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Smooth crossed product of minimal unique ergodic
diffeomorphism of odd sphere
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Abstract. For minimal unique ergodic diffeomorphisms ˛n of S2nC1.n > 0/ and ˛m
of S2mC1.m > 0/, the C�-crossed product algebra C.S2nC1/ Ì˛n Z is isomorphic to
C.S2mC1/Ì˛m Z even though n ¤ m. However, by cyclic cohomology, we show that smooth
crossed product algebraC1.S2nC1/Ì˛nZ is not isomorphic toC1.S2mC1/Ì˛mZ ifn ¤ m.
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1. Introduction

C �-algebra classification theory can be used to study dynamical systems. Pimsner,
Voiculescu [16] andRieffel [17] proved that two irrational rotation dynamical systems
are flip conjugate to each other if and only if their corresponding irrational rotation
C �-algebras are isomorphic to each other. Giordano, Putnam and Skau have shown
that the minimal dynamical systems of Cantor set can be completely classified by
C �-crossed product algebras up to strong orbit equivalence [6]. See [8–11,19] for
more examples.

However, there are examples of different minimal diffeomorphisms give the
same C �-algebras. Let ˛l be minimal unique ergodic diffeomorphism of S2lC1,
l D 1; 2; : : : . It is well known that the ordered K-theory of C.S2nC1/ Ì˛n Z and
C.S2mC1/ Ì˛m Z are isomorphic to each other [13]. This implies

C.S2nC1/ Ì˛n Z Š C.S2mC1/ Ì˛m Z

no matter if n D m or not according to a theory of Toms and Winter [19] and
Phillips [13]. See [15] and [14] for more examples.

�Research supported by NNSF of China (11201171), NNSF of China (11531003), NNSF of China
(11271150) and NNSF of China (11401088).
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LetM be a compact manifold, Chern map naturally defines a graded structure for
topological K-theory ofM :

K0.M/
Chern
! H 0.M/˚H 2.M/˚ � � � ˚H 2n.M/ : : : ;

K1.M/
Chern
! H 1.M/˚H 3.M/˚ � � � ˚H 2nC1.M/ : : : :

Unfortunately, this is not the case for K-theory of C �-algebras, where an order
structure is the best one can get. Consider the example constructed by Goodearl [7].
The classification result is obtained by Elliott and Gong [4].

Examples 1.1. LetM be a connected finite dimensional compact manifold, fxig1iD1
be a dense subset ofM . Define an inductive limit system of C �-algebra as follows

C.M/
ˆ0
�!M2.C.M//

ˆ1
�!M4.C.M// � � �

ˆn�1
�! M2n.C.M//

ˆn
�! � � �

where

ˆi .f /.x/ D

�
f .x/

f .xi /

�
:

It is proved by Goodearl that such limit C �-algebras are of real rank zero.
Obviously two different choices of dense sets fxig1iD1 give two shape equivalent
inductive limit systems and therefore give a same C �-algebra by [7, Theorem 2.2],
that is, the limitC �-algebra does not depend on the choice of the dense subset fxig1iD1.
We denote the limit C �-algebras by A.M/. Take M to be S1 and S3. In every
finite stage, the nontrivial odd K-elements reflect different levels of cohomology of
spaces, namely the Chern Character of the elements live in H 1.S1/ or H 3.S3/.
However the Elliott invariants are the same for A.S1/ and A.S3/, which implies that
A.S1/ Š A.S3/ .

K-theory is the only (co)homology theory that can be properly generalized
from topology to the theory of C �-algebra (non-commutative topology in Alain
Connes’s sense). If we consider smooth algebras instead of C �-algebras (certainly
the dynamical systems would be restricted to smooth ones), cyclic cohomology and
its graded structure become applicable as a new tool. Elliott and Gong [3] showed
that not all “continuous” homomorphism from C.S3/ to irrational rotation algebras
can be “approximated” by “smooth” ones in light of cyclic cohomology. This inspires
us to look at the theory of cyclic cohomology.

