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Abstract. For every von Neumann algebra M and 0 < p < 1 we construct a nontrivial
exact sequence of M-bimodules and homomorphisms 0 ! Lp ! Zp.M/ ! Lp ! 0,
where Lp is the Haagerup Lp space built over M. The middle space Zp.M/ can be seen as a
noncommutative version of the Kalton–Peck space Zp .
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1. Introduction and preliminaries

The aim of this short note is to construct a noncommutative version of the Kalton–
Peck spaces in [23] for Lp spaces associated to a general von Neumann algebra,
semifinite or not.

1.1. Background. Before going further let us recall some highlights on the “three-
space problem” that may help the reader to understand how the content of this paper
is related to the existing constructions. The reader can find other points of view in
[8,14,22,24].

In 1975, Enflo, Lindenstrauss, and Pisier [11] proved that there exist “twisted
Hilbert spaces”, that is, Banach spaces Z with a closed subspace Y such that both Y
and the quotient Z=Y are (isomorphic to) Hilbert spaces but Z is not. This can be
rephrased by saying that there are nontrivial exact sequences of Banach spaces

0 ����! `2
{

����! Z
�

����! `2 ����! 0:

Here, “nontrivial” means that the image of { is not complemented in Z.
Later on Kalton and Peck gave very explicit examples of nontrivial sequences

0 ����! `p ����! Z ����! `p ����! 0 (1.1)
�Supported in part by projects MTM2016-76958-C2-1-P (Spain), IB16056 and GR15152 (Junta de

Extremadura).
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for 0 < p < 1. Their most popular examples are the so-called Kalton–Peck
spaces Zp , which are “extreme” in many respects. From a “modern” perspective the
space Zp arises from the quasilinear map � W `p ! CN defined coordinatewise by
�.f / D f log.jf j=kf kp/. Indeed,

Zp D
˚
.g; f / 2 CN

� `p W kg ��.f /kp C kf kp <1
	

with the quasinorm you can imagine. Soon afterwards it was realized that � is, not
merely quasilinear, but also a centralizer: one has

k�.af / � a�.f /kp � Ckak1kf kp .a 2 `1; f 2 `p/;

which makes Zp into an `1-module in such a way that the arrows in (1.1)
become homomorphisms. Actually the quasilinear maps constructed in [23] are
all centralizers.

This was claiming for generalization, and Kalton undertook the task in two
different directions: he considered the function space version in [19] (regarding the
Lebesgue spaces Lp as L1-modules) and the Schatten classes in [20] (regarding
the Schatten classes Sp as B.H/-modules). Kalton shows by sheer force that the
mapping � W Sp ! B.H/ defined by �.f / D f log.jf j=kf kp/ is a bicentralizer:
it obeys an estimate of the form

k�.af b/ � a�.f /bkSp
� Ckak1kf kSp

kbk1 .a; b 2 B.H/; f 2 Sp/;

where jf j D .f �f /1=2 and the logarithm is defined by the functional calculus.
Although this point is deliberately neglected in [20], this gives rise to an extension

of bimodules over B.H/ that was studied in [33].
In the meantime Rochberg and Weiss had discovered that self-extensions arise

naturally in interpolation theory. The basic idea is that whenever one finds a given
Banach space X inside an “interpolation scale” one can construct a self-extension
of X by “differentiating” the scale. The resulting extension may depend on the
interpolation method that defines the scale, of course. Thus, for instance, when
p > 1, the genuine Kalton–Peck space Zp can be obtained by “interpolating” `1
and `1 by the complex method. Replacing the couple .`1; `1/ by .B.H/; S1/ one
obtains the Schatten classes Sp and the corresponding “noncommutative” Kalton–
Peck spaces.

Later on, Kalton proved the astonishing fact that every centralizer onLp.�/, with
1 < p < 1, arises by interpolation of two or three Köthe function spaces; see the
paper [21] which in a sense can be seen both as a synthesis and a culmination of [19]
and [20].

In [5] these ideas are applied to obtain bicentralizers on (and the corresponding
self-extensions of) all noncommutative Lp spaces built on semifinite von Neumann
algebras when p > 1.
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However, for type III algebras, the interpolation mechanism of [5] produces two
(rather than one) self-extensions ofLp of one sided modules, one of left modules and
other of right modules. This is due to the “asymmetry” of the embedding M!M�
used to obtain the (Kosaki) Lp spaces by interpolation. Section 5.2 explains why
this attempt was doomed to fail.

1.2. Results. In this paper we complete the results of [5] by using the Haagerup Lp
spaces from the very beginning. The key point is to slightly change the perspective
focusing on the spaces of analytic functions rather than on the associated analytic
families of Banach spaces. This is done in Section 2 which treats the case p > 1. In
Section 3 we adapt a factorization argument which goes back to Kalton’s memoir [19]
to cover the case 0 < p � 1. The proof of “non-triviality” is achieved in Section 4
which also contains some duality issues.

In the end it turns out that the mapping f 7! �.f / D f log.jf j=kf k/ still
defines a (two-sided) centralizer on Lp.M/ but taking values in L0.R/, where R is
the crossed product of M and R induced by the modular group of a weight on M.
Thus, the space Zp.M/ D f.g; f / 2 L0.R/ � L0.R/ W f; g � �.f / 2 Lp.M/g

quasinormed by k.g; f /k� D kg � �f kLp.M/ C kf kLp.M/ fits into a nontrivial
sequence of M-bimodules and homomorphisms

0 ����! Lp.M/ ����! Zp.M/ ����! Lp.M/ ����! 0

and can be seen as a rather natural noncommutative version of Kalton–Peck’s Zp .

1.3. Haagerup Lp spaces. We assume the reader is acquainted with noncommu-
tative Banach function spaces associated to semifinite von Neumann algebras and
Haagerup construction of Lp for general von Neumann algebras (cf. [15]). Here we
will only recall the facts we need to fix the notation and we refer the reader to the
classical sources [25,34] for full details.

