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Ring-theoretic blowing down. I
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Abstract. One of the major open problems in noncommutative algebraic geometry is
the classification of noncommutative projective surfaces (or, slightly more generally, of
noetherian connected graded domains of Gelfand–Kirillov dimension 3). Earlier work of the
authors classified the connected graded noetherian subalgebras of Sklyanin algebras using a
noncommutative analogue of blowing up. In order to understand other algebras birational to
a Sklyanin algebra, one also needs a notion of blowing down. This is achieved in this paper,
where we give a noncommutative analogue of Castelnuovo’s classic theorem that .�1/-lines
on a smooth surface can be contracted. The resulting noncommutative blown-down algebra
has pleasant properties; in particular it is always noetherian and is smooth if the original
noncommutative surface is smooth.

In a companion paper we will use this technique to construct explicit birational transform-
ations between various noncommutative surfaces which contain an elliptic curve.
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1. Introduction

Throughout the paper, k will denote an algebraically closed field and all rings will be
k-algebras. A k-algebra R is connected graded or cg if R D

L
n�0Rn is a finitely

generated, N-graded algebra withR0 D k. For such a ringR, the category of graded
noetherian right R-modules will be denoted gr-R with quotient category qgr-R
obtained by quotienting out the Serre subcategory of finite dimensional modules.
An effective intuition is to regard qgr-R as the category of coherent sheaves on the
(nonexistent) space Proj.R/.

The classification of noetherian, connected graded domainsR ofGelfand–Kirillov
dimension 3 (or the corresponding noncommutative surfaces qgr-R) is one of the
�The first author is partially supported by NSF grant DMS-1201572.
��The second author is partially supported by EPSRC grant EP/M008460/1.

�The third author is partially supported by EPSRC grant EP/L018322/1.
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major open problems in noncommutative algebraic geometry. This has been solved
in many particular cases and those solutions have lead to some fundamental advances
in the subject; see, for example, [3,10,18,22–24] and the references therein. In [1],
Artin conjectured that, birationally at least, there is a short list of such surfaces, with
the generic case being a Sklyanin algebra. Here, the graded quotient ring Qgr.R/
of R is obtained by inverting the non-zero homogeneous elements and two such
domains R; S are birational ifQgr.R/0 Š Qgr.S/0. Sklyanin algebras are defined
in Example 4.2.

In earlier work of the authors the connected graded noetherian subalgebras
of any Sklyanin algebra were classified [16,18] and this was achieved through a
noncommutative variant of blowing up. However, if one wishes to classify more
general algebras birational to a Sklyanin algebra one certainly also needs an analogue
of blowing down (contracting) exceptional lines. This is achieved in this paper.
Before describing these results in detail we set the stage by reviewing key classical
results from commutative algebraic geometry. Thus, let x be a closed point on a
smooth projective surface X over k, and let � W Blx.X/ ! X be the blowup of X
atx. Thesemaps, also known asmonoidal transformations, are of course fundamental
to the birational geometry of surfaces.

It is well known that:
Proposition 1.1. Blx.X/ is also a smooth projective surface. If L D ��1.x/ is the
exceptional locus of � , then L Š P1 with self-intersection L�L D �1.

A celebrated theorem of Castelnuovo says that the properties of L given in the
proposition also characterise curves that can be contracted to smooth points.
Theorem 1.2 (Castelnuovo). Let Y be a smooth projective surface, and let L be
a curve on Y with L Š P1 and L�L D �1. Then there are a smooth projective
surface X and a birational morphism � W Y ! X so that L is the exceptional locus
of �; in fact Y Š Blx.X/, where x D �.L/.

The main aim of this paper is to give noncommutative versions of Proposition 1.1
and Theorem 1.2. These results apply to a class of algebras known as elliptic algebras
that occur naturally among algebras birational to the Sklyanin algebras and are defined
as follows. An elliptic algebra is a connected graded domain R containing a central
g 2 R1 so that R=.g/ is isomorphic to a twisted homogeneous coordinate ring
B.E;M; �/, where E is an elliptic curve, with an ample invertible sheaf M and
infinite order automorphism � . We say that E is the elliptic curve associated to R
and define the degree of R to be the degree of the line bundle M. (See Section 4 for
more details.) For example, the third Veronese ring T D S .3/ of a Sklyanin algebra S
is elliptic; the Veronese ring is needed to ensure that the central element has degree
one, but this is a fairly harmless change since qgr-S Š qgr-T . Likewise, if S 0 is a
3-dimensional cubic Sklyanin algebra, as discussed in Example 4.2, thenT 0 D .S 0/.4/
is elliptic. The space qgr-S should be thought of as a noncommutative P2, while
qgr-S 0 Š qgr-T 0 should be thought of as a noncommutative version of P1 � P1.
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An appropriate noncommutative analogue of a monoidal transformation of an
elliptic algebraR is known. In more detail,R1=gk Š B.E;M; �/1may be identified
with global sections of the invertible sheaf M. If p 2 E and degM � 3, the blowup
of R at p is defined to be the subalgebra P D Blp.R/ of R generated by those
elements ofR1 whose imagesmod g vanish atp. By [16, Theorem 1.1],P is again an
elliptic algebra and, moreover, has properties analogous to those of a (commutative)
blowup. In particular, it has an analogue of an exceptional line. To be precise, a
graded P -module L D

L
n2ZLn is a line module if L is cyclic with Hilbert series

hilbL D
L
n2Z.dimkLn/s

n D 1=.1 � s/2. Then P D Blp.R/ does indeed have a
distinguished line module L, called the exceptional line module and characterised by
the fact that R=P Š

L
i�1LŒ�i � as P -modules. Inducting on this procedure one

can blow up as many as seven points on the noncommutative projective plane qgr-T
(one can even blow up eight points although the definition is more subtle since the
ring is no longer generated in degree one [17]).

We would like to reverse this procedure. For a noncommutative version of
Castelnuovo’s Theorem 1.2, we need not only an analogue of a line but also an
analogue of self-intersection. If qgr-P is a smooth noncommutative scheme in the
sense that the category qgr-P has finite homological dimension, then an appropriate
notion of intersection number is

.M �
MSN/ D

X
n�0

.�1/nC1 dimk Extnqgr-P .M;N /;

for line modules M and N (see [14]). Unfortunately even if qgr-R is smooth, if
P D Blp.R/ then the blowup qgr-P need not be smooth, in which case the self-
intersection .L �MSL/ of a line module L can be undefined. (See Section 10, where
an example is constructed by blowing up an elliptic algebra twice at the same point.)
So, we use a weaker notion of intersection number, defined as follows. Let grk denote
the torsion-free rank of a finitely generated kŒg�-module. Then, it is not hard to show
that .M �

MSN/ D
P
n�0.�1/

nC1 grk ExtnP .M;N / (combine Proposition 6.4 and
Lemma 6.2, in the notation from the beginning of Section 2). Moreover, as is
discussed in Sections 6 and 7, the simpler sum

.M �N/ D � grkHomP .M;N /C grk Ext1P .M;N /

is a satisfactory alternative to .M �
MSN/.

It will actually be convenient to use the following, still weaker concept. Assume
that L is a line module over an elliptic algebra P and write L D P=J for the line
ideal J . We say two graded, locally finite dimensional vector spacesM and N are
numerically equivalent if they have the same Hilbert series: hilbM D hilbN . Then
the relevant condition is:

For a linemoduleL D P=J , the ringsP andEndP .J /
are numerically equivalent. (�)
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This notion is appropriate, as the next result shows.
Proposition 1.3 (Theorems 7.1 and 8.6). (1) Let P be an elliptic algebra such that

qgr-P has finite homological dimension, and let L be a line module over P .
Then

.L �MSL/ D �1 ” .L�L/ D �1 ” (�)

holds.
(2) If P D Blp.R/ is the blowup of an elliptic algebra R, then (�) holds for the

exceptional line module L.
Our definition of self-intersection leads to a noncommutative version of

Castelnuovo’s Theorem 1.2, as we next show.
Theorem 1.4 (Theorems 8.3 and 8.6). (1) Let P be an elliptic algebra with associ-

ated elliptic curve E and let L be a line module with .L�L/ D �1 or, more
generally, one that satisfies (�). Then one can blow down the line L.
More precisely, there are an elliptic algebra R D eP � P , again associated
to E, and a point p 2 E so that P Š Blp.R/, with exceptional line L.

(2) Conversely, if Q is an elliptic algebra of degree � 4, then blowing Q up at a
point p of the associated elliptic curve E and blowing down the exceptional line
of Blp.Q/ returns the algebraQ.

Definition. The ring eP from part (1) of the theorem is called the blowdown of P
at L.

The key step in the proof of part (1) of the theorem is to show that there exists a
right P -moduleM with Qgr.P / � M � P for whichM=P Š

L
i�1LŒ�i �. One

then shows thatM is actually a ring with the properties specified by the theorem.
Elliptic algebras have a number of pleasant properties; for example they are

automatically noetherian and satisfy the Artin–Schelter, Gorenstein, and Cohen–
Macaulay conditions (see Proposition 4.3). Thus, in particular, these conditions hold
for the blowdown of an elliptic algebra. More subtly we have an analogue of the
smoothness part of Castelnuovo’s Theorem 1.2.
Theorem 1.5 (Corollary 9.2). Let P be an elliptic algebra and suppose that L is a
line module satisfying (�), with blowdown eP . Assume, moreover, that LŒg�1�0 has
finite projective dimension over P Œg�1�0.

Then the noncommutative scheme qgr-eP is smooth if and only if qgr-P is smooth.
Our eventual goal is to classify graded algebras birational to a Sklyanin algebra.

Using the commutative geometry of surfaces as a guide, one would presumably
need to classify “minimal models” (in the appropriate sense) and to show that any
reasonable algebra in this class can be blown down to a minimal model. Clearly,
the noncommutative versions of P2 and Van den Bergh’s quadrics [24] should be
minimal, and in forthcoming work we show that this is true [20]. We do not yet know
whether these are the only minimal models.
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We also do not know how to show that any algebra birational to a Sklyanin algebra
can be blown down to give a minimal model. In the birational theory of commutative
surfaces, this is proved using the following consequence of Zariski’s Main Theorem:
Theorem 1.6 (Zariski). Let X Ü Y be a birational map of smooth projective
surfaces. Then there are a smooth projective surfaceZ and compositions of monoidal
transformations Z ! X , Z ! Y so that

Z

  ~~
X // Y

commutes.

As yet, there is no noncommutative analogue of Theorem 1.6 although in the
companion paper [19], we do prove:
Theorem 1.7. LetE be the elliptic curve associated to the cubic Sklyanin algebra S 0,
as defined above, and let r 2 E be generic. Then there is a Sklyanin algebra S
associated to E and points p; q 2 E so that

Blr..S 0/.4// Š Blp;q.S .3//:

In fact this theorem also holdswhenS 0 is replaced by any generic noncommutative
quadric surface in the sense of [24]. This theorem is a noncommutative version of the
isomorphismBlp;q.P2/ Š Blr.P1�P1/ arising fromTheorem 1.6. The birationality
of S and S 0 was first proved by Van den Bergh, with a detailed proof given in [15].

The paper is organised as follows. In Section 2 we review background on twisted
homogeneous coordinate rings of elliptic curves. In Section 3we study point modules
over such a ring. In Section 4 we define elliptic algebras and give their basic
properties, and in section 5 we define and study line modules over elliptic algebras.
In Sections 6 and 7we develop noncommutative intersection theory and prove part (1)
of Proposition 1.3. In Section 8 we prove our main blowing down Theorem 1.4, and
in Section 9 we prove Theorem 1.5. Finally, in Section 10 we study the effect of
blowing up the same point twice.
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of the first version of this article for their careful reading and helpful comments.
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2. Basic concepts

In this section we review some basic material, including twisted homogeneous
coordinate rings, that will be used frequently and without particular comment
throughout the paper.

Throughout we work over an algebraically closed field k, and rings will be
k-algebras unless otherwise noted. Given a noetherian N-graded k-algebra A,
let Gr-A be the category of Z-graded right A-modules, with morphisms HomGr-A
preserving degree. Write gr-A for the full subcategory of noetherian modules. Let
Œ1� WGr-A! Gr-A be the shift functor: the autoequivalence sending

M D
M

Mi !MŒ1� D
M

MŒ1�i ;

whereMŒ1�n DMnC1. ForM;N 2 Gr-A the graded Hom groups are

HomA.M;N / D
M
n2Z

HomGr-A.M;N Œn�/;

with derived functors

ExtA.M;N / D
M
n2Z

ExtiGr-A.M;N Œn�/:

IfA andM are noetherian, then HomA.M;N / equals the usual ungraded Homwhich
will always be written HomA.M;N /. Similarly, ExtiA.M;N / D ExtiA.M;N /, see
[5, Proposition 3.1]. Finally, set EndA.M/ D HomA.M;M/. We will frequently
use the fact that

ExtrGr-A.MŒ�n�;N / D ExtrGr-A.M;N Œn�/ D ExtrGr-A.M;N /Œn�; (2.1)

for anyM;N; n and r .
Let A D

L
n�0An be a cg noetherian algebra, and note that A is necessarily

locally finite in the sense that dimkAn < 1 for all n. Let tors-A be the category
of modules in gr-A which are finite-dimensional over k, and let Tors-A be the
subcategory of Gr-A consisting of direct limits of finite-dimensional modules. Write
Qgr-A for the quotient category Qgr-A=Tors-A, with quotient functor � W Gr-A !
Qgr-A. Then qgr-A D gr-A= tors-A is identifiedwith the noetherian objects inQgr-A.
Following [5], the pair .Qgr-A;�.A// is called the noncommutative projective scheme
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associated to A. The autoequivalence Œ1� of Gr-A induces an autoequivalence, again
written Œ1�, of Qgr-A. We again have graded Hom groups

HomQgr-A.M;N / D
M
n2Z

HomQgr-A.M;N Œn�/:

We emphasise here that a graded module is called torsionfree provided it has no
finite dimensional submodules. In contrast a moduleM (graded or not) over a prime
ring R is called Goldie torsionfree if no element of the module is killed by a regular
element of the ring.

Next we review some important homological conditions.
Definition 2.1. A ring A is called Auslander–Gorenstein if
(i) injdim.A/ < 1, in the sense that A has finite injective dimension on both left

and right;
(ii) if 0 � p < q andM is a finitely generated A-module, then ExtpA.N; A/ D 0 for

every submodule N of ExtqA.M; A/.
Write GKdim.M/ for the Gelfand–Kirillov dimension of an A-module M , as

in [11]. An R-module M is called d -pure if GKdimN D d D GKdimM for
all nonzero submodules N of M , and is d -critical if GKdimM=N < d for all all
nonzero submodulesN ofM . LetA be a noetherianAuslander–Gorensteink-algebra
with GKdim.A/ <1. For an A-moduleM , write

j.M/ D min
˚
r W ExtrA.M;A/ 6D 0

	
for the homological grade of M . The algebra A is called Cohen–Macaulay
(or CM), provided that j.M/C GKdim.M/ D GKdim.A/ holds for every finitely
generated A-moduleM . The moduleM is then called Cohen–Macaulay (or CM) if
ExtrA.M;A/ D 0 for all r ¤ j.M/.

Finally, a cg noetherian k-algebra A is called Artin–Schelter (AS) Gorenstein if
d D injdim.A/ < 1 and ExtjA.k; A/ Š ıj;dkŒ`�, where k D A=A�1 is the trivial
module, and ` is some shift of grading.

LetX; Y be k-schemes. Write QcohX for the category of quasi-coherent sheaves
on X , with cohX the subcategory of coherent sheaves. Given a morphism of
k-schemes � W X ! Y and F 2 QcohY , we write F � for the pullback ��.F /.
If L is an invertible sheaf on X , and � 2 Autk.X/ is a k-automorphism, one defines
the TCR or twisted homogeneous coordinate ring B.X;L; �/ D

L
n�0H

0.X;Ln/,
whereLn D L˝L�˝� � �˝L�n�1 . This is aN-gradedk-algebra withmultiplication
defined as follows: for x 2 Bm, y 2 Bn, then x ? y D �.x ˝ y�

m
/, where

� W H 0.E;Lm/˝H
0.E;L�m

n /! BnCm D H
0.E;LnCm/

is the obvious map.
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In this paper we are primarily concerned with the TCR B.E;L; �/ of an elliptic
curve E. In this case, the following result is well known:
Lemma 2.2. Let E be an elliptic curve over k and L;M be invertible sheaves on E
of degree � 2.
(1) The natural map

� W H 0.E;L/˝H 0.E;M/! H 0.E;L˝M/

is surjective unless L ŠM has degree 2, in which case dimCoker� D 1.
(2) Let � 2 Autk.X/ have infinite order. Then B D B.E;L; �/ is generated as an

algebra in degree 1.
(3) If B is as in (2), then B is a noetherian domain which is Auslander–Gorenstein,

CM, and AS-Gorenstein, with injdimBB D 2 and ExtjB.k; B/ D ı2jk.
(4) IfB is as in (2), the mapF 7! �.

