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Two problems from the Polishchuk and Positselski book
on quadratic algebras

Natalia Iyudu and Stanislav Shkarin

Abstract. In the book Quadratic algebras by Polishchuk and Positselski [23], algebras with a
small number of generators (n = 2, 3) are considered. For some number r of relations possible
Hilbert series are listed, and those appearing as series of Koszul algebras are specified. The first
case, where it was not possible to do, namely the case of three generators n = 3 and six relations
r = 6 is formulated as an open problem. We give here a complete answer to this question,
namely for quadratic algebras with dim A; = dim A> = 3, we list all possible Hilbert series,
and find out which of them can come from Koszul algebras, and which can not.

As a consequence of this classification, we found an algebra, which serves as a
counterexample to another problem from the same book [23, Chapter 7, Sec. 1, Conjecture 2],
saying that Koszul algebra of finite global homological dimension d has dim A1 = d. Namely,
the 3-generated algebra A given by relations xx 4+ yx = xz = zy = 0 is Koszul and its Koszul
dual algebra A' has Hilbert series of degree 4: Hp@) =143+ 3t2 + 213 4+ 14, hence A
has global homological dimension 4.
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1. Introduction

Quadratic algebras have been studied intensely during the past several decades. Being
interesting in their own right, they have many important applications in various parts
of mathematics and physics including algebraic geometry, algebraic topology and
group theory as well as in mathematical physics.

They frequently originate in physics. One example is that the 3-dimensional
Sklyanin algebras were introduced and used in order to integrate a wide class of
quantum systems on a lattice. These algebras have their Koszul duals in the class of
quadratic algebras with dim A; = dim A, = 3, the very class we study in this paper.

Quadratic algebras are noncommutative objects which lie in foundation of many
noncommutative theories, for example, in work of A. Connes and M. Dubois-
Violette [8], notions of noncommutative differential geometry obtain their purely
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algebraic counterpart through introducing the appropriate quadratic form on quadratic
algebras. The big area of research generalizing notions of algebraic geometry to
noncommutative spaces, due to Artin, Tate, Van den Bergh, Stafford etc. [3-5, 25]
contains a great deal of studying structural and homological properties of quadratic
algebras and their representations. Certain quadratic algebras serve as important
examples for the notions of noncommutative (symplectic) spaces introduced by
Kontsevich [18, 19], so information about general rules on the structure of such
algebras makes it possible to describe examples explicitly.

We find it very important to study fundamental, most general properties of
quadratic algebras, their Hilbert series, Koszulity, other homological properties,
PBW type properties, etc. and to develop appropriate tools for that, which is a goal
of present paper.

For further information on quadratic algebras, their Hilbert series and various
aspects of their applications, we refer to [1,2,6,7,9-17,20-24,26,27] and references
therein, however it will give still the list which is far from being exhaustive.

Throughout this paper, K is an arbitrary field. For a Z 4 -graded vector space B,
By, always stands for the m™ component of B and Hp(r) = )72, dim B; t/ is the
Hilbert series of B.

If V is an n-dimensional vector space over K, then F = F(V) is the tensor
algebra of V, which is naturally identified with the free algebra K(x1,...,x,) for
any choice of a basis x1,...,x, in V. We often use the juxtaposition notation for
the operation in F'(V') (for instance, we write x ;X instead of x; ® xx). We always
use the degree grading on F: the m"™ graded component F,,, of F is V™. A degree
graded algebra A is a quotient of F by a proper graded ideal I (] is graded if it is the
direct sum of I N Fy,). This ideal is called the ideal of relations of A. If xy, ..., x,
is a fixed basis in V' and the monomials in x; carry an ordering compatible with the
multiplication in A, we can speak of the Grobner basis of the ideal of relations of A.
If A is the set of leading monomials of the elements of such a basis, then the normal
words for A are the monomials in x; featuring no element of A as a submonomial.
Normal words form a basis in A as a K-vector space. Thus, knowing the normal
words implies knowing the Hilbert series.

If R is a subspace of the n2-dimensional space V2, then the quotient of F by
the ideal I(V, R) generated by R is called a quadratic algebra and denoted A(V, R).
Following [23], we say that a quadratic algebra A = A(V, R) is a PBW-algebra
if there are linear bases xy,...,x, and g1,...,8m in V and R respectively such
that g1, ..., gm is a Grobner basis of the ideal / = I(V, R) with respect to some
well-ordering on the monomials in xy, ..., Xx,, compatible with multiplication. For
a given basis xq,...,x, in V, we get a bilinear form on K({x1,...,x,) by setting
[u,v] = &,,, for every pair of monomials v and v in xj,...,x,. The quadratic
algebra A' = A(V, R*), where

RY ={ueV?:[r,ul =0foreachr € R},
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is called the Koszul dual algebra of A, we will call it also just dual algebra. Note
that up to an isomorphism, the graded algebra A' does not depend on the choice of a
basis in V. It is well known that A is PBW if and only if A4' is PBW.

A degree graded algebra A is called Koszul if the graded left A-module K (the
structure is provided by the augmentation map) has a free resolution

e My > o> M > A—->K—=>0

with the second last arrow being the augmentation map, and with each M}, generated
in degree k. The latter means that the matrices of the maps M,, — M,,—, with
respect to some free bases consist of homogeneous elements of degree 1. Replacing
left modules by the right ones leads to the same class of algebras. We use the
following well-known properties of Koszul algebras:

» every Koszul algebra is quadratic; every PBW-algebra is Koszul;
e AisKoszul < A'is Koszul;
e Ha(—t)H 4 (t) = 1if A is Koszul. (1.1

In [23, Chapter 6, Section 5] possible Hilbert series of Koszul algebras A with
small values of dim A; and dim A, are listed. The first case not covered there is
dim A; = dim A, = 3. In this case, only the Hilbert series of PBW algebras are
given. It is stated in [23] that the complete list of Hilbert series of quadratic algebras
satisfying dim A; = dim A, = 3 as well as the complete list of the Hilbert series of
Koszul algebras in this case are unknown. We fill this gap by proving the following
results.

Theorem 1.1. For quadratic algebras A satisfying dim A, = dim A, = 3, the
complete list of possible Hilbert series is {H1, ..., Hi1}, where

Hi(t) =143t +3t%;
Hy(t) =143t +3> +1° = (1+1)%

142t —213
H3(t)=1+3t+312+t3+t4+t5+~--=+1—t;
Hy(t) = 1+ 3t + 32 4+ 213
Hs(t) = 1+ 3t +3t% + 213 + 14

142t —13—1¢*
Hﬁ(t)=1+3t+3z2+2t3+z4+t5+~--=+1—[;

14+2t—13
H7(t):1+3t+312+2t3+214+215+---:+1—t;
14 2¢
Hg(t) =1+3t +32+33 +3t* +3t° + ... = 1+z;
142413

Hg(t):1+3t+312+4t3+4t4+415—|—---—T,
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1+¢—2t2+1¢3
Hio(t) =14+3t +3t2+43 +5t* +61° + ... = + + ;

(1-1)
1+2t—12-1¢3
Hll(l)z 1 +3l+3[2+513+8l4+13[5+"'=ﬂﬁ,

where the last series, starting from the third term, is formed by consecutive Fibonacci
numbers.

