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Abstract. We develop an appropriate dihedral extension of the Connes—Moscovici characteristic
map for Hopf x-algebras. We then observe that one can use this extension together with the
dihedral Chern character to detect non-trivial L-theory classes of a x-algebra that carry a Hopf
symmetry over a Hopf *-algebra. Using our machinery we detect a previously unknown L-class
of the standard Podles sphere.
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1. Introduction

In this paper we calculate a new class of finer homological invariants of
noncommutative spaces using their Hopf-algebraic symmetries. We borrow our
strategy from the study of characteristic classes of topological manifolds where group
symmetries of vector or fiber bundles on a manifold are used to obtain topological
invariants of the underlying manifold. In noncommutative geometry one can similarly
obtain topological invariants of noncommutative spaces by using Hopf symmetries
of the underlying space and a canonical characteristic map relating cohomological
invariants of the underlying space and its Hopf algebra symmetries. One can see a
beautiful and effective execution of this strategy by Connes and Moscovici in their
calculation of topological characteristic classes of codimension-1 foliations using the
Hopf algebra #¢; and the characteristic map they constructed [11, 12]. Our main
contribution in this paper is a new cohomological tool particularly designed to detect
finer (more geometric) invariants of noncommutative spaces.

Cohomological invariants have been used to obtain topological invariants of
spaces effectively in the past [3,33,34]. We observe that geometric invariants require
much finer cohomological machineries. From the point of view of noncommutative
geometry, this means one must study algebras with additional structures, and use
cohomology theories sensitive to these additional structures. Our first candidate
is an obvious, but cohomologically underused one: algebras and Hopf-algebras that



70 A. Kaygun and S. Siitlii

carry involutive endo-anti-morphisms called *-structures, and their Hopf symmetries
compatible with these *-structures.

The dominant cohomological machinery used in noncommutative geometry
appears to be the cyclic cohomology in many manifestations [8,9,15,20,29,44]. This
is mainly because of the Chern character that can detect non-trivial K-invariants of
the underlying noncommutative space using cyclic cocycles [9, 10]. However, cyclic
cohomology is but one cohomology theory among a collection of similarly defined
other theories. Each of these theories is indexed by collections of groups including
all finite dihedral groups, finite symmetric groups, finite hyperoctahedral groups,
and their corresponding artin groups [1, 18]. In the case of cyclic cohomology, we
consider finite cyclic groups of all orders. Our choice of dihedral cohomology as the
finer replacement of cyclic cohomology is dictated by the fact that combining finite
cyclic groups with an involution yield finite dihedral groups.

By introducing a *-structure on the underlying algebra A, we jump from the
realm of K-theory into the realm of L-theory [41,45]. Since the natural extension
of the Chern character to L-theory uses dihedral cocycles [13, 14,27], a new strategy
emerges for detecting L-classes using a Hopf-dihedral variant of our characteristic
map. Using this strategy we managed to detect a previously unknown L-class of
the standard Podle$ sphere (9(Sq2) in Section 7. From this point of view, using
dihedral cohomology of Hopf *-algebras and the associated characteristic map as a
refinement of the existing machinery for Hopf-cyclic cohomology is justified since
L-theory already yields much finer invariants than K-theory.

QOutline of the paper. We start by defining cyclic and dihedral cohomologies as
derived functors of diagrams of vector spaces given over the cyclic and dihedral
categories in Section 2. Then we recall the definitions of the cyclic and the dihedral
cohomologies of *-algebras and *-coalgebras in Section 3. In Section 4 we develop
the Hopf-dihedral cohomology, with a characteristic function built-in, of a Hopf
x-algebra that has a modular pair in involution (MPI) and an invariant trace. We are
going to use this characteristic map, as we described above, to detect L-theory classes
of an algebra that carries a specific Hopf symmetry. In the same section we then
extend the theory from MPI to arbitrary stable coefficients, and investigate the natural
multiplicative structure on the Hopf—-Hochschild cohomology, and the *-structure
induced on the cohomology. In Section 5 we consider the complexified quantum
enveloping algebra i, (g) of a Lie algebra g, and then calculate its Hopf-dihedral
cohomology. The next section is devoted to the dual Hopf-dihedral homology together
with its own characteristic map. In Section 7, we investigate the interaction of
our characteristic map on the Hopf-dihedral cohomology, its dual, and the Chern
character from L-theory to dihedral homology on two examples: (i) the group
ring k7 of the fundamental group 7 of a multiply connected manifold M, and (ii)
Podles sphere O (S, ;s).
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Notation and conventions. We use a base field k of characteristic 0 which carries
a complex structure. WLOG one can assume k = Q[+/—1], or any other
field containing Q[v/—1]. We will use N (%) to denote the set of positive half
integers 0, %, 1, %, ..., and (X) to denote the k-vector space spanned by a given
set X. We use CH,, CC, and CD, to denote respectively the Hochschild, the cyclic
and dihedral complexes associated with a dihedral module. Similarly, we use H Ha.,
HC, and HD, to denote respectively the Hochschild, the cyclic and the dihedral
homology of a dihedral module. We use Tor;4 and Ext’% to denote respectively the
derived functors of the tensor product ® 4 and the Hom-functor Hom 4 for a unital

associative algebra A.

2. Cyclic and dihedral (co)modules and their (co)homology

2.1. The cyclic category. Our main references for this subsection are [8,29].

The cyclic category AC is the category with the set of objects [r], n € N. The
morphisms, on the other hand, are generated by the cofaces d;:[n — 1] —> [n],
0 < i < n, the codegeneracies 0;:[n + 1] —> [n], 0 < j < n, and the cyclic
operators t,: [n] —> [n] subject to the relations

0j0; = 0;0j—1, 1 <j, 0;0; =0i0j41, 1 = ],
ain_l, i< j,

0;0; = (Idp,;, ifi =jori=j+1,
di—10j, i >j+1,

7,0; = 0i—1Th—1, 1 <i <n, 71,00 = 0y,
. 2
Tw0i = 0i—1Tn+1, 1 =1 =N, 7,00 = 0nT, 4,
n+1 __
T, =Idp .

We call a functor of the form F: AC®® — k-Mod a cyclic module, and a functor
of the form G: AC — k-Mod a cocyclic module.

2.2. The dihedral category. Our main references for this subsection are [28,29].

There is a straight extension of AC to a larger category A D called the dihedral
category, with the same set of objects, containing AC as a subcategory. The
essential difference is that the endomorphisms on each object [r] is the dihedral
group Dpy1 = (tn. @n | 0 = I8! = wpTpwp Ty = Idpy)) of order 2(n + 1). The
rest of the relations, between the morphisms are

0iwyp = Wp—10p—i, Ojwp = Wp410n—i, 0=<1i <n.

Similarly as before, a functor F': AD° — k-Mod is called a dihedral module. In
the opposite case, we call a functor F': AD — k-Mod a codihedral module.
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2.3. Cohomology. Our main references for this section are [8,29].
We define a cosimplicial module CHZ

CHp = (A(n, -))
and the face maps 9d;: CH,, — CH,,_ are defined by pre-composition
3i(Y) =y o0di € A(n—1,m)
forall y:n — m. Then we define a differential d, = Y /_,(— 1)"9;. This differential

graded cosimplicial module is a resolution of the cosimplicial module k.. If we let
CH,?C = CB,?C = (AC(n, -)) and we let

n n—1
dM =3 "(—=1)'0; and d® =) (-1)'9;
i=0 i=0

with Ne = Y7 ¢! then the bicomplex CC,

1—te N 1—te
CH, CB. CHy «—— ---

is a resolution of the cocyclic module &, in the category of cocyclic modules. Then
we also would see that

1—we 14+we 1—we

CC. CC. CC,

is going to be a projective resolution of k, in the category of codihedral modules,
once we replace AC with AD in the definitions of CB, and CH,.

Definition 2.1. Let Z be one of A, AC, or AD, X, aright Z-module, and Y, a left
Z-module. Then the (co)homology of X, and Y, are defined as

HZu(Xe) = Tor?(Xe, ko) and HZ®(Ya) = Exty(ke, Ya).