L
n�0H

0.E;F ˝Ln// defines an equivalence
of categories QcohE ! Qgr-B .

Proof. Parts (1) and (2) are [16, Lemma 3.1]. ThatB is a domain follows immediately
from the definition, and the noetherian property is [4, Theorem 1.4], while part (4)
is [4, Theorem 1.3]. The remaining homological properties follow from [12,
Theorems 6.3 and 6.6]. (Levasseur assumes that degL � 3, but the proof only
uses that L is ample).

Notation 2.2. The quotient functor � W Gr-B ! Qgr-B has a right adjoint ! W
Qgr-B ! Gr-B called the section functor, which may be described more explicitly
as follows. If

M D
M
n�0

H 0.E;F ˝Ln/

for a coherent sheaf F , then

!�.M/ D
M
n2Z

H 0.E;F ˝Ln/;

where we define Ln for n < 0 by

Ln D .L
�n

˝ � � � ˝L��1

/�1:

We say that a graded B-module M is saturated if it is in the image of the section
functor !. By[5, (2.2.3)], this is equivalent to Ext1B.k;M/ D 0.

Given anN-graded noetherian domainA, the localisation ofA at the set of nonzero
homogeneous elements exists and is called the graded quotient ring Q D Qgr.A/

ofA. Given noetherian gradedA-submodulesM;N ofQ, we identifyHomA.M;N /
with fx 2 Q W xM � N g. In particular, HomA.M;A/ is identified with M � D
fx 2 Q W xM � Ag andM is reflexive ifM DM ��. If A D B D B.E;L; �/ as in
Lemma 2.2, then Qgr.B/ Š k.E/Œt; t�1I �� where k.E/ is the function field of E
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with the induced action of � . We sometimes fix an isomorphism Qgr.B/ Š Q D

k.E/Œt; t�1I ��, and write B as the explicit subalgebra B D
L
n�0H

0.E;Ln/t
n

of Q, where each H 0.E;Ln/ is then given a fixed embedding into k.E/. The
following result will be useful in calculating Homs between B-submodules ofQ.
Lemma 2.3. Let B D B.E;L; �/ D

L
n�0H

0.E;Ln/t
n � Q D k.E/Œt; t�1I ��

for an elliptic curve E over k, with invertible sheaf L of degree � 2 and infinite
order automorphism � 2 Autk.E/. Let F and G be invertible OE -subsheaves
of the constant sheaf k.E/, and let M D

L
n2ZH

0.E;F ˝ Ln/t
n, N DL

n2ZH
0.E;G ˝Ln/t

n be saturated B-submodules ofQ. Then

HomB.M;N / D
M
n2Z

H 0
�
E; .F �n

/�1 ˝ G ˝Ln

�
tn � Q:

Proof. This is similar to the proof of [18, Lemma 6.14(i)], but since we use the result
frequently we give the details.

WriteH D HomB.M;N /, and X D
L
n2ZH

0.E; .F �n
/�1˝ G ˝Ln/t

n both
of which can be identified with subspaces of Q. For each n, let Hn be the subsheaf
of the constant sheaf k.E/ generated by Hnt�n � k.E/. Let Mn D F ˝Ln; thus
Mn D H 0.E;Mn/, and Mn generates the sheaf Mn, for n � 0, say for n � n0,
because L is � -ample by [4, Proposition 1.5]. Similarly, write Nn D G ˝ Ln for
all n.

For n � n0 and r � 0, the equationHrMn � NnCr forces HrM
�r

n � NnCr and
so

Hr ˝
�
F ˝Ln

��r

� G ˝LnCr :

EquivalentlyHr � .F
�r
/�1˝G˝Lr and soH �

L
H 0.E;Hr/t

r � X . Another
calculation shows that

�
.F �r

/�1 ˝ G ˝Lr

�
M�r

n D NnCr for r; n � 0 and taking
sections for n � n0 shows that X � HomB.M�n0

; N /.
To complete the proof we need to prove that H D HomB.M�n0

; N /. Clearly,
H � HomB.M�n0

; N /. However, if � 2 HomB.M�n0
; N /t for some t , then we

may consider � as an element ofQ. We see that Z D .�M CN/ is a B-submodule
of Q such that ZB�n0

� N . Since N is saturated, this forces Z � N and � 2 H ,
as desired.

Notation 2.3. Let A be connected graded. A Z-graded A-module M is left
respectively right bounded ifMn D 0 for n� 0, respectively for n� 0. Obviously
right bounded modules are in Tors-A, and finitely generated graded modulesM are
left bounded. Importantly, if A is noetherian and M and N are finitely generated
graded A-modules, then by considering a free resolution of M , each ExtiA.M;N /
is left bounded and locally finite. If M is locally finite, the Hilbert series of M is
the formal Laurent series hilbM D hM .s/ D

P
n2Z dimkMns

n 2 Z..s//. Note
that we use the notations hilbM and hM interchangeably. Given two Hilbert series
g.s/ D

P
ans

n and h.s/ D
P
bns

n we write g.s/ � h.s/ if an � bn for all n 2 Z.
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3. Point modules

In this section we study some homological properties of point modules over a twisted
homogeneous coordinate ring. Throughout the section, we fix an elliptic curve E,
an automorphism � 2 Autk.E/ of infinite order and an invertible sheaf M with
degM � 3, although many of the results hold more generally. Corresponding to this
data, set B D B.E;M; �/. Points of E will always mean closed points.
Definition 3.1. Let A be a cg k-algebra that is generated in degree one. Then a point
module over A is a graded cyclic moduleM with Hilbert series hM .s/ D 1=.1� s/.
If M is an A-point module, then there is a graded isomorphism M Š A=I for
a unique right ideal I , called a (right) point ideal. Now let B D B.E;M; �/ be
a TCR as defined in the last section; thus B is generated in degree 1 by Lemma 2.2.
By Lemma 2.2(4), the isomorphism classes of B-point modules are in one-to-one
correspondence with the closed points of E; explicitly, if p 2 E with skyscraper
sheaf Op and ideal sheaf Ip , then p 2 E corresponds to the point module

Mp D

M
n�0

H 0
�
E;Op ˝Mn

�
;

with point ideal
Ip D

M
n�0

H 0
�
E; Ip ˝Mn

�
� B:

It is easy to see that Ip is a saturated right ideal in the sense of Notation 2.2.
When considering shifts of point modules, the following formula will be useful.

MpŒn��0 ŠM�np for any p 2 E and n � 0 (3.1)

(see, for example, [17, Lemma 4.8(1)]). In particular, .Mp/�n Š .M�np/Œ�n� for
all p 2 E and n � 0.
Remark 3.2. We occasionally work with left point modules over B D B.E;M; �/.
Of course there are left-sided versions of all of the results above; in particular, the
left B-point modules are again in bijection with the points of E. In this case the
equivalence of categories QcohE ! B-Qgr is induced by the functor

F 7!
M
n�0

H 0
�
E;F �n�1

˝Mn

�
:

In particular, the left point module corresponding to p 2 E is

M `
p D

M
n�0

H 0
�
E; .Op/

�n�1

˝Mn

�
:

Moreover,M `
p Š B=Jp for the left point ideal

Jp D
M
n�0

H 0
�
E; .Ip/

�n�1

˝Mn

�
:
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Note that the correspondence is set up so that if Ip is the right point ideal
corresponding to p, and Jp the left point ideal, then

.Ip/1 D .Jp/1 D H
0
�
E; Ip ˝M

�
:

We also have the following analogue of (3.1):�
M `
q

�
Œn��0 ŠM

`
��nq for any q 2 E and n � 0: (3.2)

Lemma 3.3. Let B D B.E;M; �/ as above with a right point module M D Mp .
ThenM is CM and Ext1B.Mp; B/Œ1� ŠM

`
��2.p/

is a left point module. The analog-
ous result holds for left point modules.

Proof. We freely use the properties of B given by Lemma 2.2. Set Epq.M/ D

ExtpB.Ext
q
B.M;B/; B/.

We first show thatM is CM, which will be a routine consequence of the spectral
sequence

E
p;�q
2 D Epq.M/) Hp�q.M/ D

(
M if p D q;
0 otherwise;

(3.3)

as described in [12, Theorem 2.2(a)] or [6, §I.1]. Note that, as B is generated in
degree one, every proper factor module of M is finite dimensional, and so M is
1-critical. Now B is Auslander–Gorenstein of injective dimension 2. Therefore,
by the 1-criticality of M and [12, Theorem 2.4(b)], and in the notation of that
result, F j .M/ D 0 for j > 1. Hence M D E11.M/ but E22.M/ D 0 by
[12, Theorem 2.2(b)]. In particular, Ext2B.M;B/ D 0 by the Gorenstein property
while Ext0B.M;B/ D 0 since B is a domain. ThusM is indeed CM.

It is almost immediate from (3.3) that Ext1B.M;B/Œ1� is a point module, but as
we need to identify the corresponding point, we take a different approach. Write
M DMp D B=Ip . Applying HomB.�; B/ to the exact sequence

0! Ip ! B !Mp ! 0

shows that Ext1B.Mp; B/ Š I
�
p=B . By Lemma 2.3

I �p Š
M
n�0

H 0
�
E;
�
I�

n

p

��1
˝Mn

�
D

M
n�0

H 0
�
E;Mn

�
��n.p/

��
;

and so I �p=B has Hilbert series s=.1� s/. It follows from Lemma 2.2 that B.I �p /1 D
.I �p /�1, and so I �p=B is cyclic. In other words, Ext1B.Mp; B/Œ1� is a point module.
The fact that this point module is indeed M `

��2.p/
now follows from Remark 3.2

and (3.2). The result for left modules is left to the reader.
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We next want to compute the Ext groups between point modules over B D
B.E;M; �/. As the next result shows, in qgr-B this follows easily from the
equivalence qgr-B ' cohE. When there is no chance of confusion, givenM 2 gr-B ,
the object �.M/ 2 qgr-B will also be written asM .
Lemma 3.4. Let B D B.E;M; �/ as before. Then Extmqgr-B.Mp; Mq/ D 0 for
m � 2 and

Homqgr-B
�
Mp;Mq

�
Š Ext1qgr-B

�
Mp;Mq

�
Š

(
0 for p; q on distinct orbits;
kŒ�j � if p D �j .q/, for j 2 Z:

Remark. This result and its proof also hold when degM D 2.

Proof. As noted inDefinition 3.1, the pointmoduleMp corresponds to the skyscraper
sheaf Op at p. Thus, by (3.1),

Extmqgr-B
�
Mp; Mq

�
D

M
n2Z

Extmqgr-B
�
Mp; MqŒn�

�
D

M
n2Z

ExtmE
�
Op; O�n.q/

�
for allm. Since E is a smooth curve, ExtmE .Op; Or/ D 0 for any closed point r 2 E
and m � 2. On the other hand, working locally gives

HomE
�
Op; Or

�
D Ext1E

�
Op; Or

�
D

(
0 if p ¤ r;
k if p D r:

Now apply (2.1).

We next want to prove the analogue of Lemma 3.4 for homomorphisms in gr-B ,
for which we need several elementary observations.
Lemma 3.5. Let q 2 E. Then the following hold.
(1) The only torsionfree extensions of Mq by finite dimensional graded B-modules

are the shifted point modulesM��n.q/Œn� for n � 0.
(2) Ext1B.kŒ�n�;Mq/ D kŒnC 1� for all n 2 Z.
(3) For all p; q 2 E, one has Ext1B.Mp;Mq/�1 ¤ 0.
(4) Ext1Gr-B.Mp;Mp/ 6D 0:

Proof. (1) Note first that, by (3.1), the module X D M��n.q/Œn� satisfies X�0 D
..M��n.q//�n/Œn� DMq; and soX is an extension of the required form. Conversely,
any such extension is necessarily a 1-critical module, and so uniqueness follows, for
example, from [18, Corollary 3.7(1)].
(2) Since any non-trivial extension ofMq by a shift of k is necessarily torsionfree, it
follows from (1) that the only such extension is 0!Mq !M��1qŒ1�! kŒ1�! 0:

Thus Ext1B.kŒ�n�;Mq/ D kŒnC 1�.
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(3) Consider B=J , where J is the right ideal
L
n�0H

0.E;Mn.�p � �
�1.q///.

Then the point ideal Ip D
L
n�0H

0.E;Mn.�p// contains J , with Ip=J Š
.M��1.q//�1 Š MqŒ�1�. It is clear that this extension of Ip=J by B=Ip Š Mp is
nonsplit, since B=J is cyclic.

(4) By Lemma 2.2(4), the nonsplit extension of Op by itself in cohE gives a
nonsplit extension 0 ! �.Mp/ ! F ! �.Mp/ ! 0 in qgr-B , for some
F 2 qgr-B . Note that the section functor ! from Notation 2.2 satisfies !.�.N // D
Homqgr-B.�.B/; �.N //. In particular, applying ! to our exact sequence gives an
exact sequence

0! !
�
�.Mp/

�
! !.F /! !

�
�.Mp/

�
! Ext1qgr-B

�
�.B/; �.Mp/

�
! � � � (3.4)

Now

Ext1qgr-B
�
�.B/; �.Mp/

�
D

M
m

Ext1qgr-B
�
�.B/; �

�
MpŒm�

��
D

M
m

Ext1cohE
�
OE ;O�m.p/

�
D 0;

using the equivalence of categories between qgr-B and cohE and the fact that
sheaves with zero-dimensional support have vanishing higher cohomology. However,
!.�.Mp//�0 DMp by construction and so (3.4) becomes the exact sequence

0!Mp ! !.F /�0 !Mp ! 0:

This is nonsplit since applying � yields the original nonsplit extension.

Proposition 3.6. Let p; q 2 E. Then

HomB
�
Mp;Mq

�
D

(
kŒ�j � if p D �j q for some j � 0;
0 otherwise;

(1)

while

Ext1B
�
Mp;Mq

�
D

(
kŒ1�˚ kŒ�j � if p D �j q for some j � 0;
kŒ1� otherwise:

(2)

Proof. (1) Using (3.1), we have

HomB
�
Mp;Mq

�
j
¤ 0 ” MpŒ�j � Š .Mq/�j Š .M�j q/Œ�j �:

Clearly this happens if and only if j � 0 and p D �j q; in particular it can happen
for at most one value of j .
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(2) Now consider the Ext groups. Note that

Extiqgr-B
�
Mp;Mq

�
D lim
n!1

Extigr-B
�
.Mp/�n; Mq/;

by [5, Proposition 7.2]. Thus the exact sequences

0! .Mp/�n !Mp !M=.Mp/�n ! 0

induce the exact sequence

0 �! HomB
�
Mp;Mq

�
�! Homqgr-B

�
Mp;Mq

�
˛
�! lim

n!1
Ext1B

�
Mp=.Mp/�n;Mq

� ˇ
�! Ext1B

�
Mp;Mq

�
�! Ext1qgr-B

�
Mp;Mq

�
�! � � � (3.5)

We claim that X D limn!1 Ext1B.Mp=.Mp/�n;Mq/ is zero in degrees � 0

while dimkX�1 D 1. To see this, apply HomB.�;Mq/ to the exact sequence

0! kŒ�n� �!Mp=.Mp/�nC1 �!Mp=.Mp/�n �! 0:

This gives

0 �! Ext1B
�
Mp=.Mp/�n;Mq

�
�! Ext1B

�
Mp=.Mp/�nC1;Mq

�
�
�! Ext1B

�
kŒ�n�;Mq

�
�! � � �

Since Ext1B.kŒ�n�;Mq/ D kŒn C 1� by Lemma 3.5, it follows from this sequence
and induction on n that Ext1B.Mp=.Mp/�n;Mq/ lives in negative degrees, and that
dimk Ext1B.Mp=.Mp/�n;Mq/�1 D 1 for all n. The claim follows.

Next, writeMpDB=Ip , where IpD
L
n�0H

0.E; Ip˝Mn/. Since deg.Ip˝M/

� 2, it follows fromLemma 2.2(1) that Ip is generated in degree one. Thus the graded
free resolution ofMp begins

� � � !

mM
iD1

BŒ�1� �! B �!Mp �! 0:

Using this to calculate Ext1B.Mp;Mq/ shows that Ext1B.Mp;Mq/n D 0 for n � �2.
Combining this with the conclusion of the previous paragraph shows that, in (3.5),

Imˇ is concentrated entirely in degree �1, and is either 0 or kŒ1�. In fact we can be
more precise. By comparing Lemma 3.4 with Part (1), it follows that ˛ D 0 except
when p D �j .q/ for some j < 0 and in the latter case Im.˛/ D kŒ�j �. We conclude
that

Imˇ D

(
0 if p D ��1.q/;
kŒ1� otherwise:

(3.6)
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To complete the proof, we consider several cases. First, if p; q lie on different
orbits then Lemma 3.4 implies that Extqgr-B.Mp;Mq/ D 0. Thus, (3.6) shows that
Ext1B.Mp;Mq/ D Imˇ Š kŒ1�.