As we have mentioned above, the complete list of Hilbert series of PBW algebras A

satisfying dimA; = dim A, = 3 can be found in [23]. It consists of H; with
j€1{2,7,8,9,10, 11}.
Theorem 1.2. For Koszul algebras A satisfying dim A; = dim A, = 3, the complete
list of Hilbert series consists of Hj with j € {2,5,6,7,8,9, 10, 11}. That is, for each
J €12,5,6,7,8,9,10, 11}, there is a Koszul algebra A satisfying Hq = H;, while
for j € {1, 3,4}, every quadratic algebra A satisfying Hq4 = H; is non-Koszul.

As a consequence of these classification Theorems 1.1 and 1.2, we can find an

algebra, which serves as a counterexample to another problem formulated in the
Polishchuk and Positselski book [23].

Conjecture 1.3 ([23, Chapter 7, Sec. 1, Conjecture 2]). Any Koszul algebra of finite
global homological dimension d has dim Ay = d. By duality this is equivalent to
the following statement: for a Koszul algebra B with By, = 0 and By # 0 one
has dim B; = d.

We can consider algebra A5 from the Table 1. It is given by relations xx — yx =
xy = yy = yx = zx = zz = 0. The Hilbert series of this algebra is

Hu(t) = Hs = 1 4 3t +3t2 + 23 + 14,

so it is a polynomial of degree 4. Then quite straightforward arguments in
Proposition 4.2 ensure that the Koszul dual algebra A!S, given by relations xx + yx =
xz = zy = 0,is Koszul. This provides a counterexample to Conjecture 1.3. Namely,
the algebra A' serves as a counterexample to the first part of the conjecture: it has
a global homological dimension 4. The algebra A itself is a counterexample to the
second statement of the conjecture, since its Hilbert series is a polynomial of degree 4.

Note that the list of series acquires two extra members Hs and Hg when the PBW
condition is relaxed to Koszulity.

The key lemma, allowing to manage all possibilities, is the following linear algebra
statement.

Lemma 1.4. Let V be a 3-dimensional vector space over an infinite field K and R
be a 6-dimensional subspace of V ® V. Then at least one of the following statements
is true:

(P1) there is a 1-dimensional subspace L C V such that

VL @R=VV or (LKIIV)BR=VRV,;
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(P2) there is 1-dimensional subspace L C V such that
VLCR or LQ®V CR;

(P3) there is an invertible linear map T : V — V such that
R=span{x®Tx:xeV}

While (P1) and (P2) are not mutually exclusive, (P3) is incompatible with each
of (P1) and (P2).

In Section 2 we show that the Hilbert series of any quadratic algebra A, satisfying
dim A; = dim A, = 3 belongsto {H1, ..., H11}, applying Lemma 1.4 and Grobner
basis techniques. Then in Section 3 we give a proof of Lemma 1.4. In Section 4 we
show that H is the Hilbert series of a quadratic algebra 4 for 1 < j < 11. We also
observe that A can be chosen Koszul if j € {2,5,6,7,8,9,10,11} and that every
algebra A with H4 = H for j € {1, 3, 4} is non-Koszul, thus completing the proofs
of Theorems 1.1 and 1.2.

Throughout the paper, when talking of Grobner bases, assume that the monomials
carry the left-to-right degree lexicographical ordering with the variables ordered
by x > y > z or x; > x > x3 (depending on how the variables are called in each
case).

2. Admissible series

In this section we apply Lemma 1.4 and Grobner basis arguments to prove the
following result. Next section will be dedicated to the proof of the Lemma 1.4 itself.

Proposition 2.1. Let A be a quadratic K-algebra satisfying dim A; = dim A, = 3.
Then Hy € {Hl, ey Hll}-

Since replacing the ground field K by a field extension does not change the Hilbert
series of an algebra given by generators and relations, for the purpose of proving
Proposition 2.1, we can without loss of generality assume that K is algebraically
closed. Then K is infinite. By Lemma 1.4, Proposition 2.1 is an immediate corollary
of the following three lemmas. We essentially consider three possibilities given by
Lemma 1.4, and in each case find out which series are possible, looking mainly at
the shape of the Grobner basis.

Lemma 2.2. Let V be a 3-dimensional vector space over K and R be a 6-dimensional
subspace of V.® V such that condition (P1) of Lemma 1.4 is satisfied. Then for the
quadratic algebra A = A(V,R), Hq € {H1, ..., Hg}.

Lemma 2.3. Let V be a 3-dimensional vector space over an algebraically closed
field K and R be a 6-dimensional subspace of V. ® V such that condition (P2) of
Lemma 1.4 is satisfied, while (P1) fails. Then for the quadratic algebra A = A(V, R),
Hy € {Hy, Hy, H3, H7, Ho, Hi0, H11}
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Lemma 2.4. Let V be a 3-dimensional vector space over K and R C V ® V be
a subspace satisfying condition (P3) of Lemma 1.4. Then for the quadratic algebra
A= A(V,R), Hy = H>.

Proof of Lemma 2.2. Since (P1) is satisfied, there is a 1-dimensional subspace L C V
suichthat (V QL)Y R=V Vo (LXV)DdR =V Q®YV. These two cases
reduce to each other by passing to the algebra with the opposite multiplication. Thus
we can assume that (L ® V)@ R = V ® V. Pick a basis x1, x,, x3 in V' such that x3
spans L. Since (L ® V) ® R = V ® V, there is a linear basis in R of the form
(we skip the symbol &® for the rest of the proof):

Fjik =Xjxg—x3ujr forl<j<2andl <k <3, whereu;,eV. (2.1)

It follows that in the algebra A, A, = x3V = x3A41. Then A3 = A,V = x3VV =
x3A, = x3V. lterating, we get A, = x34,—1 = x% 'V foreachn = 2. In
particular, dim A, < dim A,—; < 3 for each n = 2. We also know that dim 4; =
dim Az = 3.

Case 1: dim A3 = 3. This can only happen if ; ; form a Grobner basis of the ideal
I = I(V, R). Since the leading monomials of these relations are x jx for 1 < j <2

and 1 < k < 3, the normal words of degree n = 3 are x5 'x; for 1 < j < 3. Hence
dimA, =3forn >3 and Hy = Hg.