3. Algebras and coalgebras

3.1. Cyclic (co)homology of algebras. With these notations at hand we can interpret
the Hochschild and the cyclic (co)homology as derived functors. Namely, given an
algebra + we define a cyclic module Co(4A) — k-Mod by

Co(A) = @A®n+l’

n>0
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whose structure maps are defined as follows:
(- ®a-1®aja;+1 ®ai12Q---), ifO<i<n-—1,
(anao®a1 ® -+ Q@ an—1), ifi =n,

‘7./'(“0®"'®a") = (--~®ai ®1®a,-+1 ®"'),
@ ® - Qay) =a,Qap -+ Qdn_1,

0i(ap ® - Ray) =

forO0<i<n+1land0<j <n.
One can realize the Hochschild and the cyclic homologies as derived functors of
simplicial and cyclic modules

HH,(4) = Tor® (Co(A). ko) and HCy () = Tor2C (Co(sh), ko).
For the Hochschild and cyclic cohomologies we get
HH"(A) = Ext)y (ko,C*(A)) and HC"(A) = Ext} o (ks, C*(4)),

where, this time, our cocyclic module C*®(#4) is given by C" (#4) = Hom(A®"+! k).
More generally, for an algebra 4 and an «-bimodule V, the cocyclic module
C"(A,V) := Hom(A®" V) has the coface maps d;: C" 1 (A, V) —> C*(A, V)

ay-e(az...,ay), ifi =0,
dig(ay,...,an) = {e(ay,...,aiajt+1,...,a,), ifl1<i<n-—1,
pay,...,an—1) - an, ifi =n,

and the codegeneracy maps s;: C"1(A, V) —> C"(A, V)

siplar,....an) =¢(ay,....,a;,1,a;41,...,a,).

where 0 < j < n. In particular, for V = AY = Hom(s, k), the above structure is
equivalent to the one given by d;: C"~!(A) —> C"(A)

o(ag,...,aiai+1,...,a,), if0<i<n-—1,
di(/’(QO»uwan) = e e
p(anag, ..., an—1), ifi =n,
and s;: C"t1(A) — C"(A)
sjp(ao,....an) = ¢(ao,....a;,1,a;41,....a,),
where 0 < j < n. In this case, the cyclic maps t,: C*(A) —> C"(A) are given by

tn(p(aO, LR ,an) == ¢(an?a07 ey an—l)’

for every n > 1.
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3.2. Hochschild (co)homology of %-algebras. Let 4 be an algebra with an invol-
ution *: A —> A, that is,

(ab)* = b*a*, a** =a,

for any a, b € A. We call such an algebra a x-algebra. Let also V be an 4-bimodule
with an involution *: V' — V satisfying

(@-v-b)* =b*-v*-a*, v** =0,

for any a,b € +, and any v € V. Such a bimodule is called a x-bimodule. One then
defines on the Hochschild cohomology complex

wne(ay,...,an) = @a,,ay_q,...,a7)",
for any ¢ € C*(A, V).
Lemma 3.1. On C" (A, V) we have wpd; = dy_jwp—1 for0 <i <n.

Proof. For1 <i <n —1,and for ¢ € C""'(A, V), we have

wu(dip)(ai,...,an) = (dip)(a,,...,a;)*
=@y, ....ay_j 10p_i,...,a7)"
=ola,,....(an—ian-i+1)*,...,a})*

=dp—i(Wp—19)(ay,....an).

Similarly, w,dy = dpwy—1, and wud, = dow,—_1. ]

As aresult, we have the following:

Lemma 3.2. Given a x-algebra 4 and a -bimodule V, on C*~1(sA, V) we have
Wb = (=1)"bwy,—1.
Proof. For an arbitrary ¢ € C"~!(+, V) we have

wpbg(ay,...,an) = be(ay,...,ay)*

=a, -yla,_;,....,a7)*
n—1
+ 3 @@ a])

i=1
+ (=D"¢(a,,....a3)-a}
= (—=D"bwp_10(ay,....an). O
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Now, assuming 2 is invertible in k, based on the decomposition of the Hochschild
complex into the +1 and —1-eigenspaces of the involution operator it follows that

HH®*(A,V)=HH (A, V)® HH:(A,V),
see for instance [29, 5.2.3], and in particular for V = A = Hom(x, k),
HH®(A) = HH} (A) ® HH®(A).

Explicitly, HH? (4, V) (resp., HH?$ (+)) is the cohomology of the w-invariant
(real) subcomplex, and HH®(A, V) (resp., HH®(A)) is the cohomology of the
w-anti-invariant (imaginary) subcomplex.

3.3. Dihedral cohomology of x-algebras. We next record the following on the re-
striction of the x-structure on the cyclic complex.

Lemma 3.3. On C"(A) := C"(A, A*), we have

-1

thWy = Wpt, '

Proof. Forany ¢ € C"(A), wefirstrecall thatwy, (¢)(ao, . ... an) =¢(agy.a}, ... a}).
Then the claim follows from

InWn@(do, - - -, an) = Wap(an,do, - - ., dn—1)
=oglar,a,_,,....a3)
=t lp(ag,a}, ... a7)
= wntn_lgo(ao,...,an). O

As a result, if ¢ € C}(A), ie. t,p = (=1)"@, then taw,@ = wut,; e =
(=D"wne, that is wyep € C%(A), therefore, we obtain the similar eigen-space
decomposition

HC®*(A) = HC(A) ® HCS(A).

The summands are both called the dihedral cohomology of +, and are denoted
by HDY (A).

3.4. Dihedral cohomology of #-coalgebras. Let us recall from [17, Sect. 2.2]
the involutive coalgebras and their (involutive) comodules. A x-coalgebra € is a
coalgebra such that
A(c™) = ¢y ®cfyy, &™) = e(c).
An involutive €-bicomodule (x-bicomodule) V is a €-bicomodule such that
(U*)<0> ® (v*)<1> = U<o>* ® v<—1>*’

(3.1
(v*)<—1> ® (v*)<0> = v<1>* ® v<0>*'
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We recall from [16] the coalgebra Hochschild cohomology of a coalgebra € with
coeflicients in a €-bicomodule V is given as the homology of the complex

cev)=@vec

n>0
with the structure maps d;: C"~1(€,V) — C"(€,V)

Vg QU_1. ®C1 Q- QCpi1, ifi =0,
dip(v®c1®+®cn-1) =1V ®c1 Q- RA(C) R Qcp_q, ifl<i<n-—1,

Uoge ®C1 Q- QCp1 ®u__,., ifi =n,
and s;: C"*t1(€, V) — C"(€,V)
Si(V®CcI® Qr) =V®CH®-®e(c;) ® - ® cn,

where 0 < j <n.

Lemma 3.4. On C" (€, V) we have wpd; = dyp_jwp_1 for 0 <i <n.
Proof. For1 <i <n—1l,andforv®c; ® ---® c,_1 € C"1(€, V), we have

Wrdi(V®C1 ® Q1) =wWp(V®C1 Q@+ ® i) ® i) @+ & Cp1)
=v"®c¢,_ 1 ® B (ci®)" ®(cin)* ®---®cy
=dyp-i(V*Qcp_ 1 ® Q¢ ® - Rcy)
=dp—iWn—1(V®¢1 Q-+ ® Cp—1).

Similarly, w,doy = dpwy—1, and wyd, = dow,—1. O

We thus conclude the commutation with the Hochschild coboundary map.

Corollary 3.5. Given a *-coalgebra € and a *-bicomodule V, on C""1(€,V) we
have
Wb = (=1)"bwy,—1.

Proof. For an arbitrary v ® ¢; ® -+ ® ¢,—1 € C*"1(€, V) we have

Wb(V®cC1 ® -+ @ Cp_t)
= (U<0>* ® c;—l Q- ® Cik ® v<l>*)

n—1
+ Z(—l)i(v Qcp_ 1 ®®(ci»)* ®(cin)*®---®ct)
i=1
+ (_])n(v<0>* ® 'U<_1>* X ® c:—l ® Cik)
= (=1)"hwp—1(V® 1 ® - ® Cuy). -
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As aresult, we have the decomposition
HH*(E,V) = HH:L(‘C’, Vye HH®(E,V),

of the coalgebra Hochschild cohomology into the dihedral coalgebra Hochschild
cohomologies.

4. Hopf-dihedral cohomology

4.1. Hopf-cyclic cohomology. Let us first recall Hopf-cyclic cohomology from [11,
12]. Let # be a Hopf algebra with a modular pair in involution (MPI) (§,0), i.e. §
is a character on #, and o € J is a group-like element such that

87 =Ady, $(0) =1,

where Ss(h) = 8(h1))S(h(2)) is the twisted antipode. Assume also that + is a (left)
J(-module algebra,

he(ab) = (hqy>a)(hpy>b), h>1=e(h)l,
equipped with a linear form t: A —> k which is a §-invariant o -trace
t(h>a) =68h)t(a), t(ab) = t(b(o>a)).

