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Crossed products by compact group actions
with the Rokhlin property

Eusebio Gardella

Abstract. We present a systematic study of the structure of crossed products and fixed
point algebras by compact group actions with the Rokhlin property on not necessarily unital
C�-algebras. Our main technical result is the existence of an approximate homomorphism from
the algebra to its subalgebra of fixed points, which is a left inverse for the canonical inclusion.
Upon combining this with results regarding local approximations, we show that a number of
classes characterized by inductive limit decompositions with weakly semiprojective building
blocks, are closed under formation of crossed products by such actions. Similarly, in the presence
of the Rokhlin property, if the algebra has any of the following properties, then so do the crossed
product and the fixed point algebra: being a Kirchberg algebra, being simple and having tracial
rank zero or one, having real rank zero, having stable rank one, absorbing a strongly self-
absorbing C�-algebra, satisfying the Universal Coefficient Theorem (in the simple, nuclear
case), and being weakly semiprojective. The ideal structure of crossed products and fixed point
algebras by Rokhlin actions is also studied.

The methods of this paper unify, under a single conceptual approach, the work of a number
of authors, who used rather different techniques. Our methods yield new results even in the
well-studied case of finite group actions with the Rokhlin property.
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1. Introduction

The Rokhlin property first appeared in the late 1970’s and early 1980’s, in work of
Fack and Maréchal [6], Kishimoto [23], and Herman and Jones [14] on cyclic group
actions on UHF-algebras, and in the work of Herman and Ocneanu [15] on integer
actions on UHF-algebras.

In [18], Izumi provided a formal definition of the Rokhlin property for an arbitrary
finite group action on a unital C �-algebra. His classification theorems for Rokhlin
actions [18,19] are among the major results in the study of finite group actions.

In a different direction, Izumi [18], Hirshberg and Winter [17], Phillips [39],
Osaka and Phillips [35], and Pasnicu and Phillips [36], explored the structure
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of crossed products by finite group actions with the Rokhlin property on unital
C �-algebras, while Santiago [43] addressed similar questions in the non-unital case.
The questions and problems addressed in each of these works are different, and
consequently the approaches used by the above mentioned authors are substantially
distinct in some cases.

In [17], Hirshberg andWinter also introduced the Rokhlin property for a compact
group action on a unitalC �-algebra, and their definition coincides with Izumi’s in the
case of finite groups. They showed that approximate divisibility and D-stability, for
a strongly self-absorbing C �-algebra D , are preserved under formation of crossed
product by compact group actions with the Rokhlin property. Extending the results
of [35,36,39] to the case of arbitrary compact groups requires new insights, since the
main technical tool in all of these works (Theorem 3.2 in [35]) seems not to have a
satisfactory analog in the compact group case.

In this paper, we extend the definition of Hirshberg-Winter to actions of compact
groups on � -unital C �-algebras, and generalize the results on finite group actions
with the Rokhlin property of the above mentioned papers to the case of compact
group actions. Our contribution is two-fold. First, most of the results we prove here
were known only in some special cases (mostly for finite or circle group actions;
see [7] and [8] for the circle case), and some of them had not been noticed even in the
context of finite groups. Additionally, we do not require ourC �-algebras to be unital,
unlike in [17,18,35], or [36]. Finally, our methods represent a uniform treatment
of the study of crossed products by actions with the Rokhlin property, where the
attention is shifted from the crossed product itself, to the algebra of fixed points.

Our results can be summarized as follows (the list is not exhaustive). We point
out that (14) below was first obtained, with different techniques and for unital
C �-algebras, by Hirshberg and Winter as part (1) of Corollary 3.4 in [17]. Also, (10)
and (14) were obtained in [9].
Theorem. The following classes of � -unitalC �-algebras are closed under formation
of crossed products and passage to fixed point algebras by actions of second-
countable compact groups with the Rokhlin property:
(1) Simple C �-algebras (Corollary 2.14). More generally, the ideal structure can

be completely determined (Theorem 2.13);
(2) C �-algebras that are direct limits of certain weakly semiprojective C �-algebras

(Theorem3.10). This includesUHF-algebras (ormatroid algebras), AF-algebras,
AI-algebras, AT -algebras, countable inductive limits of one-dimensionalNCCW-
complexes, and several other classes (Corollary 3.11);

(3) Kirchberg algebras (Corollary 4.11);
(4) Simple C �-algebras with tracial rank at most one (Theorem 4.5);
(5) Simple, separable, nuclear C �-algebras satisfying the Universal Coefficient

Theorem (Theorem 3.13);
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(6) C �-algebras with nuclear dimension at most n, for n 2 N (Theorem 2.9);
(7) C �-algebras with decomposition rank at most n, for n 2 N (Theorem 2.9);
(8) C �-algebras with real rank zero (Proposition 4.13);
(9) C �-algebras with stable rank one (Proposition 4.13);
(10) C �-algebras with strict comparison of positive elements (Corollary 3.19 in [9]);
(11) C �-algebras whose order on projections is determined by traces (Propsi-

tion 4.15);
(12) (Not necessarily simple) purely infinite C �-algebras (Proposition 4.10);
(13) SeparableD-absorbingC �-algebras, for a strongly self-absorbingC �-algebraD

(Theorem 4.3);
(14) C �-algebras whose K-groups are either: trivial, free, torsion-free, torsion, or

finitely generated (Corollary 3.4 in [9]);
(15) Weakly semiprojective C �-algebras (Proposition 4.19).

Our work yields new results even in the case of finite groups. For example,
in (14) above, we do not require the algebra A to be simple, unlike in Theorem 3.13
of [18]. In addition, the classes of C �-algebras considered in Theorem 3.10 may
consist of simple C �-algebras, unlike in Theorem 3.5 in [35] (we also do not impose
any conditions regarding corners of our algebras). Additionally, in Proposition 4.19,
we show that the inclusion A˛ ! A is sequence algebra extendible (Definition 4.16)
whenever ˛ has the Rokhlin property, and hence weak semiprojectivity passes fromA
toA˛ . Our conclusion seems not to be obtainable with the methods developed in [35]
and relatedworks, since it is not in general true that a corner of aweakly semiprojective
C �-algebra is weakly semiprojective.

Given that our results all follow as easy consequences of our main technical
observation, Theorem 2.11, which allows us to deal with the non-unital case as well,
we believe that this paper unifies the work of a number of authors, who used rather
different methods, under a single systematic and conceptual approach.

In this paper, we take N D f1; 2; : : :g.

Acknowledgements. The author is grateful to Chris Phillips for a number of helpful
conversations regarding averaging processes. He also thanks Hannes Thiel for
conversations on the Cuntz semigroup and local approximations, and Juan Pablo
Lago for his support and encouragement. Finally, he thanks the referee for a number
of comments and suggestions that improved the quality of this work, and in particular
for suggesting a simpler proof of Theorem 2.11.

2. An averaging process

We begin by introducing some useful notation and terminology.
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2.1. Central sequence algebras and Rokhlin property. Given a C �-algebra A,
let `1.N; A/ denote the set of all bounded sequences in A with the supremum norm
and pointwise operations. Then `1.N; A/ is a C �-algebra, and it is unital if A is
� -unital, since any countable approximate unit forA determines a unit for `1.N; A/.
Set

c0.N; A/ D f.an/n2N 2 `
1.N; A/ W lim

n!1
kank D 0g:

Then c0.N;A/ is an ideal in `1.N;A/, andwedenote the quotient `1.N;A/=c0.N;A/
byA1. We write �AW `1.N; A/! A1 for the quotient map. We identifyAwith the
subalgebra of `1.N; A/ consisting of the constant sequences, and with a subalgebra
of A1 by taking its image under �A. If D is any subalgebra of A, then A1 \ D0
denotes the relative commutant ofD inside of A1.

Definition 2.1. For a subalgebraD � A, write Ann.D;A1/ for the annihilator ofD
in A1, which is an ideal in A1 \D0. Following Kirchberg ([20]), we set

F.D;A/ D A1 \D
0=Ann.D;A1/;

and write �D;AWA1 \ D0 ! F.D;A/ for the quotient map. When D D A, we
abbreviate F.A;A/ and �D;A to F.A/ and �A.

If ˛WG ! Aut.A/ is an action of G on A, and D is an ˛-invariant subalgebra
of A, then there are (not necessarily continuous) actions of G on `1.N; A/, on A1,
on A1 \D0 and on F.D;A/, respectively denoted, with a slight abuse of notation,
by ˛1, ˛1, ˛1 and F.˛/. Following Kishimoto ([21]), we set

`1˛ .N; A/ D fa 2 `
1.N; A/ W g 7! ˛1g .a/ is continuousg:

We also set A1;˛ D �A.`1˛ .N; A// and F˛.A/ D �D;A.A1;˛ \D0/.

By construction, A1;˛ and F˛.D;A/ are invariant under ˛1 and F.˛/, so the
restrictions of ˛1 and F.˛/ to A1;˛ and F˛.D;A/, which we also denote by ˛1
and F.˛/, are continuous.

If G is a locally compact group, we denote by LtWG ! Aut.C0.G// the action
induced by left translation of G on itself.

The following generalizes Definition 3.2 of [17] to the � -unital setting. (See
Definition 3.2 in [34] for the case of finite groups.) It should also be compared with
Definition 1.6 in [45].

Definition 2.2. LetA be a � -unitalC �-algebra, letG be a second-countable compact
group, and let ˛WG ! Aut.A/ be a continuous action. We say that ˛ has the Rokhlin
property if for every separable ˛-invariant subalgebraD � A, there is an equivariant
unital homomorphism

'W .C.G/; Lt/! .F˛.D;A/; F.˛//:
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A number of features of the Rokhlin property are studied in [9]. Here, we
shall focus on the crossed products and fixed point algebras, with emphasis on their
structure and classifiability.

We will repeatedly use the following fact, which is probably standard. Its proof
can be found, for example, in [12]. For compact G, we identify C.G;A/ and
C.G/˝ A in the usual way.
Proposition 2.3. Let G be a compact group, let A be a C �-algebra, and let
˛WG ! Aut.A/ be an action. Define a homomorphism � WC.G;A/ ! C.G;A/

by �.a/.g/ D ˛g.a.g// for a 2 C.G;A/ and g 2 G. Then

� W .C.G;A/; Lt˝ idA/! .C.G;A/; Lt˝ ˛/

is an equivariant isomorphism.

We need an easy lifting result. We thank Luis Santiago for pointing it out to us.
Lemma 2.4. Let G be a locally compact group, let C and A be C �-algebras, and
let 
 WG ! Aut.C / and ˛WG ! Aut.A/ be actions, and let D � A be an invariant
subalgebra. Give C ˝max A the diagonal G-action. Suppose that there exists
a unital equivariant homomorphism 'WC ! F˛.D;A/, and choose any function
� WC ! A1;˛ \ D

0 satisfying �A ı � D '. Then there exists an equivariant
homomorphism

 WC ˝max D ! A1;˛

determined by  .c ˝ d/ D �.c/d for all c 2 C and all a 2 A. Moreover,  does
not depend on � .