Alain Connes invented cyclic cohomology in [2]. It can be viewed as a
generalization of deRham homology. This article can be used to examine the
minimal unique ergodic diffeomorphisms of odd spheres and their smooth crossed
product algebras. This example shall demonstrate that the “homology theory” (cyclic
cohomology) is no longer invariant for “topological structure” (C �-algebras) but
depends on specific “geometrical structure” (smooth algebras).
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2. Preliminary

Our strategy is to compute the graded structure of cyclic cohomology HC �.A/ of
smooth crossed product algebra given by diffeomorphism of a compact manifold.
One can immediately see from the definition that it is invariant under smooth flip
conjugation. In this section, we will introduce all the necessary notions. All algebras
involved in this article are over C.

2.1. Smooth crossed product. Convex topological algebra is algebra endowed with
locally convex topology. Smooth crossed product algebra is convex topological
algebra.

Let M be a finite dimensional compact manifold. Choose finitely many vector
fields X1, X2, : : : , Xn onM which can span the tangent space at any point (n is not
necessarily equal to the dimension ofM ). Define seminorms k � kn:

kf kn D
X

1�k1�����kn�n

kXknXkn�1 : : : Xk1f k1; n 2 ZC [ f0g; f 2 C1.M/:

Let ˛ be a minimal unique ergodic diffeomorphism ofM . Let C1.M/˛Œu; u
�1� be

the algebraic crossed product of C1.M/ by Z. Let k˛tki be the operator seminorms
defined by k � ki on C1.M/, i.e.

k˛tki , sup
f 2C1.M/;
kf kiD1

k˛t .f /ki :

Define a sequence of maps

�k W Z! RC; k D 1; 2; : : : ;

by �k.n/ D supi6k.
Pn
tD�n k˛

tki /
k :

Endow C1.M/˛Œu; u
�1�with the topology defined by the following seminorms:

X

n

fnu
n



k
D sup

n
�k.n/kfnkk; fn 2 C

1.M/:

This topology does not depend on the choice ofX1,X2, : : : ,Xn. Then the completion
of C1.M/˛Œu; u

�1� is the smooth crossed product algebra C1.M/ Ì˛ Z.
Remark 2.1. Here we adopt the topology for smooth crossed product algebra given
by Nest [12] instead of the one considered by Schweitzer [18] and Phillips [15].
Remark 2.2. In fact, C1.M/ Ì˛ Z is a Fréchet �-algebra.
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2.2. Cyclic cohomology. Without loss of generality, we state cyclic cohomology
theory for algebra (over C) only.

Recall the definition of Hochschild n cochain:

C n.A/ D Hom
�
A˝.nC1/;C

�
; n D 0; 1; : : : :

Let b W C n.A/! C nC1.A/ be the Hochschild differential:

.b�/.a0; a1; : : : ; anC1/ D

nX
iD0

.�1/i�.a0; a1; : : : ; aiaiC1; : : : ; anC1/

C .�1/nC1�.anC1a0; a1; : : : ; an/:

The Hochschild cohomology H�.A;A�/ is then the cohomology group of the
complex .C �.A/; b/.

Let C n
�
.A/ be the set of cyclic n-cochains, which are those elements in C n.A/

satisfying the condition

�.an; a0; : : : ; an�1/ D .�1/
n�.a0; a1; : : : ; an/:

The cyclic cohomologyHC n.A/ of A is then the cohomology group of the complex
.C n
�
.A/; b/. For example [2],

HC 2n.C/ D C; HC 2nC1.C/ D 0; n D 0; 1; 2; : : : :

Remark 2.3. Note that when it comes to convex topological algebra, one should
replace all the cochains by continuous ones. This shouldn’t cause any confusions.

2.3. The map S and periodic cyclic cohomology. Let us recall the notion of
n-triple .�; d;

R
/ on A with homomorphism �. Let� D ˚n0�i be a graded algebra,

� W A ! �0 be a homomorphism. Let d be a graded derivation of degree 1 with
d2 D 0 and

R
W �n ! C be a closed graded trace. Then .�; d;

R
/ is called an

n-triple if they satisfy the following conditions:

(1) �i ��j � �iCj , 8i; j 2 0; 1; 2; : : : ; n, i C j � n.