Then the Hopf-cyclic cohomology of # is defined to satisfy the following, [12].
Ansatz. Let 4 be a J-module algebra equipped with a §-invariant o-trace 7: A —> k.
Then the assignment

hi1 ® - Q@ hyt—> xe(h1 & - ® hy) € C"(A),

Xe(h @ -+~ ® hyp)(ao. ....an) = t(ao(hy > ai) ... (hn > an)),
defines a cocyclic module C*(#;0,8) on # whose cohomology comes with a
canonical map of the form y,: HC"(#;5,0) — HC"(A).

The ansatz then dictates on

C*(Jt:0.5) = P H®"

n>0
the cocyclic structure given by the maps
1 & - Q hy_1, ifi =0,

dith1 @ Qhp—1)=(h1 @AM R @ hp—y, If0<i <n,
h®- - ®h, ®o, ifi =n,
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and
Sitho® - ®@hp) =h1 ®---Qehj)®---®h,, 0=<j<n.

These structure maps encode a simplicial structure C*(#,0,8): A — k-Mod, and
the maps
tw(h1 @ -+ ® hp) = Ss(h1) - (h2 ® --- @ hy ® 0)

encode the actions of the cyclic groups to the cocyclic module C*(#; g, §) which is
a functor of the form C*(#, 0,8): AC — k-Mod.

4.2. Hopf =-algebras. Letus nextrecall from [30, Def. 1.7.5] that a Hopf *-algebra
is a Hopf algebra #, which is a x-algebra such that

AhY) = hy* @ hoy*,  e(h*) =e(h), Sh*) =S~ (h)*,

for every h € J.
Let now a x-algebra 4 be a #-module algebra with the *-action, that is, let 4
be a #€-module algebra with the compatibility

(h>a)* =S 1(h*) > a* 4.1)

between the *-structures and the action. Such # is called a #-module x-algebra.
See [30, Prop. 6.1.5] for the notion of x-action, see also [42, Eqn. (8) & (9)].

4.3. Hopf-dihedral cohomology of a Hopf x-algebra. We now investigate the
x-structure on the Hopf-cyclic complex C(#;0,8) that makes the characteristic
homomorphism of Connes—Moscovici a *-homomorphism, that is, for n > 0

Wn(xe(h' @ - @ h")) = ye(wn(h' @ --- @ h")).

Accordingly,

Wn (e (W' ® --- @ ")) (ao, ... an) = xe(h' ® --- @ h")(a}, ak,...,a})
=1(@i(h > ay)... (h">ath))
= 7(aX(S(h)* > an)* ... (SW")* > ay)*)
=t((S(h")* > ay) ... (S(h')* > an)ao)
= (ST (W) b ar) ... (ST (') > an)ao)
= t(ao(@S~ ' W) b ay) ... (6S™ ') > an))

dictates that

wp(h' @ - ® ") =S (H"*) @ ® ST (). (4.2)
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Lemma 4.1. The mapping given by (4.2) is an involution on C*(#; 0, §).
Proof. Forn > 1 we have
w2h' @ @h") = wy(0ST (W) @ --- @ aSTHA'T))
— oS HST ) M) @ - ® 6 ST (ST (H) o)
— SIS R @@ STHSTH)Y)
=STHSHT) ® - @ STHS ("))
=h'®---®h".

On the third equation we used the assumption that 6* = o, on the second, third and
the fourth equations we used (4.1). O

Lemmad.2. The mapping given by (4.2) is an involution on the coalgebra Hochschild
cohomology HH®(J,%k).

Proof. For1 <i <n — 1 we observe on C*~!(#;0,8) that
wpd; (W' @ -+~ @ K" 1)
=w, (N @ - QhH @@ - QK"
=08\ ® @S e ) @S ) @ ®aST (W)
=oS' ") ® - ®AGS T (W) @ @S (T
=dpjwp—1(h' ®--- QW)

The equalities w,dy = dpwy—1 and w,d, = dyw,—1 follows similarly from (3.1).
O

Lemma 4.3. The mapping given by (4.2) is an involution on the Hopf-cyclic
cohomology HC*(#; 0, 6).

Proof. Leth := h ® - ®hy, € C*"(H;0,8) be cyclic. Then,
e (tnwn () = ty e (W (1)) = tawp xe () = waty, " gz (h) = ye(waty ' (1)
= (=" e (wa(h)).
that is wy, (}7) e C"(H;0,08) is also cyclic. O
Consequently,
HC*(H:;0,8) = HC(H:0.8) ® HC2(H:0.6).

We call the cohomologies on the right hand side, corresponding to the &+ 1-eigenspaces
of the operator (4.2), the Hopf-dihedral cohomologies of the Hopf algebra J.
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4.4. Hopf-dihedral cohomology with general coefficients. Let # be a Hopf
algebra with an invertible antipode, and # be a left J#-module algebra. Let also V'
be a left #/-module and left #-comodule satisfying the stability condition

for all v € V. Then one can define a para-cyclic module CCZ (4, V) letting
CCH(A, V)= AP TV,
and defining the structure maps

(- ®ai-1®aiai+1 ®ai12 @+ QV),
0i(ap® - Qa, ®v) = if0<i<n-—1,
(Voo P an)ag® - @ ap—1 ® v, ifi =n,

0j(@g® - ®a,@V) =a)® - Q®a; @1 Q®ajr1 @ - ®a, @ v,
for0<j <n-1,

T ® - ®a, QV)=(1__,. > ay) ®ag Q- Qan—1 QU_,. .

If we let CC% (+, V) := Homg (CCH (A, V), k), then we get a cocyclic module.
Indeed, for every ¢ € CC’, (A, V) we have

) a0 ® - ® an ® v)
=9 ao ® -+ ® an ® )
=@(U__,_ . >a® - Qu__,_>ap QV_y )
=@, ,.>a0Q® - ®v__, Pa ®V__ | >V_)
=e(v_,- )@ ®@ - ®an Qv_,.)
=¢(ao® - Qan V).

We call the cyclic cohomology of this cocyclic module CC% (+4, V') as the Hopf-
cyclic cohomology of the #-module algebra 4 with coefficients in V', and we denote
itby HC3, (A, V).

Proposition 4.4. Given any stable #-module/comodule V, and Tt € H ng (A, V)
we have a pairing of the form (|-, : H®" @ V @ A®"+! — k given by

(M@ ®h Qv|ay® - ®an), = t(aogth' >ar)--(h" > a,) ®v). (4.3)

The pairing induces a cocyclic module structure on CC% (¥, V'), whose cohomology
HC3(H, V) comes with a characteristic map y: HCg(H,V) — HC®(A). In
case V is a left/left SAYD module over H, this cohomology is the Hopf-cyclic
cohomology with coefficients in V.
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Proof. We need to derive the structure maps on CCY,(#, V') compatible with the
pairing. For that we first observe

(h'®@--@h" @v|di(ao®: - ®an+1)),

t(agar(h' > az) - (h" > apy1) @ V), ifi =0,

= {t(ao - (W ' oai )W >ajai)) (W > ain)--- @), ifl <i<n,
t(@nt1ao(h' >ay) - (h" > ay) @ v), ifi =n+1,
t(aoar(h' > az)--- (W' > any1) @ v), ifi =0,

T(ag - (W' ai) (W > ai) (W > aiy ) (BT > ajg0) - @ v),
ifl <i <n,

t(ag(h' >ay)--- (" > an)(Vo_o > ant1) @ vy ), ifi=n+1,

which forces the coface maps for the Hopf-cyclic cocyclic module with coefficients
to be

1®h'® - Q1" ®v), ifi =0,
dh® - @h"@v)={(-h ' QAK)QIT' @ ---®@v), ifl<i<n,
Mo h"u__,_ Qu_,), ifi =n+1.

