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Abstract. It is shown that the algebra of continuous functions on the quantum 2nC1-dimensional
lens space C.L2nC1q .N Im0; : : : ; mn// is a graph C�-algebra, for arbitrary positive weights
m0; : : : ; mn. The form of the corresponding graph is determined from the skew product of the
graph which defines the algebra of continuous functions on the quantum sphere S2nC1q and
the cyclic group ZN , with the labelling induced by the weights. Based on this description,
the K-groups of specific examples are computed. Furthermore, the K-groups of the algebras
of continuous functions on quantum weighted projective spaces C.W Pnq .m0; : : : ; mn//,
interpreted as fixed points under the circle action on C.S2nC1q /, are computed under a mild
assumption on the weights.
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1. Introduction

The aim of the present paper is investigation of noncommutative C �-algebras of
continuous functions on quantum deformations of two classes of (possibly singular)
spaces, namely the lens and weighted projective spaces. Central to these studies
is identification of the algebras in question as graph C �-algebras or subalgebras of
graph C �-algebras corresponding to certain actions of the circle group.

In classical geometry both (weighted) lens and weighted projective spaces are
obtained as quotients of groups acting (with possible different positive integer
weights) on the odd dimensional spheres. In the former case the acting group
is a finite cyclic group, in the latter it is the circle group. Depending on the
choice of weights (relatively to the order of the acting group) the action can be
free or almost free, thus leading to most easily accessible examples of orbifolds
in the latter case, [31] or [3]. The fact that these orbifolds are defined by explicit
group actions on the spheres suggests an accessible way of defining and studying
their noncommutative counterparts through the exploration of analogous actions on
quantum odd dimensional spheres, [27]. On this premise, quantum lens spaces
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were defined in [21], and more recently weighted projective spaces were introduced
in [9] with a specific aim of studying quantum or noncommutative orbifolds, a task
subsequently undertaken, for example in [15, 18, 19, 25], and a series of papers
by the first author of the present paper. Surprising results of these initial studies
include observations that, upon deformation, classically non-free actions become
free (see e.g. [6, 10] or [15]) and deformations of non-smooth objects behave as if
they were deformations of smooth objects (see e.g. [8, 12]). Despite a significant
progress in understanding the structure of weighted projective spaces in special cases
(see e.g. [10,15]) and deformations of classically singular lens spaces, the full picture
is still not complete and does not include some important classes of the objects
in question. Guided by the experience of working with quantum lens spaces that
correspond to classically non-singular case, [21], graph C �-algebras appear to offer
an effective tool to fill in this gap in our understanding of the structure of the relevant
C �-algebras and theirK-theoretic invariants. We are exploiting this opportunity here.

A directed graphG D .G0; G1; %; �/ consists of two setsG0 andG1 (the former
the set of vertices and the latter the set of edges) and two mappings %; � WG1 ! G0,
called the range and source, respectively. Given a graph G with countably many
vertices and edges, C �.G/ denotes the C �-algebra defined as follows, [17]. C �.G/
is the universal C �-algebra generated by a set fPv j v 2 G0g of mutually orthogonal
projections and a set fSe j e 2 G1g of partial isometries which satisfy the following
relations, for all edges e ¤ f 2 G1 and all vertices v 2 G0 emitting a finite number
of edges,

S�e Sf D 0; S�e Se D P%.e/; SeS
�
e � P�.e/; (1.1a)

Pv D
X

e2G1 W�.e/Dv

SeS
�
e : (1.1b)

Graph C �-algebras include important classes of operator algebras, such as the
Cuntz–Krieger algebras [14] or AF algebras. Significant advantage of working with
graph C �-algebras stems from the ease with which one can calculate their K-theory
and primitive ideal spectrum. This feature of graph C �-algebras has been widely
exploited in their applications to the classification programme of generalC �-algebras
(for example, see [16, 28, 30] or [4]). In addition, they have influenced recent
developments in purely algebraic ring theory, leading to the introduction of Leavitt
path algebras [2] in an attempt to explore their classification power beyond operator
algebra theory; see [1] for an illuminating review. More importantly from the point of
view of the subject matter of this text, algebras of continuous functions on quantum
spheres and on deformations of non-singular lens spaces can also be interpreted as
graph C �-algebras [20, 21]. We extend this interpretation to quantum deformations
of all (weighted) lens spaces, including those that are classically singular, and employ
it to compute the K-theory of a fairly general class of quantum weighted projective
spaces and of particular examples of (weighted, singular) quantum lens spaces.
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The paper is organised as follows. In Section 2, we first recall the algebraic
definition of quantum lens spaces. The coordinate algebras of quantum lens spaces
are defined as fixed points of the weighted action of the cyclic group ZN on
(the generators of) the coordinate algebra of the quantum odd-dimensional sphere.
We make no assumption on the existence of common factors of weights and the order
of the group. Next, using the identification of the algebra of continuous functions
on the quantum odd dimensional sphere with the graph C �-algebra associated to a
graph L2nC1 [20], we extend the cyclic group action to the action on this algebra.
The resulting fixed point algebra has been shown in [21] to be a graph C �-algebra,
provided all weights are coprime with the order of the acting group. We extend this
identification to all weights, thus relaxing the coprimeness assumption. Similarly
to [21], we construct a suitable graph LN Im2nC1 by relating it to the skew product
graph L2nC1 �c ZN (where the labelling c is determined by the weights), and using
the result of Crisp [13] that fixed points of a finite group action on a graphC �-algebra
can be identified with specific corner of the algebra associated to the skew product
graph. The construction of LN Im2nC1 explores the values of weights modulo the order
of the cyclic group and thus heavily depends on them; we illustrate this by a series
of examples. The identification of the algebras of continuous functions on quantum
lens spaces as algebras associated to explicitly described graphs allows one for more
effective calculation of their K-groups, in particular the K0-groups; we illustrate it
be a series of examples too.

