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Two problems from the Polishchuk and Positselski book
on quadratic algebras

Natalia Iyudu and Stanislav Shkarin

Abstract. In the book Quadratic algebras by Polishchuk and Positselski [23], algebras with a
small number of generators .n D 2; 3/ are considered. For some number r of relations possible
Hilbert series are listed, and those appearing as series of Koszul algebras are specified. The first
case, where it was not possible to do, namely the case of three generators n D 3 and six relations
r D 6 is formulated as an open problem. We give here a complete answer to this question,
namely for quadratic algebras with dimA1 D dimA2 D 3, we list all possible Hilbert series,
and find out which of them can come from Koszul algebras, and which can not.

As a consequence of this classification, we found an algebra, which serves as a
counterexample to another problem from the same book [23, Chapter 7, Sec. 1, Conjecture 2],
saying that Koszul algebra of finite global homological dimension d has dimA1 > d . Namely,
the 3-generated algebra A given by relations xxCyx D xz D zy D 0 is Koszul and its Koszul
dual algebra AŠ has Hilbert series of degree 4: HAŠ.t/ D 1C 3t C 3t2 C 2t3 C t4, hence A
has global homological dimension 4.
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1. Introduction

Quadratic algebras have been studied intensely during the past several decades. Being
interesting in their own right, they have many important applications in various parts
of mathematics and physics including algebraic geometry, algebraic topology and
group theory as well as in mathematical physics.

They frequently originate in physics. One example is that the 3-dimensional
Sklyanin algebras were introduced and used in order to integrate a wide class of
quantum systems on a lattice. These algebras have their Koszul duals in the class of
quadratic algebras with dimA1 D dimA2 D 3, the very class we study in this paper.

Quadratic algebras are noncommutative objects which lie in foundation of many
noncommutative theories, for example, in work of A. Connes and M. Dubois-
Violette [8], notions of noncommutative differential geometry obtain their purely
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algebraic counterpart through introducing the appropriate quadratic formon quadratic
algebras. The big area of research generalizing notions of algebraic geometry to
noncommutative spaces, due to Artin, Tate, Van den Bergh, Stafford etc. [3–5, 25]
contains a great deal of studying structural and homological properties of quadratic
algebras and their representations. Certain quadratic algebras serve as important
examples for the notions of noncommutative (symplectic) spaces introduced by
Kontsevich [18, 19], so information about general rules on the structure of such
algebras makes it possible to describe examples explicitly.

We find it very important to study fundamental, most general properties of
quadratic algebras, their Hilbert series, Koszulity, other homological properties,
PBW type properties, etc. and to develop appropriate tools for that, which is a goal
of present paper.

For further information on quadratic algebras, their Hilbert series and various
aspects of their applications, we refer to [1,2,6,7,9–17,20–24,26,27] and references
therein, however it will give still the list which is far from being exhaustive.

Throughout this paper, K is an arbitrary field. For a ZC-graded vector space B ,
Bm always stands for themth component of B andHB.t/ D

P1
jD0 dimBj tj is the

Hilbert series of B .
If V is an n-dimensional vector space over K, then F D F.V / is the tensor

algebra of V , which is naturally identified with the free algebra Khx1; : : : ; xni for
any choice of a basis x1; : : : ; xn in V . We often use the juxtaposition notation for
the operation in F.V / (for instance, we write xjxk instead of xj ˝ xk). We always
use the degree grading on F : the mth graded component Fm of F is V m. A degree
graded algebra A is a quotient of F by a proper graded ideal I (I is graded if it is the
direct sum of I \ Fm). This ideal is called the ideal of relations of A. If x1; : : : ; xn
is a fixed basis in V and the monomials in xj carry an ordering compatible with the
multiplication in A, we can speak of the Gröbner basis of the ideal of relations of A.
If ƒ is the set of leading monomials of the elements of such a basis, then the normal
words for A are the monomials in xj featuring no element of ƒ as a submonomial.
Normal words form a basis in A as a K-vector space. Thus, knowing the normal
words implies knowing the Hilbert series.

