section we
consider two connected strongly graded R-rings A and B together with an invertible
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graded twisting map � WB ˝ A! A˝ B . Our first aim is to show that � induces a
canonical graded twisting map of R-corings

� WT .A/˝ T .B/! T .B/˝ T .A/:

This construction is performed such that .A ˝� B; T .A/ ˝� T .B// is an almost-
Koszul pair, where A ˝� B and T .A/ ˝� T .B/ denote the twisted tensor product
R-ring and the twisted tensor product R-coring with respect � and � , respectively.
Furthermore, if A and B are Koszul and � is invertible, then we shall show that
A˝� B is a Koszul R-ring.

5.1. Twisting maps ofR-rings. Let A and B beR-rings. A twisting map between A
and B is given by an R-bilinear map � WB ˝ A! A˝ B which is compatible with
the multiplication of A and B , i.e.

� ı .IB ˝mA/ D .mA ˝ IB/ ı .IA ˝ �/ ı .� ˝ IA/; (5.1)
� ı .mB ˝ IA/ D .IA ˝mB/ ı .� ˝ IB/ ı .IB ˝ �/: (5.2)

By definition, � must be compatible with the units of A and B as well. Therefore,
�.1B ˝ a/ D a ˝ 1B and �.b ˝ 1A/ D 1A ˝ b; for all a 2 A and b 2 B . In
computations we shall write �.b ˝ a/ 2 A˝ B as a formal sum

P
a� ˝ b� . Thus,

for instance�
.mA ˝ IB/ ı .IA ˝ �/ ı .� ˝ IA/

�
.b ˝ a0 ˝ a00/ D

X
a0�a

00
� 0 ˝ .b� /� 0 :

The occurrence of � and � 0 in the above identity indicates that the twisting map is
applied twice.

If � is a twisting map then A˝ B has a canonical R-ring structure with respect
to the multiplication

.a0 ˝ b0/.a00 ˝ b00/ D
X

a0a00� ˝ b
0
�b
00

and the unit 1A˝ 1B . The twisted tensor product will be denoted by A˝� B . In the
case when R is commutative and A and B are R-algebras, the twisted tensor product
A˝� B may be seen as a deformation of the usual tensor product algebra.

Let us now assume that the R-rings A and B are both graded. A twisting map �
between A and B is called graded if �.Bp˝Aq/ � Aq ˝Bp . The restrictions of �
to Bp ˝ Aq will be denoted by �p;q . For such a � the R-ring A ˝� B is graded
and its homogeneous component of degree n is the direct sum of all R-bimodules
Ap ˝ Bq with p C q D n.

5.2. Twistingmaps of cochainR-rings.We now assume that .��; d��/ and .�
�; d�� /

are cochain R-rings. A graded twisting map ��;�W�� ˝�� ! �� ˝ �� is called a
twistingmap of cochainR-rings if ��;� is compatible with the differential maps of��
and ��; in the sense that ��;q is a map of complexes from .�� ˝ �q; d�� ˝ I�q /
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to .�q ˝ ��; I�q ˝ d�� /; for all q. Symmetrically, �p;� must be a morphism of
complexes from .�p ˝��; I�p ˝ d��/ to .�

� ˝ �p; d�� ˝ I�p /; for all p.
Proposition 5.3. Let .��; d��/ and .��; d

�
� / be cochain R-rings. Suppose that V is

an R-bimodule.

(1) If'�W .V˝��; IV˝d��/! .��˝V; d��˝IV / is amorphism of complexes which
is compatible with the multiplication and the unit of ��; then x' � WD H�.'�/ is
compatible with the multiplication and the unit of the graded R-ring H�.��/.

(2) If��W .��˝V; d��˝IV /! .V ˝��; IV ˝d�� / is a morphism of complexes which
is compatible with the multiplication and the unit of ��; then x�� WD H�.��/ is
compatible with the multiplication and the unit of the graded R-ring H�.��/.

(3) Every twisting map of cochain R-rings ��;�W�� ˝ �� ! �� ˝ �� induces a
twisting map of gradedR-rings x� �;�WH�.��/˝H�.��/! H�.��/˝H�.��/.

Proof. For every p > 0 the morphism '� induces a map

x' pWHp.V ˝��/! Hp.�� ˝ V /:

By assumption every left or right R-module is flat. Hence, x' p can be seen as a map
from V ˝Hp.��/ to Hp.��/˝ V . For x 2 Zp.��/ let Œx� denote its cohomology
class. Note that ' p.v ˝ x/ is an element in Zp.��/˝ V , as '� is a morphism of
complexes. So 'p.v ˝ x/ D

P
x' ˝ v' , for some x' 2 Zp.��/. Hence

x' p
�
v ˝ Œx�

�
D

X
Œx' �˝ v' : (5.3)

Since '� is compatible with the multiplication of ��, we getX�
.xy/'

�
˝ v' D

X
Œx'y'0 �˝ .v'/'0 :

Thus, by the definition of the multiplication in H�.��/, it followsX�
Œx�Œy�

�
x'
˝ vx' D

X
Œx�x' Œy�x'0 ˝ .vx'/x'0 :

In conclusion, x' � is also compatible with the multiplication of H�.��/. By the
definition of x' � one can easily see that this family of R-bilinear maps is compatible
with the unit of H�.��/.

We omit the proof of the second statement, being similar to the above one.
Let � be a twisting map of cochain R-rings. If p � 0 then �p;� is a morphism of

complexes from �p ˝�� to �� ˝ �p which is compatible with the multiplication
and the unit of ��. By the first part of the proposition it follows that

H�.�p;�/W�p ˝ H�.�/! H�.��/˝ �p

is compatible with the multiplication and the unit of H�.��/. For a given q � 0,
the family of R-bilinear maps fHq.�p;�/gp�0 is a morphism of complexes from
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�� ˝ Hq.�/ to Hq.��/˝ �� which is compatible with the multiplication and the
unit of ��. Applying the second part of the proposition, for every p and q, we get a
map

x� p;qWHp.��/˝Hq.��/! Hq.��/˝Hp ��; x� p;q
�
Œx�˝ Œy�

�
D

X
Œy� �˝ Œx� �;

such that x� �;� is a graded twisting map of graded R-rings.

5.4. Twisting maps of R-corings. Let C and D be R-corings. A twisting map
between C and D is an R-bilinear map � WC ˝D ! D ˝ C compatible with the
comultiplication of C andD; that is

.�D ˝ IC / ı � D .ID ˝ �/ ı .� ˝ ID/ ı .IC ˝�D/; (5.4)

.ID ˝�C / ı � D .� ˝ IC / ı .IC ˝ �/ ı .�C ˝ ID/: (5.5)

By definition, � must be compatible with the counits of C and D as well. Thus,
.ID ˝ "C / ı � D "C ˝ ID and ."D ˝ IC / ı � D IC ˝ "D .

For a twisting map of corings we use the notation �.c˝ d/ D
P
d� ˝ c� , for all

c 2 C and d 2 D. The tensor product C ˝D has a canonical R-coring structure,
that will be denoted by C ˝� D. The counit of this R-coring is "C ˝ "D , and its
comultiplication � is defined by the formula

� WD .IC ˝ � ˝ ID/ ı .�C ˝�D/:

Let us now assume that C and D are graded corings. A twisting map of corings
� WC ˝D ! D ˝ C is called graded if �.Cp ˝Dq/ � Dq ˝ Cp . The restriction
of � to Cp ˝ Dq will be denoted by �p;q . Clearly, in this case C ˝� D is a
graded R-coring, whose homogeneous component of degree n is the direct sum of
all bimodules Cp ˝Dq with p C q D n.

5.5. Twistingmaps of chain corings.Wenowassume that .��; d�� / and .��; d�� / are
chainR-corings. A graded twistingmap ��;�W��˝�� ! ��˝�� is called a twisting
map of chain R-corings if ��;q is a map of complexes from .�� ˝ �q; d

�
� ˝ I�q / to

.�q ˝��; I�q ˝ d�� /; for any q. In addition, �p;� is a morphism of complexes from

.�p ˝ ��; I�p ˝ d�� / to .�� ˝�p; d�� ˝ I�p /; for any p.
Reasoning as in the proof of Proposition 5.3, one can show that the following

result holds true.
Proposition 5.6. Let .��; d�� / and .��; d�� / be chain corings. Suppose that V is an
R-bimodule.

(1) If '�W .V ˝��; IV ˝d�� /! .��˝V; d
�
� ˝ IV / is a morphism of complexes that

is compatible with the comultiplication and the counit of�� then x'� WD H�.'�/ is
also compatible with the comultiplication and the counit of the graded R-coring
H�.��/.
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(2) If ��W .��˝V; d�� ˝IV /! .V ˝��; IV ˝d�� / is a morphism of complexes that
is compatible with the comultiplication and the counit of�� then x�� WD H�.��/
is also compatible with the comultiplication and the counit of the gradedR-coring
H�.��/.

(3) If ��;�W�� ˝ �� ! �� ˝ �� is a twisting map of chain corings, then ��;�
induces a twisting map of graded R-corings

x��;�WH�.��/˝ H�.��/! H�.��/˝ H�.��/:

5.7. Entwining maps. Let A be an R-ring, and let C be an R-coring. We say that a
bimodule morphism �WC ˝A! A˝C is an entwining map if �.c˝1A/ D 1A˝ c
and .IA ˝ "C / ı � D "C ˝ IA; and the following relations hold

� ı .IC ˝mA/ D .mA ˝ IC / ı .IA ˝ �/ ı .�˝ IA/; (5.6)
.IA ˝�C / ı � D .�˝ IC / ı .IC ˝ �/ ı .�C ˝ IA/: (5.7)

Similarly one can define an entwining structure �WA˝ C ! C ˝ A.
Let us now assume thatA andC are both graded. An entwining map �WC ˝A!

A˝C is called graded if �.Cp ˝Aq/ � Aq ˝Cp . The restriction of � to Cp ˝Aq
will be denoted by �qp .

Let .��; d��/ and .��; d
�
� / be a cochainR-ring and a chainR-coring, respectively.

A graded entwining map ���W��˝�� ! ��˝ �� is called a differential entwining
map if ��pW�p ˝ �� ! �� ˝ �p and �q�W�� ˝ �q ! �q ˝ �� are morphisms
of complexes, for any p and q. We state for future reference, without proof, the
following proposition.

Proposition 5.8. Let .��; d��/ and .��; d
�
� / be a cochain R-ring and a chain R-

coring, respectively. Any differential entwining map ���W�� ˝ �� ! �� ˝ ��
induces a graded entwining map

x��� WH�.��/˝ H�.��/! H�.��/˝ H�.��/:

It is well known that anyk-linearmap �1;1WN˝kM !M˝kN can be extended
in a unique way to a graded twisting map � WT .N /˝k T .M/ ! T .M/˝k T .N /

between the free algebras generated byM andN . We shall adapt the method from [4]
in order to produce examples of twisting maps of chain coalgebras and differential
entwining maps. Some of them will be used later on in the paper to show that the
twisting tensor product of two Koszul R-rings is Koszul.