(2) d�i � �iC1, d.!!0/ D .d!/!0 C .�1/deg!!d!0, d2 D 0.

(3)
R
d! D 0,

R
!0! D .�1/deg! deg!0 R !!0.

The tensor product of two triples � W A ! �0, .�; d;
R
/ and �0 W A0 ! �00,

.�0; d 0;
R 0
/ are given by � ˝ �0 W A˝A0 ! �0 ˝�

0
0, .�˝�0; d ˝ d 0;

R
˝
R 0
/.

Recall that d ˝d 0.!˝!0/ D d.!/˝!0C .�1/deg!!˝d 0.!0/,
R
˝
R 0
.!˝!0/ DR

.!/
R 0
.!0/.
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For any algebra A we have the following triple .�.A/; d;
R
/ of n-dimension

over A with homomorphism �:
(1) Adjoin a unit to A no matter if there has been one:

AC D faC �I I a 2 A; � 2 Cg:

Define �.A/ to be˚10 �i .A/ where

�i .A/ D AC ˝˝iA:

�.A/ is usually called the universal graded algebra associated to A. � is then
the natural inclusion.

(2) Define the differential homomorphism d from �i .A/ to �iC1.A/ as

d..a0 C �0I /˝ a1 ˝ � � � ˝ an/ D I ˝ a0 ˝ � � � ˝ an:

One can directly verify that d2 D 0.
(3) Define the product �i .A/ � �j .A/ ! �iCj .A/ as follows. There is a right

A-module structure on �.A/ defined by the equation

.aC ˝ a1 ˝ � � � ˝ an/a D

nX
0

.�1/n�jaC ˝ a1 � � � ˝ ajajC1 ˝ � � � ˝ a:

This right action can be extended to an AC action on�.A/. Then the definition
of �i .A/ ��j .A/! �iCj .A/ is given by

!.bC ˝ b1 ˝ � � � ˝ bj / D !bC ˝ b1 ˝ � � � ˝ bj ; 8! 2 �i :

(4)
R
W �n.A/ ! C is a closed graded trace. Its existence is guaranteed by the

following proposition.
Proposition 2.4 ([2]). The following are equivalent:

(1) � is a closed cyclic n cochain.

(2) There is an n triple on A with homomorphism �, s.t.

�.a0; a1; : : : ; an/ D

Z
�.a0/d�.a1/ : : : d�.an/:

(3) There is ann dimensional closed graded trace
R
on the universal grading algebras

with the natural inclusion as the homomorphism �, s.t.

�.a0; a1; : : : ; an/ D

Z
a0da1 : : : dan:
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The point of the universal grading algebra is that if .�0; d 0;
R 0
/ is a triple on A

with a homomorphism �0, then there is a homomorphism from �.A/ to �0.
Now let us recall the notion of cup product. Represent two closed cyclic cochains

� 2 Zn
�
.A/,  2 Zm

�
.B/ by triples on the universal grading algebra according to

Proposition 2.4. Note that there is always a natural homomorphism

� W �nCm.A˝B/! �n.A/˝�m.B/:

Then � 2 Zn
�
.A/,  2 Zm

�
.B/ defines an element in Zn

�
.A˝B/ as

� [  , .� ˝  / ı �:

As shown in [2], this formula actually defines a cup product on cyclic cohomology
level:

HC n.A/ [HCm.B/! HC nCm.A˝B/:

Let�,�.1; 1; 1/ D 1, be the generator ofHC 2.C/. � gives the next a 2 periodic
homomorphism:

S W HC n.C/! HC nC2.C/

S.�/ D � [�

Thus there would be two inductive limit systems:

HC 0.C/ � � � ! HC 2n.C/! HC 2nC2.C/! � � � ;

HC 1.C/ � � � ! HC 2nC1.C/! HC 2nC3.C/! � � � :

The limit groups are the so called periodic cyclic cohomology

HP i .A/ , lim
!
HC 2nCi .A/; i D 0; 1:

Let S.HC �.A// � HP �.A/ be the ultimate image of HC �.A/ in HP �.A/.
S.HC n.A//=S.HC n�2.A// actually defines a grading structure ofHP �.A/.

