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Spectral triples for nested fractals
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Abstract. It is shown that, for nested fractals [31], the main structural data, such as the Hausdorff
dimension and measure, the geodesic distance (when it exists) induced by the immersion in Rn,
and the self-similar energy can all be recovered by the description of the fractals in terms of the
spectral triples considered in [18].
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1. Introduction

In this note, we analyze the class of nested fractals [31,34,35,37] by making use of
the spectral triples introduced in [13] for the case of the Cantor set, and in [18] for
a wide class of fractals, and prove that such noncommutative geometric description
reproduces the classical notions of Hausdorff dimension andmeasure, the self-similar
Dirichlet form, and also, when the fractal is finitely arcwise connected [26], the
corresponding geodesic distance.

Starting with the first examples given by Connes in [13] and the early papers of
Lapidus [28,29], many papers are now available concerning the noncommutative
approach to fractals [2,5,7–9,12,15–18,30]. It turns out that noncommutative
geometry can be fruitfully applied to smooth as well as singular spaces, since it gives
a universal procedure which associates with a spectral triple a metric dimension,
an integration, a distance and an energy. In all of the above mentioned papers
notions of noncommutative dimension and/or measure were studied, while few of
them [2,8,9,17,30] could fully recover a natural distance on some class of fractals.
A noncommutative construction of the Dirichlet energy for fractals starting from
geometric data was only considered in [12] for the case of the Sierpinski gasket.
The idea of constructing a spectral triple on a fractal as a countable direct sum of
�The authors were partially supported by GNAMPA, MIUR, GDRE GREFI GENCO, and the ERC

Advanced Grant 227458 OACFT.
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finite dimensional spectral triples has been extended from fractals to general compact
metric spaces in [33], where the Hausdorff dimension and measure, and the metric
were recovered from their noncommutative analogues. More recently, in [20] a
different approach to constructing spectral triples on metric spaces was taken, based
on [10,11], so the starting point is a regular symmetric Dirichlet form on a locally
compact separable metric space, endowed with a nonnegative Radon measure, and
the intrinsic (or Carnot–Carathéodory) metric is recovered.

The basic requirements for a spectral triple T D .A;H ;D/, where A is a
self-adjoint algebra of operators and D is an unbounded self-adjoint operator, both
acting on the Hilbert space H , are the boundedness of the commutators ŒD; a�,
a 2 A, and the compactness of the resolvents ofD [13]. Based on these hypotheses,
one may associate with a spectral triple T D .A;H ;D/ a notion of dimension,
an integral on the elements of the algebra, an energy form, and a distance on
the state space of the algebra, according to the table below, where we denote by
Za.s/ D Tr.a.D2 C 1/�s=2/ the zeta function for a 2 A, by Z.s/ D ZI .s/ the zeta
function of the spectral triple, and '; are states on the norm closure of A:

dH D inffs > 0 W Z.s/ < C1g (NC dimension)H
a D RessDdH Za.s/, a 2 A (NC integral)

dD.';  / D supkŒD;a�k�1 j'.a/ �  .a/j (NC distance)
EDŒa� D

H
jŒD; a�j2, a 2 A (NC Dirichlet energy)

Table 1.

The formula for the noncommutative energy is motivated by the fact that, in
noncommutative geometry, ŒD; a� is a replacement for the gradient of a. Similar
expressions were used in some previous papers [2,12,21].

As the references above show, there are many possible spectral triples that can
be associated to a fractal, and more generally to a singular space. Our aim here
is to show that with a very simple triple, based only on a few data from the self-
similar fractal, many features which are usually produced with clever analytic tools
can be recovered, for nested fractals, via general noncommutative methods, based on
completely different ideas, such as those of noncommutative residues and singular
traces.

The spectral triple used here was introduced in [18] and consists of the algebra A

of suitably regular functions on the fractal acting on the Hilbert space H given by
the `2 space on the oriented edges of the fractal, and of the Dirac operator D on H

which maps an oriented edge to its opposite, multiplied by the inverse length of the
edge itself. We call these triples discrete since the Hilbert space is not given by
an L2 space w.r.t. some measure on the fractal but by the `2 space of its edges, see
Definition 3.1 for further details.
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In Section 3 we analyze the noncommutative measure and dimension associated
with our triple. This was already done in [18] for a much larger family of fractals,
the results for the self-similar case being stated in Remark 2.11(ii) without proof.
We prove here that, for nested fractals, the noncommutative dimension coincides
with the Hausdorff dimension and the noncommutative integral coincides (up to a
multiplicative constant) with the integral w.r.t. the Hausdorff measure.

In Section 4 we study the noncommutative Dirichlet energy. In [12] the case of
the Sierpinski gasket was considered, with a spectral triple given by a deformation
of that considered in [8,9]. The noncommutative Dirichlet energy was introduced
there, in terms of the residue of a zeta function, and it was proved that it coincides
with the unique self-similar energy on the gasket up to a constant. However, in order
to obtain a non trivial energy, the abscissa of convergence of the zeta function has to
take a specific value ı, which we called energy dimension, and is different from the
Hausdorff dimension dH . Here we show that this result holds for all nested fractals
endowed with discrete spectral triples, and prove a general formula for the energy
dimension, namely ı D 2 � log�

log� , where � is the scaling factor for the energy, and �
is the (unique) scaling factor for the contractions.

The proof of the formula for the self-similar energy given here for nested fractals is
based on a clever result of Peirone [35], where he shows that any quadratic functional
on the space of functions on the essential fixed points gives rise to a self-similar
Dirichlet form on the whole fractal, and that the set of energies obtained in this way
coincides with those obtained from eigenforms. This result, together with the simple
form of our triples, allows a quite short proof of the formula for the self-similar
energy. However, even though the noncommutative energy formula was envisaged
as a generalisation of that for the noncommutative integral, in the case of fractals the
reason why it holds is technically different from the reason why the noncommutative
integral formula holds. The latter is based on the summability of continuous functions
w.r.t. the Hausdorff measure, while square commutators jŒD; f �j2 are not summable
in general w.r.t. the noncommutative Hausdorff trace for a finite energy function f .
Indeed, in order to obtain a finite residue, one should change the dimension, passing
from the Hausdorff dimension to the energy dimension.