As for the codegeneracies we observe

(W' @@ @uv|sj(a0® - ®ant1)),
t(ag(h! o 1)(ha>ay) - (h" T > a,) @ v), if j =0,
= t(ag(h' v ay)--- (W sa;))(W T e (W T2 b a;pqy) - (K" > ay) @),
ifl<j<n-1.
As aresult, the codegeneracies need to be defined as
(Ij(hl ®...®hj) — (...h.f ®8(hj+1)®hj+2®-"®v),

for 0 < j <n — 1. Finally, for the cyclic maps we get

(h'®-- @ @v|ta(ao ® - @ an)),
=t(an(h' >ag)---® (W > an_1) @ v)
=t((h'>ag) @ N >an—1)(v__,_ >ay) ®v_,.)
= t(ao(S(h'w+2)ha > ay) -+ (S(h'@)hn > an_1)
S(Sh'@)v__- > an) ® S(h'm)v_y.),

which means that the cyclic maps need to be defined as

L' @ @K @)
= S(hl(n+2))h2 K- & S(hl(3))hn ® S(hl(z))v<71> 02 S(hl(l))v<0>'
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As for the agreement with the original Hopf-cyclic cohomology with coefficients, we
observe that following [22] the pairing is defined uniquely in cohomology since the
terms

HCH(H.V)® HCL(A. V) > HCPH(A)

come from a derived bifunctor. In other words, any cohomological pairing whose
Oth term is given in (4.3) for n = 0 will be the same with our pairing up to natural
equivalence. O

Theorem 4.5. Let J be a Hopf x-algebra, and A an J-module *-algebra. Let V
be a stable J# -module/comodule together with a *-structure satisfying

(h v v)* = S_l(h*) > v, (U*)<—1> ® (U*)<o> = v*<—1> ® U*<0>,

forany h € ¥ and any v € V. Assume also that there is a cocycle T € HC% (A, V)
which additionally satisfies

T(a®v) =1(a* ®v*).

Then the Hopf-cyclic cohomology HC g, (¥, V') carries a -structure, and splits into
two eigen-spaces

HCje(Jf, V)= Hng,Jr(Jf, V)& HC5€’_(J€, V).
Furthermore, there are characteristic maps
Xzt HC;e’i(J(, V) —> HC;(A).

Proof. In Proposition 4.4 we proved that our pairing is compatible with the cyclic
structure. What remains to be constructed is a *-structure which is compatible with
our pairing. For that we observe

(h'®--@h"* ! @@ ® - ®an)*),
=t(ag(h' >a¥)---(h" >at) @ v)

=t((h">a})*---(hl > a})*ap ® v*)

=t((S7H*_ ) pag)(S(h")* > ay) - (S(h)* > an) ® v* )
= Tao(r_, ST b an (ST b an @, ).

This means the x-structure needs to be defined as

(hl ® ce ®hn ® v)* — viin>S—1(hn*) ® . ® v* S_l(hl*) ® vz0>‘

<—1>

As in the Hopf-cyclic case, the pairing

HCY ((J.V)® HC}, (4. V) - HCLT(A)
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is defined uniquely in cohomology by [22]: any cohomological pairing whose n = 0
term is given by (4.3) together with compatibility with the *-structures will be the
same as ours up to natural equivalence. O

We call the cohomologies HCj, . (J,V) as the Hopf-dihedral cohomologies
of J with coeflicients in a stable H-module/comodule V.

4.5. The differential graded %-algebra structure on the Hopf—-Hochschild
complex. Let J be a Hopf algebra, let §(J) denote the set of group-like
elements in J.
Given any o € §(J), one can think of k both as a right #-comodule £, and a
left J-comodule %k by

pok® > k°QH, po(l)=1Q®0c, and Ays:% =%k QHK, Is(1)=0R1.

4.4)
It then follows that for any o € §(J) the Hochschild complex CH® (¥, k) is the
same as the two sided cobar complex CB®(k!, #,%k).

Proposition 4.6. Let J be a Hopf algebra, such that the group-like elements §(H)
forms an abelian group. Then the Hochschild complex @aeﬁ( 9) CH*(J,%) isa
differential graded unital x-algebra with the product

CHP(J{aO-l k) ® CHq(Jf’oQk) — CHP+q(J€’O'102k)’

for any p,q € N, and any two group-like elements 01,0, € §(H). In particular,
the N-graded vector space CH®*(#, k) forms a graded x-subalgebra.

Proof. Let us recall the coface maps of the cosimplicial module C*(J#,% k) =
@nEN HE" by

do(1) =1 —o07,
1h ®---®h", ifi =0,
di(h1®"'®hn)= @ AT ®hi(1) ®hi(2)®hi+l ®---, ifl <i<n,
N - -hQa, ifi =n+ 1.

The product on the chain level is defined as
Ve ®:=VUQ (0> D) e CPTI(J,192k),

forany W € C?(J,% k) and any ® € C4(H,°2k), where 1> denotes the left diagonal
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action of J on #®". We thus note that

P
dpsg(¥ — @) = Y (=1)'d;(¥) ® (01 > D)
i=0
+ ()PP R 01 ® (015 D) + (-1)PTPU R 01 @ (07 > )

q
+ Y (=DM Q (01 & di (®))
i=1

= dp(W) — © + (~1)PW — dy(®),

i.e. Dyegg) CH®(JH, k) is a differential graded algebra with unit 1 € CO(H. k).
In particular, CH® (J, k) is a differential graded subalgebra.

In Lemma 3.4 we showed that *-structure defined in (4.2) is compatible with the
Hochschild differentials. We now show that it is compatible with the cup product
structure above. For that we observe

Wpq((h' @ - @ NP) — (W ® - ® h?T))
= Wpig(h' @ - @h? @ WP ® -+~ ® 01 h? 1Y)
= 001 ST WP ) @ - ® 0,01 ST (WP T o)
20,0187 (W) ® -+ ® 5201571 (')
= O'ZS_I(hP‘HI*) ®R--® ,BS_I(hP“*)
® 02015 (h?*) ® -+ ® 02015 (h'")
=w, (WP @ - @hPT) — w,(h' ®--- @ hP). O
We note that the dg-algebra structure on the sum (P, cg5) CH®(J, 7k) works
even in the case § () is not abelian. However, we need § () to be an abelian group

for the *-structure to work.
The definition above is in fact a simplified version of the following. The collection

& cB* (k. x.%k)
(o8] ,Uzeg(e'r'f)

forms a differential graded category where the set of objects is §(J), and the set
of morphisms are defined as Hom(o,,07) := CB®*(k°!, J¢,°2k). This category
is monoidal where the product comes from the product in /. Then we put an
equivalence relation on the set of all morphisms declaring two morphisms
v 14
0, —> 01 and 0, — 0]
to be equivalent if the morphisms

—1
Vo,

_ W a(oh) ™!
1 —— 010,

'"and 1 —— o](c))!

are identical. Now, the set of equivalence classes of morphisms is the algebra we
defined above.
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5. Complexified QUE algebras and their Hopf-dihedral cohomology

5.1. Drinfeld-Jimbo QUE algebras. Let g be a semi-simple Lie algebra of rank ¢,
ai,...,o, an ordered sequence of the simple roots, and a;; = (o;, o) the corre-
sponding Cartan matrix. The Drinfeld—Jimbo quantum enveloping algebra (QUE
algebra) U, (g) is the Hopf algebra with 4¢ generators K, Ki_l, E, F,1<i<U,
subject to the relations

KiK; =K;K;, K K'=K'K; =1,
Ki—Kl-_l

KiEjKi'=q;"E;. KiF;K;'=q;""F;, EiF;—FE=§; qi —4q; '
i =4,

3

1—a;;

r=0 qi

1—aj;

r=0 q

l

where

n| (n)g! _q"=q"
Hq S Oat—ngt M= T

The rest of the Hopf algebra structure of Uy (g) is given by

AK)=Ki @ Ki, AKKTH) =K '®K ",
AME)=E ®K +1®E;, A(F)=F;®1+K;'Q®F;,
e(Ki) =1, e(E;)=e(F;) =0,

S(Ki) =K', S(E)=-EK', S(F)=-KF.

5.2. Complexified Drinfeld—Jimbo QUE algebras. Let gbe asemi-simple Lie alg-
ebraofrank £, and g* # 0, 1. The complexified QUE algebra 1, (g) of g is the algebra
generated by 4/ generators K;, Ki_ VE Fi=1,...,4, subject to the relation we
gave above, except the following:

KiE K =q""E;, KiK' =",
K? - K2
EiFj - FjEi = Sijﬁ.
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The rest of the Hopf algebra structure is defined as

AK)=Ki®@Ki, AKKTH) =K '®K ",
AE)=E ®K; + K;'® E;, A(Fj):Fj®Kj+Kj_l®F'7
e(Ki) =1, e(E;) =¢e(F) =0,

S(Ki) =K', S(Ei) =-qiEi, S(F)=—q; F.

