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Koszul pairs and applications
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Abstract. Let R be a semisimple ring. A pair (4, C) is called almost-Koszul if 4 is a connected
graded R-ring and C is a compatible connected graded R-coring. To an almost-Koszul pair one
associates three chain complexes and three cochain complexes such that one of them is exact
if and only if the others are so. In this situation (A, C) is said to be Koszul. One proves that a
connected R-ring A is Koszul if and only if there is a connected R-coring C such that (4, C) is
Koszul. This result allows us to investigate the Hochschild (co)homology of Koszul rings. We
apply our method to show that the twisted tensor product of two Koszul rings is Koszul. More
examples and applications of Koszul pairs, including a generalization of Froberg Theorem [12],
are discussed in the last part of the paper.
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1. Introduction

Koszul algebras were introduced by Priddy in [18]. By definition, the N-graded
algebra A := @, en A" over a field k is said to be (left) Koszul if A4 is connected, that
is A% = Kk, and there is a resolution P, of A° by projective graded left A-modules
such that each P, is generated by homogeneous elements of degree n. This class of
algebras has outstanding applications in numerous fields of Mathematics, including
Representation Theory, Algebraic Geometry, Algebraic Topology, Quantum Groups
and Combinatorics; see [17] and the references therein.

Koszul algebras have been generalized by Beilinson, Ginzburg and Soergel.
Following [5], we say that a graded ring A4 is Koszul if A° is a semisimple ring
and it has a resolution P, with the same properties as above. Many fundamental
properties of Koszul algebras still hold in this more general setting. For instance,
such aring is always quadratic. The Koszulity of a ring is equivalent to the exactness
of the Koszul complex. Moreover, for any Koszul ring A such that A” is a finitely
generated left A°-module, the graded ring A* := Ext’(4°, A°) is Koszul as well
and (4*)* = A. Here the functors Ext¥ (—, —) are defined on the category of all left
A-modules. The opposite ring A% of a left Koszul ring A is left Koszul over (A4°)°P.
Thus, a left Koszul ring is right Koszul, and conversely.
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The Hochschild cohomology of an algebra A with coefficients in an A-bimodule M
is defined by the relation HH* (A, M) := Ext4g 40 (A, M). Hochschild cohomology
may also be defined using the standard Hochschild complex [25, Chapter 9.1]. Rather
recently, a lot of effort has been paid to the explicit calculation of these cohomology
groups, see for example [8-10,14,20,21,24]. Although the standard complex is
an important tool for the study of Hochschild cohomology, it is not helpful for
computational purposes. In general, in order to compute Hochschild cohomology, ad
hoc complexes are constructed, depending on the algebra that one works with. One
of our main goals is to show that in the case of Koszul rings such complexes can be
obtained using Coring Theory.

In order to explain our approach we need some terminology and notation. Let R
be a given ring and let (kModg, ®, R) denote the tensor category of R-bimodules
with respect to the tensor product ® of R-bimodules. Note that a graded ring
A = ®uenA" with A° = R may be seen as a connected graded algebra in this
tensor category, and conversely. For short, we shall say that A4 is a connected R-ring.
A connected R-ring is said to be strongly graded if, in addition, A" A™ = A"*™,
for any n,m € N. Connected and strongly graded R-corings can be defined by
duality, as coalgebras in the tensor category gModg. Since we work with graded
structures, the multiplication of a ring A and the comultiplication of a coring C are
uniquely determined by some R-bimodule morphisms m?*9: A? @ A9 — AP*4 and
ApqiCptqg = Cp ®Cy.

We can now introduce almost-Koszul pairs, one of the the main tools that we
use for studying Koszul rings. By definition, such a pair consists of a connected
R-ring A and a connected R-coring C, together with an isomorphism of R-bimodules
0c,4:C1 — A which satisfies the relation

m" o (Oc,a ®0c,4) oAy =0. (1.1)

To every strongly graded R-ring A corresponds a canonical almost-Koszul pair
(A,T(A)). By construction, the homogeneous component of degree n of T(A) is
the R-bimodule T;,(A4) := Tor,’;l(R, R). Note that Tor4(R, R) is the homology of
the chain R-coring R ® 4 B (A), where B (A) denotes the normalized bar resolution
of R regarded as a left A-module. Thus 7'(A) has a natural connected R-coring
structure. In this example, the fact that A is strongly graded guarantees the existence
of the R-bimodule isomorphism 67(4) 4: T1(A) — A'. By duality, to every strongly
graded R-coring C corresponds an almost-Koszul pair (E(C), C), where E(C) :=
Extg (R, R). Here, the functors Extg (—, —) are defined on the category of right
C-comodules.

For each almost-Koszul pair (A4,C) we associate three chain complexes:
KL(A,C), K.(A,C) and K.(A4,C). The first and the second are complexes of
graded left and right A-modules, respectively. The third one lives in the category of
graded A-bimodules. By duality, we also define three cochain complexes K7 (4, C),
K} (A, C) and K*(A4, C) in the categories of left, right and two-sided comodules
over C.
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By Theorem 3.3, all six complexes associated to an almost-Koszul pair (4, C)
are exact, provided that one of them is so. In this case we shall say that (4, C) is
a Koszul pair. Note that, for any Koszul pair (4, C), the complexes K. (4, C)
and K’ (A4, C) provide projective resolutions of R in the categories of left and right
graded A-modules, respectively. Similarly, K7(4,C) and K (A4, C) are injective
resolutions of R in suitable categories of C-comodules. Supposing in addition
that R is a separable algebra over a field k, then K, (4, C) is a resolution of A by
projective graded A-bimodules and K*(A4, C) is a resolution of C by injective graded
C-bicomodules.

Some useful properties of Koszul pairs are investigated in the second section of
the paper. In Theorem 3.9 one shows that, for such a pair (4, C), both components
are strongly graded and, moreover, (A, T(A4)) and (E(C), C) are Koszul as well.
Moreover, in this situation, it follows that C and T (A) are isomorphic as graded
corings. The relationship between Koszul pairs and Koszul rings is explained in
Theorem 3.13: A is such a ring if and only if there exists a Koszul pair (4, C).
Taking into account that the components of a Koszul pair uniquely determine each
other, it is easy to see that

E(T(A) ~A and T(E(C)) =C,

without any finiteness condition imposed on A or C. These isomorphisms suggest
that the coring T'(A) and the ring E(C) may be thought of as (Koszul) duals of A
and C, respectively. For example, the Koszul dual of a tensor R-ring T (V) is the
unique connected R-coring C := R @ V, which is concentrated in degree 0 and 1.
In the last part of the paper we compute the dual coring for other Koszul R-rings,
such as: trivial extension, multiparametric quantum spaces and quotients of quiver
algebras by ideals generated by 2-paths.

On the other hand, in view of Theorem 3.13, we say that a strongly graded
R-coring C is Koszul if and only if (E(C), C) is a Koszul pair. With this definition
in hand, it follows that the functors 7 and E preserve Koszulity. Multiparametric
quantum spaces are Koszul both as a ring and a coring, cf. Theorem 7.2 and §7.7.
Since Koszul corings might be useful for the study of other quantum groups, their
properties will be investigated in a subsequent article.

We have already noticed that K, (A4, C) is aresolution of A4 as a projective (graded)
bimodule over itself, for any separable algebra R over a field k and any Koszul pair
(A, C). In the third section we use this resolution to get a new (co)chain complex
that computes the Hochschild (co)homology of A with coefficients in an arbitrary
bimodule. As an immediate corollary we show that, for any Koszul R-ring A,
the projective dimension of A in the category of A-bimodules (i.e. the Hochschild
dimension of A) can be computed using the formula

Hdim(A) = sup{n | T,,(A) # 0}.
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It is well known that the class of Koszul algebras is closed under twisted tensor
products. As another application of Koszul pairs we prove a similar result for Koszul
rings. Let A and B be two strongly graded R-rings. To every invertible graded
twisting map 0: B ® A — A ® B we associate an invertible graded twisting map
of R-corings t:T(A) @ T(B) — T(B) ® T(A). Thus the twisted tensor products
A ®s B and T(A) ®, T(B) make sense and, in fact, they always define an almost-
Koszul pair (A Qg B, T(A) @ T(B)). By Theorem 5.18 this pair is Koszul, provided
that A and B are Koszul R-rings. In particular, A ®, B is Koszul too. We have
already mentioned that, for any Koszul pair (A, C), the coring structure of 7T(A) is
captured on the fly by the isomorphism 7'(4) = C. In particular, for a twisted tensor
product of two Koszul rings we get T (A ®s B) = T(A) @, T(B).

We next use the above Koszul pair to identify the Hochschild (co)homology of
a twisted tensor product A ®, B with the total (co)homology of a certain double
complex. In homology, the column-wise and row-wise filtrations of the double
complex lead us to two spectral sequences converging to the Hochschild homology
of A ®, B, see Theorem 6.2. Under some additional conditions, similar spectral
sequences are obtained in cohomology. By definition generalized Ore extensions
are examples of twisted tensor products. We specialize our results on Hochschild
homology to this more particular setting in the last part of the fifth section.

Our method based on coring techniques is also useful for the investigation of
the Gerstenhaber structure of HH* (A, A), in the case when A is a Koszul ring (for
example the smashed product between a Koszul ring and a finite dimensional group
algebra over a field of characteristic zero). Details about these results will be given
in a sequel of this paper.

Some more examples of Koszul pairs, related to braided bialgebras in the tensor
category gModpg, are discussed in the last section. First of all, in Theorem 7.2 we
prove that any couple of strongly graded braided commutative bialgebras in gModg,
under some conditions on their braidings, defines a Koszul pair. In particular we
prove that any symmetric braided bialgebra in gModpg is Koszul, provided that the
braiding is an involution. The incidence algebra of the power set of a finite set is
a nontrivial example of such bialgebras, cf. Theorem 7.9. For a different approach
to Koszulity of (reduced) incidence algebras the reader is referred to [19]. As a last
application, in Theorem 7.11, we extend a result of Froberg [12].

2. Almost-Koszul pairs

In this section we introduce almost-Koszul pairs and we investigate their basic prop-
erties. We start by fixing the terminology and the notation that we use. Throughout,
R will denote a semisimple ring.
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2.1. R-rings. The main objects that we work with are (co)unital and (co)associative
(co)algebras in the tensor category of R-bimodules (g-M g, ®, R). For the tensor
product of two R-bimodules we shall always use the unadorned tensor product
symbol ®. The unit object in g Mg is R, regarded as a bimodule with respect to the
left and right actions induced by the multiplication of R.

By definition, an R-ring is an associative and unital algebra in g M g. Therefore
an R-ring consists of an associative and unital ring A together with a morphism of
unital rings u: R — A. An R-ring A is graded if it is equipped with a decomposition
A = @pen A" in g Mg, such that the multiplication m: A ® A — A maps A? @ A4
to AP*4. If A° = R, then we shall say that A is connected. The multiplication m
induces an R-bilinear map m?-4: A? ® A9 — AP*4, for all non-negative integers p
and ¢g. The R-ring A is said to be strongly graded if and only if it is connected and
all maps m?+4 are surjective. Obviously, 4 is strongly graded if and only if m?:! is
surjective, for all p. The projection of A onto A" will be denoted by 7’§.

We denote the ideal @,~0A" by A. The multiplication of A induces a bimodule
map m:A ® A — A. Let R%® be the opposite ring of R. If V and W are
R-bimodules, then they become R°P-bimodules by interchanging their left and
right module structures. The group morphism Ay,w:V Qre W — W QrV
that maps v @ ger W to W ® R v is an isomorphism. If (4, m, u) is an R-ring, then the
multiplication and the unit of the opposite R°P-ring A°P are the maps m®? := moA 4 4
and u, respectively.

2.2. R-corings. An R-coring is a coassociative and counital coalgebra in g Mpg.
Thus, an R-coring is an R-bimodule C together with a coassociative comultiplication
A:C — C®C and acounite: C — R, which are morphisms in g Mg. An R-coring
(C, A, ¢) is said to be graded if, in addition, C is the direct sum of a family {Cy, },eN
of sub-bimodules, such that the counit vanishes on C,,, for any m > 0, and

n
AC) S Cp®Cryp.
p=0
The comultiplication of a graded coring is defined by a family of R-bilinear maps
Apg:Cpirq — Cp ® Cy. Inthe graded case we shall use a special form of Sweedler
notation, namely A, ,(c) = Y cu,p) ® C2,9)- Therefore, in a graded coring,
coassociativity is equivalent to the following relations

Z C(Lp+9) (1,p) ® CUp+9) (2,9) ® C2.1)

=D _Cp) ®Ceatnqg ® CRatnery 2D
where p,q,r are arbitrary non-negative integers and ¢ € Cp444,. For short, we
shall write the sums from equation (2.1) as Y c(1,p) ® €(2.9) ® ¢(3,r). The counit
satisfies the relations

28(0(1,0))0(2,n) =c= Zc(l,n)g(cu,o)), (2.2)
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for every ¢ € C,. By definition, a graded R-coring C is connected if Cy is
isomorphic as an R-bimodule to R. Thus, A and the restriction of ¢ to Cy are
uniquely determined by

Ao,0(co) =roco ® co and  e(co) =7y,

where cq is a certain element in Cy that commutes with all r € R, and rg is an
invertible element in the center of R. In this paper we shall always assume that ¢ is a
group-like element, that is o = 1. For such a connected coring we shall identify Cy
with R via the counit of C. In conclusion, without loss in generality, we may assume
that Cp = R and that the restriction of the counit to the zero degree component is
the identity map of R. Of course, the counit vanishes on all other homogeneous
components of C. It is easy to see that for any ¢ € C,, we have

Aon(c)=1®c and A,p(c) =c® 1.

For any graded R-coring (C, A, ¢) the comultiplication A factors through a map
A:C — C ® C, where C := C/C,. Note that A is coassociative. Let pc:C — C
and 7¢:C — C, denote the canonical projections. The comultiplication and the
counit of the opposite R°P-coring C°P are the bimodule maps AP := AE}C o A
and ¢, respectively.

For a connected R-coring C one defines the maps A(n): C, — C1®” by setting
A(1) == I¢, and then using the recursive relation

A(n) = (Ie, ® An — 1)) 0 Ay s (2.3)

A graded coring C is said to be strongly graded if and only if it is connected
and A(n) is injective for all » > 0. By induction, it follows that A(p + ¢q) =
(A(p) ® A(g)) o Ap 4, hence C is strongly graded if and only if A, ;4 is injective for
all p and g. To check that a coring is strongly graded it is enough to prove that A; ,
is injective for all n or, equivalently, that A, ; is injective for all n.

2.3. Almost-Koszul pairs. We can now introduce one of the main tools that we
shall use to investigate Koszul rings. An almost-Koszul pair (A, C) consists of a
connected R-ring A and a connected R-coring C, together with an isomorphism
of R-bimodules Oc, 4:C1 — A' that satisfies the relation (1.1). Using Sweedler
notation this is equivalent to the fact that, for any ¢ € Cj,

> " bc.alcan)bc.alcen) = 0. 2.4

Remark 2.4. Let (A4, C) be an almost-Koszul pair. We have noticed that A°P and C°P
are an R°P-ring and an R°P-coring, respectively. Obviously, (A°P, C°P) is an almost-
Koszul pair over the ring R°P, with respect to Ocop 40 := Oc, 4, regarded as an
R°P-bimodule map in the canonical way.
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2.5. The normalized bar resolution of R (as a right A-module). We now want to
show that, for every strongly graded R-ring A, there is a canonical graded coring C
such that (4, C) is almost-Koszul. By [25, p. 283], the groups TorZ (R, R) may be
computed using the normalized right bar resolution B (A), that is the exact sequence

8 § — — T
0« R« A< AQA«— oo« AP 1@ A L 4O @A« ... | (25)

where 89 = ng and, for n > 0, the arrows are given by

n
(a1 ®---®an dnt1) = Z(_l)ial Q---®ajaj+1 Q- Q dp+1.

i=1

Note that, since R is semisimple, A®" ® A is a projective right A-module. Hence
Tor (R, R) is the homology of the normalized bar complex (2+(A), dx)

0 — Qo(A) <= Qp(A) «— - —— Qp_1(A) &= Qu(A) «— v (2.6)

where Q¢(4) = R and Q,,(A) :== A®", for n > 0. The differential map 9, is zero,
and 9, is the restriction of §,_; to Q,(4) € A®"~1 ® A. We shall use the notation

To(A) = Hy(Qu(4)) and T(A) = @ Tn(A).
neN

The homology class of x € A in T;(A) will be denoted by [x].

The normalized left bar resolution is defined by BL(A) := BI(A%). Note that
Bl(A) = A® A®"
2.6. The R-corings T (V) and 2 (A). Let V denote an R-bimodule. On Tx(V) =
@nen V ®" one defines a graded R-coring structure such that A ,, 4 is the isomorphism
V®rtd o y®P ® V®4. The counit of T5(V) is the projection onto V®° := R, the
zero degree homogeneous component of T¢ (V).

The coring Q2(A) = T (A) will play an important role in our work. Let us first
show that €2(A4) is a chain coring, i.e. it is a coalgebra in the tensor category of chain
complexes of R-bimodules.

Lemma 2.7. The comultiplication and the counit of Q2(A) are chain maps. In par-
ticular, T (A) is a connected R-coring, and T1(A) is the cokernel of

Proof. By definition, the n-chains set of Q4(A) ® Q«(A) is the R-bimodule
@’;:0 Q,(A) ® Q,-p(A), while the restriction of the differential d,, to 2,(A4) ®
Q,—p(A) is given by

dn =0, ®lq,_,) + (_l)pIQp(A) ® Op—p-
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Proceeding as in [17, Chapter 1.1] one shows that the comultiplication of 2(A)
is a chain map. Clearly the counit is a chain map, regarding R as a complex
concentrated in degree zero. In conclusion, 2(A) is a chain R-coring and T'(A4) is a
graded R-coring, as the homology of a chain coring always inherits a graded coring
structure. Since 29(A) = R, the map 0, is trivial and d, = m, it follows that T'(A)
is connected and 77 (A) = Coker . O

Proposition 2.8. If A is a connected strongly graded R-ring, then (A, T(A)) is
almost-Koszul.