LetM be a von Neumann algebra with a distinguished normal, faithful, semifinite
weight '. We denote by � W R ! Aut.M/ the “modular” group of '. The crossed
product R D RË� M has a trace � such that � ı O�t D e�t� for every t 2 R, where O�t
is the dual action of �t onR. LetL0.R; �/ be the space of all � -measurable operators
affiliated to R. Then, for 0 < p < 1, the Haagerup noncommutative Lp-space
associated to .M; '/ is

Lp.M; '/ D
˚
f 2 L0.R; �/ W O�t .f / D e

�t=pf for every t 2 R
	
;

while

L1.M; '/ D
˚
f 2 L0.R; �/ W O�t .f / D f for every t 2 R

	
is a subalgebra of R isomorphic to M.
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There is an order preserving, linear isomorphism � 2 M� 7! h� 2 L1.M; '/.
Let Tr W L1.M; '/ ! C be the Haagerup “trace”, that is, Tr.h�/ D h1M; �i. One
has

Tr jh� j D k�kM� .� 2M�/:

This allows one to define a quasinorm (actually a norm when 1 � p < 1) on the
spaces Lp.M; '/ by letting

kf kLp.M;'/ D .Tr jf jp/1=p :

From now on, we will omit the underlying algebra M and the reference weight '
(but not R nor � ) in the notations. Accordingly, we write Lp instead of Lp.M; '/

and denote its quasinorm by k � kp . We use subscripts for Haagerup spaces and
superscripts for “tracial” spaces. The distinction is pertinent because if the weight '
happens to be a trace, then the Haagerup space Lp D Lp.M; '/ is not the same as
the “tracial” Lp.M; '/ D ff 2 L0.M; '/ W .'jf jp/1=p < 1g, even if they are
isometrically isomorphic bimodules over M.

One has the following version of Hölder’s inequality: if f 2 Lp and g 2 Lq ,
then fg 2 Lr , where r�1 D p�1 C q�1, and kfgkr � kf kpkgkq . Since L1
“agrees” with M, this provides the M-module structures of the spaces Lp .

Actually, it also provides the dual of Lp for p 2 Œ1;1/. Indeed, the dual of Lp
is isometric to Lq , where p�1 C q�1 D 1 under the pairing hf; gi D Tr.fg/ for
f 2 Lp , g 2 Lq .

1.4. Lorentz spaces over R. Recalling that R is semifinite, with trace � , we may
consider the noncommutative Lorentz space

Lp;1.R; �/ D
˚
f 2 L0.R; �/ W �f 2 L

p;1.RC/
	
:

Here, �f W RC ! R is the “generalized singular value” function of f and we
put kf kp;1 D k�f kLp;1.RC/. Our interest in these spaces relies on the fact,
due to Kosaki, that each f 2 Lp belongs to Lp;1.R; �/ and kf kp D kf kp;1;
see [12, Lemma 4.8 and the comment closing Section 4 on p. 296] and [26]. Note
that the “tracial” Lp.R; �/ does not contain Lp since Tr is not the restriction of �
to L1.

1.5. Extensions. Let X and Y be quasi-Banach modules over a Banach algebra M.
An extension of X by Y is an exact sequence

0 ����! Y
{

����! Z
�

����! X ����! 0 (1.2)

where Z is another quasi-Banach module over M and the arrows represent
(continuous) homomorphisms. By the open mapping theorem { embeds Y as a
closed submodule of Z and the quotient is isomorphic to X . The extension (1.2)
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is said to be trivial, or to split, if there is a homomorphism $ W Z ! Y such
that { ı$ D IY or, equivalently, if there is a a homomorphism | W X ! Z such
that | ı � D IX . In this case Z is isomorphic to Y � X through the mapping
z 7! .$.z/; �.z//. In particular Z is linearly isomorphic to Y �X .

1.6. Centralizers and extensions. Let X and Y be a quasi-Banach modules over
a Banach algebra M and let W be another M module containing Y the the purely
algebraic sense. Let further ˆ W X ! W be a homogeneous mapping, that is,
ˆ.�f / D � f̂ for every � 2 C and f 2 X .
(a) We say that ˆ is quasilinear from X to Y if, for every f; g 2 X , the difference
ˆ.f C g/ � f̂ �ˆg belongs to Y and

kˆ.f C g/ �ˆ.f / �ˆ.g/kY � Q
�
kf kX C kgkX

�
for some constantQ independent on f; g.
(b) We say that ˆ is a left-centralizer from X to Y if there is a constant C such that
for every a 2M and every f 2 X the difference ˆ.af /� aˆ.f / belongs to Y and

kˆ.af / � aˆ.f /kY � CkakMkf kX :

Right-centralizers are defined analogously, using right-module structures.
(c) Finally, ˆ is said to be a bicentralizer over M if it is both a left-centralizer and a
right-centralizer. A bicentralizer obeys an estimate of the form

kˆ.af b/ � aˆ.f /bkY � CkakMkf kXkbkM:

The least constant for which the preceding inequality holds is denoted by C Œˆ�.
In this paper we will always have X D Y D Lp for some finite p and W D

L0.R; �/ in whose case we say that ˆ is a (bi-) centralizer on Lp . A centralizer
on Lp is said to be “real” if it takes self-adjoint operators (of Lp) to self-adjoint
operators (of L0.R; �/ ).

Let is briefly describe the connection between centralizers and extensions.
Suppose ˆ W X ! W is quasilinear from X to Y . Then the set

Y ˚ˆ X D
˚
.g; f / 2 W �X W g � f̂ 2 Y

	
:

is a linear subspace of W �X and the functional

k.g; f /kˆ D kg � f̂ kY C kf kX

is a quasinorm on it. We define maps { W Y ! Y ˚ˆ X and � W Y ˚ˆ X ! X

by {.g/ D .g; 0/ and �.g; f / D f , respectively. Both maps are easily seen
to be relatively open continuous operators and moreover {.Y / D ker� , so that
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Y ˚ˆ X={.Y / is isomorphic to X . As completeness is a “three-space” property
(cf. [31, Theorem 12.1]) this implies that Y ˚ˆ X is complete and

0 ����! Y
{

����! Y ˚ˆ X
�

����! X ����! 0 (1.3)

is an extension of X by Y , which is called the extension induced by ˆ with good
reason.

If ˆ is a centralizer, then Y ˚ˆ X is a quasi-Banach module with outer product
a � .g; f / D .ag; af / and the arrows in (1.3) become homomorphisms.

And, if ˆ is a bicentralizer, then Y ˚ˆ X is a bimodule under a � .g; f / � b D
.agb; af b/ and (1.3) is an extension of bimodules.

1.7. Two simplifications. We pause a moment to record the following observation,
which generalizes [20, Proposition 4.1]:
Lemma 1.1. (a) Every (left) centralizer fromLp to a quasi-Banach module overM

is quasilinear.
(b) Every real centralizer on Lp is a bicentralizer.

Proof. (a) The key point is that if f; g 2 Lp , then h D .f �f C g�g/1=2 belongs
to Lp and one has f D ah; g D bh for certain contractive a; b 2M –whose initial
projections agree with the final projection of h, if you want. Indeed one may take
a D f .f �f Cg�g/�1=2 which is contractive by Schmitt’s [32, Lemma 2.2(c)]: just
set T D f �f; S D h and follow Schmitt’s notations.