Next, suppose that p D ��1.q/. Then, ˇ D 0 by (3.6) and so in this case
Lemma 3.4 implies that Ext1B.Mp;Mq/ ,! Ext1qgr-B.Mp;Mp/ Š kŒ1�. Since
kŒ1� ,! Ext1B.Mp;Mq/ by Lemma 3.5(3), we conclude that Ext1B.Mp;Mq/ Š kŒ1�,
as required.

It remains to consider the case when p D �j .q/ for some �1 6D j 2 Z.
Comparing (3.6) with Lemma 3.4 gives an exact sequence

0 �! kŒ1� �! Ext1B
�
Mp;Mq

�
�! kŒ�j � �! � � �

If j � �2, we have shown above that Ext1B.Mp;Mq/j D 0. Hence
Ext1B.Mp;Mq/ Š kŒ1�. If j � 0, then we must show that Ext1B.Mp;Mq/ Š

kŒ1�˚ kŒ�j �, for which it suffices to show that 0 6D Ext1B.Mp;Mq/j D

Ext1B.Mp;MqŒj �/0. From the exact sequence

0 D Homgr-B
�
Mp;MqŒj �=MqŒj ��0

�
�! Ext1gr-B

�
Mp;MqŒj ��0

�
�! Ext1gr-B

�
Mp;MqŒj �

�
it suffices to show that Ext1B.Mp;MqŒj ��0/0 6D 0 or, equivalently by (3.1), that
Ext1B.Mp;Mp/0 ¤ 0. In other words, we can reduce to the case j D 0, where the
result is just Lemma 3.5(4).

4. Elliptic algebras

In this section, we define elliptic algebras, which are the main objects of interest in
this paper, and describe some of their more basic properties.
Definition 4.1. A connected N-graded algebraR is called an elliptic algebra if there
is a central nonzerodivisor g 2 R1 such that R=gR Š B.E;M; �/ for some elliptic
curve E, invertible sheaf M, and infinite order automorphism � . We call degM the
degree of the elliptic algebra. In this paper, we will always assume that an elliptic
algebra has degree at least 3 unless otherwise stated.
Example 4.2. Some of the most important elliptic algebras arise from the (quadratic)
Sklyanin algebra

S D Skl.a; b; c/ D kfx1; x2; x3g=.axixiC1 C bxiC1xi C cx
2
iC2 W i 2 Z3/;

where .a; b; c/ 2 P2 n S for a (known) finite set S . Here, S contains a canonical
central element g 2 S3 such that S=gS Š B.E;L; �/ for an elliptic curve E. In
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this paper we restrict attention to the case when j� j D 1 since the 3-Veronese
ring T D S .3/ is then an elliptic algebra, with T=gT Š B.E;M; �/ for M D

L˝L� ˝L�2 and � D �3.
Another, related example of an elliptic algebra can be obtained by taking the

fourth Veronese ring T 0 D .S 0/.4/ of the cubic Sklyanin algebra S 0 from [3]. More
generally, there are the (second Veroneses of the) quadrics constructed in [24]. As
discussed in [22, Example 8.5], these algebras can all be written as factors of a certain
4-dimensional Sklyanin algebra, although as they will not be needed explicitly in this
paper we will omit the definitions.

An elliptic algebra R automatically has a number of good properties, basically
because the same properties hold for the factor ring B D R=Rg. Before stating
the result we need one more definition. Given a noetherian cg k-algebra A, regard
k D A=A�1 as a right A-module. Then A satisfies the Artin–Zhang �-condition (on
the right) provided dimk ExtjA.k;M/ <1 for allM 2 gr-R and all j � 0.
Proposition 4.3. Let R be an elliptic algebra with B D R=gR. Then both R and B
are noetherian domains generated in degree 1. In addition, R and B are Auslander–
Gorenstein, CM, AS-Gorenstein, and satisfy the Artin–Zhang �-condition.

Proof. By Lemma 2.2, R=gR and hence R are generated in degree one. Now the
noetherian, Auslander–Gorenstein and CM properties as well as the � condition
hold for B by [16, Lemma 2.2] and for R by [16, Theorem 6.3]. The proofs of
these results also easily imply that GKdim.B/ D 2 and GKdim.R/ D 3, so that by
[12, Theorem 6.3], both B and R are also AS-Gorenstein.

Notation 4.1. LetR be an elliptic algebra with factor ring B D R=gR. For a graded
R-moduleM or, indeed a kŒg�-moduleM , its g-torsion submodule is

t .M/ D
˚
m 2M W gnm D 0 for n� 1

	
:

ThenM is g-torsion ifM D t .M/ and g-torsionfree if t .M/ D 0. Write R.g/ for
the homogeneous localisation of R at the completely prime ideal gR; thus R.g/ D
RC�1, for C the set of homogeneous elements in R n gR. As in [18, Notation 2.5],
R.g/=gR.g/ Š Qgr.B/ Š k.E/Œt; t�1I ��. We say that akŒg�-submoduleM � R.g/
is g-divisible whenM \ gR.g/ DMg. It is easy to see thatM is g-divisible if and
only ifR.g/=M is g-torsionfree. The fact thatR=gR Š B is a domain forcesR itself
to be g-divisible. WhenM is g-divisible, we can and will identifyM=Mg with

M D
�
M C gR.g/

�
=gR.g/ � R.g/=gR.g/:

The following properties of gradedmodules over an elliptic algebra will be useful.
Lemma 4.4. Let R be an elliptic algebra.
(1) If M;N � R.g/ are g-divisible graded R-submodules, then HomR.M;N / �

R.g/ is also g-divisible.
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(2) If M is a g-torsionfree finitely generated graded right R-module with
GKdimM � 1, then I D AnnR.M/ is a nonzero graded ideal of R with
GKdimR=I � 1.

Proof. (1) See [18, Lemma 2.12(2)].

(2) AsM=Mg is finite dimensional,M ı DMŒg�1�0 is a finite dimensional module
over Rı D RŒg�1�0. Hence J D AnnRı.M ı/ 6D 0. Therefore,

0 6D bJ D[
n

˚
a 2 Rn W ag

�n
2 J

	
and certainly bJ � AnnRM ; whence I D AnnRM 6D 0: As M is g-torsionfree,
I 6� gR. Hence, by [18, Lemma 2.15(3)], GKdimR=I � 1.

Lemma 4.5. Let R be an elliptic algebra with R=Rg D B .

(1) Let J 2 gr-R with J � Q D Qgr.R/. Then J �� is the unique largest
R-submodule ofQ such that GKdimJ ��=J � 1. In particular, J is reflexive if
and only ifQgr.R/=J is 2-pure.

(2) Let J � R.g/ be a finitely generated, g-divisible graded right R-submodule. If
J D J=Jg is saturated as a B-module, then J is reflexive as a right R-module.

Proof. (1) This follows from the CM property; see, for example, [12, (4.6.6) and
Remark 5.8(4)].

(2) We know that J is reflexive if and only ifQgr.R/=J is 2-pure. This is equivalent
to R.g/=J being 2-pure, sinceQgr.R/=R.g/ D

S
n�1 g

�nR.g/=R.g/ is 2-pure.
If J is not reflexive, there exists a finitely generated module J ¨ N � R.g/ with

GKdim.N=J / � 1. By Lemma 4.4(2) and the fact that R.g/=J is g-torsionfree,
NI � J for some graded ideal I of R with GKdimR=I � 1. LetbN D ˚y 2 R.g/ W ygn 2 N; some n � 0

	
:

Then bN is g-divisible, with bNI � J . Since bN � HomR.I; J /, clearly bN is left
bounded. Since J ¨ bN and both are left bounded and g-divisible, we must have
J ¨ bN ; otherwise J=Jg D bN=bNg and the graded Nakayama lemma would imply
that J D bN . Moreover, bNI � J . But dimkB=I <1, since all nonzero ideals ofB
have finite codimension (see, for example, [2, Lemma 4.4]). Hence dimk bN=J <1,
showing J is not saturated, a contradiction.

The next few lemmas provide useful homological properties for modules over an
elliptic algebra. First however we prove an elementary result that will be used several
times.
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Lemma 4.6. Let H be a locally finite, left bounded, graded kŒg�-module. If the
multiplication map �g has a finite dimensional kernel on H , then the g-torsion
submodule ofH is also finite dimensional.

Proof. By hypothesis, AnnH .g/ is finite-dimensional, say contained in degrees� d .
Now if 0 ¤ x 2 H is g-torsion, then pick n � 1 minimal with gnx D 0; thus
0 ¤ gn�1x 2 AnnH .g/. It follows that deg x � d � n C 1. In particular, the
g-torsion submodule of H is entirely contained in degrees � d , and so is finite
dimensional asH is left bounded and locally finite.

Lemma 4.7. LetR be an elliptic algebra, withB D R=gR. Suppose thatM 2 Gr-R
is g-torsionfree and that N 2 Gr-B . Then, for all i � 0, one has ExtiR.M;N / Š
ExtiB.M=Mg;N / and

ExtiQgr-R
�
�.M/; �.N /

�
Š ExtiQgr-B

�
�.M=Mg/; �.N /

�
:

Proof. Both parts are essentially the same easy exercise; cf. [23, Proposition 5.1.2(1)].

Lemma 4.8. Let R be an elliptic algebra with R=Rg D B D B.E;M; �/. Let I
and J be non-zero g-divisible, reflexive finitely generated graded rightR-submodules
of R.g/. Then

(1) The natural inclusion HomR.I; J / � HomB.I ; J / has a finite-dimensional
cokernel.

(2) The g-torsion subspace of Ext1R.I; J / is finite-dimensional over k.

Proof. (1) The proof is a variant of [18, Prop. 6.12]. First, replacing I and J by xI
and yJ , for some homogeneous elements x; y 2 R n gR, we can assume without
loss that I; J � R. Note that R=I and R=J are g-torsionfree modules and hence,
by Lemma 4.5, are either 2-pure or 0.

By Lemma 4.7 we may identify ExtiR.R=I; J / D ExtiB.B=I ; J /. Thus, applying
HomR.R=I;�/ to the sequence

0! J
�g
�! J ! J ! 0

gives the exact sequence

HomB
�
B=I ; J

�
�! Ext1R

�
R=I; J

�
Œ�1�

�g
�! Ext1R

�
R=I; J

� ˇ
�! Ext1B

�
B=I ; J

�
˛
�! Ext2R

�
R=I; J

�
Œ�1�

�g
�! Ext2R

�
R=I; J

�
�! Ext2B

�
B=I ; J

�
�! � � � (4.2)

Moreover, HomB.B=I ; J / D 0 since B is a domain.
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We claim that dimk Ext2B.B=I ; J / < 1. Indeed, since B is a domain
with GKdim.B/ D 2, [11, Proposition 5.1(e)] implies that GKdimB=I � 1

and so B=I has a finite filtration by point modules and finite-dimensional
modules. By Proposition 4.3 B satisfies the Artin–Zhang �-condition and so
dimk Ext2B.k; J / <1. Thus in order to prove the claim, using the usual long
exact sequences in cohomology, it suffices to show that dimk Ext2B.Mp; J / <1 for
a point moduleMp . Consider the exact sequence

� � � ! Ext1B
�
Mp; B=J

�
! Ext2B

�
Mp; J

�
! Ext2B

�
Mp; B

�
! � � �

Here, Ext2B.Mp; B/ D 0 by Lemma 3.3. Also B=J is again filtered by point
modules and finite-dimensional modules. Obviously dimk Ext1B.Mp;k/ < 1,
while dimk Ext1B.Mp;Mq/ < 1 for a point module Mq by Proposition 3.6. Thus
dimk Ext1B.Mp; B=J / <1 and so dimk Ext2B.Mp; J / <1, as claimed.

Equation 4.2 now shows that ifN D Ext2R.R=I; J /, then themapNn�1
�g
�! Nn is

surjective for n� 0. SinceN is left bounded and locally finite (see Notation 2.3) this
forces dimkNn D d for some constant d and any n� 0. HenceNn�1

�g
�! Nn is an

isomorphism for n� 0 and so Coker.ˇ/ Š Im.˛/ is finite-dimensional. Identifying
Ext1R.R=I; J / Š HomR.I; J /=J and Ext1B.B=I ; J / Š HomB.I ; J /=J , this means
that the natural map HomR.I; J /=J ! HomB.I ; J /=J has a finite-dimensional
cokernel. As in the proof of [18, Prop 6.12], it easily follows that the natural map
HomR.I; J /! HomB.I ; J / also has a finite-dimensional cokernel.
(2) From the exact sequence

0 �! HomR
�
I; J

�
Œ�1�

�g
�! HomR

�
I; J

�
�! HomB

�
I ; J

�
�! Ext1R

�
I; J

�
Œ�1�

�g
�! Ext1R

�
I; J

�
and part (1), the map �g on H D Ext1R.I; J / has finite-dimensional kernel. Now
apply Lemma 4.6.

5. Line modules

The main aim of this paper is to create an algebraic analogue of contracting lines
of self intersection �1. To this end, in this section we discuss line modules —
the appropriate analogues of lines — while in the next section we discuss their
intersection theory. Throughout the section, we fix an elliptic algebraR of degree� 3
with R=Rg D B D B.E;M; �/.
Definition 5.1. A (right) line module over the elliptic algebra R is a cyclic
graded R-module L 2 gr-R with Hilbert series hilbL D 1=.1 � s/2. Because
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Homgr-R.R;L/ D k for such a module L, there is a unique right ideal J of R with
L Š R=J . We refer to J as the line ideal of L.
Lemma 5.2. Let L be a right line module over the elliptic algebra R. Then L is
g-torsionfree and 2-critical, and L=Lg is a point module.

Proof. This follows from [16, Lemma 8.9].

Recall from Lemma 2.2 the equivalence of categories QcohE ! Qgr-B . Since
the simple objects in QcohE are the skyscraper sheaves Op for points p 2 E,
following Definition 3.1 the simple objects in qgr-B are the images �.Mp/ of the
point modules Mp , and so these are also parametrised by closed points p 2 E.
By a slight abuse of notation we will often write �.Mp/ D Op to emphasise the
correspondence.
Definition 5.3. LetM be a right line module or, more generally, a finitely generated
g-torsionfree right R-module with GKdimM D 2. Then GKdimM=Mg D 1,
and so �.M=Mg/ 2 qgr-B has finite length. Thus �.M=Mg/ has a filtration with
simple factors Op1

; : : : ;Opn
, for some pi 2 E. We define the divisor of M to be

DivM D p1 C � � � C pn. In particular, if L is a line module then L=Lg Š Mp

and DivL D p for some point p 2 E. The analogous notation will be used for left
modules.
Lemma 5.4. LetM 2 gr-R be g-torsionfree and assume thatM=Mg has a filtration
with shifted point module factors fMpi

Œmi � W 1 � i � dg.
(1) M is 2-pure and CM, with

DivM D
X

�mi .pi / and hilbM D
dX
iD1

s�mi=.1 � s/2:

(2) Let N D Ext1R.M;R/. Then N 2 R-gr and is g-torsionfree, 2-pure, and CM.
Moreover, N=gN has a finite filtration with shifted left point module factors
fM `

��2.pi /
Œ�mi � 1� W 1 � i � dg. In particular,

DivN D
X

�mi�1.pi /; and hilbN D
dX
iD1

smiC1=.1 � s/2:

Proof. (1) If M is not 2-pure, then it has a submodule H with GKdimH < 2.
Necessarily GKdimH D 1 since finite-dimensional modules are g-torsion. Also,
asM is g-torsionfree,H.n/ D ff 2M W fgn 2 H g satisfies GKdimH.n/ D 1 for
any n. Thus, after replacing H by some such H.n/ we can assume that H 6� Mg.
In this case, dimkH=Hg < 1 and hence .H CMg/=Mg Š H=H \Mg is a
nonzero, finite-dimensional submodule ofM=Mg, contrary to assumption. ThusM
is 2-pure.
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Recall from Lemma 4.7 that ExtjR.M;B/ Š ExtjB.M=Mg;B/. Thus, applying
HomR.M;�/ to the exact sequence 0 ! RŒ�1�

g
! R ! B ! 0, gives the long

exact sequence

� � � �! Extj�1B

�
M=Mg;B

�
�! ExtjR

�
M;R

�
Œ�1�

�g
�! ExtjR

�
M;R

�
�! ExtjB

�
M=Mg;B

�
�! � � � (5.1)

Given a point module Mp , then Lemma 3.3 implies that ExtjB.Mp; B/ D 0 for
j 6D 1. Since M=Mg is filtered by point modules, standard long exact sequences
show that ExtjB.M=Mg;B/ D 0 for j ¤ 1. In particular if j 6D 1, then the map �g
in (5.1) is surjective. Since ExtjR.M;R/ is left bounded, this can only happen if
ExtjR.M;R/ D 0. ThusM is Cohen–Macaulay.