2.4. Six term exact sequence. Let M be a compact manifold, ˛ be a self-diffeo-
morphism of it, Nest obtained:

Theorem 2.5 ([12]).

HP 0.C1.M// // HP 1.C1.M// Ì˛ Z/ // HP 1.C1.M//

1�˛

��
HP 0.C1.M//

1�˛

OO

HP 0.C1.M/ Ì˛ Z/oo HP 1.C1.M//oo
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2.5. Exact couple and spectral sequence. Let I W C n
�
.A/! C n.A/ be the natural

inclusion. Let B0 be the homomorphism defined as:

.B0�/.a
0; : : : ; an/ D �.I; a0; : : : ; an/ � .�1/nC1�.a0; : : : ; an; I /;

A is a homomorphism defined as:

A� D
X

2�

".
/�
 ;

where � is the cyclic permutation group of f0; 1; 2; : : : ; ng as usual. Take B to be
A ı B0.

As proved in [2], there exists an exact couple:

HC �.A/
S // HC �.A/

Iww
H�.A;A�/

B

gg

Let dk be the differential homomorphism:

Hn�2k.A;A�/
B // HC n�2k�1.A/

S ��

I // Hn�2k�1.A;A�/

:::

dk

66

S

��
Hn.A;A�/

B //

66

HC n�1.A/
I // Hn�1.A;A�/

Then the spectral sequence induced from the exact couple can be listed as
(1) .E�0 .A/; d0/ D .H�.A;A�/; IB/,
(2) E�n .A/ is the homology of .E�n�1.A/; dn�1/.

Consider the double complex Cm;n D Cm�n.A/;8n;m 2 Z. Define two
homomorphisms @1 W C n;m ! C nC1;m, and @2 W C n;m ! C n�1;m as follows:

@1.�/ D .n �mC 1/b�;

@2.�/ D

(
1

n�m
B�; m ¤ n;

0; m D n:

Theorem 2.6 ([2]). (1) Let F q.C / D
P
m�q C

n;m be the filtration according tom,
thenHp.F q.C // D Hn

�
.A/. .2/ The cohomology of the double complex C is

H 2n.C / D HP 0.A/;

H 2nC1.C / D HP 1.A/:
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(2) The spectral sequence associated to filtration bym is convergent. Actually it con-
verges to F pHP �.A/=F pC1HP �.A/, which is S.HC n.A//=S.HC n�2.A//.
And this spectral sequence coincides with the one induced from the exact couple.
From this theorem we know that the spectral sequence E�n .A/ is convergent.

Denote the limit group as En1.A/.
Corollary 2.7.

En1.A/ D S.HC
n.A//=S.HC n�2.A//;

˚
1
nD0E

2n
1 .A/ D HP

0.A/:

˚
1
nD0E

2nC1
1 .A/ D HP 1.A/:

Remark 2.8. En1.A/ is also called the deRham homology of A, for example,
see [12].

2.6. How to compute En
1 in our case. Let ˛ be a diffeomorphism of M . In

this subsection we present a way to compute En1.C1.M/ Ì˛ Z/ developed in [12].
Let ‰n be the space of nth deRham currents ofM , @ be the usual boundary map,

Hn
eq.M; ˛/ , homology group of .Ker.1 � ˛/ j ‰n; @/;

Hn
coeq.M; ˛/ , homology group of .Coker.1 � ˛/ j ‰n; @/:

Theorem 2.9 ([12]). En1.C1.M/ Ì˛ Z/ D Hn
eq.M; ˛/˚H

n�1
coeq .M; ˛/.

Denote the deRham homology as Hn.M/, deRham cohomology as Hn.M/.
Note that Hk.M/ D Hn�k.M/ for an n-dimensional manifold by Poincaré duality.
Recall that

HP 0.M/ Š

1X
nD0

H2n.M/ Š

1X
nD0

H 2n.M/;

HP 1.M/ Š

1X
nD0

H2nC1.M/ Š

1X
nD0

H 2nC1.M/:

as shown in [2].