Proof. We have proved that 7'(A) is connected. Since A is strongly graded, T7(A) =
A/A? = A" and the projection ”}1 induces an R-bimodule isomorphism 674, 4:
T1(A) — A'. Every w € T»(A) is the homology class of a certain ¢ € Kerin.
Hence ¢ = ZLI X; ® y;, for some xq,...,x, and yq,..., y, in A that satisfy the
equation Y ;_; x;y; = 0. Note that x; y; — 7} (x;)7} (y;) belongs to Y, , A" and

Avi(@) =) [x] ® [yl
i=1

Thus, the relation (2.4) follows by the following computation

Z O7(ay,4([x:])O7a),4([yi]) = Zﬂi(xi)ﬂi(yz') = ﬂﬁ(zxiyi) =0. O

Our goal now is to associate to an almost-Koszul pair (A4, C) three cochain
complexes: one in the category of graded left C-comodules and, symmetrically, one
in the category of graded right C-comodules. By combining these constructions,
we shall get the third cochain complex, that lives in the category of graded
C -bicomodules.

2.9. The categories 1€, € Mt and € MC. Let C be an R-coring. The pair (M, pM)
is aright C -comodule if M is aright R-module and p™: M — M ®C is amorphisms
of right R-modules such that, using the Sweedler notation p™ (m) = Y m (0) ®m1y,
the relations below hold true for any m € M

}:Wmm®mmm®mm=§:Wm®mmm®mmm

Y muye(my) = m.

A morphism of comodules is a right R-linear map that commutes with the comodule
structure maps. The category 9C of right C-comodules is Grothendieck, as C is
flat as a left R-module [6, p. 264].
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Arightcomodule M is graded it M:= @&pen My, and ,oM(Mn) - EB';,=OMI, ®Cn_p,
for all n. Then p™ is uniquely defined by the induced R-linear maps

The category €t of left C-comodules is constructed in a similar way. For a left
C-comodule (N, pV) we use the Sweedler notation p™ (n) = 3 n—1y ® n().

A C-bicomodule is a triple (M, ,o;"’, oM such that M is an R-bimodule, (M, le)
is a left comodule, (M, pM) is a right comodule and, for every m € M,

ZW—M ® myo) gy @ M(0) (1) = Zm«))(_l) ® Mmyo) gy @ M1)-

Note that, by definition, the structure maps le and p™ must be morphisms of
R-bimodules, otherwise the above compatibility relation does not make sense. A
morphism of C-bicomodules is a map which is left and right C-colinear. For the
category of C-bicomodules we shall use the notation € 9.

Lemma 2.10. If V is aright R-module, then V @ C is an injective right C -comodule.
A similar result holds for left C-comodules and C -bicomodules.

Proof. For any C-comodule (M, p™) the natural transformation
Op.y:Homg(M, V) — HomE (M, V ®C), Oupy(f):=(f®Ic)op™ (2.7)

is an isomorphism. The inverse of ® 7,y maps g € Hom® (M, V®C)to(y Qe)og.
Let U denote the functor that associates to a right C-comodule the underlying
R-module structure, forgetting the coaction. Therefore the functors Hom® (= VRC)
and Homg (—, V)oU are isomorphic. As R is semisimple, Homg(—, V)oU is exact.
Thus Hom® (—, V ® C) is exact as well meaning that V ® C is injective.

For any injective R-bimodule W the functorial isomorphism

Oy Homg, g(M, W) — Hom“ ™€ (M. C @ W ® C),
ww () =0c® f®Ic)o () ®Ic)op¥

can be used as above to show that C ® W ® C is injective as a bicomodule. O

2.11. The complexes K7 (4, C) and K} (4, C). Let (4, C) be an almost-Koszul
pair. We set
K;'(4,C):==R and K/(4,C):=C® A",

for any n > 0. We regard R as a graded left C-comodule with respect to the
trivial coaction. On the other hand, it is easy to see that A ® I4» defines a graded
C-comodule structure on K7 (4, C), whose homogeneous component of degree p
is Cp—p ® A" (by convention, Cy = O for any k < 0). The differential maps
d/": X}/ (A,C) — K;"H(A, C) are defined as follows. If n = —1, then we take d;' to
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be the canonical bimodule morphisms R — C ® A% thatmaps 1to 1® 1 € Co ® A°.
For n > 0 the map dl” vanishes on Co ® A" and, if p > 0andc ®a € C, ® A",
then

df'(c®a) =) cap-1 ®Oc.alcen)a

Obviously, d' respects the gradings on K (4, C) and K} 14, C).
Recall that (A4°P, C°P) is an almost-Koszul pair (over R°P), see Remark 2.4. Hence
we may consider

K!(A, C) := K (A%, C).

For any n > 0, in view of the isomorphism C° ® g (A°P)" = A" Qg C, we identify
K?(A,C) and A" ®g C. Through this identification the differential of Kj (4°?, CP)
in degree n corresponds to the map d: A" ® C — A"*! ® C which is zero on
A" ® Cp and, for p > 0anda ® ¢ € A" ® Cp, is given by

dla®c) = ZGQC,A(C(LI)) ® c@2,p-1)-

Note that d;': R — A° ® C is uniquely defined by the relation d1(1) = 1 ® 1.

Proposition 2.12. If (A, C) is an almost-Koszul pair, then (Kj(A,C),d}) and
(KF(A,C),dY) are cochain complexes of graded C-comodules (left and right,
respectively).

Proof. Clearly dlo ) a’l_l = 0, as dlo vanishes on Cy ® A°. Let us show that
dl"+1 o dl"(c ®a) =0,foranyn > 0andc ® a € C, ® A”. We may assume that
p > 2, otherwise the relation is trivially satisfied, as dlk(l ®a) =0,foranya € A
and k > 0. Let § := ¢ 4. Coassociativity and the relation (2.4) imply

(dod!)(c®a) = cap-1)1.p2 ® 0(car-10.1)0(can)a
= ca.p2 ®0(ceaq.y)f(cenny)a = 0.

Hence Kj (4, C) is a complex. Let us prove that the maps d;* are morphisms of
C-comodules. For n = —1 we have nothing to show. Letn > 0 and p > 0. For
c®aecC,® A", we have

p
(lc ®df')(plc ®a)) =Y can ®d[ (c.p-r) ®a)
r=0
p—1

= Z Zc(l,r) ® C@,p—r (1, p—r-1) ® 9(‘3(2,p—r)(2,1))a-
r=0
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For the second identity we used that A, o(c) = ¢ ® 1 and the fact that d;" vanishes
on Cp ® A". Since the comultiplication of C is coassociative we get

pld]'(c ® a)) = P(Zc(l,p—l) ® 9(0(2,1))‘1)
p—1
=D > D ® CUr-D . p1—w ® Ocn)a-
u=0
Thus (Ic ® d]')(p(c ® a)) = p(d}'(c ® a)). We conclude the proof that d}' is a

morphism of C-comodules, by remarking that the above relation trivially holds for
c®aeCy® A", asd'(c ®a) = 0. O

2.13. The complex K*(A,C). We are going to construct a cochain complex
(K*(A, C), d*) in the category of C-bicomodules. By definition, K~!(4, C) := C
and K"(4,C) = C ® A" ® C. The differential maps are defined by the relations
d~!':= Aand

d"=d' ®Ic + (-1)"c ® d, (2.8)
forn > 0. Since d l” is left C-colinear and d is right C-colinear it follows that d”
is a morphism of bicomodules. It is not difficult to show that (d° o d~!)(c) = 0, for

any ¢ € C,. Indeed, for p = 0 the relation is obvious. Let us assume that p > 0.
Thus, d~(c) = Zf:o c(1,i) ® ¢(2,p—i)- Henceforth,

»
(@ od™") @) =) cai-ny ®bcalcen) ® ca.p-i
i=1 -1
- Z i ® Oc,a(cen) ® e, p-i-1) = 0.
i=0
Let n > 0. Since Kj(4,C) and Kj (4, C) are complexes, that is dl"'H od/ =
d'tlodn =0, we get

d" M od" = ()" (d ®lc) o (Ic ®d)) — (Ic ®d!') o (d] ®1c)].

Using the formulae that define d l* and d} and the fact that the multiplication in 4 is
associative, it follows that "1 o d" = 0. Hence (K*(A4, C), d*) is a complex.

2.14. The subcomplexes K;' (A,C,m) and K} (A, C, m). The complex K; (4, C)
decomposes as a direct sum of subcomplexes in the category of R-bimodules
®men KJ (4, C,m). By definition, Kj (4, C, 0) is the complex

0— R—5Cp® A —> 0.

By construction, the elements of R are cochains of degree —1. Note that K;‘ (4,C,0)
is always exact. If m > 0, then d;' maps Cp—p ® A" t0 Cpp—p—1 ® A"*1. Therefore,
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K} (A,C,m) = Cp_, ® A" define a subcomplex K; (4, C,m) of Kj (A, C), which
can be displayed as follows

dn
0—Cp®RA® —5 oo —5 Cpop @ A" -5 Cppypy @ A" 5 ...

i —>Cp @ A" — 0.

Obviously, Kj(4,C) = ®m>0Kj(4,C,m). The complex K} (A4,C) admits a
similar decomposition as a direct sum of subcomplexes @®,,>0 K (4, C, m).

2.15. The normalized bar resolution of R (as a right C -comodule). We are going
to sketch how the preceding constructions and results can be dualized. Let C be
an R-coring. We assume that C is connected. Then R is a right C-comodule with
respect to the trivial coaction. Recall that C := C/Cy and that A:C — C ® C
is the unique map such that A o pc = (pc ® pc) o A, where pc is the canonical
projection. We also use the notation A= (pc ®1¢) o A.
The right normalized bar resolution B (C) of R is the exact sequence of right
C-comodules
570 L 8% = ~®n 8" =en+l
0—R—C—-CQ®C—.--—C""C—C RC — -+,
2.9)

where 87! is the canonical inclusion and, for n > 0,

n
§" = Z(—l)i_ll(j@f—l ® A®Igon-ige + (—1)"Igen ® A.
i=1
The normalized resolution B;*(C) of R in the category of left C-comodules is defined
in a similar way.
We use B, (C) to compute Extg. (R, R). Applying the functor Hom® (R, —) and
using the isomorphisms ® g _, we obtain the normalized bar complex (2*(C), 9*)

0 1 n
0— Q%C) 5 Q1(C) 2> - — Q"(C) 5 Q" (C) —> -+, (2.10)

where Q°(C) = R and Q"(C) := C®", for each positive n. The differential
morphisms are defined by the formulae 9% = 0and, forn > 0,

n
0" = ()" g1 ® AR Iz
i=1

We shall use the notation E”(C) := H*(Q2*(C)) and E(C) := ®,en E"(C). Thus
E"(C) = Ext¢ (R, R).

2.16. The R-rings T3 (V) and (C). Let V be an R-bimodule and let T (V') denote
the free R-ring generated by V. Therefore, T&(V) := @nen V ®” and the graded ring



Koszul pairs and applications 1301

structure is defined by the bimodule isomorphisms m?-4: V®? @ V®1 — y®r+q,
The unit of R is a unit for 7z (V') too. In particular, to every connected coring C we
associate a connected R-ring Q2(C) := Tx(C).

Lemma 2.17. The multiplication and the unit of Q(C) are cochain maps. Thus
E(C) := Extg (R, R) is a connected R-ring and E'(C) = Ker A.

Proof. Asinthe ordinary case of algebras over a commutative ring, one shows that the
multiplication is a morphism of cochain complexes from Q*(C) ® *(C) to *(C),
where the set of n-cochains of the former complex is @%,_,Q?(C) ® Q"77(C) and
the differential d” on QP (C) ® Q"~?(C) is given by

d" =07 ® Ign—p(c) + (—1)pIQp(C) ® 9P,

Clearly, the unit of Q(C) is a morphism of cochain complexes, where R is regarded
as a complex concentrated in degree zero. Since the cohomology of a cochain R-ring
inherits a canonical graded R-ring structure, 9% = 0 and 3! = A, it follows that
E(C) is a connected graded R-ring and E'(C) = Ker A. O

Proposition 2.18. Let C be a strongly graded R-coring. Then (E(C),C) is an
almost-Koszul pair.

Proof. We already know that E(C) is a connected R-ring. Let C, = pc(Cp).
Hence, C = @,-¢C, and pc is injective on each component of positive degree. In
particular, C,, = C,.

Let 0: C; — C; denote the restriction of pc to Cy. Since Ag1(c) =1 ® ¢ and
A1 o(c) = ¢ ® 1 it follows that the image of 6 is included into Ker A = E'(C), so
we may regard  as a map from C; to E!(C). We claim that the pair (E(C),C)
satisfies the identity (2.4) with respect to ¢ g(c) = 6. If B*(C) is the group of
2-coboundaries in the normalized bar complex Q*(C) and ¢ € C,, then

ZG(C(M)) ) 0(6(2,1)) = ZPC (0(1,1)) ® pc (C(z,l)) + B%(C)
= A(pc(c)) + B*(C) = 3" (pc(c)) + B*(C) = 0.

Note that the first equality is a consequence of the definition of multiplicationin E(C),
while for the second identity we used the definition of A and the relations Ag > (c) =
1 ® ¢ and Az 9(c) = ¢ ® 1. It remains to prove that 6 is bijective. Let pc(c) be
an element in Ker A and let ¢ = ZZ=1 cn, where ¢, € C,,. We claim that ¢, = 0
for n > 2. We have

d n-—1 d n
Z Z(Pc ® pC)(Ar,n—r (Cn)) = Z Z(pc ® pC)(Ar,n—r (Cn))
n=2r=1 n=0r=0

= (pc ® pc)(A(c)) = A(pc(c)) = 0.
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We fix n > 2. Since (pc ® pc)(Arn—r(cn)) belongs to C, ® C,_,, in view of
the foregoing remarks, we deduce that this element vanishes for every 0 < r < n.
Since pc ® pc is an R-bimodule isomorphism between C, ® C,,—, and C,rRCp,_,
it follows that A, ,_(cn,) = 0. As C is strongly graded, we get that the kernel of A
is included into C 1. The other inclusion is obvious, so  is an isomorphism. O

2.19. The cotensor product. Recall that the cotensor product N¢c M between a
right C-comodule (N, p™V) and a left C-comodule (M, p™) is defined as the kernel
of pV @1y — Iy ® pM.

For any right R-module V' the tensor product V' ® C is a right C-comodule with
respect to the coaction given by Iy ® A. If M is a left C-comodule, then

(VeC)dcM - VoM, C(Zvi®6i®mi) =Zvi®8(0i)mi (2.11)

i=1 i=1

is an isomorphism. The inverse of { maps v@m to ) v ®mi(_1y®m o). In particular,
for V' = R, we get that COc M and M are isomorphic as R-bimodules.

In the case when C is connected, we know that R is a left and a right C-comodule
with respect to the trivial coactions. For such a coring C, there is a canonical
isomorphism ROcM = M®C, where the set of coinvariant elements M€
contains all m € M such that pps(m) = 1 ® m. Of course, the above discussion
applies for right C-comodules as well.

2.20. The complexes Ki (4,C),K,(4,C)and K, (A, C). For any almost-Koszul
pair (A, C), by duality, we can also construct three chain complexes. We first
define a complex K/, (4, C) of graded right A-modules. Let K" ,(4,C) := R and
K}, (4,C) := C, ® A. The differential d]: Co ® A — R maps x @ a to xng(a).
Forn > O one defines d,): C, ® A - C,—1 ® A by

di(c®a) =Y can1) ®6bc.alcan)a.

To show that K (4, C) is a complex one proceeds as in §2.11, so we omit the
proof. Applying the previous construction to the opposite almost-Koszul pair
(A°P, C°P) we obtain a complex (Kfk (A, C), d?) of graded left A-modules. Explicitly,
KI_I(A, C) = R and Kf,(A, C) = A® C,. The differential dé maps a ® x
to 74 (a)x. For n > 0 the maps d,l, are given by

d}i(a ®c) = ZGQC,A(C(I,I)) ® ¢2,n—1)-

By combining the above two constructions we obtain a new complex (K« (A4, C), d«)
in the category of A-bimodules. By definition, K_;(4,C) := 4 and K,,(4,C) :=
A® C, ® A. The map dy is induced by the multiplication of A and, for n > 0,
we have

dy =d @14+ (1", ®@d.
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2.21. The subcomplexes K/, (4 , C, m) and K,’, (A, C,m). The complex K, (4, C)
can be written as a direct sum of subcomplexes ®p,en K, (A, C,m). In the case
when m = 0 we take K/, (4, C, 0) to be the exact cochain complex

O—>RiC0®AO—>O.

If m > 0, then K}, (A4, C,m) := Cy—, @ A". Therefore in this case K} (4, C,m) is
the complex

dp
0 Co® A" «— o «— Cpo @A " G @A™ — -
b — Cp ® A% «— 0.
Analogously, K4 (4, C) decomposes as a direct sum of subcomplexes K (4, C) =
Omen KL (4. C.m).

Proposition 2.22. Let (A,C) be an almost-Koszul pair. Then the following
statements are true.

(1) There are canonical isomorphisms

Ki(4,C)®4 R =KL(A,C) and R ®4K4(A,C) =K.(A,C).

(2) There are canonical isomorphisms

K*(4,C)OcR =K} (A,C) and ROcK*(A,C) = K*(4,C).

Proof. We shall only prove the isomorphisms for Kl* (A,C)and K (A, C). The other
two isomorphisms can be proved in a similar way.

The relation £_;(r) = 1 ® 4 r defines a left A-module bijective map §_1: R —
A®4 R. Forn >0, let £:K.(4,C) — K,(4,C) ®4 R be the left A-module
isomorphism &, (a®c) = (a®c®1)® 4 1. One can prove easily that (dg® 41g) o0&y =
£Eq0 dé. Furthermore, for n > 0,

[(dn ®a1R) 0 &n]@®c) = (abc.a(can) ® con-1) ® 1) ®4 1

+ (=" ) (@ ®can ®0c.alce)) ®al.