As for the quasinorm of h we have

k.f �f C g�g/1=2kp D kf
�f C g�gk

1=2

p=2
� �

1=2

p=2

�
kf �f kp=2 C kg

�gkp=2
�1=2

� �
1=2

p=2

�
kf �f k

1=2

p=2
C kg�gk

1=2

p=2

�
D �

1=2

p=2

�
kf kp C kgkp

�
;

where�r denotes the “modulus of concavity” of Lr , that is, �r D 21=r�1 for r < 1
and �r D 1 for r � 1. Now, if ˆ W Lp ! W is a centralizer from Lp to Y , and
f; g 2 Lp , then

kˆ.f C g/ � f̂ �ˆgkY

D


ˆ�.aC b/h� �ˆ.ah/ �ˆ.bh/



Y

� C
�

ˆ�.aC b/h� � .aC b/ˆ.h/



Y
C kaˆh �ˆ.ah/kY C kbˆh �ˆ.bh/kY

�
� 4Ckhkp � C

0
�
kf kp C kgkp

�
:

(b) It is obvious that if ˆ is a left-centralizer on Lp such that ˆ.f �/ D . f̂ /�,
then ˆ is a bicentralizer (cf. [20, p. 51]). If ˆ is any centralizer on Lp and f 2 Lp ,
then writing f D f1 C if2, with fi self-adjoint, and using (a) we see that

k f̂ � f̂1 � i f̂2kp � C
�
kf1k C kf2k

�
� C 0kf kp:

But the map f 2 Lp 7�! f̂1 C i f̂2 2 L
0.R/ is a bicentralizer on Lp and

so ˆ is.
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2. The case p > 1

2.1. Admissible spaces of analytic functions. The following definition is taken
from Kalton and Montgomery-Smith’s [24, Section 10]. Let U be an open set of C
conformally equivalent to the disc D D fz 2 C W jzj < 1g andW a complex Banach
space. A Banach space F of analytic functions F W U ! W is said to be admissible
provided:

(a) For each z 2 U , the evaluation map ız W F ! W is bounded.

(b) If h W U ! D is a conformal equivalence and F W U ! W is analytic, then
F 2 F if and only if h � F 2 F and kh � F kF D kF kF .

For each z 2 U we define F .z/ D fx 2 W W x D F.z/ for some F 2 F g with
the norm kxk D inffkF kF W x D F.z/g so that F .z/ is isometric to F = ker ız with
the quotient norm. One often says that the spaces F .z/ with z varying in U form an
analytic family of Banach spaces.

The following result is classical. We write the easy proof for the convenience of
the reader.

Lemma 2.1. The map ı0z W F ! W is bounded from ker ız to F .z/.

Proof. Let h W U ! D be a fixed conformal equivalence having a (single) zero at z.
Suppose F 2 F vanishes at z. Then one can write F D h � G, where G W U ! W

is analytic. By (b) one has G 2 F , and kF k D kGk. As F 0.z/ D h0.z/G.z/ we
have that F.z/ belongs to F .z/ and

kı0zF kF .z/ D kF
0.z/kF .z/ D kh

0.z/G.z/kF .z/ � jh
0.z/jkGkF D jh

0.z/jkF kF ;

so kı0z W ker ız ! F .z/k � jh0.z/j.

Although we shall not need it explicitly, let us explain how admissible spaces
are used to construct self-extensions of Banach spaces (cf. [24, § 10]). Suppose
X D F .z/ for some z 2 U . Put Z D f.F 0.z/; F.z// W F 2 F g and furnish it with
the norm k.y; x/kZ D inffkF kF W F 2 F is such that x D F.z/ and y D F 0.z/g.
Then one has an exact sequence

0 ����! X
{

����! Z
�

����! X ����! 0;

in which {.y/ D .y; 0/ and �.y; x/ D x. In fact the only point that is not completely
obvious is that { is correctly defined and bounded. Pick y 2 X . Take F 2 F such
that y D F.z/, with kF kF � .1 C "/kykX and let h W U ! D be a conformal
equivalence with a single zero at z. Taking G D h0.z/�1 � h � F we see that
kGkF D jh

0.z/�1jkF kF and, besides, G0.z/ D y;G.z/ D 0. This shows that
.y; 0/ 2 Z and k.y; 0/kZ � .1C "/ � jh0.z/�1j � kykX .
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2.2. Thebasic construction. In this sectionwe define the space of analytic functions
needed to “twist” Lp when 1 < p <1. We use the Lorentz “norm” of Lp;1.R; �/
to control the norm inLp and the group . O�t / to keep the values in the right place. We
also introduce the “delimiters” 1 < q < r <1 to stay in the locally convex setting
and to avoid any difficulty on the boundary.

Consider the strip U D fz 2 C W r�1 < <.z/ < q�1g and denote by U its
closure in C. Let F D F .q; r/ be the space (of restrictions to U ) of those bounded,
continuous functions F W U ! Lq;1.R; �/ C Lr;1.R; �/ that are analytic on U
and satisfy the following “boundary” conditions:
� For s D q; r one has F.z/ 2 Ls;1.R; �/, where <.z/ D s�1 and

sup
˚
kF.z/ks;1 W <.z/ D s

�1
	
<1:

We equip F with the (quasi) norm

kF kF D sup
˚
kF.1=q C iy/kq;1; kF.1=r C iy/kr;1 W y 2 R

	
;

which is equivalent to a norm rendering F complete.
Now, consider the following subspace of F :

G D
˚
F 2 F .q; r/ W F.z/ 2 Lp for every z 2 U \R, where 1=p D z

	
D
˚
F 2 F .q; r/ W O�t .F.z// D e

�tzF.z/ for every real z 2 .r�1; q�1/
	
:

Observe that U \ R D .r�1; q�1/ and that the definition of G involves only those
z 2 U that are real.
Lemma2.2. The spaceG is admissible and, for r�1 < z < q�1, one hasG .z/ D Lp ,
where 1=p D z.

Proof. ThatF .q; r/ is admissible is clear. And that its subspaceG is admissible again
is then both obvious and trivial. As for the second part, first note that if z 2 U and
F 2 F , then F.z/ 2 Lp;1.R; �/, with kF.z/kp;1 � kF kF , where 1=p D <z.
This follows from the commutative case, proved by Calderón in [7, Section 13.5,
p. 125] and from general results about “noncommutative Banach function spaces”;
see [10, Theorem 3.2] for a precise reference.

Now, by the very definition of G , we see that, for F 2 G and z 2 U real, one has
F.z/ 2 Lp and kF.z/kp � kF kF , where p D 1=z.

