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Properties and applications
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Abstract. In the first part of this series, we defined an equivariant index without assuming the
group acting or the orbit space of the action to be compact. This allowed us to generalise an
index of deformed Dirac operators, defined for compact groups by Braverman. In this paper, we
investigate properties and applications of this index. We prove that it has an induction property
that can be used to deduce various other properties of the index. In the case of compact orbit
spaces, the index is a special case of Kasparov’s index of transversally elliptic operators. In that
case, we show how it is related to the analytic assembly map from the Baum–Connes conjecture,
and an index used by Mathai and Zhang. In the case of noncompact orbit spaces, we use the
index to define a notion of K-homological Dirac induction, and show that, under conditions, it
satisfies the quantisation commutes with reduction principle.
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1. Introduction

In Part I of this series, an equivariant index was developed that applies to actions
by possibly noncompact groups, and with possibly noncompact orbit spaces. To
recall the definition of this index, we let G be an almost connected Lie group
(i.e. having finitely many connected components), acting properly and isometrically
on a Riemannian manifold M . Let E D EC ˚ E� be a Z2-graded, Hermitian,
G-equivariant vector bundle. Let D be an odd, self-adjoint, G-equivariant, first
order differential operator on E . If M and G are compact, then we have the usual
equivariant index

indexG.D/ WD
�
kerDC

�
�
�
kerD�

�
2 R.G/;

where D˙ is the restriction of D to �1.E˙/, and R.G/ is the representation ring
of G.

The definition of the equivariant index has been generalised to cases where either
the orbit space M=G or the group G is compact. If M=G is compact, then one
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has the analytic assembly map from the Baum–Connes conjecture [6] for elliptic
operators, and Kasparov’s index of transversally elliptic operators [27]. If G is
compact, then Braverman [9] defined an index of a natural class of deformed Dirac
operators. This, and equivalent indices, has been used very successfully in geometric
quantisation [23, 30, 33].

The techniques used in the cases whereM=G orG are compact are very different.
If M=G is compact, one can use operator algebraic techniques to obtain an index
in the K-theory or K-homology of a C �-algebra related to the group G. If G is
compact, it is natural to define an index in the completed representation ring

yR.G/ WD
˚M
�2 yG

m�� I m� 2 Z
	
:

Because of the different approaches in the two cases, it is not immediately clear
how to construct a common generalisation, i.e. an equivariant index that can be used
when bothM=G andG are noncompact. This was done in [22], where the condition
ofD being G-Fredholm was introduced, which implies thatD has a G-index

indexG.D/ 2 KK
�
C0.G=K/ ÌG;C

�
:

HereK < G is amaximal compact subgroup. ThisK-homology group of the crossed
product C0.G=K/ Ì G can be identified with yR.K/ via the Morita equivalence
C0.G=K/ ÌG � C �K. IfM=G is compact, then Kasparov’s index of transversally
elliptic operators [27] can be used to define this index. If M=G is noncompact,
however, that is no longer the case. The main result in [22] is that a natural class
of deformed Dirac operators is G-Fredholm, even if M=G is noncompact. This
completes Table 1, by filling in the bottom-right entry.

M=G compact,
D transversally elliptic

M=G noncompact,
D a deformed Dirac operator

G compact Atiyah, 1974 [4] Braverman, 2002 [9]
G noncompact Kasparov, 2015 [27] Part I, 2017 [22]

Table 1. Special cases of the G-index

As far as the authors are aware, the G-index is the first equivariant index that
applies in cases where both M=G and G are noncompact. Here by an equivariant
index, we mean an index taking values in an object defined purely in terms of the
group acting.

In the present paper, we study properties of the G-index of deformed Dirac
operators. We start by proving an induction property of the index. This is an explicit
description of the image of the G-index in yR.K/ in terms of data on a global,
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K-invariant slice N � M such that M D G �K N . Besides giving a better
understanding of the G-index, the induction property can also be used to prove
various other properties of it.

One such property is a relation with the analytic assembly map from the Baum–
Connes conjecture [6] if M=G is compact. If G is semisimple with discrete series
representations, then it turns out that for Dirac-type operators, the assembly map can
be recovered directly from the G-index. Another application of the induction result
is a quantisation commutes with reduction property of the G-index. This generalises
the main result in [23], where G was assumed to be compact.

Independently of the induction result, we give a second relation between the
G-index and the assembly map, and an index defined by Mathai and Zhang [31],
if M=G is compact. But our main interest is in cases where both M=G and G are
noncompact, which are furthest removed from existing index theory. One example
of this setting is the action by G on T �.G=K/. In that case, we use the G-index
to define a version of the Dirac induction isomorphism from the Connes–Kasparov
conjecture, which is now defined on yR.K/.

In Part III of this series [21], we show that the G-index reduces to two more
explicit indices in special cases. One is an index defined in terms of multiplicities
of discrete series representations of semisimple Lie groups, another is the invariant
index studied in [10,19]. This leads to quantisation commutes with reduction results
for those indices, and vanishing theorems on Spin manifolds.

Acknowledgements. The authors thank Maxim Braverman, Nigel Higson, Gennadi
Kasparov, Mathai Varghese and Guoliang Yu for interesting and helpful discussions.
The first author was supported by the European Union, through Marie Curie
fellowship PIOF-GA-2011-299300.

2. Preliminaries

Let G be an almost connected Lie group, i.e. having finitely many connected
components. We recall the definition of G-Fredholm operators and their G-indices,
as introduced in Part I of this series [22]. We also state the main result from [22],
that deformed Dirac operators areG-Fredholm. Finally, we recall the notion of Dirac
induction used in the Connes–Kasparov conjecture, which will be used in some of
the applications.

2.1. The G -index. For the rest of this paper, we fix a maximal compact subgroup
K < G, and a proper, isometric action by G on a Riemannian manifoldM . We will
identify T �M Š TM using this metric where convenient, and denote the space of
vector fields onM by X.M/. Let E D EC ˚ E� !M be a Z2-graded, Hermitian
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vector bundle. Suppose the action by G lifts to E , preserving the grading and the
Hermitian metric.

Since the action is proper, Abels’ theorem [1] guarantees the existence of a smooth,
equivariant map

pWM ! G=K:

Equivalently, we have a G-equivariant diffeomorphism

M Š G �K N (2.1)

via the action map, with N WD p�1.eK/. Pullback along p defines a G-equivarant
map

p�WC0.G=K/! Cb.M/:

This induces a �-homomorphism

p�G WC0.G=K/ ÌG ! Cb.M/ ÌG

between crossed-product C �-algebras [40].
The representation by Cb.M/ in L2.E/ by pointwise multiplication, and the

unitary representation of G in L2.E/ combine to a representation

�G;Cb.M/WCb.M/ ÌG ! B
�
L2.E/

�
:

Conider the representation

�
p

G;G=K
WD �G;Cb.M/ ı p

�
G WC0.G=K/ ÌG ! B

�
L2.E/

�
:

It is explicitly given by�
�
p

G;G=K
.'/s

�
.m/ D

Z
G

'
�
g; p.m/

�
g �
�
s.g�1m/

�
dg;

for ' 2 Cc.G; C0.G=K//, s 2 L2.E/ and m 2M .
LetD be an odd, self-adjoint,G-equivariant, first order differential operator on E .

In [22], the operatorD was defined to be G-Fredholm for p if the triple�
L2.E/;

D
p
D2 C 1

; �
p

G;G=K

�
(2.2)

is a Kasparov .C0.G=K/ Ì G;C/-cycle. Then the G-index of D is defined as the
class

indexpG.D/ 2 KK
�
C0.G=K/ ÌG;C

�
of (2.2). Via the Morita equivalence C0.G=K/ Ì G � C �K, this index can be
identified with an element of

KK.C �K;C/ D yR.K/ WD
˚M
�2 yK

m�� I m� 2 Z
	
:
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IfD isG-Fredholm for anymapp as above, then it is calledG-Fredholm. ItsG-index
is then independent of p (see Lemma 3.2 in [22]), and denoted by indexG.D/.

If D is transversally elliptic in the sense of Definition 6.1 in [27], then Kasparov
showed that it defines a class

ŒD� 2 KK
�
C0.M/ ÌG;C

�
;

see Proposition 6.4 in [27]. IfM=G is compact, then the map p is proper, and hence
induces a map

p�WKK
�
C0.M/ ÌG;C

�
! KK

�
C0.G=K/ ÌG;C

�
:

In this case, Kasparov’s arguments show that D is G-Fredholm, and we have
indexpG.D/ D p�ŒD�. (See also Remark 8.19 in [27].) The G-index of D is then a
generalisation of Atiyah’s index of transversally elliptic operators [4] to noncompact
groups.