The Hopf algebra i, (g) is a Hopf *-algebra by

K'=K;, (Ki“=K;', Ef=F, F'=E.

1 1

Indeed,

AES)=Ef) QEipy =Ef @K + (K7)* @ Ef
=F @K + K ®F = A(F),

A(F) = Fity ® Fiby = FF @ K + (K7 @ F'
=E QK +K'®E = AE)).

It is straightforward to check the condition for the group-like elements K; and K;~ 1
As for the counit, we have

e(E;) = e(E[") = e(F;) = e(F) =0
and e(Ki) = e(K}) = e(K; 1) = e(K;7)™) = 1,

and finally for the antipodes we see that

S(E}) = S(F) =—q;'F; = ST (E)*,
S(F})=S(Ej) =—q;Ej = ST (F)*.

We took the definition of the complexified QUE algebra £l,(g) and its *-structure
from [26], in which the authors use the notation Uq (g). We also note from [26] that
the Hopf algebras U, (g) and 4l,(g) are not isomorphic in general. It also follows
directly from the new commutator relations that (Kgp, ¢) is a MPI over the Hopf
algebra 4, (g), where K§p = K?--. Kl% € Uy(9).

In view of Theorem 4.5 and Proposition 4.6 we conclude the following.

Corollary 5.1. Let g be a semi-simple Lie algebra of rank £. Then the Hopf-cyclic
cohomology HC* (44 (g), K™ k) of the complexified QUE algebra Uy (9) of g carriesa
nontrivial x-structure, and thus the Hopf-dihedral cohomologies H C? (44(g), K™y
of U4 (g) are well-defined for any m € N>,
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5.3. Complexified QUE algebra (,(sl2). The Hopf x-algebra Ll,(s/») is the

algebra generated by E, F, K and K~! subject to the relations
K? — K2
KK™'=1, KEK'=qE. KFK™'=¢'F, [E.F]=———F.
q9—4

The *-structure is defined by
K*=K and E*=F.
The rest of the Hopf x-algebra structure is given by
AK)y=K®K, AME)Y=EQK+K'®E, AF)=FQK+K'®F
eK)=eK)=1,  &(E)=eF)=0,
S(K*")y = KT, S(E)=-—qE, S(F)=-q 'F.
We finally note that (K2, ¢) is a MPI for the Hopf algebra I, (sl5).

5.4. Hopf-dihedral cohomology of L[, (sl2). Considering the Hopf subalgebra
T = k[K, K~ '] of {,(sl») generated by K™, m € Z, there is a canonical coextension
of coalgebras of the form wr: 4, (sl,) — T given by

K%, if =0,
ar(EYFUKY) = v
0, otherwise,

see also [23, Sect. 4].

Since the projection 77 is a map of coalgebras, we can consider each basis element
E*FYK"Y € $,(sl») as a 1-dimensional T-comodule. Then the spectral sequence
associated to the coextension mr: U, (sl2) — T (see [23, Sect. 3]) collapses onto
the ¢ = O line as

1®1), ifm=0,

0,0
EyT = .
0, otherwise,

EP =@U®E“F'K" ®---® E F" K" @ K™, ifr>1,
u,v
where u and v run over the vectors of dimension p of non-negative integers satisfying
the recursive formula
Wiy = w; + Uit + vig1) + (U +v;)
with the initial condition vy = vog = wy = 0, and the boundary conditions u,4+; =
Vr+1 = 0 and w,4+1 = m. Hence,
i-1
wi = (u; +v;) +2Y_ () +v))
j=1

for 1 <i <r + 1, and we note that m must be a positive even number.



88 A. Kaygun and S. Siitlii

Furthermore, ES* = ELS = HH"$(U,(sly), X" k), since the E;-term col-
lapses onto the s = Orow, and we see that the collection (P, ,,-.o HH" (4 (sl2), K" k)
of Hochschild cohomology groups form an algebra generated by

HH' (4, (1), X" k) = ((EK)"(KF)"|u + v = m).
Let us formally write
HH? Uy (s12). X" k) = (EK)". (KF)").
Then one can easily see that

HH'(Uy(s12). X" k) = @D HH? (U (s12). K" k) @ HH (U, (1), Kb,
ut+v=m
Combining with Proposition 4.6 we have the following result.
Theorem 5.2. The collection

P P HH WU (sh). K" k) (5.1)

peN(3) meN

of Hochschild cohomology groups form a *-algebra generated by HH 3 (Ug(sl2), K" k)
form € N.

Furthermore, recalling the Hopf-cyclic cohomology with generalized coefficients
from Proposition 4.4, we conclude the following.

Corollary 5.3. The Hopf-cyclic cohomology, with generalized coefficients, of the
complexified QUE algebra 4, (sl,) is given by

m SPR(EK)(KF)')|u+v=m), ifpiseven
Hcl’“ul,"k=( , ;
u"(sb)( a(sl2) ) 0, otherwise,

where S here denotes the iteration with the Bott element in cyclic cohomology. As a
result, the Hopf-dihedral cohomology of 14 (sl>) is

+1 K™
Hch(slz),i(uq(ﬂz), k)

B (SPI2((EK)“(KF)* £ (EK)"(KF)")|u +v=m), ifpiseven,
o, otherwise.
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5.5. Hopf-dihedral cohomology of complexified QUE algebras. Considering the
Hopf subalgebra T = k[KEL, ..., Klftl] of ,(g), generated by K" where i =
I,...,£ and m € Z, there is a canonical coextension of coalgebras of the form
ey (g) — T* given by

ﬂTe(Ei‘l ...EZZFIUI ~~-Fe”‘Ki‘” ...KZ’Z)

K ---Ké”‘f, ifug +---+ug+vi+---+v, =0,
0, otherwise.

In order to simplify the notation, we use multi-indices E" F¥ K" for any monomial of
the form E{" --- Eé” Fl- F;‘ K- Ké”f where u, v and w are elements in N>¢,

Theorem 5.4. For any complexified QUE algebra 1,(g), the Hochschild cohomology

groups
P P HH " (0). 5 )

pEN(3) meN>¢

SJorm a x-algebra generated by HH? Uy (9), K"k) = ((E] K"+ (K, Fj)”).
As aresult, the Hopf-cyclic cohomology with generalized coefficients is obtained

as follows.

Corollary 5.5. For any complexified QUE algebra 4,(g), the Hopf-cyclic cohomol-
ogy of 4(g) is given by

(Sp/z((EK)“(KF)V)| utv= m), if p is even,

HCPH (1, (g). K"k) =
ilq(g)( <(9) ) 0, otherwise,

where S is the iteration with the Bott element, and hence the Hopf-dihedral
cohomology of 4(g) is

HCLT ) 2 (84(0). K7 k)
_ {(Sp/z((EK)“(KF)V + (EK)"(KF)")|u+v=m), ifpiseven,

0, otherwise.

6. Hopf-dihedral homology

In this section we develop a x-structure on Hopf-cyclic homology, [25] and see
also [43], the cyclic dual of Hopf-cyclic cohomology.
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6.1. The dual cyclic theory. Let # be a Hopf algebra with a modular pair in in-
volution (o, §). It is shown in [25] that the graded space

CCo(H:0.8) = P H®" (6.1)

n>0

has the structure of a cyclic module via the face operators
0;:CCy(H#,8,0) — CCu_1(H,6,0)

defined fori < n by

ehHYh? ®--- @ h", ifi =0,
M@ @) ={n® - Qhht'Q..-@h", ifl<i<n-—1,
S @ -+ ® h", ifi =n.

The degeneracies, on the other hand, are of the form
0j:CC,(H#.,8,0) — CChy1(H,8,0)

defined for 0 <i <mn as

I1Qh ®---®h", if j =0,
oW @) ={hQ - QW IQI T Q@.--@h", ifl<j<n-—1,
M --hel, if j =n.

Finally, we have the cyclic operators t,: CC, (#,8,0) — CC,(H, 8, 0) given by
Ta(h' ® -~ @ B") = 8(hiy)Se(hiyy .. hy) @ hyy ® -+ @ hiy',

where Sy (h) := oS (h) for any h € H#. The cyclic homology of the complex (6.1)
is called the Hopf-cyclic homology of the Hopf algebra #, and is denoted by
HCo(#;0,6).