3. Main result

Consider the minimal unique ergodic diffeomorphisms ˛l (each one of them has
to be orientation preserving diffeomorphism by Lefschetz fixed point theorem) of
S2lC1, l D 1; 2; : : : . Their existence are proved by A. Fathi, M. R. Herman in [5]
and A. Windsor in [20]. C1.S2lC1/ Ì˛l Z is the smooth crossed product we have
defined in Section 2.
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Examples 3.1. C1.S2nC1/ Ì˛n Z is not isomorphic to C1.S2mC1/ Ì˛m Z if
n ¤ m, n;m D 1; 2; : : : .
Theorem 3.2.

E2kC11 .C1.S2nC1/ Ì˛n Z/ D

(
C; k D 0; n;

0; else:

Proof. The identity map on deRham currents descends to two homomorphisms:


k W H
k
eq.S

2nC1; ˛/ �! Ker.1 � ˛/jHk.S2nC1/;

ˇk W Hk.S
2nC1/=.1 � ˛/Hk.S

2nC1/ �! H k
coeq.S

2nC1; ˛/:

Define homomorphisms s1, s2, s3 as follows:
(a) Given  2 Ker.1 � ˛/jHk.S2nC1/, there exists a � such that .1 � ˛/ D @�,

since .1 � ˛/ is a boundary. Define

s1 W Coker 
k�1 ! Cokerˇk;

by s1. / D Œ��.
(b) Given  2 Hn

coeq.S
2nC1; ˛/, there exists � such that @ D .1 � ˛/�. Define

s2 W Cokerˇk ! Ker 
k�2;

by s2. / D Œ@��.
(c) Given 2 Ker 
k�2, then @ D .1�˛/ D 0 and D @� for some current �.

.1 � ˛/� is closed since @.1 � ˛/� D .1 � ˛/@� D 0. Define

s3 W Ker 
k�2 ! Kerˇk�1;

by s3. / D .1 � ˛/Œ��.
It is easy to see that they are all well defined. Using nothing but basic computation,

one can verify that the following sequence is exact:

0 �! Coker 
k�1
s1
�! Cokerˇk

s2
�! Ker 
k�2

s3
�! Kerˇk�1 �! 0:

(1) ‰k are automatically f0g when k > 2n C 1, so are the H k
eq.S

2nC1; ˛/ and
H k

coeq.S
2nC1; ˛/. This implies

Cokerˇk D f0g; k > 2nC 1;
Ker 
k D f0g; k > 2nC 1:

Applying the exact sequence above, we have

Ker 
2nC1 D f0g;
Coker 
2nC1 D f0g:



1390 H. Liu

i.e.
H 2nC1

eq .S2nC1; ˛/ Š Ker.1 � ˛/jH2nC1.S2nC1/:

Let � be the fundamental class, then

Œ� � D ˛.Œ��/

since ˛ is an orientation preserving diffeomorphism. ˛ induces identity map on
H2nC1.S

2nC1/. Thus there holds the equality

H 2nC1
eq .S2nC1; ˛/ D Ker.1 � ˛/jH2nC1.S2nC1/ D C:

E2nC11 .S2nC1 Ì˛n Z/ contains at least one direct summand of C since

E2nC11 .S2nC1 Ì˛n Z/ D H 2nC1
eq .S2nC1; ˛/˚H 2n

coeq.S
2nC1; ˛/:

(2) When k < 0, H k
eq.S

2nC1; ˛/ and H k
coeq.S

2nC1; ˛/ are f0g. Use the exact
sequence again we have

Cokerˇ0 D f0g;
Ker 
0 D f0g;

i.e.
H 0

eq.S
2nC1; ˛/ Š H0.S

2nC1/=.1 � ˛/H0.S
2nC1/:

Let dvol be the generator ofH 2nC1.S2nC1/, i.e. the volume form. As ˛ preserves
orientation, the following equalities holdsZ

S2nC1
˛.dvol/ D

Z
˛.S2nC1/

dvol D
Z
S2nC1

dvol;

hence
H0.S

2nC1/=.1 � ˛/H0.S
2nC1/ D C:

E11.C
1.S2nC1/ Ì˛n Z/ contains at least one direct summand of C.

