J. Noncommut. Geom. 12 (2018), 107-155 Journal of Noncommutative Geometry
DOI 10.4171/JINCG/272 © European Mathematical Society

Homotopic Hopf-Galois extensions revisited

Alexander Berglund* and Kathryn Hess*

Abstract. In this article we revisit the theory of homotopic Hopf—Galois extensions introduced
in [9], in light of the homotopical Morita theory of comodules established in [3]. We generalize
the theory to a relative framework, which we believe is new even in the classical context and
which is essential for treating the Hopf—Galois correspondence in [19]. We study in detail
homotopic Hopf—Galois extensions of differential graded algebras over a commutative ring,
for which we establish a descent-type characterization analogous to the one Rognes provided
in the context of ring spectra [26]. An interesting feature in the differential graded setting is
the close relationship between homotopic Hopf—Galois theory and Koszul duality theory. We
show that nice enough principal fibrations of simplicial sets give rise to homotopic Hopf—Galois
extensions in the differential graded setting, for which this Koszul duality has a familiar form.
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1. Introduction

The theory of Hopf—Galois extensions of associative rings, introduced by Chase
and Sweedler [6] and by Kreimer and Takeuchi [20], generalizes Galois theory of
fields, replacing the action of a group by the coaction of a Hopf algebra. Inspired
by Rognes’ theory of Hopf—Galois extensions of ring spectra [26], the second author
laid the foundations for a theory of homotopic Hopf—Galois extensions in an arbitrary
monoidal model category in [9], but the necessary model category structures were not
well enough understood to make it possible to compute many examples. Since then,
considerable progress has been made in elaborating these model category structures
(e.g. [2,11,15]), so that the time is ripe to revisit this subject.
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In this article we develop anew the theory of homotopic Hopf—Galois extensions,
in light of the homotopical Morita theory of comodules established in [3]. Moreover
we generalize the theory to a relative framework, which we believe is new even in the
classical context and which is essential for treating the Hopf—Galois correspondence
in [19]. We also provide a descent-type characterization of homotopic Hopf—Galois
extensions of finite-type differential graded algebras over a field, analogous to [26,
Proposition 12.1.8].

1.1. The classical framework. Classical Hopf—Galois extensions show up in a wide
variety of mathematical contexts. For example, faithfully flat HG-extensions over the
coordinate ring of an affine group scheme G correspond to G-torsors. By analogy, if
a Hopf algebra H is the coordinate ring of a quantum group, then an H -Hopf-Galois
extension can be viewed as a noncommutative torsor with the quantum group as its
structure group. It can moreover be fruitful to study Hopf algebras via their associated
Hopf-Galois extensions, just as algebras are studied via their associated modules.

For an excellent introduction to the classical theory of Hopf—Galois extensions,
we refer the reader to the survey articles by Montgomery [25] and Schauenburg [27].
We recall here only the definition and two elementary examples, which can be found
in either of these articles.

Definition 1.1. Let R be a commutative ring, and let H be an R-bialgebra. Let
¢: A — B be ahomomorphism of right H -comodule algebras, where the H -coaction
on A is trivial.

The homomorphism ¢ is an H -Hopf-Galois extension if

(1) the composite

B H
B B2 b, B H 2. B H,

where p denotes the H -coaction on B, and p denotes the multiplication map
of B as an A-algebra, and

(2) the induced map

A— BYH .= (beB|pb)=b®1}

are both isomorphisms.

Notation 1.2. The composite in (1), often denoted B,: B ® 4 B — B ® H , is called
the Galois map.

Examples 1.3. (1) [25, Example 2.3] Let k C E be a field extension. Let G be
a finite group that acts on E through k-automorphisms, which implies that its dual
k¢ = Hom(k[G], k) coacts on E. The extension E¢ C E is G-Galois if and only
if it is a k% -Hopf-Galois extension.
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(2) [27, Theorem 2.2.7] Let R be acommutative ring, H abialgebra over R that is flat
as an R-module, and A a flat R-algebra. The trivial extension A — AQH:a > a®1
is then an H -Hopf—Galois extension if A ® H admits a cleaving, i.e. a convolution-
invertible morphism of H-comodules H — A ® H. In particular, the unit map
k — H is an H-Hopf-Galois extension if and only if H is a Hopf algebra.

1.2. The homotopic framework. In his monograph on Galois extensions of struct-
ured ring spectra [26], Rognes formulated a reasonable, natural definition of
homotopic Hopf—Galois extensions of commutative ring spectra. Let p: 4 — B
be a morphism of commutative ring spectra, and let H be a commutative ring
spectrum equipped with a comultiplication H — H A H that is a map of ring
spectra, where — A — denotes the smash product of spectra. Suppose that H coacts
on B so that ¢ is a morphism of H-comodules when A is endowed with the trivial
H -coaction. If the Galois map By,: B Ay B — B A H (defined as above) and the
natural map from A to (an appropriately defined model of) the homotopy coinvariants
of the H -coaction on B are both weak equivalences, then ¢: A — B is a homotopic
H -Hopf—Galois extension in the sense of Rognes.

The unit map n from the sphere spectrum S to the complex cobordism spec-
trum M U is an S|B U]-Hopf—Galois extension in this homotopic sense. The diagonal
A:BU — BU x BU induces the comultiplication S[BU] — S[BU] A S[BU],
the Thom diagonal MU — MU A BU,4 gives rise to the coaction of S[BU]
on MU, and B, MU A MU 5 MU A S[BU] is the Thom equivalence.

In [26, Proposition 12.1.8], Rognes provided a descent-type characterization of
homotopic Hopf-Galois extensions. Let A% denote Carlsson’s derived completion
of A along B [5]. Rognes proved that if ¢: A — B is such that B, is a weak
equivalence, then it is a homotopic H-Hopf-Galois extension if and only if the
natural map A — Ag is a weak equivalence, which holds if, for example, B is
faithful and dualizable over A [26, Lemma 8.2.4].

1.3. Structure of this paper. We begin in Section 2 by summarizing from [3] those
elements of the homotopical Morita theory of modules and comodules in a monoidal
model category that are necessary in this paper. In particular we recall conditions
under which a morphism of corings induces a Quillen equivalence of the associated
comodule categories (Corollary 2.38).

In Section 3 we introduce a new theory of relative Hopf—Galois extensions,
insisting on the global categorical picture. We first treat the classical case, then
introduce the homotopic version, providing relatively simple conditions under which a
morphism of comodule algebras in a monoidal model category is a relative homotopic
Hopf-Galois extension (Proposition 3.29).

We furnish a concrete illustration of the theory of relative homotopic Hopf-
Galois extensions in Section 4, where we consider the monoidal model category Ch g
of unbounded chain complexes over a commutative ring R. After recalling from [3]
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the homotopy theory of modules and comodules in this case, we elaborate the
homotopy theory of comodule algebras in Chg, recalling the necessary existence
result for model category structures from [11], then describing and studying a
particularly useful fibrant replacement functor, given by the cobar construction
(Theorem 4.19). Finally, we describe in detail the theory of relative homotopic
Hopf-Galois extensions of differential graded algebras over a commutative ring R.
In particular we establish the existence of a useful family of relative homotopic Hopf—
Galois extensions analogous to the classical normal extensions (Proposition 4.27).
We apply this family to proving, under reasonable hypotheses, that a morphism
of comodule algebras is a relative homotopic Hopf—Galois extension if and only
if it satisfies effective homotopic descent (Proposition 4.28), a result analogous
to [26, Proposition 12.1.8] for commutative ring spectra. As a consequence we
establish an intriguing relationship between Hopf-Galois extensions and Koszul
duality, implying in particular that, under reasonable hypotheses, if A — B is a
homotopic Hopf—Galois extension with respect to some Hopf algebra H, where B
is contractible, then H is Koszul dual to 4 (Proposition 4.30). Finally, we explain
how to associate a homotopic Hopf—Galois extension in differential graded setting
naturally to a nice enough principal fibration of simplicial sets (Proposition 4.31) and
show that Koszul duality has a familiar form in this case (Remark 4.32).

1.4. Conventions.
* All forgetful functors are denoted U.

L
e Let € D be an adjoint pair of functors. If € is endowed with a model
R

category structure, and £ admits a model category structure for which the fibrations
and weak equivalences are created in €, i.e. a morphism in D is a fibration
(respectively, weak equivalence) if and only if its image under R is a fibration
(respectively, weak equivalence) in €, then we say that it is right-induced by the
functor R. Dually, if D is endowed with a model category structure, and € admits
a model category structure for which the cofibrations and weak equivalences are
created in D, i.e. a morphism in € is a cofibration (respectively, weak equivalence) if
and only if its image under L is a cofibration (respectively, weak equivalence) in D,
then we say that it is left-induced by the functor L.

2. Elements of homotopical Morita theory

In this section we recall from [3] those elements of homotopical Morita theory for
modules and comodules that are necessary for our study of homotopic Hopf-Galois
extensions in monoidal model categories. Since the definitions and results in [3]
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are couched in a more general framework than we need in this article, we specialize
somewhat here, for the reader’s convenience.

2.1. Homotopy theory of modules. Let (V,®, R) be a monoidal category. Let
Algy denote the category of algebras in 'V, i.e. of objects A in 'V together with two
maps u: A ® A — A and n: R — A that satisfy the usual associativity and unit
axioms. Dually, the category of coalgebras in 'V, i.e. objects in 'V that are endowed
with a coassociative comultiplication and a counit, is denoted Coalg-.

A right (respectively, left) module over an algebra A is an object M in 'V together
with amap p: M ® A — M (respectively, A: A ® M — M) satisfying the usual
axioms for an action. We let V4 (respectively, 4V) denote the category of right
(respectively, left) A-modules in V. We usually omit the multiplication and unit from
the notation for an algebra and the action map from the notation for an A-module.

Schwede and Shipley established reasonable conditions (such as the monoid
axiom [30, Definition 3.3]), satisfied by many model categories of interest, under
which module categories inherit a model category structure from the underlying
category.

Theorem 2.1 ([30, Theorem 4.1]). Let 'V be a symmetric monoidal model category.
If 'V is cofibrantly generated and satisfies the monoid axiom, and every object of 'V is
small relative to the whole category, then the category 'V 5 of right A-modules admits
a model structure that is right induced from the adjunction

—®A4

1% Va,

-

Uu

and similarly for the category 4V of left A-modules.
Categories of A-modules often admit left-induced structures as well.

Theorem 2.2 ([11, Theorem 2.2.3]). Let (V, ®, R) be a locally presentable, closed
monoidal model category in which the monoidal unit R is cofibrant. If A is a monoid
in 'V such that the category V4 of right A-modules admits underlying-cofibrant
replacements (e.g. if all objects of 'V are cofibrant), then 'V 4 admits a model structure
left-induced from the forgetful/hom-adjunction

U
V4~ L1V
hom(A4,—)

Hypothesis 2.3. Henceforth, we assume always that V is a symmetric monoidal
model category and that for every algebra A, the categories V4 and 4V of right and
left A-modules are equipped with model category structures with weak equivalences
created in the underlying category V.

The tensor product of a right and a left A-module over A is construction that
appears frequently in this article.
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Definition 2.4. Given right and left A-modules M4 and 4N, with structure maps
pM®A —> Mand A: A ® N — N, their tensor product over A is the object
M ®4 N in 'V defined by the following coequalizer diagram:

o®1
MRIARQSN —=MON —M ®4 N .
1®A

The special classes of modules defined below, which are characterized in terms
of tensoring over A, play an important role in this article.
Definition 2.5. Let V be a symmetric monoidal model category satisfying
Hypothesis 2.3. A left A-module M is called:
e homotopy flat if — @4 M:V4 — 'V preserves weak equivalences;

 strongly homotopy flat if it is homotopy flat and for every finite category J and
every functor ®:J — Vg4, the natural map

(liJm@) R4 M — liJm(dD ®a4 M)

is a weak equivalence in V;
* homotopy faithful if — ® 4 M:V4 — 'V reflects weak equivalences;
* homotopy faithfully flat if it is both homotopy faithful and strongly homotopy flat;
* homotopy projective if Map 4(M, —): 4V — 'V preserves weak equivalences;
* homotopy cofaithful if Map (M, —): 4V — 'V reflects weak equivalences.
Right modules of the same types are defined similarly.