If R is a subspace of the n2-dimensional space V 2, then the quotient of F by
the ideal I.V;R/ generated by R is called a quadratic algebra and denoted A.V;R/.
Following [23], we say that a quadratic algebra A D A.V;R/ is a PBW-algebra
if there are linear bases x1; : : : ; xn and g1; : : : ; gm in V and R respectively such
that g1; : : : ; gm is a Gröbner basis of the ideal I D I.V;R/ with respect to some
well-ordering on the monomials in x1; : : : ; xn, compatible with multiplication. For
a given basis x1; : : : ; xn in V , we get a bilinear form on Khx1; : : : ; xni by setting
Œu; v� D ıu;v for every pair of monomials u and v in x1; : : : ; xn. The quadratic
algebra AŠ D A.V;R?/, where

R? D fu 2 V 2 W Œr; u� D 0 for each r 2 Rg;
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is called the Koszul dual algebra of A, we will call it also just dual algebra. Note
that up to an isomorphism, the graded algebra AŠ does not depend on the choice of a
basis in V . It is well known that A is PBW if and only if AŠ is PBW.

A degree graded algebra A is called Koszul if the graded left A-module K (the
structure is provided by the augmentation map) has a free resolution

� � � !Mm ! � � � !M1 ! A! K! 0

with the second last arrow being the augmentation map, and with eachMk generated
in degree k. The latter means that the matrices of the maps Mm ! Mm�1 with
respect to some free bases consist of homogeneous elements of degree 1. Replacing
left modules by the right ones leads to the same class of algebras. We use the
following well-known properties of Koszul algebras:
� every Koszul algebra is quadratic; every PBW-algebra is Koszul;
� A is Koszul ” AŠ is Koszul;
� HA.�t /HAŠ.t/ D 1 if A is Koszul: (1.1)

In [23, Chapter 6, Section 5] possible Hilbert series of Koszul algebras A with
small values of dimA1 and dimA2 are listed. The first case not covered there is
dimA1 D dimA2 D 3. In this case, only the Hilbert series of PBW algebras are
given. It is stated in [23] that the complete list of Hilbert series of quadratic algebras
satisfying dimA1 D dimA2 D 3 as well as the complete list of the Hilbert series of
Koszul algebras in this case are unknown. We fill this gap by proving the following
results.
Theorem 1.1. For quadratic algebras A satisfying dimA1 D dimA2 D 3, the
complete list of possible Hilbert series is fH1; : : : ;H11g, where

H1.t/ D 1C 3t C 3t
2
I

H2.t/ D 1C 3t C 3t
2
C t3 D .1C t /3I

H3.t/ D 1C 3t C 3t
2
C t3 C t4 C t5 C � � � D

1C 2t � 2t3

1 � t
I

H4.t/ D 1C 3t C 3t
2
C 2t3I

H5.t/ D 1C 3t C 3t
2
C 2t3 C t4I

H6.t/ D 1C 3t C 3t
2
C 2t3 C t4 C t5 C � � � D

1C 2t � t3 � t4

1 � t
I

H7.t/ D 1C 3t C 3t
2
C 2t3 C 2t4 C 2t5 C � � � D

1C 2t � t3

1 � t
I

H8.t/ D 1C 3t C 3t
2
C 3t3 C 3t4 C 3t5 C � � � D

1C 2t

1 � t
I

H9.t/ D 1C 3t C 3t
2
C 4t3 C 4t4 C 4t5 C � � � D

1C 2t C t3

1 � t
I
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H10.t/ D 1C 3t C 3t
2
C 4t3 C 5t4 C 6t5 C � � � D

1C t � 2t2 C t3

.1 � t /2
I

H11.t/ D 1C 3t C 3t
2
C 5t3 C 8t4 C 13t5 C � � � D

1C 2t � t2 � t3

1 � t � t2
;

where the last series, starting from the third term, is formed by consecutive Fibonacci
numbers.