Proof. We check that  is indeed a homomorphism. Let c1; c2 2 C and d1; d2 2 A
be given. Using that �.c1c1/x D �.c1/�.c2/x for any x 2 D at the second step, and
that �.C / commutes withD at the third step, we get

 .c1c2 ˝ d1d1/ D �.c1c2/d1d1 D �.c1/�.c2/d1d1 D �.c1/d1�.c2/d2

D  .c1 ˝ d1/ .c2 ˝ d2/;

as desired. Finally, ife� is another lift of ', then clearlye�.c/d D �.c/d for all c 2 C
and all a 2 D, which shows that  does not depend on the lift of '.

2.2. First results on crossed product and the averaging process. If a compact
group G acts on a C �-algebra A, then AG is naturally a corner in A Ì G (see the
Theorem in [42]), even though A is itself not in general a subalgebra of A Ì G.
(When G is discrete, there is a different way of regarding AG as a subalgebra of
the crossed product, since A always sits inside A Ì G. When G is finite, these two
inclusions never agree when G is not trivial, and we will exclusively deal with the
corner inclusion considered by Rosenberg.)
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Using this corner inclusion, one can many times obtain information about the
fixed point algebra through the crossed product. However, since this corner is not
in general full, Rosenberg’s theorem is not always useful if one is interested in
transferring structure from AG to A Ì G. Saturation for compact group actions is
the basic notion that allows one to do this, up to Morita equivalence. The definition,
which is essentially due to Rieffel, is as in Definition 7.1.4 in [38]. What we reproduce
below is the equivalent formulation given in Lemma 7.1.9 in [38]. We point out that
saturation is equivalent to the corner AG � A ÌG being full.
Definition 2.5 ([38, Definition 7.1.4]). Let G be a compact group, let A be a
C �-algebra, and let ˛WG ! Aut.A/ be an action. We say that ˛ is saturated, if
the set˚
fa;bWG ! AIfa;b.g/ D a˛g.b/ for all g 2 G, with a; b 2 A

	
� L1.G;A; ˛/

spans a dense subspace of A Ì˛ G.
It is an easy exercise to check that if a compact group G acts freely on a compact

Hausdorff spaceX , then the induced action on C.X/ is saturated. For this, it suffices
to prove that the set�

fa;b 2 C.G �X/ W fa;b.g; x/ D a.x/b.g � x/

for all .g; x/ 2 G �X , with a; b 2 C.X/

�
spans a dense subset of C.G � X/. This linear span is closed under multiplication
and contains the constant functions regardless of whether the action of G is free or
not, and it is easy to see that it separates the points of G �X if and only if it is free.
The claim then follows from the Stone–Weierstrass theorem. See Theorem 7.2.6
in [38] for a more general result involving C.X/-algebras.
Lemma 2.6. Let ˇ W G ! Aut.C / be a saturated action of a compact group G on
a nuclear C �-algebra C , and let idDWG ! Aut.D/ denote the trivial action. Then
the diagonal action


 D ˇ ˝ idDWG ! Aut.C ˝D/

is also saturated.

Proof. Then there are canonical identifications

.C ˝D/
 Š C ˇ ˝D and .C ˝D/ Ì
 G Š .C Ìˇ G/˝D:

Denote by �C WC
ˇ ! C Ìˇ G the canonical inclusion (see comments above

Definition 2.5). Observe that the saturation of ˇ is equivalent to the hereditary
subalgebra generated by �C .C ˇ / being all of C Ìˇ G (see [38, Lemma 7.1.9]).
Under the above identifications, the inclusion

.C ˝D/
 ,! .C ˝D/ Ì
 G
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corresponds to the map

�C ˝ idDWC ˇ ˝D ! .C Ìˇ G/˝D:

Hence the image of .C ˝ D/
 generates all of .C ˝ D/ Ì
 G as a hereditary
subalgebra. We conclude that 
 is saturated.

The following result will be used repeatedly throughout this paper.

Proposition 2.7. Let G be a second-countable compact group, let A be a � -unital
C �-algebra, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. Then ˛
is saturated.

In particular, the fixed point algebra and the crossed product by a compact group
action with the Rokhlin property are Morita equivalent, and thus stably isomorphic
whenever the original algebra is separable.

Proof. We begin by proving the statement for finite G and unital, separable A,
because we believe the reader will gain better intuition from this particular case.
Indeed, finiteness of G allows one to construct the approximations explicitly.

Suppose that G is finite and A is unital and separable. Fix g 2 G, and denote
by ug the canonical unitary in the crossed product A Ì˛ G implementing ˛g . We
claim that it is enough to show that ug is in the closed linear span of the functions fa;b
from Definition 2.5. Indeed, if this is the case, and if x 2 A, then xug also belongs
to the closed linear span, and elements of this form span A Ì˛ G.

For n 2 N, find projections e.n/g 2 A, for g 2 G, such that

(1)


˛g.e.n/h / � e

.n/

gh



 < 1
n
for all g; h 2 G; and

(2)
P
g2G

e
.n/
g D 1.

For a; b 2 A, the function fa;b corresponds to the product a
�P

h2G ˛h.b/uh
�
.

Thus, for n 2 N and k 2 G, we have

f
e
.n/

gk
;e
.n/

k

D e
.n/

gk

�X
h2G

˛h
�
e
.n/

k

�
uh

�
:
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We use pairwise orthogonality of the projections e.n/g , for g 2 G, at the third step, to
get


f

e
.n/

gk
;e
.n/

k

� e
.n/

gk
ug




 D 


e.n/gk�X
h2G

e
.n/

gk
˛h.e

.n/

k
/uh

�
� e

.n/

gk
ug





�




e.n/gk ˛g.e.n/k /uh � e
.n/

gk
uh




CX
h2G;h¤g




e.n/gk ˛h.e.n/k /uh





<



˛g.e.n/k / � e

.n/

gk




CX
h2G;h¤g




˛h.e.n/k / � e
.n/

hk





<
1

n
C .jGj � 1/

1

n
D
jGj

n
:

It follows from condition (2) above that

lim sup
n!1




X
k2G

f
e
.n/

gk
;e
.n/

k

� ug




 � lim sup
n!1

jGj2

n
D 0:

Hence ug belongs to the closed linear span of the fa;b , and ˛ is saturated.
For G compact and second countable, we are not able to describe the

approximating functions fa;b explicitly. (In fact, their existence is a consequence of
the Stone–Weierstrass theorem.) Our proof consists in showing that one can build
approximating functions in A Ì˛ G using approximating functions in C.G/ ÌLt G.

Suppose that G is compact and A is � -unital. For an ˛-invariant subalgebra
D � A, denote by 
DWG ! Aut.C.G;D// the diagonal action 
 D Lt ˝ ˛jD .
Then 
 is conjugate to Lt˝ idD by Proposition 2.3. Since Lt is saturated (see the
comments after Definition 2.5), the action Lt˝ idD is saturated by Lemma 2.6. We
deduce that 
D is also saturated.

Since k � kL1.G;A;˛/ dominates k � kAÌ˛G , it is enough to show that the span
of the functions fa;b , with a; b 2 A, is dense in L1.G;A; ˛/. Denote by �E the
characteristic function of a Borel set E � G. It is a standard fact that the linear span
of

fx�E W x 2 A;E � G Borelg

is dense in L1.G;A; ˛/. So fix x 2 A and a Borel subset E � G. Fix " > 0. Using
that 
A is saturated, choose m 2 N and a1; : : : ; am; b1; : : : ; bm 2 C.G;A/ such that


 mX

jD1

faj ;bj � x�E




 < ";
where the norm is taken in C.G;A/ Ì
 G.

Denote by D the separable, ˛-invariant subalgebra of A generated by the set
faj ; bj W j D 1; : : : ; mg. Let 'WC.G/ ! F˛.D;A/ be a unital equivariant homo-
morphism as in the definition of theRokhlin property for˛. Let WC.G;D/! A1;˛
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be the equivariant homomorphism given by Lemma 2.4. Writeb WC.G;D/ Ì
D G ! A1;˛ Ì˛1 G;

for the induced map at the level of the crossed products. Under the canonical
embedding

A1;˛ Ì˛1 G ,! .A Ì˛ G/1
provided by [10, Proposition 2.1], we will regard b as a homomorphismb WC.G;D/ Ì
 G ! .A Ì˛ G/1:

It is clear that b .faj ;bj / D f .aj /; .bj / for all j D 1; : : : ; m, and that b .x�E / D
x�E . Hence


 mX

jD1

f .aj /; .bj / � x�E





.AÌ˛G/1

D




b � mX
jD1

faj ;bj � x�E

�



.AÌ˛G/1

�




 mX
jD1

faj ;bj � x�E




 < ":
To finish the proof, for j D 1; : : : ; m, choose bounded sequences . .aj /n/n2N

and . .bj /n/n2N in C.G;D/ which represent  .aj / and  .bj /, respectively. Then

�AÌ˛G

��
f .aj /n; .bj /n

�
n2N

�
D f .aj /; .bj /:

It follows that for n large enough, we have


 mX
jD1

f .aj /n; .bj /n � x�E





AÌ˛G

< ";

showing that ˛ is saturated.
The last part of the statement follows from Rieffel’s original definition of

saturation ([38, Definition 7.1.4]; see also [38, Proposition 7.1.3]).

Remark 2.8. In this paper, we will show that a number of properties pass from A

to A˛ and A Ì˛ G. These properties are all preserved by Morita equivalence. Our
strategy will be to show first that the property in question passes to the fixed point
algebra. Once this is accomplished, Proposition 2.7 will imply the result for AÌ˛ G.
An alternative to this approach is as follows: with � W G ! U.L2.G// denoting
the left regular representation, the crossed product AÌ˛ G is isomorphic to the fixed
point algebra �

A˝K
�
L2.G/

��˛˝Ad.�/
:

Now, if ˛ has the Rokhlin property, it is immediate to check that so does ˛˝Ad.�/.
If the property in question has been shown to pass to fixed point algebras by Rokhlin
actions and is invariant under Morita equivalence, then it follows that it also passes
to their crossed products.
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We recall here that if ˛WG ! Aut.A/ is an action of a compact group on a
� -unitalC �-algebraA, then we have the following estimates of the nuclear dimension
([48, Definition 2.1]) and decomposition rank ([25, Definition 3.1]) of the crossed
product in terms of those of A and the Rokhlin dimension of ˛ ([11, Definition 3.2]):

dimnuc.A Ì˛ G/ � .dimnuc.A/C 1/.dimRok.˛C1/ � 1;

and dr.A Ì˛ G/ � .dr.A/C 1/.dimRok.˛C1/ � 1:

(For the proofs, see [10, Theorems 3.3 and 3.4] for the case when A is unital, and
see [12] for the case of arbitrary � -unital A.)

Since unital completely positive maps of order zero are necessarily homomor-
phisms, it is easy to see that the Rokhlin property for a compact group action agrees
with Rokhlin dimension zero in the sense of [11, Definition 3.2]. In particular, we
deduce the following.
Theorem 2.9. LetA be a � -unitalC �-algebra, letG be a second-countable compact
group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. Then

dimnuc.A
˛/ D dimnuc.A Ì˛ G/ � dimnuc.A/;

and dr.A˛/ D dr.A Ì˛ G/ � dr.A/:

Proof. The equalities dimnuc.A
˛/ D dimnuc.A Ì˛ G/ and dr.A˛/ D dr.A Ì˛ G/

follow from Proposition 2.7, Morita equivalent C �-algebras have the same nuclear
dimension and decomposition rank. The two inequalities follow from the comments
before this theorem, since dimRok.˛/ D 0.