If M=G is noncompact, then the map p� is not defined, and one has to use
different arguments to prove that a given operator is G-Fredholm. In that case, a
relevant class ofG-Fredholm operators is obtained by applying a natural deformation
to Dirac-type operators.

2.2. DeformedDirac operators. Suppose thatM is complete in the givenRiemann-
ian metric. Let

cWTM ! End.E/

be a vector bundle endomorphism into the odd endomorphisms, such that for all
v 2 TM ,

c.v/2 D �kvk2:

Suppose that c.g � v/ D g ı c.v/ ı g�1 for all g 2 G and v 2 TM .
LetrE be aG-invariant Hermitian connection on E , such that for all vector fields

v;w 2 X.M/, �
r

E
v ; c.w/

�
D c.rTMv w/;

where rTM is the Levi-Civita connection of the Riemannian metric. Then we have
the Dirac operator

D WD c ı rE
W�1.E/! �1.E/:

Let  WM ! g be aG-equivariant smooth map, with respect to the adjoint action
by G on the Lie algebra g. This map defines a vector field v 2 X.M/ by

v m WD
d

dt

ˇ̌̌̌
tD0

exp.�t .m// �m;
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for allm 2M . A key assumption we make is that the set Zeroes.v / �M of zeroes
of v is cocompact, i.e. Zeroes.v /=G is compact. The Dirac operator deformed
by  is the operator

D WD D �
p
�1c.v /: (2.3)

Given a real-valued function � 2 C1.M/G , we call a nonnegative function
f 2 C1.M/G �-admissible if, outside a cocompact set,

f 2

kdf k C f C 1
� �:

Such functions exist for all �, see Lemma 3.10 in [22].
Suppose for now thatG D K is compact. A re-interpretation of Theorem2.9 in [9]

is that there is a function � 2 C1.M/k , such that for all �-admissible functions f ,
the operatorDf  is K-Fredholm. (See also Proposition 3.5.) Then its index

indexK.Df  / 2 KK.C �K;C/ D yR.K/

is the index studied in [9] (see Lemma 2.9 in [22]). It is independent of f and rE .
The main result in [22] is that this generalises to noncompact groups.

Theorem 2.1. There is a function �G 2 C1.M/G such that for all �-admissible
functions f , the operatorDf  is G-Fredholm for p.

See Theorem 3.12 in [22]. Furthermore, theG-index ofDf  is independent ofp,
f , rE , and the Riemannian metric on TM , as stated precisely in Proposition 3.13
in [22].

Deformed Dirac operators of the form (2.3) were already used on compact
manifolds by Tian and Zhang [37] to give an analytic proof of Guillemin and
Sternberg’s quantisation commutes with reduction conjecture. For noncompact
manifolds, but compact groups, index theory of deformed Dirac operators was
developed by Braverman. He proved that their indices are invariant under a suitable
notion of cobordism. He also showed that this index equals an index involving
deformations of principal symbols of Dirac operators. The latter index was used
in Vergne’s conjecture [38], proved by Ma and Zhang [30]. Paradan [33] gave a
different proof of this conjecture. For proper actions by possibly noncompact groups,
Braverman [10] studied an index of deformed Dirac operators that turns out to be the
K-invariant part of the equivariant index defined here (see Proposition 2.4 in [21]).

Callias-type deformations of Dirac operators [3,11–13,28] are of a different, and
simpler, nature than operators of the form (2.3). A Callias-type deformation is of
the form D C T , where T is a vector bundle endomorphism such that TD C TD
is a bounded, order zero operator, and TD C TD C T 2 has a uniform lower bound
outside a compact set. Under these conditions, D C T is a Fredholm operator, and
has finite-dimensional kernel. If G is compact, then the deformation term in (2.3)
only has bounded anticommutator withD when restricted toG-isotypical subspaces.
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This means that the kernels of the deformed Dirac operators we consider are infinite-
dimensional in general, although they contain every irreducible representation of K
with finite multiplicity. This is important for the construction of infinite-dimensional
representations as indices, see for example [24, 32]. If G is noncompact, then the
difference with Callias-type operators is even greater.

In this paper, we study properties of the G-index of deformed Dirac operators,
and relations with the analytic assembly map [6].

2.3. Dirac induction. In some of the applications, we will use the Dirac induction
isomorphism from the Connes–Kasparov conjecture. We recall the definition of this
isomorphism here.

Fix a K-invariant inner product on the Lie algebra g, and let p � g be the
orthogonal complement to k. Suppose that the representation

AdWK ! SO.p/

lifts to a homomorphism �AdWK ! Spin.p/: (2.4)

This lift always exists if one replaces G by a double cover. (See the end of this
subsection for the case where it does not exist.) Let Sp be the spinor representation of
Spin.p/, see e.g. Definition 5.11 in [29]. We view Sp as a representation ofK, via the
map �Ad. If p is even-dimensional, then Sp has a natural Z2-grading Sp D SCp ˚S�p .
By the element Sp 2 R.K/, we will mean ŒSCp � � ŒS�p � in that case.

Existence of the lift (2.4) is equivalent to G=K having a G-equivariant Spin-
structure, with spinor bundle G �K Sp ! G=K. We will then say that G=K is
equivariantly Spin.

For any finite-dimensional representation space V of K, we have the G-
equivariant vector bundle

EV WD G �K .Sp ˝ V /! G=K:

Let fX1; : : : ; Xdimpg be an orthonormal basis of p. Consider the Dirac operator

DV WD

dimpX
jD1

Xj ˝ c.Xj /˝ 1V (2.5)

on
�1.EV / Š

�
C1.G/˝ Sp ˝ V

�K
:

Here c denotes the Clifford action by p on Sp. It defines an equivariantK-homology
class

ŒDV � 2 KK
G
�

�
C0.G=K/;C

�
: (2.6)
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The analytic assembly map from the Baum–Connes conjecture [6, 25] is a map

�GY WKK
G
�

�
C0.Y /;C

�
! KK�.C; C

�
r G/ (2.7)

for any cocompact, proper G-space Y . Here C �r G is now the reduced group
C �-algebra ofG. There is also a version for themaximal groupC �-algebra. Applying
this map for Y D G=K to the class (2.6) yields

�GG=K ŒDV � 2 KK.C; C
�
r G/:

The Dirac induction map

D-IndGK WR.K/! KK�.C; C
�
r G/

is defined by ŒV � 7! �G
G=K

ŒDV �, for finite-dimensional representation spaces V ofK.
It maps into even KK-theory if G=K is even-dimensional, and into odd KK-theory
otherwise. The Connes–Kasparov conjecture, proved by Chabert, Echterhoff and
Nest [14], states that it is in isomorphism of Abelian groups. (This was proved for
linear reductive groups by Wassermann [39].)

By the universal coefficient theorem, we have

KK�.C
�
r G;C/ Š HomZ

�
KK�.C; C

�
r G/;Z

�
via the Kasparov product. Pulling back along Dirac induction therefore defines an
isomorphism of Abelian groups

.D-IndGK/
�
WKK.C �r G;C/

Š
�! yR.K/: (2.8)

If the lift (2.4) does not exist, i.e. G=K is not equivariantly Spin, one still has
a Dirac induction isomorphism. Let � W zG ! G be a double cover for which (2.4)
exists, and let zK WD ��1.K/. Let u be the nontrivial element of ker� . Set

RSpin.K/ WD fV 2 R. zK/I u acts trivially on V ˝ Spg:

Then for V 2 RSpin.K/, the tensor product V ˝ Sp can be viewed as a (virtual)
representation of K, and the above constructions apply. This yields an isomorphism

D-IndGK WRSpin.K/
Š
�! KK�.C; C

�
r G/:

3. Induction from slices

We have seen in Theorem 2.1 that deformed Dirac operators have well-defined
G-indices. In the rest of this paper, we discuss properties of these indices. One
useful tool is the induction result we prove in this section, Theorem 3.2. It is a
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relation between the G-index of a deformed Dirac operator onM , and the K-index
of an operator on a slice N � M . The latter index can be described explicitly in
terms of the L2-kernel of the operator.

We keep using the notation and assumptions of Subsection 2.2. We fix a smooth,
equivariantmappWM ! G=K, and consider the corresponding sliceN D p�1.eK/.

3.1. The induction result. Consider the restriction rEjN of rE to N . Since
TN � TM jN , we have the Clifford action

cN WTN ˝ EjN ! EjN :

These combine to the Dirac-type operator

DN
W�1.EjN /

rEjN

����! �1
�
TN ˝ EjN

� cN
��! �1.EjN /: (3.1)

As before, we fix a K-invariant inner product on g. Let p � g be the orthogonal
complement to k. Then

g D k˚ p: (3.2)

We will identify
TN ˚ .N � p/ Š TM jN (3.3)

via the map �
v; .n;X/

�
7! v CXMn

for n 2 N , v 2 TnN and X 2 p.
Let B be the given Riemannian metric onM . We will consider two K-invariant

metrics on TM jN . One is simply the restriction BjN . The other is defined by the
properties that the decomposition (3.3) is orthogonal, themetric equalsBjTN on TN ,
and is defined by the inner product on g on N � p. We denote this second metric
by Bp.

