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Abstract. We construct the Gerstenhaber bracket on Hochschild cohomology of a twisted
tensor product of algebras, and, as examples, compute Gerstenhaber brackets for some quantum
complete intersections arising in the work of Buchweitz, Green, Madsen, and Solberg. We prove
that a subalgebra of the Hochschild cohomology ring of a twisted tensor product, on which
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1. Introduction

The Hochschild cohomology HH�.ƒ/ of an associative algebra ƒ has a cup product
under which it is a graded commutative ring. In 1963, Gerstenhaber [4] introduced
the bracket product Œ�; �� (or Gerstenhaber bracket) of degree �1, to give a second
multiplicative structure on the Hochschild cohomology ring. Thus one combines the
structures of a graded commutative algebra and a graded Lie algebra, to form what is
generally called a Gerstenhaber algebra, of which the Hochschild cohomology ring is
an example. Gerstenhaber [5] showed that the bracket plays a role in the deformation
theory of algebras.

Recently, Le andZhou [7] defined the tensor product of twoGerstenhaber algebras.
They proved that, given algebrasR and S over a field k, at least one of which is finite
dimensional, the Hochschild cohomology of the tensor product algebra R ˝k S is
isomorphic to the tensor product of the respective Hochschild cohomologies of R
and of S , as Gerstenhaber algebras.

In this paper, we work more generally in the twisted tensor product setting of
Bergh and Oppermann [1]. Let R and S be k-algebras graded by abelian groups A
�All authors were supported by NSF grant DMS-1101399; the first and third authors were also

supported by NSF grant DMS-1401016.
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and B respectively, and consider R ˝t
k
S , where a twist t is defined using the

gradings of R and of S (see Section 3 below). In the succeeding sections, we show
the following main results:
(1) We construct the Gerstenhaber bracket on the Hochschild cohomology ofR˝t

k
S

in Section 3 by employing and augmenting techniques of Negron and the third
author [9]. In Section 5, we apply this construction to compute brackets for the
quantum complete intersection

ƒq WD k hx; yi =.x
2; y2; xy C qyx/; q 2 k�;

which can be considered as a twisted tensor product kŒx�=.x2/ ˝t
k
kŒy�=.y2/.

We take advantage of the known algebra structure of HH�.ƒq/, for various
values of q, as given by Buchweitz, Green, Madsen, and Solberg [2]. Our
computations give information about the structures of the Lie algebra HH1.ƒq/
and its module HH�.ƒq/.
(2) In Section 6, we let A0 and B 0 be subgroups of A and B , respectively, on which
the twisting t is trivial (see (6.2)), and show that the graded algebra isomorphism
given by Bergh and Oppermann [1, Theorem 4.7], namely

HH�;A0˚B0.R˝tk S/ Š HH�;A0.R/˝ HH�;B0.S/;

is in fact an isomorphism of Gerstenhaber algebras. This generalizes the result of
Le and Zhou [7] to the twisted setting. Our proof relies on twisted versions of the
Alexander–Whitney and Eilenberg–Zilber chain maps, and uses techniques from [9].
Examples are in Section 5.

Gerstenhaber brackets are in general difficult to compute. Our results described
in (1) above include a new class of examples which moreover illustrate the techniques
of [9], showing that bracket computations can be simplified by defining brackets
directly on a resolution other than the bar resolution. An advantage of these
techniques is in eliminating the necessity of using explicit formulas for chain maps
between resolutions, which traditional approaches typically require. Our main
theorem described in (2) above gives a way to compute brackets on a subalgebra
of the Hochschild cohomology of a twisted tensor product, saving time for some
classes of examples. The statement and proof are quite general, showing that
while the techniques of [9] were primarily developed for Koszul algebras, they
can in fact be helpful for other algebras as well. Many algebras of interest may
be described as twisted tensor products or deformations of twisted tensor products,
including our examples of Section 5 and generalizations, skew polynomial rings,
many quantum groups and many Nichols algebras arising in results on classification
of finite dimensional Hopf algebras.

Throughout the article, k is a field. All tensor products of modules are taken
over k unless otherwise indicated. Additionally, when writing elements in tensor
product modules, we often will omit the subscripts on the tensor product symbols
when they are clear from context.



Gerstenhaber brackets for twisted tensor products 1353

2. Preliminaries

In this section, we summarize and augment the results of [9] that we will need. Letƒ
be a k-algebra andƒe WD ƒ˝ƒop be its enveloping algebra, that is it has the tensor
product algebra structure, where ƒop is ƒ with the opposite multiplication. Then a
left ƒe-module is a ƒ-bimodule, and vice versa.

The Hochschild cohomology of ƒ is

HH�.ƒ/ WD Ext�ƒe .ƒ;ƒ/:

It is a Gerstenhaber algebra, that is, it is a graded commutative algebra via the
cup product ^, it is a graded Lie algebra via the Lie bracket (or Gerstenhaber
bracket) Œ�; ��, and it satisfies various conditions. See, for example, [4]. We will
not need the standard definition here. Instead we will recall a construction of these
operations that will suit our purposes. For this we will need the bar resolution B and
a resolution K satisfying some properties (K D B is one choice), which we introduce
next.

Let B D B.ƒ/ denote the bar resolution of ƒ,

� � �
ı2
�! ƒ˝3

ı1
�! ƒ˝2

m
�! ƒ! 0; (2.1)

wherem denotes multiplication, and for each i , ıi is theƒe-module map determined
by its values on monomials,

ıi .�0 ˝ � � � ˝ �iC1/ D

iX
jD0

.�1/j�0 ˝ � � � ˝ �j�jC1 ˝ � � � ˝ �iC1;

for �0; : : : ; �iC1 2 ƒ. We will also use the normalized bar resolution B D B.ƒ/,
whose i th component is ƒ˝ƒ˝i ˝ƒ, where ƒ D ƒ=.k � 1/ as a k-vector space.
One checks that each differential ıi defined above factors through ƒ˝ƒ˝i ˝ƒ by
employing a choice of section of the quotient map ƒ ! ƒ. Abusing notation, we
will not always distinguish between elements ofƒ and those ofƒ, making use of our
choice of section as needed.

There is a chain map �B W B ! B ˝ƒ B, called a diagonal map, given on
monomials by

�B.�0˝� � �˝�iC1/ D

iX
jD0

.�0˝� � �˝�j ˝1/˝ƒ .1˝�jC1˝� � �˝�iC1/; (2.2)

for all �0; : : : ; �iC1 2 ƒ.
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The cup product on Hochschild cohomology may be defined at the chain level
as follows. Let f 2 Homƒe .ƒ˝.iC2/; ƒ/ and g 2 Homƒe .ƒ˝.jC2/; ƒ/. Then
f ^ g 2 Homƒe .ƒ˝.iCjC2/; ƒ/ is defined on monomials by

.f ^ g/.�0˝ � � �˝�iCjC1/ D f .�0˝ � � �˝�i ˝ 1/g.1˝�iC1˝ � � �˝�iCjC1/;

for all �0; : : : ; �iCjC1 2 ƒ. This can be viewed as a composition of maps

B
�B
��! B˝ƒ B

f˝g
���! ƒ˝ƒ ƒ

�
�! ƒ: (2.3)

The cup product may be defined similarly on the normalized bar resolution, or indeed
on any resolution.

Let K ! ƒ be any resolution of ƒ by free ƒe-modules. We define chain
maps F l

K; F
r
K W K ˝ƒ K ! K as follows. Letting � W K ! ƒ be the natural

quasi-isomorphism,

F l
K D �˝ 1K and F r

K D 1K ˝ �; (2.4)

where 1K is the identity map on K. Note that the maps F l
K; F

r
K W K˝ƒ K! K are

chain maps by their definitions.
For our formulation of the Gerstenhaber bracket, we will assume that K satisfies

the following conditions from [9, 3.1].
Conditions 2.5. We assume:
(a) There is an embedding � W K! B lifting the identity map on ƒ.
(b) There is a chain map � W B! K for which �� D 1K.
(c) There is a chain map �K W K! K˝ƒ K for which �B� D .�˝ƒ �/�K.
Clearly if we set K D B, it will satisfy these conditions. It is explained in [9] that ifƒ
is a Koszul algebra and K is its Koszul resolution, then K satisfies these conditions;
in particular, the needed diagonal maps �K are given in [3]. We will use this fact to
compute brackets for some quantum complete intersections in Section 5 below. An
advantage of this method over traditional methods is that we do not need to use or
even know the often cumbersome map � explicitly. For our theorem in Section 6,
giving an isomorphism of Gerstenhaber algebras in the context of a twisted tensor
product, we will take K to be the total complex of the twisted tensor product of two
normalized bar resolutions.

Now let
FK D F

l
K � F

r
K; (2.6)

where F l
K, F

r
K are defined in equation (2.4). This is the chain map FK as defined

in [9]. It is shown there that FK is a boundary in Homƒe .K˝ƒ K;K/, and so there
is a map � W K˝ƒ K! K for which

d.�/ WD dK� C �dK˝ƒK D FK; (2.7)
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that is � is a contracting homotopy for FK. Let f 2 Homƒe .Ki ; ƒ/ and let
g 2 Homƒe .Kj ; ƒ/ represent elements of Hochschild cohomology in degrees i
and j , respectively. By [9, Theorem 3.2.5], theirGerstenhaber bracket onHochschild
cohomology is given at the chain level by

Œf; g� D f ı g � .�1/.i�1/.j�1/g ı f (2.8)

where the circle product f ı g is the composition

K
�

.2/
K
��! K˝ƒ K˝ƒ K

1K˝g˝1K
�������! K˝ƒ K

�
�! K

f
�! ƒ; (2.9)

and g ıf is defined similarly. The definition of the map 1K˝g˝1K above includes
“Koszul signs,” that is, on elements the map is given by

x ˝ y ˝ z 7! .�1/ljx ˝ g.y/˝ z (2.10)

for all x 2 Kl , y 2 Km, z 2 Kn. The map �.2/K is given by .�K ˝ 1K/�K (which
is equal to .1K˝�K/�K by a calculation using Condition 2.5(c)). In [9], this circle
product is denoted by ı� and bracket by Œ�; ��� in order to distinguish these maps at
the chain level. By [9, Theorem 3.2.5], the operations induced by ı� and Œ�; ��� on
cohomology do not depend on �, and so we choose not to make such a distinction
here.