The computations of hilbM and DivM follow routinely from the hypotheses,
using (3.1).
(2) By the proof of part (1), the sequence (5.1) collapses to give the short exact
sequence

0 �! Ext1R
�
M;R

�
Œ�1�

�g
�! Ext1R

�
M;R

�
�! Ext1B

�
M=Mg;B

�
�! 0:

Hence N D Ext1R.M;R/ is a g-torsionfree left R-module with N=gN Š

Ext1B.M=Mg;B/. Clearly N is finitely generated. Given a point module Mp ,
then Lemma 3.3 implies that Ext1B.Mp; B/ Š M `

��2.p/
Œ�1�: Since M=Mg is

filtered by the fMpi
Œmi �g, it follows that N=gN is filtered by the left point modules

fM `
��2.pi /

Œ�mi � 1�g. The values of hilbN and DivN follow, as they did forM , but
using (3.2) in place of (3.1). Similarly, N is 2-pure and CM by the arguments from
part (1).

We now consider some properties of line modules.
Lemma5.5. LetL;L0 be right linemodules over an elliptic algebraR, withDivLDp
and DivL0 D p0.
(1) If p ¤ �j .p0/ for any j � 0, then HomR.L;L0/ D 0.
(2) If p D �j .p0/ for some j � 0, then either HomR.L;L0/ D 0 or else

hilbHomR.L;L0/ D sj =.1 � s/.
(3) EndR.L/ Š kŒg�; in particular hilbEndR.L/ D 1=.1 � s/.

Proof. Bydefinition,L=LgDMp andL0=L0gDMp0 . ByLemma4.7, ExtiR.L;Mp0/

Š ExtiB.Mp;Mp0/ for all i � 0. Applying HomR.L;�/ to the short exact sequence
0! L0g! L0 !Mp0 ! 0 gives

0 �! HomR
�
L;L0

�
Œ�1�

�g
�! HomR

�
L;L0

� 

�! HomB

�
Mp;Mp0

�
�! � � � :

(5.2)
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(1) In this case, Proposition 3.6 implies that HomB.Mp;Mp0/ D 0 and so �g is
surjective in (5.2). SinceHomR.L;L0/ is left bounded, this forcesHomR.L;L0/ D 0.
(2) Here, Proposition 3.6 implies that HomB.Mp;Mp0/ D kŒ�j �. Thus if
HomR.L;L0/ ¤ 0 then 
 is surjective in (5.2). As HomR.L;L0/ is left bounded,
this forces hilbHomR.L;L0/ D sj .1 � s/�1.
(3) As there is a natural graded inclusion kŒg� ,! EndR.L/, part (2) implies that
hilbHomR.L;L/ D .1 � s/�1 and hence that EndR.L/ D kŒg�.

Lemma 5.6. Let R be an elliptic algebra, with R=Rg D B D B.E;M; �/. Let L
and L0 be right line modules over R.
(1) L is CM, and L_ D Ext1R.L;R/Œ1� is a left line module.
(2) Under the natural morphism, L D L__. Further, if J is the line ideal of L, then

J D J1R is g-divisible, CM and reflexive, while J D J=Jg is saturated.
(3) Up to isomorphism, there is a unique non-split exact sequence

0! R!M ! LŒ�1�! 0:

Explicitly, if L_ D R=J_, then M D .J_/�. This M is g-divisible, CM and
reflexive.

(4) For j D 0; 1 one has ExtjR.L
0; L/ Š ExtjR.L

_; .L0/_/ as graded vector spaces.
(5) Ext1R.k; L/ D 0.

Proof. (1) Write L=Lg D Mp for some p 2 E. Then Lemma 5.4 shows that L
is CM, and that N D Ext1R.Mp; R/ has Hilbert series s=.1 � s/2, with N=gN Š
M `
��2.p/

. In particular, since N=gN is cyclic, N is cyclic by the graded Nakayama
lemma, and since L_ D NŒ1� has the Hilbert series of a line module, it is a left line
module.
(2) Mimicking the notation from Lemma 3.3, set Eij .N / D ExtiR.Ext

j
R.N;R/;R/

for a graded R-module N . We first note that the natural morphism, L! E11.L/ D

L__ is obtained as follows: applying Hom.�; R/ to

0! R! J � ! ExtiR
�
L;R

�
! 0

gives the exact sequence

0! J �� ! R! E11.L/:

Since J �� � J this induces a homomorphism fromL D R=J toR=J �� � E11.L/.
By Lemma 5.4(2) L_ is CM. Thus the Gorenstein spectral sequence (3.3)

collapses to show that the natural morphism L ! L__ is an isomorphism.
Since L D R=J is g-torsionfree, and R is g-divisible, J must be g-divisible.
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Since R=J Š Mp , necessarily J D
L
n�0H

0.E;Mn.�p//. In particular, J is
saturated, and so J is reflexive by Lemma 4.5(2). Similarly, J is generated in degree
one by Lemma 2.2(1) and hence J is generated in degree one by the gradedNakayama
lemma. Since L D R=J is CM by part (1), it follows routinely that ExtiR.J;R/ D 0
for i � 1 and hence that J is CM.

(3) We have an exact sequence

0! R! .J_/� ! L__Œ�1�! 0:

Since .J_/� is contained in the graded quotient ring Qgr.R/, the inclusion R !
.J_/� is essential; in particular, the exact sequence is nonsplit. Now L__ D L by
part (2) and Ext1gr-R.LŒ�1�; R/ D k, by part (1). Thus up to isomorphism there is a
unique nonsplit degree 1 extension M of R by L, and it is given by M D .J_/�.
Since J_ is g-divisible by part (2),M D HomR.J_; R/ is g-divisible by Lemma 4.4.
Finally, as J_ is CM by the left-sided analogue of part (2), the spectral sequence (3.3)
collapses for J_ and shows that ExtiR.M;R/ D Ei0.J_/ D 0 for i > 0. In other
words,M is CM.

(4) We begin with Ext1. Define a map .�/_ W Ext1R.L0; L/ ! Ext1R.L_; .L0/_/ as
follows: let

E W 0 �! L
˛
�!M

ˇ
�! L0Œj � �! 0

be an exact sequence corresponding to an element of Ext1R.L0; L/�j . Applying
HomR.�; R/ to E and using the fact that L and L0 are CM gives the dual extension

E_ W 0 �! .L0/_Œ�j �
ˇ_

�! Ext1R
�
M;R

�
Œ1�

˛_

�! L_ �! 0:

We leave to the reader the verification using Baer sums [13, Theorem III.2.1] that
.�/_ is a linear transformation.

The double dual of E is

E__ W 0 �! L
˛__

�! E11.M/
ˇ__

�! L0Œj � �! 0:

SinceL andL0 are CM, so isM and hence (3.3) implies thatM Š E11.M/. The
functoriality of (3.3) then ensures that ˛__ D ˛ and ˇ__ D ˇ, whence E__ Š E.

Thus .�/_ induces linear maps

f W Ext1R
�
L0; L

�
! Ext1R

�
L_; .L0/_

�
and g W Ext1R

�
L_; .L0/_

�
! Ext1R

�
L0; L

�
such that g ı f is the identity. The same argument starting with the sequence E_
shows that f ı g is the identity. Thus .�/_ is an isomorphism of graded vector
spaces.
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In order to prove the result for Hom, suppose that 0 6D f 2 HomR.L0; L/.
Then L and L0 are GK-critical by Lemma 5.2 and hence f is an injection. Now
applying Ext1.�; R/ produces a monomorphism f _ 2 HomR.L_; .L0/_/ and so
the map f 7! f _ defines an injection Hom.L0; L/ ,! Hom.L_; .L0/_/. The fact
that this is an isomorphism then follows by applying parts (1, 2).
(5) The exact sequence

0! R! .J_/� ! LŒ�1�! 0

from part (3) induces the exact sequence

Ext1R
�
k; .J_/�

�
! Ext1R

�
k; L

�
Œ�1�! Ext2R

�
k; R

�
:

As R is AS-Gorenstein of dimension 3 by Proposition 4.3, the last term is zero. The
first term is 0 by reflexivity of .J_/�, and the result follows.

6. Intersection theory

There is a general notion of intersection product on a noncommutative scheme, due
toMori and Smith [14], that reduces to the usual definition for a commutative scheme
but is more convenient when working in a noncommutative setting. In this section
we give several alternative formulæ for the intersection product of line modules over
elliptic algebras. One drawback of the definition is that it is not always defined for
schemes of infinite homological dimension, so we also give a variant that is always
defined.
Definition 6.1. Let R be a connected noetherian N-graded algebra. Then the inter-
section number of M;N 2 qgr-R is defined to be�

M �
MS N

�
D

X
.�1/nC1 dimk Extnqgr-R

�
M; N

�
;

where we declare that the intersection is undefined if infinitely many terms are non-
zero.

Given M;N 2 gr-R, we define .M �
MSN/ D .�.M/ �MS�.N//, although as

above since the category will be clear from the context we will usually writeM for
the image in qgr-R ofM 2 gr-R.
Notation 6.1. Given an elliptic algebra R, set Rı D RŒg�1�0. Similarly, for M 2
Gr-R, setM ı DMŒg�1�0 2 R

ı-Mod: Since RŒg�1� is strongly graded,

RŒg�1� Š Rı ˝k kŒg; g�1�;

and there is an equivalence of categories

F W Mod-Rı ! Gr-RŒg�1�;

given by F.N/ D N ˝k kŒg; g�1�.
Finally, write grkM D grkkŒg�M for the torsionfree rank of a kŒg�-moduleM .
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Lemma 6.2. LetR be an elliptic algebra, withM;N 2 gr-R. Then, for eachm � 0,
Extmqgr-R.M; N / is a right kŒg�-module with

Extmqgr-R
�
M; N

�
˝kŒg� kŒg; g�1� Š ExtmR

�
M;N

�
˝kŒg� kŒg; g�1�

Š ExtmRı
�
M ı; N ı

�
˝k kŒg; g�1�:

In particular, grk Extmqgr-R.M;N / D grk ExtmR.M;N / D dimk ExtmRı.M ı; N ı/:

Proof. The first assertion follows from the fact that g is central.
By Proposition 4.3 and [5, Corollary 7.3(2)], there is a map � W ExtmR.M;N /!

Extmqgr-R.M;N / with right bounded kernel and cokernel. As g is central, � is a map
of kŒg�-modules, and so the kernel and cokernel of � are g-torsion. This proves the
first isomorphism in the display.

Next, using that Ext commutes with central localisation, we calculate that

ExtmR
�
M;N

�
˝kŒg� kŒg; g�1� Š Extm

RŒg�1�

�
MŒg�1�; N Œg�1�

�
Š ExtmRı

�
M ı; N ı

�
˝k kŒg; g�1�;

where the final isomorphism uses the equivalence of categories gr-RŒg�1� '
mod-Rı. This gives the second isomorphism in the display, from which the final
equation is an easy consequence.

We now consider in more detail the homological properties of line modules over
the elliptic algebra R.
Lemma 6.3. Let L and L0 be line modules over the elliptic algebra R, with point
factors L=Lg DMp and L0=L0g DMp0 . Then there is a long exact sequence

0 �! Homqgr-R
�
L;L0

�
Œ�1�

�g
�! Homqgr-R

�
L;L0

�
�! F �! Ext1qgr-R

�
L;L0

�
Œ�1�

�g
�! Ext1qgr-R

�
L;L0

�
�! F

�! Ext2qgr-R
�
L;L0

�
Œ�1�

�g
�! Ext2qgr-R

�
L;L0

�
�! 0; (6.2)

where F Š kŒ�j � if p D �j .p0/ for some j 2 Z, and F D 0 if p and q lie on
different orbits.

For m � 3, multiplication by g induces isomorphisms Extmqgr-R.L;L0/Œ�1� Š
Extmqgr-R.L;L0/.

Proof. Applying Homqgr-R.L;�/ to 0 �! L0Œ�1�
�g
�! L0 �!Mp0 �! 0 gives the

long exact sequence

� � � ! Extn�1qgr-R
�
L; Mp0

�
! Extnqgr-R

�
L;L0g

�
! Extnqgr-R

�
L;L0

�
! Extnqgr-R

�
L; Mp0

�
! � � � (6.3)



1490 D. Rogalski, S. J. Sierra, and J. T. Stafford

The lemma now follows by using Lemma 4.7 to identify Extnqgr-R.L; Mp0/ D

Extnqgr-B.Mp;Mp0/ and then applying Lemma 3.4.

Proposition 6.4. Let R be an elliptic algebra and let L;L0 2 gr-R be line modules,
with p D DivL, p0 D DivL0. Assume that .L �MSL

0/ is defined.
(1)

�
L �MSL

0Œm�
�
D
�
L �MSL

0
�
for all m 2 Z.

(2)
�
L �MSL

0
�
D

X
.�1/nC1 grk Extnqgr-R

�
L;L0

�
D

X
.�1/nC1 dimk ExtnRı

�
Lı; .L0/ı

�
:

Proof. (1) Restrict the morphisms in Lemma 6.3 to some degree j and take the
alternating sum of the dimensions of the resulting vector spaces in these equations.
Since the contributions from F cancel, this givesX
n�0

.�1/nC1 dimk Extnqgr-R
�
L;L0Œ�1�

�
j
D

X
n�0

.�1/nC1 dimk Extnqgr-R
�
L;L0

�
j
:

Thus, by (2.1), .L �MSL
0Œj�1�/ D .L �MSL

0Œj �/ and, by induction, .L �MSL
0Œm�/ D

.L �MSL
0/ for all m 2 Z.

(2) By Lemma 6.2, we only need to prove that�
L �MSL

0
�
D

X
.�1/nC1 grk Extnqgr-R

�
L;L0

�
:

Suppose first that p D �j .p0/ for some j 2 Z. Then .L �MSL
0Œj �/ D .L �MSL

0/ by
part (1), andX

.�1/nC1 grk Extnqgr-R
�
L;L0

�
D

X
.�1/nC1 grk Extnqgr-R

�
L;L0Œj �

�
is obvious since shifting does not affect the rank. Thus it suffices to prove that�

L �MSL
0Œj �

�
D

X
.�1/nC1 grk Extnqgr-R

�
L;L0Œj �

�
: (6.4)

So, consider N D Extmqgr-R.L;L0Œj �/ D Extmqgr-R.L;L0/Œj �, for some m � 0.
Then after shifting by Œj �, Lemma 6.3 shows that N fits into an exact sequence

0! K ! NŒ�1�
�g
! N ! K 0 ! 0

where K and K 0 can be zero or k, depending on the choice of m. Thus the kernel
of �g on N is contained in N�1 and so N�0 is g-torsionfree. Similarly, since K 0

is concentrated in degree 0, �g gives an isomorphism Nn
�
�! NnC1 for all n � 0.

SinceN is locally finite, it follows thatN�0 Š kŒg�˚r for some r � 0. In particular,
dimkN0 D r D grkN and so (6.4) follows.

If p and p0 lie on distinct orbits then the same argument works, since now
Lemma 6.3 implies that N D Extmqgr-R.L;L0/ Š NŒ�1� for each m.
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The projective dimension of anR-moduleLwill be written pdimR.L/. We make
the following easy observation.
Lemma 6.5. Let R be an elliptic algebra and let L be a line module with
pdimRı.Lı/ <1. Then pdimRı.Lı/ D 1.

Proof. By Lemma 5.6(1), ExtnR.L;R/ D 0 for n 6D 1 and so Lemma 6.2 implies that
ExtnRı.Lı; Rı/ D 0 for n 6D 1. If m D pdimRı.Lı/ < 1 then it is easy to see that
ExtmRı.Lı; Rı/ 6D 0, and it follows that m D 1.

Corollary 6.6. LetR be an elliptic algebra with line modulesL andL0. Assume that
either Lı or .L0/ı has finite projective dimension. Then�

L �MSL
0
�
D grk Ext1qgr-R

�
L;L0

�
� grkHomqgr-R

�
L;L0

�
D grk Ext1R

�
L;L0

�
� grkHomR

�
L;L0

�
D dimk Ext1Rı

�
Lı; .L0/ı

�
� dimk Hom1Rı

�
Lı; .L0/ı

�
:

Proof. IfLı has finite projective dimension, byLemma6.5wehave pdimRı.Lı/ D 1.
Thus, by Lemma 6.2, for i � 2 we have

0 D ExtiRı
�
Lı; .L0/ı

�
D grk Extiqgr-R

�
L;L0

�
D grk ExtiR

�
L;L0

�
and the result follows from Proposition 6.4 and Lemma 6.2.

If instead .L0/ı has finite projective dimension, then again .L0/ı has projective
dimension 1, which forces its line ideal .J 0/ı to be projective. Lemmas 5.6(1) and 6.2
still imply that ExtiRı.Lı; Rı/ D 0 for i � 2. Thus, as .J 0/ı is a direct summand of
a free module, ExtiRı.Lı; .J 0/ı/ D 0 for i � 2 as well. Then ExtiRı.Lı; .L0/ı/ Š
ExtiC1Rı .L

ı; .J 0/ı/ D 0 for i � 2, and again the result follows from Lemma 6.2 and
Proposition 6.4.