Recall that, for every R-bimodule V; the graded R-ring T aR.V / and the graded
R-coring T cR.V / have the same homogeneous component of degree n, namely V ˝n.
Their multiplication and comultiplication are defined by the canonical isomorphism
V ˝p ˝ V ˝q

Š
�! V ˝pCq and its inverse, respectively.
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Proposition 5.9. Let 'V;W WW ˝ V ! V ˝W be an R-bimodule map.

(1) There exists a unique bimodule map 'V;W� WT cR.W /˝V ! V ˝T cR.W / verifying
the relation 'V;W1 D 'V;W and which is compatible with the graded coring
structure of T cR.W /.

(2) If A is an R-ring and 'A;W is compatible with the multiplication and the unit
of A, then 'A;W� is an entwining map. Moreover, 'A;W� is graded, provided
that A is graded and 'A;W maps W ˝ Aq to Aq ˝W for all q.

(3) If, in addition,B is a connected R-ring and 'A; xB is compatible with the multipli-
cation and the unit of xB , then'A; xB� is an entwiningmap from .��.B/˝A; @�˝IA/
to .A˝��.B/; IA ˝ @�/ which commutes with the differentials.

(4) If .A; d�/ is a cochain R-ring and 'A; xB is a morphism of complexes as in (3),
then 'A; xB� is a differential entwining map.

Proof. In the case when R is a field, the first part of the lemma is proved in [4].
The same proof works in our setting as well. Let us assume that we have already
constructed 'V;W� . By the definition of the coring T cR.W /, the compatibility of 'V;W�
with �p;q is equivalent to the relation

'
V;W
pCq D

�
'V;Wp ˝ IW˝q

�
ı
�
IW˝p ˝ 'V;Wq

�
; (5.8)

where p and q are arbitrary nonnegative integers. In particular, if the map 'V;W�
exists it is uniquely defined by the condition 'V;W1 D 'V;W . On the other hand, to
prove the existence of 'V;W� we can proceed as follows. The map 'V;W0 must be the
canonical identification R˝ V Š V ˝ R, as 'V;W� is compatible with the counit of
T cR.W /. We set 'V;W1 D 'V;W and, for p > 1, we define 'V;Wp by

'V;Wp WD
�
'V;W ˝ IW˝p�1

�
ı
�
IW ˝ 'V;W ˝ IW˝p�2

�
ı � � �

� � � ı
�
IW˝p�2 ˝ 'V;W ˝ IW

�
ı
�
IW˝p�1 ˝ 'V;W

�
:

It follows easily by induction on q that the relation (5.8) is true for any p and q.
For the second part of the proposition we have to prove that 'A;W� is compatible

with the unit and the multiplication of A. Both compatibility conditions follow by
induction on p, using on the one hand the relation (5.8) written for q D 1 and the
fact that 'A;W1 D 'A;W is compatible with the ring structure of A, on the other hand.
Clearly, if A is graded, then 'A;W� maps W ˝p ˝ Aq to Aq ˝W ˝p . In the graded
case we shall denote the restriction of 'A;Wp to W ˝p ˝ Aq by 'A;Wp;q .
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Let us prove the third part of the proposition. Recall that ��.B/ D T cR.
xB/ as

R-corings. Using the relation (5.8) we get

'A;
xB

p D
�
'
A; xB
i ˝ I xB˝p�i

�
ı
�
I xB˝i ˝ '

A; xB
1 ˝ I xB˝p�i�1

�
ı
�
I xB˝iC1 ˝ '

A; xB
1 ˝ I xB˝p�i�2

�
ı
�
I xB˝iC2 ˝ '

A; xB
p�i�2

�
;

'
A; xB
p�1 D

�
'
A; xB
i ˝ I xB˝p�i�1

�
ı
�
I xB˝i ˝ '

A; xB
1 ˝ I xB˝p�i�2

�
ı
�
I xB˝iC1 ˝ '

A; xB
p�i�2

�
:

Since, by assumption, 'A; xB1 D 'A;
xB is compatible with the multiplication of B; we

deduce that

'
A; xB
p�1 ı

�
I xB˝i ˝mB ˝ I xB˝p�i�2 ˝ IA

�
D
�
IA ˝ I xB˝i ˝mB ˝ I xB˝p�i�2

�
ı 'A;

xB
p ;

for any i 2 f0; : : : ; p � 2g. Taking into account the definition of @� (see §2.5), the
above identity implies that 'A; xB� is a morphism of complexes.

Let us show that 'A; xB� is a differential entwining map, provided that .A; d�/ is a
cochain R-ring and 'A; xB is a morphism of complexes. Hence, it remains to prove
that

'
A; xB
p;qC1 ı

�
I�p.B/ ˝ d

q
�
D
�
dq ˝ I�p.B/

�
ı 'A;

xB
p;q ; (5.9)

for any p; q � 0. If p D 0 then this relation is trivially true for any q; as 'A; xB0;q is the
canonical identification R ˝ Aq Š Aq ˝ R. For p D 1 the equation holds as well,
since 'A; xB1;� W

xB ˝ A� ! A� ˝ xB is a morphism of complexes by assumption. Let us
suppose that (5.9) is true for a givenp and any q � 0. By using the recurrence relation
that defines 'A; xB� and the fact that 'A; xBp;� and 'A; xB1;� are morphisms of complexes we
deduce that (5.9) holds for p C 1 and any q.

Proceeding in a similar way one proves the proposition below. Starting with a
bimodule map, we now produce examples of twisting maps of (graded or chain)
R-corings.
Proposition 5.10. Let  V;W WW ˝ V ! V ˝W be an R-bimodule map.
(1) There exists a unique gradedR-bimodulemap V;W� WW˝T cR.V /! T cR.V /˝W

which verifies the relation  V;W1 D  V;W and is compatible with the coring
structure of T cR.V /.

(2) If C is a R-coring and  V;C is compatible with the comultiplication and the
counit of C , then  V;C� is a twisting map of corings. Moreover,  V;C� is graded,
provided that C is graded and  V;C maps Cp ˝ V to V ˝ Cp for all p. In this
case we shall use the notation  V;Cp;q WD  V;Cp jCp˝V˝q .

(3) If, in addition A is a connectedR-ring and  xA;C� is compatible with the comulti-
plication and the counit ofC , then the twisting map xA;C� is a morphism of chain
complexes from .C ˝��.A/; IC ˝ @�/ to .��.A/˝ C; @� ˝ IC /.
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(4) If .C; d�/ is a chain coring and  
xA;C is a morphism of complexes as in (3), then

 
xA;C
� is a twisting map of chain corings.

Remark 5.11. If we apply Proposition 5.9 and Proposition 5.10 to the same map
'V;W D  V;W ; then we get two different morphisms 'V;W� and  V;W� , that can be
seen as left-right symmetric version of each other. By analogy, we can also define
the morphisms

z'V;B� WB ˝ T
c
R.V /! T cR.V /˝ B and z'

xA;B
� WB ˝��.A/! ��.A/˝ B;

the symmetric versions of 'A;W and ' xA;B ; respectively. Again by symmetry, there
are morphisms

z D;W� WT cR.W /˝D ! D ˝ T cR.W / and z D; xB
� W��.B/˝D ! D ˝��.B/;

for anyR-coringD. For the sake of completeness, let us mention that the results from
Proposition 5.9 and Proposition 5.10 can be easily dualized. In this way we obtain
twisted tensor products of (graded or chain) R-rings in which one of the factors is
either T aR.V / or �

�.C /. We do not state the dual results in detail, as we shall not
use them in this paper.

5.12. The entwining maps � and �. Let A and B be two connected strongly graded
R-rings. Then it makes sense to consider the almost-Koszul pairs .A; T .A// and
.B; T .B//. For ease of notation, we shall write C andD instead of T .A/ and T .B/,
respectively. Recall that, by definition, .A; C / and .B;D/ are endowed with two
R-bimodule isomorphisms �C;AWC1 ! A1 and �D;B WD1 ! B1.

We now assume, in addition, that � WB˝A! A˝B is a given invertible graded
twisting map. Obviously, the inverse ��1 of � is also a twisting map or rings. Note
that .��1/p;q D .�q;p/�1. We claim that, under these assumptions, there is a graded
entwining map �WC ˝ B ! B ˝ C that extends in a certain sense the inverse
of � . Indeed, by taking 'B; xA WD ��1j xA˝B in Proposition 5.9, we get an entwining
map 'B; xA� between��.A/ and B , which is a morphism of complexes. Since any left
and right R-module is flat we get the following relations

Hp.��.A/˝ B/ Š Hp.��.A//˝ B D Cp ˝ B;
Hp.B ˝��.A// Š B ˝ Hp.��.A// D B ˝ Cp:

Therefore, by Proposition 5.6 (2), the induced morphism �WC ˝ B ! B ˝ C is a
graded entwining map.

By symmetry (see Remark 5.11), if we take ' xB;A to be the restriction of ��1

to A˝ xB , then z' xB;A� induces another graded entwining map �WA˝D ! D ˝ A.
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5.13. The twisting map �0. Under the same assumptions as above, we can now
construct a twisting map � between C and D. We apply Proposition 5.10 for
 
xB;C WD �jC˝ xB to get a twisting map  xB;C� WC ˝��.B/! ��.B/˝C of graded

corings. In fact, if we regard C as a chain coring with trivial differential maps,
then  xB;C� is a twisting map of chain corings, so it induces a graded twisting map
� 0WC ˝D ! D ˝ C , cf. Proposition 5.6 (3).

Some useful properties of �, � 0 and � are collected in the theorem below.

Theorem 5.14. Let � WB ˝ A! A˝ B be an invertible graded twisting map. The
twisting map � 0 and the entwining maps � and � constructed in §5.13 and §5.12
verify the following relations:�

IBp ˝ �C;A
�
ı �

p
1 D .�

p;1/�1 ı
�
�C;A ˝ IBp

�
; (5.10)

�1p ı
�
ICp ˝ �D;B

�
D
�
�D;B ˝ ICp

�
ı � 0p;1; (5.11)

�1p ı
�
�C;A ˝ IDp

�
D
�
IDp ˝ �C;A

�
ı � 01;p; (5.12)�

�D;B ˝ IAp
�
ı �

p
1 D .�

1;p/�1 ı
�
IAp ˝ �D;B

�
: (5.13)

Proof. We know that C D T .A/ is the homology of .��.A/; @�/, so C1 D xA= xA2.
Let us denote the class of a 2 xA by Œa�. By definition, 'B; xA1 D ��1j xA˝B . Therefore,
for any a 2 xA and b 2 Bq , we have

�1
�
Œa�˝ b

�
D

X
b��1 ˝ Œa��1 �:

On the other hand, �C;A maps Œa� to the homogeneous component of degree 1 of a.
The equation (5.10) now follows by a simple computation.