Corollary 2.10. Let A be an AF-algebra, let G be a second-countable compact
group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. Then A˛ and
A Ì˛ G are AF-algebras.

Proof. Since a separable C �-algebra has decomposition rank zero if and only if it is
an AF-algebra ([25, Example 4.1]), the result follows from Theorem 2.9.

The following result will be crucial in obtaining further structural properties for
crossed products by actions with the Rokhlin property. The proof that we present
below was suggested to us by the referee, to whom we are indebted. Our original
argument was more technical and involved using certain partitions of unity in C.G/
with small enough supports as in [10, Lemma 4.2].
Theorem2.11. LetA be a� -unitalC �-algebra, letG be a second-countable compact
group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. Given a
compact subset F1 � A, a compact subset F2 � A˛ and " > 0, there exists a
completely positive contractive map  WA! A˛ such that
(1) For all a; b 2 F1, we have

k .ab/ �  .a/ .b/k < "I
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(2) For all a 2 F2, we have k .a/ � ak < ".

Moreover, if A is unital, then we can choose  so that  .1/ D 1.
In particular, when A is separable, there exists an approximate homomorphism

. n/n2N consisting of completely positive contractive linear maps  nWA ! A˛

for n 2 N, which can be arranged to be unital ifA is, such that lim
n!1

k n.a/�ak D 0

for all a 2 A˛ .

Proof. Denote by D the separable, ˛-invariant subalgebra generated by F1 [ F2.
Use the Rokhlin property for ˛ to choose a unital equivariant homomorphism
'WC.G/! F˛.D;A/. Using Choi–Effros lifting theorem, find a lift .'n/n2N of '
consisting of completely positive, contractive maps 'nWC.G/! A, which must then
satisfy

(a) lim
n!1

k'n.ab/d � 'n.a/'n.b/dk D 0 for all a; b 2 A and for all d 2 D;

(b) lim
n!1

k'n.1/d � dk D 0 for all d 2 D (one can arrange that 'n.1/ D 1 if A
is unital);

(c) lim
n!1

k'n.f /d � d'n.f /k D 0 for all d 2 D and for all f 2 C.G/;

(d) lim
n!1

sup
g2G

k'n.Ltg.f //d�˛g.'n.f //dkD0 for all f 2C.G/ and for all d 2D.

(In the last condition, the fact that k'n.Ltg.f //d � ˛g.'n.f //dk goes to zero
uniformly on g 2 G, and not just pointwise, follows from Dini’s theorem using
that the image of ' lands in the part of F.D;A/ where G acts continuously; see
Definition 2.1.)

Denote by� the normalized Haar measure onG. For n2N, define �nWC.G/!A

by

�n.f / D

Z
G

˛g
�
'n
�
Ltg�1.f /

��
d�.g/

for f 2 C.G/. It is clear that �n is completely positive and contractive, and it is easy
to check that it is equivariant using translation invariance of �. Fix f 2 C.G/ and
d 2 D. We use condition (d) at the last step to obtain

lim sup
n!1



�n.f /d � 'n.f /d

 D lim sup
n!1





 Z
G

˛g.'n.Ltg�1.f ///d � 'n.f /d d�.g/






� lim sup

n!1

Z
G



˛g.'n.Ltg�1.f ///d � 'n.f /d

 d�.g/
� lim sup

n!1
sup
g2G



˛g.'n.Ltg�1.f ///d � 'n.f /d

 D 0:
We deduce that lim

n!1
k�n.f /d � 'n.f /dk exists and equals zero. It follows that the

map � WC.G/! F˛.D;A/ that .�n/n2N determines is also a lift for '. In particular,
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the maps �n satisfy conditions (a), (b) and (c) above, while condition (d) is satisfied
exactly for each �n.

Now, for n 2 N, define �nWC.G/˝ A! A by

�n.f ˝ a/ D �n.f
1
2 /a�n.f

1
2 /

for f 2 C.G/ with f � 0 (and extended linearly), and for all a 2 A. Then �n is
completely positive and contractive. It is also equivariant, since for f 2 C.G/C
and a 2 A, we have

˛g
�
�n.f ˝ a/

�
D ˛g

�
�n.f

1
2 /a�n.f

1
2 /
�

D ˛g
�
�n.f

1
2 /
�
˛g.a/˛g

�
�n.f

1
2 /
�

D �n
�
Ltg.f

1
2 /
�
˛g.a/�n

�
Ltg.f

1
2 /
�

D �n
�
Ltg.f /˝ ˛g.a/

�
for all g 2 G. Observe also that

lim
n!1



�n.f ˝ d/ � �n.f /d

 D 0
for all f 2 C.G/ (not just for f � 0) and for all d 2 D, by condition (c) above. In
particular, for f1; f2 2 C.G/ and d1; d2 2 D, we use condition (a) above applied
to �n to deduce that

lim sup
n!1



�n.f1f2 ˝ d1d2/ � �n.f1 ˝ d1/�n.f2 ˝ d2/


D lim sup

n!1



�n.f1f2/d1d2 � �n.f1/d1�n.f2/d2


D lim sup

n!1



 Œ�n.f1f2/ � �n.f1/�n.f2/� d1d2

 D 0:
It follows that the restrictions of themaps�n toC.G/˝D determine an asymptotically
multiplicative map C.G/˝D ! A.

By taking fixed point algebras in the conclusion of Proposition 2.3, we deduce that
there is an isomorphism � WA ! C.G;A/
A given by �.a/.g/ D ˛g.a/ for a 2 A
and g 2 G. In particular, and under the identification ofC.G;A/withC.G/˝A, the
isomorphism � satisfies �.a/ D 1˝ a for all a 2 A˛ . For n 2 N, let  nWA! A˛

be given by  n D �n ı � .
Given a; b 2 F1 � D, we have

lim sup
n!1



 n.ab/ �  n.a/ n.b/

 D lim sup
n!1



�n��.ab/� � �n��.a/��n��.b/�


D lim sup

n!1



�n��.a/�.b/� � �n��.a/��n��.b/�


D 0;
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since �.a/; �.b/, and �.ab/ belong toC.G/˝D and the maps �n are asymptotically
multiplicative on C.G/˝D.

Finally, given a 2 F2 � D, we use condition (c) above for �n at the third step,
and condition (b) at the fourth step to get

lim sup
n!1



 n.a/ � a

 D lim sup
n!1



�n.�.a// � a


D lim sup

n!1



�n.1˝ a/ � a


D lim sup

n!1



�n.1/a�n.1/ � a


D lim sup

n!1



�n.1/a � a

 D 0:
The conclusion then follows by setting  D  n for n large enough. It is clear

that the  n are unital if the �n are, which can always be arranged if A is unital.

Remark 2.12. Adopt the notation from the theorem above. Then there is a
commutative diagram

A˛ � p

  

idA˛ // .A˛/1:

A

 

;;

When A is nuclear, the Choi–Effros lifting theorem shows that the existence of a
commutative diagram as above is in fact equivalent to the conclusion in Theorem 2.11.
In the general case, however, the existence of such a diagram is a weaker assumption.
Barlak and Szabo have independently identified this notion (see, for example, [45]),
and have begun a systematic study of this concept in its own right; see [1].

This work consists in showing that a number of properties for A pass to A˛ (and
AÌ˛ G). We state our results assuming the Rokhlin property, but we really only use
the existence of a commutative diagram as in Remark 2.12. As such, our results are
valid in a more general context, and the extra flexibility will be needed in [12], where
we study crossed products by more general actions.

Our first application of Theorem 2.11 is to the ideal structure of crossed products
and fixed point algebras. In the presence of the Rokhlin property, we can describe all
ideals: they are naturally induced by invariant ideals in the original algebra.
Theorem2.13. LetA be a� -unitalC �-algebra, letG be a second-countable compact
group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property.
(1) If I is an ideal in A˛ , then there exists an ˛-invariant ideal J in A such that

I D J \ A˛ .
(2) If I is an ideal in AÌ˛ G, then there exists an ˛-invariant ideal J in A such that

I D J Ì˛ G.
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Proof. (1) Let I be an ideal in A˛ . Then J D AIA is an ˛-invariant ideal in A. We
claim that J \ A˛ D I . It is clear that I � J \ A˛ . For the reverse inclusion, let
x 2 J \ A˛ , that is, an ˛-invariant element in AIA. For n 2 N, choose mn 2 N,
elements a.n/1 ; : : : ; a

.n/
mn ; b

.n/
1 ; : : : ; b

.n/
mn in A, and elements x.n/1 ; : : : ; x

.n/
mn in I , such

that 


x � mnX
jD1

a
.n/
j x

.n/
j b

.n/
j




 < 1

n
:

Set Mn D maxjD1;:::;mnfka
.n/
j k; kb

.n/
j k; 1g. Let . n/n2N be a sequence

of completely positive contractive maps  nWA ! A˛ as in the conclusion of
Theorem 2.11 for the choices "n D 1=nmnM2

n and

F
.n/
1 D fa

.n/
j ; x

.n/
j ; b

.n/
j W j D 1; : : : ; mng [ fxg

and F .n/2 D fx
.n/
j W j D 1; : : : ; mng [ fxg. Then


 n� mnX

jD1

a
.n/
j x

.n/
j b

.n/
j

�
� x




 < 1

n
C

1

nmnM 2
n

�
2

n

and


 n� mnX
jD1

a
.n/
j x

.n/
j b

.n/
j

�
�

mnX
jD1

 n.a
.n/
j /x

.n/
j  n.b

.n/
j /





�
1

n
C




 n� mnX
jD1

a
.n/
j x

.n/
j b

.n/
j

�
�

mnX
jD1

 n.a
.n/
j / n.x

.n/
j / n.b

.n/
j /





�
1

n
C

1

nMn

C




 n� mnX
jD1

a
.n/
j x

.n/
j b

.n/
j

�
�

mnX
jD1

 n.a
.n/
j x

.n/
j / n.b

.n/
j /





�
1

n
C

2

nMn

�
3

n
:

We conclude that 


x � mnX
jD1

 n.a
.n/
j /x

.n/
j  n.b

.n/
j /




 < 5

n
:

Since
Pmn
jD1  n.a

.n/
j /x

.n/
j  n.b

.n/
j / belongs to I , it follows that x is a limit of

elements in I , and hence it belongs to I itself.
(2) This follows from (1) together with the fact that ˛ is saturated (see Proposi-
tion 2.7). Alternatively, use Remark 2.8 together with the fact that the ideals in
A˝K.L2.G// have the form I ˝K.L2.G// for some ideal I in A.
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Corollary 2.14. Let A be a � -unital C �-algebra, let G be a second-countable
compact group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. If A
is simple, then so are A˛ and A Ì˛ G.

In the following corollary, hereditary saturation is as in [38, Definition 7.2.2],
while the strong Connes spectrum for an action of a non-abelian compact group
(which is a subset of the set bG of irreducible representations of the group) is as in
[13, Definition 1.2]. (For abelian groups, the notion of strong Connes spectrum was
introduced earlier by Kishimoto in [22].) We reproduce both definitions below for
the convenience of the reader.
Definition 2.15. Let G be a compact group, let A be a C �-algebra, and let ˛WG !
Aut.A/ be an action. We say that ˛ is hereditarily saturated if for every nonzero
˛-invariant hereditary subalgebra B � A, the restriction ˛jB of ˛ to B is saturated,
in the sense of Definition 2.5.