Unfortunately, when a (localised) line module Lı has infinite projective dim-
ension, the corollary can fail and, indeed, .L �MSL/ can even be undefined; see
Corollary 10.8 for an example of this phenomenon. However, the higher Ext groups
are not really relevant to our applications of self-intersection and so we can define a
modified intersection number using just the first two terms in the alternating sum.
Definition 6.7. Let L and L0 be line modules over an elliptic algebraR. Then define�

L�L0
�
D � grkHomR

�
L;L0

�
C grk Ext1R

�
L;L0

�
:

Corollary 6.6 shows that .L�L0/ D .L �MSL
0/ provided one of .L/ı or .L0/ı

has finite projective dimension. In general, the geometric interpretation of .L�L0/ is
more obscure, but as we see in Section 7, our definition still correlates nicely with
several other useful properties of the lines L and L0.

In fact, the main examples we consider in the last part of the paper are elliptic
algebras R whose corresponding noncommutative projective schemes are smooth
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in the sense that qgr-R has finite homological dimension. A geometric way of
thinking about Rı is to note that the noncommutative scheme qgr-R has a closed
subscheme qgr-B ' cohE which is a smooth elliptic curve. The category mod-Rı
then represents the open complement of E. Thus the following result is natural.
Lemma 6.8. Let R be an elliptic algebra. Then qgr-R is smooth if and only if Rı
has finite global dimension.

Proof. If qgr-R is smooth then Rı has finite global dimension by Lemma 6.2, so
suppose that qgr-R has infinite homological dimension. Thus, for any t � 3 there
exist M;N 2 gr-R such that Extsqgr-R.M;N / 6D 0 for some s � t . By taking the
beginning of a free resolution 0 ! K ! F ! M ! 0 and replacingM by K we
can assume, possibly after increasing s, that M is g-torsionfree. Similarly we may
assume that N is g-torsionfree.

Set B D R=gR. Then qgr-B Š cohE has homological dimension 1. Thus
Lemma 4.7 implies that

Extiqgr-R
�
M;N=Ng

�
Š Extiqgr-B

�
M=Mg;N=gN

�
D 0

for i � 2. Using cohomology arising from the exact sequence

0 �! NŒ�1�
�g
�! N �! N=Ng �! 0

it follows that �g is injective on Extiqgr-R.M;N / for all i � 3. In other words,
Extsqgr-R.M;N / is g-torsionfree (and non-zero). Finally, by Lemma 6.2 this implies
that ExtsRı.M ı; N ı/ 6D 0. Since t was arbitrary, it follows thatRı has infinite global
dimension.

7. Intersections of lines

Fix an elliptic algebra R with R=gR D B.E;M; �/, and let L D R=J and L0 D
R=J 0 be two right R- line modules, possibly isomorphic, with DivL D p and
DivL0 D p0. In this section, we study alternative characterisations of the intersection
number .L�L0/, as defined in Definition 6.7. In particular, we show that .L�L/ D �1
if and only if Ext1R.L;L/ D 0, and give similar conditions for when .L�L0/ D 0:

We begin with a number of useful observations. First, consider the exact
sequences

0! HomR
�
L;L0

�
! HomR

�
R;L0

�
! HomR

�
J;L0

�
! Ext1R

�
L;L0

�
! 0;

and
0! HomR

�
J; J 0

�
! HomR

�
J;R

�
! HomR

�
J;L0

�
! Ext1R

�
J; J 0

�
! 0:

(The second sequence is exact because J is CM, by Lemma 5.6.) We know that
hilbHomR.J;R/ D hilbR C s=.1 � s/2 by the left-sided version of Lemma 5.6(3),
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and of course HomR.R;L0/ D L0 has Hilbert series 1=.1� s/2. Thus we obtain the
useful equation:

hilbExt1R
�
L;L0

�
� hilbHomR

�
L;L0

�
D hilbHomR

�
J;L0

�
�

1

.1 � s/2

D hilbExt1R
�
J; J 0

�
C hR �

1

.1 � s/
� hilbHomR

�
J; J 0

�
: (7.1)

The power series on the left of (7.1) will recur often, so we define:

X.L;L0/ D hilbExt1R
�
L;L0

�
� hilbHomR

�
L;L0

�
: (7.2)

Next, by applying HomR.L;�/ to the short exact sequence

0! L0Œ�1�
�g
! L0 !Mp0 ! 0;

and using Lemma 4.7 one obtains the exact sequence:

0 �! HomR
�
L;L0

�
Œ�1�

�g
�! HomR

�
L;L0

�
�! HomB

�
Mp;Mp0

�
�! Ext1R

�
L;L0

�
Œ�1�

�g
�! Ext1R

�
L;L0

� ı
�! Ext1B

�
Mp;Mp0

�
: (7.3)

This gives the Hilbert series equation

X
�
L;L0

�
D
C �H

.1 � s/
forH D hilbHomB

�
Mp;Mp0

�
and C D hilb Im ı: (7.4)

The possibilities for H;C and E D hilbExt1B.Mp;Mp0/ are quite limited: by
Proposition 3.6, if p D �j .p0/ for some j � 0, then H D sj and E D s�1 C sj ;
otherwiseH D 0 and E D s�1. In any case 0 � C � E.

Note that (7.3) implies that HomR.L;L0/ is g-torsionfree. Moreover, by
Proposition 3.6(1) the map �g on Ext1R.L;L0/ has a finite-dimensional kernel.
By Lemma 4.6, this implies that the g-torsion submodule of Ext1R.L;L0/ is also
finite-dimensional. Since dimk Im ı < 1 and Ext1R.L;L0/ is left bounded, (7.3)
implies that dimk Ext1R.L;L0/n is constant for n � 0. Thus grk Ext1R.L;L0/ D
dimk Ext1R.L;L0/n for all n � 0. Obviously the analogous result holds for
HomR.L;L0/, and combined with (7.4) this implies that�

L�L0
�
D grk Ext1R

�
L;L0

�
� grkHomR

�
L;L0

�
D dimk Ext1R

�
L;L0

�
n
� dimk HomR

�
L;L0

�
n
; for n� 0

D the sum of the coefficients of C �H:

(7.5)

We may think of X.L;L0/ as a refined version of .L�L0/, since�
L�L0

�
D .1 � s/X

�
L;L0

�
jsD1

by (7.4) and (7.5).
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As a consequence of these calculations, we can already see that the intersection
number of two lines on an elliptic algebra lies in a quite limited range. If p D �j .p0/
for some j � 0, then H D sj and C � s�1 C sj , while otherwise H D 0 and
C � s�1. From (7.5) we conclude that�

L�L0
�
2 f�1; 0; 1g; (7.6)

where the value �1 can only occur if p D �j .p0/ for some j � 0. In Lemma 7.4
we will refine this observation to show that in fact .L�L0/ D �1 forces L to be
isomorphic to L0.

Next, since J and J 0 are g-divisible by Lemma 5.6(2), we may use Lemma 4.7
to get the exact sequence

0 �! HomR
�
J; J 0

�
Œ�1�

�g
�! HomR

�
J; J 0

�
�! HomB

�
J ; J 0

�
˛
�! Ext1R

�
J; J 0

�
Œ�1�

�g
�! Ext1R

�
J; J 0

�
�! � � � (7.7)

The calculation of the Hilbert series of HomB.J ; J 0/ is straightforward. Since

J D
M
n�0

H 0
�
E;Mn.�p/

�
and similarly for J 0, by Lemma 2.3 we get

HomB
�
J ; J 0

�
D

M
n�0

H 0
�
E;Mn

�
� p0 C ��n.p/

��
:

Thus

hilbHomB
�
J ; J 0

�
D hilbB � 1C �p;p0 ; where �p;p0 D

(
1 p D p0;

0 p ¤ p0:
(7.8)

From (7.7) and Lemma 4.4(1) we have HomR.J; J 0/ � HomB.J ; J 0/ with cokernel
isomorphic to Im˛. Thus we conclude that

hilbHomR
�
J; J 0

�
D

hilbB � 1C �p;p0 � hilb Im˛
.1 � s/

D hilbRC
.�p;p0 � 1/

.1 � s/
�
.hilb Im˛/
.1 � s/

:

(7.9)

We next want to characterise when the various intersection numbers occur in (7.6).
We begin with .L�L/ for a single line ideal L and are mostly interested in when
.L�L/ D �1.
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Theorem 7.1. Let L D R=J be a line module of an elliptic algebraR. Consider the
following conditions:
(1) Ext1R.J; J / D 0.
(2) Ext1R.L;L/ D 0.
(3) hilbEndR.J / D hilbR.
(4) hilbHomR.J; L/ D s.1 � s/�2.
(5) .L�L/ D �1.
Then:
(a) .1/ ” .2/ ” .4/ ” .5/) .3/.
(b) If J ı is projective then all five are equivalent.

Proof. (a) By Lemma 5.5(2), hilbHomR.L;L/ D .1� s/�1. Thus adding .1� s/�1
to (7.1) we obtain

hilbExt1R
�
L;L

�
D hilbHomR

�
J;L

�
�

s

.1 � s/2

D hilbExt1R
�
J; J

�
C
�
hR � hilbHomR

�
J; J

��
:

(7.10)

This shows immediately that .2/ ” .4/. The final term ŒhR � hilbHomR.J; J /�
of (7.10) is non-negative by (7.9). Since hilbExt1R.J; J / is obviously non-negative,
it follows that .2/ implies both .1/ and .3/.

Now if .1/ holds, then ˛ D 0 in (7.7) and so (7.9) immediately implies .3/. But
(7.10) again shows that .1/ and .3/ together imply .2/.

If .2/ holds, then since HomR.L;L/ D kŒg� by Lemma 5.5, we certainly have�
L�L

�
D grk Ext1R

�
L;L

�
� grkHomR

�
L;L

�
D �1

and .5/ holds. Conversely, if .5/ holds then using (7.5) we see that H D 1 and
C D 0 in (7.4). Thus the map Ext1R.L;L/Œ�1�

�g
�! Ext1R.L;L/ is surjective, and

since Ext1R.L;L0/ is left bounded it must therefore be zero. Thus .2/ holds, which
completes the proof of (a).
(b) Suppose that J ı is projective and that .3/ holds. From (7.9) we conclude that
˛ D 0 in (7.7) and so Ext1R.J; J / is g-torsionfree. But Ext

1
Rı.J

ı; J ı/ D 0 and so
Ext1R.J; J / is g-torsion by Lemma 6.2. Thus Ext1R.J; J / D 0 and .1/ holds.

Remark 7.2. (1) Suppose that Rı has finite global dimension, or, equivalently by
Lemma 6.8, that qgr-R is smooth. Then J ı is automatically projective by Lemma 6.5
and so part (b) of the theorem applies.
(2) We know of no example of a line module L of an elliptic algebra R, with qgr-R
smooth, for which .L�L/ 6D �1 and we actually conjecture that none exist. For a
(non-smooth) example with .L�L/ 6D �1, see Corollary 10.5.
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In the rest of the section, we consider the intersection number of two distinct line
modules. Although these results will not be directly relevant for this paper, they will
be useful in [19], and as the proofs are similar to that of Theorem 7.1, it is appropriate
to include them here.

The following easy lemma will be used a number of times.
Lemma 7.3. Let R be an elliptic algebra with two line modules L D R=J and
L0 D R=J 0. Then HomR.J; J 0/0 � R0 D k. Moreover

HomR
�
J; J 0

�
0
D k ” J D J 0 ” L Š L0:

Proof. Certainly HomR.J; J 0/ � HomR.J;R/ D J �. By the left-handed
analogue of Lemma 5.6(3), .J �/0 D R0 D k. Furthermore, if J D J 0 then
k � HomR.J; J 0/0 and so HomR.J; J 0/0 D k. Conversely, if k � HomR.J; J 0/
then J � J 0 and so J D J 0 since J and J 0 have the same Hilbert series. The last
equivalence is immediate since a line module is determined up to isomorphism by
its line ideal.

We next refine (7.6) by showing that there are only two possible values of .L�L0/
for non isomorphic lines.
Lemma 7.4. Let L 6Š L0 be line modules over an elliptic algebra R. Then X D
X.L;L0/ is equal to either 0, s�1.1� s/�1, or s�1 C � � � C sj�1 for some j � 0. In
particular, .L�L0/ 2 f0; 1g.

Proof. Adopt the notation of (7.4). If H D 0 then (7.4) and Proposition 3.6 imply
that C � s�1 and X is either 0 or s�1.1 � s/�1.

So suppose that H ¤ 0. Then by Proposition 3.6(1), H D sj for some j > 0

and this happens precisely when p D DivL D �j .p0/ for p0 D DivL0. By
Proposition 3.6(2) and (7.3), C � E D s�1C sj . Let J; J 0 be, respectively, the line
ideals of L and L0 and note that J ¤ J 0 since L 6Š L0. Thus HomR.J; J 0/0 D 0

by Lemma 7.3. It follows from (7.9) that hilbHomR.J; J 0/ � hR � .1 � s/
�1.

From (7.1), X � hilbExt1R.J; J 0/ � 0. This forces C ¤ 0, and so C is one of sj ,
s�1 or s�1 C sj . Now use (7.4) again to get the desired possibilities for X .

The possibilities for .L�L0/ are an immediate consequence.

Lemma 7.5. Let R be an elliptic algebra. Let J;K be finitely generated g-divisible
reflexive right R-submodules of R.g/. Assume that either
(a) J ı is projective; or
(b) J is CM and Kı is projective.
Then Ext1R.J;K/ is finite-dimensional.

Proof. ConsiderH D Ext1R.J;K/. By Lemma 4.8(2), the g-torsion subspace ofH
is finite dimensional. It therefore suffices to prove thatH is g-torsion. By Lemma 6.2,
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it is then enough to show that Ext1Rı.J ı; Kı/ D 0. This is trivial if J ı is projective.
If Kı is projective, then Ext1Rı.J ı; Kı/ is a direct summand of a sum of copies of
Ext1Rı.J ı; Rı/. As J is CM, Lemma 6.2 again implies that Ext1Rı.J ı; Rı/ D 0 and
hence Ext1Rı.J ı; Kı/ D 0.

We next characterise distinct lines with .L�L0/ D 1.
Theorem 7.6. LetL D R=J ,L0 D R=J 0 be line modules over an elliptic algebraR,
with L 6Š L0. Consider the following conditions:
(1) hilbExt1R.J; J 0/ D s�1 C 1.
(2) X.L;L0/ D s�1.1 � s/�1.
(3) hilbR � hilbHomR.J; J 0/ D .1C s/.1 � s/�1.
(4) hilbHomR.J; L0/ D s�1.1 � s/�2.
(5) .L�L0/ D 1.
Then:
(a) .1/) .2/ ” .4/ ” .5/, while .1/) .3/.
(b) If either J ı is projective with .L�L/ D �1, or .J 0/ı is projective with .L0�L0/ D
�1, then all five conditions are equivalent.

Proof. (a) Once again equation (7.1) implies that .2/ ” .4/, while Lemma 7.4
gives .2/ ” .5/.

.1/) .3/. Suppose that .1/ holds and consider the part of the exact sequence (7.7)
given by

HomR
�
J; J 0

�
�! HomB

�
J ; J 0

� ˛
�! Ext1R

�
J; J 0

�
Œ�1�

�g
�! Ext1R

�
J; J 0

�
:

By assumption Ext1R.J; J 0/ D k C kŒ1� is g-torsion, and so the kernel of �g on
Ext1R.J; J 0/ contains at least the highest degree piece Ext

1
R.J; J

0/0. Thus hilb Im˛
equals either s or 1C s.

Let p D DivL and p0 D DivL0. If p ¤ p0, then HomB.J ; J 0/0 D 0 and so
hilb Im˛ D s. If p D p0 then HomB.J ; J 0/0 D k, whereas HomR.J; J 0/0 D 0 by
Lemma 7.3. Thus hilb Im˛ D 1C s. In either case, hilb Im˛ D �p;p0 C s, in the
notation of (7.8). Thus .3/ follows from (7.9).
.1/) .2/. If .1/ and therefore .3/ hold, then .2/ follows from (7.1).

(b) .3/) .1/. Suppose that .3/ holds. Recall thatJ andJ 0 are CM,g-divisible, and
reflexive, by Lemma 5.6(2). Thus the assumption in (b) ensures that the hypothesis of
Lemma 7.5 holds. Then dimk Ext1R.J; J 0/ <1 by that lemma, and so (7.1) implies
that

dimk Ext1R
�
L;L0

�
n
� dimk HomR

�
L;L0

�
n
D 1

for n� 0. Hence .L�L0/ D 1 by (7.5). Thus .3/ implies .5/ and hence .2/. But .2/
and .3/ together force hilbExt1R.J; J 0/ D s�1 C 1 by (7.1), and so .1/ holds.
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.2/) .3/. Finally, assume that .2/ holds. Then, as dimk Ext1R.J; J 0/ < 1, (7.1)
and (7.9) together imply that dimk Im˛ D 1 C �p;p0 . We claim that this forces
hilb Im˛ D �p;p0Cs. First note that dim.Im˛/0 D �p;p0 . So if hilb Im˛ ¤ �p;p0Cs,
the cokernel of

HomR
�
J; J 0

�
! HomB

�
J ; J 0

�
is one-dimensional in some degree > 1. Thus

HomR
�
J; J 0

�
� HomB

�
J ; J 0

�
1
D H 0

�
E;Mn

�
� p0 C ��1.p/

��
;

and it is also an
�
EndR.J 0; J 0/;EndR.J; J /

�
-bimodule. By hypothesis, either L

or L0 satisfies the equivalent conditions in Theorem 7.1; say it is L. Then

EndR
�
J; J

�
D EndB

�
J ; J

�
is a full TCR, say B 0 D B.E;M.�p/; �/. By Lemma 2.3,

HomB
�
J ; J 0

�
�1

is generated in degree 1 as a right B 0-module and thus

HomR
�
J; J 0

�
D HomB

�
J ; J 0

�
�1
;

a contradiction. Similarly, if EndR.J 0; J 0/ is a full TCR we get a contradiction by
viewing HomB.J ; J 0/�1 as a left module. This proves the claim that

hilb Im˛ D �p;p0 C s

which, by (7.9), implies .3/.