In Section 3, we study algebras of continuous functions on quantum weighted
projective spacesW Pnq .m0; : : : ; mn/. On the algebraic level these are defined as fixed
points of weighted circle group actions on the quantum odd dimensional sphere, [9].
On the other hand they can also be identified with a free or principal [11] action of
the circle group on quantum lens spaces such that all weights divide the order of the
cyclic group, [10]. Both actions can be lifted to actions on continuous functions on
quantum spheres and lens spaces. The analysis of algebraic structure of quantum
weighted projective spaces, in particular of deriving generators and relations, is
notoriously difficult, as one has to deal not only with an increasing number of
generators but also with relative divisibility properties of the weights. Until now,
even in the lowest dimensional case, n D 1, the algebraic and operator algebraic
structure of W P1q .m0; m1/ has been understood completely only in the case of
coprime weights [9]. In higher dimensions, the full list of (algebraic) generators
of the coordinate algebra C.W Pnq .m0; : : : ; mn// is given in [15], in the case the
weights of the form mi D

Q
j¤i lj , where l0; : : : ; ln are pairwise coprime integers.

Furthermore, such a list of generators is given in [10] provided all the weights but
the last one are equal to 1. We prove that the algebra of continuous functions
on W P1q .m0; m1/ is an AF graph C �-algebra, and compute its K-theory with no
restrictions on the weights (Proposition 3.1). It turns out that C.W P1q .m0; m1//
does not depend on the actual values of the weights, but only on m1 divided by its
greatest common divisor withm0, and hence, as a topological noncommutative space
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any quantum projective line W P1q .m0; m1/ is isomorphic to the quantum teardrop
W P1q .1;m/ (withm D m1= gcd.m0; m1/). Finally we derive a short exact sequence
which characterises quantum weighted projective spaces with weightsm0; : : : ; mn�1
coprime with mn, and use it to compute their K-theory in the case the weights have
the property that for each j � 1 there is an i < j so that mi and mj are relatively
prime.

2. Quantum weighted lens spaces as graph C �-algebras

In this section we prove that noncommutative algebras of continuous functions on all
quantum (weighted) lens spaces are graph C �-algebras.

The algebra of continuous functions on the quantum odd-dimensional sphere
C.S2nC1q / is defined as the universal C �-algebra with generators z0; z1; : : : ; zn,
subject to the following relations:

zizj D qzj zi for i < j ; ziz
�
j D qz

�
j zi for i ¤ j ; (2.1a)

ziz
�
i D z

�
i zi C .q

�2
� 1/

nX
jDiC1

zj z
�
j ;

nX
jD0

zj z
�
j D 1; (2.1b)

where q is a real number, q 2 .0; 1/; see [27]. As explained in [20], the algebra
C.S2nC1q / can be interpreted as a C �-algebra associated to a graph L2nC1 defined
as follows. L2nC1 has nC 1 vertices v0; v1; : : : ; vn, and .nC 1/.nC 2/=2 edges eij ,
i D 0; : : : ; n, j D i; : : : ; n, with vi the source and vj the range of eij .

Let us fix a sequence of positive integers m WD m0; : : : ; mn. For any natural
number N , C.S2nC1q / admits the action of the cyclic group ZN defined by

%Nm W zi 7! �mi zi ; (2.2)

where � is a generator of ZN . Under the isomorphism C.S2nC1q / Š C �.L2nC1/,
this action takes the form

%Nm WSeij 7! �miSeij ; %Nm WPvi 7! Pvi : (2.3)

The fixed points of this action form the algebra of continuous functions on the
quantum lens space C.L2nC1q .N Im//. It is shown in [21] that C.L2nC1q .N Im// is a
graph C �-algebra provided all the mi are coprime with N . We extend this result to
the general case with arbitrary weight vector m, below.