It only remains to check that for every f 2 Lp there isF 2 G such thatF.z/ D f
at z D 1=p, with kF kF D kf kp . This is obvious if f is normalized in Lp
since one may use the “extremal” F.z/ D ujf jpz , where f D ujf j is the “polar
decomposition”. For arbitrary f 2 Lp just take F.z/ D ukf kp.jf j=kf kp/pz .

Corollary 2.3. For 1 < p < 1, the mapping �p W Lp ! L0.R/ given by
�p.f / D pf log.jf j=kf kp/ is a bicentralizer on Lp .
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Proof. Fix q; r 2 .1;1/ so that q < p < r and let F .q; r/ and G be as before. Set
� D 1=p. We observe that for f 2 Lp ,

d

dz

�
ukf kp

�
jf j

kf kp

�pz�ˇ̌̌̌
zD�

D pf log
�
jf j

kf kp

�
:

Now, we identify M with L1. Pick f 2 Lp and a; b 2 L1. Consider the functions
F and G defined by

F.z/ D aukf kp
�
jf j=kf kp

�pz
b and G.z/ D vkgkp

�
jgj=kgkp

�pz
for z 2 U , where g D af b and v is the phase of g. Then F;G 2 G , and
kF kG ; kGkG � kak1kf kpkbk1. Besides, F.�/ D G.�/ D af b, so G � F 2
ker ı� . We know from Lemma 2.1 that ı0

�
is bounded from ker ı� to G .�/ D Lp ,

hence
kı0� .G � F /kp �MkG � F kG � 2Mkak1kf kpkbk1:

But

ı0� .G � F / D pg log
�
jgj

kgkp

�
� a

�
pf log

�
jf j

kf kp

��
b

D �p.af b/ � a.�pf /b;

as required.

3. The case 0 < p � 1

3.1. Transfer. What if 0 < p � 1? Well, in this case Lp;1.R/ is not locally
convex and we cannot guarantee that Lemma 2.2 and the proof of Corollary 2.3
work. Anyway we can still use the following generalization of [2, Lemma 5] (which
in turn is a generalization of [19, Theorem 5.1]) to transfer arbitrary centralizers
on Lp to any Lq with 0 < q < p.
Proposition 3.1. Let ˆ W Lp ! L0.R; �/ be a left centralizer on Lp and 0 <
r < 1. Define q by letting q�1 D p�1 C r�1. Then there is a centralizer
ˆ.r/ W Lq ! L0.R; �/ such that

kˆ.r/.fg/ � f ˆgkq � Ckf krkgkp .f 2 Lr ; g 2 Lp/: (3.1)

Moreover, if � is another centralizer satisfying the corresponding estimate, then
� � ˆ.r/.

Proof. Let us first prove that ifˆ W Lp ! L0.R; �/ is a centralizer andf1g1 D f2g2,
with fi 2 Lr and gi 2 Lp the difference f1ˆ.g1/� f2ˆ.g2/ belongs to Lq , where
q�1 D r�1 C p�1 and

kf1ˆ.g1/ � f2ˆ.g2/kq � C
�
kf1krkg1kp C kf2krkg2kp

�
; (3.2)

for some C independent on fi and gi .
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Recall from the proof of Lemma 1.1 that there is g 2 Lp such that gi D aig for
certain contractive ai 2 M whose initial projections agree with the final projection
of g. Now, since f1a1g D f2a2g we have f1a1 D f2a2. For i D 1; 2, one has

kfiˆ.gi / � fiaiˆ.g/k � C Œˆ�kfikrkgkp � Ckfikr
�
kg1kp C kg2kp

�
;

and combining we arrive to

kf1ˆ.g1/ � f2ˆ.g2/kq � C
�
kf1kr C kf2kr

��
kg1kp C kg2kp

�
:

But ˆ is homogeneous and since f1g1 D f̨1˛
�1g1 and f2g2 D f̌2ˇ

�1g2, for
˛; ˇ > 0, we obtain

kf1ˆ.g1/ � f2ˆ.g2/kq � C
�
˛kf1kr C ˇkf2kr

��
˛�1kg1kp C ˇ

�1
kg2kp

�
:

Minimizing the right-hand side over ˛; ˇ > 0 we obtain

kf1ˆ.g1/ � f2ˆ.g2/kq � C
�
kf1k

1=2
r kg1k

1=2
p C kf2k

1=2
r kg2k

1=2
p

�2
� C�1=2

�
kf1krkg1kp C kf2krkg2kp

�
;

which proves (3.2).
Now, we defineˆ.r/ W Lq ! L0.R; �/ byˆ.r/.f / D ujf jq=rˆjf jq=p , where q

is given by q�1 D p�1 C r�1 and f D ujf j is the polar decomposition. To check
that ˆ.r/ it is indeed a centralizer on Lq , take a 2 M and f 2 Lq and let v be the
phase of af , so that af D vjaf j. One has

aˆ.r/.f / D aujf jq=rˆjf jq=p; while ˆ.r/.af / D vjaf jq=rˆjaf jq=p:

And since aujf jq=r jf jq=p D vjaf jq=r jaf jq=p D af we may apply (3.2) to get

kˆ.r/.af / � aˆ.r/.f /kq � Ckaujf j
q=r
krkjf j

q=p
kp C kvjaf j

q=r
krkjaf j

q=p
k

� C
�
kak1kf kq C kaf kq

�
:

The estimate (3.1) is clear from (3.2). Finally, if � W Lq ! L0.R; �/ is any
mapping such that k�.fg/ � f ˆgkq � Ckf krkgkp , then given h 2 Lq we may
take f D ujhjq=r and g D jhjq=p to obtain

k�.h/ �ˆ.r/.h/kq D k�.fg/ � f ˆgkq � Ckf krkgkp D Ckhkq:

This completes the proof.

Corollary 3.2. Themap�p W Lp ! L0.R; �/given by�p.f / D pf log.jf j=kf kp/
is a bicentralizer on Lp for each 0 < p <1.
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Proof. We already know that �p is a centralizer when p > 1 and in particular if
p D 2. Fix any 0 < q < 2 and take r so that q�1 D r�1 C 2�1. According to
Proposition 3.1 �.r/2 is a centralizer on Lq . But for f 2 Lq one has

�
.r/
2 .f / D ujf j

q=r�2jf j
q=2
D ujf jq=r � 2 � jf jq=2 log

jf jq=2

kjf jq=2k2
D �q.f /

since kjf jq=2k2 D kf kq=2q . Hence �q is a centralizer and since it is real, it is a
bicentralizer by Lemma 1.1(b).