From the following six-term exact sequence

HP 0.C1.S2nC1// // HP 1.C1.S2nC1/ Ì˛n Z/ // HP 1.C1.S2nC1//

1�˛

��
HP 0.C1.S2nC1//

1�˛

OO

HP 0.C1.S2nC1/ Ì˛n Z/oo HP 1.C1.S2nC1//oo

and the fact thatHP 0.C1.S2nC1// D HP 1.C1.S2nC1// D C, we know that

HP 0.C1.S2nC1/ Ì˛n Z/ D HP 1.C1.S2nC1/ Ì˛n Z/ D C ˚C:



Smooth crossed product of minimal unique ergodic diffeomorphism of odd sphere 1391

Now it is obvious that

E2kC11 .S2nC1 Ì˛n Z/ D

(
C; k D 0; n;

f0g; else;

since

HP 1.C1.S2nC1/ Ì˛n Z/ D ˚1kD0E
2kC1
1 .C1.S2nC1/ Ì˛n Z/:

Note that the proof above is inspired by Nest’s work in [12].

4. Another example

People may think that smooth crossed products of diffeomorphisms depend on
manifolds only. This is not true. Our observation is based on the beautiful result of
Brenken–Cuntz–Elliott–Nest [1]. They utilized the theory of cyclic cohomology to
obtain their result.

Let us recall some notions about noncommutative tori of three dimensions. Let
� W Z3^Z3 ! T be an antisymmetric bicharachter. Denote �.ei^ej /; i; j D 1; 2; 3
as �i;j , where ei ; ej are the geneorators of Z3. A� is the C �-algebras generated by
three unitaries u1; u2; u3 under the relation

uiuj D �i;jujui :

Call � nondegenerate if and only if �.Z3^g/ D 1; g 2 Z3 impliesg D 0. LetS .Z3/
be the space of rapidly decreasing sequences onZ3u1;u2;u3 . Endow itwith the topology
given by seminorms

k.xa/a2Z3u1;u2;u3
kk D sup

a2Z3u1;u2;u3

.1C jajk/jxaj:

A� is the completion of S .Z3/ under this topology.

Theorem 4.1 ([1]). Let � and �0 be antisymmetric bicharacters on Z3, both
nondegererate. Then A� Š A�0 if and only if � Š �0.

We will consider a special class of A� (A�), which can be described as smooth
crossed product (C � crossed product) algebras of diffeomorphisms ofT2 byZ. Letˇ
be a diffeomorphism of T2 such that ˇ.x1; x2/ D .e2�i�1x1; e

2�i�2x2/, where �1
and �2 are two rationally independent irrational numbers. We choose X1 D @

@x1
and

X2 D
@
@x2

to obtain the seminorms on C1.T2/. Notice that �k.n/ � .1C 2jnj/k

since kˇtkn D 1.



1392 H. Liu

By definitions and basic Fourier analysis we know that

C1.T2/ Ìˇ Z Š A�;

C.T2/ Ìˇ Z Š A�;

where

� D

0@ 1 1 e�2�i�1

1 1 e�2�i�2

e2�i�1 e2�i�2 1

1A :
Now apply Theorem 4.1 we have:

Examples 4.2. ˇ and ˇ0 are two minimal unique ergodic diffeomorphism of T2 such
that:

ˇ.x1; x2/ D .e
2�i�1x1; e

2�i�2x2/;

ˇ0.x1; x2/ D .e
2�i� 0

1x1; e
2�i� 0

2x2/:

�1; �2; �
0
1; �
0
2 are rationally independent irrational numbers. Since their correspond-

ing bicharacters are not isomorphic to each other and are both nondegenerated, ˇ
and ˇ0 give different smooth crossed product algebras.
Remark 4.3. Note that one can also find a couple of diffeomorphisms of S1 giving
different smooth crossed product algebras in essentially the same way.
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