To prove the second identity we first note that

D1 D xB= xB
2 and  

xB;C
1 D  

xB;C
D �jC˝ xB :

Since � 0 is the morphism induced by  xB;C� and �D;B maps the class of b 2 xB
modulo xB2 to its homogeneous component of degree 1, we conclude the proof as in
the case of the previous relation. To show that (5.12) holds one proceeds in a similar
way.

5.15. Notation and assumptions. Our goal is to show that the pair�
A˝� B; T .A/˝� T .B/

�
is almost-Koszul, see Remark 5.16 for the definition of � . Then we shall show that
this pair is Koszul, provided that A and B are Koszul R-rings. In fact we are able to
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prove these results for any almost-Koszul pairs .A; C / and .B;D/which are equipped
with the following extra data:

(1) An invertible graded twisting map � WB ˝ A! A˝ B .

(2) An invertible graded twisting map � 0WC ˝D ! D ˝ C .

(3) An invertible entwining map �WC ˝ B ! B ˝ C .

(4) An invertible entwining map �WA˝D ! D ˝ A.

We assume that the conditions (5.10)–(5.13) are satisfied, where �C;AWC1 ! A1

and �D;B WD1 ! B1 are the isomorphisms corresponding to .A; C / and .B;D/;
respectively. We have already seen that, for any invertible twisting map � , the pairs
.A; T .A// and .B; T .B// fulfill the conditions (5.10)–(5.13), where � 0, � and � are
as in Theorem 5.14.

In the case when p D q D 1 the above identities imply the following equation:

�1;1 ı
�
�D;B ˝ �C;A

�
ı � 01;1 D �C;A ˝ �D;B :

Equivalently, for c 2 C1 and d 2 D1; we haveX
�C;A.c� 0/� ˝ �D;B.d� 0/� D �C;A.c/˝ �D;B.d/: (5.14)

Remark 5.16. If � 0WC ˝D ! D˝C is a graded twisting map of gradedR-corings,
then the map � defined by �p;q WD .�1/pq� 0p;q is also a graded twisting map
between C andD.

Proposition 5.17. With the notation and assumptions from §5.15 and the preceding
remark, the pair .A˝� B;C ˝� D/ is almost-Koszul.

Proof. It is obvious that A˝� B and C ˝� D are connected. By definition we have

.A˝� B/
1
D .R˝B1/˚ .A1˝R/ and .C ˝� D/1 D .R˝D1/˚ .C1˝R/:

We define � W .C ˝� D/1 ! .A˝� B/
1 such that it coincides with .�C;A ˝ IR/ and

.IR ˝ �D;B/ on C1 ˝ R and R ˝ D1; respectively. We claim that � satisfies the
relation (2.4). Indeed, if �� denotes the multiplication on A˝� B , then we have to
show that X

�
�
x.1;1/

�
�� �

�
x.2;1/

�
D 0; (5.15)

for any x in .C ˝� D/2 D .C2˝R/˚ .C1˝D1/˚ .R˝D2/. Hence for proving
(5.15) we may assume that x belongs to one of the three direct summands. Let us
consider the case x 2 C2 ˝ R, so x D c ˝ 1 for some c 2 C2. By definition of the
comultiplication on C ˝� D, we have

�1;1.c ˝ 1/ D
X�

c.1;1/ ˝ 1
�
˝
�
c.2;1/ ˝ 1

�
:
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Henceforth, in this case we haveX
�
�
x.1;1/

�
�� �

�
x.2;1/

�
D

X�
�C;A

�
c.1;1/

�
˝ 1

�
��

�
�C;A

�
c.2;1/

�
˝ 1

�
D

X
�C;A

�
c.1;1/

�
�C;A

�
c.2;1/

�
˝ 1 D 0;

since .A; C / is an almost-Koszul pair. If x 2 C0 ˝D2, the computations are done
in a similar way.

Let us finally assume that x D c ˝ d with c 2 C1, d 2 D1. Since c 2 C1 we
have �c D 1˝ c C c ˝ 1; and �1;1 D �� 01;1. Thus

�.c ˝ d/ D .c ˝ d/˝ .1˝ 1/C .c ˝ 1/˝ .1˝ d/

C .1˝ 1/˝ .c ˝ d/ � 1˝ � 01;1.c ˝ d/˝ 1:

The component of the latest expression belonging to .C ˝� D/1 ˝ .C ˝� D/1 is
precisely

�1;1.c ˝ d/ D .c ˝ 1/˝ .1˝ d/ �
X

.1˝ d� 0/˝ .c� 0 ˝ 1/:

Henceforth, applying first � ˝ � and then the product in A˝� B , we getX
�.x.1;1// �� �.x.2;1// D �C;A.c/˝ �D;B.d/ �

X
�C;A.c� 0/� ˝ �D;B.d� 0/� :

In view of the relation (5.14) it follows that the equation (2.4) holds in this case as
well.

Theorem 5.18. We keep the notation and the assumptions from §5.15. If .A; C / and
.B;D/ are Koszul, then .A˝� B;C ˝� D/ is Koszul too.

Proof. We have already proved that .A ˝� B;C ˝� D/ is an almost-Koszul pair.
Let K� be the complex that is obtained from Kl�.A˝� B;C ˝� D/ dropping the part
in degree �1. We define .K0�; d 0�/ and .K

00
�; d

00
� / in a similar way from Kl�.A; C / and

Kl�.B;D/, respectively. We claim that

IA ˝ �˝ IDWK0�˝K00� ! K�

is an isomorphism of complexes. Let

@nW .A˝� B/˝ .C ˝� D/n ! .A˝� B/˝ .C ˝� D/n�1

denote the differential map in K�. We fix p and q such that p C q D n. For c 2 Cp
and d 2 Dq we have

�.c ˝ d/ D

pX
uD0

qX
vD0

.�1/.p�u/vc.1;u/ ˝ d.1;v/� 0 ˝ c.2;p�u/� 0 ˝ d.2;q�v/:
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Thus the component of�.c˝d/ in .C ˝� D/1˝ .C ˝� D/pCq�1 is obtained from
the above equality by dropping all summands but the ones with either u D 1 and
v D 0; or u D 0 and v D 1. Therefore,

�1;pCq�1.c ˝ d/ D
X

c.1;1/ ˝ 1˝ c.2;p�1/ ˝ d

C .�1/p
X

1˝ d.1;1/� 0 ˝ c� 0 ˝ d.2;q�1/:

Hence, for any � D a˝ b ˝ c ˝ d in A˝ B ˝ Cp ˝Dq , with p C q D n, we get

@n.�/ D
X

a�C;A.c.1;1//� ˝ b� ˝ c.2;p�1/ ˝ d

C

X
.�1/pa˝ b�D;B.d.1;1/� 0/˝ c� 0 ˝ d.2;q�1/:

To make computations with morphisms in the category ofR-bimodules we use string
representation of morphisms in a tensor category, which is explained for example
in [16, Chapter XIV.1]. Each morphism will be represented downwards, as a black
bead. Sometimes, to avoid confusion, we shall write the name of the morphism
near the corresponding bead. For the identity of a bimodule we shall draw only the
string. The tensor product and the composition of twomorphisms will be represented
by horizontal and vertical juxtaposition, respectively. In conclusion, every string
diagram may be interpreted as the representation of a composition f1 ı � � � ı fn;
where each fi is a tensor product fi D IXi ˝ gi ˝ IYi . The corresponding diagrams
will be drawn one under the other, starting with fn on the top.

As usual, the multiplication of an R-ring is drawn by joining two strings. For
the components �p;q of the comultiplication of a coring C we shall use the ‘dual’
representation, in which the string representing CpCq is split in two strings that
corresponds to Cp and Cq , respectively.

As an example, let us have a look at the picture below, which represents @n. Here
the beads symbolize the morphism �D;B and �C;A, respectively. Note the notation
of � as a crossing. For � 0 and � we shall use the inverse crossing representation, to
put stress on the fact that they were obtained using ��1.

∂n = (−1)p

.

τ ′ +

ABCp Dq

A B CpDq−1

σ

A B Cp Dq

A BCp−1Dq

Let ın WD .IA ˝ ��1 ˝ ID/ ı @n ı .IA ˝ � ˝ ID/. Then ın D ı0n C ı
00
n, where ı0n

is the first term of @n composed to the left by IA ˝ ��1 ˝ ID and to the right by
IA ˝ �˝ ID . The map ı00n is obtained in a similar way from the second term of @n.
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The computation of ı0n is performed in the diagram below. For the first equality we
are using (5.11). The second one means that � is compatible with the multiplication
of B; while the third one is obvious, as � and ��1 are inverses each other.

δ′n = (−1)p = (−1)p = (−1)p = (−1)p

.

τ ′
λ

λ−1

ACpB Dq

ACp BDq−1

λ

λ

λ−1

ACpB Dq

ACp BDq−1

λ

λ−1

ACpB Dq

ACpB Dq−1

ACpB Dq

ACpB Dq−1

The morphism ı00n is computed in the next diagram using the samemethod. To deduce
the first identity we use (5.10). The second equality follows by the fact that the coring
structure of C and the entwining map � are compatible. The third one is obvious,
as ��1 is the inverse of �.

δ′′n = = = =

.

σ
λ−1

λ

ACpB Dq

ACpBDq−1

λ−1

λ−1

λ

ACpB Dq

ACpBDq−1

λ−1
λ

A CpB Dq

ACpBDq−1

A CpBDq

ACpBDq−1

The above computations show that

ı0n D .�1/
pIK0p ˝ d

00
q and ı00n D d

0
p ˝ IK00q

for any p and q such that p C q D n. Therefore, K� is the tensor product of the
complexes K0� and K00�.

Let us now assume that .A; C / and .B;D/ are Koszul. By definition, then the
complexes K0� and K00� are acyclic and their homology groups in degree zero are
isomorphic to R. If K� has the same properties, then Kl�.A˝� B;C ˝� D/ will be
exact. Using Künneth formula [25, Theorem 3.6.3] and the fact thatR is semisimple,
we get

Hn
�
Kl�.A˝� B;C ˝� D/

�
Š

L
pCqDn

Hp
�
Kl�.A; C /

�
˝ Hq

�
Kl�.B;D/

�
:

Thus Kln.A˝� B;C ˝� D/ clearly is acyclic. On the other hand,

H0
�
Kl�.A˝� B;C ˝� D/

�
Š H0

�
Kl�.A; C /

�
˝ H0

�
Kl�.B;D/

�
Š R˝R Š R:
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Corollary 5.19. Let � WB˝A! A˝B be an invertible graded twistingmap between
two Koszul R-rings. Then A˝� B is Koszul and T .A˝� B/ Š T .A/˝� T .B/.