Case 2: dim A3 = 2. This happens when there is exactly one degree 3 element g
of the Grobner basis of /. The leading monomial of g must have the shape x3x;
with 1 < j <3. If j = 3, we have ¢ = x3 and x3 = 0 in A. Hence for n = 4,
An = x57'WV = {0}. Thus H4 = 1+ 3t + 3t> + 2> = H,. It remains to
consider the case j € {1,2}. Swapping x; and x,, if necessary, we can without loss
of generality assume that j = 1. We know that dim A4 < dim A3z = 2. The case
dim A4 = 2 can only happen if the relations r;; together with g form a Grobner
basis of /. In this case the normal words of degree n > 3 are x4~ x; withk € {2,3}.
This gives Hy = 1+ 3t +3t% 4234+ 2t* 42> +-.. = H;. Itremains to consider
the case dim A4 = 1. This happens when there is exactly one degree 4 element /
in the Grébner basis of /. The leading monomial of 7 must have the shape x3x
with2 <k < 3. If Kk = 3, we have h = xg andxg1 = 01in A. Hence forn = 5,
A, = xg’_lV = {0}. Thus H4 = 1+ 3t + 3t2 + 2t3 + t* = Hs. Assume now
that k& = 2. If the relations r; together with g and & do not form the Grobner
basis of I, there is a degree 5 element g of this Grobner basis. By looking at the
leading terms of 7 x, g and &, we see that the only possibility is for g to be equal xg
up to a non-zero scalar multiple. Again, this gives H4 = Hs. On the other hand,
if r; x together with g and / do form the Grobner basis of 7, the only normal word
of degree n = 4 is x%. Hence Hy = 1 + 3t +32 4203+t + P + .. = Hg.

Case 3: dim A3 = 1. This happens when there are exactly two degree 3 elements g
and & of the Grobner basis of /. By swapping g and #, if necessary, we can assume
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that the leading terms of g and /2 are xZx; and x3x respectively with 1 < j < k < 3.
If k = 3, we have h = x3 and x3 = 0in A. Hence forn > 4, 4, = x27'V = {0}.
Thus Hy = 1+ 3t + 3t> +t> = H,. It remains to consider the case j = 1,
k = 2. If the relations r;; together with g and /& do not form the Grobner basis
of I, there is a degree 4 element ¢ in this Grobner basis. By looking at the leading
terms of 7 x, g and i, we see that the only possibility is for g to be equal xjuptoa
non-zero scalar multiple. Again, this gives H4 = H». If r; i together with g and h
do form the Grobner basis of 7, the only normal word of degree n > 3 is x%. Hence
Hi=1+43t+32+3+1*+1°+--- = Hs.

Case 4: dim A3 = 0. Obviously, H4 =1+ 3¢ + 3t? = H;. O

Proof of Lemma 2.3. Since (P2) holds, there is a 1-dimensional subspace L of V
such that VL C Ror LV C R (we skip the symbol ® throughout the proof). The
cases VL C R and LV C R reduce to each other by passing to the algebra with the
opposite multiplication. Thus we can assume that LV C R. Pick x in V, which
spans L. Since (P1) fails,

foreach u € V \ {0}, there is v = v(u) € V \ {0} such that uv € R. (2.2)

We shall verify that there are y,z € V such that x, y, z is a basis in V' and at least
one of the following conditions holds:

R = span{xx,xy,xz,yx,zx,h} (2.3)
withh € {yy,yz —azy,yz —zy + zz} (a € K);

R = span{xx,xy,xz,yy,zy, h} (2.4)
withh € {yx —zz,yz —zx, yX, yz,zx,zz};

R = span{xx,xy,xz,yy,zz, h} (2.5)
withh e {yx + zx,yz +zy,yx + zx — yz — zy}.

Case 1: VL C R. Pick arbitrary u, v € V such that x, u, v is a basis in V. Then the
5-dimensional space LV + VL spanned by So = {xx, xu, xv,ux, vx} is contained
in R. Since R is 6-dimensional, it is spanned by So U { f'}, where f = auu + buv +
cvu+dvvwith (a,b,c,d) e K*, (a,b,c,d) = (0,0,0,0). Since K is algebraically
closed, there is a non-zero (p, s) € K2 such that ap? + (b + ¢) ps + ds? = 0. Next,
pick (¢.7) € K? such that (p,s) and (g,?) are linearly independent. The non-
degenerate linear substitution, in which old » and v are replaced by pu + gv and
su + tv respectively, transforms f into g = auv 4+ fvu + yvv with non-zero
(a,B.y) e K3. If « =0and B # 0, weset y = v and z = Bu + yv, while if
a #0and B =0, weset y = au + yv and z = u. This substitution transforms g
into a (non-zero) scalar multiple of yz. Now, with respect to the basis x, y,z, R is
spanned by S U {yz} with § = {xx,xy,xz,yx,zx}. fa = =0,wesety = v
and z = u and observe that R is spanned by S U {yy}. If ¢ #% Oand @ + B # O,
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wesety =u + alfﬂ’ z = v and observe that R is spanned by S U {yz + gzy}.
Ifaf #O0anda + B = y = 0, with respect to y = u and z = v, R is spanned by
S U{yz —zy}. Finally, ifafy Z0anda + B = 0, we set y = % and z = v,
with respect to which R is spanned by S U {yz — zy + zz}. Thus (2.3) is satisfied
provided VL C R.

Case 2: VM C R for a 1-dimensional subspace M of V' such that M # L. Pick
u € M \ {0}. Since L # M, x and u are linearly independent. For w € V such that
x,u,wisabasisin V, R = span (SoU{ f}), where Sy = {xx, xu, xw, uu, wu} and
f = aux + buw + cwx + dww with (a,b,c,d) € K*, (a,b,c.d) # (0,0,0,0).
For ¢ € K* and p, ¢ € K we can consider the basis x, y, z in V defined by u = ay
and w = z 4+ px 4+ gqy. A direct computation shows that with respect to this basis,
R = span (S U {g}), where S = {xx,xy,xz,yy,zy}and

g=(ax+bpa+cq+dpg)yx + (ba+dqg)yz + (c +dp)zx + dzz.

If d # 0 and ad = bc, by choosinga =1, g = —% and p = —5, we turn g into a

(non-zero) scalar multiple of zz. If d = 0 and ad # bc, by choosing @ = chi(i,
q = —% and p = —%, we turn g into a scalar multiple of yx — zz. If d = 0 and
bc # 0, by choosing o« = —%, p=0andqg = %, we turn g into a scalar multiple of

yz—zx.Ifb =d = O0andc # 0, by choosinga = 1, p = Oandg = —7, weturn g
into a scalar multiple of zx. If c = d = 0 and b # 0, by choosinga = 1,g =0
and p = —%, we turn g into a scalar multiple of yz. Finally, if b = ¢ = d = 0, by
choosing ¢ = 1 and p = ¢ = 0, we turn g into a scalar multiple of yx. Thus (2.4)
is satisfied provided VM C R for a 1-dimensional subspace M different from L.

Case 3: VM ¢ R for every 1-dimensional subspace M of V. This is precisely the
negation of the assumptions of Cases 1 and 2. First, we shall verify that in this case

yz ¢ R whenever x, y, z is a basis in V. (2.6)

We argue by contradiction. Assume that (2.6) fails. Then there are y,z € V
such that x,y,z is a basis in V and yz € R. By (2.2), there are non-zero
(a,b,c),(p,q,r) € K3 such that z(ax + by + cz), (y + z)(px +qy +rz) € R.
The assumption of Case 3 implies linear independence of z, ax 4+ by + ¢z and
px + qy + rz. Indeed, if they were linearly dependent, using the inclusions
vz,z(ax + by +cz),(y + z)(px +qy +rz) € R, one easily finds a non-zero
u € V such that yu,zu € R. Since xu € R, this implies VM C R with M being
the linear span of u. Linear independence of z, ax + by + cz and px + qy + rz
implies that ag # bp and that

R =span{xx,xy,xz,yz,z(ax + by +cz),(y + z)(px +qy +rz)}. (2.7)
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Since K is infinite, we can pick 6 € K \ {0,1}. By (2.2), there is a non-zero
(e, B,y) € K3 such that (y + 0z)(ax + By + yz) € R. By (2.7), there exist
c1, 2, c3 € K such that

(y+0z)(ax+By+yz) =ciyz+crz(ax+by+cz)+c3(y+z)(px+qy+rz),

where the equality holds in K(x, y, z). Opening up the brackets in the above display,
we obtain

a—pcs=Pf—qcz=y—c1—rcz=abf —acy —qcs

= B0 —bcy —qc3 = y0 —cco —re3 =0.