Choose a K-equivariant, isometric vector bundle isomorphism�
TM jN ; Bp

�
!
�
TM jN ; BjN

�
;

which is the identity on TN . Via this map, the Clifford action

cjN W
�
TM jN ; BjN

�
! End.E/

defines the Clifford action

cpW
�
TM jN ; Bp

�
! End.E/: (3.4)

We have cpjTN D cjTN .
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For a real-valued function f 2 C1.M/G D C1.N /K , consider the deformed
Dirac operator

DN
f jN

D DN
�
p
�1cp.v

f  
jN /

on �1.EjN /. Under the additional assumption that  .N/ � k, this is the Dirac
operator on EjN deformed by f  jN as in Subsection 2.2, but we do not make this
assumption. (See Subsection 3.2 for other consequences of that assumption.) The
analogue of Theorem 2.1 still holds, however.

Proposition 3.1. There is a positive function �N 2 C1.N /K D C1.M/G such
that if f is �N -admissible, thenDN

f jN
is K-Fredholm.

This proposition is not a direct consequence of Theorem 2.1, since the vector
field v jN is not induced by a map N ! k unless  .N/ � k. For this reason,
and to illustrate a simpler approach that is possible for compact groups, we give a
separate proof of Proposition 3.1 in Subsection 3.3. This is also a simpler proof of
Theorem 2.1 in the case where G is compact. Furthermore, in the case of trivial
groups, the arguments in Subsection 3.3 yield a criterion for Callias-type operators
to be Fredholm.

Another way to prove Proposition 3.1 would have been to slightly generalise the
proof of Proposition 3.15 in [22]. We briefly indicate here how such a generalisation
wouldwork. Write D  k˚ p according to the decomposition (3.2). In Lemma4.6
of [22], an operator � is used. If one adds a term

�
p
�1

dimNX
jD1

c.ej /c
�
r
TN
ej
f v p

�
(where fe1; : : : ; edimN g is a local orthonormal frame for TN , and rTN is the Levi-
Civita connection for the restricted Riemannian metric on TN ) to that operator, then
one has a version of Lemma 4.6 in [22] that applies to the operator in Proposition 3.1.
In Proposition 5.2 in [22], one then needs to take this extra term into account, which
can be done analogously to the rest of the operator �. In this way, one obtains a
version of Proposition 3.15 in [22] that implies Proposition 3.1.

Let �N be as in Proposition 3.1, and suppose f is �N -admissible. Then by
Lemma 2.9 in [22], we have

indexK.DN
f jN

/ D
�
kerL2.DN

f jN
/C
�
�
�
kerL2.DN

f jN
/�
�
2 KK.C �K;C/

Š yR.K/:

The induction result relates this index to the G-index indexG.E;  / of Df  , which
makes the latter more concrete and computable.
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Theorem 3.2 (Induction from slices). Under the identification

KK
�
C0.G=K/ ÌG;C

�
D yR.K/

by Morita equivalence, we have

indexG.E;  / D
�
kerL2.DN

f jN
/C
�
�
�
kerL2.DN

f jN
/�
�
2 yR.K/:

3.2. A special case. Under some additional assumptions, Theorem 3.2 takes a simp-
ler form. One of these assumptions is that .N/ � k. This assumption is not satisfied
in all relevant examples, see Subsection 4.3. In fact, cases where this assumption is
not satisfied are furthest removed from existing index theory, and therefore potentially
the most interesting.

Since we now suppose that  .N/ � k, the operator DN
f jN

in Theorem 3.2 is
precisely of the form studied by Braverman in [9]. Therefore, Braverman’s cobordism
invariance result, Theorem 3.7 in [9], and all of its consequences, generalise to the
G-index of deformed Dirac operators, under this additional assumption.

Suppose, furthermore, that G=K is even-dimensional, and equivariantly Spin,
with Z2-graded spinor bundle

EG=K D G �K Sp:

Let Cl.N � p/ D N � Cl.p/ be the Clifford bundle of N � p ! N . Consider the
Cl.N � p/-module N � Sp, and the Clifford module

EN WD HomCl.N�p/
�
N � Sp;E

�
: (3.5)

Then, since Sp is an irreducible representation of Cl.p/,

E D EN ˝ Sp: (3.6)

(See (2.7) in [34].) Let DEN be the Dirac operator associated to any K-invariant
Clifford connection on EN . Since now the vector bundle endomorphism cp.v

f  jN /

of EjN acts trivially on the factor N � Sp, we have the deformed Dirac operator

D
EN
f  
WD DEN �

p
�1cp.v

f  
jN /

on �1.EN /. In terms of the decomposition (3.6), we then have

DN
f jN

D D
EN
f  
˝ 1Sp :

Therefore, Theorem 3.2 reduces to the following statement.
Corollary 3.3. In the setting of Theorem 3.2, suppose that  .N/ � k, and that
G=K is even-dimensional and equivariantly Spin. Then under the identification
KK.C0.G=K/ ÌG;C/ D yR.K/ by Morita equivalence, we have

indexG.E;  / D
��
kerL2.D

EN
f  
/C
�
�
�
kerL2.D

EN
f  
/�
��
˝ Sp 2 yR.K/:



168 P. Hochs and Y. Song

If D is a Spinc-Dirac operator, we will see in Subsection 4.4 that the G-index of
its deformation satisfies the quantisation commutes with reduction principle in the
setting of this subsection.
Remark3.4. IfG is semisimple,G=K is even-dimensional, and rank.G/ ¤ rank.K/,
then the element ŒSp� 2 R.K/ is zero, see (1.2.5) in [5]. (The arguments there
actually imply that the same is true for reductive groups.) In this case, Corollary 3.3
is a vanishing result for the G-index, under the condition that  .N/ � k. This is
an exceptional situation, however, which shows how restrictive this condition is. In
Section 4, we will see many examples of nonzero G-indices.

We have seen that the situations where the G-index of deformed Dirac operators
has the potential to yield most information not accessible via existing index theory
are those where
(1) G is noncompact;
(2) M=G is noncompact; and
(3)  .N/ is not contained in k (for any choice of pWM ! G=K).
In Subsection 4.3, we will see a natural class of examples in this new setting.

In the rest of this section, we prove Proposition 3.1 and Theorem 3.2.

3.3. Compact groups and deformed Dirac operators. We will prove a slightly
more general statement than Proposition 3.1. Consider the setting of Subsection 3.1.
Suppose  .N/ � k. (What follows will later be applied to the component  k of  
in k.) Let a nonnegative function f 2 C1.N /K be given. Let T 2 End.EjN /K be
a fibrewise self-adjoint, odd vector bundle endomorphism, such that

c.v /T C Tc.v / D 0; (3.7)

and
DNf T C f TDN

2 End.EjN /: (3.8)

Suppose that the pointwise norm of the endomorphism (3.8) is bounded above by

‚ �
�
kdf k C f

�
;

for a function ‚ 2 C1.N /K (independent of f ). Also suppose that the endo-
morphism kv k2CT 2 ofEjN is invertible outside a compact set. Forf 2 C1.N /K ,
we consider the operator

DT
f  D D

N
f C f T D D

N
C f

�
�
p
�1c.v /C T

�
:

on �1.EjN /. This is a combination of a deformed Dirac operator as studied in this
paper, and a Callias-type operator [3, 11–13,28].
Proposition 3.5. There is a positive function �N 2 C1.N /K such that if f is
�N -admissible, then the operatorDT

f  
is K-Fredholm.
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Remark 3.6. If K is the trivial group, so that  D 0, and if T 2 is invertible outside
a compact set, then Proposition 3.5 shows that the Callias-type operator

DT
f D D

N
C f � T

is Fredholm on the noncompact manifold N , for admissible functions f .
To deduce Proposition 3.1 from Proposition 3.5, write  D  k ˚  p according

to the decomposition (3.2). Then if we replace  by  k in Proposition 3.5, and
set T WD

p
�1cp.v

 p/, then the conditions (3.7) and (3.8) hold, so Proposition 3.1
follows. The least trivial conditions to check are the following.
Lemma 3.7. The operators c.v k/ and cp.v p/ anticommute, and

DNfcp.v
 p/C fcp.v

 p/DN

is a vector bundle endomorphism of EjN .