Now we can consider the whole range of noncommutative Kalton–Peck spaces
by letting

Zp.M/ D Lp ˚�p
Lp D

˚
.g; f / 2 L0.R; �/ � Lp W g ��p.f / 2 Lp

	
with the quasinorm k.g; f /k�p

D kg ��p.f /kp C kf kp and the corresponding
self-extension

0 ����! Lp
{

����! Zp.M/
�

����! Lp ����! 0 (3.3)

for 0 < p <1.

4. Non triviality

4.1. Duality. The following result is a noncommutative version of [23, Theo-
rem 5.1]. We present it right now to ease the proof of the forthcoming Theorem 4.2.
Corollary 4.1. If 1 < p; q < 1 are conjugate exponents, that is, p�1 C q�1 D 1,
then the dual of Zp is isomorphic to Zq under the pairing

h.g0; g/I .f 0; f /i D Tr.f 0g � fg0/ ..g0; g/ 2 Zq; .f
0; f / 2 Zp/: (4.1)

Proof. This can be proved “by interpolation”; see [30, Proposition 2.11] to get the
basic idea. However, at this point we have a simpler proof based on Proposition 3.1 at
hand. Indeed, applying Proposition 3.1 to �q we get a (left) centralizer �.p/q on L1
such that

k�.p/q .fg/ � f �q.g/k1 � Ckf kpkgkq .f 2 Lp; g 2 Lq/:

An elementary computation shows that �.p/q agrees with �1, so

k�1.fg/ � f �q.g/k1 � Ckf kpkgkq .f 2 Lp; g 2 Lq/:

By symmetry one also has

k�1.fg/ ��p.f / � gk1 � Ckf kpkgkq .f 2 Lp; g 2 Lq/:
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Combining we obtain the estimate

k.�p.f //g � f �q.g/k1 � Ckf kpkgkq .f 2 Lp; g 2 Lq/:

This implies that the pairing (4.1) is continuous since

jTr.f 0g � fg0/j
� kf 0g � fg0k1 D kf

0g ��p.f /g C�p.f /g � f �q.g/C f �q.g/ � fg
0
k1

� kf 0 ��p.f /kpkgkq C k�p.f /g � f �q.g/k1 C kf kpk�q.g/ � g
0
kq

� Ck.f 0; f /kZp
k.g0; g/kZq

:

Therefore, themapping~ W Zq ! .Zp/
0 given by .~.g0; g//.f 0; f / D Tr.f 0g�fg0/

is a bounded operator fitting in the commutative diagram

0 ����! Lq
{

����! Zq
�

����! Lq ����! 0

�1

??y ??y~ 



0 ����! L0p

� 0

����! Zq
{0

����! L0p ����! 0

and the 5-lemma shows that ~ is an isomorphism.

4.2. True twist. And, of course:
Theorem 4.2. If M is infinite-dimensional, then the exact sequence (3.3) is not
trivial, even in the category of quasi-Banach spaces.

Proof. We will prove that Zp.M/ is not linearly isomorphic to the direct sum
Lp ˚ Lp . Let u1; : : : ; un be disjoint projections in M and for each 1 � i � n

take a positive, normalized fi 2 Lp such that fi D uifiui . Set xi D .fi logfi ; fi /.
Suppose ri D ˙1 for 1 � i � n. Then kxik�p

D 1 for all i , while



 nX
iD1

rixi






�p

D





� nX
iD1

rifi logfi ;
nX
iD1

rifi

�




�p

D





 nX
iD1

rifi logfi ��p
� nX
iD1

rifi

�




p

C





 nX
iD1

rifi






p

D





 nX
iD1

rifi logfi �
nX
iD1

rifi log
�
fi

n1=p

�




p

C n1=p

D





 nX
iD1

rifi logn1=p





Lp

C n1=p D

�
1C

logn
p

�
n1=p:
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The end of the proof depends on the values of p:
(1) If 0 < p � 1, then taking ri D 1 for every i and letting n ! 1 we conclude

that Zp is not p-normable, while Lp ˚ Lp is.
(2) If 1 < p � 2 we see thatZp does not have type p, while, as it is well known, the

spaces Lp have type min.p; 2/ for 0 < p < 1. Actually this argument works
for every 0 < p � 2, but (1) is simpler.

(3) Finally, if 2 < p <1 we apply Corollary 4.1 and (2).
This completes the proof.

5. Concluding remarks

5.1. More centralizers, please. It would be interesting to know if all symmetric
centralizers on (the commutative) Lp.RC/ can be transferred to Lp D Lp.M/ for
a general von Neumann algebra M as it is the case when M is semifinite (cf. [5,
Theorem 2]).

The main obstruction to proceed as in Section 1 is that Lp;1.RC/ is a bad space
for interpolation (a nonseparable space with no lower estimate) and most probably
Lp;1.RC/ has “less” centralizers than Lp.RC/ (see, however, [4, Section 4.1]).

One might consider Lq.M/ as a quotient of Lq;1.R/ when q > 1 together with
the fact that Lq;1.RC/ has “the same” centralizers as Lq.RC/, which follows by
juxtaposition of results in [2] and [3]. But in this case, even if every centralizer
on Lq;1.RC/ can be obtained by interpolation of a family of quasi-Banach function
spaces, we don’t know if the basic result by the Dodds and de Pagter we used in the
proof of Lemma 2.2 would survive to the lack of local convexity.

More precisely, and without any reference to interpolation theory, we may ask the
following.
Problem 5.1. LetE andF be symmetric (or fully symmetric) quasi-Banach function
spaces on RC and let G denote the product space E �F , with the product quasinorm
(cf. [3, Section 2.2]). Is E.�/ � F.�/ D G.�/ for every trace �?

5.2. The role of the ambient space. A curious by-product of Corollary 3.2 is that
if f; g 2 Lp and a; b 2M, then the differences

.f C g/ log jf C gj � f log jf j C g log jgj and af log jf jb � af b log jaf bj

are inLp . On the other hand it is clear that f log jf j cannot fall inLp unless f D 0.
We observe that in most typical situations where Lemma 2.1 applies, for instance for
centralizers ˆ W Lp.M; �/! L0.M; �/ the so-called domain of ˆ

Dom.ˆ/ D
˚
f 2 Lp.M; �/ W ˆ.f / 2 Lp.M; �/
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is a dense submodule ofLp.M; �/. Onemaywonder if the fact thatDom.�p/ D 0 for
the Kalton–Peck centralizers onHaagerupLp spacesmerely reflects some peculiarity
of Haagerup’s construction or if there is a “real” obstruction to have bicentralizers
with nontrivial domain. The following result shows that this is indeed the case.
Example 5.2. A von Neumann algebra N such that ifˆ is a centralizer fromLp.N /

to any quasi-Banach bimodule over N , then either Dom.ˆ/ ¤ 0 or ˆ is bounded:
Dom.ˆ/ D Lp.N / and supfk f̂ k W kf kLp.N / � 1g <1.