Proof. Let � 0, � and � be the maps that we constructed in §5.12 and §5.13. By
the preceding theorem and Theorem 3.13, the pairs .A˝� B; T .A/˝� T .B// and
.A˝� B; T .A˝� B// are Koszul. To end the proof we apply Corollary 3.10.

Corollary 5.20. Let A and B be Koszul rings over a separable k-algebra R. Let �
be an invertible graded twisting map between A and B . If HdimA D n and
HdimB D m, then HdimA˝� B � nCm. Moreover, Hdim.A˝� B/ D mC n if
and only if Tn.A/˝ Tm.B/ ¤ 0.

Proof. By Theorem 4.5, we have Tn.A/ ¤ 0, Tm.B/ ¤ 0 and Tp.A/ D 0 D Tq.B/,
for all p > n and q > m. It follows that the homogeneous component of degree
m C n of T .A/ ˝� T .B/ is Tn.A/ ˝ Tm.B/. Since the homogeneous component
of degree r > mC n of the twisted tensor product coring is zero and A˝� B is a
Koszul ring, we conclude the proof using Theorem 4.5 once again.

6. The Hochschild (co)homology of a twisted tensor product

As usual, whenwe speak about the Hochschild (co)homology of anR-ringwe assume
thatR is a separable algebra over a field k and that anyR-bimodule is symmetric as a
k-bimodule (with respect to the bimodule structure induced by restriction of scalars).
Let � WB ˝ A ! A˝ B be an invertible graded twisting map between two Koszul
R-rings. By Theorem 5.14 and Theorem 5.18 there is a twisting map � between the
corings T .A/ and T .B// such that .A ˝� B; T .A/ ˝� T .B// is a Koszul pair. In
the first part of this section, for more flexibility, instead of using this pair as a tool we
prefer to place ourselves in the setting of §5.15, adding the assumption that .A; C /
and .B;D/ are Koszul.

Our aim is to show that the Hochschild homology of A˝� B can be computed
as the homology of the total complex associated to a suitable double complex. A
similar result will be obtained for Hochschild cohomology. Then, as an application,
we introduce generalized Ore extensions of an R-ring A and we show that such an
extension is Koszul, provided that A is so. Furthermore, using the results from this
section, we investigate the Hochschild cohomology of generalized Ore extensions.

6.1. The Hochschild homology of twisted tensor products of Koszul rings. By
Theorem 5.18 the pair .A˝� B;C ˝� D/ is Koszul, so we can use Theorem 4.3 to
compute the Hochschild homology of A˝� B . The decomposition

.C ˝� D/n D
L

pCqDn

Cp ˝Dq
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suggests that K�.A˝� B;M/ is the total complex of a double complex�
K��.A˝� B;M/; @h��; @

v
��

�
:

Before proving this, let us write the latter chain complex in an equivalent way. Recall
that

Kn.A˝� B;M/ DM b̋ .C ˝� D/n Š L
pCqDn

.M b̋ Cp b̋Dq/
Š

L
pCqDn

Dq b̋M b̋ Cp D K0n.A˝� B;M/:

Through these identifications, to the differential map @n of K�.A ˝� B;M/

corresponds a morphism

@0nWK
0
n.A˝� B;M/! K0n�1.A˝� B;M/:

In view of Theorem 4.3, to compute @0n we need�
C˝�D
1;n�1 .c˝d/ and�

C˝�D
n�1;1 .c˝d/

for any c˝ d 2 Cp˝Dq with pC q D n. The first element is given by the formula

�
C˝�D
1;n�1 .c ˝ d/ D

X
c.1;1/ ˝ 1˝ c.2;p�1/ ˝ d

C .�1/p
X

1˝ d.1;1/� 0 ˝ c� 0 ˝ d.2;q�1/;

cf. the proof of Theorem 5.18. We can compute the second element in a similar way,
obtaining

�
C˝�D
n�1;1 .c ˝ d/ D

X
c ˝ d.1;q�1/ ˝ 1˝ d.2;1/

C .�1/q
X

c.1;p�1/ ˝ d� 0 ˝ c.2;1/� 0 ˝ 1:

Letm 2M . Taking into account the relation (4.1) it follows that @0n.d b̋m b̋ c/ can
be written as a sum of two elements. The first one, belonging to Dq b̋M b̋ Cp�1;
has the following form

@hp;q.d b̋m b̋ c/ DX d b̋m��C;A�c.1;1/�˝ 1� b̋ c.2;p�1/
C .�1/p

X
d� 0 b̋ ��C;A�c.2;1/� 0�˝ 1�m b̋ c.1;p�1/: (6.1)

The other one, which is an element of Dq�1 b̋M b̋ Cp; can be written as
.�1/p@vp;q.d b̋m b̋ c/; where
@vp;q.d b̋m b̋ c/ DX d.2;q�1/ b̋m�1˝ �D;B�d.1;1/� 0�� b̋ c� 0

C .�1/q
X

d.1;q�1/ b̋ �1˝ �D;B�d.2;1/��m b̋ c: (6.2)



1332 P. Jara, J. López Peña and D. Ştefan

Thus the complexes .K�.A˝�B;M/; @�/ and .K0�.A˝�B;M/; @0�/ are isomorphic.
We have also proved that the restriction of the differential map @0n to Dq b̋M b̋ Cp
satisfies the relation @0n D @hp;q C .�1/

p@vp;q , where @hp;q and @vp;q are defined as
above. Let

Kp;q.A˝� B;M/ WD Dq b̋M b̋Cp:
By a straightforward but tedious computation, based on the relations (5.10)–(5.13),
one shows that .K��.A˝� B;M/; @h��; @

v
��/ is a double complex, that is the diagram

Kp;q.A˝� B;M/

@vp;q

��

@hp;q // Kp�1;q.A˝� B;M/

@v
p�1;q

��
Kp;q�1.A˝� B;M/

@h
p;q�1

// Kp�1;q�1.A˝� B;M/

(6.3)

is commutative for all nonzero p and q. Obviously, its total complex is�
K0�.A˝� B;M/; @0�

�
:

We reinterpret the double complex (6.3) to relate the homology groups of the
rows and columns with the Hochschild homology groups of A and B , respectively.
First, let us notice thatDq ˝M is an A-bimodule with respect to the actions

a.d ˝m/a0 WD
X

d� ˝ .a� ˝ 1/m.a
0
˝ 1/;

where for the left module structure we used the entwining map �WA˝D ! D˝A.
Similarly, we can endowM ˝ Cp with a B-bimodule structure by

b.m˝ c/b0 WD
X

.1˝ b/m.1˝ b0�/˝ c�:

Using the relations (5.11) and (5.12), it follows that the complexes K�.B;M ˝ Cp/
and K�.A;Dq ˝M/ are isomorphic to Kp�.A ˝� B;M/ and K�q.A ˝� B;M/,
respectively.

There are two filtrations on the total complex of K��.A ˝� B;M/, cf. [25,
Section 5.6]. They give rise to two spectral sequences, both converging to the
Hochschild homology of A˝� B with coefficients in M . For future reference, we
summarize the above results in the theorem below.
Theorem 6.2. We keep the notation and the assumptions of §5.15. If .A; C / and
.B;D/ are Koszul pairs over a separableR-algebra andM is an A˝� B-bimodule,
then the Hochschild homology of A˝� B with coefficients inM is the homology of
the total complex of .K��.A˝� B;M/; @h��; @

v
��/. The pages IE1�� and IIE1�� of the

spectral sequences that correspond to the column-wise and row-wise filtrations are

IE1pq D HHq.B;M ˝ Cp/ and IIE1pq D HHq.A;Dp ˝M/: (6.4)
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Both spectral sequences converge to the Hochschild homology of A ˝� B with
coefficients inM .

6.3. The Hochschild cohomology of twisted tensor products of Koszul rings.
For the computation of Hochschild cohomology of A ˝� B with coefficients in a
bimoduleM onemay also use a similar double complex. With the notation from §6.1,
let us remark that

Kn.A˝� B;M/ D HomRe ..C ˝� D/n;M/ Š
L

pCqDn

HomRe .Cp ˝Dq;M/:

(6.5)
For every R-bilinear morphism f WCp ˝Dq !M we define

@
p;q

h
.f /.c ˝ d/ D

X�
�C;A

�
c.1;1/

�
˝ 1

�
f
�
c.2;p/ ˝ d

�
C .�1/pC1

X
f
�
c.1;p/ ˝ d� 0

��
�C;A

�
c.2;1/� 0

�
˝ 1

�
:

Note that @p;q
h
.f / is a morphism of R-bimodules from CpC1˝Dq toM . Similarly,

for any f as above we define the map @p;qv .f /WCp ˝DqC1 !M by

@p;qv .f /.c ˝ d/ D
X�

1˝ �D;B
�
d.1;1/�

��
f
�
c� ˝ d.2;q/

�
C .�1/qC1

X
f
�
c ˝ d.1;q/

��
1˝ �D;B

�
d.2;1/

��
:

Taking into account the identification (6.5), by direct computation, we see that
the differential maps of the complex K�.A ˝� B;M/ satisfy the relations @n D
@
p;q

h
C .�1/p@

p;q
v ; and that the diagram

HomRe .Cp ˝DqC1;M/
@
p;qC1

h // HomRe .CpC1 ˝DqC1;M/

HomRe .Cp ˝Dq;M/
@
p;q

h

//

@
p;q
v

OO

HomRe .CpC1 ˝Dq;M/

@
pC1;q
v

OO

(6.6)

is commutative. The resulting double complex will be denoted by�
K��.A˝� B;M/; @��h ; @

��
v

�
:

We have seen that the homology groups of the rows and columns of the double
complex in Theorem 3.3 computes the Hochschild of A and B with respect to
appropriate A and B bimodules, respectively. For the Hochschild cohomology
of A˝� B a similar result does not hold in general. Nevertheless, supposing that R
is a separable commutative k-algebra and that all R-bimodules that we work with
are symmetric, in view of the adjunction formula, we can rewrite Kpq.A˝� B;M/

as follows

HomRe .Cp ˝Dq;M/ D HomR.Cp ˝Dq;M/ Š HomR
�
Cp;HomR.Dq;M/

�
:
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Through this isomorphism, for a given q; the row K�q.A˝� B;M/ can be identified
with the complex K�.A;HomR.Dq;M//, where the linear space of R-module
morphisms fromDq toM is regarded as an A-bimodule via the actions

.afa0/.d/ D
X

.a˝ 1/f .d�/.a
0
� ˝ 1/:

Therefore, the page IIE
pq
1 of the spectral sequence associated to the row-wise

filtration of K��.A ˝� B;M/ has in bidegree .p; q/ the Hochschild cohomology
group HHp.A;HomR.Dq;M//.