Aswe havementioned above, the complete list ofHilbert series of PBWalgebrasA
satisfying dimA1 D dimA2 D 3 can be found in [23]. It consists of Hj with
j 2 f2; 7; 8; 9; 10; 11g.
Theorem 1.2. For Koszul algebrasA satisfying dimA1 D dimA2 D 3, the complete
list of Hilbert series consists ofHj with j 2 f2; 5; 6; 7; 8; 9; 10; 11g. That is, for each
j 2 f2; 5; 6; 7; 8; 9; 10; 11g, there is a Koszul algebra A satisfying HA D Hj , while
for j 2 f1; 3; 4g, every quadratic algebra A satisfyingHA D Hj is non-Koszul.

As a consequence of these classification Theorems 1.1 and 1.2, we can find an
algebra, which serves as a counterexample to another problem formulated in the
Polishchuk and Positselski book [23].
Conjecture 1.3 ([23, Chapter 7, Sec. 1, Conjecture 2]). Any Koszul algebra of finite
global homological dimension d has dimA1 > d . By duality this is equivalent to
the following statement: for a Koszul algebra B with BdC1 D 0 and Bd ¤ 0 one
has dimB1 > d .

We can consider algebra A5 from the Table 1. It is given by relations xx � yx D
xy D yy D yx D zx D zz D 0: The Hilbert series of this algebra is

HA.t/ D H5 D 1C 3t C 3t
2
C 2t3 C t4;

so it is a polynomial of degree 4. Then quite straightforward arguments in
Proposition 4.2 ensure that the Koszul dual algebraAŠ5, given by relations xxCyx D
xz D zy D 0, is Koszul. This provides a counterexample to Conjecture 1.3. Namely,
the algebra AŠ serves as a counterexample to the first part of the conjecture: it has
a global homological dimension 4. The algebra A itself is a counterexample to the
second statement of the conjecture, since its Hilbert series is a polynomial of degree 4.

Note that the list of series acquires two extra membersH5 andH6 when the PBW
condition is relaxed to Koszulity.

The key lemma, allowing tomanage all possibilities, is the following linear algebra
statement.
Lemma 1.4. Let V be a 3-dimensional vector space over an infinite field K and R
be a 6-dimensional subspace of V ˝V . Then at least one of the following statements
is trueW
(P1) there is a 1-dimensional subspace L � V such that

.V ˝ L/˚R D V ˝ V or .L˝ V /˚R D V ˝ V I
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(P2) there is 1-dimensional subspace L � V such that

V ˝ L � R or L˝ V � RI

(P3) there is an invertible linear map T W V ! V such that

R D span fx ˝ T x W x 2 V g:

While (P1) and (P2) are not mutually exclusive, (P3) is incompatible with each
of (P1) and (P2).

In Section 2 we show that the Hilbert series of any quadratic algebraA, satisfying
dimA1 D dimA2 D 3 belongs to fH1; : : : ;H11g, applying Lemma 1.4 and Gröbner
basis techniques. Then in Section 3 we give a proof of Lemma 1.4. In Section 4 we
show thatHj is the Hilbert series of a quadratic algebra A for 1 6 j 6 11. We also
observe that A can be chosen Koszul if j 2 f2; 5; 6; 7; 8; 9; 10; 11g and that every
algebraAwithHA D Hj for j 2 f1; 3; 4g is non-Koszul, thus completing the proofs
of Theorems 1.1 and 1.2.

Throughout the paper, when talking of Gröbner bases, assume that the monomials
carry the left-to-right degree lexicographical ordering with the variables ordered
by x > y > z or x1 > x2 > x3 (depending on how the variables are called in each
case).

2. Admissible series

In this section we apply Lemma 1.4 and Gröbner basis arguments to prove the
following result. Next section will be dedicated to the proof of the Lemma 1.4 itself.
Proposition 2.1. Let A be a quadratic K-algebra satisfying dimA1 D dimA2 D 3.
ThenHA 2 fH1; : : : ;H11g.