Finally, we characterise lines L and L0 with .L�L0/ D 0, although here we need
to assume that DivL ¤ DivL0.
Theorem 7.7. Let L D R=J and L0 D R=J 0 be line modules over an elliptic
algebra R with divisors DivL D p 6D p0 D DivL0. Consider the following
conditions.
(1) Ext1R.J; J 0/ D 0.
(2) hilbExt1R.L;L0/ D hilbHomR.L;L0/.
(3) hilbR � hilbHomR.J; J 0/ D .1 � s/�1.
(4) hilbHomR.J; L0/ D .1 � s/�2.
(5) .L�L0/ D 0.
Then:
(a) .1/ ” .2/ ” .4/ ” .5/) .3/.
(b) If J ı or .J 0/ı is projective then all five are equivalent.
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Proof. (a) The proof of this result is very similar to the proof of Theorem 7.1. Recall
(7.1):

X
�
L;L0

�
D hilbHomR

�
J;L0

�
�

1

.1 � s/2
D hilbExt1R

�
J; J 0

�
CH ;

where H D hR � .1 � s/
�1 � hilbHomR.J; J 0/: In this case, since p ¤ p0, (7.9)

shows that H � 0. Thus just as in the proof of Theorem 7.1, .2/ ” .4/ is
immediate, and .2/ implies .1/ and .3/. Again, by (7.9), .3/ is equivalent to ˛ D 0

in (7.7), and so .1/ implies .3/; thus .1/ implies .2/ by (7.1).
If .2/ holds, so X.L;L0/ D 0, then certainly .L�L0/ D 0, by (7.5), and so .5/

holds.
Finally, if .5/ holds, then (7.5) implies that

dimk Ext1R
�
L;L0

�
n
� dimk HomR

�
L;L0

�
n
D 0

for all n � 0. This shows that, in (7.1), the non-negative Hilbert series H and
hilbExt1R.J; J 0/ must be polynomials in s. But (7.9) shows that H is either 0 or a
multiple of 1=.1� s/. Thus H D 0, and so .3/ holds. As we already saw, .3/ implies
that ˛ D 0 in (7.7), which in turn implies that Z D Ext1R.J; J 0/ is g-torsionfree.
But as we have already shown that dimkZ < 1, this forces Z D 0. Thus .5/
implies .1/. This finishes the proof of (a).
(b) In this case, Lemma 5.6(2) and Lemma 7.5 imply thatZ D Ext1R.J; J 0/ is finite-
dimensional. Since we just saw that .3/ implies that Z is g-torsionfree, .3/ ) .1/

holds in this case.

8. Blowing down elliptic algebras and their modules

As mentioned in the introduction (see Proposition 1.1 and Theorem 1.2) two
fundamental and inverse constructions in birational geometry are the concepts of
blowing up a closed point p on a smooth projective surface and, conversely, blowing
down lines of self-intersection �1. In the noncommutative universe one again has a
notion of blowing up, coming from [23] and [16] and at least if the set-up is “smooth
enough” then one obtains an exceptional line module L with .L�L/ D �1. In this
section we prove one of the main results of the paper by giving a noncommutative
analogue of Castelnuovo’s Theorem: if R is an elliptic algebra with a line module L
satisfying .L�L/ D �1, then one can blow L down to get a second elliptic algebra.
Moreover, this operation is the inverse of blowing up. In fact we can do a little better
and also obtain a result that works without smoothness assumptions, by replacing the
requirement that .L�L/ D �1 by the assumption that the corresponding line ideal J
satisfies hilbEndR.J / D hilbR. The details are given in Theorems 8.3 and 8.6.
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Wewill need the following technical result about images of direct sums of a single
line module.
Proposition 8.1. Let L be a right line module over an elliptic algebra R. Let I be
an index set, and for each i 2 I choose an integer ai 2 Z. Assume fai W i 2 Ig is
bounded below. Let A � L D

L
i2I LŒ�ai � be any submodule such that N D L=A

is GK-2 pure. Then there is J � I such that L is an internal direct sum L D
A˚

L
i2J LŒ�ai �: In particular, N Š

L
i2J LŒ�ai �:

Proof. We claim first that there exists a subset J � I which is minimal under
inclusion in the family S D

˚
K � I W L D AC

L
i2KLŒ�ai �

	
. Indeed, since N is

left bounded, the graded Nakayama lemma (which does not require finite generation)
applies and shows that K 2 S if and only if the induced map

 W
M
i2K

LŒ�ai �=LŒ�ai �R�1 ! N=NR�1

is surjective. Since L is cyclic, dimkLŒ�ai �=LŒ�ai �R�1 D 1. Thus any J for
which  is an isomorphism of k-spaces will be minimal in S , proving the claim.

Fix some such J . We will prove that L D A ˚
L
i2J LŒ�ai �. Suppose that

this fails; thus 0 ¤ A \
L
i2J LŒ�ai �. Write LŒ�ai � D ˛iR, for homogeneous ˛i

and choose 0 ¤ u D .˛ixi / 2 A \
L
i2J LŒ�ai �, for some homogeneous elements

xi 2 R. Let I1 be the (finite) set fi 2 J W ˛ixi ¤ 0g. Without loss of generality, we
may choose such u so that jI1j is minimal. Let L1 D

L
i2I1 LŒ�ai �.

Let J D AnnR.u/ and, for i 2 I1, set Ji D AnnR.˛ixi /. If r 2 Ji , then ur
has strictly more zero entries than u, and so the choice of u forces ur D 0. So
Ji � J � Ji . Thus Ji D J is independent of the choice of i 2 I1. Fixing an
arbitrary i 2 I1, we have uR Š R=J D R=Ji Š ˛ixiR � LŒ�ai �. By [16,
Lemma 8.9(2)], there is a (shifted) line module L0 � LŒ�ai �, containing ˛ixiR,
for which L0=.˛ixiR/ D F is finite-dimensional. Since uR Š ˛ixiR, there is
an injective homomorphism uR ,! L0 with a finite-dimensional cokernel. Since
Ext1R.F;L1/ D 0 by Lemma 5.6(5), the canonical injection uR ,! L1 lifts to
an injection L0 ,! L1 � L. In other words, there is some u0 D .˛ix

0
i / so that

uR � u0R Š L0, where u0R=uR is finite-dimensional. As L1 is torsionfree,
˛ix
0
i ¤ 0 if and only if i 2 I1. The argument from the beginning of the paragraph

shows that AnnR.˛`x0`/ D AnnR.u0/, and hence that ˛`x0`R Š L
0, for all ` 2 I1.

Choose j 2 I1 such that aj D maxfai W i 2 I1g and write L0 D ˇR for some
homogeneous ˇ. For any other i 2 I1, by Lemma 5.5(3) we may identify

k � gaj�ai D Homgr-R
�
LŒ�aj �; LŒ�ai �

�
;

where gaj�ai maps ˛j 7! ˛ig
aj�ai . Now consider the following two maps in

Homgr-R.L
0; LŒ�ai �/:

f W ˇx 7! ˛ix
0
ix; and f 0 W ˇx 7! ˛jx

0
jx 7! ˛ig

aj�aix0jx:
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Since Homgr-R.L
0; LŒ�ai �/ ¤ 0, by Lemma 5.5(2) it is one-dimensional. Thus

there is �i 2 k� so that f D �if
0; that is ˛ix0i D �i˛ig

aj�aix0j . Thus u0 D
.�i˛ig

aj�ai /x0j , whence L
0 Š u0R � K D vR, where v D .�i˛igaj�ai /. Clearly

K Š LŒ�aj �. Since L is 2-critical, GKdimK=uR � 1. Since uR � A and L=A is
2-pure, we must have K � A. Now it is easy to see that

L1 D
M
i2I1

LŒ�ai � D K ˚
M

i2I1nfj g

LŒ�ai �:

This implies that
AC

M
i2Jnfj g

LŒ�ai � D L;

contradicting the choice of J . Hence

L D A˚
M
i2J

LŒ�ai �;

as required.

If L is a line module over an elliptic algebraR, we now use it to define the largest
extension eK of a reflexive module K � R.g/ by sums of shifts of L.

Lemma 8.2. Let R be an elliptic algebra, and let L D R=J be a right R-line
module with DivL D p 2 E. Let K � R.g/ be a graded finitely generated
g-divisible reflexive right R-module. Set

eK D eKL
D

X
˛

˚
N˛ W K � N˛ � Qgr.R/ with N˛=K Š LŒ�i˛� for some i˛ 2 Z

	
:

(8.1)

Then the following hold.

(1) eK D HomR.J;K/R and eK � R.g/.
(2) As right R-modules, eK=K ŠM

i2Z

LŒ�i �˚ai

for some ai � 0. Hence hilb eK=K D p.s/.1 � s/�2 for p.s/ DPi2Z ais
i .

(3) Moreover, hilbExt1R.L;K/ D p.s/.1 � s/�1.

(4) If Ext1R.L;L/ D 0 then Ext1R.L; eK/ D 0.
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Proof. Throughout the proof N˛ will denote a module satisfying the properties
defined by (8.1).
(1) If N˛ � Qgr.R/ satisfies N˛=K Š LŒ�i �, then N˛ D xR C K for some x 2
Qgr.R/i . Then xJ � K and so N˛ � HomR.J;K/R. Thus eK � HomR.J;K/R.
Conversely, if x 2 HomR.J;K/i � Qgr.R/ then .xR C K/=K is a homomorphic
image of .R=J /Œ�i � D LŒ�i �. As K is reflexive, .xR C K/=K is either 0 or
2-pure by Lemma 4.5(1). Therefore, because L is 2-critical, either x 2 K or else
.xR C K/=K Š LŒ�i �. In either case, x 2 eK by the definition of eK. Thus
HomR.J;K/R � eK since eK is a right R-module.

Since J and K are g-divisible, HomR.J;K/ � R.g/ by Lemma 4.4(1), and soeK � R.g/.
(2) Clearly eK=K is a homomorphic image ofM

˛

N˛=K Š
M
˛

LŒ�i˛�:

Once again, Lemma 4.5(1) implies that eK=K is either 2-pure or 0. Since J and K
are left bounded and locally finite, so is HomR.J;K/R D eK. Thus there is a lower
bound d such that d � i˛ for all ˛. Then Proposition 8.1 applies, and shows that

eK=K ŠM
i2Z

LŒ�i �˚ai ;

where ai D 0 for i < d . Also, the ai are finite since HomR.J;K/R is locally finite.
Since hilbL D .1 � s/�2, it is immediate that hilb eK=K D p.s/.1 � s/�2.
(3) Consider the exact sequence

0 �! HomR
�
L; eK=K� ˛

�! Ext1R
�
L;K

�
ˇ
�! Ext1R

�
L; eK� 


�! Ext1R
�
L; eK=K� �! � � � (8.2)

We will show that ˇ D 0. So, suppose that 0 6D � 2 Ext1R.L;K/�j , corresponding
to a nonsplit extension

0! K
�
! N

�
! LŒj �! 0:

We claim that � W K ! N is an essential extension. If not, choose 0 ¤ G � N

maximal such that �.K/ \G D 0. Then there is an exact sequence

0! K ! N=G ! LŒj �=�.G/! 0

whereK ! N=G is now essential. But GKdimLŒj �=�.G/ � 1 sinceL is 2-critical,
and as K is reflexive this forces LŒj �=�.G/ D 0. Thus N D K ˚ G, giving the
required contradiction. This proves the claim.
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Since � is essential, we may take the extension K � N inside Qgr.R/. As such,
N � eK by definition and so � cannot induce a nontrivial extension of eK byL. Thus,
ˇ D 0.

As LR is finitely generated,

HomR

�
L;
M
i2Z

LŒ�i �˚ai

�
D

M
i2Z

HomR
�
L;LŒ�i �

�˚ai :

Therefore, since hilbHomR.L;L/ D 1=.1 � s/ by Lemma 5.5, this implies that

hilbHomR
�
L; eK=K� D �X

i2Z

ais
i

�
=.1 � s/:

Applying ˛ shows that

hilbExt1R
�
L;K

�
D

�X
i2Z

ais
i

�
=.1 � s/;

as well.
(4) If Ext1R.L;L/ D 0, then Ext1R.L; eK=K/ D 0 in (8.2). Since ˇ D 0, this forces
Ext1R.L; eK/ D 0.

We now come to one of the main results of the paper by showing that, under mild
conditions, in applying the tilde operation toR itself one obtains a ring eR D eRL. As
we show later in the section, this operation is a good non-commutative analogue of
blowing down a line of self-intersection �1. In fact, the self-intersection condition
is not quite the right concept when qgr-R is not smooth, and so the theorem is stated
under the weaker condition (8.3).
Theorem 8.3. LetR be an elliptic algebra withR=gR Š B.E;M; �/. LetL D R=J
be a right line module with DivL D p, satisfying

hilbEndR.J / D hilbR: (8.3)

Then themoduleeR D eRL constructed in Lemma8.2 is a connected graded subalgebra
of R.g/. It is also equal to HomR.J; J /R and satisfies the following properties.
(1) As right R-modules, eR=R ŠM

i�1

LŒ�i �:

(2) As left R-modules, eR=R ŠM
i�1

L_Œ�i �;

where L_ D Ext1R.L;R/Œ1� is the dual line module.
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(3) eR is an elliptic algebra witheR=geR Š B�E;M�
��1.p/

�
; �
�
:

Remark 8.4. (1) In the notation of the theorem, we say that eRL is obtained by
blowing down or contracting L (or alternatively its dual L_).
(2) Note that by Theorem 7.1, if .L�L/ D �1 then (8.3) holds and so Theorem 8.3
gives a method of contracting a line of self-intersection .�1/ on an elliptic algebra.
(3) If qgr-R is smooth then the conditions .L�L/ D �1 and (8.3) are equivalent (see
Remark 7.2). However, when qgr-R is not smooth the later condition can definitely
be weaker and there do exist line modulesLwith .L�L/ 6D �1 that can still be blown
down by the theorem. See Corollary 10.5 for one such example.

Proof. Lemma 5.6(1) implies that

hilbExt1R
�
L;R

�
D s=.1 � s/2 D .s C s2 C � � � /=.1 � s/:

Thus (1) holds by comparing parts (2) and (3) of Lemma 8.2. Also, by Lemma 8.2(1)
we have eR D HomR.J;R/R � R.g/. Indeed, since HomR.J;R/ is automatically
a left R-module, eR is actually an R-bimodule. Note that, to this point, we have not
used (8.3).

The main part of the proof will be to prove that eR is a subalgebra ofQgr.R/, the
first step in which will be to prove that eR D EndR.J /R.

Certainly,
EndR.J /R � HomR

�
J;R

�
R D eR:

Since J is g-divisible, Lemma 4.4(1) implies that EndR.J / is g-divisible. By
hypothesis, R D

L
n�0H

0.E;Mn/t
n and J D

L
n�0H

0.E;Mn.�p//t
n and so,

by Lemma 2.3,

EndR
�
J
�
D

M
n�0

H 0
�
E;Mn

�
� p C ��n.p/

��
D B

�
E;M0; �

�
for M0 DM.�p C ��1.p//. Let B D B.E;M; �/. Clearly

EndR.J / � EndB
�
J
�
:

Conversely, (8.3) and g-divisibility imply that

hilbEndR.J / D hilbR D hilbB
�
E;M0; �

�
D hilbEndB

�
J
�
:

Hence,
EndR.J / D EndB

�
J
�
D B

�
E;M0; �

�
:

This in turn implies that

EndR.J /R D EndR.J / �R D B
0B;

where B 0 D B.E;M0; �/.
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We claim next that B 0B D B 00, where B 00 D B.E;N ; �/ for N D M.��1.p//.
Indeed, by Lemma 2.2 and the fact that all the relevant invertible sheaves are generated
by their global sections,

nX
iD0

B 0iBn�i D

nX
iD0

H 0
�
E;Mi

�
� p C ��i .p/

��
�H 0

�
E;M� i

n�i

�
D

nX
iD0

H 0
�
E;Mn

�
� p C ��i .p/

��
D H 0

�
E;

nX
iD0

Mn

�
� p C ��i .p/

��
D H 0

�
E;Mn

�
��1.p/C � � � C ��n.p/

��
D B 00n ;

proving the claim.
Although we do not know a priori that EndR.J /R is g-divisible, the previous

paragraph at least gives the inequality

hilbEndR.J /R �
�
hilbB 00

�
=.1 � s/:

Since Riemann–Roch gives

hilbB 00 D hilbB C
X
i�1

si=.1 � s/;

this implies that �
hilbB 00

�
=.1 � s/ D hilbeR:

This forces
EndR.J /R D HomR

�
J;R

�
R D eR

as desired at the beginning of the proof. It follows that eR=eRg D B 00 and so eR is
indeed g-divisible.