Since the left A-module structure of R is induced by the algebra morphism
ng: A — R and 6c 4(c2,1)) is an element in A', it follows that the second sum
in the right-hand side of the above relation is zero. Hence &, is a morphism of chain
complexes between Ki (A,C)and K« (A4,C) ®4 R, as

[(dn ®41R) 0&n](@ @ ¢) = ) (abc,a(can) ® cou-1) ® 1) ®4 1
= (i-10d,)@®o).
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In order to prove the second part of the proposition, we define £ ': R — C O¢ R
by £71(r) =1®r. If n > 0, then §":K}(A4,C) — K"(A,C)OcR is given by
'"c®a) =(c®a®1)® 1. Clearly, £” is a morphism of left C-comodules and
it is bijective by §2.19. To check that £, is a morphism of complexes we first notice
that

Eodi D=1l 1) ®1=][(d""'Oclr) o £°]1).

Letn > 0. Since d'(a ® 1) = 0, for any a € A", we conclude the proof by the
computation below

[(d"Oclg) 0 &"](c ®a) = [d'(c ®a) ® 1]@1 + (=)'t [c @ d"(a ® 1)|®1
=[dc®a)®1]®l= (""" 0d]')(c ® a). O

Let us regard the graded R-bimodule A* as a cochain complex with trivial
differential maps. Let R —> A™ denote the augmented complex with respect to the
identity of R = A° (we regard R as the component of degree —1). The coaugmented
complex R <— C, is defined similarly.

Proposition 2.23. Let (A, C) be an almost-Koszul pair.

(1) The complexes R®AKi(A, C)andKl (A, C)® 4 R are isomorphic to R «— Ci.

(2) The complexes Hom® (R, Kj(A,C)) and Hom® (R, K* (A, C)) are isomorphic
to R — A*.

Proof. Let y_1: R - R ®4 R be the canonical isomorphism. For n > 0 we define
the isomorphism ¥,,:C;, —> R ®4 Kﬁl(A, C) by Yu(c) = 1Q4 (1 & c). Since
Y1 =(Ir ®4 dé) o Yo and for n > 0 we have

(La®d}) o)) =1®a4d(1®c)
=Y 74(0c.alca,n)) ®a (1 ® con-n) =0,

it follows that ¥, is a morphism of complexes.

Lety~!: R—Hom® (R, R) be the bijective map ¥~ (r) = f;, where f(x)=xr.
For n > 0 we define ¥*: A” — Hom® (R, C ® A™)) by ¥"(a) = f,, where f is
the unique C-comodule map such that f;(1) = 1 ® a. Obviously V¥, is bijective.
It is easy to see that ¢ = Hom® (R, d;!) o y~1. By the definition of d}' we have
d'(1®a) = 0. Thus Hom€ (R, d')oy™ =0, forany n > 0. In conclusion, ¥ * is
an isomorphisms of complexes.

The other two isomorphisms can be proved in a similar way. O

Let (A4, C) be an almost-Koszul pair. Our next goal is to compare the complexes
K. (A4,C) and K*(A, C) with the bar resolutions B.(A) and B (C), respectively.
We start by introducing some notation. For n > 0, let J?nc: C — C, be the map

induced by the projection ﬂnc: C —> Cyandlet @ := 0Oc 40 EIC. If x is a class
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in C then we introduce the Sweedler notation A(x) = Y X@a) ® x(z). Note that, if
x = pc(c) then 3 x1) ® X2) = X pelcqy) ® pelcw).

To relate B,*(C) and (K} (4, C), (—1)*d*) we construct the maps ¢": 7 (C) —
K!'(A,C), for any n > —1. By definition, ¢_; and ¢ are Ig and the canonical
isomgrphism C ~ A® C, respectively. Furthermore, for n > 0, we define
" C®" R C - A" ® C by

PR @x"®c)=0(xH(x?)---0(x") ® c.

For every n > —1 we now construct a map ¢y,: Ki (4,C) — ﬂfl (A), as follows.
First, we set ¢_; := Ig and we take ¢ to be the canonical isomorphism A ® Cy = A.
Then, for n > 0, we define ¢, by

$n(a ®c) = Za ® bc,4(c1,1) ® Oc,a(ce) ® - ® Oc,a(cm.))
where in the above equation we used the Sweedler notation
Am)(c) =Y e ® @i ® & C(u1)-
Proposition 2.24. [f (A, C) is an almost-Koszul pair, then
$*:B(C) = (KJ(A.C).(=D)"d}) and ¢ KL (A.C) — Bi(4)
are morphisms of complexes.

Proof. We need the relation ¢”+_1 08" = (=D)"d]! o¢" foralln > —1. Letx =
pc (c) besomeclassin C. Since fopc = 90711C and A(¢) = Y, 150 (1) ®C2,0)»

we get
S BBt = 3 0(c€ (caw))0(E (o)
or=o (2.12)
= 0(can)f(can) = 0.
We can now prove the claimed relation. Let x 1 .., x" beelements in C. If p>0

and ¢ € Cp, then
@ o' @ @ x" ®c)
= Z D DT 0O () B (xp) (T B @ ¢
i=1
+ (=D Y 6(x") -0 (pclcry) ® -
The double sum is zero, by (2.12). As A(c) = Y2 _ > c(1.u) ® ¢2,p—u), it follows

that
Y 0(pcleay) ® cy =) 0can) ® ca.p)-
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Using this relation we get
(—1)"(@d}od")(x'®-@x"®c) = (=1)" Y_6(x")---0(x")0(pc(cay)) ®ce).

To complete the proof of the fact that ¢* is a morphism we remark that both (—1)"d "o
¢" and "1 0 §” vanish on C ®" ® Cy.

Let us now show that ¢ is a morphism of complexes. We have to prove that
Pn_1 0 d,ﬁ = 0, o ¢,. For n = 0 this relation is obvious. Let a ® ¢ be a tensor
monomial in A ® C,. In the case when n = 1, both sides of the equation map a ® ¢
to af(c). Let us assume that n > 1. By (2.3), we get

(pn-10dp)@a®c) =Y ab(can) ®0(cen) ® - ® 0(cm)-

On the other hand, by the definition of ¢, and §,, we have

Bnodn)a®c) = ZGQ(C(U)) ® 9(0(2,1)) & Q(C(n,l))
n—1

+3 Y (=D)'a®0(can) ® - ®0(cin)0(cit1.n) @ ® O(cam.))-

i=1

By coassociativity and using the condition (2.4), it follows that the double sum
vanishes. O

3. Koszul pairs

In this section we shall investigate the exactness of the (co)chain complexes that we
have associated to an almost-Koszul pair (A4, C). Roughly speaking, we shall show
that one of these complexes is exact if and only if the other five are so. Furthermore,
these complexes are exact precisely when A is a Koszul R-ring.

Lemma 3.1. Let (A, C) be an almost-Koszul pair.
(1) If A is strongly graded, then Hy(K« (A4, C)) = 0.
(2) If C is strongly graded, then H*(K* (4, C)) = 0.

Proof. Let6 := Oc 4. Since C is connected we have AQ Co ® A = A® A. Viathis
isomorphism, one identifies dy with the multiplication m of the R-ring A. Moreover,

di(a®c®b)=abc)®b—a® 0(c)b,

for any a,b € A and ¢ € C;. Let us assume that z = Z?:l a; ® b; is an element
in the kernel of m. We have to show that z is in the image of d;. Since A4 is
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strongly graded and 6 is bijective we may assume that b; = 6(c})--- 9(cf,,,), for

some ci el cf,i € C;. Itis easy to see that z = d;(x), where

d n;
xi==> Y a0(ch) - 0(c’_)) ® ch ®O(ch )+ 0(ch).
i=1j=1

Let us now prove the second part of the lemma. Let v:C  C — C ® C; ® C be
the unique bimodule morphism such that

vic,ec, = Ap-11 ®lc, —Ic, ® A1,4-1,
where A, , = 0 whenever u < 0 or v < 0. Let us consider the following diagram

d—! do

0 C CRA®C CA'®C
| f *

= Ic®bc, AQIc
T |

0 C n C®C - CRC;®C

Since the squares are commutative and the vertical arrows are isomorphisms it is
enough to prove that Ker v = Im A. We claim that the sequence

cScoccecec

is exact, where u = A ® [c —I¢ ® A. Indeed, the inclusion Im A C Ker p is trivial
as the comultiplication is coassociative. Let s_; :=Ic ® e and 59 :=Ic ® I¢c ® ¢.
Since

—sop + As—1 = Icgc,

any element in the kernel of i belongs to the image of A, so our claim has been
proved. Summarizing, we must show that Ker u = Kerv. Let x be an element
in C ® C. There are finitely many non-zero elements x,, € C, ® C,; such that
X =), 450%pg- Notethat C®C ® C =P, , >0 Cu ® Cy ® Cy,. Computing
the component of w(x) in C, ® C, ® Cy,, we deduce that x is in the kernel of  if
and only if

(Au,v &® ICw)(xu+v,w) = (ICu ® Av,w)(xu,v—i—w)» (3.1)

for any u, v, w > 0. Proceeding similarly, we deduce that x is in the kernel of v if and
only if (3.1) holds for v = 1 and any u, w > 0. Thus the inclusion Ker u C Kerv is
trivial.

To prove the other inclusion we pick x € Kerv. Since C is connected the
equation (3.1) holds for v = 0 and any u,w > 0. As x is in the kernel of v,
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it remains to prove (3.1) for any v > 2. By induction, let us assume that (3.1) holds
for some v > 1. By coassociativity and the induction hypothesis we have

[dc, ® A ®1cy,) © (Auwpr1 ® Iey) ] (usvs1,w)
= [(Au,l ®Ic, ®1c,) o (Aut10 ® ICw)](xu+v+1,w)
= [(Au,l ®lc, ®I¢,) o (ICu+1 ® Av,w)](xu—i—l,v—i—w)
= (Au,1 ® Apw)Xut1,04w)-

On the other hand, using coassociativity once again and then the fact that x € Kerv,
we get

[dc, ® A1y ®1c,) o (e, ® Avii,w)](Xuvt14w)
= [(ICu QlIc, ® Av,w) o (ICu &® Al,v—i—w)](xu,v+w—|—1)
= (Au,l b2 Av,w)(xu—i-l,v—i-w)-

We conclude the proof of the lemma by remarking that Ic, ® Ay, ® Ic,, is injective,
since C is strongly graded and any R-bimodule is flat as a left and aright module. [

Proposition 3.2. Let (A, C) be an almost-Koszul pair.

(1) The complexes Ki (A4,C), K (4, C) and K«(A, C) are exact, provided that one
of them is so.

(2) The complexes Kj (A, C), Ky (A, C) and K*(A, C) are exact, provided that one
of them is so.

Proof. Assuming that K. (A4, C) is exact we deduce that it splits in the category of
right A-modules, as K, (A4, C) is projective in this category for any n > —1. By
Proposition 2.22 (1) we have

KL(4,C) = Ku(A.C) ®4 R,

so this complex is exact too. Let us now suppose that Ki (A, C) is exact. We first
remark that, by construction, dol is zero on A" ® Cy for any n > 0. Moreover, for
c € C; and a € A we have

di(a®c)=abcslc)® 1.

Therefore the exactness of Ki (A, C) in degree 0 and the fact that ¢ 4 is bijective
imply the relation A" = A"~ 1A! foralln > 0. Hence A4 is strongly graded. In view
of the preceding lemma we get that K. (A, C) is exact in degree 0.

Since dy is surjective it remains to show that H, (K«(4,C)) = 0, for all n > 0.
For short, let Ky := K« (A4, C). Forn, p > 0 we define X, , :== A?™" ® C,, where
AP™" = 0 in the case when p < n. Thus K,, := @,>0X,,, ® A. Obviously, the
following relations hold

(d @) (X p ®A) S Xpo1 ) ® A

(3.2)
(4 ® dr:)(Xn,p ® A4) C Xn—l,p—l ® A.
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Taking into account the above inclusions we get that Ki = EBZ;:oX «p ® Alis
a subcomplex of K,. Let L. := K. /K.™'. For any k > 0 we can identify LZ
and A% ® C; ® A as R-bimodules. By (3.2) it follows that L’ is isomorphic to
Ki (A,C,i)® A, see §2.21 for the definition of the latter complex. We deduce that L%,
is exact, being isomorphic to a direct summand of the exact complex Ki (4,C)® A.
We now fix n > 0. Note that Kg = 0. In particular, K¢ is exact in degree n. Writing
the long exact sequence in homology for

0—K ! —-K — L. —0

we deduce by induction that K, is exact for any i > 0. We can now prove that K, is
exact in degree n. Indeed, if w is an n-cycle in K, then there is i such that w € Kfl.
Since w is a cycle in K. it follows that e is a boundary in this complex. Thus, a
fortiori, w is a boundary in Ky, so K« (4, C) is exact.

To show that K. (A4, C) is exact if and only if K/ (4, C) is exact we proceed
as follows. By definition, the latter sequence is equal to Ki (A°P, C°P) which, in
turn, is exact if and only if K4 (A%, C) is so. Let d,’ denote the differential of
K« (AP, C°P). For every n > 0, the map

Mn: AP @gor (CP)y @pror A — A ®pr Cy QR A,
Nn(a Qroo ¢ Qror b) = b Qrc Qr a

is bijective and 1,_1 o d,’ = (=1)"d, o 1,. In conclusion, the homology of
K« (AP, C°P) is trivial if and only if the homology groups of K.(A4,C) vanish
as well.

We begin the proof of the second part of the proposition by showing that Kj (4, C)
is exact, provided that K* (4, C) satisfies this property. The latter complex splits in
the category of right C-comodules, as it is exact and K" (4, C) is injective as a right
comodule for any 7. In view of Proposition 2.22 (2) we conclude that Kj (4, C) is
exact.

Let us now assume that K7 (4, C) is exact. Since the comultiplication of a coring
is always injective, this property holds in degree —1.

Since A is connected we identify K? (A, C) with C. Via this identification, d lO is
amap from C to C ® A° which vanishes on Cy. On the other hand, for p > 0 and
¢ € Cp, we have dlo(c) =) ca,p—1) ® bc,a(cz,1)). Since Oc_ 4 is an isomorphism
it follows

HY(Kf(4,C)) =~ @ KerAp_q.1.
p=1

By assumption we get that C is strongly graded, so K*(4, C) is exact in degree zero,
cf. Lemma 3.1 (2).
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It remains to show that K*(A4, C) is exact in degree n > 0. For the sake of
simplicity, let us denote this complex by (K*,d*). If X, , := Cp—n ® A", then
K" = @,>0Xs,p ® C. Moreover,

(d] 1) Xn,p ® C) € Xp41,, ®C
(Ic ®d")(Xnp ®C) € Xnt1,p+1 ®C.

In particular, Kl* is a subcomplex of K*, where K!' =& p=iXn,p ® C. Let L;‘ =
K! /K’ 11
Note that X, 41,41 ® C is a subset of K;’jfll and the differential of L} maps an

n-chain x ® ¢ + Ki',; tod]'(x) ® ¢ + K;’Ll. Thus the R-bilinear isomorphism

L' ~K/'(A,C.i)®C

allows us to identify the complexes L} and K} (A4, C,i) ® C. Since Kj (A, C,i)isa
direct summand of Kj (4, C) and C is flat as a left R-module we conclude that L}
is exact. Our goal now is to show that all quotients K* / K* are exact. We proceed
by induction. Clearly K* /K§ = 0. Let us assume that K* / K} is exact. Since in
the short exact sequence

0— L —K"/Kj ;, —K"/Kf —0

L} is also exact we deduce that the middle term has the same property. We can
now prove that K* is exact. Let @ be an n-cocycle in K*. We choose a positive
integer i such that w belongs to M" := p<i Xn,p ® C. The projection induces
an R-bimodule isomorphism v":K" /K, — M/". Using v* one transports the
differential maps of K* / K}, ; to get a cochain complex (M;*, 9*) which is isomorphic
to K*/Kj, ;. Clearly, M is exact and w is a cocycle in M. Hence, there
is { € Mi"_1 such that o = 9"(¢). On the other hand 0" () = d"({) as, by
construction, 3" and d" are equal on M/*. Thus the proposition is proved. O

Theorem 3.3. If one of the six complexes from the preceding proposition is exact,
then all are so.

Proof. Recall that for the complexes Kj(A,C) and K}(A,C) we have the
decompositions

K (A.C) = @ Kf(A.C.m) and KL(A4.C)= @ KL(4.C.m).

meN meN

Let m > 0. By construction, KZP(A, C,m) = Kfn_p(A, C,m) and dlp = d,;_P, for
any integer p. Thus

H? (K} (A, C,m)) = Hpu—p (KL (A, C,m)).
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Since, by definition, both K}" (A4,C,0) and K/, (4, C,0) are always exact, it follows
that the cohomology groups of K (4, C) vanish if and only if the homology groups
of K% (A4, C) vanish as well. We conclude the proof of the theorem by applying
Proposition 3.2. 0

Definition 3.4. An almost-Koszul pair (A, C) is said to be Koszul if and only if the
complexes from Proposition 3.2 are exact.

Corollary 3.5. Let (A, C) be a Koszul pair. Then the following statements hold:

(1) The complex K (A, C) is a resolution of R by injective graded left C -comodules.

(2) The complex K} (A,C) is a resolution of R by injective graded right C-
comodules.

(3) The complex Ki (A, C) is a resolution of R by projective graded left A-modules.
(4) The complexK' (A, C) is a resolution of R by projective graded right A-modules.

(5) If A is an injective R-bimodule, then K* (A, C) is a resolution of C by injective
graded C -bicomodules.

(6) If C is a projective R-bimodule, then K« (A, C) is a resolution of A by projective
graded A-bimodules.