To give an analogous description of the columns of K��.A ˝� B;M/ we first
endow HomR.Cp;M/ with a B-bimodule structure, using the following left and
right actions

.bgb0/.c/ D
X

.1˝ b�/g.c�/.b ˝ 1/:

Then, by the adjunction formula,

HomRe .Cp ˝Dq;M/ Š HomR
�
Dq;HomR.Cp;M/

�
:

Thus, the column Kp�.A˝� B;M/ is isomorphic to the complex

K�
�
B;HomR.Cp;M/

�
;

for any p. In particular, the page IE
pq
1 of the spectral sequence associated to the

column-wise filtration has in the spot .p; q/ the Hochschild cohomology group of
HHq.B;HomR.Cp;M//. Summarizing, we sketched the proof of the following.
Theorem 6.4. We keep the notation and assumptions of §5.15. If .A; C / and .B;D/
are Koszul pairs over a separableR-algebra andM is anA˝� B-bimodule, then the
Hochschild cohomology of A˝� B with coefficients inM is the cohomology of the
total complex of .K��.A˝� B;M/; @��

h
; @��v /. Assuming that R is commutative and

that the R-bimodules A, B andM are symmetric, then the pages IE
��
1 and IIE

��
1 of

the spectral sequences that correspond to the column-wise and row-wise filtrations
are given by

IE
pq
1 D HHq

�
B;HomR.Cp;M/

�
and IIE

pq
1 D HHq

�
A;HomR.Dp;M/

�
:

Both spectral sequences converge to the Hochschild cohomology of A ˝� B with
coefficients inM .

6.5. Generalized Ore extensions of R-rings. Let A be an R-ring, where R is a
semisimple ring. If � WA!Mn.A/ is a morphism of R-rings then, for every couple
.i; j / of positive integers which are less than or equal to n; there exists anR-bimodule
endomorphism �ij ofA such that �ij .a/ is the .i; j /-element of the matrix �.a/; and

�ij .ab/ D

nX
pD1

�ip.a/�pj .b/ and �ij .1/ D ıi;j 1: (6.7)
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Let fe1; : : : ; eng denote the canonical basis (both as a left and as a right R-module)
on V WD Rn. For any morphism � as above there exists a unique twisting map

z� WT aR.V /˝ A! A˝ T aR.V /

such that z�.1˝ a/ D a˝ 1 and

z�.ei1 ˝ � � � ˝ eip ˝ a/ D

nX
j1;:::;jpD1

.�i1j1 ı � � � ı �ipjp /.a/˝ ej1 ˝ � � � ˝ ejp : (6.8)

Since z� is a twisting map of R-rings, the twisted tensor product A˝z� T aR.V / makes
sense. The set

B WD fei1 ˝ � � � ˝ eim j m � 0 and 1 � i1; : : : ; im � ng

is a basis of the leftA-moduleA˝z� T aR.V /. Therefore, by identifying ei1˝� � �˝eim
withXi1 � � �Xim ; any element inA˝z� T aR.V / can be written in a unique way as a left
linear combination of noncommutative monomials in the indeterminatesX1; : : : ; Xn
with coefficients in A. Via this identification, the multiplication in A˝z� T aR.V / is
determined by the relation

Xia D

nX
jD1

�ij .a/Xj :

If n D 1 then � identifies with an algebra automorphism �11 of A, and A˝z� T aR.V /
is the usual Ore extension A�11 ŒX�. For this reason, in the case when � is an
arbitrary R-ring morphism from A to Mn.A/; the corresponding twisted tensor
product A˝z� T aR.V / will be called the generalized Ore extension of A (with respect
to � ) and it will be denoted by A� hX1; : : : ; Xni.

The twisting map z�; associated to an algebra morphism � WA ! Mn.A/; is
invertible if and only if there is a matrix .� 0ij /i;j whose elements are R-bimodule
endomorphisms of A satisfying the equations

nX
pD1

�pi ı �
0
jp D

nX
pD1

� 0pi ı �jp D ıi;j IA:

The matrix .� 0ij /i;j determines the inverse of z� by the formula

z��1.a˝ ei1 ˝ � � � ˝ eip / D

nX
j1;:::;jpD1

ej1 ˝ � � � ˝ ejp ˝ �
0
ipjp
� � � � 0i1j1.a/: (6.9)

Let us now assume that A WD
L
p2N A

p is a connected gradedR-ring. Obviously, z�
is a graded twistingmap if and only if every �ij is amorphism of gradedR-bimodules.
From now on we assume that A is a connected R-ring and that � WA ! Mn.A/ is
a morphism of R-rings such that the corresponding twisting map z� is graded and
invertible.
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Theorem 6.6. Let R and A denote a semisimple ring and a Koszul R-ring,
respectively. If � is a morphism of R-rings from A to Mn.A/ such that the
corresponding twisting map z� is graded and invertible, then the generalized Ore
extension A� hX1; : : : ; Xni is a Koszul R-ring.

Proof. We know that A1 generates A and .A; T .A// is a Koszul pair, see Theo-
rem 3.10. Let V denote theR-bimoduleRn. By Proposition 4.6, the pair .T aR.V /; C /
is Koszul, where C WD C0 ˚ C1 and C1 D V: Applying Proposition 5.14 for

z� WT aR.V /˝ A! A˝ T aR.V /;

we get a twisting map of corings

� 0WT .A/˝ C ! C ˝ T .A/

and the entwining maps

�WT .A/˝ T aR.V /! T aR.V /˝ T .A/ and �WA˝ C ! C ˝ A;

such that the relations (5.10)–(5.13) hold with � replaced by z� . Hence by
Theorem 5.18 the pair .A ˝z� T aR.V /; T .A/ ˝� C/ is Koszul. In particular,
A� hX1; : : : ; Xni is a Koszul R-ring.

Remark 6.7. The matrix .� 0ij /i;j that gives the inverse of z� from relation (6.9) can
be used to construct explicitly the maps � 0; � and � from the proof of the preceding
theorem.

To construct � 0 we define the R-bimodule map � 0pW�p.A/˝ V ! V ˝�p.A/

as follows. If p D 0 then we take � 0p to be the isomorphism R ˝ V Š V ˝ R. On
the other hand, if p is positive, then we set

� 0p.a1 ˝ � � � ˝ ap ˝ ei / WD

nX
j1;:::;jpD1

ej1 ˝ �
0
j2j1

.a1/˝ �
0
j3j2

.a2/˝ � � �

� � � ˝ � 0jpjp�1.ap�1/˝ �
0
ijp
.ap/;

for any a1; : : : ; ap 2 A. Since

nX
jkD1

� 0jkjk�1.ak�1/�
0
jkC1jk

.ak/ D �
0
jkC1jk�1

.ak�1ak/

it follows easily that � 0� is a morphism of chain complexes from .��.A/˝V; @�˝ IV /
to .V ˝��.A/; IV ˝ @�/. To show that � 0� is compatible with the comultiplication
of ��.A/ one uses the fact that this coring structure is given by the canonical
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identifications �pCq.A/ Š �p.A/˝�q.A/. Thus � 0� satisfies the conditions from
Proposition 5.3, so for every p there is a bimodule map

� 0p;1WTp.A/˝ V ! V ˝ Tp.A/

such that f� 0p;1gp2N is compatible with the coring structure of T .A/. Let

� 0p;0WTp.A/˝R! R˝ Tp.A/

be the canonical R-bilinear isomorphisms. The family f� 0p;0gp2N together with
f� 0p;1gp2N define the required twisting map � 0 between T .A/ and C .

We can now define the entwining structure �. For any p we take �0p to be the
canonical isomorphism Tp.A/˝R Š R˝ Tp.A/; and for q > 0 we define

�qpWTp.A/˝ V
˝q
! V ˝q ˝ Tp.A/

by

�qp WD
�
IV˝q�1 ˝ � 0p;1

�
ı
�
IV˝q�2 ˝ � 0p;1 ˝ V

�
ı � � � ı

�
� 0p;1 ˝ IV˝q�1

�
:

Finally, the entwining map �WC ˝ A ! A ˝ C coincides with the isomorphism
R˝ A Š A˝ R on C0 ˝ A and with z��1 on C1 ˝ A. Plainly, by construction, z� ,
� 0, �, and � satisfies the conditions from §5.15.

6.8. Hochschild (co)homology of generalized Ore extensions.We keep the
notation and the assumptions from Theorem 6.6, and we suppose that M is an
A� hX1; : : : ; Xni-bimodule. By the proof of the aforementioned result�

A� hX1; : : : ; Xni; T .A/˝� C
�

is Koszul. Thus to compute the Hochschild homology of A� hX1; : : : ; Xni we may
use the double complex constructed in Theorem 4.3. In this particular case, the
double complex has only two non-trivial rows as Cq D 0 for any q > 1. Therefore,
for the generalized Ore extension A� hX1; : : : ; Xni the double complex becomes

0 V b̋M b̋ T0.A/oo

@v
0;1

��

V b̋M b̋ T1.A/@h
1;1oo

@v
1;1

��

V b̋M b̋ T2.A/dh
2;1oo

@v
2;1

��

� � �
@h
3;1oo

0 M b̋ T0.A/oo M b̋ T1.A/
@h
1;0

oo M b̋ T2.A/
@h
2;0

oo � � �
@h
3;0

oo

The arrows of this double complex are described in the next proposition. Recall
that the comultiplication on C is taken such that for all elements in V we have
�1;0.v/ D v ˝ 1 and �0;1.v/ D 1˝ v.
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Proposition 6.9. The Hochschild homology of A� hX1; : : : ; Xni is isomorphic to the
homology of the total complex of the above double complex. For c 2 Tp.A/,m 2M
and v 2 V the arrows are given by

@hp;0.m b̋ c/ D X
m
�
�
�
c.1;1/

�
˝ 1

� b̋ c.2;p�1/
C .�1/p

X�
�
�
c.2;1/

�
˝ 1

�
m b̋ c.1;p�1/;

@hp;1.v b̋m b̋ c/ D X
v b̋m���c.1;1/�˝ 1� b̋ c.2;p�1/
C .�1/p

X
v� 0 b̋ ���c.2;1/�0 �˝ 1�m b̋ c.1;p�1/;

@vp;1.vb̋mb̋c/ DXm.1˝ v� 0/ b̋ c� 0 � .1˝ v/m b̋ c:
Similarly, the double complex from Theorem 4.4 computing the Hochschild

cohomology of the generalized Ore extensionA� hX1; : : : ; Xni has only two nonzero
rows