As a matter of fact, C.L2nC1q .N Im// is isomorphic to the full corner of the graph
C �-algebra associated to the skew product graphL2nC1�cZN , where the labelling c
is induced from the ZN -action %Nm , namely cW eij 7! mi mod N . More explicitly,
the graph L2nC1 �c ZN has vertices .vi ; r/, i D 0; : : : ; n, r D 0; : : : ; N � 1 and
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edges .eij ; r/, i; j D 0; : : : n, i � j , r D 0; : : : N �1, with .vi ; r�mimodN/ being
the source and .vj ; r/ being the range of .eij ; r/. For example, the skew product
graph corresponding to n D 1, N D 6, m0 D 1, m1 D 3, comes out as

.v1;0/ .v1;1/ .v1;2/ .v1;3/ .v1;4/ .v1;5/

.v0;0/ .v0;1/ .v0;2/ .v0;3/ .v0;4/ .v0;5/

(2.4)
Based on the skew product graph L2nC1 �c ZN we construct a graph LN Im2nC1 in

the following way. LN Im2nC1 has vertices vri , i D 0; : : : ; n, r D 0; : : : ; gcd.N;mi / � 1,
and edges ersij Ia with the source vri and the range vsj , and labelled additionally
by a D 1; : : : ; nrsij , where n

rs
ij is a number of paths in L2nC1 �c ZN from .vi ; r/

to .vj ; s/ that do not pass through .vk; t /, with k D i C 1; : : : ; j � 1 and
t D 0; : : : ; gcd.mk; N / � 1; such paths are termed admissible. Since there are
no edges .eij ; r/ in L2nC1 �c ZN with i > j , one may assume that i � j in ersij Ia.
We refer to the index i as labelling the levels, and to index r as labelling the loops
in LN Im2nC1.

It is helpful to analyse the graphs L2nC1 �c ZN and LN Im2nC1 more closely. Define

ci D gcd.N;mi /; di D
N

ci
; (2.5)

and observe that di is coprime with mi=ci . The admissible paths from .vi ; r/

to .vj ; s/ with r 2 f0; 1; : : : ; ci � 1g, s 2 f0; 1; : : : ; cj � 1g have the form

.ei i1 ; r Cmi /.ei1i2 ; r1/ : : : .eik ikC1 ; rk/.eikC1j ; s/; (2.6)

where

rt D r Cmi C

tX
aD1

mia � cit ; t D 1; : : : ; k; rk CmikC1 D s (2.7)

(all sums are computed modulo N ), and no vertex appears twice as the range
(or, equivalently, source) of any of the edges that compose into the path (2.6). There
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are no admissible paths between .vi ; r/ and .vi ; s/ if r ¤ s. Indeed if there were
such a path, then there would exist integers a; b such that

r � s D ami � bN: (2.8)

The right hand side is divisible by ci , while the left hand side is not, since jr�sj < ci ,
which gives the desired contradiction. On the other hand, there is exactly one path
connecting .vi ; r/ with itself:

.ei i ; r Cmi /.ei i ; r C 2mi / : : : .ei i ; r C .di � 1/mi /.ei i ; r/: (2.9)

To see that (2.9) is admissible, first note that

r C dimi D r C
N

ci
mi D r C

mi

ci
N � r mod N;

so that the condition in (2.7) is satisfied. Furthermore there are no edges in (2.9) with
the same source. Otherwise, there would need to exist integers a; b 2 0; : : : ; di � 1
such that r C ami D r C bmi modulo N . This would imply the existence of c 2 Z
such that .a � b/mi D cN or, when both sides are divided by ci ,

.a � b/
mi

ci
D cdi : (2.10)

Since ja � bj < di and di is coprime with mi=ci , the left hand side is not divisible
by di , which gives the required contradiction. By the same token, (2.9) is the shortest
path connecting .vi ; r/ with itself. Any longer path would need to pass through
the same vertex at least twice, hence it would not be admissible. This proves the
uniqueness. Thus, If i D j , nrsi i D ırs , i.e. there is a single loop attached to each
vertex in LN Im2nC1 and there are no links between vertices vri and v

s
i if r ¤ s.

If all the mi are coprime with N , the graph LN Im2nC1 coincides with the graph
described in [21, pp. 257–258]. At the other extreme, i.e. if all themi divideN , then
the graph LN Im2nC1 consists of nC 1 levels of interconnected loops with mi mutually
disconnected loops at the i th level.
Example 2.1. (1) LklI1;l3 consists of one loop at level 0 and l-loops at level 1
with k links connecting the loop in level 0 with each of the loops at level 1, so the
corresponding graph is:

: : :

v00

v01 v11 vl�11

.k/ .k/ .k/

(2.11)

where the labels in brackets over the straight arrows indicate their multiplicities.
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(2) LklI1;1;l5 consists of one loop at level 0, one loop at level 1 and l-loops at level 2
with the numbers of edges connecting different levels given by

n0001 D kl; n0r02 D
kl.k C 1/

2
� rk; n0r12 D k;

hence the corresponding graph comes out as:

: : :

v00 v01

v02 v12 vl�12

.k/
.k/

.k/

.kl/

�
kl.kC1/

2

�
�
k.lkCl�2/

2

� �
k.lk�lC2/

2

�
(2.12)

(3) LklI1;l;l5 consists of one loop at level 0, l loops at level 1 and l loops at level 2
with the numbers of edges connecting different levels given by

n0r01 D k; n0r02 D
k.k C 1/

2
; n0r12 D k;

i.e.