It is also useful to distinguish those weak equivalences of left (respectively, right)
A-modules that remain weak equivalences upon tensoring over A with any right
(respectively, left) A-module.

Definition 2.6. A morphism of left A-modules f:N — N’ is a pure weak
equivalence if the inducedmap M ® 4 f: M@ 4N — M ® 4 N is a weak equivalence
for all cofibrant right A-modules M. Pure weak equivalences of right A-modules are
defined analogously.

It is easier to work in monoidal model categories in which cofibrant modules are
homotopy flat, fitting our intuition of cofibrancy as a sort of projectivity.

Definition 2.7. Let V be a symmetric monoidal model category satisfying
Hypothesis 2.3. We say that 'V satisfies the CHF hypothesis if for every algebra A
in 'V, every cofibrant right A-module is homotopy flat.

As pointed out in [30, §4], the CHF hypothesis holds in many monoidal model
categories of interest, such as the categories of simplicial sets equipped with usual
Kan model structure, symmetric spectra equipped with the stable model structure,
(bounded or unbounded) chain complexes over a commutative ring equipped with the
projective model structure, and S-modules equipped with the usual model structure.
The following proposition highlights one of the advantages of this hypothesis.
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Proposition 2.8. Let 'V be a symmetric monoidal model category satisfying
Hypothesis 2.3. If 'V satisfies the CHF hypothesis, then the notions of pure weak
equivalence and weak equivalence coincide for modules over any algebra A.

Proof. 1f all cofibrant right A-modules are homotopy flat, then clearly every weak
equivalence is pure. Conversely, let f: N — N’ be a pure weak equivalence. We
need to show that f is a weak equivalence. We may without loss of generality
assume that N and N’ are cofibrant. Indeed, by standard model category theory,
we can find cofibrant resolutions gy: QN — N and gny/: QON’ — N’ and a lift
QOf:0ON — QN’ making the diagram

NlLIN ~LLIN/
N—L N

commute. Clearly, f is a weak equivalence if and only if Q f is. By tensoring the
diagram above from the left with cofibrant (hence homotopy flat) right A-modules,
one sees that Q f is a pure weak equivalence.

Assume now that f: N — N’ is a pure weak equivalence between cofibrant, and
hence homotopy flat, A-modules. If g4: QA — A is a cofibrant resolution of 4 as a
right A-module, then the commutative diagram

0A®4 N 2L 044N’

llIA@l ltIA®1
f

N——>N'

shows that f is a weak equivalence. Indeed, the top horizontal map is a weak
equivalence because f is a pure weak equivalence, and the vertical maps are weak
equivalences because N and N’ are homotopy flat. 0

Our interest in pure weak equivalences is motivated by the next proposition, for

which we need to establish a bit of terminology.

Definition 2.9. Let 'V be a monoidal category, and let ¢: A — B be a morphism of
algebras in V. The restriction/extension-of-scalars adjunction,

P

V4 Vp

*

¢

is defined on objects by ¢« (M) = M ® 4 B, endowed with right B-action given by
multiplication in B, for all right A-modules M , while ¢* (/') has the same underlying
object, but with right A-action given by the composite

N
Nod % NeBA N
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Remark 2.10. It is a classical result that ¢* is right adjoint to ¢.. Moreover, under
Hypothesis 2.3, the adjunction ¢, | ¢* is a Quillen pair if and only if ¢* preserves
fibrations.

We can now formulate a necessary and sufficient condition under which a Quillen
pair g, — @™ is actually a Quillen equivalence.

Proposition 2.11. Let V be a symmetric monoidal model category satisfying
Hypothesis 2.3, and let ¢: A — B be a morphism of algebras in 'V such that ¢*
preserves fibrations. The restriction/extension-of-scalars adjunction,

Qx

V4 Vs,

B —
(p*

is a Quillen equivalence if and only if p: A — B is a pure weak equivalence of right
A-modules.

Proof. As explained above, if ¢* preserves fibrations, then the restriction/extension-
of-scalars adjunction is a Quillen adjunction. Since weak equivalences are created in
the underlying category 'V (by Hypothesis 2.3), the restriction-of-scalars functor ¢*
also preserves and reflects all weak equivalences. Therefore, the adjunction is a
Quillen equivalence if and only if the unit

n:M — ¢*(M ®4 B)

is a weak equivalence for all cofibrant right A-modules M [18, Corollary 1.3.16]. To
conclude, note that the morphism in V underlying n3s may be identified with

1®A§03M®AA—>M®AB. |

Remark 2.12. Proposition 2.11 is a slight strengthening of [30, Theorem 4.3].
Indeed, if all cofibrant modules are homotopy flat, then pure weak equivalences
are the same as weak equivalences by Proposition 2.8, so the “if” direction of
Proposition 2.11 recovers [30, Theorem 4.3].

2.2. Homotopical Morita theory for comodules.

2.2.1. Review of corings and their comodules. Let 'V be a monoidal category. For
every algebra A in 'V, the tensor product —® 4 — endows the category of A-bimodules
4V 4 with a (not necessarily symmetric) monoidal structure, for which the unit is A,
viewed as an A-bimodule over itself.
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Definition 2.13. An A-coring is a coalgebra in the monoidal category (4 V4, ® 4, A),
i.e. an A-bimodule C together with maps of A-bimodules A:C — C ®4 C and
€: C — A, such that the diagrams

A

C = C®4C c C®,4C
.
CRICEEE CoiCouC C®1C—=C

are commutative. A morphism of A-corings is a map of A-bimodules f:C — D
such that the diagrams

CLC@)AC C-—=-4
fl/ Lf@Af fl H
DiDQ@AD DL, 4

commute.

In Section 3 we provide natural constructions of families of corings. For the
moment we note only that any algebra A can be seen in a trivial way as a coring over
itself, where the comultiplication is the isomorphism A — 4 ® 4 A and the counit
is the identity.

A more general notion of morphism of corings takes into account changes of the
underlying algebra as well. Note first that if ¢: A — B is a morphism of algebras,
then there is a two-sided extension/restriction-of-scalars adjunction,

P

4V4 BVe, @9,

(0*
where ¢« (M) = B®4 M ® 4 B. Moreover, ¢4 is an op-monoidal functor, i.e. there
is a natural transformation

@x(M @4 N) — (M) ®p ¢x(N),

which allows us to endow ¢« (C) with the structure of a B-coring whenever C is an
A-coring.

Remark 2.14. Note that if A is considered as an A-comodule, where A is equipped
with the trivial coring structure defined above, then ¢.(A) is exactly the well known
descent or canonical coring associated to the algebra morphism ¢, with underlying
B-bimodule B ® 4 B.
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Definition 2.15. A coringinV is apair (4, C) where A is an algebrain 'V, and C is an
A-coring. A morphism of corings (A, C) — (B, D) isapair (¢, f) wherep: A — B
is a morphism of algebras, and f:¢«(C) — D is a morphism of B-corings. The
category of corings in 'V is denoted Coring-y.

We now recall the definition of a comodule over a coring.

Definition 2.16. Let (A, C) be a coring in 'V, with comultiplication A and counit €.
A right (A, C)-comodule is a right A-module M together with a morphism of right
A-modules 6: M — M ®4 C such that the diagrams

M M®4C M- Me,C

[ N

M@IC——MR4CQ4C

are commutative. A morphism of (A, C)-comodules is a morphism f: M — N of
right A-modules such that the diagram

8
MY Me,C

fl Lf@c
SN

N—N®,yC

commutes. We let "Vg denote the category of right (4, C)-comodules. The category
SV of left (4, C)-comodules is defined analogously.

Remark 2.17. Every morphism of corings (¢, f):(4,C) — (B, D) factors in

Coringy as
(@, (C))
(4,C) —————— (B, ¢x(C))
@.)) ladB’f )
(B,D),

i.e. as a change of rings, followed by a change of corings. This easy observation is a
very special case of [3, Proposition 3.32].
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There is an adjunction

U

v§ Va, Us1-®4C,

-®4C

where U is the forgetful functor, and — ® 4 C is the cofree C-comodule functor. In
particular, for any A-module M, the C-coaction on M ® 4 C is simply M ® 4 A.

Remark 2.18. Note that if A is endowed with its trivial A-coring structure, then the
adjunction above specializes to an isomorphism between 'Vj and V4. It follows that
the theory of comodules over corings englobes that of modules over algebras.

Under reasonable conditions on V, if (¢, f): (A4, C) — (B, D) is a morphism of
corings, then the restriction/extension-of-scalars adjunction on the module categories
lifts to an adjunction on the corresponding comodule categories.

Proposition 2.19 ([3, Proposition 3.17, Example 3.22]). Let 'V be a symmetric
monoidal category that admits all reflexive coequalizers and coreflexive equalizers.
If (A, C) is a coring in 'V such that 'Vg admits all coreflexive equalizers, then every
morphism of corings (¢, f): (A, C) — (B, D) gives rise to an adjunction
e @ D
A<~——— "B
(0.)*

such that the following diagram of left adjoints commutes.

,Vg @, ) ,VBP
V4y————>Vp

Remark 2.20. As explained in [3, Remark 3.10], if 'V is locally presentable, then
"Vg admits all coreflexive equalizers. On the other hand, the dual of [21, Corollary 3]
implies that if — ® 4 C: V4 — V4 preserves coreflexive equalizers, then 'Vg admits
all coreflexive equalizers.

Remark 2.21. The commutativity of the square in the statement of Proposition 2.19
implies that for any C-comodule (M, §), the B-module underlying (¢, f)«(M, )
is M ® 4 B. As shown in the proof of [3, Proposition 3.17] (in a somewhat more
general context), the D-coaction on M ® 4 B is given by the following composite.

5 M®p®C®B
M®ABﬁ>M®AC®AB%M@AA(@AC@ABW—)M@AB@AC@AB
lM@f
M ®4 D

|~

M ®4B®pD
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Since the diagram of right adjoints must also commute, we know as well that the
image under (¢, f)* of a cofree D-comodule N ® g D is the cofree C-comodule
P*(N)®4 C.

Notation 2.22. When (¢, f) = (Id4, f): (A, C) — (A, D), we denote the induced
adjunction

J
v§ - 14 2.1)

and call it the coextension/corestriction-of-coefficients adjunction or change-of-
corings adjunction associated to f. Note that the D-component of the counit of
the fi - f* adjunction is f itself and that for every (4, C)-comodule (M, §),

When (¢, f) = (¢.1dg,(c)): (A, C) — (B,¢«(C)), we denote the induced
adjunction

Cang
v$ Ver(© (2.2)
Primg,

and call it the canonical adjunction for C, as a generalization of the usual canonical
adjunction for descent along ¢: A — B, which is the case C = A of the adjunction
above [10,23].

Remark 2.23. By Remark 2.17, the adjunction (¢, )« =1 (¢, f)* can be factored
as follows.

Cangy S
11 Vg © 73 2.3)
Primg, r*

The right adjoint (¢, f)* in the adjunction governed by a morphism of corings
(¢, f):(A4,C) — (B, D) is difficult to describe in general. Under appropriate
conditions on the left A-module underlying C, however, it is possible to express
(¢, f)* as a cotensor product over D, dually to the expression of the left adjoint
in the extension/restriction-of-scalars adjunction associated to ¢ as a tensor product
over A. The condition we need to impose on C is formulated as follows.

Definition 2.24. A coring (A4, C) is flatif — ® 4 C: V4 — V4 preserves coreflexive
equalizers.

Flatness of a coring gives us control of coreflexive equalizers in the associated
comodule category.

Proposition 2.25 ([3, Proposition 3.29]). If (A, C) is a flat coring, then the forgetful
Sfunctor U: "Vf — V4 creates coreflexive equalizers.
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The following definition is dual to Definition 2.4.