0 // HomRe .V;M/
@
0;1
h // HomRe .T1.A/˝ V;M/

@
1;1
h // HomRe .T2.A/˝ V;M/ // � � �

0 // HomRe .R;M/
@
0;0
h

//

@
0;0
v

OO

HomRe .T1.A/;M/
@
1;0
h

//

@
1;0
v

OO

HomRe .T2.A/;M/

@
2;0
v

OO

// � � �

The arrows of this double complex are described in the next proposition.
Proposition 6.10. The Hochschild cohomology of the generalized Ore extension
A� hX1; : : : ; Xni is isomorphic to the cohomology of the total complex of the above
double complex. For c 2 Tp.A/, m 2M and v 2 V the arrows are given by

@p;0v .f /.c ˝ v/ D
X

.1˝ v� 0/f .c� 0 ˝ 1/ � f .c ˝ 1/.1˝ v/;

@
p;0

h
.f /.c/ D

X
.c.1;1/ ˝ 1/f .c.2;p//C .�1/

p
X

f .c.1;p//.c.2;1/ ˝ 1/;

@
p;1

h
.f /.c ˝ v/ D

X
.c.1;1/ ˝ 1/f .c.2;p/ ˝ v/

C .�1/p
X

f .c.1;p/ ˝ v� 0/.c.2;1/� 0 ˝ 1/:

Remark 6.11. The p-degree component of T .A/˝� C is�
Tp.A/˝R

�
˚
�
Tp�1.A/˝ V

�
:

We deduce that

HdimA � HdimA� hX1; : : : ; Xni � HdimAC 1;

see Theorem 4.5. Therefore, if the Hochschild dimension of A is n, then the
Hochschild dimension of the generalized Ore extensions is n C 1. Moreover, the
Hochschild dimension of A is infinite if and only if the Hochschild dimension of the
ore extension A� hX1; : : : ; Xni is so.
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7. Koszul braided R-bialgebras

In this section we are going to give some examples of Koszul rings and indicate some
applications of our previous results. We start by showing that, under certain mild
assumptions, any almost-Koszul pair that consists of connected braided commutative
bialgebras is always Koszul. Some particular instances of such pairs, including
trivial extensions, quantum affine spaces and the incidence algebra of the power
poset .P .X/;�/ of a finite set X , will be discussed.

7.1. Braided R-bialgebras. A pair .V; c/ is called braided R-bimodule if V is an
R-bimodule and cWV ˝V ! V ˝V is anR-bimodule map which satisfies the braid
equation

c1 ı c2 ı c1 D c2 ı c1 ı c2;

where c1 WD c˝IV and c2 WD IV ˝ c. Amorphism of braided bimodules from .V; cV /
to .W; cW / is a bimodule map f WV ! W such that cW ı .f ˝ f / D .f ˝ f / ı cV .

The definition of braided algebras from [2] can be adapted for R-rings without
difficulty. See also [1] for more details about braided algebras, coalgebras and
bialgebras. The quadruple .A;m; u; c/ is called a braided R-ring if .A; c/ is a
braided R-bimodule and .A;m; u/ is an R-ring such that c is a twisting map of
R-rings. A morphism of braided R-rings is, by definition, a morphism of ordinary
R-rings which, in addition, is a morphism of braided bimodules. The braided ring
.A;m; u; c/ is called braided commutative, or c-commutative if m ı c D m.

We shall say that .A;m; u; c/ is a graded braidedR-ring if and only ifA is graded
and c is a graded twisting map of graded R-rings. In this case we shall denote the
restriction of c to Ap ˝ Aq by cp;q . Note that, for a braided R-ring .A; c/, we can
consider the twisted tensor product A˝c A with respect to the twisting map c.

Braided R-corings, and their graded version, are defined in a dual manner.
Braided R-bialgebras generalize braided bialgebras, introduced by Takeuchi in [23].
By definition, a sextuple .A;m; u;�; "; c/ is a braidedR-bialgebra if .A;m; u; c/ is a
braidedR-ring and .A;�; "; c/ is a braidedR-coring such that� and " aremorphisms
of R-rings (on the R-bimodule A˝A we take the ring structure A˝c A). A braided
R-bialgebra A is graded if the underlying ring, coring and braiding structures are so
(with respect to the same decomposition A D ˚n2NA

n).
The free R-ring T aR.V / and the symmetric R-ring SR.V; c/ of a braided R-

bimodule .V; c/ are the main examples of braided R-bialgebras. To define them one
follows the same steps as in [1], where the case of braided bialgebras over a base field
is considered. First, one shows that there exists a unique R-bimodule map

cT WT
a
R.V /˝ T

a
R.V /! T aR.V /˝ T

a
R.V /;

which extends c and is a solution of the braid equation that respects the grading
on T aR.V /˝T

a
R.V /. Since c is a solution of the braid equation, cT is a twistingmap of

R-rings. Thus .T aR.V /; cT / is a graded braidedR-ring. Using the universal property
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of T aR.V /, one constructs a unique comultiplication�WT aR.V /! T aR.V /˝cT T
a
R.V /

such that �.v/ D v ˝ 1C 1˝ v, for any v 2 V . We also define "WT aR.V /! R to
be the unique R-ring morphism that coincides with IR on the 0-degree component
of T aR.V / and vanishes on V . As in [1] one shows that .T aR.V /;�; "; cT / is a braided
R-bialgebra.

Let .V; c/ be a symmetric braided bimodule, that is c satisfies the additional
condition c2 D IV˝V . Since W WD Im.IV˝V � c/ contains only primitive
elements, the two-sided ideal I generated by W is a coideal in T aR.V /. Let
SR.V; c/ WD T

a
R.V /=I . Since cT maps I˝T aR.V / and T

a
R.V /˝I to T

a
R.V /˝ I and

I ˝ T aR.V /, respectively, we conclude that SR.V; c/ inherits a canonical structure
of braided R-bialgebra. We denote the braiding of SR.V; c/ by cS . We shall
say that SR.V; c/ is the braided symmetric R-ring of .V; c/. This R-ring is
cS -commutative by construction.
Theorem 7.2. Let R be a separable algebra over a field k of characteristic zero.
Let .A; cA/ and .H; cH / denote two connected braided R-bialgebras such that
A1 D H 1 and c1;1A D �c1;1H . If A and H are strongly graded and braided
commutative (as R-rings), then .A;H/ and .H;A/ are Koszul pairs. In particular,
.SR.V; c/; SR.V;�c// is a Koszul pair.

Proof. Let fmp;qA gp;q2N and f�Ap;qgp;q2N denote the components of the multiplica-
tion and of the comultiplication of A. We claim that

m
n;1
A ı�

A
n;1 D .nC 1/IAnC1 and m

1;n
A �A1;n D .nC 1/IAnC1 ; (7.1)

for any n � 0. We shall prove only the first identity, the other one can be obtained in
a similar way. Let us note that the proof of [1, eq. (21)] works for arbitrary graded
braided R-bialgebras, not only for usual bialgebras. Hence for any x 2 An and any
a 2 A1 we have

�An;1.xa/ D x ˝ aC
X

x.1;n�1/acA ˝ x.2;1/cA
; (7.2)

where in the above relation we used the notation cA.a0˝a00/ D
P
a00cA˝a

0
cA
. On the

other hand, sinceA is braided commutative by hypothesis, we get
P
a00cAa

0
cA
D a0a00.

This relation together with (7.2) yield�
m
n;1
A ı�

A
n;1

�
.xa/ D xaC

X
x.1;n�1/acAx.2;1/cA

D xaC
X

x.1;n�1/x.2;1/a D xaC
�
m
n�1;1
A ı�An�1;1

�
.x/a:

In conclusion, the first equality in (7.1) follows by induction, using the fact that the
products xa with x 2 An and a 2 A1 generates AnC1 as a linear space, since A is a
strongly graded R-ring.

AsH is braided commutative, we also have

m
n;1
H ı�

H
n;1 D .nC 1/IHnC1 and m

1;n
H ı�

H
1;n D .nC 1/IHnC1 : (7.3)
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Note that the relation (7.2) holds for the braided bialgebra H as well. In particular,
taking into account that c1;1H D �c

1;1
A , we get

�H1;1.xy/ D x ˝ y C c1;1H .x ˝ y/ D x ˝ y � c1;1A .x ˝ y/;

for all x; y 2 H 1. Since H is strongly graded and A is braided commutative we
deduce that m1;1A �H1;1 D 0, that is .A;H/ is almost-Koszul.

Now we can prove that .A;H/ is Koszul, showing that K�l .A;H/ is exact. We
know that this complex is the direct sum of its subcomplexes K�l .A;H; p/, where p
is an arbitrary nonnegative integer. Since K�l .A;H; 0/ is always exact, it is enough
to show that IK�

l
.A;H;p/ is null homotopic, for any p > 0. We need a sequence of

maps s�WK�C1
l

.A;H; p/! K�l .A;H; p/ such that

dn�1l ı sn�1 C sn ı dnl D IKn.A;H;p/: (7.4)

We take s�1 D 0 D sp , and for 0 � n � p � 1 we set

sn.h˝ a/ D p�1
X

ha.1;1/ ˝ a.2;n/:

Since �A1;0.a/ D a ˝ 1 and �H0;1.h/ D 1 ˝ h, it is easy to prove (7.4) in the case
when either n D 0 or n D p � 1 . We now suppose that 0 < n < p � 1 and we pick
h 2 Hp�n and a 2 An. Then�
dn�1l ı sn�1

�
.h˝ a/ D p�1

X�
IHm�n ˝m1;n�1A

��
�Hp�n;1

�
ha.1;1/

�
˝ a.2;n�1/

�
D p�1

X
h˝ a.1;1/a.2;n�1/

C p�1
X

h.1;p�n�1/a.1;1/cH
˝ h.2;1/cH

a.2;n�1/

D np�1h˝ a

C p�1
X

h.1;p�n�1/a.1;1/cH
˝ h.2;1/cH

a.2;n�1/;

where for the second equality we used (7.2) written for H . A similar computation
shows us that�

sn ı dnl
�
.h˝ a/ D p�1

X�
m
p�n�1;1
H ˝ IAn

��
h.1;p�n�1/ ˝�

A
1;n

�
h.2;1/a

��
D p�1

X
h.1;p�n�1/h.2;1/ ˝ a

C p�1
X

h.1;p�n�1/a.1;1/cA
˝ h.2;1/cA

a.2;n�1/

D .p � n/p�1h˝ a

C p�1
X

h.1;p�n�1/a.1;1/cA
˝ h.2;1/cA

a.2;n�1/:

We conclude the proof by remarking that c1;1H D �c
1;1
A , so (7.4) is true.
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7.3. Trivial extensions. As a first application of Theorem 7.2 we shall investigate
some homological properties of trivial extensions. Let V be a non-zeroR-bimodule,
where R is an algebra over a field of characteristic zero. Obviously, the identity map
of V ˝ V is an involutive solution of the braid equation. Hence we can apply the
previous theorem for c WD IV˝V . In this case we get that SR.V; c/ D T aR.V /.
On the other hand, since the characteristic of k is 0, the braided bialgebra
AR.V / WD SR.V;�c/ coincides with the trivial algebra extension ofRwith kernel V .
Thus, AR.V / D R ˚ V , and the product of two elements in V is zero. The
comultiplication of AR.V / is uniquely defined such that any element in v 2 V is
primitive, that is �.v/ D v˝ 1C 1˝ v. Note that the braiding in AR.V / restricted
to V ˝ V is equal to �IV˝V .