: : :

: : :

v00

v01 v11 vl�11

v02 v12 vl�12

.k/ .k/.k/

�
k.kC1/
2

��
k.kC1/
2

��
k.kC1/
2

�
.k/ .k/ .k/

(2.13)

(4) LklI1;1;1;l7 consists of one loop each at levels 0, 1 and 2, and l-loops at level 3
with the numbers of edges connecting different levels given by

n0001 D n
00
12 D kl; n0r13 D

kl.k C 1/

2
� rk; n0r23 D k; n0002 D

kl.kl C 1/

2
;

n0r03 D
kl.k C 1/

12
.2kl C l C 3/C

kr.r � 1/

2
�
kl.k C 1/

2
r:
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The main result of this section is contained in the following
Theorem 2.2. As C �-algebras,

C �
�
L
N Im
2nC1

�
Š C

�
L2nC1q .N Im/

�
:

Proof. Since C.L2nC1q .N Im// is obtained as fixed points of a finite abelian group
action on a graph C �-algebra, [13, Theorem 4.6] implies that it is isomorphic to� nX

iD0

P.vi ;0/

�
C �
�
L2nC1 �c ZN

�� nX
iD0

P.vi ;0/

�
:

Thus it suffices to prove that the following map

 WC �
�
L
N Im
2nC1

�
!

� nX
iD0

P.vi ;0/

�
C �
�
L2nC1 �c ZN

�� nX
iD0

P.vi ;0/

�
;

given by
Pvr

i
7! P.vi ;r/; i D 0; : : : ; n; r D 0; 1; : : : ; ci � 1;

and, for all admissible paths,

˛ D .ei i1 ; r Cmi /.ei1i2 ; r1/ : : : .eik ikC1 ; rk/.eikC1j ; s/;

S˛ 7! S.eii1 ;rCmi /
S.ei1i2 ;r1/

: : : S.eikikC1 ;rk/
S.eikC1j ;s/

;

extends to a C �-algebra isomorphism.
In view of the universal property of the graphC �-algebra, to prove that extends

to a �-homomorphism it suffices to check that the images of the Pvr
i
and S˛ under  

satisfy relations (1.1) for LN Im2nC1. Conditions (1.1a) are obvious. To prove (1.1b), we
fix .vi ; r/ 2 L2nC1 �c ZN , and, for any � 2 N, split the set of all admissible paths
from .vi ; r/ into the subsets A� of those of length less than n and B� of those of
length exactly �. We will prove by induction on � that

P.vi ;r/ D
X
˛2A�

S˛S
�
˛ C

X
ˇ2B�

SˇS
�
ˇ : (2.14)

The equation (2.14) obviously holds if � D 1. Now, suppose that it also holds for
some (other) �, and let

ˇ D .ei i1 ; r Cmi /.ei1i2 ; r1/ : : : .eik ikC1 ; rk/.eikC1j ; s/ 2 B� :

Using (1.1b) at the range vertex .vj ; s/ of ˇ one easily finds that

SˇS
�
ˇ D

nX
lDs

SˇS.ejl ;sCmj /S
�
.ejl ;sCmj /

S�ˇ : (2.15)
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All the paths

ˇ0 D .ei i1 ; r Cmi /.ei1i2 ; r1/ : : : .eik ikC1 ; rk/.eikC1j ; s/.ejl ; s Cmj /

that appear in (2.15) are admissible, which is obvious in case l ¤ s. Otherwise, this
follows by the observation that no segment of an admissible path that is not a loop
can have length greater than di � 1 at any given level i (otherwise the path would
pass through the same vertex at least twice); if an edge with both the source and
range at the level i is added its range will be a vertex that is not a range for any edge
yet, otherwise one is led to contradiction as in (2.10). Therefore, ˇ0 2 A�C1 n A�
or ˇ0 2 B�C1 and, using the inductive hypothesis, we obtain

P.vi ;r/ D
X
˛2A�

S˛S
�
˛ C

X
ˇ2B�

SˇS
�
ˇ

D

X
˛2A�

S˛S
�
˛ C

X
ˇ 02B�C1

Sˇ 0S
�
ˇ 0 C

X
ˇ 02A�C1nA�

Sˇ 0S
�
ˇ 0

D

X
˛2A�C1

S˛S
�
˛ C

X
ˇ2B�C1

SˇS
�
ˇ :

By the principle of mathematical induction, (2.14) holds for all natural �.
Since L2nC1 �c ZN is a finite graph there exists � such that B� is an empty set,

and hence relation (1.1b) for P.vi ;r/ D  .Pvri / is equivalent to (2.14) for this �. This
proves that  extends to a �-homomorphism, which we still denote  . To prove
that  is injective, we apply the general Cuntz–Krieger uniqueness theorem, [29,
Theorem 1.2]. Clearly,  .P.vi ;r// ¤ 0 for all vertices vri . Also, the only loops
without exits in graphLN Im2nC1 are the edges ern WD errnnI1 attached to vertices at level n.
For all r D 0; : : : cn � 1, we have

 .Sern/ D .enn; r Cmn/.enn; r C 2mn/ : : : .enn; r C .dn � 1/mn/.enn; r/:

It follows from the last part of the proof of Theorem 2.4 in [22] that this is a partial
unitary with full spectrum. Thus the hypothesis of [29, Theorem 1.2] holds and  is
injective.