Since replacing the ground fieldK by a field extension does not change the Hilbert
series of an algebra given by generators and relations, for the purpose of proving
Proposition 2.1, we can without loss of generality assume that K is algebraically
closed. Then K is infinite. By Lemma 1.4, Proposition 2.1 is an immediate corollary
of the following three lemmas. We essentially consider three possibilities given by
Lemma 1.4, and in each case find out which series are possible, looking mainly at
the shape of the Gröbner basis.
Lemma 2.2. LetV be a 3-dimensional vector space overK andR be a 6-dimensional
subspace of V ˝ V such that condition (P1) of Lemma 1:4 is satisfied. Then for the
quadratic algebra A D A.V;R/,HA 2 fH1; : : : ;H8g.
Lemma 2.3. Let V be a 3-dimensional vector space over an algebraically closed
field K and R be a 6-dimensional subspace of V ˝ V such that condition (P2) of
Lemma 1:4 is satisfied, while (P1) fails. Then for the quadratic algebraA D A.V;R/,
HA 2 fH1;H2;H3;H7;H9;H10;H11g.
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Lemma 2.4. Let V be a 3-dimensional vector space over K and R � V ˝ V be
a subspace satisfying condition (P3) of Lemma 1:4. Then for the quadratic algebra
A D A.V;R/,HA D H2.

Proof of Lemma 2:2. Since (P1) is satisfied, there is a 1-dimensional subspaceL�V
such that .V ˝ L/ ˚ R D V ˝ V or .L ˝ V / ˚ R D V ˝ V . These two cases
reduce to each other by passing to the algebra with the opposite multiplication. Thus
we can assume that .L˝V /˚R D V ˝V . Pick a basis x1; x2; x3 in V such that x3
spans L. Since .L ˝ V / ˚ R D V ˝ V , there is a linear basis in R of the form
(we skip the symbol˝ for the rest of the proof):

rj;k D xjxk � x3uj;k for 1 6 j 6 2 and 1 6 k 6 3, where uj;k 2 V . (2.1)

It follows that in the algebra A, A2 D x3V D x3A1. Then A3 D A2V D x3V V D
x3A2 D x23V . Iterating, we get An D x3An�1 D xn�13 V for each n > 2. In
particular, dimAn 6 dimAn�1 6 3 for each n > 2. We also know that dimA1 D
dimA2 D 3.
Case 1: dimA3 D 3. This can only happen if rj;k form a Gröbner basis of the ideal
I D I.V;R/. Since the leading monomials of these relations are xjxk for 1 6 j 6 2