Definition 2.26. Suppose that the monoidal category V admits coreflexive equalizers.
Let (A, C) be a coring in 'V, let M be a right and N a left (A, C)-comodule. The
cotensor product MOc N is defined as the coreflexive equalizer in V:

SM®N
MOcN — M QN _—<M@4C @4 N.
MQsN

We can now formulate the desired explicit description of the right adjoint in the
adjunction governed by a morphism of corings.

Proposition 2.27 ([3, Proposition 3.31]). Let 'V be a monoidal category admitting
all reflexive coequalizers and coreflexive equalizers. Let (A, C) be a flat coring in V.
If (¢, ): (A, C) — (B, D) is a coring morphism, then B ® 4 C admits the structure
of a left (B, D)-comodule in "Vg such that the functor (¢, f)* is isomorphic to the
cotensor product functor —Op (B ® 4 C), i.e. there is an adjunction

c (@, /)« D
Vi Vg .
—Op(B®4C)

Remark 2.28. The left D-coaction on B ® 4 C is given by the following composite.

BRC®p®C
Bo4C 22 BR,C@C2BRUCRIARLC 2% BR,CR4B®4C
feC
D®yC
D®pB®4C

2.2.2. Homotopy theory of comodules. We now introduce homotopy theory into
our discussion of comodule categories.

Hypothesis 2.29. We assume henceforth that 'V is a symmetric monoidal model
category satisfying Hypothesis 2.3. For every coring (A4, C) in 'V that we consider
here, we suppose moreover that 'Vg admits the model category structure left-induced
from V4, via the adjunction
U
1
—-®4C

Remark 2.30. Conditions on 'V under which the convention above holds can be
found in [2,11], and [15], where a number of concrete examples, including simplicial
sets, symmetric spectra, and chain complexes, are also treated. In Section 4 we recall
in detail the example of unbounded chain complexes over a commutative ring.



120 A. Berglund and K. Hess

Remark 2.31. It follows from [3, Proposition 4.5] that if 'V is a symmetric monoidal
model category satisfying Hypothesis 2.29, and (¢, f):(4,C) — (B,D) is a
morphism of corings, then the associated adjunction

c (@, ) D
vA -~ vB
(0.)*
is a Quillen adjunction if
O

V4 VB

-~
(p*

is, i.e. if ¢™* preserves fibrations. In particular, for every morphism of corings

(1, f):(4,C) — (4. D),

S
C D
rVA (f—* rVA

is a Quillen adjunction.

Remark 2.32. Since we assume henceforth that V, V4, and 'Vf are model
categories, they are in particular complete and cocomplete and thus admit all reflexive
coequalizers and coreflexive equalizers.

We now recall from [3, Section 4] the conditions under which a morphism of
corings (¢, f):(A,C) — (B, D) induces a Quillen equivalence of the associated
comodule categories. We begin by breaking the problem into two pieces, according
to the factorization in Remark 2.23.

Definition 2.33. Let (A4, C) be a coring in 'V and B an algebra in V. An algebra
morphism ¢: A — B satisfies effective homotopic descent with respect to C if the
adjunction

Cangy ©)
C *
Ve ve©, (2.4)
Primg,

is a Quillen equivalence.
Sufficient conditions for effective homotopic descent were established in [3].

Proposition 2.34 ([3, Corollary 4.13]). Let 'V be a symmetric monoidal model
category satisfying Hypothesis 2.29. Let ¢: A — B be a morphism of algebras
in V. If B is homotopy faithfully flat as a left A-module, then ¢ satisfies effective
homotopic descent.
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For the other piece of the factorization, we need to introduce a notion dual to that
of pure weak equivalence.

Definition 2.35. Let V be a symmetric monoidal model category satisfying
Hypothesis 2.29. We say that a map f:C — D of A-corings is a copure weak
equivalence if

em: fxfT (M) —> M
is a weak equivalence for all fibrant right D-comodules M .

Just as pure weak equivalences induce Quillen equivalences of module categories,
copure weak equivalences do the same for comodule categories.

Proposition 2.36 ([3, Proposition 4.6]). Let V be a symmetric monoidal model
category satisfying Convention 2.29. Let A be an algebra in V. The change-of-
corings adjunction,

S
C ———>yD
vA - rVA ’
f*
is a Quillen equivalence if and only if f:C — D is a copure weak equivalence of
A-corings.

Remark 2.37. As pointed out in [3, Proposition 4.6], if A4 is fibrant as an object of V,
then every copure weak equivalence of A-corings is a weak equivalence. Conversely,
if the coring (A4, C) is flat, then f*(M) = MOpC by Proposition 2.27. In this
case, if f is a weak equivalence, and the functor M Op—: f V — 'V preserves weak
equivalences for all fibrant right D-comodules M, then the adjunction above is a
Quillen equivalence. It follows that if every fibrant D-module is “homotopy coflat”,
then every weak equivalence of corings with flat domain is copure; compare with
Proposition 2.8.

As a consequence of Propositions 2.34 and 2.36, we obtain the following
sufficient condition for the adjunction induced by a coring morphism to be a Quillen
equivalence.

Corollary 2.38. Let 'V be a symmetric monoidal model category satisfying
Convention 2.29. Let (¢, ): (A, C) — (B, D) be a morphism of corings in V.
If B is homotopy faithfully flat as a left A-module, and f is a copure weak
equivalence, then
(0,/)+
ViV
(0.1)*

is a Quillen equivalence.
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3. Relative Hopf-Galois extensions

Here we apply the results of [3] recalled in the previous section to elaborating
interesting and natural generalizations first of the classical framework, then of the
homotopic framework, for Hopf—Galois extensions.

3.1. The descent and Hopf functors. Let (V,®, R) be a symmetric monoidal
category that is both complete and cocomplete. Generalizing constructions in [4],
we begin by describing two important, natural ways to create corings in V and the
relation between these constructions.
Definition 3.1. Let Algy; denote the category of morphisms of algebras in V. The
descent functor

Desc: Algy, — Coringy

sends an object p: A — B to its associated canonical descent coring (also called the
Sweedler coring)
Desc(p) = (B, (B®4 B, Ay, g(p)),

where A, is equal to the composite

B® 49oQ@4B
BR4B=BRsAR4B ", BR,B®4B =~ (BR,4B)®5(BR4B),

and

&y =up:B®4 B — B,
the morphism induced by the multiplication up: B ® B — B. A morphism
(a, B): 9 — @' in Alg™, i.e. a commuting diagram of algebra morphisms

A—2s A

'

B—— B,
induces a morphism of B-corings

Desc(a, B) = (B, B ®q B): Desc(¢) — Desc(¢’).

Remark 3.2. The coring Desc(p) is the same as the coring ¢« (A) of Remark 2.14.
We change the notation here to emphasize the functoriality of the construction in the
morphism ¢.

It is not hard to check that (B, (B ®4 B, Ay, &,)) is indeed a B-coring and that
(B, B ®q B) is a morphism of corings for any («, 8): ¢ — ¢’. Moreover, Desc(¢)
admits two natural coaugmentations, given by the composites

B B
BoBsAd—2 Bo,4B and B~Aw®,B 2% B, B.



Homotopic Hopf—Galois extensions revisited 123

The other functor into Coringy that we consider here takes as input algebras,
respectively coalgebras, endowed with extra structure given by a bialgebra H.

Remark 3.3. If H is a bialgebra in 'V, then it is an algebra in Coalgy, and a coalgebra
in Algy,. In particular, (R, H) is a coring in V.

Definition 3.4. Let H be a bialgebra in V. An object of the category (Coalgy) g
of H-module coalgebras in 'V is an H-module in Coalgy, i.e. a coalgebra C in 'V,
equipped with an associative, unital morphism of coalgebras «:C @ H — C.
Morphisms in (Coalgy) g are morphisms in V that respect the comultiplication and
counit and the H -action.

Definition 3.5. Let H be a bialgebra in V. An object of the category Alg:‘lf of
H -comodule algebras in 'V is an H-comodule in Algy, i.e. an algebra A in V,
equipped with a coassociative, counital morphism of algebras p:4 — A ® H.
Morphisms in Algg are morphisms in V that respect the multiplication and unit and
the H -coaction.

Notation 3.6. Let I': H — H’ be a morphism of bialgebras. There is an induced
extension/restriction-of-scalars adjunction

T

(Coalgy)r " (Coalgy) .
F*

Moreover, by Proposition 2.19 there is also a change-of-corings adjunction

I+
Algl " Aigt’.
F*

As we are using the same notation for the functors in these two different cases, we
will be very careful to specify context any time we refer to a functor I'yx or I'*.

The category below of matched pairs of comodule algebras and module coalgebras
is the natural domain for an interesting functor to the global category Coring, of all
corings in 'V, generalizing the well known construction of a coring from any comodule
algebra [9, Example 4.3(2)].

Definition 3.7. The category Tripley, has as objects triples (H, (4, p), (C, k)), where
H is abialgebrain 'V, (4, p) is an H-comodule algebra, and (C, k) is an H-module
coalgebra. A morphism from (H, (4, p4),(C,kc)) to (K, (B,pg),(D,kp))
consists of a triple (I', ¢, 6), where I': H — K is a morphism of bialgebras,
¢:Tx(A) — B is a morphism of K-comodule algebras, and 8:C — T'*(D) is
a morphism of H-module coalgebras.
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Definition 3.8. Let H be a bialgebra in V. The Hopf functor
Hopf: Tripley — Coringy
sends an object (H, (A, p). (C,k)) to its associated Hopf coring,
Hopf(p, k) = (A, A®C,A,, Sp,x)),

where the left A-action is equal to

C
A48 C 225 s cC.

where  is the multiplication on A, and the right A-action is given by the composite

ARCQp nK
ARCRA——ARCQRAQRH =2ARAQCRH — A®C.

The comultiplication A, . is equal to the composite

A®A
ARC — AQCRC =2=(AQC)R4 (AR C),

where A is the comultiplication on C, and ¢, is given by

AQC 2% AR~ A

where ¢ is the counit of C.
If (T, ¢, 8) is a morphism from (H, (A4, p4), (C,kc)) to (K, (B, pp), (D,kp)),
then the morphism of A-bimodules underlying Hopf (T, &, 0) is

p®0:AC - B®D.

The proof that Hopf(p, k) is actually an A-coring is somewhat fastidious, but
straightforward.

Notation 3.9. Animportant special case of the construction above comes from taking
(C,x) = (H, n), where u is the multiplication on H. We simplify notation a bit and
write

Hopf(p) = Hopf(p, pt).

The relation between the functors Desc and Hopf can be expressed in terms
of a natural transformation, as explained below. Observe first that the proof of [24,
Proposition 4.3] can easily be generalized to an arbitrary monoidal category, implying
that for any morphism I': H — K of bialgebras, the coequalizer R ® g K inherits a
coalgebra structure from K, with compatible right K-module structure, induced by
the multiplication in K.

Notation 3.10. If ': H — K is a morphism of bialgebras in V, let Cof(I") denote
the K-module coalgebra R ® g K, let ;i ¢ denote its induced right K-action, and let
nr: K — Cof(I") denote the quotient map.
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Definition 3.11. The category ComodAlgy of all comodule algebras in 'V has as
objects pairs (H, (A4, p)), where H is a bialgebra in 'V, and (4, p) is an H-comodule
algebra. A morphism in ComodAlgy, from (H, (A4, p4)) to (K, (B, pp)) consists of
a pair (I, ¢), where I': H — K is a morphism of bialgebras, and ¢: I'x(4) — B is
a morphism of K-comodule algebras.

Definition 3.12. Let ComodAlgy, denote the category of morphisms in the category
ComodAlgy,. Let

U~ ComodAlgy, — Algy: (H. (4. pa)) 2 (K.(B.pp))) — (4 % B)

be the obvious forgetful functor, and

C: ComodAlgy, — Tripley: ((H. (4, pa)) Lo, (K. (B.pB)))

~ (K. (B. pg). (Cof(I"), fix))

the “cofiber” functor.
The Galois transformation is the natural transformation

Gal: DescoU ™ — Hopf oC

T,
defined on an object (H, (A, p4)) ﬁ) (K, (B, pB)) so that

Gal(r,¢): Desc(¢) — Hopf(pp, i g)

is the morphism of B-corings given by the identity on B in the algebra component
and by the composite

B® nwB®
BB —2% Bg,B®K 225 B @ Cof(T)

in the coring component, where (i p is induced by the multiplication in B; compare
with the Galois map of Definition 1.1.