Moreover, in the case of (possibly noncommutative) smoothmanifolds, the square
of the Dirac operator is (related to) the Laplace operator, and the Hilbert space is
the L2-space of a (finite dimensional) fiber bundle, namely is a finitely generated
projective module. This implies that the square commutator jŒD; f �j2 is essentially
bounded, when f is Lipschitz, and its noncommutative Hausdorff trace (w.r.t. the
standard dimension) gives the classical Dirichlet energy. In the case of fractals
instead the intersection between Lipschitz functions and finite energy functions
may be quite small, and for our triples the Hilbert space is not finitely generated
projective. Therefore the summability of the function jDj�s=2jŒD; f �j2jDj�s=2 for
a finite energy f and sufficiently large s holds for reasons completely different from
those responsible of the summability of jDj�s=2f jDj�s=2 for a Lipschitz f , and the
abscissae of convergence are different.
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We remark here that our triple is uniquely associated with the fractal as a self-
similar metric space, hence it produces a unique energy for any metric fractal. Then
one may ask what happens for the Vicsek square, which admits infinitely many
energies. It turns out that any of such energies can be produced, with our method,
by suitably deforming the fractal. In other words, we prove, in Section 4.2, that any
of the self-similar energies on the Vicsek square comes, via our technique, from a
different immersion in R2, related to the original square by an affine transformation;
the energy is driven by the geometry.

In Section 5 we prove that the geodesic distance induced by the natural immersion
of the nested fractal in Rn (when finite) can be completely recovered by means of
the discrete spectral triple. Let us remark that, since the algebra of functions on
the fractal is abelian, we may consider as states the delta-functions, thus obtaining a
distance between points of the fractal. However the formula for the noncommutative
distance should be modified, by replacing the norm kŒD; a�kwith the essential norm.
We remark that such formula for the distance involving the essential norm is, to our
knowledge, completely new, and seems to be related to the approximation of the
fractal via finite graphs.

In some cases, such as the Sierpinski gasket, the replacement of the norm kŒD; a�k
with the essential norm is not necessary, as statedwithout proof in [18]. An analogous
result for the gasket, butwith a completely different spectral triple, was proved in [8,9].

The results in this paper have been announced in the conference “Noncommutative
Analysis, Operator Theory, andApplications”, held inMilan in June, 2014 [19], and in
the Special Session “Fractals” of the 10th AIMS Conference on Dynamical Systems,
Differential Equations and Applications, held in Madrid in July, 2014.

2. Preliminaries

2.1. Nested fractals. Let� WD fwi W i D 1; : : : ; kg be a family of contracting sim-
ilarities of RN , i.e. there are �i 2 .0; 1/ such that kwi .x/ � wi .y/k D �ikx � yk,
x; y 2 RN . The unique non-empty compact subset K of RN such that
K D

Sk
iD1wi .K/ is called the self-similar fractal defined by fwigiD1;:::;k . For

any i 2 f1; : : : ; kg, let pi 2 RN be the unique fixed-point of wi , and say that pi is
an essential fixed-point of � if there are i 0; j; j 0 2 f1; : : : ; kg such that i 0 ¤ i , and
wj .pi / D wj 0.pi 0/. Denote by V0 the set of essential fixed-points of �, and we
assume that it has at least two elements, and let E0 WD f.p; q/ W p; q 2 V0; p ¤ qg.
Observe that .V0; E0/ is a directed finite graph [3] whose edges are in 1 W 1

correspondence with ordered pairs of distinct vertices. For any n 2 N, set

†n WD f� W f1; : : : ; ng ! f1; : : : ; kgg; w� WD w�.1/ ı � � � ı w�.n/; 8� 2 †n;

Vn WD [�2†nw� .V0/; and w; WD id; †0 WD f;g; † WD [1nD0†n:
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Then, Vn�1 � Vn, 8n 2 N. Sets of the form w� .V0/, for � 2 †n, are called
combinatorial n-cells, while those of the form w� .K/ are called n-cells. For any
n 2 N, define

En WD f.w� .p/; w� .q// W � 2 †n; p; q 2 V0; p ¤ qg;

and, for any � 2 †n, i 2 f1; : : : ; kg; denote by � � i 2 †nC1 the map defined by
� � i.j / D �.j /, j 2 f1; : : : ; ng, � � i.nC 1/ D i .
Definition 2.1. The couple .K;�/ is said to be a nested fractal in the sense of
Lindstrøm [1,31] if
(1) �i D �, for all i 2 f1; : : : ; kg,
(2) there is an open bounded setU � RN , such that[kiD1wi .U / � U , andwi .U /\

wj .U / D ;, for all i; j 2 f1; : : : ; kg, i ¤ j (open set condition),
(3) the graph .V1; E1/ is connected, that is, for any p; q 2 V1, there are p0; : : : ; ps 2

V1, such that p0 D p, ps D q, and .pi�1; pi / 2 E1, for all i D 1; : : : ; s,
(4) if �; � 0 2 †n, � ¤ � 0, then w� .V0/ ¤ w� 0.V0/, and w� .K/ \ w� 0.K/ D

w� .V0/ \ w� 0.V0/ (nesting property),
(5) if p; q 2 V0, p ¤ q, then the symmetry with respect to …pq WD fz 2 RN W
kz � pk D kz � qkg maps combinatorial n-cells to combinatorial n-cells, for
any n 2 N [ f0g, and maps a combinatorial n-cell lying on both sides of…pq to
itself (symmetry property).

Remark 2.2. Any (open) regular polygon of the plane can be taken as the set U in
Definition 2.1 for some nested fractal. In [1,23] it is conjectured that V0 can only be
the vertex set of a regular planar polygon, or of an N -dimensional tetrahedron, or of
the convex envelope of the set fei ;�ei W i D 1; : : : ; N g, where fe1; : : : ; eN g is the
canonical basis of RN .

Set V WD [1nD0Vn, E WD [1nD0En, and, for any e D .eC; e�/ 2 E, and any
function f , set h@f; ei WD f .eC/ � f .e�/. For any � 2 †, set j� j D n, if � 2 †n.

The following definitions are taken from [34,35], with slight modifications.
Definition 2.3. IfX is a finite set, let us denote by C.X/ the set of functions fromX
to R, and by D the set of quadratic functionals E W C.V0/! R of the form

EŒf � WD
X

.p;q/2E0

cpq.f .p/ � f .q//
2
D

X
e2E0

ce jh@f; eij
2;

where cpq D cqp > 0, .p; q/ 2 E0. For E 2 D , n 2 N, set

Sn.E/Œf � WD
X
�2†n

EŒf ı w� �; 8f 2 C.Vn/:

A functional E 2 D is called an eigenform, with eigenvalue � > 0, if

inffS1.E/Œg� W g 2 C.V1/; gjV0 D f g D �EŒf �; 8f 2 C.V0/:
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Lindstrøm proved that there is an eigenform bE 2 D . Note that all eigenforms
have the same eigenvalue �, which satisfies � 2 .0; 1/, see [37, Proposition 3.8].
It is known that bE1Œf � WD limn!1 ��nSn.bE/Œf � defines a Dirichlet form on the
fractal K. Define F WD ff 2 C.K/ W bE1Œf � < 1g. It turns out that F does not
depend on the eigenform, cf. [35, Section 3].
Theorem 2.4. Let E 2 D , not necessarily an eigenform. Then there exists

E1Œf � WD lim
n!1

��nSn.E/Œf �; f 2 F :

Moreover, there is an eigenform E 0 2 D such that E1 D E 01.