Proof. The claim follows from the fact that for the metric Bp on TM jN , tangent
vectors to N are orthogonal to tangent vectors defined by elements of p. This
immediately implies that c.v k/ and cp.v p/ anticommute. It also implies that, in
terms of a local orthonormal frame fe1; : : : ; edimN g of TN ,

DNfcp.v
 p/C fcp.v

 p/DN
D

dimNX
jD1

c
�
r
TM
ej

f v p
�
;

so the claim follows.

Let t � k be a maximal torus. Fix a set of positive roots for .kC; tC/. Let �K
be half the sum of these positive roots (not to be confused with the function �
as in Theorem 2.1). Let ƒC �

p
�1t� be the set of dominant integral weights.

For � 2 ƒC, let V� be the irreducible representation space of K with highest
weight �. For � 2 ƒC, let L2.EjN /� be the V�-isotypical component of L2.EjN /.
Lemma 3.8. There is a real-valued function �N 2 C1.N /K , such that if f is
�N -admissible, then for all � 2 ƒC, and all a� > 0, the operator�

.DT
f  /

2
C a�

��1ˇ̌
L2.EjN /�

on L2.EjN /� is compact.

Proof. Analogously to Lemma 4.5 in [22], we have the local expression, with respect
to a local orthonormal frame fe1; : : : ; edimN g of TN ,

.DT
f  /

2
D .DN /2 C f 2

�
kv k2 C T 2

�
C
p
�1

dimNX
jD1

c.ej /c
�
r
TM
ej

f v 
�
� 2
p
�1f r

EjN
v 
C
�
DNf T C f TDN

�
:
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By assumption on T , there is a function ‚1 2 C1.N /K (independent of f and �)
such that we have the pointwise estimate



p�1 dimNX
jD1

c.ej /c
�
r
TM
ej

f v 
�
C
�
DNf T C f TDN

�

 � ‚1�kdf k C f �:
Let C� > 0 be such that for all X 2 k, the operator on V� defined by X has norm

at most C�kXk. For every n 2 N , the operator

r
EjN

v
 
n

�L .n/

is a linear endomorphism of En. Since, for such n, we have

L .n/jL2.E/�
� C�k .n/k;

there is a positive function ‚2 2 C1.N /K (independent of f and �) such thatˇ̌
r

EjN
v 

ˇ̌
� ‚2 C C�k k;

where use the absolute value of operators as before.
We conclude that

.DT
f  /

2
jL2.EjN /�

� .DN /2jL2.EjN /� C f
2
�
kv k2 C T 2

�
�
�
‚1 C‚2 C C�k k

��
kdf k C f

�
(3.9)

Let z�N 2 C1.N /K be a real-valued function such that .‚1 C ‚2/.z�N � 1/ tends
to infinity faster than k k as its argument tends to infinity. Choose �N 2 C1.N /K
such that, outside a relatively compact neighbourhood of the points n 2 N , where
kv
 
n k

2 C kTnk
2 D 0, we have

�N �
.‚1 C‚2/z�N

kv k2 C kT k2
:

In addition, choose �N so that it is at least equal to 1 outside a compact set. Suppose f
is �N -admissible. Then by (3.9), we find that

.DT
f  /

2
jL2.EjN /�

� .DN /2jL2.EjN /� C ��;

where �� 2 C1.N /K satisfies

�� �
�
.‚1 C‚2/.z�N � 1/ � C�k k

��
kdf k C f

�
;

outside a relatively compact neighbourhood of the set fn 2 N I kv n k2CkTnk2 D 0g.
Since f � 1 outside a compact set, and by the assumption on z�N , the function on
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the right hand side tends to infinity as its argument tends to infinity. This implies that
.DT

f  
/2jL2.EjN /� has discrete spectrum. It follows that�

.DT
f  /

2
C a�

��1
is indeed a compact operator on L2.EjN /�, for all a� > 0.

In the proof of Proposition 3.5, we will use the Casimir element�K in the centre
of the universal enveloping algebra of k. For � 2 ƒC, the element �K acts on V� as
the scalar

k�C �Kk � k�Kk: (3.10)
(These norms are defined by the same inner product that was used to define �K , the
one fixed before to define the metric Bp.)

The operator .DT
f  
/2C 1 is invertible by Proposition 10.2.11 in [17]. Since�K

is a nonnegative operator, the operator .DT
f  
/2 C�K C 1 is invertible as well. The

main part of the proof of Proposition 3.5 is the following.
Lemma 3.9. There is a real-valued function �N 2 C1.N /K , such that if f is
�N -admissible, the operator �

.DT
f  /

2
C�K C 1

��1
on L2.EjN / is compact.

Proof. For � 2 ƒC, the Casimir operator�K acts onL2.EjN /� as the scalar (3.10).
By K-equivariance ofDT

f  
, we therefore have the decomposition�

.DT
f  /

2
C�K C 1

��1
D

M
�2ƒC

�
.DT

f  /
2
jL2.EjN /�

C k�C �Kk � k�Kk C 1
��1

:

By Lemma 3.8 every term in this sum is compact. Since the norm of a direct sum of
operators is the supremum of the norms of the terms, the above direct sum converges
in the operator norm, to a compact operator.

Proof of Proposition 3.5. Let e2C1.K/. Since�K commuteswithDN, T and c.v /,
we have

�K.e/
�
.DT

f  /
2
C 1

��1
� �K.e/

�
.DT

f  /
2
C�rK C 1

��1
D �

�
.DT

f  /
2
C 1

��1
�K�K.e/

�
.DT

f  /
2
C�rK C 1

��1
; (3.11)

as a simpler analogue of Lemma 4.6 in [22]. Because �K�K.e/ D �K.�Ke/ is a
bounded operator, Lemma 3.9 implies that

�K.e/
�
.DT

f  /
2
C 1

��1
is a compact operator, which implies the claim.
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3.4. An explicit form of theMorita equivalence isomorphism. In this subsection,
we explicitly describe the isomorphism

yR.K/ Š KK.C0.G=K/ ÌG;C/

defined by Morita equivalence. This is well-known, but we spell out the details here
because we will use them later. For more information about Morita equivalence,
especially in the context of crossed-product C �-algebras, see for example [36], and
Chapter 4 of [40]. For applications in the context of Mackey induction, see [15, 16].

Let us define the module M, that implements the Morita equivalence C0.G=K/Ì
G � C �K, as in Situation 10 in [36]. As a HilbertC �K-module, it is the completion
of Cc.G/ in the C �K-valued inner product given by

.f; f 0/C�K.k/ D

Z
G

f .g�1/f 0.g�1k/ dg;

for f; f 0 2 Cc.G/ and k 2 K. The right action by C �K is given by

.f  /.g/ D

Z
K

f .kg/ .k/ dk;

for f 2 Cc.G/,  2 C.K/ and g 2 G. The representation �M is given by�
�M.'/f

�
.g/ D

Z
G

'.g0; gK/f .g0�1g/ıG.g
0/1=2 dg0;

for ' 2 Cc.G; C0.G;K//, f 2 Cc.G/ and g 2 G. Here ıG is the modular function
on G. (We will always identify maps from G to C0.G=K/ with functions on
G �G=K.)

Consider the class

ŒM� WD ŒM; 0; �M� 2 KK
�
C0.G=K/ ÌG;C �K

�
defined by M. The Kasparov product map

ŒM�˝C�K �WKK
�
C0.C

�K;C/
� Š
�! KK

�
C0.G=K/ ÌG;C

�
is the isomorphism defined by Morita equivalence.

Let H be a Hilbert space, and �K WK ! U.H / a unitary representation. We will
also use the symbol �K for the corresponding representation

�K WC
�K ! B.H /:

Let F be a K-equivariant, bounded operator on H .
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Consider the representation

�C0.G=K/ÌG WC0.G=K/ ÌG ! B
�
.L2.G/˝H /K

�
;

defined by�
�C0.G=K/ÌG.'/�

�
.g/ D

Z
G

'.g; g0K/ıG.g
0/1=2�.g0�1g/ dg0; (3.12)

for ' 2 Cc.G; C0.G=K//, � 2 .L2.G/˝H /K , and g 2 G.
Lemma 3.10. There is a unitary isomorphism

‰WM ˝C�K H !
�
L2.G/˝H

�K
that intertwines the representation �C0.G=K/ÌG and the representation

�M ˝ 1H WC0.G=K/ ÌG ! B
�
M ˝C�K H

�
;

and satisfies
‰ ı .1M ˝ F / D

�
1L2.G/ ˝ F

�
ı‰:

Proof. Consider the map

‰WCc.G/˝C H !
�
Cc.G/˝H

�K
given by averaging over K:

‰.f ˝ �/.g/ D

Z
K

f .gk/�K.k/� dk;

for f 2 Cc.G/, � 2 H and g 2 G. One checks that for all  2 C.K/ � C �K,
and f and � as above,

‰.f  ˝ �/ D ‰
�
f ˝ �K. /�

�
:

Hence the map ‰ descends to a map

Cc.G/˝C.K/ H !
�
Cc.G/˝H

�K
;

still denoted by ‰. This map has the desired properties.