The diagram below summarizes the definitions seen thus far in this section.

Algy,
Desc
U‘)
ComodAlgy, JGa Coringy
c
Hopf

Tripley
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Remark 3.13. An object in ComodAlgy, of the form

(R. (4. p)) 22 (K. (B. ps)).

where n7: R — K is the unit of K, is Hopf~Galois data, in the sense of [9], since
one can also view a morphism of this type as a morphism of K-comodule algebras,
where the coaction of K on A is trivial.

Remark 3.14. The naturality of all of the constructions seen thus far implies that a
commuting diagram of comodule algebra morphisms

(H, 4) "2 (K. B)

(é‘,a)l (E,ﬂ)t
(H/, A/) L’(p)_ (K/, B/)

gives rise to a commuting diagram of functors

O

rVA vA/

a*

Cany, | | Primg Cangy | | Primg/
Des (ﬁ’DeSC(a’ﬂ))* Des /
v esc(p) FVBi?bC(‘ﬂ)
(B.Desc(@.8))

Gal(T,¢)« | | Gal(T,p)* Gal(T,¢")« | | Gal(T”,@")*

(B,0z.8)%
—_—

vHOPf(pB,ﬁK)
B -~
(B.0g.8)*

Hopf(pp/,it k)
Vi P,

where the B’-bimodule map underlying ¢ g is

B’ ®Cof(§)®B’
-

B’ ® Cof(I') ®p B’ B’ ® Cof(I'") ®p B’ — B’ ® Cof(I"'),

with the second map given by the right B’-action on B’ ® Cof (I'’) (cf. Definition 3.8).

We need to introduce one more functor defined on ComodAlgy,, in order to set
the stage for Hopf—Galois extensions and their generalizations.
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Remark 3.15. Proposition 2.19 implies that if Algy admits all reflexive coequalizers
and coreflexive equalizers and Alg{f admits all coreflexive equalizers, then every
morphism of bialgebras I':! H — K gives rise to an adjunction

T+

Algh Alg¥.

F*

See Remark 2.20 for conditions under which these hypotheses hold. In particular,
if 'V is locally presentable, then both Algy, and Algg are locally presentable and
therefore complete and cocomplete.

Definition 3.16. Let H be a bialgebra in 'V with unit n: R — H. If the extension-
of-corings functor 7.:Algy — Alg{’,’ , which endows any algebra with a trivial H -
coaction, admits a right adjoint, then we call this right adjoint the H -coinvariants
functor and denote it

(—)°H: Aiglt — Algy,.

Remark 3.17. Suppose that Algy, admits all reflexive coequalizers and coreflexive
equalizers and Algg admits all coreflexive equalizers. For any morphism I': H — K
of bialgebras, there is a commuting diagram of adjunctions, with right adjoints on
the inner triangle and left adjoints on the outer triangle,

T

AlgH Algh (3.1)
Algy

since ' ong = ng.

Let (T, ¢): (H,(A,p4)) — (K, (B,pp)) be a morphism in in ComodAlgy.
Recall that if 5! is the unit of the 'y - I'*-adjunction in diagram (3.1), then
the transpose of ¢: '+ A — B is the composite

775 T'*e
A—T*TyA—T'*B.
Applying (—)°# | we obtain a morphism of algebras

(et o)t

AcoH (F*F*A)COH -

(F*B)COH ~ BcoK
where the last isomorphism follows from the commutativity of the diagram above.
We denote this composite morphism

gOCOFIACOH — BcoK’

coH

which becomes simply ¢“°** when I is the identity morphism on H.
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As the constructions above are clearly natural in both the bialgebra and the
algebra components of a comodule algebra, we can summarize the discussion above
as follows.

Proposition 3.18. Let 'V be a symmetric monoidal category such that Algy admits
all reflexive coequalizers and coreflexive equalizers and Algg admits all coreflexive
equalizers for all bialgebras H. There is a functor Coinv: ComodAlgy — Algy, that
to a morphism (', ¢): (H, (A, p4)) — (K, (B, pp)) in ComodAlgy, associates the
algebra morphism ¢°T: A" . ook

3.2. The classical Hopf-Galois framework. We have now set up the complete
framework enabling us to formulate a relative version of the classical notion of Hopf—
Galois extensions of rings and algebras. To simplify notation, we drop henceforth
the coactions from the notation for comodule algebras.

Definition 3.19. Let V be a symmetric monoidal category such that Algy admits
all reflexive coequalizers and coreflexive equalizers and Algg admits all coreflexive
equalizers for all bialgebras H. A morphism

H.4) £ (k. B)

in ComodAlgy is a relative Hopf—Galois extension if

(pcol":AcoH — BcoK

is an isomorphism of algebras, and

Gal(r,y): Desc(¢) — Hopf(pp, k)

is an isomorphism of B-corings.

When V is the category of R-modules for some commutative ring R, a relative
Hopf-Galois extension for H = R is exactly a classical Hopf—Galois extension,
as defined by Chase and Sweedler [6]. Related notions of relative Hopf-Galois
extensions have been considered in [28] and [29], in the context of quotient theory of
noncommutative Hopf algebras.

Example 3.20. Let H be a bialgebra in V with unit 7, comultiplication A, and
multiplication p. The morphism (n,71): (R, R) — (H, H) in ComodAlgy, is a
relative Hopf—Galois extension if and only if

A H
HoH 22 HeoHeoH S HeH

is an isomorphism. If V is the category of R-modules for some commutative ring R,
then this condition is equivalent to requiring that H admit an antipode, i.e. that H
be a Hopf algebra, in the classical sense of the word [27, Example 2.1.2]. If V is the
category of (differential) graded R-modules, then, as is well known, every connected
bialgebra H satisfies the condition above [8, Proposition 3.8.8].
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Inspired by the classical case, we make the following definition.

Definition 3.21. We say that a bialgebra H in 'V is a Hopf algebra if the map
(m.m:(R.R) - (H.H)

is a relative Hopf—Galois extension in the sense of Definition 3.19. More generally,
we say that a morphism of bialgebras I': H — K is a relative Hopf algebra if

(I,T):(H,H) - (K, K)
is a relative Hopf—Galois extension, i.e. if

Ag®nr

KAk
Koy K —2°5 Koy K ® K 22275 K @ Cof(T) 3.2)

is a isomorphism.

For example, if H is any bialgebra, and H’ is a Hopf algebra, then the bialgebra
morphism H ® n’: H —~ H ® H' is a relative Hopf algebra.

If V is the category of (differential) graded R-modules for some commutative
ring R, then a morphism I': H — K of bialgebras is a relative Hopf algebra if the left
H -module and right Cof (I")-comodule underlying K is isomorphic to H ® Cof(I").
By [24, Theorem 4.4], K admits such a description if H and K are connected, while
I': H — K is split injective and nip: K — Cof (") is split surjective, as morphisms
of graded R-modules. In particular, if R is a field, then I" is a relative Hopf algebra
if it is injective.

For any algebra E in 'V, and any relative Hopf algebra I': H — K, let

(A,pa) =(E® H,E® Ag) and (B,pp) =(EQ® K, EQ® Ag).

The morphism

(ILE®I)
(H. (A, pa)) — (K. (B.pp))

in ComodAlg+y is then a generalized Hopf—Galois extension, as ¢ is simply the
identity on E, while Gal(r,ggr) is given by applying the functor £ ® — to the
composite (3.2). Following classical terminology, we call this morphism a normal
relative Hopf—Galois extension with normal basis E .

col’

3.3. The homotopic Hopf-Galois framework.

Hypothesis 3.22. Henceforth V denotes a symmetric monoidal model category
satisfying Convention 2.29 and the CHF condition (Definition 2.7). We also assume
that Algy, is equipped with a model category structure with weak equivalences created
in V and that the category Algg of H-comodule algebras with the model category
structure right-induced from that of V¥ (the category of H-comodules in 'V, where
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we have forgotten the multiplicative structure on H') via the free-algebra/forgetful
adjunction, for any bialgebra H that we consider. It follows that

I
Alg " Aigk
F*

is a Quillen adjunction for every morphism I': H — K of bialgebras; see
Remark 2.31. Explicit examples of such model category structures can be found
in [16] and [11].

Definition 3.23. Let A be an H-comodule algebra. For any fibrant replacement A4/
of A in Algfg , the algebra (A7)°H is a model of the homotopy coinvariants of the
H -coaction on A4, denoted (somewhat abusively) Abeol

Given an object (I, ¢): (H, A) — (K, B) in ComodAlgy;, we can construct an
associated morphism of algebras "el'; ghcol . BheoK a4 follows, inspired by
Remark 3.17. Let

ig:B> B and ig:TheA > ([LA)

be fibrant replacements in AIg§ ,and let ¢/ : (T'yA) — B/ be an extension of ¢ to
the fibrant replacements. Since I'*: AIg§ — Algg is a right Quillen functor,

*(p/): T*((Tw4)) — T*(BY)

is a morphism of fibrant H-comodule algebras.
Let j: A 5 A be any fibrant replacement in Algg . The composite morphism

of H-comodule algebras
nr * G
A2 rrr,a) 28 e, a)7)
extends to a morphism of H -comodule algebras
it A7 — T*((T.A)7),
since j is an acyclic cofibration, and F*((F* A)f ) is fibrant. A model for

(phCOF: AhcoH — thoK

is then given by the composite

(4ol 2 (e, a) ) O e (g1 & (BT )K (33

To define homotopic relative Hopf—Galois extensions, we now modify somewhat
the approach of [9, Definition 3.2], categorifying both conditions instead of just one.
As we see below, under reasonable hypotheses a homotopic Hopf—Galois extension in
the sense of [9, Definition 3.2] also satisfies the conditions of the modified definition
below.
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Definition 3.24. A morphism (I', ¢): (H, A) — (K, B) in ComodAlgy is a relative
homotopic Hopf-Galois extension if both of the adjunctions

(@)
VAhcoH vthoK
((phcul_‘)*
and
Gal(T,p) _
Desc(p) - Hopf(p /i k)
VB vB
Gal(T,p)*

are Quillen equivalences.
A morphism I': H — K of bialgebras in 'V is a relative homotopic Hopf algebra
if (I,T): (H, H) — (K, K) is a relative homotopic Hopf—-Galois extension.

Remark 3.25. The definition of homotopic Hopf—Galois extension is independent
of the choice of fibrant replacements for A and B underlying the definition of A"°#
and B"°K since V satisfies the CHF hypothesis, whence all weak equivalences of
algebras are pure and therefore induce Quillen equivalences on module categories
(Propositions 2.8 and 2.11).

Remark 3.26. In the special case of a morphism of the form (R, A) M (H, B)

in ComodAlg+y, we recover a slightly modified version of the definition of a homotopic
H -Hopf-Galois extension from [9].

Remark 3.27. In [26] Rognes defined homotopic Hopf—Galois extensions of
commutative ring spectra in a convenient symmetric monoidal model category &
of spectra, such as symmetric spectra and S-modules. According to his conventions,

a morphism

(5, 4) 2% (H, B)
in ComodAlgg, where S is the sphere spectrum, and A and B are commutative
S-algebras, is a homotopic Hopf—Galois extension if the composite

jan (phcol"
A= ACOH AhcoH thoH,
where j: A 5 47 is a fibrant replacement in Algg , and

By = Gal(y,,.0): Desc(p) — Hopf(pp)

are weak equivalences, where B"°# is modelled explicitly as the totalization of a
certain cosimplicial “cobar”-type construction.