In case K D B, as in [9], we may set � D GB where

GB..�0 ˝ � � � ˝ �p�1/˝ .�p/˝ .�pC1 ˝ � � � ˝ �nC1//

D .�1/p�1�0 ˝ � � � ˝ �p�1 ˝ �p ˝ �pC1 ˝ � � � ˝ �nC1 (2.11)

for all �0; : : : ; �nC1 2 ƒ. If K D B, the normalized bar resolution, we may set
� D GB where GB is defined similarly, by replacing �j by its image in ƒ in the
formula; the proof of [9, Proposition 2.0.8] may be adapted to show thatGB is indeed
a contracting homotopy for FB.

One of the properties of the Gerstenhaber bracket is a compatibility relation with
the cup product: On Hochschild cohomology,

Œf ^ g; h� D Œf; h� ^ g C .�1/i.u�1/f ^ Œg; h�; (2.12)

where u is the homological degree of h.

3. Gerstenhaber brackets for twisted tensor products

Let R and S be k-algebras, graded by abelian groups A and B , respectively. Let

t W A˝Z B ! k�
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be a twisting, that is a homomorphism of abelian groups, denoted t .a˝Z b/ D t
hajbi

for all a 2 A, b 2 B . Let R˝t S denote the twisted tensor product of algebras as in
Bergh and Oppermann [1]. That is, R˝t S D R˝ S as a vector space, and

.r ˝ s/ �t .r 0 ˝ s0/ D t hjr
0jjjsjirr 0 ˝ ss0

for all homogeneous r; r 0 2 R and s; s0 2 S , where jr 0j, jsj are the degrees of r 0, s
inA;B , respectively. We will often write t hr 0jsi in place of t hjr 0jjjsji. Note thatR˝t S
is .A˚ B/-graded.

IfX is anA-gradedRe-module and Y aB-graded Se-module, denote byX˝t Y
the tensor product X ˝ Y as a vector space, with .R˝t S/e-module structure given
by

.r ˝ s/.x ˝ y/.r 0 ˝ s0/ D t hxjsit hr
0jyit hr

0jsirxr 0 ˝ sys0 (3.1)

for all homogeneous r; r 0 2 R, s; s0 2 S , x 2 X , and y 2 Y (see [1, Definition/Con-
struction 4.1]). By [1, Lemma 4.3], if X and Y are projective modules, then X ˝t Y
is an .A˚ B/-graded projective .R˝t S/e-module.

Let

P W � � �
dP

2
��! P1

dP
1
��! P0

dP
0
��! R! 0

be an A-graded Re-projective resolution of R and let

Q W � � �
d

Q
2
��! Q1

d
Q
1
��! Q0

d
Q
0
��! S ! 0

be a B-graded Se-projective resolution of S . In particular, the differentials are
graded maps (i.e. preserve degree). By [1, Lemmas 4.3, 4.4, 4.5], the total complex
of P ˝t Q is an .A˚ B/-graded .R ˝t S/e-projective resolution of R ˝t S . The
differentials are given as usual by dP˝

tQ
i;j WD dPi ˝ 1C .�1/i1˝ dQj .

Now assume thatP is a free resolution ofR as anRe-module, and thatQ is a free
resolution of S as an Se-module. Assume P0 D R˝ R andQ0 D S ˝ S , and dP0
and dQ0 are multiplication maps. Then P0 ˝t Q0 D .R ˝ R/˝t .S ˝ S/, which
is isomorphic to .R ˝t S/e by the proof of [1, Lemma 4.3] (see also Lemma 3.2
below). We will identify Pn with R ˝ Wn ˝ R for a vector space Wn, for each n,
and similarlyQn.

Assume that �P and �Q are contracting homotopies for FP and FQ (see (2.6)
and (2.7)), respectively, that is, d.�P / D FP and d.�Q/ D FQ. We will construct
from these a contracting homotopy � D �P˝tQ for FP˝tQ.

By its definition in (2.6), FP˝tQ is a map from .P ˝t Q/ ˝R˝tS .P ˝
t Q/

to P ˝t Q. We will want to compare it with maps from .P ˝R P /˝
t .Q ˝S Q/

to P ˝t Q. We will need the following isomorphism of .R˝t S/e-modules, similar
to that found in the proof of [1, Lemma 4.3].
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Lemma3.2. LetX;X 0 beA-gradedRe-modules andY; Y 0 beB-gradedSe-modules.
There is an isomorphism of .R˝t S/e-modules,

� W .X ˝t Y /˝R˝tS .X
0
˝
t Y 0/

�
�! .X ˝R X

0/˝t .Y ˝S Y
0/;

given by �..x ˝ y/˝ .x0 ˝ y0// D t hx0jyi.x ˝ x0/˝ .y ˝ y0/ for all homogeneous
x 2 X , x0 2 X 0, y 2 Y , and y0 2 Y 0.

Proof. It may be checked that this yields a well-defined map on the tensor product
in each degree. We check that this is an .R˝t S/e-module homomorphism. Choose
homogeneous elements r 2 R and s 2 S . We check the left action:

�
�
.r ˝ s/ � ..x ˝ y/˝ .x0 ˝ y0//

�
D �

�
t hxjsi.rx ˝ sy/˝ .x0 ˝ y0/

�
D t hxjsit hx

0jsyi.rx ˝ x0/˝ .sy ˝ y0/;

.r ˝ s/ � �
�
.x ˝ y/˝ .x0 ˝ y0/

�
D .r ˝ s/ �

�
t hx
0jyi.x ˝ x0/˝ .y ˝ y0/

�
D t hx

0jyit hx˝x
0jsi.rx ˝ x0/˝ .sy ˝ y0/:

Now t hx0jsyi D t hx0jsit hx0jyi and t hx˝x0jsi D t hxjsit hx0jsi so the above expressions are
the same. Similarly, the right action commuteswith � . Clearly this .R˝tS/e-module
map has an inverse given by .x˝x0/˝ .y˝y0/ 7! t�hx

0jyi.x˝y/˝ .x0˝y0/.

We next modify � by a sign to define a chainmap from .P˝tQ/˝R˝tS .P˝
tQ/

to .P ˝R P /˝t .Q˝S Q/ (cf. the map � of [7, p. 1471]).

Lemma 3.3. There is a chain map

� W .P ˝t Q/˝R˝tS .P ˝
t Q/! .P ˝R P /˝

t .Q˝S Q/

that is an isomorphism of .R˝t S/e-modules in each degree, given by

�..x ˝ y/˝ .x0 ˝ y0// D .�1/jpt hx
0jyi.x ˝ x0/˝ .y ˝ y0/

on .Pi ˝t Qj /˝R˝tS .Pp ˝
t Qq/.

Proof. That � is an isomorphism of .R ˝t S/e-modules follows from Lemma 3.2:
The extra sign in the definition still yields an .R˝t S/e-module map, since action by
elements of R ˝t S does not change the homological degree. A calculation shows
that this map � commutes with the differentials.

We will need to switch notation back and forth, using the isomorphism of
Lemma 3.3, in our computations. The following lemma may be proven directly
by comparing the values of the two given maps on the chain complex. One checks
that the effect of twisting is as expected.
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Lemma 3.4. The map F D FP˝tQ on .P ˝t Q/ ˝R˝tS .P ˝
t Q/, as defined

in (2.6), is precisely
F D .F l

P ˝ F
l
Q � F

r
P ˝ F

r
Q/�;

where � is defined in Lemma 3.3.
We next use Lemma 3.4 to construct a contracting homotopy for FP˝tQ.

Lemma 3.5. Let �P , �Q be contracting homotopies for FP , FQ, respectively. Let
� D �P˝tQ W .P ˝

t Q/˝R˝tS .P ˝
t Q/! P ˝t Q be defined by

� WD .�P ˝ F
l
Q C .�1/

iCpF r
P ˝ �Q/�

on .Pi ˝t Qj / ˝R˝tS .Pp ˝
t Qq/, where � is the isomorphism of Lemma 3.3.

Then � is a contracting homotopy for F D FP˝tQ, that is, d.�/ D F .

Proof. In the following calculation, the exponent � in .�1/� varies and is determined
when needed. As F l

P ; F
l
Q; F

r
P ; F

r
Q are chain maps, they commute with the

differentials. By the definition of � on .Pi ˝t Qj /˝R˝tS .Pp ˝
t Qq/,

d.�/ WD d� C �d

D .d ˝ 1C .�1/� ˝ d/.�P ˝ F l
Q C .�1/

iCpF r
P ˝ �Q/�

C .�P ˝ F
l
Q C .�1/

�F r
P ˝ �Q/�.d ˝ 1C .�1/iCp ˝ d/

D
�
d�P ˝ F

l
Q C .�1/

iCpdF r
P ˝ �Q C .�1/

iCpC1�P ˝ dF
l
Q

C F r
P ˝ d�Q C �Pd ˝ F

l
Q C .�1/

iCp�P ˝ F
l
Qd

C .�1/iCp�1F r
Pd ˝ �Q C F

r
P ˝ �Qd

�
�

D
�
.d�P C �Pd/˝ F

l
Q C F

r
P ˝ .d�Q C �Qd/

�
�

D
�
FP ˝ F

l
Q C F

r
P ˝ FQ

�
�

D
�
.F l
P � F

r
P /˝ F

l
Q C F

r
P ˝ .F

l
Q � F

r
Q/
�
�

D
�
F l
P ˝ F

l
Q � F

r
P ˝ F

r
Q

�
�:

Now apply Lemma 3.4.