Next, suppose that H has a K-invariant Z2-grading, F is odd and self-adjoint,
and the triple .H ; F; �K/ is a Kasparov .C �K;C/-cycle. Let

ŒF � 2 KK.C �K;C/

be its class.
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Proposition 3.11. The triple�
.L2.G/˝H /K ; 1L2.G/ ˝ F; �C0.G=K/ÌG

�
(3.13)

is a Kasparov .C0.G=K/ Ì G;C/-cycle, and its class in KK.C0.G=K/ Ì G;C/
equals

ŒM�˝C�K ŒF �:

Proof. Since the operator F commutes with the representation of C �K in H , the
operator 1M˝F onM˝C�KH is well-defined. Furthermore, the Kasparov product
of ŒM� and ŒF � is represented by the Kasparov .C0.G=K/ ÌG;C/-cycle�

M ˝C�K H ; 1M ˝ F; �M ˝ 1H

�
:

(See e.g. [7, Example 18.3.2(a)].) This Kasparov cycle is unitarily equivalent to (3.13)
by Lemma 3.10.

3.5. Product metrics. The K-invariant metric Bp on TM jN extends to a G-invar-
iant Riemannian metric on TM , which we still denote by Bp. By Proposition 3.13
in [22], this Riemannian metric leads to the same G-index as the original metric, as
long asM is complete with respect to Bp.
Lemma 3.12. The manifoldM is complete in the metric Bp.

Proof. Note that G is complete in the left invariant Riemannian metric BG defined
by the inner product on g used in the definition of Bp. SinceM is complete in B , the
slice N is complete in the metric BjTN . Hence G � N is complete in the product
metric BG � BjTN . The quotientM of G �N is therefore complete in the distance
function induced by the Riemannian distance on G �N (see Proposition 3.1 in [2]).
This equals the distance function defined by the Riemannian metric Bp, so the claim
follows.

Let L2.E; Bp/ be the L2-space of sections of E , defined with respect to the
Riemannian density associated to Bp. We use the metric Bp for two reasons. The
first is that Lemma 3.7 is true for this metric. The second is that it allows us to
decompose the spaceL2.E; Bp/ in a way that will allow us to apply Proposition 3.11.

For this decomposition, we consider the map

ˆW
�
Cc.G/˝ �c.EjN /

�K
! �c.E/ (3.14)

given by
ˆ.' ˝ s/.gn/ D '.g/g � s.n/;

for' 2 Cc.G/ and s 2 �c.EjN / such that'˝s isK-invariant, andg 2 G andn 2 N .
In general the K-invariant simple tensors of the form ' ˝ s may not span the whole
space .Cc.G/ ˝ �c.EjN //K . Then we extend ‰ linearly to sums of tensors that
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are K-invariant, while their individual terms may not be. We will tacitly use this
convention in the rest of this section.
Lemma 3.13. The map ˆ extends to a G-equivariant, unitary isomorphism

ˆW
�
L2.G/˝ L2.EjN /

�K
! L2.E; Bp/:

Proof. Equivariance ofˆ follows directly from the definitions. For surjectivity, note
thatˆ..Cc.G/˝�c.EjN //K/ is dense in L2.E; Bp/. To show thatˆ is an isometry,
we consider the G-invariant measure dŒg; n� on M D G �K N induced by the
Riemannian density on G �N associated to the product metric BG � BjTN used in
the proof of Lemma 3.12. (See e.g. [8], Chapter VII, Section 2.2, Proposition 4b.)
By a direct verification, the map ˆ is unitary with respect to that measure. One
can show that the measure dŒg; n� equals the one given by the Riemannian density
associated to Bp. (See Lemma 4.1 in [21].)

3.6. Morita equivalence and the G -index. The comments on the Riemannian
metric Bp in Subsection 3.5 allow us to deduce Theorem 3.2 from Proposition 3.11.

For any K-equivariant (real or complex) vector bundle E ! N , consider the
G-equivariant vector bundle

G �K E !M:

Analogously to (3.14), we have G-equivariant map

ˆE W
�
C1.G/˝ �1.E/

�K
! �1.G �K E/;

given by
ˆE .' ˝ s/.gn/ D '.g/g � s.n/;

for' 2 C1.G/ and s 2 �1.E/ such that'˝s isK-invariant, andg 2 G andn 2 N .
If E D EjN , this gives

ˆ WD ˆEjN W
�
C1.G/˝ �1.EjN /

�K
! �1.E/:

Recall thatwe used the restricted connectionrEjN to define theDirac operatorDN

in (3.1). We will also use a decomposition of the Dirac operator D. To define this
decomposition, we recall that we have

M Š G �K N

as in (2.1). We have a G-equivariant isomorphism of vector bundles

TM Š p�T .G=K/˚G �K TN: (3.15)

This decomposition of TM yields two projections

pG=K WTM ! p�T .G=K/I

pN WTM ! G �K TN:
(3.16)
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Identifying T �M Š TM via the Riemannian metric as before, we obtain two partial
Dirac operators

DG=K W�
1.E/

rE

��! �1.TM ˝ E/
pG=K˝1E

�������! �1
�
p�T .G=K/˝ E

� c
�! �1.E/I

DN W�
1.E/

rE

��! �1.TM ˝ E/
pN˝1E
�����! �1

�
G �K TN ˝ E

� c
�! �1.E/:

Since pG=K C pN is the identity map on TM , we have

D D DG=K CDN : (3.17)

This decomposition played a crucial role in the etimates in [22].
The proofs of the following two lemmas are straightforward.

Lemma 3.14. The following diagram commutes:

�
C1.G/˝ �1.EjN /

�K ˆ //

1˝rEjN

��

�1.E/

rE

��
�1.T �M ˝ E/

pN

���
C1.G/˝ �1.T �N ˝ EjN /

�K
ˆT�N˝EjN

// �1
�
.G �K T

�N/˝ E
�
:

(3.18)

Lemma 3.15. One has
ˆ ı .1˝DN / D DN ıˆ;

whereDN is as in (3.1).

Let
cpW .TM;Bp/! End.E/

be the G-equivariant extension of (3.4). Let f 2 C1.M/G . Then

ˆ ı
�
1˝ cp.f v

 
jN /

�
D cp.f v

 / ıˆ:

So Lemma 3.15 implies that

ˆ ı
�
1˝DN

f jN

�
D
�
DN �

p
�1cp.f v

 /
�
ıˆ: (3.19)

This allows us to prove Theorem 3.2
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Proof of Theorem 3.2. Let � 2 C1.M/G be as in Theorem 2.1, for the Riemannian
metric Bp and the Clifford action cp. Let �N 2 C1.N /K D C1.M/G be as in
Proposition 3.1. Suppose f 2 C1.M/ is max.�; �N /-admissible. For t 2 R,
consider the operator

Df  ;t WD DN C tDG=K �
p
�1fcp.v

 /:

Here DN and DG=K are defined with respect to Bp and cp. The arguments in
Sections 4 and 5 of [22], withDG=K replaced by tDG=K , show that for all t > 0, the
operator Df  ;t is G-Fredholm for p. For t D 0, this operator is not elliptic. So we
cannot apply the Rellich lemma as in Subsection 3.5 of [22] to show that Df  ;0 is
G-Fredholm for p. However, we saw in Proposition 3.1 that the operator DN

f 

is K-Fredholm. Proposition 3.11 therefore implies that

��
L2.G/˝ L2.EjN /

�K
; 1L2.G/ ˝

DN
f q

.DN
f 
/2 C 1

; �C0.G=K/ÌG

�
(3.20)

is a Kasparov .C0.G=K/ Ì G;C/-cycle. The isomorphism ˆ intertwines the
representations �C0.G=K/ÌG and �G;G=K , up to the factor ıG.g0/1=2 in the
definition (3.12) of �C0.G=K/Ì. On pages 131 and 132 of [40], it is explained how
to remove this factor. Then Lemma 3.13 and the equality (3.19) imply that (3.20) is
unitarily equivalent to �

L2.E/;
Df  ;0p

.Df  ;0/2 C 1
; �G;G=K

�
: (3.21)

The triple (3.21) is therefore also a Kasparov .C0.G=K/ Ì G;C/-cycle, which is to
say thatDf  ;0 is G-Fredholm for p.