Proof. See [35, Theorem 4.11 and Remark 4.1].

Therefore, one can obtain the Dirichlet form on the fractal K just by taking any
quadratic form E 2 D , and computing E1.
Remark 2.5. In the general case of p.c.f. self-similar fractals, the self-similar
Dirichlet forms were introduced in [22,27], see also [23] where one can find the
previous results, and much more. Some results in the setting of noncommutive
geometry are contained in the pioneering papers [24,25].

2.2. Spectral triples. Let us recall that .A;H ;D/ is called a spectral triplewhenA

is a �-algebra acting on the Hilbert space H ,D is a self adjoint operator on the same
Hilbert space such that ŒD; a� is bounded for any a 2 A, and D has compact
resolvent. In the following we shall assume that 0 is not an eigenvalue of D. In
the general case one should replace jDj�d below with e.g. .I CD2/�d=2. Such a
triple is called dC-summable, d 2 .0;1/, when jDj�d belongs to the Macaev ideal
L1;1 D fa W Sn.a/logn < 1g, where Sn.a/ WD

Pn
kD1 �k.a/ is the sum of the first n

largest eigenvalues (counted with multiplicity) of jaj.
For dC-summable spectral triples, the zeta function of the spectral triple is

defined as Z.s/ D Tr.jDj�s/, and the (noncommutative) metric dimension d of
.A;H ;D/ is defined as the abscissa of convergence ofZ.s/. The dimension spectrum
is the larger set consisting of the poles of the meromorphic extension of Z.s/.
The noncommutative version of the integral on functions is given by the formulaH
a D Tr!.ajDj�d /, where, for T > 0, Tr!.T / WD lim! Sn.T /

logn is the Dixmier trace,
i.e. a singular trace summing logarithmic divergences. It is well known (cf. [13] and
[6, Thm. 3.8]) that the noncommutative integral can be computed asI

a D Tr!.ajDj�d / D
1

d
RessDd Tr.ajDj�s/

when the limit in the definition of residue exists.
In analogy with the classical setting, one may define the ˛-dimensional Hausdorff

functional as the map a 7!
H
a D Tr!.ajDj�˛/, and it turns out that such functional
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on A can be non-trivial only if ˛ D d.A;H ;D/ [17]. However, when considering
the Dirichlet form as in the introduction, things may change. Given a spectral triple,
one may define an associated energy functional as

EŒa� D RessDd Tr
�
jŒD; a�j2jDj�s

�
:

Indeed, in the case of manifolds, this formula gives back the Dirichlet integral. For
fractal spaces instead, it turns out that the correct Hausdorff functional is not related
to the metric dimension of the spectral triple, but to another dimension, cf. [12] and
Section 4 below.

We conclude this brief description of some features of spectral triples with
the notion of noncommutative distance. Given two states '; on the C�-algebra
generated by A, their distance is defined as

dD.';  / D sup
kŒD;a�k�1

j'.a/ �  .a/j:

Under suitable circumstances, such distance metrizes the weak �-topology on states
(cf. [36]). In the commutative case, one may choose delta-functions as states, thus
recovering a distance on points. In Section 5 we propose a modification of this
formula in order to obtain the original distance on nested fractals.

3. Spectral triples on self-similar fractals

A standardway to construct spectral triples on a self-similar fractalK is the following:
� Select a subset S � K together with a triple To D .�o;Ho;Do/ on C.S/.
� Set T; D .�;;H;;D;/ on C.K/, where �;.f / D �o.f jS /, H; D Ho,
D; D Do.

� Set T� WD .�� ;H;;D� / on C.K/, with �� .f / D �;.f ı w� /, D� D ��1� D;,
�� D

Qj� j
iD1 ��.i/.

� Set T D
L
� T� onC.K/. The �-algebraA is usually taken asA D ff 2 C.K/ W

ŒD; f �is bddg, if not otherwise stated.

Definition 3.1 (Discrete triple on self-similar fractals). AssumeK to be a self-similar
fractal in Rn, and construct a triple To D .�o;Ho;Do/ on C.V0/,Do D FojDoj the
polar decomposition of the Dirac operator, as follows:

Ho D

M
e2E0

`2.e/; �o.f / D
M
e2E0

f .eC/; jDoj D
M
e2E0

`.e/�1I

where `.e/ > 0 denotes the length of an edge and Fo is the self-adjoint unitary
sending an oriented edge to the same edge with the opposite orientation. Then
construct the triples T� and T D

L
� T� as above.
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Remark 3.2. (1) Observe that the spectral triple To fully decomposes as a direct
sum on unoriented edges, where, for any unoriented edge e, the Hilbert space is a
copy of C2, �o.f / acts as the diagonal matrix consisting of the values of f at the
end points of e, andDo D `.e/�1

�
0 1
1 0

�
.

(2) Discrete spectral triples are characterized by the fact that the subspace S on
which the spectral triple is based is a discrete space, or, the corresponding Hilbert
space is finite dimensional. For the Sierpinski gasket, spectral triples for which the
subspace S is a continuous space have been considered, e.g. in [8,9,12], where the
subset S is homeomorphic to a circle.

Theorem 3.3. Assume K to be a nested fractal in Rn. The zeta function Z.s/ D

Tr.jDj�s/ of .A;H ;D/ has a meromorphic extension given by

Z.s/ D

P
e2E0

`.e/s

1 � k�s
:

Therefore, the metric dimension dD of the spectral triple .A;H ;D/ is dD D d D
logk

log1=� and the dimensional spectrum of the spectral triple is

Sdim D

�
d

�
1C

2�i

log k
n

�
W n 2 Z

�
� C :

Z has a simple pole in dD , and the measure associated via Riesz theorem with
the functional f !

H
f coincides with a multiple of the Hausdorff measure Hd

(normalized on K):I
f D Tr!