We need some notation, which we borrow from [13]. For an action ˛WG !
Aut.A/ of a compact group G on a C �-algebra A, and for a unitary representation
� WG ! U.H�/, we set

A2.�/ D fx 2 A˝K.H�/ W .˛g ˝ id/.x/ D x.1A ˝ �g/ for all g 2 Gg:

We denote by Her˛.A/ the family of all nonzero G-invariant hereditary
subalgebras of A.
Definition 2.16. Let G be a compact group, let A be a C �-algebra, and let ˛WG !
Aut.A/ be an action. We define the following spectra for ˛:
(1) Arveson spectrum:

Sp.˛/ D
˚
� 2 bG W A2.�/�A2.�/ is an essential ideal in .A˝K.H�//

˛˝Ad.�/	:
(2) Strong Arveson spectrum:eSp.˛/ D ˚� 2 bG W A2.�/�A2.�/ D .A˝K.H�//

˛˝Ad.�/	:
(3) Connes spectrum:

�.˛/ D
\

B2Her˛.A/

Sp.˛jB/:

(4) Strong Connes spectrum: e�.˛/ D \
B2Her˛.A/

eSp.˛jB/:
Corollary 2.17. Let A be a � -unital C �-algebra, let G be a second-countable
compact group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property.
Then ˛ has full strong Connes spectrum: e�.˛/ D bG, and it is hereditarily saturated.
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Proof. That e�.˛/ D bG follows from [13, Theorem 3.3]. Hereditary saturation
of actions with full strong Connes spectrum is established in the comments after
[13, Lemma 3.1].

3. Generalized local approximations

We now turn to the study of preservation of certain structural properties that have
proved to be relevant in the context of Elliott’s classification program. In order to
provide a conceptual approach, it will be necessary to introduce some convenient
terminology.
Definition 3.1. Let C be a class of C �-algebras and let A be a C �-algebra.
(1) We say thatA is an (unital) approximate C -algebra, ifA is isomorphic to a direct

limit of C �-algebras in C (with unital connecting maps).
(2) We say that A is a (unital) local C -algebra, if for every finite subset F � A and

for every " > 0, there exist a C �-algebra B in C and a not necessarily injective
(unital) homomorphism 'WB ! A such that dist.a; '.B// < " for all a 2 F .

(3) We say that A is a generalized (unital) local C -algebra, if for every finite subset
F � A and for every " > 0, there exist a C �-algebra B in C and sequence
.'n/n2N of asymptotically multiplicative (unital) completely positive contractive
maps 'nWB ! A that dist.a; 'n.B// < " for all a 2 F and for all n sufficiently
large.

Remark 3.2. The term “local C -algebra” is sometimes used to mean that the local
approximations are realized by injective homomorphisms. For example, in [46] Thiel
says that a C �-algebra A is “C -like,” if for every finite subset F � A and for every
" > 0, there exist a C �-algebra B in C and an injective homomorphism 'WB ! A

such that dist.a; '.B// < " for all a 2 F . Finally, we point out that what we call
here “approximate C” is called “AC” in [46].

The Rokhlin property is related to the above definition in the following way. Note
that the approximating maps for A˛ that we obtain in the proof are not necessarily
injective, even if we assume that the approximating maps for A are.
Proposition 3.3. Let C be a class of C �-algebras, let A be a C �-algebra, let G be
a second-countable group, and let ˛WG ! Aut.A/ be an action with the Rokhlin
property. If A is a (unital) local C -algebra, then A˛ is a generalized (unital) local
C -algebra.

Proof. Let F � A˛ be a finite subset, and let " > 0. Find a C �-algebra B in C and
a (unital) homomorphism 'WB ! A such that dist.a; '.B// < "

2
for all a 2 F . Let

. n/n2N be a sequence of (unital) completely positive contractive maps nWA! A˛

as in the conclusion of Theorem 2.11. Then . n ı '/n2N is a sequence of (unital)
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completely positive contractive maps B ! A˛ as in the definition of generalized
local C -algebra.

LetC be a class ofC �-algebras. It is clear that any (unital) approximateC -algebra
is a (unital) local C -algebra, and that any (unital) local C -algebra is a generalized
(unital) local C -algebra.

While the converses to these implications are known to fail in general, the notions
in Definition 3.1 agree under fairly mild conditions on C ; see Proposition 3.9.
Definition 3.4. Let C be a class of C �-algebras. We say that C has (unital)
approximate quotients if whenever A 2 C (is unital) and I is an ideal in A, the
quotient A=I is a (unital) approximate C -algebra, in the sense of Definiton 3.1.

The term “approximate quotients” has been used in [35] with a considerably
stronger meaning. Our weaker assumptions still yield an analog of [35,
Proposition 1.7]; see Proposition 3.9.

We need to recall a definition due to Loring. The original definition appears
in [32], while in [4, Theorem 3.1] it is proved that weak semiprojectivity is equivalent
to a condition that is more resemblant of semiprojectivity. For the purposes of this
paper, the original definition is better suited.
Definition 3.5. A C �-algebra A is said to be weakly semiprojective (in the unital
category) if given a C �-algebra B and given a (unital) homomorphism  WA! B1,
there exists a (unital) homomorphism 'WA! `1.N; B/ such that �B ı ' D  . In
other words, the following lifting problem can always be solved:

`1.N; B/

�B

��
A

 
//

'

::

B1:

The proof of the following observation is left to the reader. It states explicitly the
formulation of weak semiprojectivity that will be used in our work, specifically in
Proposition 3.9.
Remark 3.6. Using the definition of the sequence algebra B1, it is easy to
show that if A is a weakly semiprojective C �-algebra, and if . n/n2N is an
asymptotically �-multiplicative sequence of linear maps  nWA ! B from A to
another C �-algebra B , then there exists a sequence .'n/n2N of homomorphisms
'nWA! B such that

lim
n!1

k'n.a/ �  n.a/k D 0

for all a 2 A. If each  n is unital and A is weakly semiprojective in the unital
category, then 'n can also be chosen to be unital.

We proceed to give some examples of classes of C �-algebras that will be used in
Theorem 3.10. We need a definition first, which appears as [5, Definition 11.2].
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Definition 3.7. A C �-algebra A is said to be a one-dimensional noncommutative
cellular complex, or one-dimensional NCCW-complex for short, if there exist finite
dimensional C �-algebras E and F , and unital homomorphisms '; WE ! F , such
that A is isomorphic to the pull back C �-algebra

f.a; b/ 2 E ˚ C.Œ0; 1�; F / W b.0/ D '.a/ and b.1/ D  .a/g:

It was shown in [5, Theorem 6.2.2] that one-dimensional NCCW-complexes are
semiprojective (in the unital category).
Examples 3.8. The following are examples of classes of weakly semiprojective
C �-algebras (in the unital category) which have approximate quotients.
(1) The classC ofmatrix algebras. The (unital) approximateC -algebras are precisely

the matroid algebras (UHF-algebras).
(2) The class C of finite dimensional C �-algebras. The (unital) approximate

C -algebras are precisely the (unital) AF-algebras.
(3) The class C of interval algebras, this is, algebras of the form C.Œ0; 1�/ ˝ F ,

whereF is a finite dimensionalC �-algebra. The (unital) approximateC -algebras
are precisely the (unital) AI-algebras.

(4) The class C of circle algebras, this is, algebras of the form C.T /˝ F , where F
is a finite dimensional C �-algebra. The (unital) approximate C -algebras are
precisely the (unital) AT -algebras.

(5) The class C of one-dimensional NCCW-complexes. We point out that certain
approximate C -algebras have been classified, in terms of a variant of their Cuntz
semigroup, by Robert in [41].
The following result is well known for several particular classes.

Proposition 3.9. Let C be a class of C �-algebras which has (unital) approximate
quotients (see Definition 3.4). Assume that the C �-algebras in C are weakly
semiprojective (in the unital category). For a separable (unital) C �-algebra A,
the following are equivalent:
(1) A is an (unital) approximate C -algebra;

(2) A is a (unital) local C -algebra;

(3) A is a generalized (unital) local C -algebra.

Proof. The implications (1) ) (2) ) (3) are true in full generality. Weak
semiprojectivity of the algebras inC implies that any generalized local approximation
by C �-algebras in C can be perturbed to a genuine local approximation by
C �-algebras in C (see Remark 3.6), showing (3)) (2).

For the implication (2) ) (1), note that since C has approximate quotients,
every a local C -algebra is AC -like, in the sense of Definition 3.2 in [46] (see
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also Paragraph 3.6 there). It then follows from Theorem 3.9 in [46] that A is an
approximate C -algebra.

For the unital case, one uses Remark 3.6 to show that (3)) (2) when units are
considered. Moreover, for (2)) (1), one checks that in the proof of Theorem 3.9
in [46], if one assumes that the building blocks are weakly semiprojective in the
unital category, then the conclusion is that a unital AC -like algebra is a unital AC -
algebra. With the notation and terminology of the proof of Theorem 3.9 in [46],
suppose that A is a unital AC -like algebra, and suppose that 'WC ! A is a unital
homomorphism, with C 2 C . Since C is assumed to be weakly semiprojective in
the unital category, the morphism ˛WC ! B can be chosen to be unital. For the
same reason, one can arrange that the morphism ęWC ! Ck1 be unital (possible by
changing the choice of k1). Now, since the connecting maps 
k are also assumed
to be unital, it is easily seen that the one-sided approximate intertwining constructed
has unital connecting maps. Finally, when applying Proposition 3.5 in [46], if the
algebras Ai , with i 2 I , are weakly semiprojective in the unital category, then the
morphisms  k WAi.k/ ! Ai.kC1/ can be chosen to be unital as well. We leave the
details to the reader.

The following is the main application of our approximations results.

Theorem 3.10. Let C be a class of separable weakly semiprojective C �-algebras (in
the unital category), and assume thatC has (unital) approximate quotients. LetA be a
(unital) local C -algebra, letG be a second-countable group, and let ˛WG ! Aut.A/
be an action with the Rokhlin property. ThenA˛ is a (unital) approximateC -algebra.

Proof. This is an immediate consequence of Proposition 3.3 and Proposition 3.9.

An alternative proof of part (2) of the corollary below is given in Corollary 2.10.

Corollary 3.11. Let A be a � -unital C �-algebra, let G be a second-countable
compact group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property.

(1) IfA is a matroid algebra (UHF), thenA˛ is a matroid algebra (UHF) andAÌ˛G
is a matroid algebra. (If G is finite, then A Ì˛ G is also a UHF-algebra.)

(2) If A is an AF-algebra, then so are A˛ and A Ì˛ G.

(3) If A is an AI-algebra, then so are A˛ and A Ì˛ G.

(4) If A is an AT -algebra, then so are A˛ and A Ì˛ G.

(5) If A is a direct limit of one-dimensional NCCW-complexes, then so are A˛ and
A Ì˛ G.