and 1 6 k 6 3, the normal words of degree n > 3 are xn�13 xj for 1 6 j 6 3. Hence
dimAn D 3 for n > 3 andHA D H8.
Case 2: dimA3 D 2. This happens when there is exactly one degree 3 element g
of the Gröbner basis of I . The leading monomial of g must have the shape x23xj
with 1 6 j 6 3. If j D 3, we have g D x33 and x33 D 0 in A. Hence for n > 4,
An D xn�13 V D f0g. Thus HA D 1 C 3t C 3t2 C 2t3 D H4. It remains to
consider the case j 2 f1; 2g. Swapping x1 and x2, if necessary, we can without loss
of generality assume that j D 1. We know that dimA4 6 dimA3 D 2. The case
dimA4 D 2 can only happen if the relations rj;k together with g form a Gröbner
basis of I . In this case the normal words of degree n > 3 are xn�13 xk with k 2 f2; 3g.
This givesHA D 1C3tC3t2C2t3C2t4C2t5C� � � D H7. It remains to consider
the case dimA4 D 1. This happens when there is exactly one degree 4 element h
in the Gröbner basis of I . The leading monomial of h must have the shape x33xk
with 2 6 k 6 3. If k D 3, we have h D x43 and x43 D 0 in A. Hence for n > 5,
An D xn�13 V D f0g. Thus HA D 1C 3t C 3t2 C 2t3 C t4 D H5. Assume now
that k D 2. If the relations rj;k together with g and h do not form the Gröbner
basis of I , there is a degree 5 element q of this Gröbner basis. By looking at the
leading terms of rj;k , g and h, we see that the only possibility is for q to be equal x53
up to a non-zero scalar multiple. Again, this gives HA D H5. On the other hand,
if rj;k together with g and h do form the Gröbner basis of I , the only normal word
of degree n > 4 is xn3 . HenceHA D 1C 3t C 3t2 C 2t3 C t4 C t5 C � � � D H6.
Case 3: dimA3 D 1. This happens when there are exactly two degree 3 elements g
and h of the Gröbner basis of I . By swapping g and h, if necessary, we can assume
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that the leading terms of g and h are x23xj and x23xk respectivelywith 1 6 j < k 6 3.
If k D 3, we have h D x33 and x33 D 0 in A. Hence for n > 4, An D xn�13 V D f0g.
Thus HA D 1 C 3t C 3t2 C t3 D H2. It remains to consider the case j D 1,
k D 2. If the relations rj;k together with g and h do not form the Gröbner basis
of I , there is a degree 4 element q in this Gröbner basis. By looking at the leading
terms of rj;k , g and h, we see that the only possibility is for q to be equal x43 up to a
non-zero scalar multiple. Again, this gives HA D H2. If rj;k together with g and h
do form the Gröbner basis of I , the only normal word of degree n > 3 is xn3 . Hence
HA D 1C 3t C 3t

2 C t3 C t4 C t5 C � � � D H3.
Case 4: dimA3 D 0. Obviously,HA D 1C 3t C 3t2 D H1.

Proof of Lemma 2:3. Since (P2) holds, there is a 1-dimensional subspace L of V
such that VL � R or LV � R (we skip the symbol ˝ throughout the proof). The
cases VL � R and LV � R reduce to each other by passing to the algebra with the
opposite multiplication. Thus we can assume that LV � R. Pick x in V , which
spans L. Since (P1) fails,

for each u 2 V n f0g, there is v D v.u/ 2 V n f0g such that uv 2 R. (2.2)

We shall verify that there are y; z 2 V such that x; y; z is a basis in V and at least
one of the following conditions holds:

R D span fxx; xy; xz; yx; zx; hg
with h 2 fyy; yz � azy; yz � zy C zzg (a 2 K)I

(2.3)

R D span fxx; xy; xz; yy; zy; hg
with h 2 fyx � zz; yz � zx; yx; yz; zx; zzgI

(2.4)

R D span fxx; xy; xz; yy; zz; hg
with h 2 fyx C zx; yz C zy; yx C zx � yz � zyg:

(2.5)

Case 1: VL � R. Pick arbitrary u; v 2 V such that x; u; v is a basis in V . Then the
5-dimensional space LV C VL spanned by S0 D fxx; xu; xv; ux; vxg is contained
inR. SinceR is 6-dimensional, it is spanned by S0[ff g, where f D auuCbuvC
cvuCdvv with .a; b; c; d/ 2 K4, .a; b; c; d/ ¤ .0; 0; 0; 0/. SinceK is algebraically
closed, there is a non-zero .p; s/ 2 K2 such that ap2C .bC c/psC ds2 D 0. Next,
pick .q; t/ 2 K2 such that .p; s/ and .q; t/ are linearly independent. The non-
degenerate linear substitution, in which old u and v are replaced by pu C qv and
su C tv respectively, transforms f into g D ˛uv C ˇvu C 
vv with non-zero
.˛; ˇ; 
/ 2 K3. If ˛ D 0 and ˇ ¤ 0, we set y D v and z D ˇu C 
v, while if
˛ ¤ 0 and ˇ D 0, we set y D ˛uC 
v and z D u. This substitution transforms g
into a (non-zero) scalar multiple of yz. Now, with respect to the basis x; y; z, R is
spanned by S [ fyzg with S D fxx; xy; xz; yx; zxg. If ˛ D ˇ D 0, we set y D v
and z D u and observe that R is spanned by S [ fyyg. If ˛ˇ ¤ 0 and ˛ C ˇ ¤ 0,
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we set y D u C 
v
˛Cˇ

, z D v and observe that R is spanned by S [ fyz C ˇ
˛
zyg.