6.2. Comodule algebras, invariant traces, and Hopf-cyclic homology. Let 4 be a
right #-comodule algebraby V: A —> A®JH, where we write V(a) = a_,. ®a_,_,
that is,

V(ab) = V(a)V(D), V() =111

Let also # be equipped with a o-invariant §-trace, that is, Tr: A —> k satisfying

Tr(a_,. )a = Tr(a)o, Tr(ab) = Tr(ba_,.)d(a_,.).

<1>

In the presence of these conditions we have

y:CC, (A) —> CC,(H,6,0)
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a morphism of cyclic modules given by
Y(ao ® - ®ay) :=Tr(aoai_g. .. . An_o=)a1= @ - R dp_,- . (6.2)

Then, just as in the previous section, (6.2) induces the cyclic module structure on
B, HE" ! as defined in [25].

In particular, a Hopf algebra J is a #/-comodule algebra via its comultiplication.
This way one can compare the Hopf-cyclic homology of # with the algebra cyclic
homology of J# regarding it as an algebra. To this end, it is noted in [25, Prop. 3.2]
that if # is a Hopf algebra with a group-like o € J# such that S? = 1d, then

0:CC,(H,e,0) —> CC,(H),
which is defined as
O(hy @ -+ ®h") := So(h'yh%0) ... ") @ 'y ® -+~ @ W), (6.3)

is a map of cyclic modules. If furthermore, # is equipped with a o-invariant trace
Tr: # — k such that Tr(o) is invertible in k, then it follows from y o 8 = Tr(o) Id
that HCe(H, &, 0) is a direct summand of H Ce(H), [25, Thm. 3.1].

We finally record here that setting Ho(H) := TorZ (k, k) for a cocommutative
Hopf algebra #, it follows from [25, Thm. 4.1] that

HC,(H,e.1) = @D Hpi (),
i>0
which proven by Karoubi [20] in case # = kG.

6.3. The dihedral structure. Let us now assume that # is a Hopf *x-coalgebra,

i.e. a *-coalgebra L
A(h™) = hy ® Iy, e(h™) = e(h)

such that
(hg)* =h*g*, 1*=1, (Sox)?=1d,

and that + a J-comodule x-algebra, i.e.
Va*y=a_,*®S@a_, ) =a,*®S a_.*, VYacdah.

We also assume that §(h*) = §(h) and that 0* = o~ '. In order to obtain a
k-structure on CCq(H, 8, 0) we use (6.2) to transfer the one on CCq(H). To this end
we introduce cyclic operators

7,: CCn(H,6,0) —> CC,(J,6,0)
by
‘En(hl Q---®h") = 8(/’1"(2))Sg(h1(1) L) ® o @ - @h ), (6.4)
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and involution operators w,: CC,(#,8,0) —> CC,(#,5,0) by

a)n(hl ®---Qh") = 8(]11(1);k .. hn(l)*)S_l(hn(Z)*) K- & S_l(hl(z)*)

_ ¢—1lgpn* —1,p1% 1* n* 6.5)
=S )-S5 W) .. " ).

We then leave it to the reader to verify that we thus get a dihedral module structure
on @)z .

We next record here that [25, Thm. 3.1] also extends to the dihedral setting. We
will make use of the fact that if # is a Hopf *-coalgebra, then J is a x-algebra
via * o §. If, in particular, # is cocommutative, then we may take * = Id for the
Hopf *-coalgebra structure.

We denote the (dihedral) homology of this dihedral module by HCX(¥;0,§),
and call it the Hopf-dihedral homology.

Proposition 6.1. The characteristic homomorphism (6.2) defines a morphism of
dihedral modules of the form y: CCE(A) — CCE(H; 0, ).

Proof. 1t follows already from [25, Prop. 3.1] that 7,y = y 1, on CC,(+). It then
takes a straightforward calculation to check that (6.2) is compatible with w,. L]

Theorem 6.2. Let # be a Hopf algebra equipped with a modular pair (g,0) in
involution, and a o-invariant trace Tr: H —> k such that Tr(o) € k is invertible.
Then HCE(H;0,¢) is a direct summand of HCE(J).

Proof. We have already observed in Proposition 6.1 that (6.2) is a map of dihedral
modules. Furthermore, it is checked in [25, Thm. 3.1] that y 0 8 = Tr(c) Id. On the
other hand, it is shown in [25, Prop. 3.2] that (6.3) is a cyclic map. We are then left
to observe that

(' ® - @ h")
= wn(Se(h'y ... K1) ®hlo) @ - @ h"2))
= (S2(h'w ... ") TH* @ S(h"2)* ® - @ S(h'e)*
=852 e @ ST M) @ @ ST e )
=ohle)" .. "0 @S @0 ST ()
= Se (ST "W). ST ' N @ ST e ) ®@ - ® ST (e )
=0(STI W) @---® STUA'TY)
= 0w,(h' ®---® h"),

that is (6.3) is a map of dihedral modules. ]
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6.4. Hopf-dihedral homology of cocommutative Hopf algebras. In this subsec-
tion, we extend [25, Sect. 4] to the dihedral setting, and we compute the Hopf-dihedral
homology of cocommutative Hopf algebras. To this end, we first recall the path
space E H.o of the Hopf algebra #, which is defined on the graded module level as
E 3, := #®"*1 whose simplicial structure is given by

Re---@hht'e---@h", if0<i<n-1,
S0 ® -+ @ h 1, ifi =n,
o;(h°® @) =h"® - @h @1h 1 g --®h, 0<j=<n.

0, ®---@n") =

The simplicial module E #, is contractible, and is a resolution for k via §: H — k.

Lemma 6.3. If K is a cocommutative Hopf algebra, then E H, is a dihedral module

by
tn(ho ®---Qh") = n'ay .. W) ® S(hl(z) L h)®he @ ® "l
(6.6)
and

a)n(ho ®---Qh") = WOntay ... k") ® S_l(hna)) R ® S_l(hl(z)). 6.7)

Proof. 1t is checked in [25, Lem. 4.2] that E #, is a cyclic module via (6.6). As a
result, we have

0ith = Tn—10i—-1, 0iTn = Tn410n—1, 1<i<n
already. We next check that
wp(B° @ -+ @ h") = hoh{yy ... h{y ST (hy) ... ST (h' )
® STHS T hiy)) ® - @ STHS T (hy)
QS22 @ ® S2(h")
=h"Q®---®h",
that is w2 = Id. Moreover we have
diwn(h° Q- @ W) = hoh(ll) by ® S_l(h’gz)) Q-
@ STHRG ST ) © - @ ST (hy)
= 0pp—i(h° @ --- @ I"),
and

ojon(h® @+ ®h") = hOhy) ... hy) & ST (hy) ® - ® ST (™)
®1® S_l(hzlz_)j) R ® S—l(hgz))

= Wy (I° ®--- @ h").
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Finally, we see that

(tnwn)(R® @ -+ @ h") = hh{yy ... By ST (h(yy) ... ST (hy)
® S(STH(h(y) ... ST (h(z)) @ ST (h{y) ® - ® ST (hy)
=h @h'h{yy ... by ® STH(hy) ® - ® ST (hEy),

and hence

(thwn)?’(W° ®---@h") =h’® hlhfl) . h’(’l)S‘l(hz’z)) . S‘l(hé))
® ST (hiy) ® - ® S (hy)
=h®.---®h",

that is 7,w, Thw, = Id, or equivalently t,w, = w,7, 1 O

Lemma 6.4. If # is a cocommutative Hopf algebra, then w: E #,, —> CC,(J; 1,¢)
defined as

T’ Q- @h) ="' @ --- @ h"
is a map of dihedral modules.