Proof. Since the classes in Examples 3.8 have approximate quotients and contain
only weakly semiprojective C �-algebras, the claims follow from Theorem 3.10.
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Theorem 3.10 allows for far more flexibility than [35, Theorem 3.5], since we
do not assume our classes of C �-algebras to be closed under direct sums or by
taking corners, nor do we assume that our algebras are semiprojective. In particular,
the class C of weakly semiprojective purely infinite, simple algebras satisfies the
assumptions of Theorem 3.10, but appears not to fit into the framework of flexible
classes discussed in [35].

Recall that a C �-algebra is said to be a Kirchberg algebra if it is purely infinite,
simple, separable and nuclear.

The following lemma is probably standard, but we include its proof here for the
sake of completeness.

Lemma 3.12. Let A be a Kirchberg algebra satisfying the Universal Coefficient
Theorem. Then A is isomorphic to a direct limit of weakly semiprojective Kirchberg
algebras satisfying the Universal Coefficient Theorem.

Proof. Since every non-unital Kirchberg algebra is the stabilization of a unital
Kirchberg algebra, by Proposition 3.11 in [3] it is enough to prove the statement
when A is non-unital. For j D 0; 1, set Gj D Kj .A/. Write Gj as a direct limit
Gj Š lim

�!
.G

.n/
j ; 


.n/
j / of finitely generated abelian groups G.n/j , with connecting

maps


.n/
j WG

.n/
j ! G

.nC1/
j :

For j D 0; 1, use [37, Theorem 4.2.5] to find, for n 2 N, Kirchberg algebras An
satisfying the Universal Coefficient Theorem with Kj .An/ Š G

.n/
j , and homomor-

phisms
'nWAn ! AnC1

such that Kj .'n/ is identified with 
 .n/j under the isomorphism Kj .An/ Š G
.n/
j .

The direct limit lim
�!
.An; 'n/ is isomorphic to A by [37, Theorem 4.2.4]. On the

other hand, each of the algebras An is weakly semiprojective by [44, Theorem 2.2]
(see also [31, Corollary 7.7]), so the proof is complete.

Theorem 3.13. Let A be a separable, simple, nuclear C �-algebra, let G be a
second-countable compact group, and let ˛WG ! Aut.A/ be an action with the
Rokhlin property. If A satisfies the Universal Coefficient Theorem, then so do A˛
and A Ì˛ G.

Proof. We claim that it is enough to prove the statement when A is a Kirchberg
algebra. Indeed, a C �-algebra B satisfies the Universal Coefficient Theorem if and
only ifB˝O1 does, sinceO1 isKK-equivalent toC. On the other hand, ˛˝ idO1

has the Rokhlin property, and

.A˝O1/
˛˝idO1 D A˛ ˝O1:
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Suppose then that A is a Kirchberg algebra. Denote by C the class of all
unital weakly semiprojective Kirchberg algebras satisfying the Universal Coefficient
Theorem. Note that C has approximate quotients. By Lemma 3.12, A is a unital
approximateC -algebra. By Theorem 3.10,A˛ is also a unital approximateC -algebra.
Since the Universal Coefficient Theorem passes to direct limits, we conclude that A˛
satisfies it. Since A Ì˛ G is Morita equivalent to A˛ , the same holds for the crossed
product.

4. Further structure results

We now turn to preservation of classes ofC �-algebras that are not necessarily defined
in terms of an approximation by weakly semiprojective C �-algebras. The classes we
study can all be dealt with using Theorem 2.11.

Definition 4.1 ([47, Definition 1.3]). A unital, separable C �-algebra D is said to be
strongly self-absorbing, if it is infinite dimensional and the map D ! D ˝min D ,
given by d 7! d ˝ 1 for d 2 D , is approximately unitarily equivalent to an
isomorphism.

It is a consequence of a result of Effros and Rosenberg that strongly self-absorbing
C �-algebras are nuclear, so that the choice of the tensor product in the definition above
is irrelevant. The only known examples of strongly self-absorbing C �-algebras are
the Jiang–Su algebra Z, the Cuntz algebras O2 and O1, UHF-algebras of infinite
type, and tensor products of O1 by such UHF-algebras. It has been conjectured that
these are the only examples of strongly self-absorbing C �-algebras. See [47] for the
proofs of these and other results concerning strongly self-absorbing C �-algebras.

The following is a useful criterion to determine when a separable C �-algebra ab-
sorbs a strongly self-absorbingC �-algebra tensorially. The proof is a straightforward
combination of [47, Theorem 2.2] and the Choi–Effros lifting theorem, and we shall
omit it. (See also [16, Proposition 4.1].)

Theorem 4.2. Let A be a separable C �-algebra, and let D be a strongly self-
absorbing C �-algebra. Then A is D-stable if and only if for every " > 0, for every
finite subsetF � A, and every finite subsetE � D , there exists a completely positive
map 'WD ! A such that

(1) ka'.d/ � '.d/ak < " for all a 2 F and for all d 2 E;

(2) k'.de/a � '.d/'.e/ak < " for every d; e 2 E and every a 2 F ;

(3) k'.1/a � ak < " for all a 2 F .

The following result was obtained for unital C �-algebras as [17, Corollary 3.4,
part (1)], using different methods. Our proof of the general case illustrates the
generality of our approach.
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Theorem 4.3. Let A be a separable C �-algebra, let G be a second-countable
compact group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property.
Let D be a strongly self-absorbing C �-algebra and assume that A is D-stable.
Then A˛ and A Ì˛ G are D-stable as well.

Proof. Since D-stability is preserved under Morita equivalence by [47, Corol-
lary 3.2], it is enough to prove the result for A˛ .

Let " > 0, and let F � A˛ andE � D be finite subsets ofA and D , respectively.
Use Theorem 4.2 to choose a completely positive map 'WD ! A satisfying
(1) ka'.d/ � '.d/ak < " for all a 2 F and for all d 2 E;
(2) k'.de/a � '.d/'.e/ak < " for all d; e 2 E and all a 2 F ;
(3) k'.1/a � ak < " and ka'.1/ � ak < " for all a 2 F .

Let . n/n2N be a sequence of completely positive contractive maps nWA! A˛

as in the conclusion of Theorem 2.11 for F1 D F [ f'.1/g and F2 D F . Since
limn!1  n.a/ D a for all a 2 F , we deduce that

lim sup
n!1

ka n.'.d// �  n.'.d//ak � ka'.d/ � '.d/ak < "

for all a 2 F and all d 2 E. Likewise,

lim sup
n!1

k n.'.de// �  n.'.d// n.'.e//k � k'.de/ � '.d/'.e/k < "

for all d; e 2 E. Finally, for a 2 F , we have

lim sup
n!1

k n.'.1//a � ak � k'.1/a � ak < "

and lim sup
n!1

ka n.'.1// � ak � ka'.1/ � ak < ":

We conclude that for n large enough, the completely positive contractive map

 n ı 'WD ! A˛

satisfies conditions (1) through (3) of Theorem 4.2, showing thatA˛ is D-stable.

Similar methods allow one to prove that the property of being approximately
divisible is inherited by the crossed product and the fixed point algebra of a
compact group action with the Rokhlin property. (This was first obtained, for
unital C �-algebras, by Hirshberg and Winter as [17, Corollary 3.4, part (2)].) Our
proof is completely analogous to that of Theorem 4.3 (using a suitable version of
Theorem 4.2), so for the sake of brevity, we shall not present it here.

Our next goal is to show that Rokhlin actions preserve the property of having
tracial rank at most one in the simple, unital case.
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We will need a definition of tracial rank zero and one. What we reproduce
below are not Lin’s original definitions ([29, Definition 2.1] and [30, Definition 2.1]).
Nevertheless, the notions we define are equivalent in the simple case: for tracial rank
zero, this follows from [30, Proposition 3.8], while the argument in the proof of said
proposition can be adapted to show the corresponding result for tracial rank one.
Recall that an interval algebra is a C �-algebra of the form C.Œ0; 1�/˝E, whereE is
a finite dimensional C �-algebra. Such algebras have a finite presentation with stable
relations; see [32].

Definition 4.4. Let A be a simple, unital C �-algebra. We say that A has tracial rank
at most one, and write TR.A/ � 1, if for every finite subset F � A, for every " > 0,
and for every non-zero positive element x 2 A, there exist a projection p 2 A, an
interval algebra B , and a unital homomorphism 'WB ! pAp, such that

(1) kap � pak < " for all a 2 F ;

(2) dist.pap; '.B// < " for all a 2 F ;

(3) 1 � p is Murray–von Neumann equivalent to a projection in xAx.

Additionally, we say that A has tracial rank zero, and write TR.A/ D 0, if the
C �-algebra B as above can be chosen to be finite dimensional.

We will need the following notation. For t 2
�
0; 1
2

�
, we denote by ft W Œ0; 1� !

Œ0; 1� the continuous function that takes the value 0 on Œ0; t �, the value 1 on Œ2t; 1�,
and is linear on Œt; 2t �.

Theorem 4.5. Let A be a unital, separable, simple C �-algebra with TR.A/ � 1,
let G be a second-countable compact group, and let ˛WG ! Aut.A/ be an action
with the Rokhlin property. Then A˛ is a unital, separable, simple C �-algebra with
TR.A˛/ � TR.A/. IfG is finite, then the same holds for the crossed productAÌ˛G.

WhenG is not finite (but compact), thenAÌ˛G is never unital, and the definition
of tracial rank at most one only applies to unital C �-algebras.

Proof. Let F � A˛ be a finite subset, let " > 0 and let x 2 A˛ be a non-zero positive
element. Without loss of generality, we may assume that kak � 1 for all a 2 F , and
that " < 1. Find t 2

�
0; 1
2

�
such that .x � 2t/C is not zero. Set y D .x � 2t/C.

Then y belongs to A˛ and moreover ft .x/y D yft .x/ D y.
Using that A has tracial rank zero, find an interval algebra B , a projection p 2 A,

a unital homomorphism 'WB ! pAp, a projection q 2 yAy and a partial isometry
s 2 A such that
� kap � pak < "

9
for all a 2 F ;

� dist.pap; '.B// < "
9
for all a 2 F ;

� 1 � p D s�s and q D ss�.
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Let eF � B be a finite subset such that for all a 2 F , there exists b 2 eF with
kpap � '.b/k < "

9
.

Since ft .x/ is a unit for yAy, it follows that q D ft .x/qft .x/. As A is unital and
separable, we can use Theorem 2.11 to find an approximate homomorphism . n/n2N

from A to A˛ , consisting of unital completely positive maps  nWA! A˛ satisfying
limn!1 k n.a/ � ak D 0 for all a 2 A˛ . (For example, one chooses increasing
families .F .n/1 /n2N and .F .n/2 /n2N of finite subsets ofA andA˛ , respectively, whose
union is dense inA andA˛ , and obtains n by applying themain part of Theorem 2.11
with tolerance "n D 1=n and sets F .n/1 � A and F .n/2 � A˛ .) We then have

(a) lim sup
n!1

k n.p/a � a n.p/k <
"
9
for all a 2 F ;

(b) lim sup
n!1

dist . n.p/a n.a/; . n ı '/.B// < "
9
for all a 2 F ;

(c) lim
n!1

k n.p/a n.p/ �  n.pap/k D 0;

(d) lim
n!1

k n.p/
� n.p/ �  n.p/k D 0;

(e) lim
n!1

k1 �  n.p/ �  n.s/
� n.s/k D 0;

(f) lim
n!1

k n.q/ n.s/ n.1 � p/ �  n.s/k D 0;

(g) lim
n!1

k n.q/
� n.q/ �  n.q/k D 0;

(h) lim
n!1

k n.q/ �  n.s/ n.s/
�k D 0;

(i) lim
n!1

k n.q/ � ft .x/ n.q/ft .x/k D 0.