Proof. By a celebrated result of Connes and Størmer [9, Theorem 4], if M is a factor
of type III1, then, given states �; 2M� and " > 0, there is a unitary u 2M such
that ku��u �  kM� < ", where u��u is defined by hu��u; xi D h�; uxu�i for
x 2M.

It follows from the generalized Powers–Størmer inequality (see the Appendix
of [17]) that Lp has a similar almost transitivity property: given positive f; g 2 Lp
with kf kpDkgkpD1 and ">0 there is a unitary u2M such that ku�f u � gkp<".
It readily follows that for arbitrary f; g 2 Lp with kf kp D kgkp D 1 and " > 0

there are unitaries u; v 2M such that kvf u � gkp < ".
LetU be a countably incomplete ultrafilter on the integers. According toRaynaud,

there is a von Neumann algebra N containing the ultrapower C*-algebra MU such
that .Lp/U D Lp.N / for every 0 < p < 1; see [29]. Hence, if f and g have the
same norm in Lp.N /, then there are unitaries u; v 2 N such that g D vf u.

Now, the statement follows from the very definition of a bicentralizer.

5.3. “Higher order” extensions. Although this paper treats the same problems
as [5], our approach here is more akin to [6]. Actually, once one has established
Lemma 2.2, the abstract results in [6] apply and one can associate to the admissible
space G (for every fixed 1 < p <1) its sequence of Rochberg spaces X.n/. These
can be arranged to form nontrivial (bimodule) extensions

0 ����! X.n/ ����! X.nCk/ ����! X.k/ ����! 0:

Here, one has X.1/ D Lp;X
.2/ D Zp.M/ and so on: in particular X.3/ can be seen

both as an extension of Lp by Zp.M/ and as an extension of Zp.M/ by Lp . See
[6, Section 5] for details.

5.4. Transfer in semifinite Lp spaces. Proposition 3.1 applies in the tracial case
just considering Lp.M; �/ as a subspace of L0.M; �/. This allows one to extend the
results proved in [5] for 1 < p < 1 (in particular Theorem 2) to any 0 < p < 1.
A sample: if � W R ! C is a Lipschitz function vanishing at zero, then the map
ˆ W Lp.M; �/! L0.M; �/ given by

ˆ.f / D f �

�
log
jf j

kf k

�
is a bicentralizer on Lp.M; �/ for every 0 < p <1; cf. [5, Corollary 1].
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5.5. Independence on the weight. Although Haagerup construction of Lp starts
with the choice of a weight ', the resulting “structures” are basically independent
on ', and the same happens to “our” Zp.M/. Let us explain why. Suppose '0 is
another weight on M whose associated objects we decorate with “primes”. Recall
that if M acts on H , then R and R0 act on L2.R;H/. It turns out that there is a
unitary u on L2.R;H/ such that f 7! uf u� maps R onto R0. Besides, one has
� 0.uf u�/ D �.f / for every f 2 R and therefore the mapping ~ W L0.R; �/ !
L0.R0; � 0/ defined by ~.f / D uf u� is a �-isomorphism. On the other hand,
~ intertwines the dual actions: for every real t one has ~ ı O�t D O� 0t ı ~, that is,
u. O�t .f //u

� D O� 0t .uf u
�/ for every f 2 L0.R; �/.

It follows that ~ maps Lp;1.R; �/ isometrically onto Lp;1.R0; � 0/ and
Lp.M; '/ onto Lp.M; '0/ and also that ~ intertwines�p W Lp.M; '/! L0.R; �/

and �0p W Lp.M; '0/ ! L0.R0; � 0/ in the sense that �0p ı ~ D ~ ı �p so that
�0p.f

0/ D u.�p.u
�f 0u//u� for every f 0 2 Lp.M; '0/.

Thus, the mapping .g; f / 2 Zp.M; '/ 7! .ugu�; uf u�/ 2 Zp.M; '0/ is a
surjective isometry witnessing that the “new” extension

0 ����! Lp.M; '0/
{

����! Zp.M; '0/
�

����! Lp.M; '0/ ����! 0

is “isometrically equivalent” to the “old one” in (3.3).

5.6. Yamagami spaces. The family of Haagerup spaces Lp extends quite naturally
to a larger family studied by Yamagami in [35]; see also [27]. Given z 2 C, consider

R.z/ D
˚
f 2 L0.R/ W O�t .f / D e

�tzf for every t 2 R
	
:

When x D <.z/ > 0 the space R.z/ is a quasi-Banach space with quasinorm

kf kR.z/ D
�
Tr
�
.f �f /1=.2x/

��x
:

In particular Lp D R.1=p/ for 0 < p < 1. When <.z/ D 0 one has R.z/ � R

and R.z/ is equipped with the restriction of the norm of R. Finally, if <.z/ < 0,
then R.z/ D 0. For what this paper is concerned, the most important feature of
Yamagami’s spaces is that they form a “graded algebra”: if f 2 R.a/ and g 2 R.b/,
then fg 2 R.aC b/ and kfgkR.aCb/ � kf kR.a/kgkR.b/. From this it is relatively
easy to see that R.z/ � Lp;1.R/ “isometrically” provided p�1 D <.z/ and also
that if<.z/ D <.�/, then R.z/ and R.�/ are isometric as left (or right) M-modules,
though not as bimodules in general.

It turns out that, with the notations of Lemma 2.2, one has G .z/ D R.z/ for
every z 2 U , where U D fz 2 C W r�1 < <.z/ < q�1g. Observe that, if F
belongs to G , then since O�t .F.z// D e�tzF.z/ for every z in the real interval U \R,
one also has O�t .F.z// D e�tzF.z/ for every z 2 U , by analytic continuation, and
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therefore, G .z/ � R.z/ for every z 2 U . Besides, kF.z/kR.z/ D kF.z/kLp;1.R/ �

kF kF D kF kG , which shows that kf kR.z/ � kf kG .z/ for every f 2 G .z/. To
stablish the reversed relations one has to construct, for a given normalized f 2 R.z/,
an “extremal” F W U ! L0.R/.

Let f D ujf j be the polar decomposition of f inL0.R/. Note that this time jf j
does not belong to R.z/ unless z is real and in fact jf j is in R.<.z// D Lp , where
<.z/ D 1=p. Also u 2 R.iy/, where y D =.z/. Set

F.w/ D ujf j
w�yi

x .w 2 U/;

where we are treating w as a variable and z D x C iy as a constant. Clearly,
F 2 F .q; r/, and F.z/ D f . Let us check that F 2 G . If s 2 U is real, then

O�t .F.s// D O�t
�
ujf j

s�yi
x

�
D O�t .u/ O�t

�
jf j

s�yi
x

�
D e�ytiue�t.s�yi/jf j

s�yi
x D e�stF.s/;

so F 2 G . Evaluating the derivative at w D z we obtain

F 0.z/ D x�1ujf j
�yi

x jf j log jf j D x�1f jf j�yi=x log jf j:

From where it follows the following extension of Corollary 3.2:
Corollary 5.3. For every fixed z D x C yi , with x > 0, the map ˆ W R.z/ !