Finally, we need to prove that  is surjective. First, let us consider a path ˛
with source and range both in the set f.vi ; 0/ j i D 0; : : : ; ng. Since every loop in
the crossed-product graph L2nC1 �c ZN passes through one of the vertices .vi ; ri /,
ri D 0; : : : ci � 1, i D 0; : : : ; n, the path ˛ is a concatenation of admissible paths,
i.e. ˛ D ˛1˛2 : : : ˛k , with all the ˛k admissible. Therefore S˛ D S˛1S˛2 � � �S˛k is
in the image of C �.LN Im2nC1/ under  .

Corollary 2.3. The following sequence of C �-algebras

0 //
�
K ˝ C.T /

�˚ gcd.mn;N/ // C
�
L2nC1q .N Im/

�
// C
�
L2n�1q .N Im/

�
// 0;

(2.16)
where K denotes compact operators on a separable Hilbert space, is exact.
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Proof. Each level n vertex in graph LN Im2nC1 emits exactly one edge, to itself. On the
other hand, there exist infinitelymany paths from vertices in other levels to each vertex
in level n. Thus the closed two-sided ideal of C �.LN Im2nC1/ generated by projections

Pvin
; i D 0; : : : ; gcd.mn; N / � 1;

is isomorphic to .K ˝ C.T //˚ gcd.mn;N/ [7, 22], and the corresponding quotient
is isomorphic to C �.L

N Im
2n�1/ [7]. Thus the exactness of (2.16) follows from

Theorem 2.2.

The identification of the algebra of continuous functions on the quantum lens
space with the graph C �-algebra C �.LN Im2nC1/ allows one to design a method for
computing K-groups of C.L2nC1q .N Im//. More precisely,

K0
�
C
�
L2nC1q .N Im/

��
D coker ˆ; K1

�
C
�
L2nC1q .N Im/

��
D kerˆ;

where ˆ is the endomorphism of a free abelian group with generators vri given by

ˆ.vri / D
X
j;s

�
nrsij � ıij ırs

�
vsj I

see [24, Theorem 3.2]. The complete computation of

K1
�
C
�
L2nC1q .N Im/

��
is presented in [10, Proposition 5.2], the more difficult computation of

K0
�
C
�
L2nC1q .N Im/

��
boils down to detailed analysis of numbers of links connecting various loops and then
to derive the Smith normal form of the matrix corresponding to the transformationˆ.
Recall [26] that every integermatrixA can be reduced (by row and column operations)
to the diagonal form with entries 0 or ˛1; : : : ; ˛n, where

˛1 D �1; ˛iC1 D
�iC1

�i
; (2.17)

where the�i are greatest common divisiors of all minors of A of size i . The torsion
part of the cokernel of the transformation defined by A is then

Z˛1 ˚ Z˛2 ˚ � � � ˚ Z˛n :

Below we give three examples of this.
Example 2.4.

K0
�
C
�
L5q.kl I 1; 1; l/

��
D Zl ˚

(
Zk ˚ Zk; if k is odd or l is even;
Z2k ˚ Zk=2; if k is even and l is odd:
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Proof. The transformation ˆ is determined by the integer .l C 2/ � .l C 2/-matrix
with the first two columns�

0 0

kl 0

kl.k C 1/=2 k

kl.k C 1/=2 � k k

kl.k C 1/=2 � 2k k

� � � � � �

kl.k C 1/=2 � k.l � 1/ k

�

;

and all other entries 0. By simple row and column operations this matrix can be
reduced to the block diagonal form0@ k 0 0

kl.k � 1/=2 k 0

0 0 0

1A :
The right bottom corner gives the infinite part of

K0
�
C
�
L5q.kl I 1; 1; l/

��
:

The greatest common divisor of the minor of size 2 is �2 D k2, while the greatest
common divisor of one-dimensional minors depends on the parity of k and l ,

�1 D

(
k; if k is odd or l is even;
k=2; if k is even and l is odd:

In view of (2.17), this yields the stated finite part of

K0
�
C
�
L5q.kl I 1; 1; l/

��
:

Example 2.5.

K0
�
C
�
L5q.kl I 1; l; l/

��
D Zl ˚

(
ZlC1
k
; if k is odd;

Z2k ˚ Zk
2
˚ Zl�1

k
; if k is even:

Proof. The transformationˆ is determined by the integer .2lC1/� .2lC1/-matrix
with the first l C 1 columns˙

0 0 0 � � � 0

k 0 0 � � � 0

k 0 0 � � � 0

� � � � � � � � � � � � 0

k 0 0 � � � 0

k.k C 1/=2 k 0 � � � 0

k.k C 1/=2 0 k � � � 0

� � � � � � � � � � � � 0

k.k C 1/=2 0 0 � � � k

�

;
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and all other entries 0. By subtracting the l C 1st row from rows 2 to l , the first l
rows can be reduced to the zeros. This gives the infinite part of the group

K0
�
C
�
L5q.kl I 1; l; l/

��
:

The greatest common divisors of the minors in the remaining matrix come out as

�i D

(
ki ; if k is odd;
ki=2; if k is even;

i D 1; 2; : : : ; l;

and �lC1 D klC1. In view of (2.17), this yields the finite part of

K0
�
C
�
L5q.kl I 1; l; l/

��
as stated.