As a consequence, the map � given in Lemma 3.5 may be used to compute
Gerstenhaber brackets on Hochschild cohomology ofR˝t S , under the isomorphism
of complexes given by Lemma 3.3, provided Conditions 2.5(a)–(c) hold for

K WD Tot.P ˝t Q/:

That is, under those conditions, Œf; g� D f ı g � .�1/.i�1/.j�1/g ı f , where i; j
are the homological degrees of f; g, respectively, and the circle product is given as
in (2.9) by

f ı g D f �.1K ˝ g ˝ 1K/�
.2/
K ;

where the definition of the map 1K ˝ g ˝ 1K involves Koszul signs, and similarly
g ı f . We will use these formulas in the remainder of the paper.
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4. Maps for some quantum complete intersections

Let q 2 k�, and let

ƒ D ƒq WD k hx; yi =.x
2; y2; xy C qyx/;

which is a Koszul algebra whose Hochschild cohomology was computed (as an
algebra) by Buchweitz, Green, Madsen, and Solberg [2]. In the next section, we
compute its Gerstenhaber brackets, after defining all the needed maps in this section.
We can identify ƒ as the twisted tensor product R ˝t

k
S , where R WD kŒx�=.x2/,

S WD kŒy�=.y2/, A D B D Z, and t W Z ˝Z Z ! k� is the homomorphism of
abelian groups defined by t .1˝Z 1/ D �q

�1. (We take jxj D 1; jyj D 1.)
We will use the techniques in [9], in combination with our results in Section 3, to

compute the Gerstenhaber brackets for ƒ D R˝t S . Let

Kx
W � � �

�u
�! Re

�v
�! Re

�u
�! Re

m
�! R! 0

be the Re-projective resolution of R where u D x˝ 1� 1˝ x, v D x˝ 1C 1˝ x,
and m is the multiplication map. Letting �i denote the element 1 ˝ 1 of Re in
homological degree i , we see that we must give �i the graded degree i as an element
of Z as well, in order for the differentials to be of graded degree 0. We may thus
view the resolution Kx more precisely as a resolution of graded modules:

Kx
W � � �

�u
�! Reh2i

�v
�! Reh1i

�u
�! Re

m
�! R! 0; (4.1)

the (standard) notation for the degree shift as in [1]. Similarly, we have the
Se-projective resolution Ky of S . Take the total complex of Kx ˝t Ky and
call it K. As explained in Section 3 (setting P D Kx , Q D Ky), the complex
K WD Tot.Kx ˝t Ky/ is a graded projective resolution of ƒ as a ƒe-module.

Denote the generators of Kn as a ƒe-module by f�i;j giCjDn, where we define
�i;j WD �i ˝ �j , that is, �i;j is the copy of 1˝ 1 with homological degree i in x and
degree j in y. One can check that after appropriate identifications, in all degrees
n D i C j , the differentials are given by:

dK
i;j W �i;j 7! x�i�1;j C .�1/

nqj �i�1;jx C q
iy�i;j�1 C .�1/

n�i;j�1y:

Let B be the bar resolution ofƒ as defined in (2.1). Sinceƒ is Koszul and K is a
Koszul resolution, Conditions 2.5(a)–(c) hold (see [3,9]). Therefore we may indeed
compute Gerstenhaber brackets using the techniques in [9], in combination with our
results in Section 3. We will need the following explicit formulas for some of the
relevant maps:
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The embedding chain map � W K! B. We have in low degrees, from [2],

�0 W �0;0 7! 1˝ 1;

�1 W �0;1 7! 1˝ y ˝ 1;

�1;0 7! 1˝ x ˝ 1;

�2 W �0;2 7! 1˝ y ˝ y ˝ 1;

�1;1 7! 1˝ x ˝ y ˝ 1C q ˝ y ˝ x ˝ 1;

�2;0 7! 1˝ x ˝ x ˝ 1;

�3 W �0;3 7! 1˝ y ˝ y ˝ y ˝ 1;

�1;2 7! 1˝ x ˝ y ˝ y ˝ 1C q ˝ y ˝ x ˝ y ˝ 1C q2 ˝ y ˝ y ˝ x ˝ 1;

�2;1 7! 1˝ x ˝ x ˝ y ˝ 1C q ˝ x ˝ y ˝ x ˝ 1C q2 ˝ y ˝ x ˝ x ˝ 1;

�3;0 7! 1˝ x ˝ x ˝ x ˝ 1:

In general, �n.�i;l/ D Qf iCl
l

in the notation of [2], where n D iC l , and this identifies
our complex K with P of [2], at the same time verifying Condition 2.5(a).

We will not need an explicit formula for a chain map � W B ! K satisfying
Condition 2.5(b). This is an advantage of our approach, in comparisonwith traditional
methods. Existence of � is guaranteed by the observation that, for each n, the image
of f�i;l j i C l D ng under �n in B may be extended to a free ƒe-basis of Bn.

The diagonal map�K W K! K˝ƒ K. Condition 2.5(c) states that this map must
satisfy the relation �B ı � D .� ˝ƒ �/ ı �K, where �B W B ! B ˝ƒ B is given
by (2.2). By [2, p. 810], via the identification Qf n

l
$ �i;l (iC l D n), such a diagonal

map is given by

�K.�i;l/ D

iClX
wD0

minfw;lgX
jDmaxf0;�iCwg

qj.iCj�w/�w�j;j ˝ƒ �iCj�w;l�j :

We will write out lower degree terms that are needed for some of our calculations:

.�K/0 W �0;0 7! �0;0 ˝ƒ �0;0;

.�K/1 W �0;1 7! �0;0 ˝ƒ �0;1 C �0;1 ˝ƒ �0;0;

�1;0 7! �0;0 ˝ƒ �1;0 C �1;0 ˝ƒ �0;0;

.�K/2 W �0;2 7! �0;0 ˝ƒ �0;2 C �0;1 ˝ƒ �0;1 C �0;2 ˝ƒ �0;0;

�1;1 7! �0;0 ˝ƒ �1;1 C �1;0 ˝ƒ �0;1 C q�0;1 ˝ƒ �1;0 C �1;1 ˝ƒ �0;0;

�2;0 7! �0;0 ˝ƒ �2;0 C �1;0 ˝ƒ �1;0 C �2;0 ˝ƒ �0;0;
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.�K/3 W �0;3 7! �0;0 ˝ƒ �0;3 C �0;1 ˝ƒ �0;2 C �0;2 ˝ƒ �0;1 C �0;3 ˝ƒ �0;0;

�1;2 7! �0;0 ˝ƒ �1;2 C �1;0 ˝ƒ �0;2 C q�0;1 ˝ƒ �1;1 C �1;1 ˝ƒ �0;1

C q2�0;2 ˝ƒ �1;0 C �1;2 ˝ƒ �0;0;

�2;1 7! �0;0 ˝ƒ �2;1 C �1;0 ˝ƒ �1;1 C q
2�0;1 ˝ƒ �2;0 C �2;0 ˝ƒ �0;1

C q�1;1 ˝ƒ �1;0 C �2;1 ˝ƒ �0;0;

�3;0 7! �0;0 ˝ƒ �3;0 C �1;0 ˝ƒ �2;0 C �2;0 ˝ƒ �1;0 C �3;0 ˝ƒ �0;0:

Next we construct maps � W K˝R˝tS K ! K, using Lemma 3.5, that we will
need to compute brackets via the method in [9]. We will first need such maps for each
of the factor algebras R and S . The following lemma is straightforward to check.
Lemma 4.2. Letting R D kŒx�=.x2/ and Kx as defined in (4.1), the following map
is a contracting homotopy for FKx :

�iCj .�i ˝ x
m�j / D ım;1.�1/

i�iCjC1:

Letting S D kŒy�=.y2/, similarly we obtain a contracting homotopy for FKy . As
a consequence of Lemmas 3.5 and 4.2, a contracting homotopy � WD �R˝tS of FK

is as follows: To evaluate � on �i;j ˝R˝tS x
lym�p;r , we first apply the isomorphism

� W .Kx
˝
t Ky/˝R˝tS .K

x
˝
t Ky/

�
�! .Kx

˝R Kx/˝t .Ky
˝S Ky/

of Lemma 3.3. Then

�.�i;j ˝R˝tS x
lym�p;r/

D �
�
.�i ˝ �j /˝R˝tS ..x

l
˝ ym/.�p ˝ �r//

�
D �

�
.�i ˝ �j /˝ t

h�p jy
mi.xl�p ˝ y

m�r/
�

D .�1/jp
�
�Kx ˝ F l

Ky C .�1/
iCpF r

Kx ˝ �Ky

��
t h�p jy

mit hx
l�p j�j i.�i ˝ x

l�p/˝ .�j ˝ y
m�r/

�
D .�1/jpt h�p jy

mit hx
l�p j�j i

�
�
ıl;1.�1/

i�iCpC1 ˝ ıj;0y
m�r C .�1/

iCpıp;0�ix
l
˝ ım;1.�1/

j �jCrC1
�

D .�1/jp.�q�1/pmC.lCp/j

�
�
ıj;0ıl;1.�1/

i�iCpC1 ˝ y
m�r C ıp;0ım;1.�1/

iCpCj �ix
l
˝ �jCrC1

�
:

If j D 0 and p > 0, by recalling the bimodule action ofR˝t S on Kx˝t Ky , this is

.�q�1/pmıl;1.�1/
i�iCpC1 ˝ y

m�r

D .�q�1/pmıl;1.�1/
i .�q/.iCpC1/mym�iCpC1;r

D .�q/.iC1/m.�1/iıl;1y
m�iCpC1;r :
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Similarly, if j D 0, p D 0, then we have

ıl;1.�1/
i�iC1 ˝ y

m�r C ım;1.�1/
i�ix

l
˝ �rC1

D .�q/.iC1/mıl;1.�1/
iym�iC1;r C .�q/

l.rC1/ım;1.�1/
i�i;rC1x

l :

If j > 0, p D 0, we have

.�q�1/lj ım;1.�1/
iCj �ix

l
˝ �jCrC1

D .�q�1/lj .�q/l.jCrC1/ım;1.�1/
iCj �i;jCrC1x

l

D .�q/l.rC1/ım;1.�1/
iCj �i;jCrC1x

l :

If j > 0, p > 0, we have 0. To summarize, the contracting homotopy � is

�.�i;j ˝ƒ x
lym�p;r/ D

˚
.�q/miCmıl;1.�1/

iym�iCpC1;r ; if j D 0, p > 0;
.�q/miCmıl;1.�1/

iym�iC1;r

C .�q/lrClım;1.�1/
i�i;rC1x

l ; if j D 0, p D 0;
.�q/lrClım;1.�1/

iCj �i;jCrC1x
l ; if j > 0, p D 0;

0; otherwise:

5. Brackets for some quantum complete intersections

In this section, we will compute the Gerstenhaber brackets on the Hochschild
cohomology of ƒ D ƒq WD k hx; yi =.x2; y2; xy C qyx/; using the technique
and maps described in previous sections. We consider various cases of q 2 k�.
We will find that in many cases, the Hochschild cohomology in degree 1 (that is,
HH1.ƒ/) is a finite dimensional abelian Lie algebra over which HH�.ƒ/ is a module,
the chosen generators being common eigenvectors. Exceptions occur when q D ˙1.
In particular, if q D 1 and char.k/ ¤ 2, we find that HH1.ƒ/ is isomorphic to the Lie
algebra gl2.k/ with a rather more complicated action on HH�.ƒ/. Generally these
brackets are however sufficient to determine the rest of the graded Lie structure, as
we will see that brackets among higher degree generators are zero.