�
f jDj�d

�
D

1

log k
X
e2E0

`.e/d
Z
K

f dHd f 2 C.K/:

Proof. The eigenvalues of jD� j are exactly f 1

`.e/�j�j
ge2E0 , each one with multiplic-

ity 1.
Hence Tr.jD� j�s/ D �sj� j

P
e2E0

`.e/s and for Re s > d we have

Tr.jDj�s/ D
X
�

Tr.jD� j�s/ D
X
e2E0

`.e/s
X
�

�sj� j D
X
e2E0

`.e/s
X
n�0

X
j� jDn

�sn

D

X
e2E0

`.e/s
X
n�0

kn�sn D
X
e2E0

`.e/s.1 � k�s/�1 :

Therefore, we have Sdim D fd
�
1C 2�i

logkn
�
W n 2 Zg � C. Now we prove that the

volume measure is a multiple of the Hausdorff measure Hd . Clearly, the functional
Tr!.f jDj�d / makes sense also for bounded Borel functions on K, and we recall
that the logarithmic Dixmier trace may be calculated as a residue (cf. [13] and
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[6, Thm. 3.8]): d Tr!.f jDj�d / D RessDd Tr.f jDj�s/, when the latter exists.
Then, for any multi-index � , denoting by C� WD w� .K/ a cell of K, we get

d Tr!
�
�C� jDj

�d
�
D RessDd Tr

�
�C� jDj

�s
�
D lim
s!dC

.s � d/ Tr
�
�C� jDj

�s
�

D lim
s!dC

.s � d/
X
�

Tr
�
�C� ı w� jD� j

�s
�
;

and we note that �C� ıw� is not zero either when � < � or when � � � . In the latter
case, �C� ı w� D 1. Observe that

Tr
�
�C� ı w� jD� j

�s
�
� Tr

�
jD� j

�s
�
D �sj� j

X
e2E0

`.e/s ! �d j� j
X
e2E0

`.e/d

when s ! dC, hence

lim
s!dC

.s � d/Tr.�C� ı w� jD� j�s/ D 0:

Therefore we may forget about the finitely many � < � , and get

d Tr!
�
�C� jDj

�d
�
D lim
s!dC

.s � d/
X
���

Tr
�
jD� j

�s
�

D lim
s!dC

.s � d/

1X
nD0

kn�s.j� jCn/
X
e2E0

`.e/s

D �d j� j
X
e2E0

`.e/d lim
s!dC

s � d

1 � k�s

D
1

kj� j log 1=�

X
e2E0

`.e/d D
1

log 1=�
X
e2E0

`.e/dHd .C� / :

This implies that, for any f 2 C.K/ for which f � �C� ,I
f �

1

log k
X
e2E0

`.e/d
�
1

k

�j� j
;

therefore points have zero volume, and
H
� PC� D

H
�C� , where PC� denotes the interior

of C� . As a consequence, for the simple functions given by finite linear combinations
of characteristic functions of cells or vertices,

H
' D 1

logk
P
e2E0

`.e/d
R
' dHd .

Since continuous functions are Riemann integrable w.r.t. such simple functions, the
thesis follows.

Remark 3.4. The above proof holds in greater generality than stated, since it doesn’t
use the symmetry property of the nested fractal K.
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4. A noncommutative formula for the Dirichlet energy

As explained in the introduction, we propose the following expression for the energy
form on a spectral triple:

RessDı Tr
�
jDj�s=2jŒD; f �j2 jDj�s=2

�
:

However, while for smooth manifolds ı coincides with the dimension, for singular
structures such as fractals the metric dimension d is in general different from the
energy dimension ı [12]. Here we characterize the energy dimension for nested
fractals in terms of the scaling parameters for the distance and the energy, recovering
in particular the same value as in [12] for the Sierpinski gasket. We also note that for
fractals, elements a with finite energy are not necessarily Lipschitz, namely ŒD; a� is
unbounded in general, however ŒD; a�jDj�s=2 isHilbert-Schmidt, for s > ı. A feature
of the discrete spectral triples we are using is that the operators jDj and jŒD; f �j are
diagonal w.r.t. the basis of the Hilbert space made of oriented edges, in particular
they commute, so we may replace jDj�s=2jŒD; f �j2 jDj�s=2 with jŒD; f �j2 jDj�s ,
and some computations are greatly simplified. As in [12], the residue formula seems
to be more efficient than the Dixmier trace formula, therefore we only discuss the
former.

4.1. The residue formula.
Theorem 4.1. Let K be a nested fractal with scaling parameter �, eigenvalue � for
the eigenform, and F the set of finite energy functions, endowed with the discrete
spectral triple described above. Then, for any non-constant f 2 F , the abscissa of
convergence of ZjŒD;f �j2.s/ D Tr.jŒD; f �j2 jDj�s/ is equal to ı D 2� log�

log� , and the
residue produces a self-similar Dirichlet form:

EDŒf � D RessDı ZjŒD;f �j2.s/ D .log 1=�/�1E1Œf �;

where E on C.V0/ is given by EŒf � D
P
e2E0

`.e/ı�2jh@f; eij2.
Lemma 4.2. Assume we have � 2 .0; 1/, and a W N � Œ0;1/! R continuous in the
second variable, such that lim

n!1;
"!0

a.n; "/ D a0. Then

lim
"!0C

"
X
n2N

�n"a.n; "/ D
a0

log.1=�/
:

Proof. From the hypothesis, for all 
 > 0, there exist n0 2 N, "0 > 0, such that
0 < " < "0, n > n0) ja.n; "/ � a0j < 
 . Therefore,

"
X
n2N

�n"a.n; "/ < "
X
n�n0

�n"a.n; "/C "
X
n>n0

�n".a0 C 
/

< "
X
n�n0

a.n; "/C "
.a0 C 
/�

.n0C1/"

1 � �"
"!0
!

a0 C 


log.1=�/
:
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With similar estimates, we get

lim
"!0C

"
X
n2N

�n"a.n; "/ D
a0 � 


log.1=�/
:

The thesis follows by the arbitrariness of 
 .

Proof. Theorem 4.1 Since jŒD; f �j2jDj�s D
M
e2E

`.e/s�2jh@f; eij2I2,

Tr
�
jŒD; f �j2jDj�s

�
D

X
n2N

X
e2E0

X
j� jDn

`.w� .e//
s�2
jh@f;w� .e/ij

2

D

X
n2N

en..s�2/ log�Clog�/
X
e2E0

`.e/s�2��n
X
j� jDn

jh@f;w� .e/ij
2:

We observe that, by Theorem 2.4, the sequence

��n
X
e2E0

X
j� jDn

jh@f;w� .e/ij
2:

converges, for f 2 F , to a suitable energy form, when n ! 1, hence is bounded
from above and from below by suitable constants Mf and mf . Then, setting
`max D maxe2E0 `.e/, `min D mine2E0 `.e/, for s < 2 we get

mf `
s�2
max

X
n2N

en..s�2/ log�Clog�/ � Tr
�
jŒD; f �j2jDj�s

�
�Mf `

s�2
min

X
n2N

en..s�2/ log�Clog�/:

Therefore the series above converges iff s > ı WD 2 �
log�
log� , which proves the first

statement.
Let us now consider the energy functional E on C.V0/ in the statement. Then

Sn.E/Œf � D
P
j� jDn

P
e2E0

`.e/ı�2jh@f;w� .e/ij
2, and ��nSn.E/Œf � converges

to a self-similar Dirichlet form E1Œf � by Theorem 2.4. Setting Sn.E; "/Œf � DP
j� jDn

P
e2E0

`.e/ıC"�2jhf; �.e/ij2, we get

RessDı Tr
�
jŒD; f �j2 jDj�s

�
D lim
"!0C

"
X
n2N

�n"��nSn.E; "/Œf �:

Since `"minSn.E/Œf � � Sn.E; "/Œf � � `"maxSn.E/Œf �; the function .n; "/ 7!