With rn D ft .x/ n.q/ft .x/ for n 2 N, it follows from conditions (g) and (i) that

(j) lim
n!1

kr�n rn � rnk D 0.

Find ı1 > 0 such that whenever e is an element in a C �-algebra C such that
ke�e � ek < ı1, then there exists a projection f in C such that ke � f k < "

9
. Fix

a finite set G � B of generators for B . Using semiprojectivity of B in the unital
category (specifically, the fact that the relations defining it are stable), find ı2 > 0

such that wheneverD is a unital C �-algebra and �WB ! D is a unital positive linear
map which is ı2-multiplicative on G , there exists a unital homomorphism � WB ! D

such that k�.b/��.b/k < "
9
for all b 2 eF . (Observe that we are not fixing the target

algebra D, which will later be taken to be of the form fA˛f for some projection
f 2 A˛ .) Set ı D minfı1; ı2g.

Choose n 2 N large enough so that the quantities in conditions (a), (b), (c), (e)
and (i) are less than "

9
, the quantities in (d) and (j) are less than ı, the quantities in (e)

and (g) are less than 1 � ", and so that  n ı ' is ı-multiplicative on G . Since rn
belongs to xA˛x for all n 2 N, by the choice of ı there exist a projection e in xA˛x
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such that ke � rnk < "
9
, and a projection f 2 A˛ such that kf �  n.p/k < "

9
. Let

� WB ! fA˛f be a unital homomorphism satisfying

k�.b/ � . n ı '/.b/k <
"

9

for all b 2 G [ eF .
We claim that the projection f and the homomorphism � WB ! fA˛f satisfy

the conditions in Definition 4.4. Since � is unital, we must have �.1/ D f .
Given a 2 F , the estimate

kaf � fak � ka n.p/ �  n.p/ak C 2k n.p/ � f k <
3"

9
< "

shows that condition (1) is satisfied. In order to check condition (2), given a 2 F ,
choose b 2 eF such that

kpap � '.b/k <
"

9
:

Then

kfaf � �.b/k � kfaf �  n.p/a n.p/k C k n.p/a n.p/ �  n.'.b//k

C k n.'.b// � �.b/k

< 2kf �  n.p/k C
"

9
C
"

9
< ";

so condition (2) is also satisfied. To check condition (3), it is enough to show that
1 � f is Murray–von Neumann equivalent (in A˛) to e. We have

k.1 � f / �  n.s/
� n.s/k � kf �  n.p/k C k1 �  n.p/ �  n.s/

� n.s/k

<
"

9
C 1 � " D 1 �

8"

9
;

and likewise, ke �  n.s/ n.s/�k < "
9
C 1 � ". On the other hand, we use the

approximate versions of equation (i) at the second step, and that of equation (f) at the
third step, to get

k n.s/ � e n.s/.1 � f /k <
2"

9
C k n.s/ � ft .x/ n.q/ft .x/ n.s/ n.1 � p/k

<
3"

9
C k n.s/ �  n.q/ n.s/ n.1 � p/k

<
4"

9
:

Now, it is immediate that

k.1 � f / � .e n.s/.1 � f //
�.e n.s/.1 � f //k

< 2k n.s/ � e n.s/.1 � f /k C k.1 � f / �  n.s/
� n.s/k

<
8"

9
C 1 �

8"

9
D 1:
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Likewise,
ke � .e n.s/.1 � f //.e n.s/.1 � f //

�
k < 1:

By Lemma 2.5.3 in [26] applied to e n.s/.1� f /, we conclude that 1� f and e
are Murray–von Neumann equivalent in A˛ , and the proof of the first part of the
statement is complete.

It is clear that if A has tracial rank zero and we choose B to be finite dimensional,
then the above proof shows that A˛ has tracial rank zero as well.

Finally, if G is finite, then the last claim of the statement follows from the fact
that A˛ and A Ì˛ G are Morita equivalent.

We believe that a condition weaker than the Rokhlin property ought to suffice for
the conclusion of Theorem 4.5 to hold. In view of [39, Theorem 2.8], we presume
that fixed point algebras by a suitable version of the tracial Rokhlin property for
compact group actions would preserve the class of simple C �-algebras with tracial
rank zero.

We present two consequences of Theorem 4.5. The first one is to simple AH-
algebras of slow dimension growth and real rank zero, which do not a priori fit into
the general framework of Theorem 3.10, since the building blocks are not necessarily
weakly semiprojective.
Corollary 4.6. LetA be a simple, unital AH-algebra with slow dimension growth and
real rank zero. LetG be a second-countable compact group, and let ˛WG ! Aut.A/
be an action with the Rokhlin property. Then A˛ is a simple, unital AH-algebra with
slow dimension growth and real rank zero.

Proof. By [30, Proposition 2.6], A has tracial rank zero. Thus A˛ is a simple C �-
algebra with tracial rank zero by Theorem 4.5. It is clearly separable, unital, and
nuclear. Moreover, it satisfies the Universal Coefficient Theorem by Theorem 3.13.
Since AH-algebras of slow dimension growth and real rank zero exhaust the Elliott
invariant of C �-algebras with tracial rank zero, [28, Theorem 5.2] implies that A˛ is
an AH-algebra with slow dimension growth and real rank zero.

Denote by Q the universal UHF-algebra. Recall that a simple, separable, unital
C �-algebra A is said to have rational tracial rank at most one, if TR.A˝ Q/ � 1

(see [27, Definition 11.8], and see the comments after it for examples of algebras of
rational tracial rank at most one).
Corollary 4.7. Let A be a simple, separable, unital C �-algebra, let G be a second-
countable compact group, and let ˛WG ! Aut.A/ be an action with the Rokhlin
property. If A has rational tracial rank at most one, then so does A˛ (and also
A Ì˛ G if G is finite).

Proof. The result is an immediate consequence of Theorem 4.5 applied to the action
˛ ˝ idQWG ! Aut.A˝Q/.
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We now turn to pure infiniteness in the non-simple case.

Definition 4.8 ([24, Definition 4.1]). A C �-algebra A is said to be purely infinite if
the following conditions are satisfied:

(1) There are no non-zero characters (this is, homomorphisms onto the complex
numbers) on A, and

(2) For every pair a; b of positive elements in A, with b in the ideal generated by a,
there exists a sequence .xn/n2N in A such that limn!1 kx�nbxn � ak D 0.

Theorem 4.9 ([24, Theorem 4.16]; see also [24, Definition 3.2]). Let A be a
C �-algebra. Then A is purely infinite if and only if for every nonzero positive
element a 2 A, we have a˚ a � a.

We use the above result to show that, in the presence of the Rokhlin property,
pure infiniteness is inherited by the fixed point algebra and the crossed product.

Proposition 4.10. Let A be a � -unital C �-algebra, let G be a second-countable
compact group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. If A
is purely infinite, then so are A˛ and A Ì˛ G.

Proof. By Proposition 2.7 (see also Remark 2.8) and [24, Theorem 4.23], it is enough
to prove the result for A˛ . Let a be a nonzero positive element in A˛ . Since A is
purely infinite, by [24, Theorem 4.16] (here reproduced as Theorem 4.9), there exist
sequences .xn/n2N and .yn/n2N in A such that

(a) lim
n!1

kx�naxn � ak D 0;

(b) lim
n!1

kx�naynk D 0;

(c) lim
n!1

ky�naxnk D 0;

(d) lim
n!1

ky�nayn � ak D 0.

Let . n/n2N be a sequence of completely positive contractive maps nWA! A˛

as in the conclusion of Theorem 2.11. Easy applications of the triangle inequality
yield

(a0) lim
n!1

k n.xn/
�a n.xn/ � ak D 0;

(b0) lim
n!1

k n.xn/
�a n.yn/k D 0;

(c0) lim
n!1

k n.yn/
�a n.xn/k D 0;

(d0) lim
n!1

k n.yn/
�a n.yn/ � ak D 0.

Since n.xn/ and n.yn/ belong toA˛ for all n 2 N, we conclude that a˚a � a
in A˛ . It now follows from [24, Theorem 4.16] (here reproduced as Theorem 4.9)
that A˛ is purely infinite, as desired.
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Corollary 4.11. LetA be a Kirchberg algebra, letG be a second-countable compact
group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. Then A˛ and
A Ì˛ G are Kirchberg algebras.

Proof. It is well known that A˛ and A Ì˛ G are nuclear and separable. Simplicity
follows fromCorollary 2.14, and pure infiniteness follows from Proposition 4.10.

For the sake of comparison, we mention here that stable finiteness passes to fixed
point algebras and crossed products by arbitrary compact group actions, sincewe have
A˛ � A and AÌ˛ G � A˝K.L2.G//, and stable finiteness passes to subalgebras.

The following definition is standard.
Definition 4.12. Let A be a C �-algebra.
(1) If A is unital, we say that it has real rank zero if the set of invertible self adjoint

elements in A is dense in the set of self adjoint elements. If A is not unital, we
say that it has real rank zero if so does its unitization eA.

(2) If A is unital, we say that it has stable rank one if the set of invertible elements
is dense in A. If A is not unital, we say that it has stable rank one if so does its
unitization eA.
In the following proposition, theRokhlin property is surely stronger than necessary

for the conclusion to hold, although some condition on the action must be imposed.
We do not know, for instance, whether finite Rokhlin dimension with commuting
towers preserves real rank zero and stable rank one.
Proposition 4.13. Let A be a � -unital C �-algebra, let G be a second-countable
compact group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property.
(1) If A has real rank zero, then so do A˛ and A Ì˛ G.
(2) If A has stable rank one, then so do A˛ and A Ì˛ G.

Proof. By Proposition 2.7 (see also Remark 2.8), [40, Theorem 3.3], and [2,
Theorem 2.5], it is enough to prove the proposition for A˛ . Since the proofs of
both parts are similar, we only prove the first one.

Since the commutative diagram in Remark 2.12 can be unitized, it is enough to
assume that A is unital. (Equivalently, extend the linear maps  nWA ! A˛ in the
conclusion of Theorem 2.11 to unital maps f nWeA! eA˛ .)

Let a be a self-adjoint element in A˛ and let " > 0. Since A has real rank
zero, there exists an invertible self-adjoint element b in A such that kb � ak < "

2
.

Let . n/n2N be a sequence of unital completely positive maps A ! A˛ as in the
conclusion of Theorem 2.11. Then  n.b/ is self-adjoint for all n 2 N. Moreover,

lim
n!1



 n.b/ n.b�1/ � 1

 D lim
n!1



 n.b�1/ n.b/ � 1

 D 0
and lim

n!1



 n.a/ � a

 D 0:
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Choose n large enough so that

 n.b/ n.b�1/ � 1

 < 1 and


 n.b�1/ n.b/ � 1

 < 1;

and also so that k n.a/ � ak < "
2
. Then  n.b/ n.b�1/ and  n.b�1/ n.b/ are

invertible, and hence so is  n.b/. Finally,

a �  n.b/

 � 

a �  n.a/

C 

 n.a/ �  n.b/

 < "

2
C
"

2
D ";

which shows that A˛ has real rank zero.