5.1. q is not a root of unity ([2, 2.1]). As computed in [2, 2.1],

HH�.ƒ/ Š kŒxy�=..xy/2/ �k
V�

.u0; u1/;

the fiber product of rings, where u0 D .x; 0/, u1 D .0; y/ are of (homological)
degree 1, and kŒxy�=..xy/2/ is the center of ƒ (homological degree 0). That is,
HH�.ƒ/ is the subring of kŒxy�=..xy/2/ ˚

V�
.u0; u1/ consisting of pairs .�; �/

such that the images of � and � under the respective augmentation maps are equal.
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(Here, xy, u0, and u1 are in the kernels of their respective augmentation maps.) After
translating the notation of [2] to that of our Section 4, we may identify u0 D x��1;0
and u1 D y��0;1, where ��i;l.�j;m/ D ıi;j ıl;m. Hence, we need to compute the circle
products for pairs of elements from the set of algebra generators fxy; x��1;0; y��0;1g.
The rest will follow using (2.12). Applying the formula (2.9), we have the following:

.x��1;0 ı x�
�
1;0/.�1;0/ D x;

.x��1;0 ı y�
�
0;1/.�0;1/ D 0;

.y��0;1 ı x�
�
1;0/.�1;0/ D 0;

.y��0;1 ı y�
�
0;1/.�0;1/ D y:

The corresponding Gerstenhaber brackets are thus all 0. Non-zero brackets arising
when pairing generators with the degree 0 element xy are:

Œx��1;0; xy� D xy and Œy��0;1; xy� D xy:

In particular, we see that the Hochschild cohomology in degree 1 is a 2-dimensional
abelian Lie algebra whose action on HH�.ƒ/ is diagonal on the chosen basis, with
eigenvalues 0, 1.

5.2. char.k/ ¤ 2 and q D �1 ([2, 3.4]). In this case, ƒ Š R˝ S is just the usual
tensor product, and HH�.ƒ/ Š HH�.R/ ˝ HH�.S/, a graded tensor product of
algebras. This isomorphism preserves the Gerstenhaber structure, as expected from
[7, Theorem 3.3]. We give details next.

By [2, 3.4], after translating the notation to ours,

HH�.ƒ/ Š .ƒ˝
V�

.x��1;0; y�
�
0;1//Œ�

�
2;0; �

�
0;2�=.x.x�

�
1;0/; y.y�

�
0;1/; x�

�
2;0; y�

�
0;2/:

We will compute circle products of pairs of elements from the set of generators
fx; y; x��1;0; y�

�
0;1; �

�
2;0; �

�
0;2g. The rest will follow by applying (2.12). By (2.9),

direct computation yields non-zero circle products among these pairs of generators:

.x��1;0 ı x/.�0;0/ D x;

.y��0;1 ı y/.�0;0/ D y;

.x��1;0 ı x�
�
1;0/.�1;0/ D x;

.y��0;1 ı y�
�
0;1/.�0;1/ D y;

.��2;0 ı x�
�
1;0/.�2;0/ D 2;

.��0;2 ı y�
�
0;1/.�0;2/ D 2:
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Therefore the non-zero Gerstenhaber brackets on generators of HH�.ƒ/ are

Œx��1;0; x� D x;

Œy��0;1; y� D y;

Œx��1;0; �
�
2;0� D �2�

�
2;0;

Œy��0;1; �
�
0;2� D �2�

�
0;2:

By [7, Proposition-Definition 2.2] as summarized in (6.1) below, sinceƒŠR˝S ,
we can alternatively use the Gerstenhaber bracket structure on HH�.R/ Š HH�.S/
to compute the brackets on HH�.ƒ/. We outline this approach next, for comparison.

For brevity, we will suppress the steps and show only the results. By [2, 3.4],
we know HH�.R/ Š R �k

V�
.x��1 /Œ�

�
2 �. Of the brackets we need to confirm our

computations, the non-zero brackets among generators are

Œx��1 ; x� D x and Œ��2 ; x�
�
1 � D 2�

�
2 ;

as may be computed using (2.9) and Lemma 4.2. The Hochschild cohomology
HH�.S/ will have the same Gerstenhaber bracket structure. By direct computation
using (6.1) below and this bracket structure, we again find that the non-zero
Gerstenhaber brackets on our choice of generators in HH�.ƒ/ are

Œx��1 ˝ 1; x ˝ 1� D x ˝ 1;

Œ1˝ y��1 ; 1˝ y� D 1˝ y;

Œx��1 ˝ 1; �
�
2 ˝ 1� D �2�

�
2 ˝ 1;

Œ1˝ y��1 ; 1˝ �
�
2 � D �2˝ �

�
2 ;

confirming our earlier calculations. In particular, we see that Hochschild cohomology
in degree 1 is a 4-dimensional Lie algebra with basis x��1;0, y��0;1, xy��1;0, xy��0;1.
The non-zero brackets among these basis elements are

Œx��1;0; xy�
�
0;1� D xy�

�
0;1 and Œy��0;1; xy�

�
1;0� D xy�

�
1;0:

The action of HH1.ƒ/ on HH�.ƒ/ is nondiagonal on the chosen generating set, for
example, applying (2.12) and the above equations, we find that

Œxy��1;0; �
�
2;0� D �2y�

�
2;0:

5.3. char.k/ ¤ 2 and q is an odd root of unity ([2, 3.1]). Let q be a primitive r th
root of unity, r odd. By [2, 3.1], translated into our notation,

HH�.ƒ/ Š kŒxy�=..xy/2/
�k .

V�
.x��1;0; y�

�
0;1/Œ�

�
2r;0; �

�
r;r ; �

�
0;2r �=.�

�
2r;0�

�
0;2r � .�

�
r;r/

2//:
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Thus we need to calculate the brackets on pairs of elements from the set

fxy; x��1;0; y�
�
0;1; �

�
2r;0; �

�
r;r ; �

�
0;2rg:

The rest will follow by applying (2.12). Of these pairs, the non-zero Gerstenhaber
brackets are

Œx��1;0; xy� D xy;

Œy��0;1; xy� D xy;

Œ��2r;0; x�
�
1;0� D 2r�

�
2r;0;

Œ��r;r ; x�
�
1;0� D r�

�
r;r ;

Œ��r;r ; y�
�
0;1� D r�

�
r;r ;

Œ��0;2r ; y�
�
0;1� D 2r�

�
0;2r :

Other brackets may be computed using (2.12), for example,

Œ.��2r;0/
2; x��1;0� D Œ�

�
2r;0; x�

�
1;0� ^ ��2r;0 C �

�
2r;0 ^ Œ��2r;0; x�

�
1;0� D 4r.�

�
2r;0/

2:

In this case, the degree 1 elements of Hochschild cohomology form a 2-dimensional
abelian Lie algebra acting on Hochschild cohomology HH�.ƒ/, diagonally on the
chosen generating set, with eigenvalues 1, �r , �2r .

5.4. char.k/ ¤ 2, q is an even root of unity, and q ¤ 1; or char.k/ D 2, q is a
root of unity, and q ¤ 1 ([2, 3.2]). Let r be the order of q as a root of unity. As
computed in [2, 3.2],

HH�.ƒ/ Š kŒxy�=..xy/2/ �k .
V�

.x��1;0; y�
�
0;1/Œ�

�
r;0; �

�
0;r �:

Hence we need to compute brackets on pairs of elements from the generating set

fxy; x��1;0; y�
�
0;1; �

�
r;0; �

�
0;rg:

Of these pairs, the non-zero Gerstenhaber brackets are

Œx��1;0; xy� D xy;

Œy��0;1; xy� D xy;

Œ��r;0; x�
�
1;0� D r�

�
r;0;

Œ��0;r ; y�
�
0;1� D r�

�
0;r :

Thus in degree 1, the Hochschild cohomology forms a 2-dimensional abelian Lie
algebra acting diagonally on the chosen generating set for Hochschild cohomology,
with eigenvalues 1, �r .
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5.5. char.k/ D 2 and q D 1 ([2, 3.3]). As computed in [2, 3.3],

HH�.ƒ/ Š ƒŒ��1;0; �
�
0;1�:

We will compute brackets on pairs of elements from the set

fx; y; ��1;0; �
�
0;1g:

The non-zero Gerstenhaber brackets on generators are

Œx; ��1;0� D 1;

Œy; ��0;1� D 1:

Again, ƒ is a tensor product of algebras, and the above brackets may be found
alternatively by using formula (6.1) below, due to Le and Zhou [7]. Note that
even though many brackets on pairs of generators are 0, there are many non-zero
brackets, for example, using (2.12) we find that Œx��1;0; ��1;0� D ��1;0. Thus the
degree 1 elements of Hochschild cohomology form an 8-dimensional nonabelian
Lie algebra, with basis ��1;0; ��0;1, x��1;0; x��0;1, y��1;0; y��0;1, xy��1;0; xy��0;1. This Lie
algebra acts nondiagonally on the chosen set of generators for HH�.ƒ/. For example,
Œ��1;0; x�

�
1;0�
�
0;1� D �

�
1;0�
�
0;1.