If ˛ˇ ¤ 0 and ˛ C ˇ D 
 D 0, with respect to y D u and z D v, R is spanned by
S [ fyz � zyg. Finally, if ˛ˇ
 ¤ 0 and ˛ C ˇ D 0, we set y D ˛u



and z D v,

with respect to which R is spanned by S [ fyz � zy C zzg. Thus (2.3) is satisfied
provided VL � R.

Case 2: VM � R for a 1-dimensional subspace M of V such that M ¤ L. Pick
u 2M n f0g. Since L ¤M , x and u are linearly independent. For w 2 V such that
x; u;w is a basis in V ,R D span .S0[ff g/, where S0 D fxx; xu; xw; uu;wug and
f D aux C buw C cwx C dww with .a; b; c; d/ 2 K4, .a; b; c; d/ ¤ .0; 0; 0; 0/.
For ˛ 2 K� and p; q 2 K we can consider the basis x; y; z in V defined by u D ˛y
and w D z C px C qy. A direct computation shows that with respect to this basis,
R D span .S [ fgg/, where S D fxx; xy; xz; yy; zyg and

g D .a˛ C bp˛ C cq C dpq/yx C .b˛ C dq/yz C .c C dp/zx C dzz:

If d ¤ 0 and ad D bc, by choosing ˛ D 1, q D � b
d
and p D � c

d
, we turn g into a

(non-zero) scalar multiple of zz. If d D 0 and ad ¤ bc, by choosing ˛ D d2

bc�ad
,

q D � b
d
and p D � c

d
, we turn g into a scalar multiple of yx � zz. If d D 0 and

bc ¤ 0, by choosing ˛ D � c
b
, p D 0 and q D a

b
, we turn g into a scalar multiple of

yz�zx. If b D d D 0 and c ¤ 0, by choosing ˛ D 1, p D 0 and q D �a
c
, we turn g

into a scalar multiple of zx. If c D d D 0 and b ¤ 0, by choosing ˛ D 1, q D 0

and p D �a
b
, we turn g into a scalar multiple of yz. Finally, if b D c D d D 0, by

choosing ˛ D 1 and p D q D 0, we turn g into a scalar multiple of yx. Thus (2.4)
is satisfied provided VM � R for a 1-dimensional subspaceM different from L.

Case 3: VM 6� R for every 1-dimensional subspaceM of V . This is precisely the
negation of the assumptions of Cases 1 and 2. First, we shall verify that in this case

yz … R whenever x; y; z is a basis in V . (2.6)

We argue by contradiction. Assume that (2.6) fails. Then there are y; z 2 V

such that x; y; z is a basis in V and yz 2 R. By (2.2), there are non-zero
.a; b; c/; .p; q; r/ 2 K3 such that z.ax C by C cz/; .y C z/.px C qy C rz/ 2 R.
The assumption of Case 3 implies linear independence of z, ax C by C cz and
px C qy C rz. Indeed, if they were linearly dependent, using the inclusions
yz; z.ax C by C cz/; .y C z/.px C qy C rz/ 2 R, one easily finds a non-zero
u 2 V such that yu; zu 2 R. Since xu 2 R, this implies VM � R with M being
the linear span of u. Linear independence of z, ax C by C cz and px C qy C rz
implies that aq ¤ bp and that

R D span fxx; xy; xz; yz; z.ax C by C cz/; .y C z/.px C qy C rz/g: (2.7)
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Since K is infinite, we can pick � 2 K n f0; 1g. By (2.2), there is a non-zero
.˛; ˇ; 
/ 2 K3 such that .y C �z/.˛x C ˇy C 
z/ 2 R. By (2.7), there exist
c1; c2; c3 2 K such that