As itis still work in progress to show that all of conditions of Hypothesis 3.22 hold
in various incarnations of § (cf. [16, Corollary 5.7]), we cannot yet apply the results
below characterizing homotopic Hopf—Galois extensions to conclude that Rognes’s
definition fits precisely into our framework, but we strongly suspect that it is the case.
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Remark 3.28. The generalization of homotopic Hopf—Galois extensions to a relative
framework is not merely an idle exercise. Indeed, as shown in [19], the formulation
of one direction of a Hopf—Galois correspondence for Hopf—Galois extensions of
differential graded algebras requires such relative extensions.

As an immediate consequence of Proposition 2.11 and Corollary 2.38, we obtain
conditions under which a morphism of comodule algebras is a relative homotopic
Hopf-Galois extension.

Proposition 3.29. Let V be a symmetric monoidal model category satisfying
Convention 3.22. Let (I, ¢): (H, A) — (K, B) be a morphism in ComodAlg-.

If pheol': gheoH - pheok o o weak equivalence and Gal(T, ¢): Desc(¢) —
Hopf(pp, ix) is a copure weak equivalence, then (I, @) is a relative homotopic
Hopf-Galois extension.

Corollary 3.30. Let V be a symmetric monoidal model category satisfying
Convention 3.22. If the unit R is fibrant, then a morphism UI': H — K of bialgebras
in'V is a relative homotopic Hopf algebra if Gal(I', I"): Desc(I") — Hopf(Ak, i)
is a copure weak equivalence.

Proof. Since R is fibrant in 'V, it is fibrant in Algy, whence both H and K are fibrant
in their respective categories of comodule algebras. It follows that the identity on R
is a model of T'heel’; frheoH _, grheoK O

4. Homotopic Hopf-Galois extensions of chain algebras

In this section we illustrate the theory of the previous section when the underlying
monoidal model category is that of unbounded chain complexes over a commutative
ring R, endowed with the usual monoidal structure and the Hurewicz model
structure [1], in which the weak equivalences are the chain homotopy equivalences,
the fibrations are the degreewise-split surjections, and the cofibrations are the
degreewise-split injections. In particular we provide a large class of examples of
homotopic Hopf—Galois extensions and prove a theorem analogous to the descent-
type description of homotopic Hopf—Galois extensions in [26, Proposition 12.1.8].
The work in this section builds on [3, Section 5], the key results of which we recall
below.

4.1. Homotopy theory of chain modules and comodules. Let A be an algebra
in Chg. As shown in [1, Theorems 4.5, 4.6, and 6.12], the category (Chg) 4 admits a
proper, monoidal model category structure right-induced from the Hurewicz structure
on Chpg by the adjunction

-®A
ChR (ChR)A,

-

Uu
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which we call the relative model structure. A morphism of A-modules is thus a
weak equivalence (respectively, fibration) in the relative structure if the underlying
morphism of chain complexes is a chain homotopy equivalence (respectively, a
degreewise-split surjection). We call the distinguished classes with respect to the
relative model structure relative weak equivalences, relative fibrations, and relative
cofibrations, and A-modules that are cofibrant with respect to the relative model
structure are called relative cofibrant. The category of left modules admits an
analogous relative structure.

Barthel, May, and Riehl provided the following useful characterization of relative
cofibrant objects in 4(Chg). A similar result holds for (Chg) 4.

Proposition 4.1 ([1, Theorem 9.20]). An object M in 4(Chg) is relative cofibrant if
and only if it is a retract of an A-module N that admits a filtration

O=F  NCFKNC---CF,NCFNC--

where N = |5 FuN and for each n > 0, there is chain complex X (n) with 0
differential such that FyN/F,_ 1N = A ® X(n).

Barthel, May, and Riehl call filtrations of this sort cellularly r-split and show that
the inclusion maps F,—1N — F,N are split as nondifferential, graded A-modules

(cf. [1, Definition 9.17]). Note in particular that A itself is always cofibrant as a right
or left A-module.

Remark 4.2. It follows from Proposition 4.1 that if an object M in 4(Chp) is relative
cofibrant, then M ® Y is also relative cofibrant, for every chain complex Y. Indeed,
if M is a retract of a left A-module N with a cellularly r-split filtration

O=F /{NCHKHNC---CF,NCF,NC---,

then M ® Y is a retract of the left A-module N ® Y, which has a (not necessarily
cellularly) r-split filtration

0=(F.4N)QY C(FoN)®Y C---C(FuN)®Y S (FriN)®Y -+,

and thus also a cellularly r-split filtration by [1, Theorem 9.20].

Specializing the definition of cellularly r-split filtrations somewhat, we obtain an
important class of relative cofibrant modules.

Definition 4.3. An object M in 4(Chg) is flat-cofibrant with respect to the relative
model structure if it is a retract of an A-module N that admits a cellularly r-split
filtration

0=F_ NS FNC---CFNCFNCc---

with FyN/F,_1N =~ A ® X(n) where X(n) is degreewise R-flat, which we call a
cellularly r-split flat filtration.
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Together with [3, Proposition 5.5(1)], Proposition 2.11 implies the following
result.

Proposition 4.4. Let ¢: A — B be a morphism of algebras in Chg. The induced
restriction/extension-of-scalars adjunction

P

V4 ;3

is a Quillen equivalence with respective to the relative model structures if and only if
the chain map underlying ¢: A — B is a chain homotopy equivalence.

The existence of model category structure for categories of comodules over
corings in the context of unbounded chain complexes was proved in [11].

Theorem 4.5 ([11, Theorem 6.6.3]). Let R be any commutative ring. For any
algebra A in Chg and any A-coring C, the category (Ch R)g of C-comodules in
A-modules admits a model category structure left-induced from the relative model
structure on (Chg) 4 via the forgetful functor.

Remark 4.6. Note that if (4, C) is a flat coring, e.g. if C is flat-cofibrant as a left
A-module, then limits in (Ch R)ﬁ are in fact created in (Chg) 4 and thus in Chg.

In [3] the authors established the existence of interesting classes of copure weak
equivalences of corings and of algebra morphisms satisfying effective homotopic
descent in the chain complex framework.

Theorem 4.7 ([3, Theorem 5.11]). Let A be an algebra in Chg. If C is a flat
A-coring, and D is a coaugmented flat-cofibrant A-coring, then every relative weak
equivalence f:C — D of A-corings is copure.

Theorem 4.8 ([3, Theorem 5.12]). Let ¢: A — B be a morphism of algebras in Chg.
If as a left A-module B is flat-cofibrant and contains A as a retract, then @ satisfies
effective homotopic descent.

Finally, putting all of the pieces together, we can describe a class of morphisms
of corings that induce Quillen equivalences between the corresponding comodule
categories.

Theorem 4.9 ([3, Theorem 5.13]). Let (¢, f): (A, C) — (B, D) be a morphism of

flat corings in Chg such that, as a left A-module, B is flat-cofibrant and contains A

as a retract and such that D is coaugmented and flat-cofibrant as a left B-module.
The adjunction governed by (¢, f),

(W:f)*
(Chr)§ —_ (Chp)2,

(@, )"

is a Quillen equivalence if and only if the morphism of B-corings f: B«(C) — D is
a relative weak equivalence.
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As explained in Remark 5.15 in [3], the flat-cofibrancy hypothesis on ¢ in the
theorem above is not too restrictive, since ¢ can always be replaced up to weak
equivalence by a morphism that satisfies it.

4.2. Homotopy theory of chain comodule algebras. Before discussing homotopic
Hopf-Galois extensions in Chg, it remains to obtain a model category structure
on Algg , the category of the H -comodule algebras in Chg, for any bialgebra H. The
first step towards such a theorem is provided by the following result, a special case
of the model category structure on categories of comodules over corings.

Proposition 4.10 ([11, Corollary 6.3.7]). Let R be any commutative ring and C any
coalgebra in Chg. There exists a model category structure on the category Chg of
right C-comodules that is left-induced along the forgetful functor Chg — Chpg, with
respect to the Hurewicz model structure on Chp.

In particular, if H is a bialgebra in Chg, one can forget its multiplicative structure
and apply the proposition above to obtain a model category structure on Ch# | the
category of comodules over the coalgebra underlying H .

Theorem 4.11 ([11, Theorem 6.5.1]). Let R be any commutative ring and H any
bialgebra in Chg. There exists a right-induced model structure on Algg , created by
the forgetful functor Algg — Ch# | with respect to the model structure on Chg of
Proposition 4.10.

It is important for our study of homotopic Hopf—Galois extensions to know that
for any bialgebra H in Chg, the two-sided cobar construction provides a canonical
fibrant replacement functor

Q(— H:; H):Aight — Algl: 4 Q(A; H: H),

and a natural relative weak equivalence of H -comodule algebrast4: A — Q(A; H; H).
We establish this result as follows.

We recall first the well known definition of the cobar construction for comodules
over a coaugmented, differential graded coalgebra.

Notation 4.12. Let T denote the free tensor algebra functor, which to any graded
R-module V associates the graded R-algebra TV =k & P,,.., V' ®", the homogen-
eous elements of which are denoted vy ] - - |vy,. -

For any graded R-module V, we let s~V denote the graded R-module with
sV, 2= V4 for all n, where the element of s~!V/, corresponding to v € V4 is
denoted s~ !v.

Let (C, A, &, n) be acoaugmented coalgebra in Chg, with coaugmentation coideal
C = coker(: R — C). We use the Einstein summation convention and write
A(c) = ¢; ® ¢! for all ¢ € C and similarly for the map induced by A on C.
If (M, p) is a right C-comodule, then we apply the same convention again and write
p(x) = x; ® ¢! forall x € M, and similarly for a left C-comodule.
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Definition 4.13. Let (C_ ,A,e,n) be a coaugmented coalgebra in Chg, with
coaugmentation coideal C = coker(n:k — C). For any right C-comodule (M, p)
and left C-comodule (N, 1), let Q(M ; C; N) denote the object in Chg

(M T(s"'C) ® N.dg),
where
do(x®@s ey sl ®@y) =dx @5y s, ® y
+x® Xn: +571¢| "'|S_1de| sl ®y
j=1

+x®s teq| s e, ®dy

+x; @s s ey s, ® y
n
-1 -1 —1 i -1
+x®2is el s el T s T e ® y
j=1

+x Qs ler| s enls e @ Y,

where all signs are determined by the Koszul rule, the differentials of M, N, and C
are all denoted d, and s7'1 =0 by convention.

If N = C, then Q(M; C; C) admits a right C-comodule structure induced from
the rightmost copy of C.

Remark 4.14. The cobar construction (M ; C; C) is a “cofree resolution” of M,
in the sense that the coaction map p: M — M ® C factors in Chg as

M L M®C, 4.1)

QM;C;C)
where p(x) = x; ® | ® ¢’ and g(x ® 1 ® ¢) = x ® ¢, while
qx®@s ][5l ®c) =0

for all n > 1. It is well known that the composite

QM:C:O)E Mmec X u

is a chain homotopy equivalence, by a standard “extra degeneracy” argument. It
follows that p: M — Q(M;C;C) is always a relative weak equivalence of right
C-comodules. Moreover, Q(M;C;C)*°¢ =~ Q(M;C; R).
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When C is replaced by a bialgebra and M by a comodule algebra, then the cobar
construction admits a compatible multiplicative structure, building on the following
result from [12].

Lemma4.15 ([12, Corollary 3.6)). If H is a bialgebra in Chg, the cobar construction
lifts to a functor
Q(—: H; R): Aigil — Algg

where for every H-comodule A

@®1)d ®1)=ad ®1, Ya,a e A
@w)(1®w)=ad®ww, Vac A, w,w € QH;
1Qs 'h)(a®1) = (—1)deehtdeedi g o N (hg'), Vae A, heH.

An analogous formula holds for the multiplicative structure on Q(R; H; A), if A
is a left H-comodule algebra.
As Karpova showed in [19], the multiplication defined above extends to 2(A; H; H).