Consequently,

R � EndR.J / � R � HomR
�
J;R

�
D HomR

�
J;R

�
� EndR.J /R:

Thus �
EndR.J /R

�2
D
�
EndR.J /

�2
R D EndR.J /R

and so eR is indeed a subalgebra ofQgr.R/. Moreover, since eR=eRg D B 00, it follows
that eR is an elliptic algebra.

Finally, all of the above arguments hold for the left line moduleL_ D R=J_, and
so one obtains a elliptic subalgebra eR` ofQgr.R/ with R.eR`=R/ ŠLi�1L

_Œ�i �.
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By Lemma 5.6(3), M D HomR.J_; R/ is a right R-module such that M=R Š
LŒ�1�. Dually,M_ D HomR.J;R/ is a left R-module withM_=R Š L_Œ�1�. In
particular,M1J � R and so

M1 � HomR
�
J;R

�
1
DM_1 :

By symmetry,M1 DM
_
1 . Now by construction,eR1 D �HomR�J;R�R�1 DM_1

and so, dually, eR`1 D M1. Thus eR`1 D eR1. Since eR and eR` are both generated in
degree 1 by Proposition 4.3, it follows that they are equal. This proves part (2) and
completes the proof.

Corollary 8.5. Let R be an elliptic algebra with a line module L D R=J satisfy-
ing (8.3), and let K � R.g/ be a reflexive g-divisible finitely generated R-module.
Then eKL is a right eRL-module.
Proof. By the proof of Theorem 8.3, eR D eRL D EndR.J /R, while eK D eKL D
HomR.J;K/R by Lemma 8.2. We also saw that R � EndR.J / � EndR.J /R in the
proof of Theorem 8.3. ThuseKeR D HomR

�
J;K

�
R � EndR.J /R

� HomR
�
J;K

�
EndR.J /R � HomR

�
J;K

�
R D eK

as required.

To conclude this section, we explain how the above construction of ring-theoretic
blowing down is formally the inverse of noncommutative blowing up. When R is an
elliptic algebra of degree � � 3 with R=Rg D B.E;M; �/, then for any p 2 E one
may define the ring-theoretic blowup of R at p to be the subring R0 D R.p/ � R

generated by R01 D fx 2 R W x 2 H 0.E;M.�p//g (see [16] and [17] for the basic
properties of these blowups). Then [17, Theorem 1.1] implies that R0 is also elliptic,
of degree ��1, withR0=R0g Š B.E;M.�p/; �/. The ringR0 automatically has an
exceptional line module L satisfying .R=R0/ Š

L1
iD1LŒ�i � as right R0-modules.

As we show in the next theorem, one can then recover R by blowing down this line.
As an aside, we note that one can also allow elliptic algebras to have degree 1 or 2

(though in this paper the definition excludes them) and the ring-theoretic blowup at
a point of an elliptic algebra of degree � D 2 can still be defined. However, such a
blowup will not now be generated in degree one and so a more complicated definition
is necessary (see [17] for the details).
Theorem 8.6. (1) Let R be an elliptic algebra, of degree at least 4, with R=Rg D

B.E;M; �/. If p 2 E, then the exceptional line module L D R.p/=J of the
ring-theoretic blowup R.p/ satisfies (8.3); in fact, EndR.p/.J / D R.�.p//.
Thus the blowdown AR.p/L of R.p/ along L is defined, and it equals R.
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(2) Conversely, suppose that R0 is an elliptic algebra with a line module L satisfy-
ing (8.3) and set eR0 D eR0L. If DivL D �.p/, then the ring-theoretic blowupeR0.p/ equals R0.

Proof. We remark that the apparent shift p 7! �.p/ between parts (1) and (2)
comes from the fact that, by [16, Lemma 9.1], the line module L in part (1) has
DivL D �.p/.
(1) We first claim that R.p/1R1 D R1R.�.p//1. Indeed, since gR1 � R.p/1R1, it
follows that

R.p/1R1 D
˚
x 2 R2 W x 2 R.p/1R1 D H

0
�
E;M2.�p/

�	
:

A similar calculation shows that R1R.�.p//1 is equal to the same subspace of R2,
proving the claim.

Since
R=R.p/ Š

M
i�1

LŒ�i �;

clearly
R�1R.p/=R.p/ Š LŒ�1�

and so J D
˚
x 2 R.p/ W R1x � R.p/

	
: Thus

R1R
�
�.p/

�
1
J1 D R.p/1R1J1 � R.p/1R.p/2 � R.p/;

and soR.�.p//1J1 � J . By Lemma 5.6(2), the line ideal J is generated in degree 1.
Thus R.�.p//1J1R.p/ � J implies R.�.p//1J � J . Since R.�.p// is also
generated in degree 1 it follows that R.�.p// � EndR.p/.J /, and so

hilbEndR.p/.J / � hilbR
�
�.p/

�
D hilbR.p/:

Conversely,
hilbEndR.p/.J / � hilbR.p/

follows, for example, from (7.9). Thus

hilbEndR.p/.J / D hilbR
�
�.p/

�
and hence EndR.p/.J / D R

�
�.p/

�
.

Now Theorem 8.3 applies to define the blowdown AR.p/ of R.p/ along L. By
that theorem,

AR.p/ D EndR.p/.J /R.p/ D R
�
�.p/

�
R.p/:

Since R1 D R.�.p//1 C R.p/1 D AR.p/1 and both R and AR.p/ are generated in
degree 1 as algebras, necessarily AR.p/ D R.
(2) In this case, the blowdown eR0 satisfies eR0=eR0g D B.E;M.p/; �/, by
Theorem 8.3. The blowup of eR0 at the point p is thus the subring of R0 generated in
degree 1 by fx 2 eR01 W x 2 H 0.E;M/g. This is precisely R0.
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9. Smoothness

A key feature of the commutative geometry described in Proposition 1.1 and
Theorem 1.2 is that if � W Y ! X is a birational morphism of surfaces where the
exceptional locus is a .�1/ line, then Y is nonsingular if and only ifX is nonsingular.
In this section we will prove a natural analogue of this result (see Theorem 9.1).
Recall that for a graded ring R we say that qgr-R is smooth if this category has finite
homological dimension.
Theorem 9.1. Let T be an elliptic algebra of degree � 4 associated to the elliptic
curve E, and let p 2 E. Let L be the exceptional line module for the blowup
T .p/ � T . The following are equivalent:
(1) qgr-T .p/ is smooth.
(2) qgr-T is smooth and pdimT.p/ı Lı <1.

We remark that by Lemma 6.5, we have

pdimT.p/ı Lı <1 ” pdimT.p/ı Lı D 1:

Note also that we will show later that blowing up the point p in the blowup T .p/
leads to a non-smooth noncommutative scheme (see Corollary 10.8 for the details)
and so the extra conditions of the theorem are necessary.

As an immediate corollary of Theorem 9.1, we obtain:
Corollary 9.2. LetR be an elliptic algebra of degree� 3 and suppose thatL is a line
module with pdimLı < 1 and .L�L/ D �1. Let eR D eRL be the blowdown of R
constructed by Theorem 8.3. Then qgr-eR is smooth if and only if qgr-R is smooth.

Proof of Corollary 9.2. By Theorem 8.6 R D eR.q/, where q D ��1.DivL/. Thus
the result is a direct application of Theorem 9.1.

The rest of the section is devoted to the proof of Theorem 9.1. We work mostly
in the localised category of modules over U D T ı; note that, by Lemma 6.8, qgr-T
is smooth if and only if gldimT ı <1.
Proposition 9.3. Let U be a noetherian domain with division ring of fractions
D D Q.U / and a projective right ideal J . Set L D U=J and L_ D Ext1U .L; U /.
Let U � V � D be an overring satisfying:
(a) .V=U /U Š L˚J for some index set J ;
(b) HomU .L; V / D Ext1U .L; V / D 0 and the same for L_.
Then:
(1) L˝U V D 0 D TorU1 .L; V /.
(2) Let L? be the full subcategory of Mod-U consisting of modules M satisfying

HomU .L;M/ D Ext1U .L;M/ D 0. Then L? ' Mod-V .
(3) gldimV � gldimU . In particular, if gldimU <1 then gldimV <1.



Ring-theoretic blowing down. I 1509

Proof. (1) We first compute J ˝U V . Since V � D, there is an exact sequence

TorU2
�
L;D=V

�
! TorU1

�
L; V

�
! TorU1

�
L;D

�
:

Using that pdim.L/ D 1 and thatD is a flat U -module, the outside terms are zero in
this sequence and so TorU1 .L; V / D 0. Thus the natural map

� W J ˝U V ! U ˝U V D V

is injective and we identify J ˝U V with JV D Im�.
From the exact sequence 0 ! U ! J � ! L_ ! 0 and (b), the natural

map HomU .J �; V / ! HomU .U; V / D V is an isomorphism. In particular, the
inclusion U � V lifts to an inclusion J � � V and so, by the Dual Basis Lemma,
JV � JJ � 3 1. So J ˝U V D V . It follows by tensoring the exact sequence

0! J ! U ! L! 0

with V that L˝U V D 0.
(2) Consider the functors

F D HomU
�
V;�

�
W Mod-U ! Mod-V and G D resU W Mod-V ! Mod-U:

We claim that F and G give inverse equivalences between L? and Mod-V .
LetM 2 L?, and consider the exact sequence

HomU
�
L˚J ;M

�
! HomU

�
V;M

�
! HomU

�
U;M

�
! Ext1U

�
L˚J ;M

�
induced from (a). As the outside terms are zero, this provides a natural isomorphism
of U -modules: GF.M/ D HomU .V;M/

�
�! M . Hence M carries a natural

right V -action. Similarly, if M 0 2 L? as well then a U -module homomorphism
� WM !M 0 induces a V -module homomorphism

HomU
�
V;M

�
! HomU

�
V;M 0

�
;

from which it follows that � is already a V -module map. Thus GF Š IdL? .
Now let N 2 Mod-V . From the spectral sequence [21, Theorem 10.74]

ExtpV
�
TorUq

�
L; V

�
; N
�
) ExtpCqU

�
L;N

�
;

we have HomU .L;N / D 0 D Ext1U .L;N /, and so G.N/ 2 L?. There is a natural
V -module map N ! HomU .V;N / given by n 7! .s 7! ns/, which is the inverse
of the natural isomorphism HomU .V;N /! N discussed above and so it is also an
V -module isomorphism. Thus FG Š IdMod-V on objects. It is routine to check that
this respects morphisms and so F;G are indeed inverse equivalences.
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(3) LetM;N 2 Mod-V , which we identify withL?, using .2/. It is clearly sufficient
to prove that

ExtiV
�
M;N

�
Š ExtiU

�
M;N

�
; for i � 1: (9.1)

To prove this we will use the spectral sequence .2/4 from [7, Section XVI.5, p. 349]
for the injection � W U ! V . We begin with a couple of observations.

By part (2) and the fact that LU has projective dimension pdimU .L/ � 1, we
have ExtjU .L;N / D 0 for all j � 0. Now consider the long exact sequence obtained
by applying HomU .�; N / to the exact sequence

0! U ! V ! L˚J
! 0

arising from (a). Then certainly ExtqU .V;N / D 0 for q � 1. Moreover,
HomU .V;N / D HomU .U;N / D N ; thus .�/N D N in the notation of [7].
Therefore, as explained in [7], the cited spectral sequence collapses and the edge
homomorphism .3/4 from [7, Section XVI.5, Case 4, p. 349] becomes the desired
isomorphism

ExtiV
�
M;N

�
D ExtiV

�
M; .�/N

�
Š ExtiU

�
M;N

�
:

We next prove a partial converse to Proposition 9.3(3), for which we need the
following result on universal extensions.
Lemma 9.4. Let U be a noetherian k-algebra and let L be a finitely generated
right U -module satisfying EndU .L/ D k and Ext1U .L;L/ D 0. For any right
U -moduleQ such that HomU .L;Q/ D 0, there is a short exact sequence

0! Q! N ! Ext1U
�
L;Q

�
˝k L! 0;

for some N 2 L?.

Proof. Let E D Ext1U .L;Q/ and choose a basis feigi2I for E as a k-vector space.
As in [9, Lemma 4.2], construct a short exact sequence

0! Q! N ! E ˝k L! 0

such that the pullback under ei ˝ IdL W L! E ˝k L is the extension

0! Q! Ni ! L! 0

corresponding to ei . (It can be shown by a diagram chase that N is the element
of Ext1U .E ˝k L;Q/ corresponding to IdE via the natural isomorphism ˛ W

Homk.E;E/! Ext1U .E ˝k L;Q/.) By construction, the diagram

0 // Q // Ni

��

// L

ei˝IdL

��

// 0

0 // Q // N // E ˝k L // 0
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commutes. Applying HomU .L;�/, we obtain a commutative diagram:

0 // HomU .L;Q/ // HomU .L;Ni /

��

// HomU .L;L/

.ei˝IdL/ı.�/

��

ıi // E

0 // HomU .L;Q/ // HomU .L;N / // HomU .L;E ˝k L/
ı
// E:

(9.2)
Thus ı.ei ˝ IdL/ D ı..ei ˝ IdL/ ı IdL/ D ıi .IdL/, and this equals ei from the
standard way that elements of Ext1U .L;Q/ correspond to extensions. Since L is
finitely generated and EndU .L/ Š k, it follows that ı is an isomorphism.

We now use that HomU .L;Q/ D 0 D Ext1U .L;L/. Extending the bottom row
of (9.2) gives the long exact sequence

0! HomU
�
L;N

�
! HomU

�
L;E ˝k L

�
ı
! E ! Ext1U

�
L;N

�
! Ext1U

�
L;E ˝k L

�
:

But Ext1U .L;E ˝k L/ Š E ˝k Ext1U .L;L/ D 0. Since ı is an isomorphism, it
follows that N 2 L?.

Proposition 9.5. Suppose that U , V andL satisfy the hypotheses of Proposition 9.3
and, in addition, that HomU .L;L/ D k and injdimU D d <1. If gldimV <1

then gldimU <1.

Proof. LetM;M 0 2 Mod-U . We need to prove that ExtiU .M;M 0/ D 0 for i � 0.
Take exact sequences

0! Q! F !M ! 0 and 0! Q0 ! F 0 !M 0 ! 0

for free modules F;F 0 and consider the induced long exact sequences of Ext groups.
Using that injdimF D injdimU D d , it follows that

ExtiU
�
M;M 0

�
Š ExtiC1U

�
M;Q0

�
Š ExtiU

�
Q;Q0

�
for i > d . Thus, it suffices to prove that ExtjU .Q;Q

0/ D 0 for j � 0. SinceQ and
Q0 are Goldie torsionfree as defined on page 1471, Lemma 9.4 applies and produces
exact sequences

0! Q! N ! E ˝k L! 0 and 0! Q0 ! N 0 ! E 0 ˝k L! 0;

where N;N 0 2 L?.
Once again, from the induced long exact sequences for Ext groups, it suffices to

prove that

ExtkU
�
H;H 0

�
D 0 for k � 0; whereH 2 fL;N g andH 0 2 fL;N 0g: (9.3)
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Since L D U=J , with J projective, injdim.L/ <1 and pdim.L/ D 1. So certainly
(9.3) holds if eitherH D L orH 0 D L. The remaining case, whereH andH 0 2 L?,
follows from (9.1).

We now prove Theorem 9.1.

Proof of Theorem 9.1. Suppose first that qgr-T .p/ is smooth. Recall that, by
Lemma 6.8, if R is an elliptic algebra then qgr-R is smooth if and only if
gldimRı < 1. Thus gldimT .p/ı < 1, and in particular pdimT.p/ı Lı < 1
(and thus pdimT.p/ı Lı D 1 by Lemma 6.5). By Theorem 8.6, T is the blowdown
of T .p/ along L, and J satisfies the condition hilbEndT.p/.J / D hilbT .p/ as
in (8.3). Since Lı D T .p/ı=J ı, the right ideal J ı is projective, and by Theorem 7.1
it follows that Ext1T.p/.L;L/ D 0. By Lemma 8.2(3), Ext1T.p/.L; T / D 0. Since by
Lemma 5.6(4) Ext1T.p/.L

_; L_/ D 0, applying Lemma 8.2(3) on the left gives that
Ext1T.p/.L

_; T / D 0. Finally, it is obvious that

HomT.p/
�
L; T

�
D 0 D HomT.p/

�
L_; T

�
:

Now using Lemma 6.2, it follows from the above observations that the hypotheses of
Proposition 9.3 holdwithV D T ı,U D T .p/ı. Thus gldimU <1, Proposition 9.3
implies gldimV <1, and so qgr-T is smooth.