Plugging o = pc3 and § = gc3 into @ — acy; — gez = B0 — bey — gez = 0, we
get beo + (1 —0)ges = aco + (1 —0)pes = 0. Since 6 # 1 and aq # bp, the
determinant (1 — 0)(bp — aq) of this system of two linear equations on ¢, and c3 is
non-zero. Hence ¢, = ¢3 = 0. Since 6 # 0, the above display impliesa = pc3 = 0,
B =¢gc3=0and y = % = 0, which contradicts (a, 8,y) # (0,0,0). This
contradiction proves (2.6).

Now (2.6) together with (2.2) imply that

for each u € V \ L, there is (ay, by) € K2\ {(0,0)}

2.
such that u(ayu + byx) € R. 2:8)

Observe that a,, # 0 for a Zarisski generic u € V. Indeed, otherwise VL C R.
Next, b, # 0 for a Zarisski generic u € V. Indeed, otherwise R contains the
6-dimensional space S of symmetric elements of V2. Since R also contains LV
and LV N S is one-dimensional, dim R = 8 > 6, which is a contradiction. Thus
we can pick 5,7 € V such that x, s, ¢ is a basis in V and asbsa;b; # 0. Now, using
the inclusions s(ags + bss),t(a;t + byx) € R, we can pick p,¢q € K* such that
foru = psandv = gt, u(x —u),v(x —v) € R. Fora = ay4+, and b = by 4y,
according to (2.8), we have (a, b) # (0,0) and (¥ 4+ v)(au + av + bx) € R. Then
R = span {xx, xu, xv, u(x—u), v(x—v), (u+v)(au+av+bx)}. Nowsety = x—u
and z = x — v. With respect to the basis x, y, z, the last equality can be rewritten
as R = span(S U {c(y + z)x —a(yz + zy)}, where S = {xx,xy,xz,yy,zz}
with ¢ = b + 2a. If ¢ = 0, then R = span (S U {yz + zy}). If a = 0, then
R = span (S U {yx + zx}). If ac # 0, then replacing y and z by «y and «z for an
appropriate ¢ € K*, we get R = span (S U {yx + zx — yz — zy}). Thus (2.5) is
satisfied provided VM ¢ R for every 1-dimensional subspace M of V.

It remains to determine the Hilbert series of A = A(V, R) when R satisfies one
of the conditions (2.3), (2.4) or (2.5). If (2.3) is satisfied, the defining relations xx,
xy, xz, yx, zx, and h of A form a Grobner basis of the ideal I = I(V, R). If
h = yz—azyorh = yz —zy + zz, then the normal words of degree n > 2
are Zky”_k for 0 < k < n. Since there are n + 1 of them, we have H4 = Hyy.
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If i = yy, then the normal words of degree n = 2 are all monomials in y and z,
which do not contain yy as a submonomial. It is easy to see that the number a, of
such monomials satisfies the recurrent relation a,4» = an+1 + a,, which together
with a, = 3 and a3 = 5 implies H4 = Hy;.

Next, assume that (2.4) is satisfied. That is, A is given by the relations xx, xy,
xz,yy,zyand hwithh € {yx —zz,yz—zx,yx,yz,zx,zz}. If h = yx —zz, the
defining relations together with yzz, zzx, zzy and zzz form a Grobner basis of /. The
only normal word of degree > 3 is yzx, which gives H4 = H,. It h = yz—zx, then
the defining relations together with zzx form a Grobner basis of 1. The only normal
word of degree n = 3 is z", which implies H4 = Hs. If h € {yx, yz,zx,zz}, Ais
monomial and therefore the defining relations form a Grobner basis of 7. If & = zz,
the only normal word of degree = 3 is yzx and H4 = H,. If h = zx, the only
normal words of degree n > 3 are z” and yz"~!, which gives Hy = H7. If h = yz,
the only normal words of degree n > 3 are z"~!x and z", yielding H4 = H;. If
h = yx, the only normal words of degree n > 3 are yz"2x yz" !, z""!x and z".
Hence H4 = Ho.

Finally, assume that (2.5) is satisfied. That is, A4 is given by the relations xx,
Xy, xz, yy, zz and h with h € {yx + zx,yz + zy,yx + zx — yz — zy}. If
h = yx 4+ zx — yz — zy, the defining relations together with yzx, yzy and zyz
form a Grobner basis of 7. There are no normal words of degree > 3 and therefore
Hy = Hy. If h = yz 4 zy, the defining relations form a Grobner basis of /. The
only normal word of degree > 3 is zyx and H4 = H,. Finally, if h = yx + zx,
the defining relations together with yzx form a Grobner basis of /. For n = 3 there
are exactly 2 normal words of degree n being the monomials in y and z in which y
and z alternate: yzyz... andzyzy ... Hence H4 = H7. Since we have exhausted
all the options, the proof is complete. O

Proof of Lemma 2.4. The fact that R is 6-dimensional is straightforward. Indeed, R
is the image of the 6-dimensional space of the symmetric elements of V' ® V under
the invertible linear map / ® T'. Now, replacing the ground field by a field extension
does not change the Hilbert series of an algebra given by generators and relations.
Hence, without loss of generality we can assume that K is algebraically closed. This
allows us to pick a basis x1, x5, x3 in V' with respect to which the matrix of 7" has
the Jordan normal form.

If T has 3 Jordan blocks, T has the diagonal matrix with respect to the basis x,
X2, x3 with the non-zero numbers (eigenvalues) A1, A, and A3 on the diagonal. One
easily sees that in this case R is spanned by x]2. withl < j < 3and Agx;jxg+A,xpx;
with 1 < j < k < 3. If T has 2 Jordan blocks, we can assume that the size two
block is in the left upper corner and corresponds to the eigenvalue A, while the size
one block is in the right lower corner and corresponds to the eigenvalue w. In this
case xf, )Lx% + X2x1, x%, X1X2 + XoXx1, uX1x3 + Axzxy and puxpx3 + x3x1 + Ax3x3
forms a linear basis in R. Finally, if T has just one Jordan block corresponding to the
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eigenvalue A, a linear basis in R is formed by xf, )tx% + XoX1, AX3X1 + AX3Xx0 + x%,
X1X2 + X2X1, X1X3 + X3X1 — XX and x3x3 + x3x2 + x3x1. In any case, this linear
basis in R is also a Grobner basis in /(V, R) with the only normal word of degree > 3
being x3x,x;. This gives Hy = H,. O

This completes the proof of Proposition 2.1. Note that if K is algebraically
closed and A is a quadratic algebra satisfying H4 = H; for j € {8,9,10,11},
Lemma 1.4 can be applied and A falls into one of the cases considered in the proofs
of Lemmas 2.2 and 2.3. Scanning the proofs, one sees that whenever H4 = H for
j €148,9,10, 11}, A is actually PBW and therefore Koszul. Since the Hilbert series
or Koszulity do not notice an extension of the ground field, we can drop the condition
that K is algebraically closed. This observation automatically implies the following
Koszulity result.