Lemma4.16 ([19, Section 2.1.3]). If H is a bialgebra in Chp, the cobar construction
lifts to a functor
Q(—: H:; H): Alght — Aig

such that for any H-comodule algebra (A, p), the coaction map p:A — A Q@ H
factors in Algg as

A® H, (4.2)

Q(A;H; H)
where p(a) =a; ® 1 @ hi and q(a ® 1 ® h) = a ® h, while
ga® s hyl--|sth, ® h) =0

foralln > 1. The multiplication on Q(A; H; H) is determined by the multiplication
in 2(A; H; R) and Q(R; H; A), together with the formulas
A1s'"hi @h)a®s Th,®1)
=((1®s 'h)@®)®1)(1® (1K) (s 'hy ®1)),
@1 1)(d s 'hi @h)=ad @ s 'hy W,
@®s " '"h)Y1@10h)=a®s 'hy @I,
foralla,a’ € A, h,h',hy,hy € H.

Lemma 4.17. If a right A-module N is relative cofibrant, then so is the associated
contractible path-object Path(N ).
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Proof. Because the contractible path-object construction is natural, it is enough to
establish this result for A-modules admitting a cellularly r-split filtration. If

0=F 4 NCFNC---CFNCF4NCc---
is a cellularly r-split filtration of N, then it is obvious that
0=s'FANCs'FpNC---Cs'F,NCs 'F,,yNC--

is a cellularly r-split filtration of s~'N. We can then define a cellularly r-split
filtration of Path(/N) by

F», Path(N) = s ' F,N
and
Fap+1 Path(N) = Path(F,N)

forall n > 0. O

Under reasonable conditions on H , the two-sided cobar construction Q2(A4; H; H)
has particularly nice properties as a left A-module.

Proposition 4.18. If H is a bialgebra in Chg that is degreewise R-flat, and A is an
H -comodule algebra, then Q(A; H; H) is homotopy faithfully flat as a left A-module,
with respect to the structure induced by the algebra map p: A — QUA; H; H).

Proof. To see that Q(A; H; H) is homotopy flat, observe first that for any right
A-module M, the graded R-module underlying M ® 4 2(A; H; H) is isomorphic to
MRT(s~! H) ® H . Justasin the proofs of [ 15, Theorem 7.8] and [3, Theorem 5.10],
we can construct M ® 4 Q(A; H; H) as the limit in Chg of a tower

g"t! q" dn—1 q1
o EM S B M S M =MoH

in (Chg)#, natural in M, where each morphism g,: E,M — E,_1M is given by a
pullback in (Chg)# of the form

E,M Path(B,M) ® H

qnl pn®Hl
ky

Ey, 1M — B,M ® H,

where B, is an functor from (Chg)4 to Chg, and p,:Path(B,M) — B, M is the
natural map from the contractible path-object on B, M to B, M itself, which is a
relative fibration of right A-modules by Lemma 4.17. It is important here that H be
flat over A, so that pullbacks in (Chg)¥ are created in Chg.
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Given the natural decomposition of M ® 4 Q(A; H; H) as the limit of a tower of
fibrations, an inductive proof, very similar to that of [3, Theorem 5.10], enables us
to show that if f: M — N is a relative weak equivalence, then

f®AQUAHH):M 4 QA:H:H) - N ®4 Q(A: H: H)

is a chain homotopy equivalence, i.e. Q(A; H; H) is homotopy flat.

Since the nondifferential graded A-module underlying Q2(A4; H; H) is A-free,
—®4 Q(A; H; H) preserves kernels. The functor — ® 4 Q(A; H; H) also preserves
all finite products, since they are isomorphic to finite sums. It follows that
— ®4 QA; H; H) preserves all finite limits, whence Q2(A4; H; H) is homotopy
faithfully flat.

Since A is a retract of 2(A; H; H) as an algebra and therefore as an A-module,
Q(A; H; H) is homotopy faithful. O

A proof essentially identical to that of [15, Theorem 7.8] enables us to establish
the following result; see also [3, Theorem 5.10].

Theorem 4.19. Let C be a coalgebra in Chy that is degreewise R-flat. For every
C-comodule (M, p), the maps p and q of diagram (4.2) are a trivial cofibration and a
fibration, respectively, in the model structure on Chﬁ of Proposition 4.10. Moreover,
both the source and the target of q are fibrant in Chg, whence Q(M;C;C) is a
fibrant replacement of M in Chg.

Since the fibrations and weak equivalences in Algg are created in Ch# , the next
result is an immediate consequence of Lemma 4.16 and Theorem 4.19.
Corollary 4.20. Let H be a bialgebra in Chpg that is degreewise R-flat. For every
H -comodule algebra (A, p), the maps p: A — QA; H, H) and q: Q(A; H; H) —
A® H are a trivial cofibration and a fibration, respectively, in Algg . Moreover, both
the source and the target of q are fibrant in Algg, whence QU A; H; H) is a fibrant
replacement of A in Algg .

The second part of Remark 4.14 implies that the next result is an immediate
consequence of Corollary 4.20.
Corollary 4.21. Let H be a bialgebra in Chg that is degreewise R-flat. For every
H -comodule algebra (A, p), the algebra Q(A; H; R) is a model of AM°H.

Before illustrating further the utility of Corollary 4.20, we need to define a special
condition on the coalgebra structure of the bialgebras we study.
Definition 4.22 ([11, Definition 6.4.6]). A coaugmented coalgebra C in Chg is
split-conilpotent if there is a sequence

R=cCl-1&clo L 22 -1 2 o 25 -

of degreewise-split inclusions of subcoalgebras of C such that C = colim, C, and
coker jj, is a trivial (non-counital) coalgebra for all 7.



140 A. Berglund and K. Hess

Remark 4.23. As observed in [11, Remark 6.4.7], over a field any conilpotent
coalgebra is split-conilpotent, while over an arbitrary commutative ring R, any
coalgebra in Chr with cofree underlying graded coalgebra is split-conilpotent. In
particular, for any augumented algebra A in Chg, its bar construction Bar 4 is a
split-conilpotent coalgebra. On the other hand, by [11, Corollary 6.4.3], if H is a
conilpotent bialgebra (i.e. as a coalgebra, it is the colimit of its primitive filtration),
then the counit eg: H — Bar QH of the cobar-bar adjunction is a relative weak
equivalence of bialgebras, i.e. the underlying map of chain complexes is a chain
homotopy equivalence. In other words, every conilpotent bialgebra is relative weakly
equivalent to a split-conilpotent bialgebra. Moreover, if H is degreewise R-flat,
then ¢y induces a Quillen equivalence

(eH)x
Alghl — AlghreH

(em)*

since [3, Theorem 5.11] implies that e i is copure. For homotopy-theoretic purposes,
there is no loss of generality, therefore, in assuming that any degreewise R-flat,
conilpotent bialgebra is in fact split-conilpotent.

The main reason for our interest in split-conilpotent bialgebras lies in the next
result.

Proposition 4.24. For any bialgebra H in Chg that is degreewise R-flat and split-
conilpotent as a coalgebra, the functor

(—)°H: Algh — Algg

reflects weak equivalences between fibrant objects.
A key step in the proof of this proposition requires the following lemma from [3].

Lemma 4.25 (The Homotopy Five Lemma [3, Lemma 5.2]). Let

0—sM —> M —> M" —0
f/l fj f//l
0— >N ——=N N ——0

be a commuting diagram in Chg, where the rows are degreewise-split, exact
sequences. If f" and " are chain homotopy equivalences, then so is f.

Proof of Proposition 4.24. Let ¢:(A,pq) — (B,pp) be a morphism of fibrant
H-comodule algebras such that ¢°°# is a relative weak equivalence. To show
that ¢ is necessarily also a relative weak equivalence, first consider the commutative
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diagram of fibrant H-comodule algebras

A B
ﬁA\j"’ ,5BLN
QA: H: HY =Y _ o 1. H).

Applying (—)*°# | we obtain a commutative diagram of algebras

coH
AcoH i BcoH

~

e l~ optt j~
Q(¢;H;R)

Q(A; H; R) Q(B; H; R),

where the vertical arrows are still relative weak equivalences, since (—)°H is a
right Quillen functor, and the top horizontal arrow is a relative weak equivalence by
hypothesis. By two-out-of-three, Q(¢; H; R) is also a relative weak equivalence.

We can now prove by induction, using the Homotopy Five Lemma, that Q2(¢; H; H)
is also a relative weak equivalence. Let

be a sequence of degreewise-split inclusions of subcoalgebras of H such that H =
colim, H, as colgebras, and coker j, is a trivial (non-counital) coalgebra for all n,
which induces induces a filtration of 2(A; H; H) as chain complexes

Q(A:H;R) € Q(A4; H; H[0]) <
- CQAH;Hn—1]) CQ(A:H: Hln]) S -+,

with filtration quotients
Q(A;H; Hn])/QA; H: H[n — 1]) = Q(A4; H: R) ® coker jy,

on which the differential is of the form dg ® 1 +1 ® d , Where d the induced
differential on coker j,. There is, of course, an analogous filtration of Q2(B; H; H).

We showed above that ¢ induces a relative weak equivalence, Q(¢; H; R), from
the Oth filtration stage of Q2(A4; H; H) to the Oth filtration stage of Q2(B; H; H).
Suppose now that

Qp:H; PyH):Q(A;H: H[n —1]) > Q(B: H; H[n — 1])
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is a relative weak equivalence for some n > 1. Consider the commuting diagram of
degreewise-split short exact sequences

0——Q(A:H; H[n —1]) — Q(4:; H; H[n]) — Q(A; H; R) ® coker j, —>0
Q(w;H;H[n—I])l SZ(:p;H;H[n])J/ Q(w;H;R)®ll
0——=Q(B:H;H[n—1]) — Q(B; H: H[n]) — Q(B: H; R) ® coker j, — 0.

The leftmost and rightmost vertical arrows are chain homotopy equivalences by
hypothesis and therefore, by the Homotopy Five Lemma, the middle vertical arrow
is as well. It follows that Q((p; H; H[n]): Q(A; H:;H[n]) — Q(B; H: Hln]) is
a relative weak equivalence for all n and thus that Q(¢; H; H) is a relative weak
equivalence, as the filtrations of 2(A4; H; H) and Q(B; H; H) canbe seen as colimits
of directed systems of cofibrations of cofibrant objects in Chg.

Finally, two-out-of-three applied to the first diagram implies that ¢ is a relative
weak equivalence as well. O

4.3. Homotopic relative Hopf—-Galois extensions of chain algebras. We can now
provide concrete examples of homotopic relative Hopf—Galois extensions in Chg,
as well as conditions under which being a homotopic Hopf—Galois extension is
equivalent to satisfying homotopic descent, which enables us moreover to include a
generalized notion of Koszul duality in our global picture.

We begin by establishing the existence of a useful class of homotopic relative
Hopf algebras.

Lemma 4.26. A morphism of bialgebras I': H — K in Chpg is a homotopic relative
Hopfalgebraif H and K are degreewise R-flat, and K is cofibrant as a left H-module
and contains H as a summand, with respect to the structure induced by T'.

Proof. By Corollary 3.30, I" is a homotopic relative Hopf algebra if
Gal(T', I'): Desc(I') — Hopf(Ak, iik)

is a copure weak equivalence, since R is fibrant in Chr. On the other hand, since K
is H -cofibrant, the left H-modules underlying Desc(I") and Hopf(Ak, it x), which
are K @ g K and K ® Cof(I"), are also cofibrant by Remark 4.2.

Theorem 4.7 in the case A = B = R implies that it suffices therefore to prove
that Gal(I', T") is a relative weak equivalence. It follows from the discussion of
relative Hopf algebras in Example 3.20 that if K admits a cellularly r-split filtration
as an H-module, then Gal(I', I') is actually an isomorphism by [24, Theorem 4.4].
Since retracts of isomorphisms are isomorphisms, it follows that Gal(I',I") is an
isomorphism whenever K is relative cofibrant as a left H-module. O
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For any nice enough homotopic relative Hopf algebra, one can construct
homotopy-theoretic analogues of the “normal basis” extension in Example 3.20.
Given a morphism of bialgebras I': H — K, if K admits a cellularly r-split filtration

0=F KCFKC-CFKCFppKCS--

as left H-modules, notice that each F, K is also a left K-comodule and that the
colimit respects the left K-comodule structure.