Conversely, suppose that qgr-T is smooth and that pdimT.p/ı Lı <1, so again
pdimT.p/ı Lı D 1. All of the arguments in the previous paragraph then go through
to show that the hypotheses of Proposition 9.3 hold with V D T ı, U D T .p/ı.
We also have HomT.p/.L;L/ D kŒg� by 5.5(3), and injdimT .p/ < 1 is part of
the Auslander–Gorenstein condition which holds by Proposition 4.3. Thus applying
Lemma 6.2, the hypotheses of Proposition 9.5 hold. Thus gldimV < 1 implies
gldimU <1, and so qgr-T .p/ is smooth.

Wedonot knowhow to characterisewhen pdimLıD1 (equivalently, pdimLı<1),
although we conjecture:

Conjecture 9.6. Let T be an elliptic algebra with degT � 4 and let T .p/ be the
blowup of T at p 2 E with exceptional line L. If there is no T -line module L0 with
DivL0 D �.p/, then pdimT.p/ı Lı D 1.

10. An example of undefined self-intersection

In this section we describe an elliptic algebra R with an exceptional line module L
for which the self-intersection .L �MSL/ is undefined. Moreover, .L�L/ 6D �1 yet
the associated line ideal J does satisfy hilbEndR.J / D hilbR. Thus one can still
use Theorem 8.3 to blow down the line L. This justifies the comments made in
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Remark 8.4 concerning that theorem and also gives the example promised before
Definition 6.7.

In a way that will shortly be made precise, the ring R is obtained by blowing up
the same point p 2 E twice in the Veronese ring T D S .3/ of the Sklyanin algebra S .
The key property, here, is that the resulting scheme qgr-R is not smooth. This may be
explained by analogy with the commutative situation: iterated ring-theoretic blowups
of T are analogs of commutative rings of the form

A D
M
n�0

H 0
�
P2;

�
I ˝O.9/

�˝n�
;

where I is an ideal sheaf defining a zero-dimensional subscheme Z of P2. When Z
is not reduced, a failure of ampleness means that ProjA need not be isomorphic to
the blow-up of P2 at Z and, moreover, ProjA need not be smooth. Of course, this
also shows that the analogy between commutative and noncommutative blowups is
less precise in the non-generic situation.
Notation 10.1. We start with the relevant notation, which will be fixed throughout
the section. Let T D S .3/ be a Sklyanin elliptic algebra, as defined in Example 4.2 for
an automorphism � of infinite order, with quotient ring T=gT D B D B.E;M; �/.
Fix a point p 2 E. Following [16] we blow up p once to get a ring R0 D T .p/ and
then blow up R0 at p again to give the ring R D R0.p/ D T .2p/.

LetL D R=J be the exceptionalR-line module, with line ideal J , corresponding
to the extension R � R0; this exists by [16, Lemma 9.1]. Similarly, let L0 be the
exceptionalR0-line module corresponding to the extensionR0 D T .p/ � T . Finally,
write

X D R0�1R � Y D T�1R � Z D T�1R
0
� T:

The following fact, due to Simon Crawford, will be used several times.
Proposition 10.1 ([8]). The localised algebra Rı D RŒg�1�0 is simple.

We note the following useful facts about the line ideals L and L0.
Lemma 10.2. (1) The line moduleL has no proper g-torsionfree factorR-modules;

equivalently, Lı is a simple Rı-module.
(2) As R-modules, Z=R0 D .Y CR0/=R0 Š LŒ�1� and hence L Š L0.

Proof. (1) By Proposition 10.1, Rı has no finite-dimensional modules. The
simplicity of Lı is then a consequence of the 1-criticality of Lı, which follows
from Lemma 5.2.
(2) We first make some calculations in the Sklyanin algebra S . Recall that S1
may be identified with H 0.E;L/ for some invertible sheaf L on E of degree 3.
For r 2 E, let W.r/ D H 0.E;L.�r// � S1. Then S1W.r/ D W.��1.r//S1,
by [16, Lemma 4.1], while R01 D W.p/S2 by [16, Lemma 4.2]. We also have
R1 D W.p/W.�.p//S1 by [16, Lemma 4.6].
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Let V D W.�3.p//W.�.p//W.�2.p//. We show next that J1 D V . We
calculate that

R01V D W.p/S2W.�
3.p//W.�.p//W.�2.p//

D W.p/W.�.p//S1W.p/W.�.p//S1 D R2:

We have X=R D R0�1R=R Š LŒ�1� Š .R=J /Œ�1�, as a consequence of
Theorem 8.3, since R0 is the blowdown of R along L by Theorem 8.6. Thus
J D fx 2 R W R01x � Rg and so V � J1. The Hilbert series of J is known, and
dimk J1 D 6. On the other hand, using Lemma 2.2 we calculate in B.E;M; �/ that
dimk V D 6. Thus V D J1.

We now claim that
T1J � X: (10.2)

This follows from the calculation

T1J1 D S3W.�
3.p//W.�.p//W.�2.p//

D W.p/S2W.p/W.�.p//S1 D R
0
1R1 D X2

(10.3)

and the fact that by Lemma 5.6(2), J is generated in degree one as a right R-ideal.
Now since T is the blowdown of R0 along L0 D R0=J 0, similarly to the above we

obtain

Z=R0 D .T�1R
0/=R0 Š L0Œ�1� and J 0 D

˚
x 2 R0 W T1x � R

0
	
:

Since X � R0, (10.2) gives J � J 0. By construction, dimk T1=R
0
1 D 1, so write

T1 D R
0
1 ˚ ka for some a 2 T1. As J � J 0, there is a nonzero homomorphism

� W LŒ�1� Š .R=J /Œ�1�! Z=R0 Š L0Œ�1�

sending 1 to a. Since Lı is simple, L has no proper g-torsionfree factors, and so �
is injective. By comparing Hilbert series, it is an isomorphism.

We further have:

Lemma 10.3. As Rı-modules, Y ı is projective, while J ı is not.

Proof. Let q D �.p/. By Theorem 8.6, EndR.J / Š F D R0.q/. We now pass to the
ringRı and notice that, by standard localisation theory,F ı D EndRı.J ı/. Moreover,
F D T .pC �.p//, the blowup of T at two consecutive points on a � -orbit, is shown
in [16, Proposition 11.2(1)] to have a proper ideal I such that F=I is g-torsionfree.
Thus I ı is a proper ideal of F ı and F ı is not simple, whereas by Proposition 10.1
Rı is simple. In particular, RıJ ı D Rı and thus J ı is an Rı-generator; since F ı is
not Morita equivalent toRı, it follows that J ı is not projective as a rightRı module.
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Now let ` D ��1.p/. We claim that EndR.Y / D T .2`/. This will complete
the proof of the lemma since now EndRı.Y ı/ Š T .2`/ı, which is again simple by
Proposition 10.1. By the Dual Basis Lemma, Y ı is therefore projective as a right
Rı-module.

In order to prove the claim, we note that, from the formulæ from [16, Lemmas 4.1
and 4.6] noted in the proof of Lemma 10.2,

T .2`/1T1 D W.�
�3.p//W.��2.p//S1S3

D S3W.p/W.�.p//S1 D T1R1:

(10.4)

Moreover, as T .2`/ � T , certainly T .2`/1R � T1R and hence

T .2`/1Y D T .2`/.RC T1R/ � Y:

Since T .2`/ is generated in degree one by definition, it follows that T .2`/ �
EndR.Y /. Equation (10.4) also implies by induction that T .2`/nT1 D T1Rn for
all n � 0, so T .2`/T1 D T1R. It follows that T1R is a finitely generated left
T .2`/-module. In particular, writing a k-basis fxig of T1 as fractions xi D yiz

�1

with a common denominator, where yi ; z 2 T .2`/, we see that T1Rz � T .2`/, and
then Yz D .k C T1R/z � T .2`/: Thus

EndR.Y /Yz � Yz � T .2`/;

which means that EndR.Y / and T .2`/ are equivalent orders. Since T .2`/ is a
maximal order by [16, Theorem 1.1(2)], the inclusion T .2`/ � EndR.Y / is actually
an equality.

We next show that .L�L/ ¤ �1. In fact, we prove:
Lemma 10.4. There is a nonsplit exact sequence

0! LŒ�1�! Y=R! LŒ�1�! 0: (10.5)

Proof. By (10.2), T1J � X . Thus there is a homomorphism

� W .R=J /Œ�1�! Y=X D T1R=R
0
1R

which sends 1 to a, where T1 D R01 ˚ ka. Since T1R D R01R C aR, � is
surjective. Now since R0=X Š

L
i�2LŒ�i � as right R-modules by Theorem 8.3,

R0=X is g-torsionfree. Since R0 is g-divisible, Qgr.T /=R0 is g-torsionfree, and
so Qgr.T /=X and thus Y=X are also g-torsionfree. As noted in the proof of
Lemma 10.2, L has no proper g-torsionfree factor modules, and this forces � to be
injective as well. Thus Y=X Š LŒ�1� as right R-modules.

We saw thatX=R Š LŒ�1� in the proof of Lemma 10.2, and so the exact sequence
(10.5) exists as claimed. Finally, localising (10.5) gives the exact sequence

0! Lı ! .Y=R/ı ! Lı ! 0:
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By Lemma 10.3, pdimLı > 1 D pdim.Y ı=Rı/. Thus, neither this sequence nor
(10.5) is split.

Corollary 10.5. Let R D T .2p/ with exceptional line module L, as above. Then
.L�L/ 6D �1. On the other hand, hilbEndR.J / D hilbR and so, by Theorem 8.3,
one can blow down L.

Proof. By Lemmas 5.5 and 6.2, EndRı.Lı/ D k. On the other hand,
Ext1Rı.Lı; Lı/ ¤ 0 byLemma10.4. Thus, byLemma6.2, .L�L/ � 0 > �1. Finally,
by Theorem 8.6, EndR.J / D R0.q/, and so the equality hilbEndR.J / D hilbR
follows from [16, Theorem 1.1(1)].

The next result shows that there is a particularly interesting self-extension of J ı.
Proposition 10.6. There is a nonsplit exact sequence

0! J ı ! P ! J ı ! 0 (10.6)

of Rı-modules, where P is projective.

Proof. Recall that
Xı=Rı Š Y ı=Xı Š Rı=J ı Š Lı;

from the proof of Lemma 10.4. Thus the localisation of (10.5) can be written as:

0! Xı=Rı ! Y ı=Rı ! Y ı=Xı ! 0: (10.7)

The natural surjection �0 W Rı ! Rı=J ı Š Y ı=Xı lifts to a homomorphism
� W Rı ! Y ı=Rı, which must be surjective as Lı is simple. As was shown in the
proof of Lemma 10.4, (10.7) is nonsplit. Let K D ker�; thus K is projective since
pdim.Y ı=Rı/ D 1.

Clearly K � J ı D ker.�0/ and J ı=K Š Lı. This isomorphism lifts to a map
� 0 W Rı ! J ı so that � 0.Rı/CK D J ı. This induces a surjective homomorphism
� W Rı ˚K ! J ı. It is routine to check that

ker � D
˚
.r; k/ 2 Rı ˚K W � 0.r/ D k

	
and that as an Rı-module this is isomorphic to .� 0/�1.K/ D J ı. Thus we have
constructed the sequence (10.6) with P D Rı ˚K. As pdimJ ı > pdimP , it does
not split.

We now examine the higher Ext groups from Lı to itself; the ultimate aim being
to show that .L �MSL/ is undefined.
Lemma 10.7. Keep the above notation. Then:
(1) ExtnRı.J ı; J ı/ Š ExtnC1Rı .J

ı; J ı/ 6D 0 for n � 1.
(2) ExtnRı.J ı; J ı/ Š Extn�1Rı .J

ı; Lı/ Š ExtnRı.Lı; Lı/ for all n � 2.
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(3) In particular, ExtnRı.Lı; Lı/ Š ExtnC1Rı .L
ı; Lı/ 6D 0 for all n � 2.

Proof. (1) Applying HomRı.�; J ı/ to (10.6) gives the exact sequence

ExtmRı
�
P; J ı

�
! ExtmRı

�
J ı; J ı

�
! ExtmC1Rı

�
J ı; J ı

�
! ExtmC1Rı

�
P; J ı

�
(10.8)

for m � 1. As P is projective, it follows that

ExtmRı
�
J ı; J ı

�
Š ExtmC1Rı

�
J ı; J ı

�
for m � 1. Moreover, (10.6) ensures that Ext1Rı.J ı; J ı/ 6D 0 and hence

ExtmRı
�
J ı; J ı

�
6D 0

for m � 1.
(2,3) Applying HomRı.J ı;�/ to

0! J ı ! Rı ! Lı ! 0

gives

ExtmRı
�
J ı; Rı

�
! ExtmRı

�
J ı; Lı

�
! ExtmC1Rı

�
J ı; J ı

�
! ExtmC1Rı

�
J ı; Rı

�
for all m � 1. Now J ı is CM by Lemma 5.6(2) and so, as m � 1, the outside terms
are zero in this equation. Hence,

ExtmRı
�
J ı; Lı

�
Š ExtmC1Rı

�
J ı; J ı

�
Š ExtmC2Rı

�
J ı; J ı

�
Š ExtmC1Rı

�
J ı; Lı

�
(10.9)

for all m � 1. By part (1) these groups are also non-zero.
From the exact sequence

0! J ı ! Rı ! Lı ! 0;

one also obtains
ExtmRı

�
J ı; Lı

�
Š ExtmC1Rı

�
Lı; Lı

�
for m � 1. Combined with (10.9) this implies that

ExtsRı
�
Lı; Lı

�
Š Exts�1Rı

�
J ı; Lı

�
Š Ext1Rı

�
J ı; Lı

�
Š Ext2Rı

�
Lı; Lı

�
for all s � 2. Finally, by (10.9) and part (1),

ExtsRı
�
Lı; Lı

�
Š Exts�1Rı

�
J ı; Lı

�
Š ExtsRı

�
J ı; J ı

�
6D 0;

for all s � 2.

Finally, by combining Lemma 10.7 with Proposition 6.4, we get the promised
example of an undefined self-intersection.
Corollary 10.8. Let R D T .2p/ as above, with exceptional line module L. Then
the self-intersection .L �MS L/ is an infinite sum and hence is undefined. Further,
gldimRı D1 and so qgr-R is not smooth.
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Index of notation

Auslander–Gorenstein and CM
conditions . . . . . . . . . . . 1471

blowing down a line . . . . . . . . . . . 1504

connected graded (cg) algebra . . 1465

DivM , the divisor ofM 2 gr-R1484
d -pure and d -critical modules . . 1471

E D hilbExt1B.Mp;Mp0/,
C D hilb Im ı . . . . . . . 1493

elliptic algebra, degree of an
elliptic algebra . . . . . . . 1479

�p;p0 . . . . . . . . . . . . . . . . . . . . . . . . . 1494

g-divisible . . . . . . . . . . . . . . . . . . . 1480
g-torsionfree modules . . . . . . . . . 1480
Goldie torsionfree modules . . . . 1471
grkM , torsionfree rank of a

kŒg�-module, . . . . . . . . 1488

H D hilbHomB.Mp;Mp0/ . . . . 1493
hilbM D hM .s/, the Hilbert

series ofM . . . . . . . . . . 1473
Hom, Ext . . . . . . . . . . . . . . . . . . . . 1470

intersection number .M �N/ . . . . 1491
intersection number .M �

MSN/ 1488eK, extension of K by shifts
of a line module . . . . . . 1501

L_ D Ext1R.L;R/Œ1�, dual line
module . . . . . . . . . . . . . . 1486

line ideal J , line module
L D R=J . . . . . . . . . . . 1483

point moduleMp , for p 2 E,
point ideal . . . . . . . . . . . 1474

projective dimension pdimR.L/ 1491

Qgr.R/, graded quotient ring . . 1472
qgr-R, quotient category

of gr-R . . . . . . . . . . . . . . 1470

Rı D RŒg�1�0, localisation
of R . . . . . . . . . . . . . . . . .1488

R.g/, graded localisation . . . . . . . 1480

saturated module . . . . . . . . . . . . . . 1472
shiftMŒn� . . . . . . . . . . . . . . . . . . . . 1470
Sklyanin algebras, S . . . . . . . . . . .1479
smooth noncommutative

scheme . . . . . . . . . . . . . . 1491

� , automorphism defining R . . . 1479
TCR, twisted coordinate ring

B.X;M; �/ . . . . . . . . . . 1471
torsion and torsionfree modules 1471

X.L;L0/ D hilbExt1R.L;L0/ �
hilbHomR.L;L0/ . . . . .1493

! W Qgr-R! Gr-R, section
functor . . . . . . . . . . . . . . 1472
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