We now turn to traces. For a trace � on a C �-algebra A, we also denote by � its
amplification to any matrix algebraMn.A/. We denote by T .A/ the set of all tracial
states on A.

The following is one of Blackadar’s fundamental comparability questions:

Definition 4.14. Let A be a simple unital C �-algebra. We say the the order on
projections (in A) is determined by traces, if whenever p and q are projections
inM1.A/ satisfying �.p/ � �.q/ for all � 2 T .A/, then p -M�vN q.

The following extends, with a simpler proof, [35, Proposition 4.8].

Proposition 4.15. Let A be a simple unital C �-algebra, and suppose that the order
on its projections is determined by traces. Let G be a second-countable compact
group, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. Then the
order on projections in A˛ is determined by traces.

Proof. Since ˛ ˝ idMn WG ! Aut.A ˝ Mn/ has the Rokhlin property and
.A˝Mn/

˛˝idMn D A˛ ˝Mn, in Definition 4.14 it is enough to consider projections
in the algebra.

Let p and q be projections in A˛ , and suppose that it is not the case that
p -M�vN q in A˛ . We want to show that there exists a tracial state � on A˛
such that �.p/ � �.q/. By [9, Proposition 3.2, part (1)], it is not the case that
p -M�vN q in A, so there exists a tracial state ! on A such that !.p/ � !.q/. Now
take � D !jA˛ .

Finally, we close this section by exploring the extent to which semiprojectivity
passes from A to the fixed point algebra and the crossed product by a compact group
with the Rokhlin property. Even though we have not been able to answer this question
for semiprojectivity, we can provide a satisfying answer for weak semiprojectivity
(see Definition 3.5).

In order to show this, we introduce the following technical definition, which is
inspired in the notion of “corona extendibility” ([33, Definition 1.1]; we are thankful
to Hannes Thiel for providing this reference).
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Definition 4.16. Let � WA! B be a homomorphism between C �-algebras A and B .
We say that � is sequence algebra extendible, if whenever E is a C �-algebra and
'WA ! E1 is a homomorphism, there exists a homomorphism �WB ! E1 such
that ' D � ı � .

In analogy with [33, Lemma 1.4], we have the following:
Lemma 4.17. Let � WA ! B be a sequence algebra extendible homomorphism
between C �-algebras A and B . If B is weakly semiprojective, then so is A.

Proof. This is straightforward.

The following lemma will allow us to replace maps from separable C �-algebras
into .E1/1 with maps into E1. Its proof boils down to a more or less standard
reindexation argument.
Lemma4.18. LetA andB be separableC �-algebras, letE be aC �-algebra. Denote
by j WE1 ! .E1/1 the canonical embedding as constant sequences. Suppose that
we are given homomorphisms � WA! B , 'WA! E1 and  WB ! .E1/1 making
the following diagram commute:

A
� //

'

��

B

 

��
�

zz
E1

j
// .E1/1:

Then there exists a homomorphism �WB ! E1 such that � ı � D '.

Proof. Let . .n//n2N be a sequence of linear maps  .n/WB ! E1 lifting  .
For n 2 N, let . .n/m /m2N be a sequence of linear maps  .n/m WB ! E lifting  .n/.
Let also .'k/k2N be a sequence of linear maps 'k WA! E lifting '. With the natural
representation of elements in .E1/1 by doubly indexed sequences inE, the identity
 ı � D j ı ' can be rephrased as

lim
n!1

lim sup
m!1



 .n/m .�.a// � 'm.a/


 D 0

for all a 2 A. Let .Fr/r2N and .Gr/r2N be sequences of finite subsets of A and B ,
respectively, such that

S
r2N Fr is dense in A and

S
r2N Gr is dense in B . Without

loss of generality, we may assume that F �r D Fr and F 2k � FrC1 for all r 2 N, and
similarly with the sets Gr for r 2 N. Likewise, we may assume that �.Fr/ � Gr for
all r 2 N.

For each r 2 N, find an integer nr such that

(1) lim sup
m!1



 .nr /m .�.a// � 'm.a/


 < 1

r
for all a 2 Fr ;

(2) lim sup
m!1



 .nr /m .b�c/ �  
.nr /
m .b/� 

.nr /
m .c/



 < 1
r
for all b; c 2 Gr ;
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(3) lim sup
m!1



 .nr /m .b/


 < kbk C 1

r
for all b 2 Gr .

Without loss of generality, we may assume that nrC1 > nr for all r 2 N. Similarly,
find an increasing sequence .mr/r2N in N satisfying

(10)


 .nr /mr .�.a// � 'mr .a/



 < 1
r
for all a 2 Fr ;

(20)


 .nr /mr .b

�c/ �  
.nr /
mr .b/

� 
.nr /
mr .c/



 < 1
r
for all b; c 2 Gr ;

(30)


 .nr /mr .b/



 < kbk C 1
r
for all b 2 Gr .

Recall that �E W `1.N; E/ ! E1 denotes the canonical quotient map. Define
�WB ! `1.N; E/ by �.b/ D �E

�
 
.nr /
mr .b/

�
r2N

for b 2 N. (One first defines � on
the union of the Gr , and since it is multiplicative and contractive by construction, it
extends to a homomorphism from all of B .) Since the identity � ı � D ' holds on a
dense subspace of A, it holds on all of A. This finishes the proof.

In the next proposition, we show that weak semiprojectivity passes to fixed point
algebras of actions with the Rokhlin property (and to crossed products, whenever
the group is finite). Our conclusions seem not to be obtainable with the methods
developed in [35], since it is not in general true that a corner of aweakly semiprojective
C �-algebra is weakly semiprojective.
Proposition 4.19. LetG be a second-countable compact group, letA be a separable
C �-algebra, and let ˛WG ! Aut.A/ be an action with the Rokhlin property. Then
the canonical inclusion �WA˛ ! A is sequence algebra extendible (Definition 4.16).

In particular, if A is weakly semiprojective, then so is A˛ by Lemma 4.17. If in
addition G is finite, then A Ì˛ G is also weakly semiprojective.

Proof. Use Theorem 2.11 to choose a sequence . n/n2N of asymptotically �-multi-
plicative linearmaps nWA! A˛ such that limn!1 k n.a/�ak D 0 for all a 2 A˛ .
Regard . n/n2N as a homomorphism  WA! .A˛/1 such that the restriction  jA˛
agrees with the canonical inclusion A˛ ,! .A˛/1.

Let E be a C �-algebra and let 'WA˛ ! E1 be a homomorphism. Denote by

'1 W .A
˛/1 ! .E1/1

the homomorphism induced by '. There is a commutative diagram

A˛
� //

'

��

A

�
zz

 // .A˛/1

'1yy
E1

j
// .E1/1:

By Lemma 4.18, there exists a homomorphism �WA! E1 such that ' D � ı �.
Thus � is sequence algebra extendible, as desired.
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If G is finite, then A Ì˛ G can be canonically identified with MjGj ˝ A˛ , and
hence it is also weakly semiprojective.

Finally, we point out that weak semiprojectivity does not in general pass to
crossed products by Rokhlin actions when the group is compact but not finite.
Indeed, C.T / ÌLt T Š K.L2.T // is not weakly semiprojective, while C.T / is
even semiprojective.

References

[1] S. Barlak and G. Szabo, Sequentially split �-homomorphisms between C�-algebras,
Internat. J. Math., 27 (2016), no. 13, 1650105, 48pp. Zbl 1370.46034 MR 3589655

[2] L. Brown and G. Pedersen,C�-algebras of real rank zero, J. Funct. Anal., 99 (1991), no. 1,
131–149. Zbl 0776.46026 MR 1120918

[3] M. Dadarlat, Continuous fields of C�-algebras over finite dimensional spaces, Adv. Math.,
222 (2009), no. 5, 1850–1881. Zbl 1190.46040 MR 2555914

[4] S. Eilers and T. Loring, Computing contingencies for stable relations, Internat. J. Math.,
10 (1999), 301–326. Zbl 1039.46506 MR 1688149

[5] S. Eilers, T. Loring, and G. Pedersen, Stability of anticommutation relations. An
application of noncommutative CW complexes, J. reine angew. Math., 499 (1998), 101–
143. Zbl 0897.46056 MR 1631120

[6] T. Fack and O.Maréchal, Sur la classification des symetries desC�-algèbres UHF,Canad.
J. Math., 31 (1979), 496–523. Zbl 0406.46046 MR 536360

[7] E. Gardella, Classification theorems for circle actions on Kirchberg algebras. I, preprint,
2014. arXiv:1405.2469

[8] E. Gardella, Classification theorems for circle actions on Kirchberg algebras. II, preprint,
2014. arXiv:1406.1208

[9] E. Gardella, Compact group actions with the Rokhlin property, in preparation, 2016.
Available at: https://ivv5hph.uni-muenster.de/u/gardella/Docs/Preprints/
RpCpt.pdf

[10] E. Gardella, Regularity properties and Rokhlin dimension for compact group actions,
Houston J. of Math., 43 (2017), no. 3, 861–889.

[11] E. Gardella, Rokhlin dimension for compact group actions, Indiana Univ. Math. J., 66
(2017), no. 2, 659–703. Zbl 06736325 MR 3641489

[12] E. Gardella, I. Hirshberg, and L. Santiago, Rokhlin dimension: duality, tracial properties,
and crossed products, in preparation, 2017. arXiv:1703.10999

[13] E. Gootman, A. Lazar, and C. Peligrad, Spectra for compact group actions, J. Operator
Theory, 31 (1994), 381–399. Zbl 0857.46041 MR 1331784

[14] R. Herman and V. Jones, Period two automorphisms of UHF C�-algebras, J. Funct. Anal.,
45 (1982), 169–176. Zbl 0522.46039 MR 647069

[15] R. Herman and A. Ocneanu, Stability for Integer Actions on UHF C�-algebras, J. Funct.
Anal., 59 (1984), 132–144. Zbl 0578.46058 MR 763780

https://zbmath.org/?q=an:1370.46034
http://www.ams.org/mathscinet-getitem?mr=3589655
https://zbmath.org/?q=an:0776.46026
http://www.ams.org/mathscinet-getitem?mr=1120918
https://zbmath.org/?q=an:1190.46040
http://www.ams.org/mathscinet-getitem?mr=2555914
https://zbmath.org/?q=an:1039.46506
http://www.ams.org/mathscinet-getitem?mr=1688149
https://zbmath.org/?q=an:0897.46056
http://www.ams.org/mathscinet-getitem?mr=1631120
https://zbmath.org/?q=an:0406.46046
http://www.ams.org/mathscinet-getitem?mr=536360
https://arxiv.org/abs/1405.2469
https://arxiv.org/abs/1406.1208
https://ivv5hph.uni-muenster.de/u/gardella/Docs/Preprints/RpCpt.pdf
https://ivv5hph.uni-muenster.de/u/gardella/Docs/Preprints/RpCpt.pdf
https://zbmath.org/?q=an:06736325
http://www.ams.org/mathscinet-getitem?mr=3641489
https://arxiv.org/abs/1703.10999
https://zbmath.org/?q=an:0857.46041
http://www.ams.org/mathscinet-getitem?mr=1331784
https://zbmath.org/?q=an:0522.46039
http://www.ams.org/mathscinet-getitem?mr=647069
https://zbmath.org/?q=an:0578.46058
http://www.ams.org/mathscinet-getitem?mr=763780