Proof. The first four statements are immediate consequences of the preceding
theorem. Let us assume that C is projective as an R-bimodule. Thus the sub-
bimodule C, is also projective. It follows that A ® C,, ® A is projective as
an A-bimodule, so K«(A4,C) is a resolution of A by projective A-bimodules.
Analogously, by Lemma 2.10, if 4 is an injective R-bimodule then C ® A" ® C is
an injective bicomodule. Therefore, the last statement holds as well. O

Remark 3.6. Note that, although R is semisimple, there might exist R-bimodules
which are neither projective nor injective. However, if R is a separable algebra over
a field k (i.e. R is projective as a bimodule over itself), then every R-bimodule
is both projective and injective. Henceforth, for a Koszul pair (4, C), under this
additional assumption on R, the complex K*(4, C) is a resolution of C by injective
C-bicomodules and K. (A4, C) is a resolution by projective A-bimodules.

Corollary 3.7. Let (A, C) be a Koszul pair. Then the R-ring A and the R-coring C
are strongly graded. In particular, (A, T(A)) and (E(C), C) are almost-Koszul
pairs.

Proof. The complex Ki (A, C) is exact, as (4, C) is Koszul. Hence, by the proof
of Proposition 3.2, it follows that A is strongly graded. By Proposition 2.8, the pair
(A, T(A)) is almost-Koszul. The statements concerning the coring C can be proved
in a similar way. O
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Corollary 3.8. The pair (A, C) is Koszul if and only if (A°?, C°P) is Koszul too.

Proof. The homology of K, (AP, C°P) is trivial if and only if the homology groups
of K« (A4, C) vanishes, by the proof of Proposition 3.2. O

Theorem 3.9. Let (A, C) be a Koszul pair. The graded R-coring T (A) is isomorphic
to C and (A, T (A)) is a Koszul pair. Dually, E(C) and A are isomorphic as graded
R-rings and (E(C), C) is Koszul.

Proof. We know that A4 is strongly graded and that (A4, T(A)) is almost-Koszul.
Let ¢« be the morphism of complexes from Ki (A, C) to BL(A), that we constructed
in Proposition 2.24. Since Ki (A, C) is a projective resolution of R and ¢p_; = I is
invertible, there exists a morphism ¢.: 81 (4) — ka (A, C) that lifts the identity of R.
By the Comparison Theorem [25, Theorem 2.2.6] it follows that ¢« o ¢/, and ¢}, o .
are homotopicto BL(4) and IK{k (A.C) respectively. Obviously, [r ® 4 ¢« and [g ® 4 ¢
are inverses of each other up to a homotopy. We deduce that H, (Ig ® 4 ¢+) is an
isomorphism between H, (R ® 4 Ki (A,C)) and H, (2+(A)), for any n > 0. On the
other hand, by Proposition 2.23, the former homology group is isomorphic to C,,. In
conclusion, the map y,: C,, = T,(A) defined by

n(c) = An)(c) + Bn(A)

is an R-bimodule isomorphism. Here, A(0) := Ig and B, (A) denotes the group of
n-boundaries in €2, (A4). Now it is not difficult to see that {y, },eN is an isomorphism
of graded R-corings between C and T (A). In conclusion I4 ® y. is an isomorphism
of chain complexes from Ki (A4,C)to Ki (A, T(A)). Thus the complex ka (A, T(A))
is exact, meaning that (A4, T'(A)) is Koszul.

We have seen that C is strongly graded and that (E(C), C) is an almost-Koszul
pair. The morphism ¢* from Proposition 2.24 lifts the identity of R. By hypothesis
B (C) and (K;(A4,C),(—1)*d}) are resolutions of R in the category of right
C-comodules, so Hom® (R, ¢*) is a quasi-isomorphism of complexes. By applying
the functor Hom® (R, —) to BX(C) and K7 (A, C) we get an isomorphism y* of
cochain complexes from (2*(C), 9*) to (4%, 0).

Of course, yo := Ig. Let us recall that J?IC :C — C; denotes the map induced
by the projection nlc and 0 = Oc,4 © JT[IC. For n > 0 the map y": C ®" — A" is
explicitely given by the formula

)/"(x1 R---®x") = g(xl)---g(x”).

As Q*(C) is the free R-ring generated by C, it follows that y* is a morphism of
cochain R-rings. Thus, it induces an isomorphism of graded R-rings E(C) = A4,
which in turn can be used to identify K} (E(C), C) and K} (4, C). O
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Corollary 3.10. Let (A, C') and (A, C") be Koszul pairs. Then C' =~ C" as graded
R-corings. Dually, if (A’,C) and (A", C) are Koszul, then A" =~ A" as graded
R-rings.

Proof. By the preceding theorem, there are canonical coring isomorphisms C’ =
T(A) and C” = T(A). Analogously, we have A’ =~ E(C) and A” = E(C). O

Corollary 3.11. If (A, C) is a Koszul pair then E(T(A)) = Aand T(E(C)) = C.

Proof. By Theorem 3.9, both (A4, T(A)) and (E(T(A)), T(A)) are Koszul. Using
the preceding corollary we conclude that A =~ E(T(A)). The proof of the second
isomorphism is similar. O

3.12. Koszul rings. Let A be a connected R-ring. Following [5] we shall say that A is
a left Koszul ring if R has a resolution P, — R by projective graded left A-modules
such that every P, is generated by its homogeneous elements of degree .

Theorem 3.13. Let A be a connected R-ring. Then the following assertions are
equivalent:

(1) Ais Koszul.
(2) A is strongly graded and (A, T (A)) is Koszul.

(3) There exists a graded R-coring C such that (A, C) is Koszul.

Proof. Let us assume that A is strongly graded and that (A, T'(A)) is Koszul. Then
Ki (A, T(A)) is a resolution of R by graded projective A-modules. Clearly, by
definition, every Kfl (A, T(A)) is generated as an A-module by A° ® T,(A), its
homogeneous component of degree n. Hence A4 is Koszul.

Let A be a Koszul ring and let V := A'. By [5], any Koszul ring is quadratic and
generated by V', so thereis W C V' ® V such that A4 is isomorphic as a graded R-ring
with the quotient of Tg(1V) by the two-sided ideal generated by W. Furthermore, we
define Cp := R, C; .= V and

n—2
Cn — ﬂ V®p QW ® V®n—p—2’
p=0

for every n > 2. We claim that the R-bimodule C = @D,y C» is a graded
subcoring of T (V). It is enough to prove that A, ;(c) € C, ® Cy, forany p,q > 0
and ¢ € Cp44. In the case when p = 0 or ¢ = 0, we have nothing to prove. Let us
assume that p > 0 and g > 0. Obviously, A, ,(c) € C, ® T4, if p = 1. In the case
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when p > 2 we have A, ;(c) = ¢, where in the right-hand side of this identity c is
regarded as an element in V®? ® V'®4, Thus

p+q—2 _ )
Ap,q(C) c ﬂ V®t QW ® V®p+q—l—2
i=0 P2
S\ V¥ eWeVertii?=C,eV®.
i=0

Similarly, A, 4(c) € V®? @ C,4. Thus A, 4(c) € Cp ® Cy, that is our claim is
proved.

By construction C is connected and A! = C; = V. Letc € C, = W.
Since Ay,1(c) = ¢ and the multiplication of Tg(}') is defined by the canonical
isomorphisms V& @ V®4 =~ V®P+4 we have my' (A1 1(c)) = ¢ + W = 0.
Thus (A4, C) is almost-Koszul with respect to 8¢ 4 = Iy. Taking into account the
definition of C it follows that Ki (A, C) coincides up to a degree shifting with the
Koszul complex [3, p. 483], which is exact by assumption. In conclusion if A is
Koszul, then there is a Koszul pair (4, C). Finally, by Theorem 3.9 we deduce
that A is strongly graded and (A, T'(A)) is Koszul, provided that there exists a Koszul
pair (4, C). O

Corollary 3.14. If A is left Koszul, then A is right Koszul, and conversely.

Proof. Let A be a left Koszul ring. Then, by the preceding theorem, A is strongly
graded and (A, T'(A)) is Koszul. Since AP is strongly graded and (A°P, T'(A)°P) is
Koszul, it follows that A°? is a left Koszul ring. Of course, this is equivalent to the
fact that A is right Koszul. O

Remark 3.15. The results of this section suggest the following definition. A
connected coring C is called Koszul if and only if C is strongly graded and (E(C), C)
is a Koszul pair. Koszul corings and some of their applications will be investigated
in a sequel of this paper.

4. Hochschild (co)homology of Koszul rings

In this section R denotes a separable algebra over a field k. Therefore, for any Koszul
pair (A, C) the complex K. (A4, C) is a projective resolution of A in the category of
right A-modules, cf. Corollary 3.5. We shall use this resolution to investigate the
Hochschild (co)homology of A with coefficients in an A-bimodule M .

4.1. The cyclic tensor product. The tensor product algebra R® := R ® R,
between R and its opposite algebra R°P, is called the enveloping algebra of R.
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Since R is an algebra over the field k, we have to adapt the definition of
R-bimodules to reflect this extra structure. By an R-bimodule we mean a left
(or a right) R®-module V. Equivalently, V' is a left and a right R module which
satisfies the usual associativity relation (rv)s = r(vs) and, in addition, the condition
xv =vx holdsforallx e kandv € V.

For an R-bimodule V let [R, V'] be the linear space spanned by all commutators
[r,v] . =rv—vr,withr € Randv € V. Let Vg := V/[R, V].

Recall that ® = ®pg. For any R-bimodules Vi,...,V, the tensor product
V1 ®---®V, is a bimodule, so we may define the cyclic tensor product of Vi, ..., V,
by the relation

Vi@ ®Vy= (118 ®Va)r.

For the equivalence class of v; ® -+ ® v, in the cyclic tensor product we use the
notation vy ® - -+ ® vy,. If V and W are R-bimodules, then the map VW >V @ pge W
is an isomorphism V@ W = V ®ge W, so

Vi®-®@Vy=(1®-8 Vi) ®re (Vit1®:--® V).

The cyclic tensor products V & W and W® V are isomorphic via the linear map
v ®w — w ® v. Thus

VR BVyxVh@V3® BV, @Vix =V, @V ® 8V

4.2. The complex K, (A, M). Let A be a Koszul ring over a separable k-algebra R.
The R-ring structure of A induces a canonical ring morphism from k to A. Since
we are interested in the Hochschild (co)homology of A, we assume that the image
of this map is central in A, that is A is a k-algebra. In this setting we also define
an A-bimodule as a left module over the enveloping algebra A¢ := A ®k AP of A.
We fix a connected R-coring C such that (A, C) is Koszul. Recall that C = T(A)
as R-corings. By the above assumption, 7'(A) is an R®-module, so we may assume
that C has the same property.

The Hochschild homology of A with coeflicients in an A-bimodule M is defined
by the relation HH. (A4, M) = Tor;:16 (A, M). Let K, (A, C) denote the complex
obtained from K (A4, C) by dropping the part of degree —1. Thus the Hochschild
homology of A with coeflicients in M may be computed as the homology of the
complex K/, (4, C) ® 4¢ M. We identify the vector spaces K, (4,C) ® 4« M and
M ®C, = C,® M via the map ¢, defined by

Pn ((x Rc®Yy) Qe m) = (ymx)@) c.

Its inverse is given by ¢, !(m Rc)=(1®c®1) Qe m. Let 3, M RC, —
M & C,_ be the map

an = @p-10° (dn X 4e IM) ° (pn—l’
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where d,, denotes the differential of K« (A, C). It is easy to see that d,, satisfies the
following equation

0, (m @c) = ZmGC,A (6(1,1)) ® €@2,n-1)
+ (—l)n ZQC’A (6(2,1))1’7’1 @ C1,n—1)- 4.1)

Clearly, px: M ® 4¢ K, (A, C) - (M ® Cy, 0y) is an isomorphism. Hence we have
the following result.

Theorem 4.3. Let (A, C) be a Koszul pair over a separable k-algebra R. The
Hochschild homology of A with coefficients in M is the homology of the chain
complex Ky(A, M) = M®Cs. Form € M and ¢ € Cy, the differential 9,, of this
complex is given by equation (4.1).

Recall that the Hochschild cohomology of A with coefficients in an A-bimodule M
is defined by HH* (A, M) := Ext}y. (A, M ). For a Koszul pair (4, C), proceeding as
in the proof of the preceding theorem, we obtain a complex to compute Hochschild
cohomology of A.

Theorem 4.4. Let (A, C) be a Koszul pair over a separable k-algebra R. The
Hochschild cohomology of A with coefficients in M is the cohomology of the cochain
complex K*(A, M) = Hompge(Cx, M). For ¢ € Cyy1 and f € Homge(Cy, M)
the differential 0" of this complex is given by

3"(f)(c) = ZQC,A(C(l,l))f(C(Z,n)) + (=D"*! Z fleam)bc,alcen). 4.2)

As an application of our previous results, we compute Hdim A, the Hochschild
dimension of a Koszul ring A. By definition, Hdim A is the projective dimension
of A as a left (or right) A°-module. Hence HdimA = n if and only if
HH"*!(4, M) = 0 for any bimodule M, but there is at least one bimodule M,
such that HH” (4, My) # 0. Of course, if such an n does not exist, then we say that
the Hochschild dimension of A is infinite. The projective dimension of R as a left
A-module will be denoted by pd(4R). For the projective dimension of the right
A-module R we shall use the notation pd(R 4).

Theorem 4.5. If (A, C) is a Koszul pair over a separable k-algebra R, then
Hdim A = pd(4R) = pd(R4) = sup{n | C, # 0}.

Proof. Obviously, pd(4R) = pd(R4). Let us assume that C;; = 0, for some d.
Then K (4, C) provides a projective resolution of R in the category of left A-modules
of length at most d . Thus, for n > d, we have C,, =~ Tor,‘;1 (R, R)=0. It follows that
S = sup{n | C, # 0} < d. In particular, if pd(R4) < d, then S < d. On the other
hand, assuming that the latter inequality holds, we get C;+1 = 0. Thus, in view of
the foregoing remarks, pd(g A) < d. In conclusion, S = pd(gA).
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It remains to prove that HdimA < d if and only if pd(g4) < d. Let us
suppose that the Hochschild dimension of A is less than or equal to d. Therefore,
the d-syzygy M of the resolution K« (A4, C) is a projective A-bimodule such that the
sequence

0«— A«—Kp(A4,C)«—---«—Kyz.,(A4,C) «— Ky_1(A4, C)«—M«—0.

is exact. Proceeding as in the proof of Proposition 3.2, one shows that this sequence
splits in the category of right A-modules. Hence, by applying the functor (—)® 4 R we
getaresolution of R by projective left A-modules. Since the length of this resolution is
at most d we conclude that pd(g A) < d. Conversely, if the projective dimension of R
as a left A-module is less than or equal to d, then Cy 41 = T;(A) =0. Thus K« (A4, C)
is a resolution of A of length less than or equal to d, that is Hdim A < d. O

We conclude this section by giving a first example of Koszul pair, which we
shall use later for the computation of Hochschild (co)homology of generalized Ore
extensions. For every R-bimodule V let T := Tg(V). Let C = R & V denote the
connected coring with the comultiplication A uniquely defined such that A(v) =
v® 1+ 1®v, forany v € V. We take 67,¢ to be the identity map.

Proposition 4.6. The pair (T, C) is Koszul.

Proof. The identity from the definition of almost-Koszul pairs is automatically
verified, as C, = 0. Thus (7, C) is such a pair. Furthermore, ka (T, C) is the
complex

O0«—R<«—T<«—TQRV «—0,

whose non-zero arrows are the projection JI;)« of T on T? and d ll . Since the multi-
plication in T is given by concatenation of tensor monomials, and A o(v) = v ® 1
we deduce that dll (x ® v) = x ® v. Therefore, dll is the identity mapof T® V = T.
Hence Ki(T, C) is exact. O

Remark 4.7. By Theorem 4.5 it follows that Hdim T3 (V) = 1, for any separable
algebra R and any R-bimodule V. This property of tensor algebras was proved
in [11], where the algebras of Hochschild dimension one are called quasi-free and they
represent the key ingredient in the definition of nonsingularity in Noncommutative
Geometry. The Koszulity of tensor algebras is also proved in the last section of the
paper, as a consequence of the fact that they are braided bialgebras.

5. Almost-Koszul pairs associated to twisted tensor products

We keep the notation and the assumptions from the first section. In this section we
consider two connected strongly graded R-rings A and B together with an invertible
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graded twisting map o: B ® A — A ® B. Our first aim is to show that o induces a
canonical graded twisting map of R-corings

©:T(A) ® T(B) — T(B) ® T(A).

This construction is performed such that (4 ®, B, T(A) ®, T(B)) is an almost-
Koszul pair, where A ®; B and T(A) ®, T (B) denote the twisted tensor product
R-ring and the twisted tensor product R-coring with respect o and t, respectively.
Furthermore, if A and B are Koszul and o is invertible, then we shall show that
A ®s B is a Koszul R-ring.

5.1. Twisting maps of R-rings. Let A and B be R-rings. A twisting map between A
and B is given by an R-bilinear map o: B ® A — A ® B which is compatible with
the multiplication of A and B, i.e.

oco(lp®@my) =(myg®Ip)o(I4®0)0 (0 ®I1y), (5.1
co(mp®Iy) =14®mp)o(0c®Ip)o(Ip ®o0). (5.2)

By definition, o must be compatible with the units of A and B as well. Therefore,
0(lp®a) =a®lpando(b®1y) = 14 b,foralla € Aand b € B. In
computations we shall write 0(b ® a) € A ® B as a formal sum »_ a, ® by. Thus,
for instance

[(ma®Ip)o(l4®0)o(c®IN]|b®a ®a") =) a,ay ® (bs)o.

The occurrence of o and ¢’ in the above identity indicates that the twisting map is
applied twice.

If o is a twisting map then A ® B has a canonical R-ring structure with respect
to the multiplication

(a/ ® b/)(a// ® b//) — Za/ag ® béb”

and the unit 1 4 ® 1p. The twisted tensor product will be denoted by 4 @, B. In the
case when R is commutative and A and B are R-algebras, the twisted tensor product
A ®, B may be seen as a deformation of the usual tensor product algebra.

Let us now assume that the R-rings A and B are both graded. A twisting map o
between A and B is called graded if 0 (B? @ A7) C A? ® BP. The restrictions of o
to B? ® A7 will be denoted by 0?4, For such a o the R-ring A ®, B is graded
and its homogeneous component of degree n is the direct sum of all R-bimodules
A? @ BY with p + g = n.