Corollary 7.4. If R is a separable algebra over a field k of characteristic zero, then
.T aR.V /; AR.V // and .AR.V /; T

a
R.V // are Koszul. Moreover, HdimT aR.V / D 1

and HdimAR.V / D supfn j V ˝n ¤ 0g.

We can now use Corollary 7.4 to compute the Hochschild (co)homology of the
trivial extension AR.V / with coefficients in an AR.V /-bimoduleM . For, we apply
Theorem 4.3. Since the homogenous component of T aR.V / of degree n is V ˝n, we
have Kn.AR.V /;M/ D M b̋ V b̋n. On the other hand, the component �p;n�p of
the comultiplication of T aR.V / is given by the formula

�p;n�p.v1 � � � vn/ D
�
n
p

�
v1 � � � vp ˝ vpC1 � � � vn:

where v1 � � � vn is a shorthand notation for the tensor monomial v1 ˝ � � � ˝ vn, and�
n
p

�
D

nŠ
pŠ.n�p/Š

. Hence the differential of K�.AR.V /;M/ satisfies the relation
@n WD n@

0
n, where

@0n.m b̋ v1 b̋ � � � b̋ vn/ D .m � v1/ b̋ v2 b̋ � � � b̋ vn
C .�1/n.vn �m/ b̋ v1 b̋ � � � b̋ vn�1:

Since the characteristic of k is zero, we conclude that the Hochschild homology
of AR.V / with coefficients inM is the homology of the complex .M b̋ V b̋�; @0�/.

In the more particular caseM WD AR.V /, we can go further on the computation
of Hochschild homology. Indeed, in this setting we can identifyAR.V / b̋ V b̋n with
V b̋n ˚ V b̋nC1 via the linear map

.r; v0/ b̋ v1 b̋ � � � b̋ vn 7�! .rv1 b̋ � � � b̋ vn; v0 b̋ v1 b̋ � � � b̋ vn/:
Note that the endomorphism �n of V b̋n, that maps v1 b̋ � � � b̋ vn to

.�1/nC1vn b̋ v1 b̋ � � � b̋ vn�1;
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defines an action of the cyclic group Zn on V b̋n. With respect to this action and the
above identification, @0nWV b̋n˚V b̋nC1 ! V b̋n�1˚V b̋n is given by the formula

@0n.x; y/ D .0; x � �n.x//:

Hence, for any n, we have

HHn
�
AR.V /; AR.V /

�
D Ker

�
I
V b̋n � �n�LCoker

�
I
V b̋nC1 � �nC1�

D
�
V b̋n�ZnL�

V b̋nC1�
ZnC1

:

Note that the summands in the above equation are the spaces of invariant and
coinvariant elements with respect to the actions induced by�n and�nC1, respectively.
Remark 7.5. The complex from Theorem 4.4 coincides with the one introduced by
Cibils in [10] using a different method, based on the work on the rigidity of certain
algebras [8,9].

As a more particular case, we now consider the trivial extension associated to a
quiver � with a finite set �0 of vertices, but with an arbitrary set �1 of arrows. The
source and the target maps of � will be denoted by s; t W�1 ! �0.

By a path of length n (or, equivalently, an n-path) in � we mean a sequence of n
arrows 
 WD a1 � � � an such that t .ai / D s.aiC1/, for any i D 1; : : : ; n � 1. The
vertices s.
/ WD s.a1/ and t .
/ WD t .an/will be called the source and the target of 
 ,
respectively. A vertex v 2 �0 will be regarded as a path of length 0, with the same
source and target v. Clearly the paths of length 1 coincide with the arrows of � . The
set of n-paths will be denoted by �n. Note that this notation is consistent with the
one that we use for the set of vertices and arrows in � .

Let k be a field and let k� -denote the vector space admitting as a basis the setS
n2N �

n of all paths in � . Recall that with respect to the multiplication

.a1 � � � an/ � .a
0
1 � � � a

0
m/ D

(
a1 � � � ana

0
1 � � � a

0
m; if t .an/ D s.a01/I

0; otherwiseI

k� is an associative k-algebra, which is called the path algebra of � . Since �0 is
finite, the sum of all vertices is a unit of k� . Note that any path can be regarded as
the product of its arrows.

There is a standard grading onk� , given by the decompositionk� D ˚n2Nk�n,
where k�n is the linear subspace spanned by �n. In particular, k� is a connected
k�0-ring. Note that k�0 is isomorphic as a k-algebra with the direct product
of #�0 copies of k, since the vertices of � are orthogonal central idempotents in k� .
Obviously, this k-algebra is separable.

Furthermore, k�1 is a k�0-bimodule with respect to the structure induced by
the multiplication. It is well known that the map a1 � � � an 7! a1 ˝ � � � ˝ an
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is an isomorphism of connected k�0-rings between k� and T a
k�0

.k�1/. Since
.k�1/˝n Š k�n, by applying Corollary 7.4 one proves the following.
Corollary 7.6. Let� denote a quiver with a finite number of vertices. The Hochschild
dimension of the trivial extension Ak�0

.k�1/ is given by

HdimAk�0
.k�1/ D supfn j �n ¤ ;g:

7.7. Multiparametric quantum spaces. We are going to apply the results that we
have obtained in order to give an alternative proof of some known homological
properties (cf. for instance [14] and [24]) of the multiparametric quantum spaces
Oq.An/. Recall from [1] that the affine quantum spaces can be defined as the
symmetric k-algebra Sk.V; c/, where V is an n-dimensional vector space and
cWV ˝k V ! V ˝k V is the solution of the braid equation given by c.xj ˝ xi / D
qijxi ˝ xj . Here, the set fx1; : : : ; xng denotes a basis on V , and the family
of quantum parameters q D fqij gi;j defining Oq.An/ is assumed to satisfy the
conditions qij qj i D 1, for all i; j D 1; : : : ; n.

One can think ofOq.An/ as the algebra with generators fx1; : : : ; xng and relations
xjxi D qijxixj for all 1 � i; j � n, with the natural grading. Note that x2i D 0,
provided that qi i D �1 and char.k/ ¤ 2. Therefore, if the later relation holds for
all i 2 f1; : : : ; ng then Oq.An/ is a finite dimensional algebra of dimension 2n, and
the homogeneous component of degree n is one dimensional. Clearly, in this case
all other components of higher degree vanish. On the other hand, if qi i D 1 for a
certain i , then the subalgebra generated by xi is a polynomial ring, so Oq.An/ is
infinite dimensional.

In view of Theorem 7.2, the pair .Oq.An/; O�q.An// is Koszul. By Theorem 4.5,
it follows that the Hochschild dimension ofOq.An/ is finite if and only ifO�q.An/ is
finite dimensional, i.e. qi iD1 for all 1� i�n. In this situation, Hdim.Oq.An//Dn
and on the basis

fxi1xi2 � � � xir j 1 � i1 < i2 < � � � < ir � ng

the comultiplication for T .Oq.An// Š O�q.An/ is defined by

�p;q.xi1xi2 � � � xipCq / D
X

�2Sh.p;q/

q�1� xi�.1/ � � � xi�.p/ ˝ xi�.pC1/ � � � xi�.pCq/ ;

where � ranges in the set Sh.p; q/ of all shuffles of type .p; q/ and the constant q� is
the q-sign of the shuffle �, defined as

q� D
Y
i<j;

�.j /<�.i/

�
� q�.j /�.i/

�
:

Indeed, O�q.An/ D SR.V;�c/ is a braided bialgebra. Let us denote its braiding
by cO . As the comultiplication of the multiparametric quantum space is an algebra
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map fromO�q.An/ to the twisted tensor productO�q.An/˝cOO�q.A
n/, the desired

formula for �p;q can be easily proved by induction using the fact that each xi is a
primitive element.

7.8. The incidence algebra of the power set of a finite set. Let k be a field of
characteristic 0 and let X WD f1; : : : ; dg. The power set P .X/ of X is a poset with
respect to the order relation given by inclusion. We are now going to show that
the incidence algebra A.X/ of this poset is a Koszul R-ring, where R WD k2

d . By
definition, A.X/ has as a basis the set feŒI;J � j I � J g, where the interval ŒI; J �
contains all subsets K such that I � K � J . The multiplication of A.X/ is defined
by the relation

eŒI;J � � eŒI 0;J 0� D ıJ;I 0eŒI;J 0�:

The unit ofA.X/ is
P
I�X eŒI;I �. The incidence algebra ofX is a gradedR-ring. Its

n-degree component An.X/ is spanned by all eŒI;J � with jJ n I j D n. In particular,
A.X/ is connected as an R-ring, as A0.X/ is generated by feŒI;I � j I � Xg, which
is a complete set of orthogonal idempotents.

The Koszulity of A.X/ will follow as a consequence of the fact that this R-ring
is an example of braided symmetric R-bialgebra. Let V WD A1.X/. Obviously, V
is an R-bimodule as it is a homogeneous component of a connected R-ring. The set
of all tensor monomials eI0:::In WD eŒI0;I1� ˝ � � � ˝ eŒIn�1;In� with Ik � IkC1 and
jIkC1 n Ikj D 1 is a basis of V ˝n regarded as a vector space (recall that by ˝ we
mean˝R).

Our goal now is to construct an involutive solution cWV ˝V ! V ˝V of the braid
equation. As a k-linear map, c is uniquely defined by the elements c.eI0I1I2/, where
each Ik is a predecessor of IkC1 in the poset P .X/, that is Ik is a subset of IkC1
and jIkj D jIkC1j�1. Hence I1 D I0

S
fi1g and I2 D I0

S
fi1; i2g, where i1 and i2

are distinct elements which do not belong to I0. Let I 01 WD I0
S
fi2g. We can now

define c by

c.eI0I1I2/ WD eI0I 01I2 : (7.5)

Let us note that the Hasse diagram ofP .X/ can be identifiedwith the unit cube inRd ,
regarded as a quiver ‡ d . The set of vertices of this quiver is the set f0; 1gd � Rd ,
and an arrow of this quiver has the source .i1; : : : ; id / and the target .j1; : : : ; jd /
if and only if the former vertex is the successor of the latter with respect to the
lexicographic ordered on f0; 1gd . Thus, from a geometric point of view, the k-linear
map c interchanges any pair of oriented 2-paths having the same source and the same
target.