L0.R; �/ given by f̂ D f jf j�yi=x log.jf j=kf kR.z// is a bicentralizer on R.z/.
To be true, the preceding argument applies for 0 < x < 1 only. If x � 1 one has

to use a variation of Proposition 3.1 to get the result. Observe that the “spinning”
part of the centralizer is hidden when z is real.

Acknowledgements. The content of this paper was presented in the meeting Banach
Spaces and their Applications in Analysis, held in the Centre International de
Rencontres Mathématiques at Luminy in January, 2015. I thank the organizers,
Fernando Albiac, Gilles Godefroy and Gilles Lancien for their warm hospitality.

I also thank Stanisław Goldstein for some useful comments and the referee of an
earlier version of this paper for pointing out a serious error in the main construction.

References

[1] B. Blackadar, Operator algebras. Theory of C*-algebras and von Neumann algebras,
Encyclopaedia of Mathematical Sciences, 122, Operator Algebras and Non-commutative
Geometry, III, Springer-Verlag, Berlin, 2006. Zbl 1092.46003 MR 2188261

[2] F. Cabello Sánchez, Nonlinear centralizers in homology,Math. Ann., 358 (2014), no. 3-4,
779–798. Zbl 1306.46027 MR 3175140

https://zbmath.org/?q=an:1092.46003
http://www.ams.org/mathscinet-getitem?mr=2188261
https://zbmath.org/?q=an:1306.46027
http://www.ams.org/mathscinet-getitem?mr=3175140


The noncommutative Kalton–Peck spaces 1411

[3] F. Cabello Sánchez, Pointwise tensor products of function spaces, J. Math. Anal. Appl.,
418 (2014), no. 1, 317–335. Zbl 1346.46065 MR 3198881

[4] F. Cabello Sánchez, Factorization in Lorentz spaces, with an application to centralizers, J.
Math. Anal. Appl., 446 (2017), no. 2, 1372–1392. Zbl 1365.46024 MR 3563040

[5] F. Cabello Sánchez, J.M. F. Castillo, S. Goldstein, and J. Suárez de la Fuente, Twisting non-
commutative Lp spaces, Adv. Math., 294 (2016), 454–488. Zbl 1356.46051 MR 3479569

[6] F. Cabello Sánchez, J. M. F. Castillo, and N. J. Kalton, Complex interpolation and twisted
twisted Hilbert spaces, Pacific J Math., 276 (2015), no. 2, 287–307. Zbl 1360.46016
MR 3374059

[7] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math.,
24 (1964), 133–190. Zbl 0204.13703 MR 167830

[8] J. M. F. Castillo, Simple twist of K, in Nigel J. Kalton Selecta. Vol. 2, F. Gesztesy,
G. Godefroy, L. Grafakos, and I. Verbitsky (eds.), 251–262, Birkhäuser, 2016.
Zbl 1347.01021 MR 3470128

[9] A. Connes and E. Størmer, Homogeneity of the state space of factors of type III1, J. Funct.
Anal., 28 (1978), no. 2, 187–196. Zbl 0408.46048 MR 470689

[10] P. G. Dodds, Th. K. Dodds, and B. de Pagter, Fully symmetric operator spaces, Integr.
Equat. Oper. Theory, 15 (1992), 942–972. Zbl 0807.46028 MR 1188788

[11] P. Enflo, J. Lindenstrauss, and G. Pisier, On the three space problem, Mathematica
Scandinavica, 36 (1975), 199–210. Zbl 0314.46015 MR 383047

[12] T. Fack and H. Kosaki, Generalized s-numbers of � -measurable operators,Pacific J. Math.,
123 (1986), 269–300. Zbl 0617.46063 MR 840845

[13] G. Godefroy, A glimpse at Nigel Kalton’s work, in Banach spaces and their applications
in analysis, 1–35, Walter de Gruyter, Berlin, 2007. Zbl 1149.46002 MR 2374698

[14] G. Godefroy, The Kalton calculus, in Topics in functional and harmonic analysis, 57–68,
Theta Ser. Adv. Math., 14, Theta, Bucharest, 2013. Zbl 1149.46002 MR 3184342

[15] U. Haagerup, Lp-spaces associated with an arbitrary von Neumann algebra, in Algèbres
d’opérateurs et leurs applications en Physique Mathématique, 175–185, Édition CNRS,
1979. Zbl 0426.46045 MR 560633

[16] A. Ya. Helemskii, The homology of Banach and topological algebras, translated from
the Russian by Alan West, Mathematics and its Applications (Soviet Series), 41, Kluwer
Academic Publishers Group, Dordrecht, 1989. Zbl 0695.46033 MR 1093462

[17] F. Hiai and Y. Nakamura, Distance between unitary orbits in von Neumann algebras,
Pacific J. Math., 138 (1989), no. 2, 259–294. Zbl 0667.46044 MR 996202

[18] M. Junge and D. Sherman, NoncommutativeLp modules, J. Operator Theory., 53 (2005),
no. 1, 3–34. MR 2132686

[19] N. J. Kalton, Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc., 73
(1988), no. 385, iv+85pp. Zbl 0658.46059 MR 938889

[20] N. J. Kalton, Trace-class operators and commutators, J. Funct. Anal., 86 (1989), 41–74.
Zbl 0684.47017 MR 1013933