5.2. Twisting maps of cochain R-rings. We now assume that (*, d5) and (I'*, df%)
are cochain R-rings. A graded twisting map o **: T'* ® Q* — Q* ® I'* is called a
twisting map of cochain R-rings if a*>* is compatible with the differential maps of *
and I'*, in the sense that 0™ is a map of complexes from (I'* ® Q4,d} ® Iqa)
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to (Q7 ® I'*,Ige ® dff), for all g. Symmetrically, o”>* must be a morphism of

complexes from (I'? ® Q*,Irr ® d5) to (Q* ® I'?,d, ® Irp), for all p.

Proposition 5.3. Let (2%, dg) and (I'*, dy") be cochain R-rings. Suppose that V' is

an R-bimodule.

(1) Ife*: (VeQ* Iy®ds) — (Q*®V, d5®ly) is a morphism of complexes which
is compatible with the multiplication and the unit of Q*, then @* = H*(¢*) is
compatible with the multiplication and the unit of the graded R-ring H* (Q*).

Q) If y*:(I*@V.dr ®ly) — (VRI'*, 1y ®dy) is amorphism of complexes which
is compatible with the multiplication and the unit of T*, then x* = H*(x*) is
compatible with the multiplication and the unit of the graded R-ring H* (I'*).

(3) Every twisting map of cochain R-rings c**:T* @ Q* — Q* ® I'* induces a
twisting map of graded R-rings o **: H*(I'*) @ H* (Q*) — H*(Q*)  H* (I'™*).

Proof. For every p > 0 the morphism ¢* induces a map
e HP (VR Q") - H(Q*® V).

By assumption every left or right R-module is flat. Hence, ¢ # can be seen as a map
from V ® H? (2*) to H? (Q*) ® V. For x € ZP(2*) let [x] denote its cohomology
class. Note that ¢ 7 (v ® x) is an element in Z? (Q*) ® V, as ¢* is a morphism of
complexes. So ¢? (v @ x) = ) xy ® vy, for some x, € Z7(Q*). Hence

27 (v @ [x]) = [xp] ® vy (5.3)

Since ¢* is compatible with the multiplication of 2%, we get

Z [(x))g] ® vy = Z[tiYW] ® (vg)y'-

Thus, by the definition of the multiplication in H* (2*), it follows

Yo (X)), © v = ) [xlable ® (vp)g-

In conclusion, @* is also compatible with the multiplication of H*(2*). By the
definition of @ * one can easily see that this family of R-bilinear maps is compatible
with the unit of H*(2%).

We omit the proof of the second statement, being similar to the above one.

Let o be a twisting map of cochain R-rings. If p > 0 then ¢ 7°* is a morphism of
complexes from I'? ® Q* to Q* ® I'? which is compatible with the multiplication
and the unit of Q*. By the first part of the proposition it follows that

H*(0?*):T?  H*(Q) - H*(Q*) ® I'?

is compatible with the multiplication and the unit of H*(£2*). For a given ¢ > 0,
the family of R-bilinear maps {H?(0”"*)},>0 is a morphism of complexes from
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' ® HY(Q2) to HY(R*) ® I'* which is compatible with the multiplication and the
unit of I'*. Applying the second part of the proposition, for every p and ¢, we get a
map

5P HP (M) @H(QY) - HU(Q)®HP T*, F79([x]®[y]) = Y [e]®[xe.
such that & ** is a graded twisting map of graded R-rings. O

5.4. Twisting maps of R-corings. Let C and D be R-corings. A twisting map
between C and D is an R-bilinear map 7:C ® D — D ® C compatible with the
comultiplication of C and D, that is

Ap®Ic)ot=(IpR1)o(t®Ip)o(Ic ® Ap), 5.4)
Ip ®Ac)ot=(tQIc)o(Ic ®1)0(Ac ®Ip). (5.5

By definition, T must be compatible with the counits of C and D as well. Thus,
(Ip®ec)ot=¢ec®@Ipand (ep QIc)ot =1¢c Vep.

For a twisting map of corings we use the notation t(¢c ® d) = >_ d; ® ¢, for all
¢ € Candd € D. The tensor product C ® D has a canonical R-coring structure,
that will be denoted by C ®, D. The counit of this R-coring is ec ® €p, and its
comultiplication A is defined by the formula

A=(Ic®t®Ip)o(Ac ® Ap).

Let us now assume that C and D are graded corings. A twisting map of corings
1:C ® D — D ® C is called graded if 1(C, ® Dy) € Dy ® Cp,. The restriction
of r to C, ® D, will be denoted by 7, 4. Clearly, in this case C ®; D is a
graded R-coring, whose homogeneous component of degree n is the direct sum of
all bimodules C, ® D, with p + g = n.

5.5. Twisting maps of chain corings. We now assume that (Q, d*) and (T's, d[') are
chain R-corings. A graded twisting map 7y «: 2+ ® '« — I'x ® 2, is called a twisting
map of chain R-corings if t« 4 is a map of complexes from (Q4 ® I'y, d¥® Ir,) to
Ty ® Q. Ir, ® d$), for any q. In addition, Tp,x is @ morphism of complexes from
Q,®TlIg, ® dfto (T ® Q,,dl ® Ig, ), for any p.

Reasoning as in the proof of Proposition 5.3, one can show that the following
result holds true.

Proposition 5.6. Let (4, dS?) and (T, dL) be chain corings. Suppose that V is an
R-bimodule.

(D) If o4: (VT Iy @dL) - (Tw ® V., df @1y) is a morphism of complexes that
is compatible with the comultiplication and the counit of T« then ¢, = Hy (@) is
also compatible with the comultiplication and the counit of the graded R-coring
H* (F*).
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Q) If 1+: (e @V, dER1y) = (VQQu, Iy ®d2) is a morphism of complexes that
is compatible with the comultiplication and the counit of Qx then ¥« = Hu()«)

is also compatible with the comultiplication and the counit of the graded R-coring
H. (R24).

B) If Tox: Qs @ T's = ' ® Qy is a twisting map of chain corings, then Ty x
induces a twisting map of graded R-corings

5.7. Entwining maps. Let A be an R-ring, and let C be an R-coring. We say that a
bimodule morphism A:C ® A — AQ® C is an entwining map if A(c ® 14) = 14 Q¢
and (Ig ® ec) o A = ec ® I4, and the following relations hold

Ao(Ic ®@my) =(mg®@Ic)o(I4 @A) o (A ®1y), (5.6)
T4 ®Ac)oA=ARIc)o(Ic ® L)oo (Ac ®14). 6.7

Similarly one can define an entwining structure v: 4 @ C — C ® A.

Let us now assume that A and C are both graded. An entwiningmap A:C ® A —
A ® C is called graded if A(C, ® A7) C A9 ® C,,. The restriction of 1 to C, ® A?
will be denoted by A%,

Let (2%, dg)and (s, d I be a cochain R-ring and a chain R-coring, respectively.
A graded entwining map A}: 'y ® Q% — Q* ® [« is called a differential entwining
map if k;‘,: ', ® Q* - Q*®TI), and ATy ® Q49 — Q9 ® I'y are morphisms
of complexes, for any p and g. We state for future reference, without proof, the
following proposition.

Proposition 5.8. Let (Q*,dg) and (T, dl') be a cochain R-ring and a chain R-
coring, respectively. Any differential entwining map A5:Tyx @ Q* — Q* ® I
induces a graded entwining map

AXHi(Ty) @ HY(Q%) — H*(Q*) @ Hy(Ts).

Itis well known that any k-linear map o ''!': N ®x M — M ® N can be extended
in a unique way to a graded twisting map 0: T(N) Qx T(M) — T(M) Qk T(N)
between the free algebras generated by M and N. We shall adapt the method from [4]
in order to produce examples of twisting maps of chain coalgebras and differential
entwining maps. Some of them will be used later on in the paper to show that the
twisting tensor product of two Koszul R-rings is Koszul.

Recall that, for every R-bimodule V, the graded R-ring Tz (V) and the graded
R-coring T§ (V') have the same homogeneous component of degree 71, namely V",
Their multiplication and comultiplication are defined by the canonical isomorphism

V®Pr @ V®1 s V®PHd and its inverse, respectively.
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Proposition 5.9. Let oV'W:W ® V. — V ® W be an R-bimodule map.

(1) There exists a unique bimodule map q)f’W: To(W)®V — VRTR(W) verifying

the relation gDI/’W = "W

structure of Tr(W).

and which is compatible with the graded coring

(2) If A is an R-ring and ¢4V is compatible with the multiplication and the unit
of A, then (pf’W is an entwining map. Moreover, (pf’W is graded, provided
that A is graded and ¢V maps W ® A9 to A1 @ W for all q.

(3) 1If, in addition, B is a connected R-ring and (pA’]§ is compatible with the multipli-

cation and the unit of B, then (pf’Bis an entwining map from (Q+(B)R® A, 0, ®14)
t0 (A ® Qu(B), 14 ® 0.) which commutes with the differentials.

@) If (A,d™) is a cochain R-ring and goA’E is a morphism of complexes as in (3),
A,B . . . .
then ¢y " is a differential entwining map.

Proof. In the case when R is a field, the first part of the lemma is proved in [4].
The same proof works in our setting as well. Let us assume that we have already
constructed (pr W By the definition of the coring Tz (W), the compatibility of (pr W
with A 4 is equivalent to the relation

0ptg = oy ®lyed) o (lwer ® ¢ "), (5.8)

where p and ¢ are arbitrary nonnegative integers. In particular, if the map (pr W
exists it is uniquely defined by the condition ‘/’I/ W= @""W . On the other hand, to
prove the existence of gol/ W we can proceed as follows. The map (pg W must be the

canonical identification R® V = V ® R, as cpr W s compatible with the counit of
TR(W). We set <p1V’W = ¢""W and, for p > 1, we define (pII,/’W by

0y = (0" @ lysr) o (lw ® " @ Iysp2)o--

o (Iyer—2 ® " ® Iw) o (Iyer—1 ® (/)V’W).

It follows easily by induction on ¢ that the relation (5.8) is true for any p and g.

For the second part of the proposition we have to prove that gof Wis compatible
with the unit and the multiplication of A. Both compatibility conditions follow by
induction on p, using on the one hand the relation (5.8) written for ¢ = 1 and the
fact that gofi’W = ¢4W is compatible with the ring structure of A, on the other hand.
Clearly, if A is graded, then ¢*" maps W®? ® A% to A9 ® W®P. In the graded
case we shall denote the restriction of (pj,fl’W to W®P ® A4 by (pg,’qW.
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Let us prove the third part of the proposition. Recall that Q«(B) = Tg (B) as
R-corings. Using the relation (5.8) we get

oy = (0"* ®1gep-1) 0 (Igei @ 9" @ 15ai-1)
o (I§®i+1 &® (pflal§ ® I§®p_i_2) o (I§®i+2 ® (p‘;’_l?_z),

oyt = (0" ®Tge,-i-1) o (lgei ® 91" @ Igep-i2) o (Izait: ® 95 ).

Since, by assumption, gofl’B = goA’E is compatible with the multiplication of B, we

deduce that
@ﬁ’j o(Izei ®mp ®lgepi2®Ils) = (4 Qlzei ®mp ®lgg,—i—2)o <P;1’B,

forany i € {0,..., p — 2}. Taking into account the definition of d. (see §2.5), the
. S . A,B . .
above identity implies that ¢, is a morphism of complexes.

Let us show that <pf ’lj is a differential entwining map, provided that (4,d™) is a

cochain R-ring and ¢4-8 is a morphism of complexes. Hence, it remains to prove
that

o8 o (la,m ®d9) = (d9 ® la, () 0 i, (5.9)

for any p,q > 0. If p = 0 then this relation is trivially true for any g, as (p(‘i;]B is the
canonical identification R ® A9 =~ A9 ® R. For p = 1 the equation holds as well,

since (pﬁ ;B: B ® A* — A* ® B is a morphism of complexes by assumption. Let us
suppose that (5.9) is true for a given p and any ¢ > 0. By using the recurrence relation
that defines gof’B and the fact that goﬁ,’f and (pfl’;B are morphisms of complexes we
deduce that (5.9) holds for p 4+ 1 and any g¢. O

Proceeding in a similar way one proves the proposition below. Starting with a
bimodule map, we now produce examples of twisting maps of (graded or chain)
R-corings.

Proposition 5.10. Let V"W W @ V. — V ® W be an R-bimodule map.

(1) There exists a unique graded R-bimodule map WZ’W: WRTR(V) — TR(V)QW
which verifies the relation WIV W= VY'Y and is compatible with the coring
structure of Tx (V).

(2) If C is a R-coring and ¥"°C is compatible with the comultiplication and the
counit of C, then wf Cisa twisting map of corings. Moreover, Wr C s graded,
provided that C is graded and V"¢ maps C,®VitoV ®C, forall p. In this
case we shall use the notation wl‘,/jqc = tﬂ;,/’c lc,ev e

(3) If, in addition A is a connected R-ring and 1//;4 € s compatible with the comulti-

plication and the counit of C, then the twisting map 1/f;4 Cisa morphism of chain
complexes from (C Q@ Q2«(A),Ic ® 9x) 10 (2x(A) ® C, 0« ® I¢).
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(4) If (C, dy) is a chain coring and wZ,C is a morphism of complexes as in (3), then

w;‘l Cisa twisting map of chain corings.

Remark 5.11. If we apply Proposition 5.9 and Proposition 5.10 to the same map
oVW = VW then we get two different morphisms (pr W and wr ’W, that can be
seen as left-right symmetric version of each other. By analogy, we can also define
the morphisms

VB BRTL(V) > TS(V)® B and §248: B @ Q.(A) > Q.(A) ® B,

the symmetric versions of 4" and 48, respectively. Again by symmetry, there
are morphisms

IOV TEW)® D > D@TLW) and ¥ PB:Q,(B)® D — D ® Qu.(B),

for any R-coring D. For the sake of completeness, let us mention that the results from
Proposition 5.9 and Proposition 5.10 can be easily dualized. In this way we obtain
twisted tensor products of (graded or chain) R-rings in which one of the factors is
either Tg(V') or *(C). We do not state the dual results in detail, as we shall not
use them in this paper.

5.12. The entwining maps A and v. Let A and B be two connected strongly graded
R-rings. Then it makes sense to consider the almost-Koszul pairs (A4, 7(A4)) and
(B, T(B)). For ease of notation, we shall write C and D instead of 7(A) and T'(B),
respectively. Recall that, by definition, (A4, C') and (B, D) are endowed with two
R-bimodule isomorphisms 0¢c 4: C; — Al and Op.p: D1 — Bl.

We now assume, in addition, thato: B ® A — A ® B is a given invertible graded
twisting map. Obviously, the inverse o~! of o is also a twisting map or rings. Note
that (07 !)?4 = (02:?)~!. We claim that, under these assumptions, there is a graded
entwining map A:C ® B — B ® C that extends in a certain sense the inverse
of o. Indeed, by taking B4 := o71| Aep i Proposition 5.9, we get an entwining
map (pf A between Q«(A) and B, which is a morphism of complexes. Since any left
and right R-module is flat we get the following relations

H,(Q.(4) ® B) = H,(Q.(4)) ® B =C, ® B,
H,(B ® Qu(4)) = B ® Hp(Q4(A)) = B ® C,.

Therefore, by Proposition 5.6 (2), the induced morphism A:C ® B - B ® C is a

graded entwining map.

By symmetry (see Remark 5.11), if we take (pE 4 to be the restriction of 0!

to A ® B, then &)'f “4 induces another graded entwiningmapv:A® D — D ® A.
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5.13. The twisting map t’. Under the same assumptions as above, we can now
construct a twisting map v between C and D. We apply Proposition 5.10 for

yBC = Alcgp to get a twisting map WE’C: C ®Qu(B) = Q4«(B) ® C of graded
corings. In fact, if we regard C as a chain coring with trivial differential maps,
then wf Cisa twisting map of chain corings, so it induces a graded twisting map
t:.C ® D - D ® C, cf. Proposition 5.6 (3).

Some useful properties of A, t’ and v are collected in the theorem below.

Theorem 5.14. Leto: B ® A — A ® B be an invertible graded twisting map. The
twisting map v’ and the entwining maps A and v constructed in §5.13 and §5.12
verify the following relations:

(Isr ® Oc,4) 0 A7 = (7)™ o (6c.a ® 1p»), (5.10)
ALo(lc, ®0p.s) = (Op.8 ®Ic,) o). (5.11)
vy0(0ca®lp,) = (Ip, ® bc,4) o 1) . (5.12)
(6p,8 ®14r) o v = (6"?)" o (Lur ® bp,3). (5.13)

Proof. We know that C = T'(A) is the homology of (2x(A), dx), so C1 = A/ A2,
Let us denote the class of @ € A by [a]. By definition, gof’A =01 | i 5~ Therefore,
foranya € A and b € B9, we have

M(la ®b) = by ® lag-1].

On the other hand, 6c, 4 maps [a] to the homogeneous component of degree 1 of a.
The equation (5.10) now follows by a simple computation.
To prove the second identity we first note that

Dy =B/B*> and y}C =yBC = ez
Since 7’ {is the morphism induced by wf ¢ and Op.p maps the class of b € B
modulo B? to its homogeneous component of degree 1, we conclude the proof as in

the case of the previous relation. To show that (5.12) holds one proceeds in a similar
way. O

5.15. Notation and assumptions. Our goal is to show that the pair

(A ®s B.T(A) ®; T(B))

is almost-Koszul, see Remark 5.16 for the definition of 7. Then we shall show that
this pair is Koszul, provided that A and B are Koszul R-rings. In fact we are able to
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prove these results for any almost-Koszul pairs (A, C) and (B, D) which are equipped
with the following extra data:

(1) Aninvertible graded twistingmapo: B® A - A ® B.
(2) An invertible graded twistingmap t:C ® D - D ® C.
(3) An invertible entwining map A:C ® B - B ® C.

(4) An invertible entwining mapv: A ® D — D ® A.