We conclude that for all t � 0, the operatorDf  ;t isG-Fredholm for p. So using
an operator homotopy, we obtain

indexpG Df  ;0 D indexpG Df  ;1 2 KK
�
C0.G=K/ ÌG;C

�
:

By Proposition 3.13 in [22], we have

indexG.E;  / D indexpG Df  ;1:

Since the triples (3.20) and (3.21) are unitarily equivalent, Proposition 3.11 implies
that

indexpG Df  ;0 D ŒM�˝C�K indexK.DN
f jN

/:

The result now follows from Lemma 2.9 in [22].
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4. Properties of the G -index

The G-index of deformed Dirac operators turns out to have several interesting
properties. We already saw that it equals Braverman’s index if G is compact (see
Lemma 2.9 in [22]). If M=G is compact, we describe how it is related to the
analytic assembly map and to an index used by Mathai and Zhang. We work out
examples where M D T �.G=K/ and where G D R. The first of these examples
gives rise to aK-homological version of the Dirac induction isomorphism described
in Subsection 2.3. Finally, we show that for Spinc-Dirac operators, the index satisfies
the quantisation commutes with reduction principle that was originally formulated in
symplectic geometry.

4.1. The analytic assemblymap and theMathai–Zhang index. In this subsection,
we suppose thatM=G is compact, butM and G may be noncompact. Then the G-
index is closely related to the analytic assembly map and an index defined by Mathai
and Zhang [31].

Let

� C �G now denote the maximal group C �-algebra of G;

� �GM WKK
G.C0.M/;C/! KK.C; C �G/ be the analytic assembly map (2.7);

� Œ1K � 2 KK.C; C0.G=K/ ÌG/ Š R.K/ be the class corresponding to the trivial
representation of K;

� Œ1G � 2 KK.C
�G;C/ be the class corresponding to the trivial representation ofG,

equal to the class of the �-homomorphism IG WC �G ! C given on L1.G/ by
integrating functions over G.

The Mathai–Zhang index was defined in Definition 2.4 in [31], for Dirac operators.
It is a numerical index, which is defined in terms of theG-invariant part of the kernel
of an operator.

As before, let pWM ! G=K be a smooth, equivariant map. Since M=G is
compact, the map p is proper. So it induces

p�WC0.G=K/! C0.M/;

and hence
.pG/

�
WC0.G=K/ ÌG ! C0.M/ ÌG:

Let
jG WKKG.C0.M/;C/! KK

�
C0.M/ ÌG;C �G

�
be the descent map [26, Section 3.11].
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Proposition 4.1. If M=G is compact, then there are maps indexG and indexMZ,
which onK-homology classes defined by elliptic operators are given by the G-index
and the Mathai–Zhang index of these operators, respectively, such that the following
diagram commutes:

KKG.C0.M/;C/
.pG/�ıj

G

//

�G
M

((

indexMZ

55

indexG ++

KK.C0.G=K/ ÌG;C �G/
Œ1K �˝C0.G=K/ÌG�//

�˝C�G Œ1G �

��

KK.C; C �G/

�˝C�G Œ1G �

��
KK.C0.G=K/ ÌG;C/

Œ1K �˝C0.G=K/ÌG�// KK.C;C/:

(4.1)

This proposition implies that the assembly map and the G-index of an elliptic
operatorD can both be recovered from the class

.pG/� ı j
G ŒD� 2 KK

�
C0.G=K/ ÌG;C �G

�
: (4.2)

Furthermore, the Mathai–Zhang index can be recovered from either of these two
indices, via the Kasparov product with Œ1G � and Œ1K �, respectively.

To prove Proposition 4.1, we consider an odd, self-adjoint, elliptic,G-equivariant
differential operator on E !M . Then we have the class

ŒD�C0.M/ÌG D

h
L2.E/;

D
p
D2 C 1

; �G;C0.M/

i
2 KK

�
C0.M/ ÌG;C

�
as in (the elliptic case of) Proposition 6.4 in [27]. Here

�G;C0.M/WC0.M/ ÌG ! B
�
L2.E/

�
is induced by the representations of C0.M/ and G in L2.E/.

Consider the class ŒD� 2 KKG.C0.M/;C/ defined byD.

Lemma 4.2. We have

ŒD�C0.M/ÌG D j
G ŒD�˝C�G Œ1G �:

Proof. One can check that

jG ŒD� D
h
L2.E/˝ C �G;

Df  q
D2
f  
C 1
˝ 1; �

i
2 KK

�
C0.M/ ÌG;C �G

�
;
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where � WC0.M/ ÌG ! B.L2.E/˝ C �G/ is given by

�.' ˝ f /.s ˝  /.g/ D

Z
G

'.g0/ .g0�1g/fg0 � s dg0;

for '; 2 Cc.G/, f 2 C0.M/, s 2 L2.E/, and g 2 G.
The product with Œ1G � is just the map functorially induced by the map IG . So

taking this product, we obtain

jG ŒD�˝C�G Œ1G � D
h
L2.E/˝ C �G ˝IG C;

Df  q
D2
f  
C 1
˝ 1˝ 1; � ˝ 1

i
:

Now we have the unitary isomorphism

ˆWL2.E/˝ C �G ˝IG C
Š
�! L2.E/

given by
ˆ.s ˝  ˝ z/ D zIG. /s;

for s 2 L2.E/,  2 Cc.G/ and z 2 C. By a direct computation, we find that for all
'; 2 Cc.G/, f 2 C0.M/, s 2 L2.E/, and z 2 C,

ˆ ı .� ˝ 1/.' ˝ f /.s ˝  ˝ z/ D �G;M .' ˝ f /ˆ.s ˝  ˝ z/:

Remark 4.3. Proposition 6.4 in [27] states that the class ŒD�C0.M/ÌG is well-defined
even if D is just transversally elliptic. If D is elliptic, then it also defines a class in
KKG.C0.M/;C/, and Lemma 4.2 is a relation between these classes.

Define the map indexG by commutativity of the following diagram:

KKG
�
C0.M/;C

�
jG

��

indexG

��

KK
�
C0.M/ ÌG;C �G

�
�˝C�G Œ1G �

��
KK

�
C0.M/ ÌG;C

�
.pG/�

��
KK

�
C0.G=K/ ÌG;C

�
Then Lemma 4.2 shows that this map indeed equals the G-index on classes defined
by elliptic operators.
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Define the map

indexMZWKK
G
�
C0.M/;C

�
! KK.C;C/ D Z

as the composition of the analytic assembly map and the Kasparov product over
C �G with Œ1G �. Bunke showed in the appendix to [31] that this corresponds to the
Mathai–Zhang index on classes of Dirac operators.

Proof of Proposition 4.1. Consider the diagram

KKG
�
C0.M/;C

� jG //

�G
M

**

indexMZ

77

indexG

66

KK
�
C0.M/ ÌG;C �G

� .pG/� //
�˝C�G Œ1G �

��

KK
�
C0.G=K/ ÌG;C �G

�Œ1K �˝C0.G=K/ÌG�//
�˝C�G Œ1G �

��

KK
�
C; C �G

�
�˝C�G Œ1G �

��
KK

�
C0.M/ ÌG;C

� .pG/� // KK
�
C0.G=K/ ÌG;C

� Œ1K �˝C0.G=K/ÌG // KK�C;C�:

(4.3)
The two squares with the map .pG/� and the products with Œ1K � and Œ1G �, commute
by the basic functoriality and associativity properties of KK-theory. The class
Œ1K � 2 KK.C; C0.G=K/ÌG/ equals the class defined by a cutoff function onG=K.
Hence commutativity of the top part of this diagram is one of the standard definitions
of the assembly map, combined with the fact that the assembly map behaves naturally
with respect to the map p�. The remaining parts of the diagram commute by the
comments made above. We conclude that the whole diagram (4.3) commutes.

Remark 4.4. In [10, 19], a generalisation of the Mathai–Zhang index of deformed
Dirac operators to non-cocompact actions is studied. If G is compact, then

Œ1K �˝C0.G=K/ÌG indexG.Df  /

is the index studied in [10, 19]. Since we saw in Proposition 4.1 that this is also true
if M=G, instead of G, is compact, this leads the authors to suspect that it holds in
general.
Example 4.5. If G D K is compact, so thatM is as well, then the class (4.2) in

KK
�
C �K;C �K

�
D Hom

�
R.K/;R.K/

�
is taking the tensor product with the usual equivariant index ofD. The map

IK� WHom
�
R.K/;R.K/

�
! R.K/

is nowgiven by applying operators onR.K/ to the trivial representation. As expected,
applying this to the class (4.2) yields the equivariant index ofD, i.e. its image under
the assembly map for compact groups.
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The Kasparov product with Œ1K � 2 KK.C �K;C/ is the map

Hom
�
R.K/;R.K/

�
! Hom

�
R.K/;Z

�
given by taking the dimension of the invariant part after applying an operator onR.K/.
Applying this map to (4.2) yields the map R.K/! Z that maps the class of V 2 yK
to

dim
�
indexK.D/˝ V

�K
D
�
indexK.D/ W V �

�
D
�
indexK.D/ W V

�
:

(Here indexK now denotes the usual equivariant index.) In other words, we recover
the fact that the K-index of D as defined in [22] is the image in yR.K/ of the usual
K-index ofD.