Proposition 4.27. Let H and K be degreewise R-flat bialgebras in Chg. Let
I': H — K be a homotopic relative Hopfalgebra in Chg such that as a left H -module,
K admits a cellularly r-split filtration and such that T admits a retraction K — H
that is a morphism of H-modules and K -comodules. Let E be a K-comodule algebra
in Chpg that is degreewise R-flat.

IfA=Q(E;K;H), B=Q(E;K;K),andp = Q(E; K;T), then

(I.¢):(H. 4) — (K. B)

is a homotopic relative Hopf—Galois extension, and ¢ satisfies effective homotopic
descent.
In particular, for any degreewise R-flat Hopf algebra K in Chg,

(T, QE; K;n)): (R, QUE; K; R)) — (K, QE; K; K))

is a homotopic relative Hopf—Galois extension, and Q2(E; K; n) satisfies homotopic
descent, where n: R — K denotes the unit of K.

Proof. It is clear that (I, ¢) is a morphism in ComodAlggy, .. Since B is a fibrant
object in Alggh R and T'* is a right Quillen functor, A is a fibrant object in Algg , as
A = T'*B. It follows that a model of

¢hcoF: AhcoH _ thoK

is the identity on Q(E; K; R), whence the first adjunction in Definition 3.24 is an
actual equivalence of categories. Moreover, since

B®4B=~QE;K;:K®n K) and B®Cof(l) = Q(E:K; K ® (R®u K)),

it follows by Theorem 4.9 thatif I': H — K is a homotopic relative Hopf algebra, then
Gal(T, I') is arelative weak equivalence, whence Gal(T, ¢) = Q(E; K: Gal(T', I)) is
arelative weak equivalence and therefore that the second adjunction in Definition 3.24
is a Quillen equivalence, again by Theorem 4.9. We can thus conclude that (T, ¢) is
indeed a homotopic relative Hopf—Galois extension.

Since K is relative cofibrant as a left H-module, B is relative cofibrant as a left
A-module. To prove this, observe that the cellularly r-split filtration of K as a left
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H -module induces a cellularly r-split filtration of B as an A-module. On other hand,
the splitting H — K — H as left K-comodules and left H-modules induces a
splitting A — B — A of left A-modules, i.e. B contains 4 as a summand.

It follows that ¢ satisfies effective homotopic descent by Theorem 4.8, since an
argument similar to that in the proof of Proposition 4.24 shows that ¢ is a chain
homotopy equivalence because I' is. O

Applying the homotopic normal basis construction, we establish a relative
analogue of [26, Proposition 12.1.8] in the differential graded context.

Proposition 4.28. Let H and K be degreewise R-flat bialgebras in Chg such that H
is split-conilpotent. Let I': H — K be a homotopic relative Hopf algebra in Chg
such that

e as aleft H-module, K admits a cellularly r-split filtration,

e T"admits aretraction K — H thatis a morphism of H -modules and K -comodules,
and

* Cof(I") is degreewise R-flat.

Let (T',¢9):(H,A) — (K, B) be a morphism in ComodAlgey,, such that B is
degreewise R-flat.

If @heol': gheoH - pheok o o pelative weak equivalence, then (T, @) is a
homotopic relative Hopf-Galois extension if and only if ¢ satisfies effective homotopic
descent.

In particular, for any degreewise R-flat Hopf algebra K and any morphism
(1.9): (R, A) — (K, B) in ComodAlgg,,, such that ¢"°X: AbcK — pheokK s 4
relative weak equivalence, and B is degreewise R-flat, (1, @) is a homotopic relative
Hopf—Galois extension if and only if ¢ satisfies effective homotopic descent.

Proof. Our strategy in this proof is to exploit a comparison of (I, ¢) with a
homotopic normal basis extension. Note first that since the coring (R, K) is flat,
by Proposition 2.27, the functor I'*: Alg¥ — Alg¥ is isomorphic to the cotensor
product functor —Og H.

Let Q(A; H; H) and Q(B; K; K) be the fibrant replacements of A in Algg and
of B in Algg given by Corollary 4.21. Recall formula (3.3) for ¢"°F. Since by
hypothesis ¢"*°T" is a weak equivalence, and H is split-conilpotent, Proposition 4.24
implies that the composite

Q(A;H; H) - Q(I'«A; K; K)OgH - Q(B:; K; K)UOgH =~ Q(B; K; H)

is also a relative weak equivalence. Precomposing with p4: A = Q(A;H; H), we
obtain a relative weak equivalence of H-comodule algebras

a: A= Q(B; K: H).
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Set A’ = Q(B;K;H), B = Q(B;K; K), and
¢ =Q(B;K;T"):TwA" — B'.

Proposition 4.27 implies that (T, ¢’): (H, A’) — (K, B’) is itself a homotopic relative
Hopf-Galois extension and that ¢’ satisfies effective homotopic descent.
By Remark 3.14, the commuting diagram of comodule algebra morphisms

I,
(H.A) "2 (K. B)
(Id g7 ,ex) (dg ,0B)

(. 4" L4 (k. B

gives rise to a commuting diagram of functors

Ox

(ChR)A (ChR)A/

a*

Cang | | Primg Cangy | | Primg,/

(5B,DeSC(a,5B))* ,
(ChR)];esc(w) - (ChR)Desc(q) )

B/
(ﬁB ,DeSC(a,ﬁB))

Gal(T, @)« | | Gal(T,p)* Gal(T,¢")« | | Gal(T,¢")*

(©B:Og .55)*

(ChR)I;OPf(szlTLK) (ChR)g?Pf(PB’aﬁK)

(5Bﬁeld1(,53)*
where the B’-bimodule map underlying 614, 5,
B’ ® Cof(I") ® g B’ — B’ ® Cof(I'),

is given by the right B’-action on B’ ® Cof(I") (cf. Definition 3.8). Note that
B'®Cof(I')® g B’ — B’isflatand B’ ® Cof (T") is flat-cofibrant as a left B’-module,
since Cof(I") is degreewise R-flat. Moreover 014, 5, is a relative weak equivalence,
since the canonical isomorphism

=~

B’ ® Cof(I') ® g B — B’ ® Cof(I")
factors as

B'®Cof(TM®pp
- 5

/ / / OIdK’EB /
B’ ® Cof(T) ®p B B’ ® Cof(T) ®p B —X"5, B’ @ Cof(I"),
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where the first map is a relative weak equivalence by Remark 4.14 because it is equal
to

0B '@cot(r): B’ ® Cof(I') = Q(B’ ® Cof(T): K; K).

It follows that 64, 5, is a copure weak equivalence by Theorem 4.7.

Proposition 4.4 implies that the top adjunction is a Quillen equivalence, since o
is a relative weak equivalence. The two vertical adjunctions on the right side
of the diagram are Quillen equivalences, by Proposition 4.27. Since B’ is
homotopy faithfully flat as a B-module by Proposition 4.18, and 64, 5, is a copure
weak equivalence, Corollary 2.38 implies that the bottom adjunction is a Quillen
equivalence as well.

A “two-out-of-three” argument enables us to conclude that (T',¢): (H, A) —
(K, B) is a relative homotopic Hopf-Galois extension if and only if ¢:4 — B
satisfies effective homotopic descent. O

Remark 4.29. We believe that it should be possible to generalize the strategy in the
proof above to many other monoidal model categories, establishing an equivalence
between homotopic Hopf—Galois extensions and morphisms satisfying effective
homotopic descent when the induced map on the coinvariants is a weak equivalence.
The key to the proof is the existence of a well-behaved construction, replacing any
(nice enough) morphism of comodule algebras by a weakly equivalent morphism
of comodule algebras that is a homotopic Hopf—Galois extension and that satisfies
effective homotopic descent. A “homotopic normal extension” of the sort employed
in the proof above should do the trick in monoidal model categories with compatible
simplicial structure.

The close relationship between homotopic Hopf—Galois extensions and mor-
phisms satisfying effective homotopic descent enables us to include the notion of
Koszul duality in our general picture as well.

Proposition4.30. Let (I, ¢): (H, A) — (K, B) be a relative homotopic Hopf-Galois
extension in ComodAlggy, , such that : A — B satisfies effective homotopic descent,
Cof(I") and B are degreewise R-flat, and B is augmented.

If the unit map n: R — B is a chain homotopy equivalence, then Cof(T") is a
generalized Koszul dual of A, in the sense that homotopy category of right A-modules
is equivalent to the homotopy category of right Cof (I')-comodules.

Proof. Since (I',¢):(H,A) — (K,B) is a relative homotopic Hopf-Galois
extension, and ¢: A — B satisfies effective homotopic descent, there is a chain
of Quillen equivalences

L Desc(@) M Hopf(p . x)
(Chr)a____ (Chp)pg™ ¥~ (Chgr)g™ "M~

Desc(p) Gal(T,p)*
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The unit map n: R — B induces a morphism in Tripley
(Idg, 7. Idcog(r)): (K, R, Cof(I')) — (K, B, Cof(I))
and therefore a morphism of corings with underlying morphism of chain complexes
Idg ®jix: B ® Cof(I') ® B — B ® Cof(I'),

which is a relative weak equivalence, since 71 is a chain homotopy equivalence,
and ftg (Idcorry ®n) = Idcor(ry. Since Cof(I') is degreewise R-flat, the source
of Idp ®px is flat and its target flat-cofibrant as a left B-module. It follows that
Idp ®uk is a copure weak equivalence of B-corings. Moreover, B homotopy
faithfully flat as an R-module. It is strongly homotopy flat over R, since degreewise
R-flat by hypothesis, and all R-modules are homotopy flat, and it is homotopy faithful
as a R-module, since it is augmented. Corollary 2.38 therefore implies that

(ChR)%of(l") _ (ChR)I;OPf(pB,ﬁK)

is a Quillen equivalence, whence
Ho ((Chg)4) =~ Ho ((Chg)®'D)
as desired. -

The connection between Koszul duality and homotopic Hopf—Galois extensions
hinted at here will be explored further in a forthcoming paper.

4.4. Principal fibrations and Hopf-Galois extensions. We show in this section
that simplicial principal fibrations naturally give rise to homotopic Hopf-Galois
extensions in Chg, confirming that our definition is reasonable. The example
elaborated here generalizes [19, Example 4.4.7].

In this section, for any simplicial set X, C. X denotes the normalized chains on X
with coefficients in R, which admits a natural coalgebra structure. For any reduced
simplicial set X, we let G X denote the Kan loop group construction on X [22, §27].
Recall that the geometric realization |G X | has the homotopy type of Q| X |, the based
loop space on the geometric realization | X|.

We recall from [14] that if X is a simplicial set that is 1-reduced (i.e. X and X;
are both singletons), then the differential graded algebra 2C,« X obtained by applying
the reduced cobar construction to Cyx X admits a natural comultiplication

Ux:QC X — QC X ® QC X

endowing Q2C, X with the structure of a bialgebra in Chg. This comultiplicative
structure is topologically meaningful, in the sense that the natural morphism of
differential graded algebras

ax:QC X — C.GX
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first defined by Szczarba [31] is naturally strongly homotopy comultiplicative with
respect to ¥y and to the usual comultiplication on C.(G X), i.e. it gives rise to a
natural morphism of differential graded algebras

Bx:Q2CyX — QC,GX.

Moreover, as shown in [17], the chain map underlying ax admits a natural chain
homotopy inverse. The existence of both the higher homotopies for the strongly
homotopy comultiplicative structure of y and the chain inverse to ey follow from
acyclic models arguments, whence Sy must also admit a natural chain homotopy
inverse.

Let X be a 2-reduced simplicial set, and Y a 1-reduced simplicial set equipped
with a twisting function 7: Y — G X. Let j: GX — GX X, Y denote the inclusion
of GX into the twisted cartesian product of GX and Y determined by the twisting
function 7 [22, §18]. Let

90 =QCyj:QC,GX - QC(GX %, Y),

which is a morphism of bialgebras. Note that the projection map GX x; ¥ — Y
gives rise to the structure of a 2C,Y -comodule algebra on QC(GX x; Y).