Proposition 2.5. If A is a quadratic algebra satisfying Hy = Hj for j €
{8,9,10, 11}, then A is Koszul. Moreover, A is PBW provided K is algebraically
closed.

3. Proof of Lemma 1.4

We start by reformulating Lemma 1.4. First, if we take a pairing on V' ® V' as in
the definition of a dual algebra, then in terms of § = R1, Lemma 1.4 reads in the
following way.

Lemma 3.1. Let V be a 3-dimensional vector space over an infinite field K and S be
a 3-dimensional subspace of V@ V. Then at least one of the following statements is
true:

(P1’) there is a 2-dimensional subspace M C V such that

VIM@S=V® or MRV)dS=VQYV,

(P2') there is a 2-dimensional subspace M C V such that

VeM>DS or M®V DS;

(P3') there is an invertible linear map T : V — V such that

S=span{x Ty —yQQTx:x,yeV}.

For two vector spaces V; and V; over K, L(V7, V>) stands for the vector space
of all linear maps from Vj to V,. Using the natural isomorphism between V ® V
and L(V*, V) together with the fact that a two-dimensional subspace of V' is exactly
the kernel of a non-zero linear functional, we can reformulate Lemma 3.1 in the
following way.
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Lemma 3.2. Let V be a 3-dimensional vector space over an infinite field K and S be
a 3-dimensional subspace of L(V*, V). Then at least one of the following statements
is true:

(P1") there is f € V™ such that the map A — Af or the map A — A* f from S
to V is injective;

(P2") there is a non-zero f € V* such that Af = 0forall A€ S orA*f =0
forall A € S;

(P3") there is an invertible T € L(V,V) such that g(TAf) = —f(TAg) for
all f,geV*and A € S.

In other words, we have to show that (P3”) holds if both (P1”) and (P2") fail.
Hence, Lemma 3.2 and therefore Lemma 1.4 will follow if we prove the following
result.

Lemma 3.3. Let V; and V, be a 3-dimensional vector spaces over an infinite field K
and S be a 3-dimensional subspace of L(V1, V). Assume also that

(Ll) ﬂ ker A = ﬂ ker A* = {0}’

A€eS A€eS
(L2) {Au : A € S} # V, for eachw € Vi and {A*f : A € S} # V[ for
each f € V.

Then there exist linear bases in V1 and V, such that S in the corresponding matrix
form is exactly the space of 3 X 3 antisymmetric matrices.

Proof. First, we shall show that

for every non-zero x € V7,

the space Sx = {Ax : A € S} is two-dimensional. G-

By (L1), Sx # {0} for each x € V; \ {0}. By (L2), Sx # V, for each x € V.
Thus Sx for x € V; \ {0} is either one-dimensional or two-dimensional. Assume
that (3.1) fails. Then there is x; € V7 such that Sx; is one-dimensional. Then we
can pick a basis Ay, A;, Az in S such that A1x; = y; 7# 0 and A,x; = Azx; = 0.
By (L1), the linear span of the images of all A € § is V,. Hence we can pick
X2,Xx3 € Vp such that xq, x5, x3 is a basis in Vq, while yq, y,, y3 is a basis in V5,
where y; = Ajx;. With respect to the bases x1, X2, x3 and y1, y», y3, the matrices
of Ay, A, and A3 have the shape

1 * 0 0 = 0 0
0 , {0 1 %] and O 0], respectively.
0 0 0 = 0 1

* ¥ ¥
* X% %

Keeping the basis in V, as well as x; and replacing x, and x3 by x» 4+ «x; and
X3 4 Bx; respectively with appropriate &, § € K, we can kill the second and the third
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entries in the first row of the first matrix. With respect to the new basis, the matrices
of A1, A> and A3 are

1 0 O 0 0 as 0 ag O
0 ar a2], |0 1 as)] and |0 a9 O] witha; € K.
0 as dg 0 ay 0 aio 1

By (L2), for every u = (x,y,z) € K3, Aju, Aou, Asu are linearly dependent and
ATy, ATu, ATy are linearly dependent as well (here A ; stand for the matrices of the
linear maps A;), where T denotes the transpose matrix. Computing these vectors,
we see that these conditions read

X a1y tazz azy+asz

det| asz y +aez arzz
asgy asy apy +:z
X a1y +asz azy + asz
=det] O y asx +agy +az| =0
0 agx +agy + ajpz z

for all x, y,z € K. Since K is infinite, the above two determinants must be zero as
polynomials in x, y, z. The first determinant has the shape

x(aroy? + asz? + (1 + asaro — aras)yz) + g

with g € K[y, z]. Hence a;9 = a¢ = 0 and ajas = 1. Taking into account that
aip = ag = 0, we see that the xyz-coefficient of the second determinant is ayag.
Hence a7a9 = 0, which contradicts ayag = 1. This contradiction proves (3.1).

Now we pick a non-zero u € Vj. By (L2), there is a non-zero A; € S such that
Aju = 0. Since A; # 0, there is x € V; such that A1x # 0. Since a Zarisski
generic x will do, we can assure the extra condition Su # Sx (otherwise (L1) is
violated). Obviously, u and x are linearly independent. By (3.1), we can find 4, € S
such that A;x and A,x are linearly independent. Again suppose A, is Zarisski
generic and therefore we can achieve the extra condition that A;x, A>x and Aju
are linearly independent (otherwise Su = Sx). Now y; = —Ayu, y» = A;x and
y3 = Apx form a basis in V,. By (L2), there is a non-zero A3 € S such that
Asx = 0. Clearly, A; are linearly independent (=they form a basis in ). Pick
a basis x1, xp, x3 in V; such that x; = x and x3 = u. With respect to the bases
X1,X2,x3 and y1, ¥2, ¥3, the matrices of A;, A, and A3 have the form

0 x= 0 0 x —1 0 * =
I = 0], [0 = O and |0 x x|, respectively.
0 «= 0 1 %= 0 0

Keeping the basis in V;, as well as x; and x3 and replacing x, by x, + ax; + Bx3
with appropriate o, § € K, we can kill the middle entry in the first matrix and the
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second entry of the first row of the second matrix. With respect to the new basis, the
matrices of A;, A, and A3 have shape:

0 a; O 0 0 -1 0 as ay
1 0 0], 0 ag O and 0 a7 ajo with aj € K.
0 an 0 1 as 0 0 ag dili