5.6. char.k/ ¤ 2 and q D 1 ([2, 3.5]). As computed in [2, 3.5],

HH�.ƒ/ Š
�
kŒxy�=..xy/2/ �k

V�
.x��1;0; y�

�
1;0; x�

�
0;1; y�

�
0;1/

�
Œ��2;0; �

�
1;1; �

�
0;2�=I

where I is generated by

x��1;0x�
�
0;1; y�

�
1;0y�

�
0;1; x�

�
1;0y�

�
1;0 � xy�

�
2;0;

x��1;0y�
�
0;1 � xy�

�
1;1; x�

�
0;1y�

�
0;1 � xy�

�
0;2; y�

�
1;0x�

�
0;1 C xy�

�
1;1;

x��1;0�
�
1;1 � x�

�
0;1�
�
2;0; y�

�
1;0�
�
1;1 � y�

�
0;1�
�
2;0; x�

�
1;0�
�
0;2 � x�

�
0;1�
�
1;1;

y��1;0�
�
0;2 � y�

�
0;1�
�
1;1; �

�
2;0�
�
0;2 � .�

�
1;1/

2:

We will compute brackets on pairs of elements from the set

fxy; x��1;0; y�
�
1;0; x�

�
0;1; y�

�
0;1; �

�
2;0; �

�
1;1; �

�
0;2g:

Of these pairs, the non-zero Gerstenhaber brackets are

Œxy; x��1;0� D �xy;

Œxy; y��0;1� D �xy;

Œxy; ��2;0� D �2y�
�
1;0;

Œxy; ��1;1� D �y�
�
0;1 C x�

�
1;0;
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Œxy; ��0;2� D 2x�
�
0;1;

Œx��1;0; y�
�
1;0� D �y�

�
1;0;

Œx��1;0; x�
�
0;1� D x�

�
0;1;

Œy��1;0; x�
�
0;1� D y�

�
0;1 � x�

�
1;0;

Œy��1;0; y�
�
0;1� D �y�

�
1;0;

Œx��0;1; y�
�
0;1� D x�

�
0;1;

Œx��1;0; �
�
2;0� D �2�

�
2;0;

Œx��1;0; �
�
1;1� D ��

�
1;1;

Œy��1;0; �
�
1;1� D ��

�
2;0;

Œy��1;0; �
�
0;2� D �2�

�
1;1;

Œx��0;1; �
�
2;0� D �2�

�
1;1;

Œx��0;1; �
�
1;1� D ��

�
0;2;

Œy��0;1; �
�
1;1� D ��

�
1;1;

Œy��0;1; �
�
0;2� D �2�

�
0;2:

Again, we may use (2.12) to compute other brackets, e.g., Œ��2;0; xy��2;0� D �2y��1;2.
We find that the degree 1 elements of Hochschild cohomology form a Lie algebra
isomorphic to gl2.k/ via the following map:

x��1;0 7!

�
1 0

0 0

�
; x��0;1 7!

�
0 1

0 0

�
;

y��1;0 7!

�
0 0

1 0

�
; y��0;1 7!

�
0 0

0 1

�
:

Its action on HH�.ƒ/ is nondiagonal on the chosen set of generators.
In the more complicated cases where q D ˙1, it would be interesting to obtain a

more detailed description of the action of the Lie algebra HH1.ƒ/ on HH�.ƒ/.

6. A Gerstenhaber algebra isomorphism

We return to the general setting of a twisted tensor product ƒ D R ˝t S , where R
and S are graded by abelian groups A and B respectively, as defined in Section 3.
Our main result is Theorem 6.3 below, which generalizes the main theorem of Le
and Zhou [7] to the twisted setting of Bergh and Oppermann [1]. The result of [7]
involves the known algebra isomorphism of the Hochschild cohomology of a tensor
product of algebras with the graded tensor product of their Hochschild cohomologies,
which is valid under some finiteness assumptions (see Mac Lane [8, Theorem X.7.4],
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who cites Rose [10] with the first proof). Le and Zhou show that this isomorphism
of algebras preserves Gerstenhaber brackets, so that it is in fact an isomorphism of
Gerstenhaber algebras. Our result more generally takes Bergh and Oppermann’s
algebra isomorphism from a subalgebra of Hochschild cohomology of a twisted
tensor product of algebras to a tensor product of subalgebras of their Hochschild
cohomology rings, and shows that it preserves Gerstenhaber brackets, so that it is
in fact an isomorphism of Gerstenhaber algebras. In order to do this, we will use
twisted versions of the Alexander–Whitney and Eilenberg–Zilber maps. Our proof
then diverges from that of Le and Zhou to take advantage of the general construction
of Gerstenhaber brackets in [9] as applied to twisted tensor products specifically via
our techniques from Section 3.

In this section, all algebras and modules will be graded, and HH will denote
graded Hochschild cohomology. That is, if X , Y are A-graded R-modules,
we let Hom.X; Y / WD ˚a2AHom.X; Y /a where Hom.X; Y /a consists of all
R-homomorphisms from X to Y such that jf .x/j D jxj � a for all homogeneous
x 2 X . Graded Hochschild cohomology arises by applying Hom to the appropriate
resolution and taking homology.

Tensor product of Gerstenhaber algebras ([7, Proposition-Definition 2.2]). Let
H1 and H2 be two Gerstenhaber algebras over k. Let f; f 0 2 H1 be elements of
degrees m;m0, and let g; g0 2 H2 be of degrees n; n0, respectively. Then H1 ˝H2
is a Gerstenhaber algebra with product

.f ˝ g/ ^ .f 0 ˝ g0/ WD .�1/m
0n.f ^ f 0/˝ .g ^ g0/

and bracket

Œf ˝ g; f 0 ˝ g0� WD .�1/.mCn�1/n
0

Œf; f 0�˝ .g ^ g0/

C .�1/m.m
0Cn0�1/.f ^ f 0/˝ Œg; g0�: (6.1)

Returning to our graded algebrasR and S , the grading by groups A and B passes
to cohomology (e.g. via the grading on the bar resolutions of R and S , respectively),
so that the Hochschild cohomologies of R and S are bigraded. Specifically, letting
n 2 N and a 2 A, an element of HHn;a.R/ is represented by an Re-homomorphism
f W R˝.nC2/ ! R with jf .r0 ˝ � � � ˝ rnC1/j D jr0j C � � � C jrnC1j � a for all
homogeneous r0; : : : ; rnC1 2 R. Similarly the Hochschild cohomology of S is
bigraded by N and B . Let

A0 D
\
b2B

Ker t h�jbi and B 0 D
\
a2A

Ker t haj�i; (6.2)

which are subgroups of A and B , respectively. Let H1 D HH�;A0.R/ and
H2 D HH�;B0.S/. These are Gerstenhaber subalgebras of HH�.R/ and of HH�.S/,
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respectively, as may be seen from formulas (2.3), (2.8), (2.9), and (2.11) with K D B.
ThusH1˝H2 is a Gerstenhaber algebra with bracket defined by formula (6.1). The
following theorem states that the algebra isomorphism of [1, Theorem 4.7] is in fact
a Gerstenhaber algebra isomorphism.
Theorem 6.3. Let R and S be k-algebras graded by abelian groups A and B ,
respectively, at least one of which is finite dimensional, and let t be a twisting. There
is an isomorphism of Gerstenhaber algebras

HH�;A0.R/˝ HH�;B0.S/ Š HH�;A0˚B0.R˝t S/;

where the Gerstenhaber bracket on the left side is given by (6.1).
Remarks 6.4. (i) In the statement of the theorem, the tensor product of Gerstenhaber
algebras is understood to restrict to the usual tensor product of graded algebras, that
is the twisting sends ..i; a0/; .j; b0// to .�1/ij . In [1], this is given explicitly in the
notation, while in [7] it is not. We use the notation of [7].
(ii) The reason this isomorphism is restricted to subalgebras corresponding to A0
and B 0 is that the Hom, ˝ interchange does not behave well with respect to graded
bimodules and degree shifts. In particular, if ˛ 2 Hom.X;R/a and ˇ 2 Hom.Y; S/b
for someRe-moduleX and Se-module Y , then ˛˝ˇ is generally not an .R˝t S/e-
module homomorphism from X ˝t Y to R ˝t S , unless a 2 A0, b 2 B 0, since the
module structure of X ˝t Y involves the twist. See Remark 4.2 and the proof of
Theorem 4.7 in [1] for more details.
Example 6.5. Many of the algebrasƒq of Section 5 provide nontrivial illustrations of
Theorem 6.3. For example, if q is a primitive r th root of unity, r odd (as in Section 5.3
above), thenHH�;A0˚B0.ƒq/ is a significant part ofHH�.ƒq/. The generators that are
in this subalgebra are x��1;0, y��0;1, ��2r;0, and ��0;2r (since .�q�1/2r D 1). Brackets
of pairs of these elements may be computed via formula (6.1), once brackets in
HH�.kŒx�=.x2// have been computed, for example, by the techniques of [9] or
otherwise. Such computations yield the same results as in Section 5.3 above with
less work. Some of the other choices of values of q in Section 5 similarly yield
nontrivial illustrations of Theorem 6.3.

In order to prove Theorem 6.3, we will need to construct twisted versions of the
Alexander–Whitney and Eilenberg–Zilber maps. This we do next (cf. [6]).