Example 2.6. Let

˛ WD n0013 D
kl.k C 1/

2
; ˇ WD n0003 D ˛

2kl C l C 3

6
: (2.18)

Then

K0
�
C
�
L7q.kl I 1; 1; 1; l/

��

D Zl ˚

�
Zk ˚ Zk ˚ Zk; if kj˛ and kjˇ;
Zk=6 ˚ Zk ˚ Z6k; if kj˛ and ˇ � k=6; 5k=6 (mod k);
Zk=3 ˚ Zk ˚ Z3k; if kj˛ and ˇ � k=3; 2k=3 (mod k);
Zk=2 ˚ Zk ˚ Z2k; if kj˛ and ˇ � k=2 (mod k);
Zk=2 ˚ Zk=2 ˚ Z4k; if k 6 j ˛ and k=2jˇ;
Zk=6 ˚ Zk=2 ˚ Z12k; if k 6 j ˛ and k=2 6 j ˇ:

(2.19)

Proof. Let us first observe that

n0r13 D ˛ � kr; n0r03 D ˇ � ˛r C
r.r � 1/

2
k:

Therefore, the matrix representingˆ is an .lC3/� .lC3/-matrix with the non-zero
entries contained in the first three columns�

0 0 0

kl 0 0

kl.kl C 1/=2 kl 0

ˇ ˛ k

ˇ � ˛ ˛ � k k

ˇ � 2˛ C k ˛ � 2k k

� � � � � � � � �

ˇ � .l � 1/˛ C .l�1/.l�2/
2

k ˛ � .l � 1/k k

˘

:
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By elementary row and column operations (starting with subtracting row 4 from all
subsequent rows) and using the divisibility of the entries by k, we arrive at the block
diagonal matrix �

k 0 0 0

˛ k 0 0

ˇ ˛ k 0

0 0 0 0

˘

:

The zero l � l-matrix in the bottom-right corner gives Zl as the infinite part of the
group

K0
�
C
�
L7q.kl I 1; 1; 1; l/

��
;

while the 3 � 3-matrix in the top-left corner gives the finite part of

K0
�
C
�
L7q.kl I 1; 1; 1; l/

��
:

Its nature depends on the divisbiliity properties of ˛ and ˇ and it splits into two parts.
If ˛ is divisible by k, then the matrix can be reduced to0@k 0 0

0 k 0

ˇ 0 k

1A :
The greatest common divisors of the minors thus read

�1 D gcd.k; ˇ/; �2 D gcd.k2; kˇ/ D k�1; �3 D k
3;

thus yielding the diagonal entries:

˛1 D gcd.k; ˇ/; ˛2 D k; ˛3 D
k2

gcd.k; ˇ/
:

If k does not divide ˛, then it must be even, and ˛ is divisible by k=2, thus leading
to the matrix 0@ k 0 0

k=2 k 0

ˇ k=2 k

1A ;
and the corresponding Smith normal form entries

˛1 D gcd.k=2; ˇ/; ˛2 D k=2; ˛3 D
2k2

gcd.k=2; ˇ/
:

Let us note that

ˇ D
k.k C 1/.k C 2/l.l C 1/

12
C
.k � 1/k.k C 1/l.l � 1/

12
:
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Hence ˇ modulo k has to be a multiple of the sixth of k, and, in the case of even k,
ˇ modulo k=2 has to be a multiple of the third of k=2. The analysis of all these
possibilities yields the stated form of

K0
�
C
�
L7q.kl I 1; 1; 1; l/

��
:

Remark 2.7. If l D 1, the results of Example 2.4 agree with that of [21, Prop-
osition 2.3]. On the other hand, if l D 1, then numbers ˛ and ˇ defined in (2.18)
come out as

˛ D
k.k C 1/

2
; ˇ D ˛

k C 2

3
;

and the second and fourth cases in (2.19) cannot occur. The remaining cases coincide
with the K-groups computed in [5, Example 6.6].

3. K -theory of quantum weighted projective spaces

The aim of this section is to calculate K-theory of a fairly general class of quantum
weighted projective spaces and to give a complete description of C �-algebras of
continuous functions on quantum weighted projective lines as graph AF-algebras.

As before, we fix a sequence of positive integers m WD m0; : : : ; mn. In addition
to the ZN -action (2.2), the algebra C.S2nC1q / admits the circle group action %m,

%mW zi 7! �mi zi ; i D 0; : : : ; n; (3.1)

where � is the unitary generator of T (of infinite order). Fixed points C.W Pnq .m//
form the algebra of continuous functions on the quantum weighted projective
space, [9]. As explained in [10], for a fixed N , all the elements

P
i xi of C.S2nC1q /

that transform according to the ruleX
i

xi 7!
X
i

�riNxi ; ri 2 Z;

form a subalgebra of C.S2nC1q / isomorphic to C.L2nC1q .N Im//. The action %m

gives rise to the T -action y%m on C.L2nC1q .N Im// with fixed points being again
C.W Pnq .m//: an element x 2 C.L2nC1q .N Im// transforms under y%m as x 7! �rx

provided it transforms as x 7! �rNx under %m. The actions %Nm and y%m can be
uderstood as being derived from %m via the short exact sequence of abelian groups

1 // T // T // ZN // 1;

where the (non-trivial) monomorphism is � 7! �N and the (non-trivial) epimorphism
is � 7! �; see e.g. [23, Section A.1.1].