Crossed products by compact group actions with the Rokhlin property 1625

[16] I. Hirshberg, M. Rørdam, and W. Winter, C0.X/-algebras, stability and strongly self-
absorbing C�-algebras, Math. Ann., 339 (2007), 695–732. Zbl 1128.46020 MR 2336064

[17] I. Hirshberg and W. Winter, Rokhlin actions and self-absorbing C�-algebras, Pacific J. of
Math., 233 (2007), 125–143. Zbl 1152.46056 MR 2366371

[18] M. Izumi, Finite group actions on C�-algebras with the Rohlin property. I, Duke Math. J.,
122 (2004), no. 2, 233–280. Zbl 1067.46058 MR 2053753

[19] M. Izumi, Finite group actions on C�-algebras with the Rohlin property. II, Adv. Math.,
184 (2004), no. 1, 119–160. Zbl 1050.46049 MR 2047851

[20] E. Kirchberg, Central sequences in C�-algebras and strongly purely infinite algebras, in
Operator Algebras: The Abel Symposium 2004 (Oslo, 2004), 175–231, Abel Symp., 1,
Springer, Berlin, 2006. Zbl 1118.46054 MR 2265050

[21] A. Kishimoto, A Rohlin property for one-parameter automorphism groups, Comm. Math.
Phys., 179 (1996), 599–622. Zbl 0853.46067 MR 1400754

[22] A. Kishimoto, Simple crossed products ofC�-algebras by locally compact abelian groups,
Yokohama Math. J., 28 (1980), 69–85. Zbl 0467.46042 MR 623751

[23] A. Kishimoto, The Rohlin property for automorphisms of UHF algebras, J. Reine Angew.
Math., 465 (1995), 183–196. Zbl 0824.46070 MR 1344136

[24] E. Kirchberg and M. Rørdam, Infinite non-simple C�-algebras: absorbing the Cuntz
algebra O1, Adv. Math., 167 (2002), no. 2, 195–264. Zbl 1030.46075 MR 1906257

[25] E. Kirchberg and W. Winter, Covering dimension and quasidiagonality, Int. J. Math., 15
(2004), 63–85. Zbl 1065.46053 MR 203921

[26] H. Lin, An Introduction to the Classification of Amenable C*-Algebras, World Scientific
Pub. Co. Inc., 2001. Zbl 1013.46055 MR 1884366

[27] H. Lin, Asymptotic unitary equivalence and classification of simple amenable C*-algebras,
Invent. Math., 183 (2011), 385–450. Zbl 1255.46031 MR 2772085

[28] H. Lin, Classification of simple C*-algebras with tracial topological rank zero,DukeMath.
J., 125 (2005), 91–119. Zbl 1068.46032 MR 2097358

[29] H. Lin, Simple nuclear C*-algebras of tracial topological rank one, J. Funct. Anal., 251
(2007), 601–679. Zbl 1206.46052 MR 2356425

[30] H. Lin, Tracially AF C*-algebras, Trans. Amer. Math. Soc., 353 (2001), 693–722.
Zbl 0964.46044 MR 1804513

[31] H. Lin, Weak semiprojectivity in purely infinite C*-algebras, Canad. J. Math., 59 (2007),
343–371. Zbl 1127.46041 MR 2310621

[32] T. Loring, Lifting solutions to perturbing problems in C�-algebras, Fields Institute
Monographs 8, Providence, R.I., American Mathematical Society. IX, 1997.
Zbl 1155.46310 MR 1420863

[33] T. Loring and G. Pedersen, Corona extendibility and asymptotic multiplicativity,K-theory,
11 (1997), 83–102. Zbl 0867.46047 MR 1435706

[34] N. Nawata, Finite group actions on certain stably projectionless C�-algebras with the
Rokhlin property, Trans. Amer. Math. Soc., 368 (2016), no. 1, 471–493. Zbl 1351.46067
MR 3413870

https://zbmath.org/?q=an:1128.46020
http://www.ams.org/mathscinet-getitem?mr=2336064
https://zbmath.org/?q=an:1152.46056
http://www.ams.org/mathscinet-getitem?mr=2366371
https://zbmath.org/?q=an:1067.46058
http://www.ams.org/mathscinet-getitem?mr=2053753
https://zbmath.org/?q=an:1050.46049
http://www.ams.org/mathscinet-getitem?mr=2047851
https://zbmath.org/?q=an:1118.46054
http://www.ams.org/mathscinet-getitem?mr=2265050
https://zbmath.org/?q=an:0853.46067
http://www.ams.org/mathscinet-getitem?mr=1400754
https://zbmath.org/?q=an:0467.46042
http://www.ams.org/mathscinet-getitem?mr=623751
https://zbmath.org/?q=an:0824.46070
http://www.ams.org/mathscinet-getitem?mr=1344136
https://zbmath.org/?q=an:1030.46075
http://www.ams.org/mathscinet-getitem?mr=1906257
https://zbmath.org/?q=an:1065.46053
http://www.ams.org/mathscinet-getitem?mr=203921
https://zbmath.org/?q=an:1013.46055
http://www.ams.org/mathscinet-getitem?mr=1884366
https://zbmath.org/?q=an:1255.46031
http://www.ams.org/mathscinet-getitem?mr=2772085
https://zbmath.org/?q=an:1068.46032
http://www.ams.org/mathscinet-getitem?mr=2097358
https://zbmath.org/?q=an:1206.46052
http://www.ams.org/mathscinet-getitem?mr=2356425
https://zbmath.org/?q=an:0964.46044
http://www.ams.org/mathscinet-getitem?mr=1804513
https://zbmath.org/?q=an:1127.46041
http://www.ams.org/mathscinet-getitem?mr=2310621
https://zbmath.org/?q=an:1155.46310
http://www.ams.org/mathscinet-getitem?mr=1420863
https://zbmath.org/?q=an:0867.46047
http://www.ams.org/mathscinet-getitem?mr=1435706
https://zbmath.org/?q=an:1351.46067
http://www.ams.org/mathscinet-getitem?mr=3413870


1626 E. Gardella

[35] H. Osaka and N. C. Phillips, Crossed products by finite group actions with the Rokhlin
property, Math. Z., 270 (2012), 19–42. Zbl 1244.46032 MR 2875821

[36] C. Pasnicu and N. C. Phillips, Permanence properties for crossed products and fixed point
algebras of finite groups, Trans. Amer.Math. Soc., 366 (2014), 4625–4648. Zbl 1316.46050
MR 3217695

[37] N. C. Phillips, A Classification Theorem for Nuclear Purely Infinite Simple C�-algebras,
Doc. Math., 5 (2000), 49–114. Zbl 0943.46037 MR 1745197

[38] N. C. Phillips,Equivariant K-theory and freeness of group actions onC�-algebras, Lecture
Notes in Mathematics, 1274, Berlin etc., Springer-Verlag VIII, 1987. Zbl 0632.46062
MR 911880

[39] N. C. Phillips, The tracial Rokhlin property for actions of finite groups on C�-algebras,
Amer. J. Math., 133 (2011), no. 3, 581–636. Zbl 1225.46049 MR 2808327

[40] M. Rieffel, Dimension and stable rank in the K-theory of C�-algebras, Proc. Lond. Math.
Soc., III. Ser., 46 (1983), 301–333. Zbl 0533.46046 MR 693043

[41] L. Robert, Classification of inductive limits of 1-dimensional NCCW complexes, Adv.
Math., 231 (2012), no. 5, 2802–2836. Zbl 1268.46041 MR 2970466

[42] J. Rosenberg, Appendix to O. Bratteli’s, “Crossed products of UHF algebras” [Duke Math.
J., 46 (1979), no. 1, 1–23. Zbl 0395.46048 MR 46063], Duke Math. J., 46 (1979), no. 10,
25–26. Zbl 0395.46049 MR 523599

[43] L. Santiago, Crossed products by actions of finite groups with the Rokhlin property,
Internat. J. Math., 26 (2015), no. 7, 1550042, 31pp. Zbl 06465257 MR 3357031

[44] J. Spielberg, Weak semiprojectivity for purely infinite C�-algebras, Canad. Math. Bull.,
50 (2007), no. 3, 460–468. Zbl 1137.46037 MR 2344181

[45] G. Szabo, A short note on the continuous Rokhlin property and the Universal Coefficient
Theorem in E-theory, Canad. Math. Bull., 58 (2015), no. 2, 374–380. Zbl 1334.46048
MR 3334933

[46] H. Thiel, Inductive limits of projective C�-algebras, to appear in J. Noncommut. Geom.
arXiv:1105.1979

[47] A. Toms and W. Winter, Strongly self-absorbing C�-algebras, Trans. Am. Math. Soc., 359
(2007), no. 8, 3999–4029. Zbl 1120.46046 MR 2302521

[48] W. Winter and J. Zacharias, The nuclear dimension of C�-algebras, Adv. Math., 224
(2010), no. 2, 461–498. Zbl 1201.46056 MR 2609012

Received 11 April, 2016

E. Gardella, Mathematisches Institut, Fachbereich Mathematik und Informatik
der Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
E-mail: gardella@uni-muenster.de; https://ivv5hph.uni-muenster.de/u/gardella/

https://zbmath.org/?q=an:1244.46032
http://www.ams.org/mathscinet-getitem?mr=2875821
https://zbmath.org/?q=an:1316.46050
http://www.ams.org/mathscinet-getitem?mr=3217695
https://zbmath.org/?q=an:0943.46037
http://www.ams.org/mathscinet-getitem?mr=1745197
https://zbmath.org/?q=an:0632.46062
http://www.ams.org/mathscinet-getitem?mr=911880
https://zbmath.org/?q=an:1225.46049
http://www.ams.org/mathscinet-getitem?mr=2808327
https://zbmath.org/?q=an:0533.46046
http://www.ams.org/mathscinet-getitem?mr=693043
https://zbmath.org/?q=an:1268.46041
http://www.ams.org/mathscinet-getitem?mr=2970466
https://zbmath.org/?q=an:0395.46048
http://www.ams.org/mathscinet-getitem?mr=46063
https://zbmath.org/?q=an:0395.46049
http://www.ams.org/mathscinet-getitem?mr=523599
https://zbmath.org/?q=an:06465257
http://www.ams.org/mathscinet-getitem?mr=3357031
https://zbmath.org/?q=an:1137.46037
http://www.ams.org/mathscinet-getitem?mr=2344181
https://zbmath.org/?q=an:1334.46048
http://www.ams.org/mathscinet-getitem?mr=3334933
https://arxiv.org/abs/1105.1979
https://zbmath.org/?q=an:1120.46046
http://www.ams.org/mathscinet-getitem?mr=2302521
https://zbmath.org/?q=an:1201.46056
http://www.ams.org/mathscinet-getitem?mr=2609012
mailto:gardella@uni-muenster.de
https://ivv5hph.uni-muenster.de/u/gardella/

	Introduction
	An averaging process
	Central sequence algebras and Rokhlin property
	First results on crossed product and the averaging process

	Generalized local approximations
	Further structure results