By (L2), for every vectoru = (x, y,z) € K3, Ayu, Ayu, Asu are linearly dependent
and A{u, AZT u, Agu are linearly dependent. Computing these vectors, we see that
these conditions mean:

ay X azy
det —z asy X +asy
asy +aoz azy +aipez dgy +daiz
y a1 x +apz 0
=det| —z asy +asz X =0

0 aex+ary+agz a9x +aypy +ainz

forall x, y, z € K. Since K is infinite, these two determinants are zero as polynomials
in x, y, z. The terms containing x? in the first determinant amount to x2(a¢y + aoz),
which implies ag = a9 = 0. The yz2-coefficient of the same polynomial is —a»a1o.
Hence aza;9 = 0. First, we show that a, = 0. Indeed, assume the contrary.
Then a, # 0 and therefore a;9 = 0. Now z3-coefficient in the second determinant
is —ajaj. Hence a;; = 0. Taking into account that ag = a9 = a9 = a1 = 0, we
see that in the first determinant the terms containing z amount to z (agxy — aa7y?).
It follows that a7 = ag = 0 and therefore A5 = 0, which is a contradiction. Hence
a = 0. Recall that we already know that ag = a9 = 0. Next, we show that a; # 0.
Indeed, assume the contrary: a; = 0. Then the first determinant simplifies to
zx(agy + a11z). Hence ag = a1; = 0. Now the second determinant simplifies to
asaey> +asaygy?z —asxy?. Hence a7 = 0 and agaig = asajg = 0. If ajo = 0,
we have A3 = 0, which is a contradiction. If ajo # 0, we have a4 = as = 0.
In this case the second column of each A; is zero. Thus the second basic vector
in V7 is in the common kernel of all elements of .S, which contradicts (LL1). These
contradictions prove that a; # 0. By normalizing the second basic vector in V;
appropriately, we can assume that a; = —1. Taking this into account together with
a, = ag = ag = 0, we see that the xy2 and xzZ coefficients in the first determinant
are —a7 and ap; respectively. Hence a7 = a;; = 0. Now the determinants in the
above display simplify to

—asagy> +(ag+aio)xyz+asaioy’z and asaioy’+asaioy>z—(as+aig)xyz.

Since they vanish, a;9 = —ag. If ag = 0, then a;p = 0 and A3 = 0, which is a
contradiction. Thus ag # 0. Now vanishing of the polynomials in the above display
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implies a4 = as = 0. Hence, the matrices Ay, A> and A3 acquire the shape

0 -1 0 0 0 —1 00 O
1 0 O}, |0 O O and ag |0 O —1] withag#0
0 0 O 1 0 O 01 0
and S becomes the space of all antisymmetric matrices. O

Since Lemma 3.3 is equivalent to Lemma 1.4, the proof of Lemma 1.4 is now
complete.

4. Specific algebras satisfying H4y = H;

For each j € {1,..., 11}, we provide a quadratic algebra 4 ; (generated by degree 1
elements x, y and z) satisfying H4, = H . In each case the last equality is an easy
exercise since we supply the finite Grobner basis in the ideal of relations and describe
the normal words. These 11 examples are presented in Table 1.

Counting normal words is trivial for all A; except the last one, where the normal
words of degree n > 3 are exactly monomials in z and y, which do not contain yy as
a submonomial. In this case, as it was already observed in the proof of Lemma 2.3,
the numbers a;, of such monomials of degree n are consecutive Fibonacci numbers
with as = 5, yielding H4,, = Hi11.

Proof of Theorem 1.1. By Proposition 2.1, H4 € {H1, ..., Hy1} for every quadratic
K-algebra A satisfying dim A; = dim A, = 3. The examples in Table 1 show that
each H; with 1 < j < 11 is indeed the Hilbert series of a quadratic K-algebra. [

It remains to deal with Koszulity. We need the following elementary observation.

Lemma 4.1. Assume that A is a degree graded algebra on generators x1, ..., Xy,
that the monomials in x; carry a well-ordering compatible with the multiplication
and that A is the set of the leading monomials of all members of the corresponding
Grobner basis of the ideal of relations of A. Let also 1 < j,k < n be such that
Xx; #0, xy # 0and xjx; = 0in A. Finally, assume that A contains no monomial
ending with xgxy for s # j. Then for u € A, uxy = 0 <= u = vx; for
some v € A.

Proof. Since xjx = 0in A, uxg = vxjxx = 0if u = vx; for some v € A.
Assume now that u € 4 and ux; = 0. It remains to show that u = vx; for some
v € A. Let N be the set of all normal words for A. Thatis, N is the set of monomials
containing no member of A as a submonomial. Since N is a linear basis in A, we can
write u as a linear combination of elements of N. We also separate those words in
this combination ending with x ; from the rest of them: u = ) cqwax; + ) dgug,
o B
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where both sums are finite (an empty sum is supposed to be zero), wyx;, vg are
pairwise distinct normal words, none of vg ends with x; and ¢y, dg € K*. Then

0=ux; = anwanxk +
o

B

Zdﬂvﬂxk = Zdﬁvf;xk in A,

B

where the last equality is due to x;xx = 0. Since vg does not end with x; and A
contains neither x; nor xx nor any monomial ending with xgx; with s # j, we
easily see that each vgxy is a normal word. Since the set of normal words is linearly
independent in A, the above display implies that the sum ) B dgvg is empty and

therefore u = ), cqWeX; = vx; Withv = ), cqWq. O
j  defining relations of A;  other elements of normal words of Hilbert
the Grobner basis  degree > 3 series

1 xx—zx,xy—zz, ZZX,ZZy,ZZZ none H,
XZ,yXx, Yy —zy,)yz
XX, yX,yy,ZX,zZy,ZZz none xXyz H,

3 Xxx—zx,xy,xz, yx, ZZIX,ZZY z"forn =3 Hs
Yy —zy,yz

4  XxXx,Xxy,xz—zz,yXx, zzzZ ZZX,ZZYy Hy
Vy,yz—zz

5 Xxx—yx,xy,yy,yz, Zyx Xzy, yXz, yxzy H;
zX,zZ

6 Xz—Yyz,Xxy,yx,yy, zyz yzy,x" forn =3 Hg
ZX,zZ
XX, Xy,XzZ,yy,zZX,zy none ", yz" L forn >3 H;
Xy, Xz, yX,yz,zZX,zZy none x", y", z"forn =23  Hg
XX,XZ, yX,ZX,Zy,ZZ  none xy" L xy" 2z, 9", Ho

y" 1z forn =3
10 xx,xy,xz,yx,yz,zX none zmy" ™M forn = 3, Hip
0Osm<n
11 xx,xy,xz,yx,yy,zx none all monomials in y,z Hy;

without yy as a sub-
word

Table 1. Algebras A; for1 < j < 11.
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Proposition 4.2. The algebras A; with j € {2,5,6,7,8,9,10, 11} are Koszul.

Proof. For j € {2,7,8,9,10,11}, A; is a monomial algebra, hence it is Koszul.
It remains to verify Koszulity of A5 and Ag. Consider the algebra B given by the
generators x, y, z and the relations xx + yx, xz, zy and the algebra C given by the
generators x, y, z and the relations xx, xz + yz, zy. A direct computation shows that
B' = As and C' = A. Hence Koszulity of As and Ag is equivalent to Koszulity
of B and C respectively. It remains to prove that B and C are Koszul, which is our
objective now.