We assume that the conditions (5.10)—(5.13) are satisfied, where 6¢ 4: C1 — Al
and Op p: D1 — B! are the isomorphisms corresponding to (4, C) and (B, D),
respectively. We have already seen that, for any invertible twisting map o, the pairs
(A, T(A)) and (B, T(B)) fulfill the conditions (5.10)—(5.13), where t/, A and v are
as in Theorem 5.14.

In the case when p = ¢ = 1 the above identities imply the following equation:

oo (6p,p ®fc,a) 0 1), = Oc.a ® Op .

Equivalently, for ¢ € C; and d € D1, we have
Y bc.alce)o ® 0p,8(de)o = bOc,a(c) ® Op,p(d). (5.14)

Remark 5.16. If t: C ® D — D ® C is a graded twisting map of graded R-corings,
then the map t defined by 7,4, = (=1)?97, , is also a graded twisting map
between C and D.

Proposition 5.17. With the notation and assumptions from §5.15 and the preceding
remark, the pair (A @ B, C ®; D) is almost-Koszul.

Proof. Ttis obvious that A ®, B and C ®, D are connected. By definition we have
(A®; B)' =(R®BH®(A'®R) and (C®; D)1 =(R®D1)&(C1®R).

We define 0: (C ®, D); — (A ®, B)! such that it coincides with (¢ 4 ® Ig) and
(Ig ® Op,p) on C; ® R and R ® D, respectively. We claim that  satisfies the
relation (2.4). Indeed, if -, denotes the multiplication on A ®, B, then we have to
show that

Y 0(xa.n) o O(x@n) =0. (5.15)

forany x in (C ®; D), = (C2 ® R) ® (C1 ® D1) ® (R ® D»). Hence for proving
(5.15) we may assume that x belongs to one of the three direct summands. Let us
consider the case x € C; @ R, so x = ¢ ® 1 for some ¢ € C,. By definition of the
comultiplication on C ®; D, we have

Apie® ) =) (can®1) ® (cen ® 1).
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Henceforth, in this case we have

Y 0(xan) o 0(x@n) =Y (Bc.alcan) ® 1)« (0c.alcan) ®1)
= ZQC,A (ca,n)bc,a(cen) ®1=0,

since (A4, C) is an almost-Koszul pair. If x € Cyp ® D,, the computations are done
in a similar way.

Let us finally assume that x = ¢ ® d with ¢ € C1,d € D;. Since ¢ € C; we
have Ac =1®c +c¢®1,and 71,1 = —7; ;. Thus

Ac®d) = ()N +(c®1)R(1®d)
+101D)®(®d)-1®1,(c®d)® 1.

The component of the latest expression belonging to (C ®; D); ® (C ®; D); is
precisely

Aic®d)=(c®)®(18d) - (18dy)® (cr ® ).
Henceforth, applying first 8 ® 6 and then the product in A ®, B, we get

> 0(x1) o O(x@,1) = Oc.a(c) ® Op.s(d) — Y Oc.a(cr)s ® Op.5(de)o.

In view of the relation (5.14) it follows that the equation (2.4) holds in this case as
well. =

Theorem 5.18. We keep the notation and the assumptions from §5.15. If (A, C) and
(B, D) are Koszul, then (A ®, B, C ®; D) is Koszul too.

Proof. We have already proved that (4 ®, B,C ®; D) is an almost-Koszul pair.
Let K. be the complex that is obtained from Ki (A®qs B, C ®; D) dropping the part
in degree —1. We define (K/,, d.) and (K, d!’) in a similar way from K’ (A4, C) and
K. (B, D), respectively. We claim that

I4®A®Ip:K, K[ — K,
is an isomorphism of complexes. Let
an: (A ®U B) ® (C ®r D)n - (A ®0 B) ® (C ®r D)n—l

denote the differential map in K. We fix p and g such that p + ¢ = n. Forc € C,,
and d € D, we have

D q
Ac®d) =) Y (D) ® da )y ® @ pwy ® dag)-

u=0v=0
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Thus the component of A(c ® d) in (C ®; D)1 ® (C ®¢ D) p44—1 is obtained from
the above equality by dropping all summands but the ones with either v = 1 and
v=0,oru =0and v = 1. Therefore,

Al,p+q—1(c ®d) = 20(1,1) RI® ce2,p-1) ® d
+(=D? Y 1®d(1,1), ® ¢ ® d2,g-1).-
Hence, forany { =a @b ® c®dinA® B® C, ® Dy, with p + q = n, we get

an(é‘) = ZaOC,A(C(l,l))U ® ba ® c2,p—1) ®d
+ Y (=1)?a ® bp p(d(1,1),) ® cr ® d(2.g-1).-

To make computations with morphisms in the category of R-bimodules we use string
representation of morphisms in a tensor category, which is explained for example
in [16, Chapter XIV.1]. Each morphism will be represented downwards, as a black
bead. Sometimes, to avoid confusion, we shall write the name of the morphism
near the corresponding bead. For the identity of a bimodule we shall draw only the
string. The tensor product and the composition of two morphisms will be represented
by horizontal and vertical juxtaposition, respectively. In conclusion, every string
diagram may be interpreted as the representation of a composition fj o---o f,,
where each f; is a tensor product f; = Ix;, ® g; ® Iy,. The corresponding diagrams
will be drawn one under the other, starting with f,, on the top.

As usual, the multiplication of an R-ring is drawn by joining two strings. For
the components A, , of the comultiplication of a coring C we shall use the ‘dual’
representation, in which the string representing Cp44 is split in two strings that
corresponds to Cp, and C, respectively.

As an example, let us have a look at the picture below, which represents d,,. Here
the beads symbolize the morphism 6p p and 6c, 4, respectively. Note the notation
of o as a crossing. For 7’ and A we shall use the inverse crossing representation, to

put stress on the fact that they were obtained using o~ !.

ABCP D1 AB CPDY

A B (CrD?"! A BCPIDY

Let, = 14 ®A ! ®Ip)odyo(ly ® A ®Ip). Then §, = 8, + 8./, where &/,
is the first term of 9, composed to the left by I4 ® A~! ® Ip and to the right by
I4 ® A ® Ip. The map §,, is obtained in a similar way from the second term of 0,,.
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The computation of §,, is performed in the diagram below. For the first equality we
are using (5.11). The second one means that A is compatible with the multiplication
of B, while the third one is obvious, as A and A ™! are inverses each other.

ACPB D1 ACPB D1 ACPB D1 ACPB D1

\ \)

N/ \/\
5, = (-1 ) = (-1 ) =C Uy | =
1 A1

Acr  BD! Acr  BDI! AcrB DIt AcrB DIt

The morphism &), is computed in the next diagram using the same method. To deduce
the first identity we use (5.10). The second equality follows by the fact that the coring
structure of C and the entwining map A are compatible. The third one is obvious,
as A~ ! is the inverse of A.

ACPB D1 ACPB D1 A CPB D? A CPBD?

AR S
N1 T/

ACPBDI"t  ACPBDI! ACPBDI"t  ACPBDI!

The above computations show that
8 = (—l)pIK/p ® d;’ and 6, = d;, ® Ixy
for any p and ¢ such that p 4 g = n. Therefore, K, is the tensor product of the
complexes K/, and K.
Let us now assume that (4, C) and (B, D) are Koszul. By definition, then the
complexes K/, and K/ are acyclic and their homology groups in degree zero are
isomorphic to R. If K has the same properties, then ka (A®y B,C ®; D) will be

exact. Using Kiinneth formula [25, Theorem 3.6.3] and the fact that R is semisimple,
we get

H,(KL(A®, B,C ®: D))= @ Hy(KL(4,0C))®H,(KL(B,D)).
pt+q=n

Thus Kfl (A ®s B,C ®; D) clearly is acyclic. On the other hand,

Ho (KL (A ®, B,C ®; D)) = Hy(K,(4,C)) ® Hy(K (B, D))
~R®R x~R. O
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Corollary 5.19. Leto: B&A — A® B be an invertible graded twisting map between
two Koszul R-rings. Then A ®s B is Koszul and T(A ®¢ B) = T(A) ®, T(B).

Proof. Let t/, A and v be the maps that we constructed in §5.12 and §5.13. By
the preceding theorem and Theorem 3.13, the pairs (A ®, B, T(A) ®; T(B)) and
(A ®q B,T(A ®, B)) are Koszul. To end the proof we apply Corollary 3.10. [

Corollary 5.20. Let A and B be Koszul rings over a separable k-algebra R. Let o
be an invertible graded twisting map between A and B. If HAim A = n and
Hdim B = m, then Hdim A ® ; B < n + m. Moreover, Hdim(A @, B) = m +n if
and only if T,(A) ® T,,(B) # 0.

Proof. By Theorem 4.5, we have T,(A) # 0, Tn(B) # 0and T, (A) = 0 = T, (B),
for all p > n and ¢ > m. It follows that the homogeneous component of degree
m+nof T(A) @ T(B) is T,(A) ® T;,(B). Since the homogeneous component
of degree r > m + n of the twisted tensor product coring is zero and A ®, B is a
Koszul ring, we conclude the proof using Theorem 4.5 once again. O

6. The Hochschild (co)homology of a twisted tensor product

As usual, when we speak about the Hochschild (co)homology of an R-ring we assume
that R is a separable algebra over a field k and that any R-bimodule is symmetric as a
k-bimodule (with respect to the bimodule structure induced by restriction of scalars).
Leto: B® A — A ® B be an invertible graded twisting map between two Koszul
R-rings. By Theorem 5.14 and Theorem 5.18 there is a twisting map t between the
corings T (A) and T'(B)) such that (A ®, B, T(A) ®; T(B)) is a Koszul pair. In
the first part of this section, for more flexibility, instead of using this pair as a tool we
prefer to place ourselves in the setting of §5.15, adding the assumption that (A, C)
and (B, D) are Koszul.

Our aim is to show that the Hochschild homology of A ®, B can be computed
as the homology of the total complex associated to a suitable double complex. A
similar result will be obtained for Hochschild cohomology. Then, as an application,
we introduce generalized Ore extensions of an R-ring A and we show that such an
extension is Koszul, provided that A is so. Furthermore, using the results from this
section, we investigate the Hochschild cohomology of generalized Ore extensions.

6.1. The Hochschild homology of twisted tensor products of Koszul rings. By
Theorem 5.18 the pair (A ®, B, C ®; D) is Koszul, so we can use Theorem 4.3 to
compute the Hochschild homology of A ®, B. The decomposition

(C®rD)n: EB CP®Dq
pt+q=n
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suggests that K« (4 ®, B, M) is the total complex of a double complex
(Kux(A ® B, M), 3",,3,).

Before proving this, let us write the latter chain complex in an equivalent way. Recall
that

Ki(A®y BM)=MR(C ®: D)= @ (MBC,RD,)
p+q=n

~ P D,®MRC, =K, (AR B,M).
p+q=n

Through these identifications, to the differential map 0, of Ki(4 ®, B, M)
corresponds a morphism

9K, (A®s; B,M) —>K,_(A®; B, M).

In view of Theorem 4.3, to compute 9;, we need AC®’1 (c®d) and AC®’1 (c®d)
forany c ® d € C, ® D, with p + q = n. The first element is given by the formula

AC@rl (c®d)= ZC(I H®L®cep-1)®d
+ (=1)? Z 1®day,y ®cr ®dag-1)s

cf. the proof of Theorem 5.18. We can compute the second element in a similar way,
obtaining

AC®11 (c®d) = ZC@d(lq H®1®dao,)
+ (—1) ZC(I,P—I) ® d-[/ ® C2,1)y ® 1.

Letm € M. Taking into account the relation (4.1) it follows that 8/, (d ® m ® ¢) can
be written as a sum of two elements. The first one, belonging to D, QMRC p—1,
has the following form

ag’q(d @m @C) = Zd @m(QC,A(C(l,l)) & 1) @C(sz_l)
+ (=17 Zdr’ ® (0c,alceny,) ® )m&ca,p-1). (6.1)

The other one, which is an element of D,_; IMC p, can be written as
(=DPa}, ,(d ®m & c¢), where

ag,q(d ®m®c) = Z d2.4-1) ® m(l ® Op,p (d(l,l).c/)) ® v
+ (=17 dag-1® (1® 0p.p(den))m&c. (6.2)
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Thus the complexes (K« (A ®y B, M), d,) and (K,(A®, B, M), d',) are isomorphic.
We have also proved that the restriction of the differential map 9/, to D, ® M ® C,,
satisfies the relation 0), = Bp,q + (—1)1’8;,4, where Bp’q and 8;’,,(1 are defined as
above. Let

Ky q(A®y B,M) := D,® M RC,.

By a straightforward but tedious computation, based on the relations (5.10)—(5.13),
one shows that (K« (A @ B, M), ", 82,) is a double complex, that is the diagram

o
Kp.g(A ®; B, M) T Kp-14(A ®s B, M)
32,4 jaz—l,q (6-3)
Kp,q—l(A Qo B, M) h—> Kp—l,q—l(A Qo B, M)
r.q—1

is commutative for all nonzero p and g. Obviously, its total complex is
(KA ®¢ B, M), ).

We reinterpret the double complex (6.3) to relate the homology groups of the
rows and columns with the Hochschild homology groups of A and B, respectively.
First, let us notice that D; ® M is an A-bimodule with respect to the actions

a(d @ mya' = " dy ® (ay ® hm(d@ ® 1),

where for the left module structure we used the entwiningmapv: A Q@ D — D ® A.
Similarly, we can endow M ® C, with a B-bimodule structure by

bm®c)b' =Y (1®b)m(1® b)) ®cs.

Using the relations (5.11) and (5.12), it follows that the complexes K« (B, M ® C)p)
and K« (4, Dy ® M) are isomorphic to K,«(4 ®,; B, M) and Ky;(4 ®; B, M),
respectively.

There are two filtrations on the total complex of Ky«(4 ®, B, M), cf. [25,
Section 5.6]. They give rise to two spectral sequences, both converging to the
Hochschild homology of A ®, B with coefficients in M. For future reference, we
summarize the above results in the theorem below.

Theorem 6.2. We keep the notation and the assumptions of §5.15. If (A, C) and
(B, D) are Koszul pairs over a separable R-algebra and M is an A ® ; B-bimodule,
then the Hochschild homology of A @4 B with coefficients in M is the homology of
the total complex of (Kux(A @ B, M), 3", 0Y,). The pages'E}, and "E], of the
spectral sequences that correspond to the column-wise and row-wise filtrations are

IEII)q =HH,(B,.M ® Cp,) and HEIIW = HH,(A,D, ® M). (6.4)
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Both spectral sequences converge to the Hochschild homology of A ®, B with
coefficients in M.

6.3. The Hochschild cohomology of twisted tensor products of Koszul rings.
For the computation of Hochschild cohomology of A ®, B with coeflicients in a
bimodule M one may also use a similar double complex. With the notation from §6.1,
let us remark that

K"(A ®; B,M) = Homge((C ® D),,M) = @ Homge(Cp ® Dy, M).
pt+q=n
(6.5)
For every R-bilinear morphism f:C, ® D; — M we define
i (NHe®d) =) (fcalcan) ®1)f(cap ®d)
+ (DY fean ® dv)(Pc.alcan,) ® 1).

Note that 82’ “4( f) is a morphism of R-bimodules from C,11 ® D, to M. Similarly,
for any f as above we define the map 95°7(f): C, ® Dy+1 — M by

U c®d) =" (1®6p,5(da,)) f(c: ®dag)
+ (DY f(e ® dag)(1® 6p,5(de.n))-

Taking into account the identification (6.5), by direct computation, we see that
the differential maps of the complex K*(4 ®, B, M) satisfy the relations 9" =
77 + (—1)?99°7, and that the diagram

p.q+1

Hompge(Cp ® Dyt1, M) —— Hompge (Cpi1 ® Dyy1, M)
a{j*qT ]agﬂq (6.6)
HOInRe(Cp ®Dq,M) gr-a HOmRe(Cp+1 ®Dq,M)

h

is commutative. The resulting double complex will be denoted by
(K*(A ® B, M),0;*,0}%).

We have seen that the homology groups of the rows and columns of the double
complex in Theorem 3.3 computes the Hochschild of A and B with respect to
appropriate A and B bimodules, respectively. For the Hochschild cohomology
of A ®, B a similar result does not hold in general. Nevertheless, supposing that R
is a separable commutative k-algebra and that all R-bimodules that we work with
are symmetric, in view of the adjunction formula, we can rewrite K*4(4 ®, B, M)
as follows

Homge(Cp ® Dy, M) = Homp(Cp, ® Dy, M) = Hompg (Cp,HomR(Dq,M)).
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Through this isomorphism, for a given ¢, the row K*?(4 ®; B, M) can be identified
with the complex K*(A, Hom r(Dg, M)), where the linear space of R-module
morphisms from D, to M is regarded as an A-bimodule via the actions

(afa)(d) = (a®1)f(d)(a, ®1).

Therefore, the page HE{’ 7 of the spectral sequence associated to the row-wise
filtration of K**(A4 ®, B, M) has in bidegree (p.q) the Hochschild cohomology
group HH? (4, Homg (D4, M)).

To give an analogous description of the columns of K**(4 ®, B, M) we first
endow Homg(Cp,, M) with a B-bimodule structure, using the following left and
right actions

(bgh')(c) = D (1@ b)g(c)(b ® 1).

Then, by the adjunction formula,
Homge(Cp, ® Dy, M) = Hompg (Dq, Hompg (C5p, M))
Thus, the column K?*(A ®, B, M) is isomorphic to the complex
K* (B, Homg(C,, M)),

for any p. In particular, the page ;EP? of the spectral sequence associated to the
column-wise filtration has in the spot (p, g) the Hochschild cohomology group of
HHY(B,Homg(C,, M)). Summarizing, we sketched the proof of the following.

Theorem 6.4. We keep the notation and assumptions of §5.15. If (A, C) and (B, D)
are Koszul pairs over a separable R-algebra and M is an A Qs B-bimodule, then the
Hochschild cohomology of A ®, B with coefficients in M is the cohomology of the
total complex of (K**(A ®, B, M), 07*, 93*). Assuming that R is commutative and
that the R-bimodules A, B and M are symmetric, then the pages (ET* and yET* of
the spectral sequences that correspond to the column-wise and row-wise filtrations
are given by

(E{? = HH? (B,Homg(Cp, M)) and ;E{? =HH? (A, Homg(D,, M)).
Both spectral sequences converge to the Hochschild cohomology of A @, B with
coefficients in M.