��nSn.E; "/Œf � satisfies the hypothesis of Lemma 4.2, so that, when f has finite
energy,

RessDı Tr
�
jŒD; f �j2 jDj�s

�
D

1

log 1=�
E1Œf �:
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4.2. An example of non-uniqueness. When the fractal has a unique self-similar
energy form, the Theorem above shows that such unique form can be obtained as a
suitable residue. We now discuss the case of the Vicsek fractal, where uniqueness
does not hold.

For theVicsek snowflake, autoforms are parametrized, (up to a scalarmultiple), by
the conductances .1; 1; 1; 1;H;H�1/, H > 0, [32]. The corresponding self-similar
energies can be recovered with our approach via metric deformations,

!

Figure 1. Rhombic Vicsek snowflake

namely are associated with the fractal determined by 5 similitudes with scaling
parameter 1/3, whose fixed points coincide with the 4 vertices of a rhombus and with
the center of the rhombus itself. This means that with our approach the 1-parameter
family of energies for the Vicsek square correspond to a 1-parameter family of
metrically different fractals. Let us remark that such deformed Vicsek do not satisfy
the symmetry part of the definition of nested fractal (cf. Definition 2.1(5)), however
our approach via spectral triples is anyway applicable (see Remark 3.4), in particular
the Zeta functionZjŒD;f �j2.s/ D Tr.jŒD; f �j2 jDj�s/ stillmakes sense. The existence
of the limit involved in the residue formula and its relation with the energy form will
be proven below.

We assume the side of the rhombus has length 1, and angle is 2# � � , so that
the diagonals measure 2 sin# and 2 cos# , and the ratio between the lengths of the
diagonals is tan# .
Theorem 4.3. Let K be the rhombic Vicsek with angle 2# described above, with
the spectral triple as in Definition 3.1. Then the residue of the Zeta function
ZjŒD;f �j2.s/ D Tr.jŒD; f �j2 jDj�s/ at ı D 1 exists and coincides (up to a multiple)
with the self-similar energy associated with the eigenform with conductances
.1; 1; 1; 1;H;H�1/ on the Vicsek square, where

H D
2C
p
1C tan2 #

2C
p
1C cot2 #

:

Let us note that anyH > 0 can be uniquely obtained from a # 2 .0; �=2/.
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Proof. We observe that the proof of theorem 4.1 applies verbatim. Indeed the Zeta
function ZjŒD;f �j2.s/ D Tr.jŒD; f �j2 jDj�s/ depends on the lengths of the edges of
the deformed Vicsek, but these are only used to set up a functional E on C.V0/ given
by EŒf � D

P
e2E0

`.e/�1jhf; eij2, where the constants are: `.e/�1 D a D 1 for
the sides of the rhombus, `.e/�1 D g D .2 sin#/�1 D 1

2

p
1C cot2 # for the longer

diagonal, `.e/�1 D f D .2 cos#/�1 D 1
2

p
1C tan2 # for the shorter one. Such a

functional may then be interpreted as a functional E on C.V0/ for the undeformed
square. Since for the Vicsek square we have � D 1=3, � D 1=3, we obtain that ı D 1
and the residue in ı D 1 for the Zeta function exists and is a multiple of an energy
form on the Vicsek square.

We then make use of a computation of De Cesaris [14], establishing a relation
between the constants .a; a; a; a; f; g/ for a functional onC.V0/ and the conductances
.A;A;A;A; F;G/, with FG D A2, for the eigenform giving rise to the same energy:

A D
.aC f /.aC g/

2aC f C g
; F D

.aC f /2

2aC f C g
; G D

.aC g/2

2aC f C g
:

Therefore the normalized F is

H D
F

A
D
aC g

aC f
D
1C 1

2

p
1C tan2 #

1C 1
2

p
1C cot2 #

D
2C
p
1C tan2 #

2C
p
1C cot2 #

:

5. On the recovery of the geodesic distance induced by the Euclidean structure

As mentioned in the Introduction, for a given spectral triple .A;H ;D/, the (possibly
infinite) distance between states on the C�-algebra A is given by [13]

dD.';  / D sup
˚
j'.a/ �  .a/j W a 2 A; kŒD; a�k � 1

	
:

Definition 5.1 (An essential Lip-norm for spectral triples). Let us consider the
quotient map p W B.H /! B.H /=K , namely to the Calkin algebra. Then, given a
spectral triple T WD .A;H ;D/, we consider the seminorm

Less.a/ WD kp.ŒD; a�/k; a 2 A: (5.1)

Replacing the seminorm kŒD; a�k with Less.a/, we get a (possibly infinite) distance
between states on A

We now restrict our attention to the case when A is an abelian algebra. Then
both seminorms give rise to (possibly infinite) distances on the compact Hausdorff
space K given by the spectrum of the unital C�-algebra generated by A in B.H /

according to the following formulas:

dD.x; y/ D sup
˚
jf .x/ � f .y/j W f 2 A; kŒD; f �k � 1

	
; (5.2)

dess.x; y/ D sup
˚
jf .x/ � f .y/j W f 2 A; Less.f / � 1

	
: (5.3)
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We recall that a metric space K is called finitely arcwise connected [26] if any
pair of points can be joined by a rectifiable curve. Set

dgeo.x; y/ WD inf
˚
`.
/ j 
 W Œ0; 1�! K is rectifiable and 
.0/ D x; 
.1/ D y

	
:

If K � Rn is finitely arcwise connected, we call such a distance the Euclidean
geodesic distance on K.
Theorem 5.2. Let K be a finitely arcwise connected nested fractal. The (possibly
infinite) distance induced by Less on K is indeed finite, and coincides with the
Euclidean geodesic distance on K.
Remark 5.3. (a) Let us observe that, for the spectral triples usually associated with
(possibily noncommutative) manifolds, the spectrum of ŒD; a� has no non-essential
parts, hence the seminorm Less coincides with the usual seminorm kŒD; a�k.
(b) When K is a nested fractal, the seminorm kŒD; a�k produces a distance which
is intermediate between the Euclidean distance and the Euclidean geodesic distance
on K. For example, such distance takes value 1 between the adjacent vertices of a
Vicsek snowflake of side 1 instead of the value

p
2 given by the Euclidean geodesic

distance.
The proof of the theorem will require some steps.