4.2. Another relation with the assembly map. As in Subsection 4.1, assume that
M=G is compact. In addition, we assume that G=K is even-dimensional and equi-
variantly Spin. Consider the Dirac induction isomorphism

D-IndGK WR.K/
Š
�! KK.C; C �r G/

described in Subsection 2.3. We now use the analytic assembly map with respect to
the reduced group C �-algebra C �r G, which we still denote by �GM .

In this setting, we can express the G-index in terms of the assembly map.
Proposition 4.6. Under the identification

KK
�
C0.G=K/ ÌG;C

�
D yR.K/

via Morita equivalence, we have

indexG.DM / D
�
D-IndGK

��1�
�GM ŒDM �

�
˝ Sp 2 R.K/ ,! yR.K/: (4.4)

Proof. Since we may take  D 0 in the cocompact case, the condition in
Subsection 3.2 that  .N/ � k is automatically satisfied. By Corollary 3.3, we
therefore have

indexG.DM / D ŒM�˝C�K
�
indexK.DEN /˝ Sp

�
: (4.5)

Hence the claim follows from the fact that

�GM ŒD� D D-IndGK
�
indexK.DEN /

�
:

This was proved for Spinc-Dirac operators in Theorem 4.5 in [18] and Theorem 4.8
in [20]. The arguments apply to general Dirac operators, however.

Proposition 4.6 implies that the G-index of Dirac operators is determined by
the assembly map. Conversely, the index �GM ŒDM � can be expressed in terms of
indexG.DM / precisely if tensoring with Sp is an injective operation on R.K/.
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Lemma4.7. Suppose thatG is semisimplewith discrete series, i.e. rank.G/D rank.K/.
Then the map from R.K/ to R.K/ given by the tensor product with Sp is injective.

Proof. Let T reg be the set of regular elements in a maximal torus T of K. Since
rank.G/ D rank.K/, it was noted in Remark 2.2 in [35] that the character �Sp D
�S�p � �S�p of Sp satisfies

�Sp jT D
Y
˛2R

C
n

�
e˛=2 � e�˛=2

�
;

where ˛ runs over a set of positive noncompact roots. This function is nonzero
on T reg, and hence on the open dense subsetK � T reg � K, whereK acts on itself by
conjugation. Therefore, multiplication by �Sp is injective.

In the setting of this lemma, we have

�GM ŒDM � D D-IndGK ŒV �;

where the character of ŒV � 2 R.K/ equals the character of indexG.DM / divided
by �Sp .

Example 4.8. Suppose thatM D G=K. For V 2 yK, let DV be the Dirac operator
on the Clifford module G �K .Sp ˝ V / ! G=K, as defined in (2.5). Since M=G
is compact, this operator is G-Fredholm without the need of a deformation term.
Since M is now a homogeneous space, all operators on G-equivariant vector
bundles over M are transversally elliptic, including the zero operator. Therefore,
Proposition 6.4 in [27] implies that

indexG.DV / D
��
L2.G/˝ Sp ˝ V

�K
; 0; �G;G=K

�
2 KK

�
C0.G=K/ ÌG;C

�
;

via a linear operator homotopy. By Proposition 2.10 in [22], this class corresponds
to Sp ˝ V 2 yR.K/. The right hand side of (4.4) for this operator equals V ˝ Sp, so
that we obtain an independent verification of Proposition 4.6 in this case.

One could view the G-index of DV as a K-homological analogue of the Dirac
induction of V . The twist by Sp one obtains in this way makes this slightly unnatural
though, also in view of Remark 3.4. In Subsection 4.3, we define a more natural
notion of K-homological Dirac induction, using a non-cocompact action.

4.3. K -homological Dirac induction. We assume that G=K is even-dimensional
and equivariantly Spin. The Dirac induction isomorphism

D-IndGK WR.K/! K�.C
�
r G/

involves Dirac operators on G=K. Using the G-index, we define a version of Dirac
induction in terms of Dirac operators on the non-cocompact manifold

M D T �.G=K/ Š G �K p:
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(We identify p Š p� using a fixed K-invariant inner product on g.) Consider the
map pWT �.G=K/ ! G=K given by p.Œg;X�/ D gK, for g 2 G and X 2 p. As
in (3.15), we have a G-equivariant decomposition of the tangent bundle

TM Š p�T .G=K/˚G �K .T p/:

Consider theK-equivariant vector bundle Ep WD p�Sp ! p, and the G-equivariant
vector bundle EG=K WD G �K Sp ! G=K. Let us form

EM WD p
�EG=K ˝

�
G �K Ep/;

which defines a G-equivariant spinor bundle on M . Here, and in the remainder of
this subsection, we use graded tensor products. Note that the bundle EM contains
two factors Sp, coming from the spinor bundles on G=K and p. The natural Clifford
actions by T p on Ep and by T .G=K/ on EG=K (both denoted by c) combine to a
Clifford action

cWTM Š p�T .G=K/˚G �K .T p/! End.EM /;

given by
c.v; w/ D c.v/˝ 1C 1˝ c.w/;

for v 2 p�T .G=K/ and w 2 T p.
Let V 2 yK. Consider the G-equivariant vector bundle

EV WD EM ˝
�
G �K .p � V /

�
!M:

By construction, we have

�1.EV / Š
�
C1.G/˝ Sp ˝ V ˝ C

1.p; Sp/
�K
: (4.6)

LetDp be the K-equivariant Dirac operator on C1.p; Sp/ so that

ŒDp� 2 KK
K
�
C0.p/;C

�
is the fundamental class. LetDV be the operator on

C1.G/˝ Sp ˝ V

defined as in (2.5). We take the Dirac operatorDV
M on (4.6) to be

DV
M WD DV ˝ 1C 1˝Dp:
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Let  WM ! g be the G-equivariant map defined by

 Œg;X� D Ad.g/X;

for g 2 G and X 2 p. (Here we see an example where  .N/ 6� k: we now have
N D p and  .N/ D p.) The vanishing set Zeroes.v / is the zero section of the
vector bundle G �K p! G=K, and hence cocompact. Let � 2 C1.M/G be as in
Theorem 2.1, and let f 2 C1.M/G be �-admissible. Consider the deformed Dirac
operator

DV
f  WD D

V
M �
p
�1fc.v /:

on EV . It has a G-index

indexG.EV ;  / 2 KK
�
C0.G=K/ ÌG;C

�
:

Proposition 4.9. Under the isomorphismKK.C0.G=K/ÌG;C/ Š yR.K/ given by
Morita equivalence, we have

indexG.EV ;  / D ŒV �:

Let us prove this proposition. We denote by SSp D p�Sp the trivial vector bundle
over p with fibre Sp. Consider the vector bundle endomorphism ˇ of SSp given by

ˇ.X; �/ WD
�
X; c.X/�

�
;

for X 2 p and � 2 Sp. It is invertible outside the compact set f0g � p, and hence
defines a class in the (K-equivariant) topological K-theory of p. This is the Bott
element, denoted by Œˇ�.

We choose an orthonormal basis fX1; : : : ; Xdimpg of p. Let f�1; : : : ; �dimpg be
the dual basis of p�. Then the identity map on p equals

Pdimp
jD1 Xj ˝ �j , and we have

ˇ D

dimpX
jD1

c.Xj /˝ �j : (4.7)

Consider the operator

Df WD Dp ˝ 1 � 1˝
p
�1f � ˇ

on �1.Ep ˝ SSp/, and the bounded operator

Ff WD
Dfq
1CD2

f

on L2.p;Ep ˝ SSp/.
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Lemma 4.10. There is a real-valued function � 2 C1.p/K , such that if f is
�-admissible, the operator Ff is Fredholm, and its index is given by the trivial
K-representation.

Proof. Since SSp is a trivial vector bundle over p, we have

L2
�
p;Ep ˝ SSp

�
Š L2.p;Ep/˝ Sp:

By (4.7), the operatorDf can be rewritten as

Dp ˝ 1 �
p
�1

dimpX
jD1

f �j ˝ c.Xj /:

Therefore, ŒDp; fˇ� 2 End.Ep ˝ SSp/, so that Df is an operator as in Remark 3.6.
That remark therefore implies that there is a function � such that Ff is Fredholm
if f is �-admissible. Then the index of Ff is the class

ŒDf � WD
�
L2
�
p;Ep ˝ SSp

�
; Ff

�
2 KKK.C;C/:

To calculate this index, we write

Fp WD
Dpq
1CD2

p

We view �0.SSp/ as a HilbertC0.p/-module, and consider the representation ofC0.p/
in L2.p;Ep/ given by pointwise multiplication. Then

L2
�
p;Ep ˝ SSp

�
Š �0.SSp/˝C0.p/ L

2.p;Ep/:

One can check that Ff is an Fp-connection [26, Definition 2.6]. This implies that
the element ŒDf � 2 KKK.C;C/ is the Kasparov product over C0.p/ of the classes
Œfˇ� 2 KKK.C; C0.p// and ŒDp� 2 KK

K.C0.p/;C/. (One can also find a proof in
Lemma 3.1 in [28].)