Choose a section of the quotient map of vector spaces from R to R WD R=k � 1

(respectively, from S to S ), by which to identify R with a vector subspace of R
(respectively, S of S ). Choose a compatible section of the map from R ˝t S

to R˝t S , that is, identify R˝t S with the direct sum of its four subspaces R˝t S ,
R˝t k, k˝t S , and k˝t k, the sum of the first three of which is a subspace ofR˝t S
that we identify with R˝t S . Let B D B.R˝t S/ be the normalized bar resolution
of R˝t S and let

K WD Tot.B.R/˝t B.S//

be the total complex of the twisted tensor product of the normalized bar resolutions
of R and of S .
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Wedefine a twistedAlexander–WhitneymapAWt
� W B.R˝

tS/! B.R/˝tB.S/,
generalizing that used in [7] to the twisted tensor product. In degree 0, let

AWt
0 W .R˝

t S/˝ .R˝t S/! .R˝R/˝t .S ˝ S/

r ˝t s ˝ r 0 ˝t s0 7! t hr
0jsir ˝ r 0 ˝t s ˝ s0;

for all homogeneous r; r 0 2 R and s; s0 2 S .
It is straightforward to check that AWt

0 is an .R˝t S/e-module homomorphism
with module action on .R˝R/˝t .S ˝ S/ as given by (3.1) and module action on
.R˝t S/˝ .R˝t S/ given by multiplication on the left and right.

To define AWt
n for n > 0, we use the identification of R as a subspace of R

(respectively, S of S ,R˝t S ofR˝t S ) as discussed at the beginning of this section,
keeping in mind that if one of the ri or si in the expression below is in the field k,
then the only possibly non-zero summands in the expression are those for which it
is in the first or last tensor factor. Define the .R ˝t S/e-module homomorphism as
follows:

AWt
n W .R˝

t S/˝R˝t S
˝n
˝ .R˝t S/

!

nM
dD0

.R˝R
˝n�d

˝R/˝t .S ˝ S
˝d
˝ S/

1˝t 1˝ r1 ˝
t s1 ˝ � � � ˝ rn ˝

t sn ˝ 1˝
t 1

7!

nX
dD0

.�1/d.n�d/t�r1r2 � � � rd ˝ rdC1 ˝ � � �

� � � ˝ rn ˝ 1˝
t 1˝ s1 ˝ � � � ˝ sd ˝ sdC1 � � � sn;

where
t� D t hr1j1it hr2js1˝1i � � � t hrnjsn�1˝���˝s1˝1it h1jsn˝���˝s1˝1i;

for all homogeneous ri 2 R, sj 2 S . It may be checked that AWt
n does indeed define

an .R˝t S/e-module homomorphism. Moreover, by a lengthy calculation, it can be
seen that this choice of AWt

n commutes with the differentials.
Similarly, we generalize the Eilenberg–Zilber chain map

EZt� W B.R/˝
t B.S/! B.R˝t S/

as in [7] to the twisted case. Let

EZt0 W .R˝R/˝
t .S ˝ S/! .R˝t S/˝ .R˝t S/

r ˝ r 0 ˝t s ˝ s0 7! t�hr
0jsir ˝t s ˝ r 0 ˝t s0:

To define EZtn for n > 0, we need the following notation from [7]: Sn�d;d is the
set of .n � d; d/-shuffles, that is the permutations � in the symmetric group Sn for
which �.1/ < �.2/ < � � � < �.n�d/ and �.n�dC1/ < �.n�dC2/ < � � � < �.n/.
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For all � 2 Sn�d;d , all r1; : : : ; rn�d 2 R and s1; : : : ; sd 2 S , let

F�.r1 ˝ � � � ˝ rn�d ˝
t s1 ˝ � � � ˝ sd / D F.x��1.1//˝ � � � ˝ F.x��1.n//

where x1 D r1; : : : ; xn�d D rn�d , xn�dC1 D s1; : : : ; xn D sd and F.r/ D r ˝ 1,
F.s/ D 1˝ s for r 2 R, s 2 S . We will also use the notation

inv.�/ D f.i; j /j1 � i < j � n and �.i/ > �.j /g;
j�j D j inv.�/j;

t� inv.�/
D

Y
.i;j /2inv.�/

t�hri jsj�nCd i:

Now define the .R˝t S/e-module homomorphism:

EZtn W
nM

dD0

.R˝R
˝n�d

˝R/˝t .S ˝ S
˝d
˝ S/

! .R˝t S/˝R˝t S
˝n
˝ .R˝t S/

1˝ r1 ˝ � � � ˝ rn�d ˝ 1˝
t 1˝ s1 ˝ � � � ˝ sd ˝ 1

7! 1˝t 1˝

� X
�2Sn�d;d

.�1/j�jt� inv.�/F�.r1 ˝ � � �

� � � ˝ rn�d ˝
t s1 ˝ � � � ˝ sd /

�
˝ 1˝t 1:

As with AWt
�, it can be checked that EZt� is in fact a chain map.

Now, in order to use the methods of [9] to describe the Gerstenhaber brackets on
the Hochschild cohomology of ƒ D R ˝t S , we must check Conditions 2.5(a)–(c)
on K D Tot.B.R/˝t B.S//:
(a) Let � D �B EZt�, where �B W B.R˝t S/! B.R˝t S/ is a choice of embedding
compatible with our identifications of R and S as subspaces of R and S .
(b) Let � D AWt

� �B, where �B W B.R ˝t S/ ! B.R ˝t S/ is the quotient map.
We want to show that �� WD AWt

� ıEZ
t
� D 1K. By their definitions, �B�B D 1B, and

as in [7], we know that for the maps without the twist, AW� ıEZ� D 1K. Therefore,
we need only check that the coefficients included in relation to the twist cancel:

AWt
n ıEZ

t
n

�
.1˝ r1 ˝ � � � ˝ rn�d ˝ 1/˝

t .1˝ s1 ˝ � � � ˝ sd ˝ 1/
�

D AWt
n

�
1˝t 1˝

� X
�2Sn�d;d

.�1/j�jt� inv.�/F.x��1.1//˝ � � �

� � � ˝ F.x��1.n//

�
˝ 1˝t 1

�
;

where for each i , x��1.i/ is either r��1.i/ or s��1.i/�.n�d/ depending on the
value of ��1.i/. Then F.x��1.i// is either r��1.i/ ˝ 1 or 1 ˝ s��1.i/�.n�d/.
After applying AWt

n, the twisting coefficient for the term corresponding to �

is t inv.�/�inv.�/ D 1. Therefore �� D 1K.
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(c) Consider �K W K! K˝R˝tS K defined by

.�K/n
�
.1˝ r1 ˝ � � � ˝ rn�d ˝ 1/˝

t .1˝ s1 ˝ � � � ˝ sd ˝ 1/
�

D

n�dX
jD0

dX
iD0

.�1/i.n�d�j /t�hrjC1˝���˝rn�d js1˝���˝si i

Œ.1˝ r1 ˝ � � � ˝ rj ˝ 1/˝
t .1˝ s1 ˝ � � � ˝ si ˝ 1/�˝R˝tS

Œ.1˝ rjC1 ˝ � � � ˝ rn�d ˝ 1/˝
t .1˝ siC1 ˝ � � � ˝ sd ˝ 1/�

for all homogeneous rl 2 R and sm 2 S .
Then

.�B EZt�˝R˝tS �B EZt�/�K

�
.1˝ r1˝ � � � ˝ rn�d ˝ 1/˝

t .1˝ s1˝ � � � ˝ sd ˝ 1/
�

D .�B EZt�˝R˝tS �B EZt�/
� n�dX
jD0

dX
iD0

.�1/i.n�d�j /t�hrjC1˝���˝rn�d js1˝���˝si i

Œ.1˝ r1 ˝ � � � ˝ rj ˝ 1/˝
t .1˝ s1 ˝ � � � ˝ si ˝ 1/�˝R˝tS

Œ.1˝ rjC1 ˝ � � � ˝ rn�d ˝ 1/˝
t .1˝ siC1 ˝ � � � ˝ sd ˝ 1/�

�
D

n�dX
jD0

dX
iD0

.�1/i.n�d�j /t�hrjC1˝���˝rn�d js1˝���˝si i

Œ1˝t 1˝

� X
�02Sj;i

.�1/j�
0jt� inv.�0/

� F�0.r1 ˝ � � � ˝ rj ˝
t s1 ˝ � � � ˝ si /

�
˝ 1˝t 1�˝R˝tS

Œ1˝t 1˝

� X
�002Sn�d�j;d�i

.�1/j�
00jt� inv.�00/

� F�00.rjC1 ˝ � � � ˝ rn�d ˝
t siC1 ˝ � � � ˝ sd /

�
1˝t 1�

and
�B.�B EZt�/

�
.1˝ r1 ˝ � � � ˝ rn�d ˝ 1/˝

t .1˝ s1 ˝ � � � ˝ sd ˝ 1/
�

D �B

�
1˝t 1˝

� X
�2Sn�d;d

.�1/j�jt� inv.�/

� F�.r1 ˝ � � � ˝ rn�d ˝
t s1 ˝ � � � ˝ sd /

�
˝ 1˝t 1

�
D �B

�
1˝t 1˝

� X
�2Sn�d;d

.�1/j�jt� inv.�/

� F.x��1.1//˝ � � � ˝ F.x��1.n//

�
˝ 1˝t 1

�
D

nX
iD0

X
�2Sn�d;d

.�1/j�jt� inv.�/Œ1˝t 1˝ F.x��1.1//˝ � � � ˝ F.x��1.i//˝ 1˝
t 1�

˝R˝tS Œ1˝
t 1˝ F.x��1.iC1//˝ � � � ˝ F.x��1.n//˝ 1˝

t 1�;



Gerstenhaber brackets for twisted tensor products 1373

where for each i , x��1.i/ is either r��1.i/ or s��1.i/�.n�d/, depending on the value
of ��1.i/. Now notice in both expressions, we are allowing all possible arrangements
of r’s and s’s, thus, we need only check that the corresponding coefficients agree.
Given a fixed arrangement of the r’s and s’s determined by � 2 Sn�d;d , we see that
.�1/j�jt� inv.�/ is uniquely determined by the s’s and r’s that are moved past each
other. The corresponding term in the first expression has coefficient

.�1/i.n�d�j /Cj�
0jCj�00jt�hrjC1˝���˝rn�d js1˝���˝si i�inv.�0/�inv.�00/;

for some i and j , and � 0 2 Sj;i , and � 00 2 Sn�d�j;d�i , which is again uniquely
determined by the s’s and r’s that are moved past each other. Thus, because we are
assuming we have the same arrangement of r’s and s’s,

.�1/i.n�d�j /Cj�
0jCj�00jt�hrjC1˝���˝rn�d js1˝���˝si i�inv.�0/�inv.�00/ D .�1/j�jt� inv.�/

when we view the term as coming from � 2 Sn�d;d . Therefore,

.�B EZt�˝R˝tS �B EZt�/�K D �B.�B EZt�/:

We now have chain maps � , �, and �K satisfying Conditions 2.5(a)–(c).
Therefore, wemay use the formulas (2.8) and (2.9) to describe Gerstenhaber brackets,
via a contracting homotopy � of FK. By Lemma 3.5, we may choose

� D .GB.R/ ˝ F
l
B.S/
C .�1/�F r

B.R/
˝GB.S//�;

where GB.R/, GB.S/ are defined in equation (2.11), F l
B.S/

, F r
B.R/

are defined in
equation (2.4), and � is the map from Lemma 3.3. (See Lemma 3.5 for the precise
value of .�1/�.)