Proof. As aresult of [25, Lem. 4.2] it suffices to observe

Toa(h® @ -+ @ h") = e(h®)e(h(yy ... h{)S ™ (hy) ® -+ ® ST (h(y)
= (o, (W' ®---® h")
= wnn(ho ®---Qh"),

as we wanted to show. 0
Theorem 6.5. If # is a cocommutative Hopf algebra, then for any n > 0

HCF(H:1.8) = @D Hyai(H. k) and HC, (¥:1.6) = P Hysia(H. k).

i>0 i>0
Proof. Let us first note that E J, is a (left) #-module by
h-(h°®---®h")=hh"®---®h",
and hence CCo(H; 1,¢) = k ® g E Ho. Moreover, as a result of Lemma 6.4 we have
CCE(H:1,6) =~ k Qg CCE(EIH,)

as bicomplexes where the latter is the dihedral bicomplex of the dihedral module E F,.
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Since E #, is contractible the vertical homology vanishes, and since &: # — k
is the contracting homotopy, the double complex CC (E #,) is a (Cartan—Eilenberg)
resolution for

kf k«—0«—0«—0«—k<«—0<«—0«—0<«—---
and CC, (E #,) is for
kg  0«—0<«—k<«—0<«—0«—0<«—k<«—0<«—0<«—---
As aresult,
HCH(H:1,6) = Hy(Tot(CCT (H; 1. ¢))) = Hy(Tot(k ®g CCT(EH)))
= Hy(k ® g Tot(CCT(EH))) = H, (¥, k),
and similarly
HC, (#:1,6) = Hy(Tot(CC™(¥#:1,¢))) = Hy(Tot(k ® 3 CC(EH)))
= H, (k Rz Tot(CC_(EJnf))) = H,(#,k,),
where the latter objects are the hyperhomologies of the complexes k7 and kj,
respectively. Since the hyperhomology is independent of the (Cartan—Eilenberg)
resolution chosen, we can replace the double complex CCJ (E #,) with one having
zeros as the horizontal maps, and having resolutions of k on the zeroth (mod 4)

column. Similarly, we replace the double complex CC, (E #,) with one having
resolutions of k on the second (mod 4) column. Therefore, for the +1-eigenspace

we get

Hy(H. k) ])
0

Hy(H, k) ~—— -
Ho(#. k) Ho(H, k) <~ -

and for the —1-eigenspace we get

B
0<—0<— Ho(H, k) 0 0 0 Ho(H,k) < -
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on the E5-page (and hence on the E,-page, since the horizontal maps are zero) of the
bicomplex computing the hyperhomology H,, (¥, kF). The claim then follows. [

We finally relate the Hopf-dihedral homology of a group algebra to the dihedral
group homology. We recall the basic facts from [27]. Let G be a (discrete) group,
and A be the group algebra kG. Then the graded space given by

EA, :=Span{go®--- ® gn € CC;y(A) | go...8n =1} (6.8)

form a dihedral submodule of the standard dihedral module CCE (4). The dihedral
homology of this dihedral module is called the dihedral group homology of the
group G, and is denoted by HCZ (G, k).

It follows at once from [27, Cor. 4.4] and Theorem 6.5 that the Hopf-dihedral
homology of the Hopf algebra kG is isomorphic to the dihedral group homology of
the group G. In the following proposition we record also the explicit isomorphism
between the complexes.

Proposition 6.6. For any (discrete) group G, HCE(kG; 1,8) = HCF (G, k).
Proof. Tt follows from (6.8) that 6,,: CC,“Z—L (kG;1,e) — EkGFE given by

On(g1®  Rgn) =(g1...81) ' ®gI ® R gn (6.9)

is an isomorphism. It is also straightforward from the proof of Theorem 6.2 that (6.9)
is a map of dihedral modules. O

As a result, we recover [27, Thm. 4.5] from Theorem 6.2. Moreover, from

HCZ(G.k) =~ HC*(kG: 1, 5)
= Hpt1a-1(G. k) ® Hyrq5(H . k) ® Hytqo(H k) @ ---

for o = %1 we get the embeddings

ig: Hy(G.k) — HCZ,,,(G.k), o= (-1)". (6.10)

7. Hopf-dihedral homology and L -theory

7.1. Hopf-dihedral Chern character. In this subsection we realize the Chern
character as a homomorphism with values in the Hopf-dihedral homology. More
precisely, given an involutive ring +, we will transfer the KU -groups of +4 to the
Hopf-dihedral homology of a Hopf algebra # on which # is a comodule algebra.
Let us first recall the construction of the KU -functor from [4,27]. For the L-functor,
we refer the reader to [13, 14], and the references therein.
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Let +A be an algebra with involution, and Uj; (+4) the set of 2n X 2n matrices with
coeflicients in 4 preserving the quadratic form

(0 I,
6J_(eln 0)'

We note from [21] that they are the matrices satisfying M*M = MM* = [,,,

where ; ;
«_ (D" €B (A B
M _(ecT AT)’ M‘(c D)'
Here { denotes the conjugate transpose of an n x n matrix. We note also from [21,
Ex. 4.16] that U} (R) = O(n,n), and U, }(R) = Sp(2n,R). Now we set

U€(4A) := colim, Uy (A),

and following [27] we denote by BU € (+) the classifying space of the group U € (+4).
It follows from [4, Prop. 5.1(b) and Thm. 5.2] that the second derived subgroup
of U€(+) is equal to its first derived subgroup, i.e. it is quasi-perfect. Thus, the
commutator subgroup of U € (+) is a perfect normal subgroup. As a result, the plus
construction [2,24,40] can be applied to the classifying space BU € (+4) to obtain the
space BU€(#4)™ such that

Ho(BU¢(A)) = Ho(BUS(4)T)
and that
Us(A)
[U€(A), U(A)]
Then, by definition [21, Def. 4.17], the Hermitian algebraic K-theory of the algebra 4
is given by

i (BUS(A)T) =

KUS(A) := m(BUS(A)T), n>1,

and forn = 0, KU (+) is the Grothendieck group of the category of non-degenerate
quadratic forms over 4. We now consider the composition

€ i o € Js o €
Hy(US(A), k) = HC® 5, (US(A), k) =5 HCE,, (KUS (A))

Je a Tre o
— HC , (Map(A)) — HCJ 5 (A),

where @ = (—1)*, and
(i) iy is the mapping given by (6.10),

(ii) Jjs+2¢ is the map induced by the inclusion of the dihedral group homology of a
group into the dihedral homology of the group algebra of this group,

(iii) Jy is induced by the inclusion of kU (+4) into M, (),

(iv) Try is induced by the trace map inducing the Morita isomorphism.
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Taking colimit over n we obtain the mappings
LY Hy(US(A) k) — HCZ,,,(#A)
for £ > 0 and a = (—1)*. Finally, the dihedral Chern character
Ché: KUS(A) — HC(A), s>0, a = (-1, (7.1)

is defined to be the composition

KUE(A) = ng(BUS(A)T) LN Hg(BUS(A)T)
o Hy(BUS(A)) = Hy(US(A). k) =5 HCE(A),

where / is the Hurewicz homomorphism. In particular we have

Chf;: KUg (A) LA HCJ (M3, (4)) e HCJ,(A), (7.2)
where S¢: [p] = [p Q-+ ® p].

7.2. Hopf-dihedral homology of a group ring. Following [35], we note from [19,
37] that the problems of modifying even-dimensional multiply-connected manifolds
with fundamental group 7 leads to a need to compute KUy(Zrw) for the group
algebra Zm. As for the odd-dimensional manifolds, it is shown in [38] that one
similarly needs to study K U; (Z ), where 7 is the fundamental group of the manifold.
See also [45].

Motivated by these discussions, we will study the dihedral Chern character
map (7.1) for the group algebra A = kx for a group w. We will show that the
dihedral Chern character (7.1) lands in the Hopf-dihedral homology of k7 which is a
direct summand of the algebra dihedral homology of k7. In view of Theorem 6.5 we
gain a computational advantage relating the K U -groups of k 7 to the group homology
of the group 7.

Theorem 7.1. Let w be a (discrete) group, and A = km the group algebra of
the group . Then the dihedral Chern character (7.1) lands in the Hopf-dihedral
homology of the Hopf algebra k.

Proof. We first note, as a result of Proposition 6.6, that we may replace, up to hom-
ology, the inclusion

Jor HCE (U (A), k) —> HCF (kU (A)),
by the section

Bo: HCE(KUE(A); 1,6) — HCE(KUSE(A))
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of the characteristic homomorphism
Yo: HCE(KUE(A)) — HCE(KUE(A): 1, ¢).

It then follows from Equation (6.9) that the image of 6, is the [1]-component of the
decomposition of the cyclic homology H Ce(kU,; (A)) along the conjugacy classes
of elements [z] in Up; (A)

@ HCo(k[B.(US(A),, 2)])
[z]

as described in [7] and [29, Sect. 7.4]. Now, the trace map induces a map on homology
of the form

Tre: HCu(k[B.(US (4),. 1)]) — HCu(k[B.(7)1]. 1).