5.1. Small triples. Given the graph .Vn; En/, let Tn WD
L
j� jDn T� be the triple

on C.Vn/ as in Definition 3.1, and the distance dn on Vn considered as a path space,
where paths consist of finite unions of consecutive edges in En, with length the sum
of the lengths of the edges.
Lemma 5.4. The Lipschitz seminorm

Ln.f / D sup
x¤y2Vn

jf .x/ � f .y/j

dn.x; y/

induced by dn coincides with the seminorm LDn associated with the triple Tn. As a
consequence, the noncommutative distance induced by LDn coincides with dn.

Proof. By definition,

LDn.f / D kŒDn; f �k D max
e2En

j@f .e/j

`.e/
:

Since for any e 2 En, dn.eC; e�/ D `.e/, LDn.f / � Ln.f /. Conversely, given
x; y 2 Vn, let 
 D .e1; : : : ; ek/ be a geodesic path connecting x and y, with ej 2 En,
j D 1; : : : ; k, so that

dn.x; y/ D

kX
jD1

`.ej /:
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Then

jf .x/ � f .y/j

dn.x; y/
�

kX
jD1

jh@f; ej ij

dn.x; y/
� max
jD1;:::;k

jh@f; ej ij

`.ej /

kX
jD1

`.ej /

dn.x; y/
� LDn.f /:

It is known that the distance on points induced by Ln as in (5.3) coincides with dn,
from which the last statement follows.

Let us denote by P .Vn; En/ the set of finite paths in .Vn; En/, the length of a
path being induced by the distance dn. The subsets of simple paths in P .Vn; En/,
i.e. those that visit any vertex atmost once, is denotedPS .Vn; En/. Any simple path is
determined by the finite sequence of its vertices, viceversa any sequence .x0; : : : ; xk/
of pairwise distinct vertices in Vn gives rise to a simple path if .xj�1; xj / belongs
to En.
Lemma 5.5. Let x; y 2 Vn, 
 W Œ0; 1� ! K a simple curve joining x with y. Then
there exists a finite sequence .t0; : : : ; tq/ of points in Œ0; 1� such that
(1) tj�1 < tj , j D 1; : : : ; q;
(2) 
.tj / 2 Vn, j D 0; : : : ; q, 
.t0/ D x, 
.tj / ¤ y, j D 0; : : : ; q � 1, 
.ti / ¤


.tj /; i ¤ j 2 f0; : : : ; qg;
(3) f
.t/; tj�1 < t < tj g \ Vn D ;, j D 1; : : : ; q;
(4) 
.tq/ D y.
The sequence .x0 D 
.t0/; : : : ; xq D 
.tq// determines a simple path in P .Vn; En/

which will be denoted by �n.
/. If 
 is rectifiable, `.�n.
// � `.
/.

Proof. The sequence .t0; : : : ; tq/ will be constructed by induction.
Base of the induction. Set t0 D 0.
Step of the induction. Given .t0; : : : ; tp/ satisfying .1/, .2/, .3/, either .4/ is
satisfied, hence the induction stops, or .4/ is not satisfied, in which case we set
tpC1 D inf�p , with

�p D
˚
t 2 Œ0; 1� W 
.t/ 2 Vn n f
.t0/; : : : ; 
.tp/g

	
;

and observe that �p is not empty since 1 2 �p and tpC1 is a minimum
since �p is compact. Note that tpC1 62 ft0; : : : ; tpg by construction and tpC1 62
[jD1;:::;p.tj�1; tj / by .3/, hence tpC1 > tp , namely .t0; : : : ; tpC1/ satisfies .1/. It
obviously satisfies .2/, and satisfies .3/ by the minimality of tpC1.

We now observe that, by property .3/, Gj D f
.t/ W tj�1 < t < tj g does
not intersect Vn, hence it is contained in [j� jDm PC� . Open set condition and
connectedness of Gj imply that there exists a single cell C of level n such that
Gj � PC , hence xj�1 D 
.tj�1/ and xj D 
.tj / 2 C . Since the graph of a cell is
complete, .xj�1; xj / 2 En, therefore .x0; : : : ; xq/ determines a path in P .Vn; En/.
The simplicity of �n.
/ and the inequality are obvious.
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Lemma 5.6. Let x; y 2 Vn.
(1) dn.x; y/ � dnC1.x; y/.

(2) If, for all n 2 N, any edge of level n is the union of edges of level n C 1, the
previous inequality is indeed an equality.

(3) dn.x; y/ � dgeo.x; y/.

Proof. (1) Let 
 be a geodesic path in P .VnC1; EnC1/ connecting x with y. By the
preceding lemma,

dn.x; y/ � `.�n.
// � `.
/ D dnC1.x; y/:

(2) Given a geodesic path 
 0 2 P .Vn; En/ connecting x with y, we may replace
any of its edges by the edges of level nC 1 that cover it. In this way we get a path

 2 P .VnC1; EnC1/ with the same length.

(3) Let 
 be a rectifiable curve in K connecting x with y. We have dn.x; y/ �
`.�n.
// � `.
/. Taking the infimum over all rectifiable 
 ’s we get the thesis.

Lemma 5.7. Let 
 W Œ0; 1�! Rn be a curve, G a dense subset in Œ0; 1�, `G.
/ given
by

`G.
/ D sup
� nX
jD1

j
.tj / � 
.tj�1/j W t0 < t1 < � � � < tn 2 G; n 2 N

�
:

Then `G.
/ D `.
/, in particular 
 is rectifiable iff `G.
/ <1.

Proof. Clearly `G.
/ � `.
/. Given t0 < t1 < � � � < tn 2 Œ0; 1�, choose s0 < s1 <

� � � < sn � G such that j
.tj / � 
.sj /j < "=n, j D 0; : : : n. Then

nX
jD1

j
.tj / � 
.tj�1/j

�

nX
jD1

�
j
.sj / � 
.sj�1/j C j
.tj / � 
.sj /j C j
.tj�1/ � 
.sj�1/j

�
� `G.
/C 2";

hence `.
/ � `G.
/C 2". The thesis follows by the arbitrariness of ".