Consider the following sequences of free graded left B-modules and C-modules:

0— B g2 % g3 2 B3—>B—>K—>O 4.1)

55 2 5?

—>C—>C—>C—>C 3 %

3 &

—C°’—=C°—C —>]K — 0, 4.2)

where dj and §, are the augmentation maps,

diy(u,v,w) =ux +vy +wz, da(u,v,w)= u(x+y),vz,wx),
d3(u,v) = (0,ux,v(x +y)), da(u) = (u(x+y),0),

S1(u,v,w) =ux +vy +wz, &(u,v,w) = (ux,vz,w(x + y)),
83(u,v) = (ux,v(x + y),0), 84(u) = (ux,0) and J5(u) = ux.

Using the relations of B and C, one easily sees that the composition of any two
consecutive arrows in both sequences is indeed zero. By definition of Koszulity, the
proof will be complete if we show that these sequences are exact. The exactness
of (4.1) and (4.2) boils down to verifying the following statements:

forueB u(x+y)=0 <<= u=0, 4.3)
foru € B, ux =0 < u=v(x+y) forsomev € B, 4.4)
foru € B, uz =0 < u =vx for some v € B, 4.5)
foru € C, ux =0 < u = vx for some v € C, 4.6)
forueC, u(x+y)=0 < u=0, 4.7
foru € C, uz =0 < u=v(x+y) forsomev e C. (4.8)

Indeed, the exactness of (4.1) at the leftmost B is equivalent to (4.3), its exactness
at B2 is equivalent to (4.3) and (4.4) and its exactness at the leftmost B3 is equivalent
to (4.3), (4.4) and (4.5). The exactness of (4.2) at each C which is to the left of C?
is equivalent to (4.6), its exactness at C? is equivalent to (4.6) and (4.7), while its
exactness at the leftmost C3 is equivalent to (4.6), (4.7) and (4.8). Checking the
exactness of both complexes at three terms on the right is a straightforward exercise.
Alternatively, one can notice that (4.1) and (4.2) are the Koszul complexes of B and C
respectively, and that the Koszul complex happens to be exact at three right terms for
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every quadratic algebra, see [23] (exactness of the Koszul complex at the two right
terms holds for every graded algebra generated in degree 1, while the exactness at
the term third from the right holds for all quadratic algebras).

Thus it remains to prove (4.3)—(4.8). Observe that the defining relations xx + yx,
xz, zy of B together with xy¥x + y¥+1x, k > 1 form the Grébner basis of the ideal
of relations of B, while the defining relations xx, xz 4 yz, zy of C together with xyz
form the Grobner basis of the ideal of relations of C. Now a direct application of
Lemma 4.1 justifies (4.5) and (4.6). In order to prove the rest, we perform the
following linear substitution. Keeping x and z as they were, we set the new y to
be x + y in the old variables. This substitution provides an isomorphism of B and
the algebra A given by the generators x, y, z and the relations xz, yx, zx — zy.
These relations together with zyz form the Grobner basis of the ideal of relations
of A. The same substitution provides an isomorphism of C and the algebra D given
by the generators x, y, z and the relations xx, yz, zx — zy. These relations together
with zyx form the Grdbner basis of the ideal of relations of D.

Now we can rewrite (4.3), (4.4), (4.7) and (4.8) in terms of multiplication in A
and D. Namely, they are equivalent to

forueAd, uy=0 < u=0, 4.9)
forue A, ux =0 < u=vy forsomev € A, (4.10)
forueD, uy=0 << u=0, “4.11)
forue D, uz=0 < u=vy forsomev e D, 4.12)

respectively. Again, Lemma 4.1 justifies (4.10) and (4.12). Next, one easily sees that
the sets of normal words for both A and D are closed under the multiplication by y
on the right. This implies (4.9) and (4.11). Hence (4.3)—(4.8) hold and therefore B
and C are Koszul. O

Proposition 4.3. Let A be a quadratic algebra such that Hq € {Hy, H3, H4}.
Then A is non-Koszul.

Proof. Assume the contrary. Then A is Koszul and by (1.1), H1(¢) = m. In

particular, all coefficients of the series m must be non-negative. On the other
hand,

1
=143t +6634+93+9*—2715+-..
Hy(—t)
1
and =143t +663+103 +14t* + 161> + 126 — 417 + ...
Hs(—t)

Hence H; and H3 can not be Hilbert series of a Koszul algebra.
It remains to consider the case H4 = Hy. Since replacing the ground field by
a field extension does not effect the Hilbert series or Koszulity, we can without loss
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of generality assume that K is algebraically closed. By Lemmas 1.4, 2.3 and 2.4,
A = A(V, R) with R satisfying condition (P1) of Lemma 1.4. Thus, by passing
to the algebra with the opposite multiplication, if necessary, we can assume that
R (L®V) =V @V for a 1-dimensional subspace L of V. Now choose a
basis x, y, z in V such that x spans L. Then R1 @ M®V)=VQ®V, where
M = span{y,z}. It follows that we can choose a basis f, g, # in R such
that the leading monomials of f, g and A are xx, xy and xz respectively. Since
Hy = Hy =1+ 3t + 3t? + 213, a direct computation shows that

H g =143t 460>+ 111> + 21r* + 426> 4+ 85° + -

T Ha(-1)

(we need few first coeflicients). Since dim A!3 = 11, there should be exactly one
degree 3 element g of the Grébner basis of the ideal of relations of A'. The leading
monomial ¢ of g can have either the shape uju,x or the shape ujuus3, where
uj € {y,z}. First, assume that § = ujuuz. Then Ai is spanned by vivv3x
with v; € {y,z} and viv2v3 # uiuru3 and by vivv3v4 With v; € {y,z} and
V1U2V3 F# U UU3, VU304 F Uiuruz. The number of these monomials is 20 if
U1 = Up = uz and is 19 otherwise. Thus dim AL < 20. Since by the above display
dim Ai‘ = 21, we have arrived to a contradiction, which proves that g can not be of
the shape ujuus.

Hence ¢ = ujusx with uy,us € {y, z}. In this case, were the relations f, g, h
together with ¢ is the Grobner basis, the dimension of AL would have been 22.
Since dim AL = 21, there is exactly one degree 4 element p of the Grobner basis
of the ideal of relations of A'. The leading monomial 7 of p can have either the
shape wjw,ws3x or the shape wiwow3ws, where w; € {y, z}. Again, first, assume
that p = wywowswy. Then A!5 is spanned by vivv3vax with v; € {y,z} and
V3Vs # Uiuz and by v1v203v4v5 with v; € {y,z} and V1VV3Vs F WiWr W3 W4,
UaU3V4V5 F# WiWaw3wy. It easily follows that dim Aé- < 41. Since by the above
display dim A!5 = 42, we have arrived to a contradiction, which proves that p can
not be of the shape wwow3wy.