6.5. Generalized Ore extensions of R-rings. Let A be an R-ring, where R is a
semisimple ring. If 0: A — M,,(A) is a morphism of R-rings then, for every couple
(i, j) of positive integers which are less than or equal to 7, there exists an R-bimodule
endomorphism o;; of A such that 0;; (@) is the (i, j )-element of the matrix o (a), and

oij(ab) = Y 06ip(a)op;(b) and oy (1) =8 ;1. (6.7)

p=1
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Let {eq, ..., e,} denote the canonical basis (both as a left and as a right R-module)
on V := R". For any morphism ¢ as above there exists a unique twisting map

T TR(V)®A—> AQTR(V)
such that 6(1 ® a) = a ® 1 and

n
5(61'1 ®"'®ei,, ®(l) = Z(Uiljl o"'oaipjp)(a)®ej1 ®®e],, (6.8)

J1seesip=1

Since & is a twisting map of R-rings, the twisted tensor product A ®5 T3 (V') makes
sense. The set

B={ej ®---®ej, |m>0and 1 <iy,...,in <n}

is a basis of the left A-module 4 ®5 Tg(V'). Therefore, by identifying ¢;; ® - ®e;,,,
with X;, --- X;,, , any elementin A ®3 T (V') can be written in a unique way as a left
linear combination of noncommutative monomials in the indeterminates X1, ..., X,
with coefficients in A. Via this identification, the multiplication in A ®z Tg(V') is
determined by the relation
n
Xia = Z oij(a)Xj.
j=1

If n = 1 then o identifies with an algebra automorphism 011 of A, and A ®5 Tx (V)
is the usual Ore extension Ay, [X]. For this reason, in the case when o is an
arbitrary R-ring morphism from A4 to M, (A), the corresponding twisted tensor
product A ®5 Tg(V') will be called the generalized Ore extension of A (with respect
to o) and it will be denoted by A4 (X1, ..., Xn).

The twisting map &, associated to an algebra morphism 0: 4 — My,(A), is
invertible if and only if there is a matrix (Gi/j)i, j whose elements are R-bimodule
endomorphisms of A satisfying the equations

n n
i _ !/ R L
g Opi 00, = E 0pi ©0jp = Sl,JIA'
p=1 p=1

The matrix (o] )i, determines the inverse of & by the formula

n
Fla®e, ® - ®ei,) = Z ej ® - ®ej, ®0; ; --0i;(a). (6.9
J1ssip=1

Let us now assume that A := pen AP is a connected graded R-ring. Obviously, &
is a graded twisting map if and only if every o;; is a morphism of graded R-bimodules.
From now on we assume that A is a connected R-ring and that 0: A — M, (A) is
a morphism of R-rings such that the corresponding twisting map & is graded and
invertible.
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Theorem 6.6. Let R and A denote a semisimple ring and a Koszul R-ring,
respectively. If o is a morphism of R-rings from A to M,(A) such that the
corresponding twisting map G is graded and invertible, then the generalized Ore
extension Ag (X1, ..., Xn) is a Koszul R-ring.

Proof. We know that A! generates A and (A4, T(A)) is a Koszul pair, see Theo-
rem 3.10. Let V' denote the R-bimodule R". By Proposition 4.6, the pair (T (V), C)
is Koszul, where C := Cy & C; and C; = V. Applying Proposition 5.14 for

G TR(V)® A —> AR Tr(V),
we get a twisting map of corings
' T(A)®C — C ® T(A)
and the entwining maps
ATA)@TR(V) > Tg(V)®T(A) and v:A®C - CQ A,

such that the relations (5.10)—(5.13) hold with o replaced by ¢. Hence by
Theorem 5.18 the pair (A ®5 Tg(V),T(A) ®, C) is Koszul. In particular,
As(X1,...,Xn) is a Koszul R-ring. O

Remark 6.7. The matrix (o] j),-, ; that gives the inverse of & from relation (6.9) can
be used to construct explicitly the maps t’, A and v from the proof of the preceding
theorem.

To construct 7’ we define the R-bimodule map 7,,: Q,(A) @ V — V ® Q,(A)
as follows. If p = 0 then we take 'c;, to be the isomorphism R® V' = V ® R. On
the other hand, if p is positive, then we set

n
(@1 ® - Qap®e) =Y e ®a},; (a1)®0),;,(a) ® -+

J1seees. /p=1

3J2

I !/
Q0 (ap-1) ® U,'jp(ap),

forany ay,...,a, € A. Since

n
’ ’ o
Z Ok jk—1 (ak_l)o—jk+ljk (ar) = O k1 k-1 (ax—rax)
Jk=1

it follows easily that 7, is a morphism of chain complexes from (Q4(A) @V, 0. ®Iy)
to (V ® Q4«(A),Iy ® d4). To show that 7, is compatible with the comultiplication
of Q.(A) one uses the fact that this coring structure is given by the canonical
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identifications Q2 ,44(A4) = Q,(A) @ Q24(A). Thus t} satisfies the conditions from
Proposition 5.3, so for every p there is a bimodule map

T, 1 Tp(A)®V =V ®TH(A)
such that {7,'1/7’1} peN is compatible with the coring structure of 7'(A4). Let
7,0:Tp(4) ® R - R® Tp(A)

be the canonical R-bilinear isomorphisms. The family {T;:,o} peN together with
{7).1) pen define the required twisting map ¢’ between 7'(4) and C.

We can now define the entwining structure A. For any p we take )L‘I’) to be the
canonical isomorphism 7, (4) ® R = R ® T,(A), and for ¢ > 0 we define

A9 Tp(A) @ VB — VB @ T,(A)
by
kz’ = (IV®q—l (%) T;),l) o (IV®£]—2 ® T;,l [ V) O:++-0 (T;’al X IV®q—1).
Finally, the entwining map v:C ® A — A ® C coincides with the isomorphism

R®A=AR® RonCy® Aand with5~! on C; ® A. Plainly, by construction, &,
7/, A, and v satisfies the conditions from §5.15.

6.8. Hochschild (co)homology of generalized Ore extensions. We keep the
notation and the assumptions from Theorem 6.6, and we suppose that M is an
Ay {X1,...,Xy)-bimodule. By the proof of the aforementioned result

(Ao(X1..... Xn), T(4) ®; C)

is Koszul. Thus to compute the Hochschild homology of A4 (X7, ..., X,) we may
use the double complex constructed in Theorem 4.3. In this particular case, the
double complex has only two non-trivial rows as C; = 0 for any ¢ > 1. Therefore,
for the generalized Ore extension A, (X71,..., X,) the double complex becomes

~ ~ a;17.1 ~ ~ d2h.1 ~ ~ 32.1
0~ VRIMRITo(A)<——VRMRIT1(A) <V @M R Tr(A) <.

lagl lall)l Lagl

0 M ® To(A) <—— M Ti(A) ~— M & Ty(A) <+
81,0 82,0 a3,()

The arrows of this double complex are described in the next proposition. Recall
that the comultiplication on C is taken such that for all elements in V' we have
Ajpo(v) =v®land Ap,1(v) =1 v.
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Proposition 6.9. The Hochschild homology of Ag{(X1, ..., Xn) is isomorphic to the
homology of the total complex of the above double complex. Forc € T,(A), m € M
and v € V the arrows are given by

Mo(m®c) =Y m(O(can) ®1)®cap
+ (=1)? Z (O(c2,n)) ® 1)m ® C(1.p—1)5
8’1’,,1(1; ImRc) = Z v®&m(0(cai,n) ® 1) Rz, p—1)
+ (DY oo ® (9(can,) ® hm & cap-n.
0y (V®M®c) = Zm(l RV)®cry —(1@V)Mc.
Similarly, the double complex from Theorem 4.4 computing the Hochschild

cohomology of the generalized Ore extension A5 (X1, ..., X,) has only two nonzero
TOWS

0.1 1.1

d,° 9,
0 — Hompge (V, M) —— Homge (T1(A) ® V, M) —— Homge (T2 (A) ® V, M) — - --

ag'OT a,‘;OT a%’OT

OHHomRe(R,M) HOmRe(Tl(A),M) HOmRe(Tz(A),M)*)"'

0.0 1.0
ah ah

The arrows of this double complex are described in the next proposition.

Proposition 6.10. The Hochschild cohomology of the generalized Ore extension
Ag(X1,..., Xn) is isomorphic to the cohomology of the total complex of the above
double complex. Forc € Tp,(A), m € M and v € V the arrows are given by

e ®@v) =) (1®ve) fler ®1) = fle ® (1 ® ),
P(f)e) =Y (ecan ® D flcap) + (=D Y fleap)cen ® D).

I (Ne®v) =D (can ® D f(can ®v)
+(=D? Y fleap ® vo)ean, ® 1.

Remark 6.11. The p-degree component of 7(A4) ®; C is
(Tp(A) ® R) & (Tp—1(A) @ V).
We deduce that
Hdim A < Hdim A, (X1,...,X,) <HdimA4 + 1,

see Theorem 4.5. Therefore, if the Hochschild dimension of A is n, then the
Hochschild dimension of the generalized Ore extensions is n + 1. Moreover, the
Hochschild dimension of A is infinite if and only if the Hochschild dimension of the
ore extension A, {(X1,..., X,) is so.
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7. Koszul braided R -bialgebras

In this section we are going to give some examples of Koszul rings and indicate some
applications of our previous results. We start by showing that, under certain mild
assumptions, any almost-Koszul pair that consists of connected braided commutative
bialgebras is always Koszul. Some particular instances of such pairs, including
trivial extensions, quantum affine spaces and the incidence algebra of the power
poset (P (X), ©) of a finite set X, will be discussed.

7.1. Braided R-bialgebras. A pair (V,¢) is called braided R-bimodule if V is an
R-bimoduleand ¢: V ® V — V ® V is an R-bimodule map which satisfies the braid
equation

€1 0C20C€ =C€20¢C; 0Cy,

where ¢; := ¢c®Iy and ¢, := Iy ® ¢. A morphism of braided bimodules from (V, ¢y)
to (W, cw) is abimodule map f:V — W suchthatcp o (f Q® f) = (f ® f)ocy.

The definition of braided algebras from [2] can be adapted for R-rings without
difficulty. See also [1] for more details about braided algebras, coalgebras and
bialgebras. The quadruple (A,m,u,c) is called a braided R-ring if (A,c¢) is a
braided R-bimodule and (A, m,u) is an R-ring such that ¢ is a twisting map of
R-rings. A morphism of braided R-rings is, by definition, a morphism of ordinary
R-rings which, in addition, is a morphism of braided bimodules. The braided ring
(A,m,u,c) is called braided commutative, or c-commutative if m o ¢ = m.

We shall say that (A, m, u, c) is a graded braided R-ring if and only if A4 is graded
and c is a graded twisting map of graded R-rings. In this case we shall denote the
restriction of ¢ to A? ® A? by ¢P4. Note that, for a braided R-ring (4, ¢), we can
consider the twisted tensor product 4 ® . A with respect to the twisting map c.

Braided R-corings, and their graded version, are defined in a dual manner.
Braided R-bialgebras generalize braided bialgebras, introduced by Takeuchi in [23].
By definition, a sextuple (A, m, u, A, g, ¢) is a braided R-bialgebraif (A,m,u,c)isa
braided R-ring and (A4, A, ¢, ¢) is abraided R-coring such that A and ¢ are morphisms
of R-rings (on the R-bimodule A ® A we take the ring structure A ® . A). A braided
R-bialgebra A is graded if the underlying ring, coring and braiding structures are so
(with respect to the same decomposition A = @,enA").

The free R-ring Tg(V') and the symmetric R-ring Sgr(V,c¢) of a braided R-
bimodule (V, ¢) are the main examples of braided R-bialgebras. To define them one
follows the same steps as in [1], where the case of braided bialgebras over a base field
is considered. First, one shows that there exists a unique R-bimodule map

7 TR(V)QTR(V) - Tr(V) @ Tx(V),

which extends ¢ and is a solution of the braid equation that respects the grading
onTg(V)®Tx (V). Since cis a solution of the braid equation, c7 is a twisting map of
R-rings. Thus (T{(V), c7) is a graded braided R-ring. Using the universal property
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of T (V), one constructs a unique comultiplication A: Tg(V) — TR(V)®, T(V)
such that A(v) = v ® 1 + 1 ® v, forany v € V. We also define &: Tx(V) — R to
be the unique R-ring morphism that coincides with Iz on the 0-degree component
of Tg(V') and vanishes on V. Asin [1] one shows that (Tg(V), A, ¢, ¢7) is a braided
R-bialgebra.

Let (V,¢) be a symmetric braided bimodule, that is ¢ satisfies the additional

condition ¢> = Iygy. Since W := Im(Iygy — ¢) contains only primitive
elements, the two-sided ideal I generated by W is a coideal in TZ(V). Let
SrR(V,¢) :=Tg(V)/I. Since cy maps [ @ T (V)and T (V)®1 to Tg(V) ® I and
I ® TR(V), respectively, we conclude that Sg(V, ¢) inherits a canonical structure
of braided R-bialgebra. We denote the braiding of Sg(V,¢) by cs. We shall
say that Sg(V,c¢) is the braided symmetric R-ring of (V,c¢). This R-ring is
¢s-commutative by construction.
Theorem 7.2. Let R be a separable algebra over a field k of characteristic zero.
Let (A,cq) and (H,cy) denote two connected braided R-bialgebras such that
A' = H! and cz’l = —c}_}l. If A and H are strongly graded and braided
commutative (as R-rings), then (A, H) and (H, A) are Koszul pairs. In particular,
(Sr(V,¢), SR(V,—0)) is a Koszul pair.

Proof. Let {m%?} , gen and {A4 1} gen denote the components of the multiplica-
tion and of the comultiplication of 4. We claim that

myl oAt =+ Digarr and my"AL, =+ D, (7.1)

for any n > 0. We shall prove only the first identity, the other one can be obtained in
a similar way. Let us note that the proof of [1, eq. (21)] works for arbitrary graded
braided R-bialgebras, not only for usual bialgebras. Hence for any x € A" and any
a € A! we have

A,‘f’l(xa) =xQ®a+ ZX(Ln—UCch ® X(2,1) (7.2)

where in the above relation we used the notation ¢4 (¢’ ® a”) = ) a, ®ay ,. Onthe
! 1

other hand, since A is braided commutative by hypothesis, we get Y a =a'a".
This relation together with (7.2) yield

" /
CAaCA

n,l

(my" o A ) (xa) = xa + Zx(l,n—l)ach(z,l)cA

=xa+ ) Xan-n¥ena =xa+ (my "o Al ) (x)a.

In conclusion, the first equality in (7.1) follows by induction, using the fact that the
products xa with x € A" and a € A' generates A”*! as a linear space, since A4 is a
strongly graded R-ring.

As H is braided commutative, we also have

my' o AH =+ Digasr and mp' o A =@+ Dignrr.  (73)
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Note that the relation (7.2) holds for the braided bialgebra H as well. In particular,

. L1 _ 1,1
taking into account that c;; = —c¢ /", we get

AT ) =x@y+ g x®))=x@y—cy (x® ),

for all x,y € H'. Since H is strongly graded and A is braided commutative we
deduce that mz’l Af{ | = 0, that is (4, H) is almost-Koszul.

Now we can prove that (A, H) is Koszul, showing that Kj (4, H) is exact. We
know that this complex is the direct sum of its subcomplexes Kl* (A, H, p), where p
is an arbitrary nonnegative integer. Since K;‘ (A, H,0) is always exact, it is enough
to show that IK7 (4,H,p) is null homotopic, for any p > 0. We need a sequence of

maps s*: KI*H(A, H, p) — Kj (A, H, p) such that
Al os" 45" od = Ixna.H.p)- (7.4)

Wetake s~ =0 =sP,and for0 <n < p — 1 we set
Sn(h ® Cl) = p_l Zha(l,l) ® a(z,n).

Since Aﬁo(a) =a® 1 and Ag{l (h) = 1 ® h, it is easy to prove (7.4) in the case
when eithern = Qorn = p — 1. We now suppose that 0 < n < p — 1 and we pick
he HP™" anda € A". Then

(@ os" N h@a) = p~t Y (lam—n @ my" ) (A7, 1 (haqn) ® a@n-n)

=p! Zh ® aq,nae,n-1)

+p! Zh(l,p—n—l)a(l,l)CH ® h@,1).,4@n—1)
=np 'h®a

+p! Zh(l,p—n—l)a(l,l)cl_’ ® h@,1).,4@n—-1);

where for the second equality we used (7.2) written for H. A similar computation
shows us that

(s"odf)(h®@a)=p™' Y (my" ™" @ Lan) (h(1p-n-1) ® AL, (h2.1)a))

=p! Zh(l,p—n—l)h(Z,l) ®a

+ 7D R p-n-naa ., ® b1, d@n-1)
=(p-np'h®a

+p! Z ha.p-n-naan., ®hey,,d@n-1-

We conclude the proof by remarking that c};,l = —c114’1, so (7.4) is true. O



1342 P. Jara, J. Lopez Pefia and D. Stefan

7.3. Trivial extensions. As a first application of Theorem 7.2 we shall investigate
some homological properties of trivial extensions. Let ' be a non-zero R-bimodule,
where R is an algebra over a field of characteristic zero. Obviously, the identity map
of V' ® V is an involutive solution of the braid equation. Hence we can apply the
previous theorem for ¢ := Iygy. In this case we get that Sg(V,c) = TR(V).
On the other hand, since the characteristic of k is 0, the braided bialgebra
AR(V) := Sr(V, —c¢) coincides with the trivial algebra extension of R with kernel V.
Thus, Ag(V) = R @ V, and the product of two elements in V is zero. The
comultiplication of Ag(}V') is uniquely defined such that any element in v € V is
primitive, that is A(v) = v ® 1 + 1 ® v. Note that the braiding in Ag (V) restricted
toV ® Visequal to —Ilygy.