Then by [7, Thm. I] we know that the [1]-component has homology of the form

HC(k[B.(m)1. D)) = €D He-2i ().

i>0

The result then follows. OJ

7.3. Podles spheres. We next recall from [36] the (two parameters) quantum Podle$
sphere O(S,(c,d)), along with the coaction of the coordinate (Hopf) algebra
O(SU4(2)) of the quantum group SU,(2).

The compact quantum group (CQG) algebra O (S U, (2)) is the algebra generated
by x,u, v, y subject to the relations

UX = gxu, VX = ¢gXV, yu = quy, yv =4qvy,

1

VU = UV, Xy —q uUv=yx —quv =1,

and its Hopf algebra structure is given by

AX)=x®@x+u®v, A)=xQu+u®y,
AR) =v®x+y®v, A())=vQu+y®y,
ex)y=¢e(y) =1, eu)=¢l) =0,
S =y, S =x, Swu)=-qu, Sv)=-¢""v,
see also [31]. We next note from [26, Prop. 11.34] that there is a family { f; },ec of
characters of @ (SUy,(2)), uniquely determined by

(i) the functions z + f,(a) is an entire function of exponential growth on the
right-half plane for any a € O(SU,;(2)),

() fzfz = fz4+z, with fo = ¢,
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(iii) h(ab) = h(b(f1-a- f1)),forany a,b € O(SU;(2)), and the Haar state h,
satisfying!

S*@) = for-a- fi,  f:(S@) = f-z(a)

for any a € O(SU,(2)). As aresult, the pair (fi, 1) is a MPI for the Hopf algebra
O(SU4(2)). Indeed,

Si(a) = fila@)Saqy) = S(fi -a),

and therefore,

St(@) = filaa) f1(S(aw)S*(aw)
= fila@) f-1(aq)) S (a@)
=S*(fi-a- fo1) =a.
The Podles spheres O (S, (c, d)) on the other hand, is defined to be the algebra
generated by z_1, zg, z1 subject to the relations
2y —qz1z—1 —q 'zo1z = d1,
(1—¢*)z§ +qz—121 —qz1z—1 = (1 — ¢*)czo, 7.3
z-120 — q*zoz—1 = (1 — ¢*)cz_q, .

z0z1 — q*z1z0 = (1 — ¢*)ezy.

In particular, the algebra O(S, (s, 1 + 5)) is denoted simply by O (Sz), and it can
be realized as a subalgebra of O(SU,(2)) viaa; +— a; fori = —1,0, 1 where

=01 +q2)_1/2x2 1501 +q_2)1/2xv — 40 +q2)_1/2v2,
Zo:=ux +s(1 + (¢ + ¢ "Huv) — vy,

2= (1 + )T s+ 7)) Pyu— g1+ ¢H)712)2

The algebra O (S 3s) carries the *-structure given by

7" = (=) 2.

11t follows from the (non-degenerate) pairing between the CQG algebra @ (SU,(2)) and the QUE
algebra Uy (suy), for the details of which we refer the reader to [42], that the character f; corresponds
to the evaluation by K2 € U, (su2).
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In case s = 0, the algebra @ (S ;0) is called the standard Podles sphere, and is denoted
by (9(S;). Next, we recall the O (S U, (2))-coaction from [26, Prop. 4.25]. To this
end, let

W-1,-1 W-1,0 W-1,1
Wi = (wi,j)ijet-1,01y = | Wo,—1  Wo0  Wo,1
Wi,—1 Ww1,0 Wi,1

x2 (1 +¢>"2xu u?
=|0+¢»Y2xv 1+ (g+g Huv (1 +¢>)"?uy
U2 (1 +q2)1/2vy y2

Then, the comultiplication on @ (S Uy, (2)) induces (once a;’s are identified with a;’s)
a coaction of the form V: O(S7) — O(S7) ® O(SU,(2)),

V(zi) =zj @ wj;,

where i, j € {—1, 0, 1}. A left version of this coaction can be found in [32].
Let us next recall from [42], and from [6, 39], that the Podle$ sphere is a (left)
coideal subalgebra, as such, taking the quotient by the Hopf ideal

+
[ =0(S7,) " 0(SUy(2)),
we obtain the @ (U(1))-comodule algebra structure

0

O(Sg,) ® O(U(1))

\A\M

O(S7,) ® O(SUq(2))

O(Sg,)

where @ (U(1)) is the Hopf algebra (of regular functions on the circle) generated by
two group-likes o, o=, Explicitly, p: O(S ;s) — O(qus) ® O(U(1)) is defined as
p(z-1) =21 ® 02,

p(z0) = 2o ® 1,

p(z1) =21 ® 02
We further note from [26, Sect. 4.5] that setting

O(S2)ln] = {a € O(SZ) | pla) = a ® "},

we have zilz({z’f € O(qus)[2i — 2k], where i, j, k > 0, that

0(S2) = @ 05z 12m), (7.4)

meZ

and that the Haar state & vanishes on O (S gs)[2m] for m # 0.
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Lemma 7.2. The Haar state h of the CQG algebra O(SU,(2)) induces a 1-invariant
fi-trace on the algebra (9(55).

Proof. Forany a,b € O(SU;(2)), it follows from the modular property of the Haar
functional that

h(ab) = h(b(f1-a- f1)) = h(b(a - f1))
= h(b(f1-a@)) Nilaw) = h(b(f1-a))
= h(bay) f1(ac)).

using, on the fourth equality, the fact that fi(aq))ae) = a for any a € O(S7)),
see for instance [42, Eq. (22)]. Next, by the invariance property [26, Def. 4.3], see
also [36] we readily have

h(auy)ae) = apyh(aw)) = ha)l,
forany a € O(SU,(2)). O
As aresult, we have the characteristic homomorphism
Yn: CCn(O(S,)) —> CCL(OU(1)); 1, ¢)
defined as
Yn(ao ® -+ @ an) 1= h(aodips ---Anoo=)di = @+ ® an_,- (7.5)

to transfer the KU-classes of O(S ;s) to the Hopf-dihedral homology of the
(cocommutative) Hopf algebra O (U(1)).
By means of the Hopf-dihedral Chern character

Chy: KUy (0(S2,) — HCF(OU(1): 1, ¢).

we have the Hopf-dihedral homology of O(U(1)) to classify the KU-classes
of O(S qzs).
We consider the composition

Hu(Ug(O(SZ)), k) — HCpr 5 (Us(O(S3,)), k) — HCpr, (O(U(1)), k),
where @ = (—1)*. Since
Ho(O(S"). k) = Ho(Z.k) =k,
H{(O(SY)., k) = H|(Z,k) = (o) =k,
H,(O(SY). k) = Hy(Z, k) =0, m>2,

for the details of which we refer the reader to [5], we have

Ho(US(O(S2)). k) = kye ocs2,)) = k = kz = Ho(Z. k).
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As for H(Ug(O(SZ,)). k), we first recall that since BU€(O(SZ))* is path
connected, the Hurewicz map

U< (0(S5F))

N

[U€(O(SF5)). U<(O(S))]

h: KU (O(S%)) = m(BU(O(S3))T) =

T (BUS(O(SZ,))")
RN
[r1(BUS(O(SZ:)T). mi(BU(O(SZ,)) )]

s s

= H1(U; (0(Sg,)). k)

is the canonical abelianization, and therefore in this case is identity. On the other
hand, it follows from the relations (7.3) that the element

"y = g zg V1+4q72z
V14q%z4 qzo

is a unitary matrix on O (S qz). Hence, for any
a p ¢
(V 9) € Ui (R)

® ®
M= (‘;‘ o ‘2@;‘) € US,(0(52)).

we have

For simplicity, we may take

_ 0 el, @u 6 2
M = (Eln o u 0 ) € U;,(0(S5)))-

Then,
M] —~ |: Z h(M_liOi] Mi]i0<0>)Mi1i0<1>:|

1<ig,i1 <2n
— E oo .
- [ nh(u 1011u1110<0>)u1110<1>

1<ig,i1 <2n

=2n((1 + ¢ Hh(z7z1) = (1 + g2 2-0)) o]

This proves that an element [M] € K UO+ (] (Sg)) is sent to a non-trivial element in
HC; (O(U(1)); 1, &) under the dihedral Chern character. Thus we proved

Theorem 7.3. KU (O(S2)) is non-trivial.
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