Hence p = wiw,wsx with w; € {y,z} and wows # uju,. In this case, A’6
is spanned by 64 elements v{v,V3V4V5v6 With v; € {y,z} and by 20 elements
V1V2V3V4Vsx With v; € {y,z}, vavs # ujus, v3v4vs # wiwrws. Hence
dim A!6 < 84. Since by the above display dim A’6 = 85, we have arrived to a
contradiction. Thus Hy is not the Hilbert series of a Koszul algebra. O

Proof of Theorem 1.2. By Proposition 4.2, for j € {2,5,6,7,8,9, 10, 11}, there is
a Koszul algebra A satisfying H4 = Hj. By Proposition 4.3, every quadratic
algebra A satisfying H4 = H; with j € {1, 3, 4} is non-Koszul. 0
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4.1. Some remarks.

1. The condition of K being infinite in Lemma 1.4 can be relaxed to K having
sufficiently many elements. More precisely, examining closely the idea behind the
proof, one gets that Lemma 1.4 holds if the condition of K being infinite is relaxed
to |K| = 4. On the other hand, the following example shows that the conclusion of
Lemma 1.4 fails if |K| = 2.

Example 4.4. Let x, y, z be a basis of a 3-dimensional vector space V' over the
2-element field K = Z,. Letalso R C V ® V be the linear spanof x ® x, y ® y,
IRz, yRz+zRy,xQ®y+zQ@x+zQ@yandx®z+y®x +z® y. Then
R is a 6-dimensional subspace of V' ® V for which each of the conditions (P1)-(P3)
of Lemma 1.4 fails.

We leave the verification to the reader. It can be done by brute force since
VT = V¥ \ {0} has just 7 elements. For example, to show that (P1) fails, one has
to find for every u € V', v,w € V7' such that u ® v,w ® u € R. Note that
extending K to a 4-element field forces R from the above example to satisfy (P1).
We do not know whether the conclusion of Lemma 1.4 holds if |K| = 3.

2. By Proposition 2.5, A4 is automatically Koszul if H4 = H; for j € {8,9,10, 11}.
Note that if A4 is a quadratic algebra satisfying H4 = H; with j € {2,5,6, 7}, this
does not necessarily mean that A is Koszul. We construct the following examples
to illustrate this. In these examples we assume |K| > 2 and & € K is an arbitrary
element different from 0 or 1. Table 2 is completed by computing the Grobner bases
of ideals of relations of algebras B;.

j  relations of B; other elements of Hp,
the Grobner basis

relations of Bj!.

2 xx+yz,xz,yx, yZx — zxy, H, XX —YZ,Xy,yy —zX
yy +zx,zy,zz Xyz —zXxy

5 xx—zx,xy-—zx, 7ZX,ZZZZ Hs zy,xz+yz+ (1 —a)zz,
yX —zXx,yy —ZX, xXx+xy+yx+yy+
Xz +ozx — ﬁzz, zx +a(l —a)zz
yz+azx — ﬁzz

6 Xxx—ozx,xy—zy, zzXx,zzzZy Hg XX +xz+ ézx,
VX, XZ —QZX, YZ, VY Xy +zy,zz

7T Xxx—zx,Xxy,yx, ZZX H5 xx+oaxz+zx,zy,zz

XZ —ozZX,YZ, )y

Table 2. Algebras B; for j € {2,5,6,7}.
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Computing the Grobner bases of ideals of relations of algebras B; up to degree 4,
we easily obtain the data presented in Table 3.

j (HB/.(—I))_1 up to t* Hpg: (1) up to t4

N J
2 143t +6:24+103 154+ 143t +6t24+1063 +17t% 4 -+
5 143t4+612+ 113 +20t4 + -+ 143t 4+612+ 1113 + 211 + - -
6 143t +662+113 42064+ 143t 4+6124+ 113 + 2114 + -+
7 14+3t4+662+1134+19*+--+ 143t 462+ 1123 +20t* +---

Table 3. The series (H p; (=t))~! and H p: (¢) up to degree 4.
N J

Table 3 ensures that each B; fails to satisfy Hp,(—t)Hp: (1) = 1 and therefore
' J

each B; is non-Koszul. Thus the following statement holds true.

Proposition 4.5. Assuming |K| > 2, for each j € {2,5, 6,7}, there is a non-Koszul
quadratic algebra B satisfying Hgp = H ;.

3. By the duality formula (1.1), Theorem 1.2 implies the list of all Hilbert series
of Koszul algebras A satisfying dim A; = 3 and dim A, = 6. They are the series
1/H(—t) for H from the list specified in Theorem 1.2. Thus we have the following
corollary.

Corollary 4.6. For Koszul algebras A satisfying dim A1 = 3 and dim A, = 6, the
complete list of Hilbert series consists of m with j € {2,5,6,7,8,9,10, 11}.

4. A quadratic algebra A satisfying H4(¢) H 51 (—t) = 1is called numerically Koszul.
There are examples of numerically Koszul quadratic algebras which are not Koszul,
see [23]. While proving Proposition 4.3, we have actually shown that H; with
j € {1, 3,4} can not be the Hilbert series of a numerically Koszul quadratic algebra.
We do not know an answer to the following question.

Question 4.7. Let A be a numerically Koszul quadratic algebra satisfying dim A; =
dim A, = 3. Is it true that A4 is Koszul?

We are especially interested in the following particular case.
Question 4.81. Let A be a quadratic algebra satisfying H4(t) = (1 — )™ and
H 4 (t) = (1 +¢t)3. Is it true that A is Koszul?

Note that (1 — ¢)73 is the Hilbert series of K[x, y,z]. The following example
shows that for a quadratic algebra A, the equality H4 = (1 — )™ alone does not
guarantee numeric Koszulity.

'In the meantime we have acquired an affirmative solution of this question.
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Example 4.9. Let A be the quadratic algebra given by the generators x, y, z and the
relations xx, xz +yy +zx,xy +yx +zz. Then Hy = (1—1)73, while H 1 = H3.
In particular, A4 is not numerically Koszul and therefore is non-Koszul.

Proof. A direct computation shows that the defining relations of A together with
yyz —zyy and yzz — zyy form a Grobner basis for the ideal of relations of A. Now
one easily sees that the normal words for A4 are zK (yz)! y™x¢ withk,l,m € Z and
¢ € {0, 1} and that the number of normal words of degree n is w Hence
Hy(t) = (1—1t)73. The dual A' is given by the relations yz, zy, yy — zx, Xz — X,
xy —zz and yx — zz, which together with zxx, zzx and zzz form a Grobner basis
for the ideal of relations of A'. The only normal word of degree n > 3 is x", which
gives H 41(t) = Hj. O

5. The following question remains open.

Question 4.10. Which series feature as the Hilbert series of quadratic algebras
satisfying dim A; = 3 and dim A, = 4? Which of these occur for Koszul A?

The answer to the above question would complete the list of Hilbert series of
Koszul algebras A satisfying dim A; = 3. In [23], it is mentioned that it is unknown
whether there is a Koszul algebra A satisfying dim 4; = 3, dim A4, = 4 and
dim A3 = 3. It is important to answer also because if such an algebra exists, it
would provide a counterexample to the conjecture on rationality of the Hilbert series
of Koszul modules over Koszul algebras. However if such an algebra does not exist,
nothing can be derived about rationality.
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