Corollary 7.4. If R is a separable algebra over a field k of characteristic zero, then
(TR(V), Ar(V)) and (ARr(V),Tg(V)) are Koszul. Moreover, HdimTg(V) = 1
and Hdim Ag (V) = sup{n | V" £ 0}.

We can now use Corollary 7.4 to compute the Hochschild (co)homology of the

trivial extension A (V') with coefficients in an Ar(}')-bimodule M. For, we apply
Theorem 4.3. Since the homogenous component of T2 (V) of degree n is V®", we

have K, (Ar(V), M) = M ® Vg”. On the other hand, the component A, ,_, of
the comultiplication of Tz (V') is given by the formula

Apn—p(v1---vy) = (Z)vl e Up @ Upgg e Up.

where v; - - - v, is a shorthand notation for the tensor monomial v; ® --- ® v,, and

(;) = Wip)!. Hence the differential of K«(Ag(V), M) satisfies the relation

dn := nd,, where
VMBI ® - ®up) =(m-v) R ® -+ @y
+ (=D - m) @I ® - B Upoi

Since the characteristic of k is zero, we conclude that the Hochschild homology

of Ag(V') with coefficients in M is the homology of the complex (M ® V ©* 3.).
In the more particular case M := Ag(V'), we can go further on the computation

of Hochschild homology. Indeed, in this setting we can identify Ag(V) ® V ®" with
V@ g ¥ @+l yia the linear map

(V) ®VI® -+ BUp — (rV1 @+ ®Up, VeV ® +++ B Vp).
Note that the endomorphism A, of Vg”, that maps v ® - Quy, to

(—1)"+1vn @ U1 @ te @ Un—1,
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defines an action of the cyclic group Z, on V ®"_ With respect to this action and the
above identification, ,,: V ®" @ V @1+l . y ®n=1 g |/ &1 jg ojven by the formula

3, (x,y) = (0,x — A, (x)).
Hence, for any 1, we have

HH,, (Ar(V). Ag(V)) = Ker (Ivgn — An) € Coker (IV§n+l — Ant1)

_ (y®n)Ln ®n+1
= (Ve eV Ny,
Note that the summands in the above equation are the spaces of invariant and
coinvariant elements with respect to the actions induced by A,, and 4,41, respectively.

Remark 7.5. The complex from Theorem 4.4 coincides with the one introduced by
Cibils in [10] using a different method, based on the work on the rigidity of certain
algebras [8,9].

As a more particular case, we now consider the trivial extension associated to a
quiver T' with a finite set I'° of vertices, but with an arbitrary set I'' of arrows. The
source and the target maps of I' will be denoted by s,7: 1 — T'°.

By a path of length n (or, equivalently, an n-path) in I' we mean a sequence of n
arrows y = daj ---ay such that t(a;) = s(aj+1), foranyi = 1,...,n — 1. The
vertices s(y) := s(ay) and t(y) := t(a,) will be called the source and the target of y,
respectively. A vertex v € I'? will be regarded as a path of length 0, with the same
source and target v. Clearly the paths of length 1 coincide with the arrows of I'. The
set of n-paths will be denoted by I'”. Note that this notation is consistent with the
one that we use for the set of vertices and arrows in I".

Let k be a field and let kI'-denote the vector space admitting as a basis the set
Upen I'" of all paths in T'. Recall that with respect to the multiplication

ap---apay---ay,, ift(a,)=s(a});

(ap---ay)-(d,---a,) =
" ! " 0, otherwise;

kI is an associative k-algebra, which is called the path algebra of T'. Since rois
finite, the sum of all vertices is a unit of kI'. Note that any path can be regarded as
the product of its arrows.

There is a standard grading on kT, given by the decomposition kI' = @, enkIT”,
where kI'” is the linear subspace spanned by I'". In particular, kI is a connected
kI %-ring. Note that kI'® is isomorphic as a k-algebra with the direct product
of #T'° copies of k, since the vertices of T' are orthogonal central idempotents in kT .
Obviously, this k-algebra is separable.

Furthermore, kI'! is a kI'°-bimodule with respect to the structure induced by
the multiplication. It is well known that the map a;---a, — a; ® -+ ® ay
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is an isomorphism of connected kI'°-rings between kI' and Tuzro(]kr 1). Since
(kT'1)®" =~ kT'", by applying Corollary 7.4 one proves the following.

Corollary 7.6. Let I denote a quiver with a finite number of vertices. The Hochschild
dimension of the trivial extension Ay po(kT’ 1) is given by

Hdim Akro(krl) =sup{n | T" £ 0}.

7.7. Multiparametric quantum spaces. We are going to apply the results that we
have obtained in order to give an alternative proof of some known homological
properties (cf. for instance [14] and [24]) of the multiparametric quantum spaces
O4(A™). Recall from [1] that the affine quantum spaces can be defined as the
symmetric k-algebra Sk (V,c), where V is an n-dimensional vector space and
¢V ®kV — V ®x V is the solution of the braid equation given by ¢(x; ® x;) =
qijxi ® xj. Here, the set {x1,...,x,} denotes a basis on V, and the family
of quantum parameters ¢ = {q;;};,; defining O4(A") is assumed to satisfy the
conditions ¢;jq;; = 1,foralli,j =1,...,n.

One can think of O, (A") as the algebra with generators {x1, ..., X, } and relations
xjxi = qijx;x; forall 1 <i,j < n, with the natural grading. Note that xi2 =0,
provided that ¢;; = —1 and char(k) # 2. Therefore, if the later relation holds for
alli € {1,...,n} then Oy4(A") is a finite dimensional algebra of dimension 2", and
the homogeneous component of degree n is one dimensional. Clearly, in this case
all other components of higher degree vanish. On the other hand, if g;; = 1 for a
certain i, then the subalgebra generated by x; is a polynomial ring, so O4(A") is
infinite dimensional.

In view of Theorem 7.2, the pair (O4(A"), O—_4(A")) is Koszul. By Theorem 4.5,
it follows that the Hochschild dimension of O, (A") is finite if and only if O, (A") is
finite dimensional, i.e. ¢;; =1 for all 1 <i <n. In this situation, Hdim(O,(A")) =n
and on the basis

{xilxiz---x,-, | 1<ii<ip<--<ip < I’l}
the comultiplication for 7(04(A")) = O_,4(A") is defined by
— -1, . . .
Ap.g(Xiy Xiy =+ Xip ) = Z Dy Xiyay  Xippy @ Xiypity = Xiv(ptay:
veSh(p,q)

where v ranges in the set Sh(p, ¢) of all shuffles of type (p, ¢) and the constant g, is
the g-sign of the shuffle v, defined as

o =[] (—avine)-
i<),
V(1) <0G)

Indeed, O_4;(A") = Sg(V,—¢) is a braided bialgebra. Let us denote its braiding
by c¢o. As the comultiplication of the multiparametric quantum space is an algebra
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map from O_,4 (A") to the twisted tensor product O_,; (A")®.,, O—4(A"), the desired
formula for A, , can be easily proved by induction using the fact that each x; is a
primitive element.

7.8. The incidence algebra of the power set of a finite set. Let k be a field of
characteristic 0 and let X := {1,...,d}. The power set #(X) of X is a poset with
respect to the order relation given by inclusion. We are now going to show that
the incidence algebra A(X) of this poset is a Koszul R-ring, where R := k2. By
definition, A(X) has as a basis the set {e[; j; | I € J}, where the interval [/, J]
contains all subsets K such that / € K C J. The multiplication of A(X) is defined
by the relation

e[,y - e,y = 98rre(q-

The unit of A(X)is ) ;cx er,11- The incidence algebra of X is a graded R-ring. Its
n-degree component A" (X) is spanned by all err,j) with |J \ I| = n. In particular,
A(X) is connected as an R-ring, as A°(X) is generated by terr,n | I € X}, which
is a complete set of orthogonal idempotents.

The Koszulity of A(X) will follow as a consequence of the fact that this R-ring
is an example of braided symmetric R-bialgebra. Let V := A!(X). Obviously, V
is an R-bimodule as it is a homogeneous component of a connected R-ring. The set
of all tensor monomials ey,..1, = e[1,,1,] ® -** ® e[y,_,,1,] With Iy C I and
[Ir+1 \ Ix| = 1is a basis of V®" regarded as a vector space (recall that by ® we
mean ®R).

Our goal now is to construct an involutive solutionc¢: V®V — V & V of the braid
equation. As a k-linear map, ¢ is uniquely defined by the elements c(ey, 7, 1, ), Where
each Iy is a predecessor of I in the poset P (X), that is [ is a subset of I
and |Ix| = |Ix+1|— 1. Hence Iy = Ip\{i1} and I, = Iy | J{i1,i2}, where i and i»
are distinct elements which do not belong to Io. Let I] := I |J{i2}. We can now
define ¢ by

cleron 1) == el I (7.5)

Let us note that the Hasse diagram of # (X)) can be identified with the unit cube in R¢,
regarded as a quiver Y 7. The set of vertices of this quiver is the set {0, 1}¢ € R¢,
and an arrow of this quiver has the source (i,...,iz) and the target (ji,..., jgq)
if and only if the former vertex is the successor of the latter with respect to the
lexicographic ordered on {0, 1}¢. Thus, from a geometric point of view, the k-linear
map ¢ interchanges any pair of oriented 2-paths having the same source and the same
target.

In view of the above geometric interpretation of the Hasse diagram, we shall say
that I (respectively I,) is the source (respectively the target) of ey,. s, € yen,
Since in the equation (7.5) both elements of the basis on ¥ ®2 have the same source
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and the same target it follows that ¢ is a morphism of R-bimodules. On the other
hand, if esy1, 1,1, € V®2 and Iy = IoJ{i1 ..., ix}, then

(C1 0(Cpy O Cl)(€10]112]3) = 6101{1513 = (Cz o0(C1 0 C2)(€IOIIIZI3),

where I{ = Io|J{is} and I} = Io|J{i»,i3}. In conclusion, (V,¢) is a braided
R-bimodule. Clearly, ¢ is involutive, so it makes sense to consider the braided
R-bialgebras Sg(V, ¢) and Sg(V, —c).

Theorem 7.9. There is an isomorphism of graded R-rings A(X) = Sr(V,¢) In
particular, A(X) is a 34 dimensional Koszul ring of Hochschild dimension d.

Proof. Let T := Tg(V) be the braided R-bialgebra with braiding c7, see §7.1. For
n > d, the n-degree homogeneous component 7" of 7" vanishes, as any increasing
sequence [o & -+ & I haslength k < d. As S := S(V,¢) is a quotient braided
R-bialgebra of T we deduce that S” = O foranyn > d.

We claim that dim §” = 297" (;1) for any n < d. We start the proof of this
relation by recalling that the involutive braiding ¢ induces an action of the symmetric
group X, on T such that the transposition o; := (i,i + 1) actson v; ® - -- @ v, by

0, (M ® - QUy) =01 Q- ®c(V; QViy1) & vy,

for any vy,...,v, € V. If eg,.. 1, is an element of the basis on 7", with I =
I U{il, ...ig}, then
0 -€ly.. Iy = €Jy..0pn>s (7.6)
where Jo = Io and Jx = Jo Uic1), .- iok)), forany k = 1,...,n.
Regarding each permutation o € X, as an R-bilinear automorphism of ¥ ®” and
taking into account the definition of the braided symmetric R-bialgebra S, we get
y ®n y ®n

$" = — = .
Yi—iIm(l—0i) Y sex, Im(1-0)

Note that the second equation is a consequence of the relation

Iyen —oi, 04, = (Iyen —0y,) + (03, — 0i,_,04,) + -+

...+(0'i2...o'in _o'ilgiz...o—in)

and of the fact that oq,...,0,—1 generate ¥,. Hence, S” coincides with the
coinvariant quotient space (V®")y . Since, by assumption k is a field of
characteristic zero, the canonical linear map from the invariant subspace (1 ®")>»
to S” is a k-linear isomorphism.

In conclusion, we have to show that dim(V ®")Z» = 2d—n (’Z) For, we split the
representation 7" = V®” as a direct sum of sub-representations

T" = @IEJTH(I, J),
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where T"(I, J) denotes the vector space spanned by the elements ey, ... j, with

source / and target J. The summands are indexed by all pairs (/,J) such that
I CJ C{l,...,d}and J\[ isaset withn elements. Thus the above decomposition

O e

terms. On the other hand dim 7" (1, J) = n! and, by relation (7.6), it follows that the
action of ¥, on T"([/, J) is transitive for any / C J with |J \ /| = n. We deduce
that 7" (1, J)®" is a vector space of dimension 1. Hence our claim has been proved,
as dim $” = dim @< T" (1, J)™ = 247" (%).

We can now prove that S and A(X) are isomorphic. Let ¢:T — A(X)
be the canonical morphism of graded R-rings that extends the identity map
@°: T — A°(X) and the R-bimodule morphism ¢!: 7! — A'(X) mapping e;s
to eq7,j, for any I C J with J a successor of 1. Since ¢" (ey,...1,) = €[1,,1,]- it is
easy to see that ¢ vanishes on the ideal generated by the image of I72 — ¢. Hence ¢
induces a surjective graded ring morphism ¢: S — A(X).

To prove that ¢ is an isomorphism we notice that {e;; j1 | I € J and |[J \I| = n}
is a basis of A”(X). Hence dim A" (X) = 29~ (i) by the proof of equation (7.7).
Therefore, every @” is bijective and

d
dimA(X) =) (i)zd—" =(1+2)% =34,

n=0

It remains to show that Hdim A(X) = d. Proceeding as above we can show that
S™"(V,—c) = 0forn > d. On the other hand, dim S”(V, —¢) = 24—" (Z), forn <d.
We conclude applying Theorem 4.5. 0

7.10. A generalization of the Froberg theorem. Let k be a field. By a result of
Froberg [12], the quotient of the free algebra k(Xi, ..., X,) by the ideal generated
by a set of non-commuting monomials of degree 2 is a Koszul k-algebra. As an
application of our results on Koszul pairs, we shall prove a similar result for the
quotient of a path algebra by an ideal which is generated by 2-paths.

We fix a quiver I' with a finite number of vertices and a set @ of 2-paths. The
complement of @ in T'? will be denoted by @’. We shall also use the following
notation: R := kI'® and V := kI'!. We define the connected R-ring A(T, @) to be
the quotient of the path algebra kI" by the ideal generated by @.

Forn = 0andn = 1 we set I'; := I'". On the other hand, if n > 2 let I'
denote the set of n-paths y = ay ---a, such that a;a;+; € @, for all i. The sets T'Y,
are defined in a similar way.

The linear transformation that maps a path in I's, to its equivalence class
in A(T', @)" is an isomorphism, for all . This property allows us to identify A(T', @)
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with the connected R-ring @,>0kI },, whose multiplicationis given fora; - --a, € T,
anda’ ---a,, € I'g by

ap---apay---a,, ift(a,) = s(a})andaya) € &’

ai---a . a/...a/ —
(@1 n) - (@ m) 0, otherwise.
From now on we shall regard the R-ring A(I", @) as a subspace of kI' with respect
to this multiplication.
The R-bimodule isomorphisms A , ;: k[?1? — kI'? ® kI'?

Ap,q(aln-apﬂ)=a1-~~ap®ap+1-~-ap+q (78)

define an R-coring structure on kI' (recall that ® = ®pg). Let C(I', @), be the
linear subspace spanned by I'z. By definition, C(I', @) = @®,>0C(I', ®?), is a
graded R-subcoring of kTI'.

Theorem 7.11. The pair (A(I',®),C(T', ®)) is Koszul and Hdim A(T', @) =
sup{n | I'y # 0}.

Proof. Let A .= A(T',®) and C := C(T,®). Clearly, by construction, A4 is a
connected R-ring and C is a connected R-coring. Let ¢ 4 :=1y. If y = ad’ is a
2-path in @ then m%! o Ay ;(y) = 0. Indeed, Ay,1(y) = a ® a’ and the product
in A of @ and @’ is 0, since aa’ ¢ @’. Thus (A4, C) is almost-Koszul.

By the definition of Koszul pairs, it is enough to prove that Kl* (A, C,m) is exact
for every m > 0. Recall that Kf,(A,C,m) = A"" ® C,, for any n < m, and
there are no nontrivial n-chains in higher degrees, see §2.21. Note that the set of
tensor monomials y’ ® y”, with y’ € T4, and y” € T'] satisfying the condition
t(y") = s(y"),isabasis T g on A? ® Cy. Thus T, ¢ is a basis on K. (4, C.m).

The complex K4 (4, C, m) is exact in degree 0, as A4 is strongly graded and d f is
induced by the multiplication. We now assume that 0 < n < m. Let w be an n-cycle.
Thus

,
w = Z(X,‘Ai & k:,
i=1
for some o; € k and A; ® A} € Ty, 5. We may assume without loss of generality
that ;; ® A; and 1; ® /\’j are distinct for i # j. Let A; = y;a;, with y; € T "1
and @; € T'!. Similarly, A = ajy], with a] € I'! and Y € I'"~!. By definition
of d,ll and relation (7.8) we get

,
dp(@) =Y oyia; -a} ® |-

i=1

Let I denote the set of all i such that aia; € @. Then, for any i € I, we have
Yiai -a; ® y; = 0. On the other hand, if i ¢ I then y;a; -a; ® y; = yia;a} @ y; is
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an element of Ty, 57"~ Moreover, if i and j are distinct elements which do not

belong to 7, then y;a;a; ® y; and )/jaja’j ® )/J’- are distinct as well. Since d! (w) = 0
it follows that o; = 0, for any i & I. Let us remark that y; ® aia;yi’ is an element
of Tlp, 21" +1 forany i € I, so it is a chain of degree n + 1. Since

® =) wyia ®ajy = drl¢+1(2“i7/i ®aia;‘7/i/)
iel iel
we deduce that any n-cycle is a boundary. As dnl1 maps | ® a; ---ap, € I’g;f"qj to

a1 Q@ ay-am € I‘;jftgl, this function is injective. In conclusion Ki(A, C,m) is

exact.
The computation of the Hochschild dimension of A follows by Theorem 4.5. [
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