Lemma 5.8. Let x; y be vertices inVm, fgngn�m a sequence of simple paths joining x
with y, gn 2 PS .Vn; En/, such that �k.gn/ D gk , for m � k � n, and assume
`.gn/ is bounded. Then there exists a rectifiable curve 
 inK such that�n.
/ D gn,
n � m, and `.
/ D limn `.gn/.
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Proof. Let us denote by Vn.g/ the sequence of vertices in Vn determined by gn,
n � m. Each Vn.g/ is a totally ordered set, and the family of sets Vn.g/ is increasing
in such a way that the order is preserved, so V1.g/ WD [nVn.g/ is also a totally
ordered set. Form � k � n, u preceding v in Vk.g/, let us denote by T vu .gn/ the sub-
path of gn from u to v. Let us note that, for any u; v, the sequence n! `

�
T vu .gn/

�
is increasing and bounded. We now setR.v/ D limn `

�
T vx .gn/

�
, v 2 V1.g/, denote

by G its range, set c D R.y/, and observe that R is order-preserving and injective.
Moreover, G is dense in Œ0; c�: if not, let 0 < a < b < c be such that .a; b/ is an
open interval in Œ0; c� nG, and, for any n � m, let un be the last vertex in Vn.g/ such
that R.un/ � a, vn the vertex following un in Vn.g/, en 2 En the edge joining un
with vn. Since R.vn/ > a, and R.vn/ 62 .a; b/ by hypothesis, R.vn/ � b. Then

`
�
.gn/

y
x

�
D `

�
T unx .gn/

�
C `.en/C `

�
T yvn.gn/

�
� aC `max�

n
C .c � b/;

where `max denotes the maximum length of an edge in E0. Passing to the limit on n
we get c � aC c � b, namely a � b, against the hypotheses. Now set 
 W G ! K,

.t/ D R�1.t/, and observe that, given s < t 2 G, n such that 
.t/; 
.s/ 2 Vn.g/,

j
.t/ � 
.s/j � `
�
T

.t/


.s/
.gn/

�
� t � s;

namely 
 is Lipschitz on G, therefore it extends to a continuous function on Œ0; c�
with values in K. By construction, �n.
/ D gn, n � m. By Lemma 5.7, 
 is
rectifiable. Finally, let X be the family of finite subsets of G, ordered by inclusion,
and, for any X D ft0 < t1 < � � � < tng 2 X, set `X .
/ WD

Pn
jD1 j
.tj / � 
.tj�1j.

Since X 7! `X .
/ is increasing, limX2X `X .
/ D `G.
/. For any n � m, let
Gn WD R.Vn.g//, so that Gn 2 X, and `Gn.
/ D `.gn/. Since fGngn�m is cofinal
in X, we get limn `.gn/ D `G.
/ D `.
/.

Theorem 5.9. For any x; y 2 V , limn dn.x; y/ D dgeo.x; y/. Moreover, there exists
a geodesic curve joining x with y.

Proof. Assume x; y 2 Vm. For any n � m choose a geodesic path 
n 2 P .Vn; En/

connecting x with y; being geodesic, 
n is simple.
We now construct by induction sequences gn 2 PS .Vn; En/, �n � N, n � m

such that

(1) �k.gn/ D gk; m � k � n,

(2) �n is infinite, contained in Œn;1/, and decreasing w.r.t. the inclusion, and for
any p 2 �n, �n.
p/ D gn.

Base case. Consider f�m.
n/; n � mg � PS .Vm; Em/. Since the latter is a finite
set, there exists gm 2 PS .Vm; Em/ such that the set�m WD fn � m W �m.
n/ D gmg
is infinite.
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Inductive step. If we have gk 2 PS .Vk; Ek/, �k � N, m � k � n, satisfying .1/
and .2/, construct gnC1 and �nC1 as follows. Consider˚

�nC1.
p/ W p 2 �n; p � nC 1
	
� PS .VnC1; EnC1/:

Since the latter is a finite set, there exists gnC1 2 PS .VnC1; EnC1/ such that the set

�nC1 WD
˚
p 2 �n W p � nC 1;�nC1.
p/ D gnC1

	
is infinite. Clearly, for m � k � n C 1, p 2 �nC1 � �k , �k.gnC1/ D
�k.�nC1.
p// D �k.
p/ D gk .

Let us now observe that, setting nk D min�k , the sequence nk is increasing
and tends to1, and `.gk/ D `.�k.
nk // � `.
nk /. Moreover, by Lemma 5.6 the
sequence dn.x; y/ D `.
n/ is increasing and bounded, hence has a finite limit, and,
by Lemma 5.8, the sequence gn gives rise to a rectifiable curve 
 joining x with y.
As a consequence,

`.
/ D lim
k
`.gk/ � lim

k
`.
nk / D lim

k
dnk .x; y/ D lim

n
dn.x; y/;

hence dgeo.x; y/ � `.
/ � limn dn.x; y/ � dgeo.x; y/, namely dgeo.x; y/ D
limn dn.x; y/ and 
 is geodesic.

5.2. Intermediate triples.
Definition 5.10. Let us set En;1 D [k�nEk , and observe that the graph .V;En;1/
is connected for any n 2 N. Then, for x; y 2 V , we pose

dn;1.x; y/ D inf
˚
`.
/ W 
 finite path in En;1 connecting x with y

	
and consider on V the triple Tn;1 D ˚j� j�nT� , with the seminorm

LDn;1.f / D sup
e2En;1

jh@f; eij

`.e/
:

Let us observe that L0;1 D LD is the seminorm used by Connes, namely it induces
the Connes’ distance on K.

Given x; y 2 V , define k.x; y/ D minfj 2 N W x; y 2 Vj g.
Lemma 5.11. For x; y 2 V , n � k.x; y/, dn;1.x; y/ D dn.x; y/. In particular,
any two vertices x; y 2 V are connected by a geodesic path in P .V;En;1/.

Proof. Recall that, since x; y 2 Vn,

dn.x; y/ D inf
˚
`.
/ W 
 finite path in En connecting x with y

	
;

therefore dn;1.x; y/ � dn.x; y/. Conversely, given a path 
 2 P .V;En;1/, the
path �n.
/ belongs to P .Vn; En/ and is shorter then 
 . Taking the infimum over 




Spectral triples for nested fractals 1431

we get the first statement. As for the second, if k.x; y/ � n take the geodesic path
in .Vn; En/. If k D k.x; y/ > n, take the geodesic path 
 2 P .Vk; En;k/, where
En;k D [n�p�kEp . Given any other path 
 0 2 P .V;En;1/ we may consider the
path �k.
 0/, which is shorter and belongs to P .Vk; Ek/ � P .Vk; En;k/, hence
`.
/ � `.�k.


0// � `.
 0/. The thesis follows.

Let us now consider the Lipschitz seminorm Ln;1 on functions on V associated
with the distance dn;1.x; y/,

Ln;1.f / D sup
x;y2V

jf .x/ � f .y/j

dn;1.x; y/
:

Lemma 5.12. Ln;1.f / D LDn;1.f /, hence the noncommutative distance induced
by LDn;1.f / on V coincides with dn;1. In particular, setting n D 0, we obtain that
the Connes’ distance on V coincides with d0;1.