Note that f is a positive function. By a homotopy, we have Œf � ˇ� D Œˇ�.
By Proposition 11.4.5 in [17], the Kasparov product of ŒDp� and Œˇ� is the trivial
representation of K.

Proof of Proposition 4.9. By Theorem 3.2, the Morita equivalence isomorphism
maps indexG.EV ;  / to the K-index of the operatorDf ˝ 1V on

L2
�
p;Ep ˝ SSp

�
˝ V:

By Lemma 4.10, this index equals ŒV � 2 yR.K/.
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Motivated by Proposition 4.9, we define a K-homological version of Dirac in-
duction.

Definition 4.11. K-homological Dirac induction is the group homomorphism

1D-IndGK W yR.K/! KK
�
C0.G=K/ ÌG;C

�
defined by

1D-IndGK.V / D indexG.EV ;  /;

for any V 2 yK.

Proposition 4.9 has the following consequence.

Theorem 4.12. K-homological Dirac induction is an isomorphism.

Of course, the fact that yR.K/ Š KK.C0.G=K/ Ì G;C/ is not new, or as deep
as the Dirac induction isomorphism for K-theory. But we found it interesting that
this isomorphism can be described in terms of the G-index for a non-cocompact
action. For example, this implies that any element of KK.C0.G=K/ Ì G;C/ can
be realised as a G-index for such an action. Furthermore, in this class of examples,
the image of N D p under  does not lie inside k. (Nor for any other choice of
the map M ! G=K.) Examples with these properties are furthest removed from
existing index theory.

Remark 4.13. Let V D C be the trivial representation ofK. The map is amoment
map for the standard symplectic form on T �.G=K/. Hence, following [30, 33],
one can interpret the G-index ofDC

f  
as the geometric quantisationQG.T �.G=K//

of T �.G=K/. By Proposition 2.10 in [22] and Proposition 4.9, one then has

QG.T
�.G=K// D

�
L2.G=K/; 0; �C0.G=K/ÌG

�
2 KK

�
C0.G=K/ ÌG;C

�
:

This looks natural, especially since the representation of G in L2.G=K/ is encoded
in �C0.G=K/ÌG . However, one loses much of this information after applying the
homotopy relation in K-homology.

Example 4.14. Consider the situation of this subsection whereG D R, but we allow
more general equivariant maps  WM ! g than the one used above. Then we obtain
an explicit example of how the G-index can depend on the map  .

In this case, the map  WR2 ! R is of the form

 .x; y/ D �.y/

for a real-valued function � 2 C1.R/. The G-index of the Dirac operator deformed
by  now lies in

KK
�
C0.R/ Ì R;C

�
Š KK.C;C/ Š Z:
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It equals the difference of the dimensions of the spaces of square-integrable functions
that are scalar multiples of the functions s� and sC on R, respectively, defined by

s˙.y/ D e
˙
R y
0 �.t/ dt ;

for y 2 R.
Suppose that the function � is nowhere vanishing overR, for example, � > 0 onR.

Then neither s� nor sC will be square-integrable. So the G-index of the deformed
Dirac operator equals zero. Note that the induced vector field v is nowhere vanishing
over M in this case. If �.y/ D ˙y, then s� is square-integrable, but s˙ is not. It
follows that the G-index of the deformed Dirac operator is equal to ˙1, with kernel
spanned by the function y 7! e�

y2=2 (in even or odd degree, respectively).

4.4. Spinc-quantisation commutes with reduction. In this subsection, we con-
sider the special case where D is a Spinc-Dirac operator. Suppose G is reductive.
Suppose M is even-dimensional and has a G-equivariant Spinc-structure. Let E

be the associated spinor bundle. Furthermore, that G=K is even-dimensional and
equivariantly Spin. As before, let Sp 2 R.K/ be the Spin representation of p. The
Clifford module EN ! N as in (3.5) is now the spinor bundle of a K-equivariant
Spinc-structure on N . (See Proposition 3.10 in [20].)

Let L!M be the determinant line bundle of the Spinc-structure. Then LN WD
LjN ! N is the determinant line bundle of the Spinc-structure on N whose spinor
bundle is EN . Let rLN be a K-invariant, Hermitian connection on LN . It defines a
Spinc-moment map

 N WN ! k�

by
2
p
�1h N ; Xi D L

LN
X � r

LN
XN
2 End.LN / D C1.N /;

for all X 2 k. Here LLN is the Lie derivative of sections of LN . In Section 3.1
of [18], a G-invariant, Hermitian connection rL on L is constructed, for which the
associated Spinc-moment map  WM ! g� (defined analogously to  N ), restricts
to  N on N .

Fix aK-invariant inner product .�;�/g on g. We use this to identify k� Š k, and
hence to view  N as a map into k. Furthermore, consider the trivial vector bundle
M � g!M , on which G acts as

g � .m;X/ D
�
gm;Ad.g/X

�
;

for g 2 G,m 2M andX 2 g. We have aG-invariant metric on this bundle, defined
by

.X; Y /gn WD
�
Ad.g�1/X;Ad.g�1/Y

�g
;

forX; Y 2 g, g 2 G and n 2 N . Using this to identifyM �g� ŠM �g, we view  
as a map into g.
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Let �; �N 2 C1.M/G be as in Theorems 2.1 and 3.2. Suppose f 2 C1.M/G

is max.�; �N /-admissible. Consider the deformed Dirac operator Df  . We will
see that the image of its G-index in yR.K/ decomposes into irreducible represent-
ations according to the quantisation commutes with reduction principle. In the
Spinc-setting, this principlewas first proved for compact groups andmanifolds in [34].
This was generalised to noncompact manifolds, but still compact groups, in [23].

Let us make this precise. For any �; � in the set ƒC of dominant weights used
before, let n�

�
be the nonnegative integers such that

V� ˝ Sp D
M
�2ƒC

n��V� :

For � 2 ƒC, let

M� WD  
�1
�
�=
p
�1

�
=G�;

be the reduced space at �, where G� < G is the stabiliser of � with respect to the
coadjoint action. Since G is reductive, we have

M� D N� WD  
�1
N

�
�=
p
�1

�
=K�:

(See Proposition 3.13 in [20].)
Suppose  is G-proper, in the sense that the inverse image of a cocompact set is

cocompact. ThenM� is compact. This space has a Spinc-quantisation

Q.N�/ 2 Z;

as defined in Section 5 of [34]. In the sufficiently regular case, this is the index of
a Spinc-Dirac operator with respect to a Spinc-structure induced by the one on N .
Then this index equals the index of a corresponding Spinc-Dirac operator onM� (see
Proposition 3.14 in [20]). It therefore makes sense to define

Q.M�/ WD Q.N�/:

Corollary 4.15 (Spinc-quantisation commutes with reduction). Suppose that G is
reductive, and that G=K is even-dimensional and equivariantly Spin. Consider the
multiplicities m� 2 Z in

indexG.E;  / D
X
�2ƒC

m�V� 2 yR.K/ Š KK
�
C0.G=K/ ÌG;C

�
:
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If the action by G onM has Abelian stabilisers on an open dense subset ofM , then
for all � 2 ƒC,

m� D
X
�2ƒC

n��Q
�
M�C�K

�
:

In general, without an assumption on the stabilisers, we have

m� D
X
�2ƒC

n��
� k�X
jD1

Q
�
M�C�j

��
;

for a finite set f�1; : : : ; �k�g � i t
�, as specified in Theorem 1.4 in [34].

Proof. We saw that in this case,  .N/ � k. Therefore, Corollary 3.3 implies that

m� D dim
�
indexK DEN

f  
˝ Sp ˝ V

�
�

�K
D

X
�2ƒC

n�� dim
�
indexK DEN

f  
˝ V ��

�K
:

Here we used the fact that S�p D Sp. By Theorem 3.9 in [23], the multiplicity

dim
�
indexK DEN

f  
˝ V ��

�K
is given by the desired expression.

Remark 4.16. We always assumed that Zeroes.v /=G was compact. In [23],
however, it was explained how to handle the case where this condition does not hold,
if G is compact. Via Corollary 3.3, the same methods apply to noncompact G.
Therefore, there is still a well-defined index, and Corollary 4.15 still holds,
if Zeroes.v /=G is noncompact. It is still essential that  is G-proper.
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