https://zbmath.org/?q=an:1346.46065
http://www.ams.org/mathscinet-getitem?mr=3198881
https://zbmath.org/?q=an:1365.46024
http://www.ams.org/mathscinet-getitem?mr=3563040
https://zbmath.org/?q=an:1356.46051
http://www.ams.org/mathscinet-getitem?mr=3479569
https://zbmath.org/?q=an:1360.46016
http://www.ams.org/mathscinet-getitem?mr=3374059
https://zbmath.org/?q=an:0204.13703
http://www.ams.org/mathscinet-getitem?mr=167830
https://zbmath.org/?q=an:1347.01021
http://www.ams.org/mathscinet-getitem?mr=3470128
https://zbmath.org/?q=an:0408.46048
http://www.ams.org/mathscinet-getitem?mr=470689
https://zbmath.org/?q=an:0807.46028
http://www.ams.org/mathscinet-getitem?mr=1188788
https://zbmath.org/?q=an:0314.46015
http://www.ams.org/mathscinet-getitem?mr=383047
https://zbmath.org/?q=an:0617.46063
http://www.ams.org/mathscinet-getitem?mr=840845
https://zbmath.org/?q=an:1149.46002
http://www.ams.org/mathscinet-getitem?mr=2374698
https://zbmath.org/?q=an:1149.46002
http://www.ams.org/mathscinet-getitem?mr=3184342
https://zbmath.org/?q=an:0426.46045
http://www.ams.org/mathscinet-getitem?mr=560633
https://zbmath.org/?q=an:0695.46033
http://www.ams.org/mathscinet-getitem?mr=1093462
https://zbmath.org/?q=an:0667.46044
http://www.ams.org/mathscinet-getitem?mr=996202
http://www.ams.org/mathscinet-getitem?mr=2132686
https://zbmath.org/?q=an:0658.46059
http://www.ams.org/mathscinet-getitem?mr=938889
https://zbmath.org/?q=an:0684.47017
http://www.ams.org/mathscinet-getitem?mr=1013933


1412 F. Cabello Sánchez

[21] N. J. Kalton, Differentials of complex interpolation processes for Köthe function spaces,
Trans. Amer. Math. Soc., 333 (1992), 479–529. Zbl 0776.46033 MR 1081938

[22] N. J. Kalton, Quasi-Banach spaces, in Handbook of the Geometry of Banach Spaces. II,
W. B. Johnson and J. Lindenstrauss (eds.), 1099–1130. Elsevier, 2003. Zbl 1059.46004
MR 1999192

[23] N. J. Kalton and N. T. Peck, Twisted sums of sequence spaces and the three space problem,
Trans. Amer. Math. Soc., 255 (1979), 1–30. Zbl 0424.46004 MR 542869

[24] N. J. Kalton and S. Montgomery-Smith, Interpolation of Banach spaces, in Handbook of
the Geometry of Banach Spaces. II, W. B. Johnson and J. Lindenstrauss (eds.), 1131–1176,
Elsevier, 2003. Zbl 1041.46012 MR 1999193

[25] H. Kosaki, Canonical Lp-spaces associated with an arbitrary abstract von Neumann
algebra, Ph.D. thesis, UCLA, 1980, 98pp MR 2630616

[26] H. Kosaki, Non-commutative Lorentz spaces associated with a semi-finite von Neumann
algebra and applications, Proc. Japan Acad. Ser. A, 57 (1981), 303–306. Zbl 0491.46052
MR 628115

[27] D. Pavlov, Algebraic tensor products and internal homs of noncommutative Lp-spaces,
2013. arXiv:1309.7856v1

[28] G. Pisier and Q. Xu, Non commutative Lp spaces, in Handbook of the Geometry of
Banach Spaces. II, W. B. Johnson and J. Lindenstrauss (eds.), 1459–1517, Elsevier, 2003.
Zbl 1046.46048 MR 1999201

[29] Y. Raynaud, On ultrapowers on non commutative Lp spaces, J. Operator Theory, 48
(2002), 41–68. Zbl 1029.46102 MR 1926043

[30] R. Rochberg andG.Weiss, Derivatives of Analytic Families of Banach Spaces,Ann.Math.,
118 (1983), no. 2, 315–347. Zbl 0539.46049 MR 717826

[31] W. Roelcke and S. Dierolf,Uniform Structures on Topological Groups and their Quotients,
Adv. Book Program, McGraw-Hill, New York, 1981. Zbl 0489.22001 MR 644485

[32] L. M. Schmitt, The Radon–Nikodym theorem for Lp-spaces of W �-algebras, Publ. Res.
Inst. Math. Sci., 22 (1986), 1025–1034. Zbl 0646.46059 MR 879995

[33] J. Suárez de la Fuente, A remark about twisting Schatten classes, Rocky Mountain Journal
of Mathematics, 44 (2014), no. 6, 2093–2102. Zbl 1328.46015 MR 3310963

[34] M. Terp, Lp-spaces associated with von Neumann algebras, Københavns Univ. Math.
Inst. Rapp., 3a+3b, Matematisk Institut, Københavns Universitet, Copenhagen, 1981.

[35] S. Yamagami, Algebraic aspects in modular theory, Publications of the Research Institute
for Mathematical Sciences, 28 (1992), no. 6, 1075–1106. Zbl 0809.46075 MR 1203761

Received 26 January, 2016

F. Cabello Sánchez, Departamento de Matemáticas, Universidad de Extremadura,
Avenida de Elvas, 06071 Badajoz, Spain
E-mail: fcabello@unex.es

https://zbmath.org/?q=an:0776.46033
http://www.ams.org/mathscinet-getitem?mr=1081938
https://zbmath.org/?q=an:1059.46004
http://www.ams.org/mathscinet-getitem?mr=1999192
https://zbmath.org/?q=an:0424.46004
http://www.ams.org/mathscinet-getitem?mr=542869
https://zbmath.org/?q=an:1041.46012
http://www.ams.org/mathscinet-getitem?mr=1999193
http://www.ams.org/mathscinet-getitem?mr=2630616
https://zbmath.org/?q=an:0491.46052
http://www.ams.org/mathscinet-getitem?mr=628115
https://arxiv.org/abs/1309.7856v1
https://zbmath.org/?q=an:1046.46048
http://www.ams.org/mathscinet-getitem?mr=1999201
https://zbmath.org/?q=an:1029.46102
http://www.ams.org/mathscinet-getitem?mr=1926043
https://zbmath.org/?q=an:0539.46049
http://www.ams.org/mathscinet-getitem?mr=717826
https://zbmath.org/?q=an:0489.22001
http://www.ams.org/mathscinet-getitem?mr=644485
https://zbmath.org/?q=an:0646.46059
http://www.ams.org/mathscinet-getitem?mr=879995
https://zbmath.org/?q=an:1328.46015
http://www.ams.org/mathscinet-getitem?mr=3310963
https://zbmath.org/?q=an:0809.46075
http://www.ams.org/mathscinet-getitem?mr=1203761
mailto:fcabello@unex.es

	Introduction and preliminaries
	Background
	Results
	Haagerup Lp spaces
	Lorentz spaces over ==========R
	Extensions
	Centralizers and extensions
	Two simplifications

	The case p>1
	Admissible spaces of analytic functions
	The basic construction

	The case 0<p1
	Transfer

	Non triviality
	Duality
	True twist

	Concluding remarks
	More centralizers, please
	The role of the ambient space
	``Higher order'' extensions
	Transfer in semifinite Lp spaces
	Independence on the weight
	Yamagami spaces