Proof. Since, by Lemma 5.11, any two vertices x; y 2 V are connected by a geodesic
path, the proof of Lemma 5.4 applies verbatim.

5.3. Conclusion. Let us now observe that, for any Lipschitz function f , the operator
jŒD; f �j is completely diagonalizable, with eigenvalues�

jh@f; eij

`.e/
W e 2 E0;1

�
D

[
n2N

ƒn; ƒn D

�
jh@f; eij

`.e/
W e 2 En

�
:

Therefore the essential spectrum of jŒD; f �j is given by the limit points of the
sequences

˚
fang W an 2 ƒn

	
, the norm in the Calkin algebra is given by themaximum

of the essential spectrum, hence

Less.f / D kp.ŒD; f �/k D inf
n

sup
e2En;1

jh@f; eij

`.e/
D inf

n
Ln;1.f /:

Proposition 5.13. For any x; y 2 V , dess.x; y/ D dgeo.x; y/, and, if Less.f / D 1

then jf .x/ � f .y/j � dess.x; y/.

Proof. Since, for any x; y 2 V , dn;1.x; y/ is increasing with n,

dess.x; y/ D sup
f 2C.K/

jf .x/ � f .y/j

Less.f /
D sup
f 2C.K/

sup
n

jf .x/ � f .y/j

Ln;1.f /

D sup
n

sup
f

jf .x/ � f .y/j

Ln;1.f /
D sup

n
dn;1.x; y/

D lim
n
dn;1.x; y/ D lim

n
dn.x; y/ D dgeo.x; y/:
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We note in passing that the request f 2 C.K/ plays no role when x; y 2 V . As for
the second statement, Less.f / D 1 means Ln;1.f / D 1C "n, with "n ! 0. Then,
for n � k.x; y/, jf .x/ � f .y/j � .1C "n/dn.x; y/. Passing to the limit on n one
gets the thesis.

Proof of Theorem 5.2. Let x ¤ y 2 K, 
 a rectifiable curve joining x with y
parametrised by arc-length, and set c D `.
/. Let us note that the set

I
 D
˚
t 2 Œ0; c� W 
.t/ 2 V

	
is dense in Œ0; c�. If not, we would get an interval .a; b/ � Œ0; c� such that, for any
n 2 N,


o WD
˚

.t/ W t 2 .a; b/

	
\ Vn D ;;

namely, for anyn 2 N, 
o is contained in a single cellCn of leveln, hence 
o � \nCn,
which consists of at most one point, that is the interval .a; b/ is empty. Therefore,
there exists a minimum k such that the set

I
;p D
˚
t 2 Œ0; c� W 
.t/ 2 Vp

	
;

p � k, is non-empty and closed, by continuity of 
 . We set sp D min I
;p and
tp D max I
;p . By the density of I
 , sp decreases to 0 and tp increases to c, which
implies that, setting xp D 
.sp/ and yp D 
.tp/, d.x; xp/ � `.
 jŒ0;sp�/ D sp ! 0,
and d.y; yp/ � `.
 jŒtp ;c�/ D c � tp ! 0. As a consequence, if f 2 C.K/ and
Less.f / � 1,

jf .xk/ � f .x/j D lim
p2N
jf .xk/ � f .xp/j D

ˇ̌̌ X
p�k

f .xp/ � f .xpC1/
ˇ̌̌

�

X
p�k

jf .xp/ � f .xpC1/j �
X
p�k

dess.xp; xpC1/

�

X
p�k

`
�

 jŒspC1;sp�

�
D

X
p�k

.sp � spC1/ D sp;

where, in the first equality we used the continuity of f , in the second inequality the
inequality in Proposition 5.13, in the last inequality the identitydess D dgeo on vertices
of Proposition 5.13, and in the last but one equality the fact that 
 is parametrized by
arc length. Reasoning in the same way, one gets jf .yk/ � f .y/j � c � tk , hence

jf .x/ � f .y/j � jf .xk/ � f .yk/j C jf .xk/ � f .x/j C jf .yk/ � f .y/j

� jf .xk/ � f .yk/j C sk C .c � tk/I

jf .xk/ � f .yk/j � jf .x/ � f .y/j C jf .xk/ � f .x/j C jf .yk/ � f .y/j

� jf .x/ � f .y/j C sk C .c � tk/:
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As a consequence,

dess.x; y/ D sup
˚
jf .x/ � f .y/j W f 2 C.K/; Less.f / � 1

	
� dess.xk; yk/C sk C .c � tk/;

and, analogously,

dess.xk; yk/ � dess.x; y/C sk C .c � tk/;

which implies jdess.xk; yk/ � dess.x; y/j � sk C .c � tk/! 0, k !1, namely

dess.x; y/ D lim
k
dess.xk; yk/:

On the other hand,

jdgeo.xk; yk/ � dgeo.x; y/j � dgeo.xk; x/C dgeo.yk; y/

� `
�

 jŒ0;sk �

�
C `

�

 jŒtk ;c�

�
D sk C .c � tk/;

from which
dgeo.x; y/ D lim

k
dgeo.xk; yk/ D lim

k
dess.xk; yk/;

which immediately implies the thesis.

Corollary 5.14. Assume that any edge of level n is the union of edges of level nC 1.
Then the Connes’ distance dD for the triple T coincides with the geodesic distance,
hence with the essential distance.

Proof. Letx; y 2 V . Then, byLemma5.11, d0;1.x; y/ is realized by a geodesic path
inP .V;E0;1/, which, as in the proof of the Lemma, can be taken inP .V;E0;k/, with
k D k.x; y/. Since any edge of level n is the union of edges of level nC 1, such path
has an identical counterpart (as a set) in P .V;Ek/, namely d0;1.x; y/ D dk.x; y/.
Making use of Lemma 5.6 and of Theorem 5.9, we get d0;1.x; y/ D dgeo.x; y/, and
finally, by Lemma 5.12, dD.x; y/ D dgeo.x; y/. The step from vertices to general
points can be proved as in the theorem above.

Remark 5.15. As mentioned at the beginning, our spectral triples are based here
on the complete graph with vertices V0. Therefore the hypothesis of the Corollary
is satisfied e.g. for the generalized Sierpinski triangles in the plane obtained by
contractions of 1=p, or by the higher-dimensional gaskets inscribed in n-simplices.
However it is not satisfied for the poly-gaskets (N > 3) in [4], nor for the Lindstrøm
or Vicsek snowflakes. The von Koch curve is not even finitely arcwise connected.
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