Quantum lens and weighted projective spaces 209

We describe C �-algebras of the quantum weighted projective spaces W P1q .m/,
m D .m0; m1/, as AF graph algebras. Let g WD gcd.m0; m1/, zm0 WD m0=g, and
zm1 WD m1=g, and define a graphW1.m/ as follows. The graph has zm1 C 1 vertices,
denoted w0; : : : ; w zm1 . For each j 2 f1; : : : ; w zm1g there are infinitely many edges
from w0 to wj , denoted fjk , k 2 N, i.e.

: : :

w0

w1 w2 w zm1

.1/ .1/ .1/

(3.2)

Proposition 3.1. For all values of m D .m0; m1/, C.W P1q .m// is an AF-algebra
isomorphic to the graph C �-algebra C �.W1.m//. Consequently,

K0
�
C
�
W P1q .m/

��
D Z1Cm1= gcd.m0;m1/; K1

�
C
�
W P1q .m/

��
D 0:

Proof. As explained above, C.W P1q .m// is isomorphic to the C �-algebra of fixed
points for the generalized gauge action of the circle group T on the graph algebra
C �.L3/, such that

%m.Seij / D �
miSeij for i D 0; 1; j D i; 1:

We denote this fixed point algebra C �.L3/%m and we construct a C �-algebra iso-
morphism

�WC �
�
W1.m/

�
! C �.L3/

%m :

At first we find targets for the generators of C �.W1.m// inside C �.L3/. Let

�.Pw0/ WD Pv0 �

zm1X
jD2

Sj�2e00
Se01S

�
e01
.S�e00/

j�2;

�.Pw1/ WD Pv1 ;

�.Pwj / WD S
j�2
e00

Se01S
�
e01
.S�e00/

j�2; for j D 2; : : : ; zm1;

�.Sf1k / WD S
zm1.kC1/�1
e00

Se01.S
�
e11
/ zm0.kC1/; for k 2 N;

�.Sfjk / WD S
zm1.kC1/Cj�2
e00

Se01.S
�
e11
/ zm0.kC1/S�e01.S

�
e00
/j�2;

for k 2 N; j D 2; : : : ; zm1:

Clearly, these elements of C �.L3/ are %m-invariant and satisfy the defining relations
for the graph algebra C �.W1.m//. Thus, this assignment extends uniquely to a
�-homomorphism �WC �.W1.m// ! C �.L3/

%m . Injectivity of � follows from [29,
Theorem 1.2], since there are no closed paths in graph W3.m/ and �.Pwj / ¤ 0 for
all j D 0; : : : ; zm1.
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It remains to verify that the map � is surjective. First of all, C �.L3/ is a closed
span of elements of the form S˛S

�
ˇ
, where ˛ and ˇ are two paths with the common

range. The action %m rescales each such an element by a suitable power of � .
Applying the conditional expectation from C �.L3/ onto C �.L3/%m (integration over
the orbits), we see that the fixed point algebraC �.L3/%m is spanned by those elements
S˛S

�
ˇ
which are fixed by %m. Hence it suffices to show that all such elements are in

the range of �.
If both ˛ and ˇ end at v0, then we must have ˛ D ˇ, and thus

S˛S
�
ˇ D Pv0 D �.Pw0/C

zm1X
jD2

�.Pwj /:

So suppose that ˛ and ˇ end at v1. If both ˛ and ˇ contain only edges e11, then again
we must have ˛ D ˇ, and thus

S˛S
�
ˇ D Pv1 D �.Pw1/:

So we may assume that ˛ D ek00e01e
r
11 for some k; r 2 N. Now, if ˇ does not

contain edge e01, then ˇ D es11 for some s 2 N, and we must have

m0.k C 1/Cm1r D m1s:

This can only happen when k D t zm1 � 1 and s D r C t zm0 for some t 2 N n f0g.
Since S˛S�ˇ D S˛0S

�
ˇ 0

with ˛0 D ek00e01 and ˇ0 D es�r11 , we get S˛S�ˇ D �.Sf1.t�1//
in this case.

It remains to consider the case ˛ D ek00e01e
p
11 and ˇ D el00e01e

s
11 for some

k; l; p; s 2 N. As above, from the start we may assume that p D 0. We must have

m0.k C 1/ D m0.l C 1/Cm1s;

and hence
zm0.k � l/ D zm1s:

If k D l , then s D 0 and

S˛S
�
ˇ D S

k
e00
Se01S

�
e01
.S�e00/

k :

Write k D r zm1 C t with r 2 N and t 2 f0; : : : ; zm1 � 1g. Then S˛S�ˇ equals:

(i) �
�
PwtC2

�
if r D 0 and t < zm1 � 1;

(ii) �
�
Sf.tC2/.r�1/S

�
f.tC2/.r�1/

�
if r > 0 and t < zm1 � 1;

(iii) �
�
Sf1rS

�
f1r

�
if t D zm1 � 1.