In view of the above geometric interpretation of the Hasse diagram, we shall say
that I0 (respectively In) is the source (respectively the target) of eI0:::In 2 V ˝n.
Since in the equation (7.5) both elements of the basis on V ˝2 have the same source
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and the same target it follows that c is a morphism of R-bimodules. On the other
hand, if eI0I1I2I3 2 V ˝3 and Ik D I0

S
fi1 : : : ; ikg, then

.c1 ı c2 ı c1/.eI0I1I2I3/ D eI0I 01I
0
2
I3
D .c2 ı c1 ı c2/.eI0I1I2I3/;

where I 01 D I0
S
fi3g and I 02 D I0

S
fi2; i3g. In conclusion, .V; c/ is a braided

R-bimodule. Clearly, c is involutive, so it makes sense to consider the braided
R-bialgebras SR.V; c/ and SR.V;�c/.
Theorem 7.9. There is an isomorphism of graded R-rings A.X/ Š SR.V; c/ In
particular, A.X/ is a 3d -dimensional Koszul ring of Hochschild dimension d .

Proof. Let T WD T aR.V / be the braided R-bialgebra with braiding cT , see §7.1. For
n > d , the n-degree homogeneous component T n of T vanishes, as any increasing
sequence I0   � � �   Ik has length k � d . As S WD S.V; c/ is a quotient braided
R-bialgebra of T we deduce that Sn D 0 for any n > d .

We claim that dimSn D 2d�n
�
d
n

�
for any n � d . We start the proof of this

relation by recalling that the involutive braiding c induces an action of the symmetric
group †n on T n such that the transposition �i WD .i; i C 1/ acts on v1˝ � � � ˝ vn by

�i � .v1 ˝ � � � ˝ vn/ D v1 ˝ � � � ˝ c.vi ˝ viC1/˝ � � � ˝ vn;

for any v1; : : : ; vn 2 V . If eI0:::In is an element of the basis on T n, with Ik D
I0
S
fi1; : : : ikg, then

� � eI0:::In D eJ0:::Jn ; (7.6)

where J0 D I0 and Jk D J0
S
fi�.1/; : : : ; i�.k/g, for any k D 1; : : : ; n.

Regarding each permutation � 2 †n as an R-bilinear automorphism of V ˝n and
taking into account the definition of the braided symmetric R-bialgebra S , we get

Sn D
V ˝nPn

iD1 Im.1 � �i /
D

V ˝nP
�2†n

Im.1 � �/
:

Note that the second equation is a consequence of the relation

IV˝n � �i1 � � � �in D .IV˝n � �in/C .�in � �in�1�in/C � � �
� � � C .�i2 � � � �in � �i1�i2 � � � �in/

and of the fact that �1; : : : ; �n�1 generate †n. Hence, Sn coincides with the
coinvariant quotient space .V ˝n/†n . Since, by assumption k is a field of
characteristic zero, the canonical linear map from the invariant subspace .V ˝n/†n
to Sn is a k-linear isomorphism.

In conclusion, we have to show that dim.V ˝n/†n D 2d�n
�
d
n

�
. For, we split the

representation T n D V ˝n as a direct sum of sub-representations

T n D ˚I�JT
n.I; J /;
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where T n.I; J / denotes the vector space spanned by the elements eI0;:::;In with
source I and target J . The summands are indexed by all pairs .I; J / such that
I � J � f1; : : : ; dg and J nI is a set with n elements. Thus the above decomposition
has

dX
kDn

 
d

k

! 
k

n

!
D 2d�n

 
d

n

!
(7.7)

terms. On the other hand dimT n.I; J / D nŠ and, by relation (7.6), it follows that the
action of †n on T n.I; J / is transitive for any I � J with jJ n I j D n. We deduce
that T n.I; J /†n is a vector space of dimension 1. Hence our claim has been proved,
as dimSn D dim˚I�JT n.I; J /†n D 2d�n

�
d
n

�
.

We can now prove that S and A.X/ are isomorphic. Let 'WT ! A.X/

be the canonical morphism of graded R-rings that extends the identity map
'0WT 0 ! A0.X/ and the R-bimodule morphism '1WT 1 ! A1.X/ mapping eIJ
to eŒI;J �, for any I � J with J a successor of I . Since 'n.eI0:::In/ D eŒI0;In�, it is
easy to see that ' vanishes on the ideal generated by the image of IT 2 � c. Hence '
induces a surjective graded ring morphism x'WS ! A.X/.

To prove that x' is an isomorphismwe notice that feŒI;J � j I � J and jJ nI j D ng
is a basis of An.X/. Hence dimAn.X/ D 2d�n

�
d
n

�
by the proof of equation (7.7).

Therefore, every x'n is bijective and

dimA.X/ D
dX
nD0

 
d

n

!
2d�n D .1C 2/d D 3d :

It remains to show that HdimA.X/ D d . Proceeding as above we can show that
Sn.V;�c/ D 0 for n > d . On the other hand, dimSn.V;�c/ D 2d�n

�
d
n

�
, for n � d .

We conclude applying Theorem 4.5.

7.10. A generalization of the Fröberg theorem. Let k be a field. By a result of
Fröberg [12], the quotient of the free algebra khX1; : : : ; Xni by the ideal generated
by a set of non-commuting monomials of degree 2 is a Koszul k-algebra. As an
application of our results on Koszul pairs, we shall prove a similar result for the
quotient of a path algebra by an ideal which is generated by 2-paths.

We fix a quiver � with a finite number of vertices and a set ˚ of 2-paths. The
complement of ˚ in �2 will be denoted by ˚ 0. We shall also use the following
notation: R WD k�0 and V WD k�1. We define the connected R-ring A.� ; ˚/ to be
the quotient of the path algebra k� by the ideal generated by ˚ .

For n D 0 and n D 1 we set �n˚ WD �n. On the other hand, if n � 2 let �n˚
denote the set of n-paths 
 D a1 � � � an such that aiaiC1 2 ˚ , for all i . The sets �n˚ 0
are defined in a similar way.

The linear transformation that maps a path in �n˚ 0 to its equivalence class
inA.� ; ˚/n is an isomorphism, for all n. This property allows us to identifyA.� ; ˚/
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with the connectedR-ring˚n�0k�n˚ 0 , whosemultiplication is given fora1 � � � an2�n˚ 0
and a01 � � � a0m 2 �

m
˚ 0 by

.a1 � � � an/ � .a
0
1 � � � a

0
m/ D

(
a1 � � � ana

0
1 � � � a

0
m; if t .an/ D s.a01/ and ana01 2 ˚ 0I

0; otherwise:

From now on we shall regard the R-ring A.� ; ˚/ as a subspace of k� with respect
to this multiplication.

The R-bimodule isomorphisms �p;qWk�pCq ! k�p ˝ k�q

�p;q.a1 � � � apCq/ D a1 � � � ap ˝ apC1 � � � apCq (7.8)

define an R-coring structure on k� (recall that ˝ D ˝R). Let C.� ; ˚/n be the
linear subspace spanned by �n˚ . By definition, C.� ; ˚/ WD ˚n�0C.� ; ˚/n is a
graded R-subcoring of k� .
Theorem 7.11. The pair .A.� ; ˚/; C.� ; ˚// is Koszul and HdimA.� ; ˚/ D
supfn j �n˚ ¤ ;g.

Proof. Let A WD A.� ; ˚/ and C WD C.� ; ˚/. Clearly, by construction, A is a
connected R-ring and C is a connected R-coring. Let �C;A WD IV . If 
 D aa0 is a
2-path in ˚ then m1;1 ı �1;1.
/ D 0. Indeed, �1;1.
/ D a ˝ a0 and the product
in A of a and a0 is 0, since aa0 62 ˚ 0. Thus .A; C / is almost-Koszul.

By the definition of Koszul pairs, it is enough to prove that Kl�.A; C;m/ is exact
for every m > 0. Recall that Kln.A; C;m/ D Am�n ˝ Cn, for any n � m, and
there are no nontrivial n-chains in higher degrees, see §2.21. Note that the set of
tensor monomials 
 0 ˝ 
 00, with 
 0 2 �p˚ 0 and 


00 2 �
q
˚ satisfying the condition

t .
 0/ D s.
 00/, is a basis�p;q˚ 0;˚ onAp˝Cq . Thus�m�n;n˚ 0;˚ is a basis on Kln.A; C;m/.
The complex Kl�.A; C;m/ is exact in degree 0, as A is strongly graded and d l1 is

induced by the multiplication. We now assume that 0 < n < m. Let ! be an n-cycle.
Thus

! D

rX
iD1

˛i�i ˝ �
0
i ;

for some ˛i 2 k and �i ˝ �0i 2 �
m�n;n
˚ 0;˚ . We may assume without loss of generality

that �i ˝ �0i and �j ˝ �
0
j are distinct for i ¤ j . Let �i D 
iai , with 
i 2 �m�n�1

and ai 2 �1. Similarly, �0i D a0i

0
i , with a

0
i 2 �

1 and 
 0i 2 �
n�1. By definition

of d ln and relation (7.8) we get

d ln.!/ D

rX
iD1

˛i
iai � a
0
i ˝ 


0
i :

Let I denote the set of all i such that aia0i 2 ˚ . Then, for any i 2 I , we have

iai � a

0
i ˝ 


0
i D 0. On the other hand, if i 62 I then 
iai � a0i ˝ 


0
i D 
iaia

0
i ˝ 


0
i is
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an element of �m�nC1;n�1˚ 0;˚ . Moreover, if i and j are distinct elements which do not
belong to I , then 
iaia0i ˝


0
i and 
jaja

0
j ˝


0
j are distinct as well. Since d

l
n.!/ D 0

it follows that ˛i D 0, for any i 62 I . Let us remark that 
i ˝ aia0i

0
i is an element

of �m�n�1;nC1˚ 0;˚ , for any i 2 I , so it is a chain of degree nC 1. Since

! D
X
i2I

˛i
iai ˝ a
0
i

0
i D d

l
nC1

�X
i2I

˛i
i ˝ aia
0
i

0
i

�
we deduce that any n-cycle is a boundary. As d lm maps 1 ˝ a1 � � � am 2 �0;m˚ 0;˚ to
a1 ˝ a2 � � � am 2 �

1;m�1
˚ 0;˚ , this function is injective. In conclusion Kl�.A; C;m/ is

exact.
The computation of the Hochschild dimension of A follows by Theorem 4.5.
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