Proposition 4.31. If X is a simplicial double suspension, and Y is a simplicial
suspension [22, §27], then for every simplicial map g:Y — X, the morphism of
comodule algebras

(R,QC:GX) - (QC.Y, QC4(GX x, Y)),

where n: R — QC.Y denotes the unit map and v = tx g with tx: X — GX the
universal twisting function, is a homotopic Hopf-Galois extension.

We believe that this proposition holds even when X and Y are not suspensions,
but developing the general argument would require too great a digression from the
theme of this article to be reasonably presented here.

Proof. According to Proposition 3.29, it suffices to show that
P QCLGX = (QCxGX)"R - QCL(GX x, Y)heoRCY
is a relative equivalence of algebras and that
Gal(n,90): QCx(GX %X Y)Rac,cx RCx(GX %X Y) - QCx(GX x: Y)®QCLY

is a copure weak equivalence of corings.
We treat first the case of ¢"“°", for which our proof does not actually need X
and Y to be simplicial suspensions. By Corollary 4.20, we can take

QCL(GX Xqy Y)Y = Q(QCL(GX X Y); QC,Y;R),
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since QC,Y is degreewise R-free and therefore degreewise R-flat. A model of p"c”
is then given by

Q(g; R:R):QCGX = Q(QCGX; R R) »> Q(QCx(GX x. Y):QCY; R).
4.3)
On the other hand, there is a sequence of relative weak equivalences of algebras
in ChR

Q(aso;R)

Q(QC«(GX x; Y);QC,Y;R) Q(C+«G(GX x; Y);C+GY; R)

|

C+(G(GX x; Y) x¢ G?Y)

|

C.G?X,

where /: G(G X x. Y) — G?Y is the twisting function given by projectiononto G Y,
followed by the canonical twisting function tgy: GY — G2Y. The fact that the
first vertical arrow, which extends oG xx, v, is a relative weak equivalence follows
from [7, Theorem 2.23], which is a straightforward generalization of the main theorem
in [17]. The second vertical relative weak equivalence is a consequence of the fact
that the inclusion

G?X — G(GX x. Y) x¢ G?Y

admits a retraction that is a homotopy inverse (cf. Lemma A.1). Precomposing this
sequence with (4.3) gives exactly agx, which is also a relative weak equivalence,
whence, by two-out-of-three, (4.3) is a relative weak equivalence as well, as desired.

Concerning Gal(n, ¢), we begin by recalling from [19, Proposition 4.3.11,
Remark 4.3.12] that since the nondifferential algebra map ¢ is an inclusion into
a free extension, QC,(GX %, Y) admits a cellularly r-split filtration as a left (or
right) QC«G X-module, whence it is homotopy flat, by Propositions 4.1 and [3,
Proposition 5.5(1)]. Since normalized chain complexes are R-free, we can choose
this filtration so that each filtration quotient is 2 CG X -free on an R-free module. It
follows that

QC*(GX Xz Y) dQC.GXx QC*(GX Xz Y)

is flat as a left QC.(GX x; Y)-module. Moreover, since the differential on
QC(GX x; Y)® QC.Y is the usual tensor differential, it is certainly flat-cofibrant
as a left QC«(GX x; Y)-module, as well as coaugmented. By Theorem 4.7, it
suffices therefore to show that Gal(n, ¢) is a relative weak equivalence.

In [13] the authors show that if a simplicial set Z is the simplicial suspension of
another simplicial set W, then the natural coalgebra structure on the normalized chain
complex C, Z is trival, and that, when endowed with its canonical multiplication, the
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cobar construction 2C, Z is isomorphic to the tensor algebra T C« W, endowed with
the comultiplication induced by that on C«W. Moreover the Szczarba equivalence
az:QCZ — C,.GZ respects the comultiplication strictly. If W itself is a simplicial
suspension, then the generators of the bialgebra Q2C,Z are actually primitive and
thus Q2C, Z is cocommutative.

Since Q(R; C+Y; C.Y) is a relative cofibrant left 2C,Y -module, the Szczarba
equivalence ay: Q2C«X — CxGX induces a relative weak equivalence of left
QCy X-modules

Q(R; CxX;CY) = QCX ®ac.y QLR; CY;CLY)
= CGX ®ac.y QR CoY:CLY), (4.4)

where we regard QC, X as a right QC.Y-module via QC,g:QC.Y — QC.X.
On the other hand, Szczarba proved in [31, Theorems 2.2-2.4] that there is a quasi-
isomorphism

C:GX ®qac,y QR;C.Y;CiY) — Cu(GX %, Y) (4.5)

of left C,.G X -modules, extending the equivalence Q2Cx X — C.G X by the identity
on the QC,Y -component. A straightforward generalization of the main theorem
in [17] shows that this quasi-isomorphism admits a chain homotopy inverse.

Asthe generators of Q2 C, X are primitive, and the differential on Q(R; Cx X ; CxY)
sends elements of C Y to generators of QC, X, it is easy to show that Q(R;C« X ;C«Y)
admits a cocommutative comultiplication extending those on Q2C,X and C.Y,
with no perturbation. Moreover, the composite of equivalences (4.4) and (4.5) is
a strict map of coalgebras with respect to this comultiplication, since it extends
QCxX — C«GX simply by the identity on the C,QY -component. Applying the
cobar construction to the composite equivalence of coalgebras given by (4.4) followed
by (4.5), we obtain a quasi-isomorphism of chain algebras

Q2(R; Co X: CiY) = QC(GX x. V),

which admits a chain homotopy inverse as left 22C, X -modules, since the source
and target are bifibrant with respect to the projective model category structures on
@2¢,x (Chg). Note that we use here that the target is a quasi-free extension of the
source, as chain algebras.

Consider Q2C,X as a right Q2C,Y -module via Q2C,g: Q2C,Y — Q2C.X.
It follows from [12, Corollary 3.6] and [19, Lemma 4.3.21] that

Q(R: QCLX;QCY) = Q2CoX ®g2c.y QR QCLY:QC,Y)

admits a natural chain bialgebra structure such that there is a quasi-isomorphism of
chain algebras

Q2(R: CoX; CrY) = Q(R; QC:X:QCLY).
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As above, since the source and target are bifibrant with respect to the projective
model category structures on g2, x (Chg), this quasi-isomorphism admits a chain
homotopy inverse as left 22C, X -modules. We therefore have a zigzag

Q(R;QCX:QCY) 2 Q%(R;C X;C.Y) & QC4(GX x. ¥)

of relative weak equivalences of Q2C,Y -modules. Moreover, both of the outward-
pointing maps are easily seen to be morphisms of Q2C4Y -comodules. Because all
three objects are cofibrant Q2C, X -modules, and QC«(GX x;Y) is a cofibrant
QC,G X -module, there is a zigzag of relative equivalences of 2C,Y -comodules

QR QCX:QC,Y) ®grc. x QR QCX;QC,Y)

~

QC(GX % Y) ®QC.GX QCL(GX % Y).

To show that Gal(n, ¢) is a relative weak equivalence, it suffices therefore to prove
that the composite

QR; QC.X; QCY) ®g2c, x QR QCX:QC,Y) (4.6)

|

Q(R; QCL X QCLY) ®g2c, x QR QCX:QCLY) ® QCLY
Q(R: QCX:QC.Y) ® QCLY

is a relative weak equivalence, where the first map is given by the Q2C,Y -coaction
and the second by the multiplication in Q(R; QC«X; QCyY).
Observe that, if we ignore differentials,

By Koppinen’s Lemma [27, Lemma 4.4.1] (again ignoring differentials), the compos-
ite (4.6) is an isomorphism of Q(R; QC, X ; Q2CY )-modules and Q2 C Y -comodules
if and only if the map

N 1:QCY — Q?C X ® QC.Y
is invertible with respect to the convolution product on

Hom (QC.Y, 2(R; QC+X; QC,Y)),
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where Hom means the internal hom of graded R-modules. Since QC.Y has an
antipode S (because itis a graded bialgebra), and n® 1 is an algebra map (cf. formulas
in [12, Corollary 3.6]), it follows that (n ® 1).S is a convolution inverse to n ® 1,
and thus that the composite (4.6) is an isomorphism, at least as graded modules.
Its inverse is necessarily also a chain map, however, because it is inverse to a chain
map and therefore (4.6) is an isomorphism of chain complexes. We conclude that
Gal(n, ¢) must be a relative weak equivalence, as desired. O

Remark 4.32. It follows from Propositions 4.30 and 4.31 that if C«(GX x; Y) is
contractible, then

Ho ((Chr)ac,cx) =~ Ho ((Chg)?Y),

at least under the additional hypothese on X and Y in the statement of the proposition.
When applied to the universal bundle GX x., X, this equivalence becomes

Ho ((Chr)ec.cx) =~ Ho ((ChR)QC*X)’

at least when X is a double suspension.

A. A technical lemma

In this section we prove a technical lemma used in the proof of Proposition 4.31.

Lemma A.1. For any 1-reduced simplicial set X and 1-reduced simplicial set Y
equipped with twisting function t: Y — G X, the inclusion

G?X = G(GX xq¢y Y) xp G?Y

is a simplicial homotopy equivalence, where t': G(GX x.Y) — G2Y is the twisting
Sfunction given by projection onto GY, followed by the canonical twisting function
wcy:GY — G?Y.

Proof. Note first that if ¢: G — H is a surjective simplicial homomorphism, then
ker ¢ acts principally on G, i.e. ¢ is a principal ker ¢-fibration, and therefore a Kan
fibration [22, Lemma 18.2]. Moreover, the inclusions of G2X into G(G X Xey X)
and G%2X Xy X are both cofibrations in the Kan model structure on sSet. The
sequences

G*X — G(GX x¢y X) > GX and G?X — G*X xq,, GX - GY

are therefore bifibrant objects in the slice category G2X/sSet/G X of simplicial
sets over GX and under G2X. Since both objects are weakly equivalent
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in G2X/sSet/GX to the sequence G2X — % — GX, there are homotopy
equivalences
G(GX xzy X) 2 G?X Xq, GX

in G2X /sSet/G X . Pulling back over the homomorphism a;: GY — G X induced
by the twisting function 7 gives rise to homotopy equivalences

G(GX %1y X) xgx GY 2 G*X x7 GY (A.1)

in G2X/sSet/GY, where T = 1gxa:: GY — G2X .
For the next step in our argument, it is important to observe that for any pair of
simplicial maps with common target

V - Z <« W,
the natural simplicial map
7. GV xz W) —> GV xgz GW

admits a homotopy inverse in the slice category GV /sSet/GW of simplicial sets
under GV and over G W . Indeed, the projections from both objects to GW are Kan
fibrations in sSet, and the obvious maps

GV -GV xzW) and GV — GV xgz GW

are inclusions and therefore cofibrations in the Kan model category structure on sSet,
so that

GV -GV xzW)—>GW and GV - GV xgzGW —- GW

are bifibrant objects in G V/sSet/G W . Furthermore, 7 is a weak equivalence, since
the geometric realization of 7 is simply the homotopy equivalence

Q(|V| X|Z| |W|) e Q|V| XQ[Z] Q|W|

Here we use that |G K| ~ Q| K| for any reduced simplicial set K and that geometric
realization commutes with pullbacks, as can be shown easily. It follows that 7 is in
fact a homotopy equivalence in GV /sSet/G W, as desired.

As a special case of the result above, we obtain homotopy equivalences

G(GX x:Y) =G((GX x¢y X) xx ¥Y) 2 G(GX Xy X) xgx GY  (A2)

in G2X/sSet/GY.
Combining (A.1) and (A.2) gives rise to homotopy equivalences.

G(GX x;Y) 2 G*X x: GY
in G2X/sSet/GY and therefore to homotopy equivalences
G(GX x; Y) xp G*Y 2 G?X xz GY Xy, G?Y

in G2 X /sSet. Since G2X is a strong deformation retract of G2 X Xz GY X, G?Y,
we can conclude. 0
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