Note that this argument shows that for each path ˛ in graph L3 there exists an edge
(or vertex) f in graph W1.m/ such that �.Sf / D P˛ .
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Finally, suppose that k ¤ l . It suffices to consider the case k � l > 0, when also
s > 0. Then we must have s D t zm0 and k � l D t zm1 for some t 2 N n f0g, and thus

S˛Sˇ D S
lCt zm1
e00

Se01.S
�
e11
/t zm0S�e01.S

�
e00
/l :

Let f; h be edges (or possibly vertices) in graph W1.m/ such that

�.f / D S lCt zm1e00
Se01S

�
e01
.S�e00/

lCt zm1

and �.h/ D S le00Se01S
t zm0
e11

.S�e11/
t zm0S�e01.S

�
e00
/l :

Since .l C t zm1/� l is a multiple of zm1, edges f and h have a common range. Then
it is a bit tedious but not difficult to verify that

�.f /�.h/� D S lCt zm1e00
Se01.S

�
e11
/t zm0S�e01.S

�
e00
/l ;

and this completes the proof of surjectivity of �.
As an immediate corollary of the isomorphism

C
�
W P1q .m/

�
Š C �

�
W1.m/

�
;

we obtain the following exact sequence:

0 // Km1= gcd.m0;m1/ // C
�
W P1q .m/

�
// C // 0:

It follows that C.W P1q .m// is an AF algebra and

K0
�
C
�
W P1q .m/

��
D Z1Cm1= gcd.m0;m1/; K1

�
C
�
W P1q .m/

��
D 0;

as required.

Poposition 3.1 contains full classification of algebras of continuous functions
on the quantum weighted projective line: as a topological noncommutative space
the quantum projective line W P1q .m0; m1/ is isomorphic to the quantum teardrop
W P1q .1;m/, where m D m1= gcd.m0; m1/.

Proposition 3.2. Let m WD m0; : : : ; mn be positive integers such that there exists
j 2 f0; 1; : : : ; n � 1g so that mj is relatively prime with mn. Then there exists an
exact sequence

0 // Kmn // C
�
W Pnq .m/

�
// C
�
W Pn�1q .m/

�
// 0: (3.3)
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Proof. We use the identification

C
�
W Pnq .m/

�
Š C �.L2nC1/

%m :

Let J be the closed span of all S˛S�ˇ 2 C
�.L2nC1/

%m such that ˛; ˇ are paths
inL2nC1 with both ˛ and ˇ ending at vertexmn. Then J is a closed, two-sided ideal
of C �.L2nC1/%m such that the quotient C �.L2nC1/%m=J is isomorphic to

C �.L2n�1/
%m Š C

�
W Pn�1q .m/

�
:

Thus it suffices to show that J ŠKmn .
For each k 2 f0; 1; : : : ; mn � 1g let Jk be the closed, two-sided ideal of J

generated by all projections S˛S�˛ such that ˛ is a path in L2nC1 ending at vk and
%m.S˛/ D �lS˛ with l � k .mod m/n. We claim that Jk Š K and JkJr D f0g
for k ¤ r . Indeed, let S˛S�˛ and SˇS�ˇ be two projections in Jk , as above. Then
for a suitable integer t the element S˛S tmnS

�
ˇ
is a partial isometry in Jk with domain

SˇS
�
ˇ
and range S˛S�˛ . On the other hand, if S˛S�˛ 2 Jk and SˇS�ˇ 2 Jr with k not

congruent to r modulo mn, then these two projections are not equivalent in J , since
there is no t 2 Z for which S˛S tkS

�
ˇ
is in the fixed point algebra C �.L2nC1/%m . It

remains to show that Jk ¤ f0g for each k. Let j < mn be such that mj and mn are
relatively prime. Consider the path

˛ D etjj ej.jC1/e.jC1/.jC2/ : : : e.mn�1/mn :

Sincemj andmn are relatively prime, for each k we can find a positive integer t such
that tmj C

Pmn�1
iDj mi is congruent to k modulo mn.

Corollary 3.3. Let m WD m0; : : : ; mn be a sequence of positive integers such that for
each j � 1 there is an i < j so that mi and mj are relatively prime. Then

K0
�
C
�
W Pnq .m/

��
D Z1C

Pn
iD1mi ; K1

�
C
�
W Pnq .m/

��
D 0:

Proof. Weproceed by induction onn. Casen D 1 being contained in Proposition 3.1.
Applying the K-functor to (3.3) we obtain the six-term exact sequence

K0.K
mn/ // K0

�
C
�
W Pnq .m/

��
// K0

�
C
�
W Pn�1q .m/

��
��

K1
�
C
�
W Pn�1q .m/

��
OO

K1
�
C
�
W Pnq .m/

��
oo K1.K

mn/ :oo
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Since outer terms in the bottom row vanish (the left one by inductive assumption)
also the middle term is 0, as required. Thus again using the inductive assumption
and the K-theory of compact operators we obtain a short exact sequence

0 // Zmn // K0
�
C
�
W Pnq .m/

��
// Z1C

Pn�1
iD1 mi // 0;

which splits as a sequence of abelian groups thus confirming the stated form of
K-groups of quantum weighted projective spaces.
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