Proof of Theorem 6.3. Bergh and Oppermann [1, Theorem 4.7] proved that there is
such an isomorphism of associative algebras. Their isomorphism may be realized
explicitly at the chain level by using K D Tot.B.R/˝t B.S// to express elements on
the right-hand side, via the Hom, ˝ interchange, as elements on the left-hand side.
Our diagonal map �K may be used to describe cup products. We need only show
that this isomorphism also preserves Gerstenhaber brackets. One approach would
be to use the known algebra isomorphism combined with (2.12), showing that some
mixed terms are 0. Another approach would be to generalize the proof of Le and
Zhou, which is an explicit computation using the chain maps AW� and EZ�. We take
yet another approach, using the theory we have developed for twisted tensor products
in Section 3 and in the first part of this section, which has the advantage of avoiding
explicit computations with the cumbersome chain maps AW� and EZ� themselves.

Brackets on the right-hand side of the isomorphism will be described by using
K D Tot.B.R/˝t B.S//. We will use the chain maps � and � which are comparison
morphisms between K and B D B.R˝t S/, and the diagonal map�K which allows
a construction of the bracket operation on K via formulas (2.8) and (2.9).
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Let ˛ 2 HHm;A0.R/, ˛0 2 HHm0;A0.R/, ˇ 2 HHn;B0.S/, and ˇ0 2 HHn0;B0.S/.
By abuse of notation, we also denote by ˛; ˛0; ˇ; ˇ0 the morphisms representing
the corresponding cohomology elements. We will write ˛ ˝ ˇ and ˛0 ˝ ˇ0

to represent elements in HH�;A0˚B0.R ˝t S/ via its algebra isomorphism to
HH�;A0.R/ ˝ HH�;B0.S/. We will need the finite dimension hypothesis in
interchanging Hom and ˝ in the tensor product of chain complexes, as we are
working with bar resolutions. We will compute Œ˛ ˝ ˇ; ˛0 ˝ ˇ0� as an element
of HH�;A0˚B0.R ˝t S/ using (2.8) and (2.9), and we will show that it agrees with
the Gerstenhaber bracket on a tensor product of two Gerstenhaber algebras as defined
in (6.1).

We will want to apply Œ˛ ˝ ˇ; ˛0 ˝ ˇ0� to elements of the form

.1˝ r1 ˝ � � � ˝ rm00 ˝ 1/˝
t .1˝ s1 ˝ � � � ˝ sn00 ˝ 1/

where m00 C n00 D m C m0 C n C n0 � 1 and r1; : : : ; rm00 2 R, s1; : : : ; sn00 2 S .
In the calculation below, we will see that .�1/� is .�1/m00�m0 , partway through the
calculation, as by that point we will already have applied ˛0 to some of the input,
thus lowering its homological degree. There are signs associated to application of
each of the maps .1˝ .˛0 ˝ ˇ0/˝ 1/ (the “Koszul signs” in (2.10)), and � , GB.R/
and GB.S/ (in their definitions in Lemma 3.3 and in (2.11)). We start by computing
a circle product:

.˛ ˝ ˇ/ ı .˛0 ˝ ˇ0/
�
.1˝ r1 ˝ � � � ˝ rm00 ˝ 1/˝

t .1˝ s1 ˝ � � � ˝ sn00 ˝ 1/
�

D .˛ ˝ ˇ/
�
GB.R/ ˝ F

l
B.S/
C .�1/�F r

B.R/
˝GB.S/

�
�
�
1˝ .˛0 ˝ ˇ0/˝ 1

�
�
.2/
K�

.1˝ r1 ˝ � � � ˝ rm00 ˝ 1/˝
t .1˝ s1 ˝ � � � ˝ sn00 ˝ 1/

�
D .˛ ˝ ˇ/

�
GB.R/˝ F

l
B.S/
C .�1/�F r

B.R/
˝GB.S/

�
�
�
1˝ .˛0 ˝ ˇ0/˝ 1

�
.�K ˝ 1/� m00X

jD0

n00X
iD0

.�1/i.m
00�j /t�hrjC1˝���˝rm00 js1˝���˝si i

Œ.1˝ r1 ˝ � � � ˝ rj ˝ 1/˝
t .1˝ s1 ˝ � � � ˝ si ˝ 1/�˝R˝tS

Œ.1˝ rjC1 ˝ � � � ˝ rm00 ˝ 1/˝
t .1˝ siC1 ˝ � � � ˝ sn00 ˝ 1/�

�
D .˛ ˝ ˇ/

�
GB.R/˝ F

l
B.S/
C .�1/�F r

B.R/
˝GB.S/

�
�
�
1˝ .˛0 ˝ ˇ0/˝ 1

�� m00X
jD0

n00X
iD0

iX
pD0

jX
lD0

.�1/i.m
00�j /.�1/p.j�l/

t�hrjC1˝���˝rm00 js1˝���˝si it�hrlC1˝���˝rj js1˝���˝spi

Œ.1˝ r1 ˝ � � � ˝ rl ˝ 1/˝
t .1˝ s1 ˝ � � � ˝ sp ˝ 1/�˝R˝tS

Œ.1˝ rlC1 ˝ � � � ˝ rj ˝ 1/˝
t .1˝ spC1 ˝ � � � ˝ si ˝ 1/�˝R˝tS

Œ.1˝ rjC1 ˝ � � � ˝ rm00 ˝ 1/˝
t .1˝ siC1 ˝ � � � ˝ sn00 ˝ 1/�

�
:
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Now, in order to apply .1˝ .˛0 ˝ ˇ0/˝ 1/, we must have m0 D j � l , n0 D i � p.
The Koszul sign from (2.10) is thus

.�1/.pCl/.m
0Cn0/

D .�1/.m
0Cn0/.j�m0Ci�n0/;

and the above becomes

D.˛ ˝ ˇ/
�
GB.R/ ˝ F

l
B.S/
C .�1/�F r

B.R/
˝GB.S/

�
�� m00X

jDm0

n00X
iDn0

.�1/i.m
00�j /.�1/.i�n

0/m0.�1/.m
0Cn0/.j�m0Ci�n0/

t�hrjC1˝���˝rm00 js1˝���˝si i�hrj�m0C1˝���˝rj js1˝���˝si�n0 i

Œ.1˝ r1 ˝ � � � ˝ rj�m0 ˝ 1/˝
t .1˝ s1 ˝ � � � ˝ si�n0 ˝ 1/�˝R˝tS

Œ˛0.1˝ rj�m0C1 ˝ � � � ˝ rj ˝ 1/˝
t ˇ0.1˝ si�n0C1 ˝ � � � ˝ si ˝ 1/�˝R˝tS

Œ.1˝ rjC1 ˝ � � � ˝ rm00 ˝ 1/˝
t .1˝ siC1 ˝ � � � ˝ sn00 ˝ 1/�

�
:

After applying the definition (3.1) of themodule action, and applying � (which comes
with a sign of .�1/.i�n0/.m00�j /), the above becomes

D .˛ ˝ ˇ/
�
GB.R/ ˝ F

l
B.S/
C .�1/�F r

B.R/
˝GB.S/

�
�� m00X

jDm0

n00X
iDn0

.�1/i.m
00�j /.�1/.i�n

0/m0.�1/.m
0Cn0/.j�m0Ci�n0/

t�hrjC1˝���˝rm00 js1˝���˝si i�hrj�m0C1˝���˝rj js1˝���˝si�n0 i

t h˛
0.1˝rj�m0C1˝���˝rj˝1/js1˝���˝si�n0 i

Œ.1˝ r1 ˝ � � � ˝ rj�m0 ˝ ˛
0.1˝ rj�m0C1 ˝ � � � ˝ rj ˝ 1//˝

t�
1˝ s1 ˝ � � � ˝ si�n0 ˝ ˇ

0.1˝ si�n0C1 ˝ � � � ˝ si ˝ 1/
�
�˝R˝tS

Œ.1˝ rjC1 ˝ � � � ˝ rm00 ˝ 1/˝
t .1˝ siC1 ˝ � � � ˝ sn00 ˝ 1/�

�
D .˛ ˝ ˇ/

�
GB.R/ ˝ F

l
B.S/
C .�1/�F r

B.R/
˝GB.S/

�� m00X
jDm0

n00X
iDn0

.�1/�n
0.m00�j /.�1/.i�n

0/m0.�1/.m
0Cn0/.j�m0Ci�n0/

t�hrjC1˝���˝rm00 js1˝���˝si i�hrj�m0C1˝���˝rj js1˝���˝si�n0 i

t h˛
0.1˝rj�m0C1˝���˝rj˝1/js1˝���˝si�n0 i

t hrjC1˝���˝rm00 js1˝���˝si�n0˝ˇ
0.1˝si�n0C1˝���˝si˝1/i

Œ.1˝ r1 ˝ � � � ˝ rj�m0 ˝ ˛
0.1˝ rj�m0C1 ˝ � � � ˝ rj ˝ 1//

˝R .1˝ rjC1 ˝ � � � ˝ rm00 ˝ 1/�˝
t

Œ.1˝ s1 ˝ � � � ˝ si�n0 ˝ ˇ
0.1˝ si�n0C1 ˝ � � � ˝ si ˝ 1//

˝S .1˝ siC1 ˝ � � � ˝ sn00 ˝ 1/�

�
:
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For brevity, we denote by t� the twisting coefficient in the above equation. Now
˛0 2 HHm0;A0.R/ and ˇ0 2 HHn0;B0.S/, that is, ˛0 and ˇ0 have graded degrees in the
kernel of the twist homomorphism, and it follows that

t h˛
0.1˝rj�m0C1˝���˝rj˝1/js1˝���˝si�n0 i D t hrj�m0C1˝���˝rj js1˝���˝si�n0 i;

t hrjC1˝���˝rm00 jˇ
0.1˝si�n0C1˝���˝si˝1/i D t hrjC1˝���˝rm00 jsi�n0C1˝���˝si i:

Thus, t� D 1. Now we are ready to apply GB.R/ ˝ F
l
B.S/
C .�1/�F r

B.R/
˝ GB.S/,

and there are signs associated to each term. In order to apply GB.R/ ˝ F
l
B.S/

, we
must have i D n0 for the map to be non-zero, and the sign incurred is .�1/j�m0 .
In order to apply F r

B.R/
˝ GB.S/, we must have j D m00 for the map to be non-

zero, and the sign incurred is .�1/i�n0 ; in addition, for this application, we find that
.�1/� D .�1/j�m

0Cm00�j D .�1/m
00�m0 D .�1/m (as for this term,m00 D mCm0).

The above expression becomes

D .˛ ˝ ˇ/

� m00X
jDm0

.�1/�n
0.m00�j /.�1/.m

0Cn0/.j�m0/.�1/j�m
0

Œ1˝ r1 ˝ � � � ˝ rj�m0 ˝ ˛
0.1˝ rj�m0C1 ˝ � � � ˝ rj ˝ 1/˝ rjC1 ˝ � � � ˝ rm00 ˝ 1�

˝
t Œˇ0.1˝ s1 ˝ � � � ˝ si ˝ 1/˝ siC1 ˝ � � � ˝ sn00 ˝ 1�

C

n00X
iDn0

.�1/.i�n
0/m0.�1/.m

0Cn0/.mCi�n0/.�1/i�n
0

.�1/m

Œ1˝ r1 ˝ � � � ˝ rm ˝ ˛
0.1˝ rmC1 ˝ � � � ˝ rm00/�˝

t

Œ1˝ s1 ˝ � � � ˝ si�n0 ˝ ˇ
0.1˝ si�n0C1 ˝ � � � ˝ si ˝ 1/˝ siC1 ˝ � � � ˝ sn00 ˝ 1�

�
D

m00X
jDm0

.�1/�n
0.m00�j /.�1/.m

0Cn0/.j�m0/.�1/j�m
0

˛.1˝ r1 ˝ � � � ˝ rj�m0 ˝ ˛
0.1˝ rj�m0C1 ˝ � � � ˝ rj ˝ 1/˝ rjC1 ˝ � � � ˝ rm00 ˝ 1/

˝
t ˇ0.1˝ s1 ˝ � � � ˝ si ˝ 1/ˇ.1˝ siC1 ˝ � � � ˝ sn00 ˝ 1/

C

n00X
iDn0

.�1/.i�n
0/m0.�1/.m

0Cn0/.mCi�n0/.�1/i�n
0

.�1/m

˛.1˝ r1 ˝ � � � ˝ rm ˝ 1/˛
0.1˝ rmC1 ˝ � � � ˝ rm00/˝

t

ˇ.1˝ s1 ˝ � � � ˝ si�n0 ˝ ˇ
0.1˝ si�n0C1 ˝ � � � ˝ si ˝ 1/˝ siC1 ˝ � � � ˝ sn00 ˝ 1/:
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We wish to rewrite the sums. The first sum involves ˛ ı˛0, in which the term indexed
by j has a sign .�1/.m0�1/.j�m0/. The second sum involves ˇ ıˇ0, in which the term
indexed by i has a sign .�1/.n0�1/.i�n0/. Accommodating these signs and rewriting,
the above is equal to

.�1/n
0.m�1/.˛ ı ˛0/˝ .ˇ0 ^ ˇ/C .�1/m.m

0Cn0�1/.˛ ^ ˛0/˝ .ˇ ı ˇ0/

applied to the input. Similarly,

.˛0 ˝ ˇ0/ ı .˛ ˝ ˇ/ D .�1/n.m
0�1/.˛0 ı ˛/˝ .ˇ ^ ˇ0/

C .�1/m
0.mCn�1/.˛0 ^ ˛/˝ .ˇ0 ı ˇ/:

We will use the following relation from [4, Theorem 7.3] to reverse the order of the
cup product ˛0 ^ ˛ in the above expression (and a similar relation for ˇ0 ^ ˇ):

˛ı.d�˛0/�d�.˛ı˛0/C.�1/m
0�1.d�˛/ı˛0 D .�1/m

0�1
�
˛0 ^ ˛�.�1/mm

0

˛ ^ ˛0
�
:

Now, ˛ and ˛0 are cocycles, so the two outermost terms on the left-hand side of the
above equation are 0. Putting it all together, using this relation and formula (2.8), we
obtain the Gerstenhaber bracket:

Œ˛ ˝ ˇ; ˛0 ˝ ˇ0�

D .˛ ˝ ˇ/ ı .˛0 ˝ ˇ0/ � .�1/.mCn�1/.m
0Cn0�1/.˛0 ˝ ˇ0/ ı .˛ ˝ ˇ/

D .�1/n
0.m�1/.˛ ı ˛0/˝ .ˇ0 ^ ˇ/

C .�1/m.m
0Cn0�1/.˛ ^ ˛0/˝ .ˇ ı ˇ0/

� .�1/.mCn�1/.m
0Cn0�1/Cn.m0�1/.˛0 ı ˛/˝ .ˇ ^ ˇ0/

� .�1/.mCn�1/.m
0Cn0�1/Cm0.mCn�1/.˛0 ^ ˛/˝ .ˇ0 ı ˇ/

D .�1/n
0.mCn�1/.˛ ı ˛0/˝ .ˇ ^ ˇ0/C .�1/mn

0

.˛ ı ˛0/˝ d�.ˇ ı ˇ0/

C .�1/m.m
0Cn0�1/.˛ ^ ˛0/˝ .ˇ ı ˇ0/

C .�1/m.m
0Cn0�1/Cnn0�m0�n0.˛0 ı ˛/˝ .ˇ ^ ˇ0/

C .�1/.mCn�1/.n
0�1/Cmm0C1.˛ ^ ˛0/˝ .ˇ0 ı ˇ/

� .�1/.mCn�1/.n
0�1/Cm0d�.˛ ı ˛0/˝ .ˇ0 ı ˇ/:

We claim that the terms involving d�.ˇ ı ˇ0/ and d�.˛ ı ˛0/ sum to a boundary:

d�..˛ ı ˛0/˝ .ˇ0 ı ˇ// D d�.˛ ı ˛0/˝ .ˇ0 ı ˇ/

C .�1/mCm
0�1.˛ ı ˛0/˝ d�.ˇ0 ı ˇ/:

Since ˇ, ˇ0 are cocycles, d�.Œˇ; ˇ0�/ D 0, that is,

d�.ˇ0 ı ˇ/ D .�1/.n�1/.n
0�1/d�.ˇ ı ˇ0/;
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which implies

d�..˛ ı ˛0/˝ .ˇ0 ı ˇ// D d�.˛ ı ˛0/˝ .ˇ0 ı ˇ/

C .�1/mCm
0�1C.n�1/.n0�1/.˛ ı ˛0/˝ d�.ˇ ı ˇ0/;

and this is .�1/.mCn�1/.n0�1/Cm0�1 times the sum of the two terms in our previous
expression involving d�.ˇ ı ˇ0/, d�.˛ ı ˛0/. We now see that as elements in
cohomology,

Œ˛ ˝ ˇ; ˛0 ˝ ˇ0�

D .�1/n
0.mCn�1/.˛ ı ˛0 � .�1/.mCn�1/.m

0�1/Cn.m0�1/˛0 ı ˛/˝ .ˇ ^ ˇ0/

C .�1/m.m
0Cn0�1/.˛ ^ ˛0/˝ .ˇ ı ˇ0 � .�1/.n�1/.m

0Cn0�1/Cm0.n�1/ˇ0 ı ˇ/

D .�1/.mCn�1/n
0

Œ˛; ˛0�˝ .ˇ ^ ˇ0/C .�1/m.m
0Cn0�1/.˛ ^ ˛0/˝ Œˇ; ˇ0�;

which agrees with formula (6.1). Thus we have proved that the algebra isomorphism

HH�;A0.R/˝ HH�;B0.S/ Š HH�;A0˚B0.R˝t S/

of Bergh and Oppermann [1] also preserves Gerstenhaber brackets. Therefore, it is
an isomorphism of Gerstenhaber algebras, as claimed.

In conclusion, the results of this section and of this paper may be applied
effectively, to many algebras of interest, to obtain information about the Gerstenhaber
algebra structure of Hochschild cohomology and to answer questions about
deformations of algebras that involve this structure. The quantum complete
intersections of Section 5 are of interest in their own right, andmay also be generalized
to include more generators and more general relations. The techniques in this paper
may be applied to skew polynomial rings (cf. [11]). They may also be used to
gain information about deformations of all of these algebras and their extensions by
group actions, which include a wide variety of algebras of interest such as some
quantum groups, some Nichols algebras arising in results on classification of finite
dimensional Hopf algebras, and quantum versions of Drinfeld Hecke algebras or
rational Cherednik algebras and related quotient algebras.
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