.yC�z/.˛xCˇyC
z/ D c1yzCc2z.axCbyCcz/Cc3.yCz/.pxCqyCrz/;

where the equality holds in Khx; y; zi. Opening up the brackets in the above display,
we obtain

˛ � pc3 D ˇ � qc3 D 
 � c1 � rc3 D ˛� � ac2 � qc3

D ˇ� � bc2 � qc3 D 
� � cc2 � rc3 D 0:

Plugging ˛ D pc3 and ˇ D qc3 into ˛� � ac2 � qc3 D ˇ� � bc2 � qc3 D 0, we
get bc2 C .1 � �/qc3 D ac2 C .1 � �/pc3 D 0. Since � ¤ 1 and aq ¤ bp, the
determinant .1 � �/.bp � aq/ of this system of two linear equations on c2 and c3 is
non-zero. Hence c2 D c3 D 0. Since � ¤ 0, the above display implies˛ D pc3 D 0,
ˇ D qc3 D 0 and 
 D cc2Crc3

�
D 0, which contradicts .˛; ˇ; 
/ ¤ .0; 0; 0/. This

contradiction proves (2.6).
Now (2.6) together with (2.2) imply that

for each u 2 V n L, there is .au; bu/ 2 K2 n f.0; 0/g

such that u.auuC bux/ 2 R.
(2.8)

Observe that au ¤ 0 for a Zarisski generic u 2 V . Indeed, otherwise VL � R.
Next, bu ¤ 0 for a Zarisski generic u 2 V . Indeed, otherwise R contains the
6-dimensional space S of symmetric elements of V 2. Since R also contains LV
and LV \ S is one-dimensional, dimR > 8 > 6, which is a contradiction. Thus
we can pick s; t 2 V such that x; s; t is a basis in V and asbsatbt ¤ 0. Now, using
the inclusions s.ass C bss/; t.at t C btx/ 2 R, we can pick p; q 2 K� such that
for u D ps and v D qt , u.x � u/; v.x � v/ 2 R. For a D auCv and b D buCv ,
according to (2.8), we have .a; b/ ¤ .0; 0/ and .uC v/.auC av C bx/ 2 R. Then
R D span fxx; xu; xv; u.x�u/; v.x�v/; .uCv/.auCavCbx/g. Now sety D x�u
and z D x � v. With respect to the basis x; y; z, the last equality can be rewritten
as R D span .S [ fc.y C z/x � a.yz C zy/g, where S D fxx; xy; xz; yy; zzg
with c D b C 2a. If c D 0, then R D span .S [ fyz C zyg/. If a D 0, then
R D span .S [ fyx C zxg/. If ac ¤ 0, then replacing y and z by ˛y and ˛z for an
appropriate ˛ 2 K�, we get R D span .S [ fyx C zx � yz � zyg/. Thus (2.5) is
satisfied provided VM 6� R for every 1-dimensional subspaceM of V .

It remains to determine the Hilbert series of A D A.V;R/ when R satisfies one
of the conditions (2.3), (2.4) or (2.5). If (2.3) is satisfied, the defining relations xx,
xy, xz, yx, zx, and h of A form a Gröbner basis of the ideal I D I.V;R/. If
h D yz � azy or h D yz � zy C zz, then the normal words of degree n > 2

are zkyn�k for 0 6 k 6 n. Since there are n C 1 of them, we have HA D H10.
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If h D yy, then the normal words of degree n > 2 are all monomials in y and z,
which do not contain yy as a submonomial. It is easy to see that the number an of
such monomials satisfies the recurrent relation anC2 D anC1 C an, which together
with a2 D 3 and a3 D 5 impliesHA D H11.

Next, assume that (2.4) is satisfied. That is, A is given by the relations xx, xy,
xz, yy, zy and h with h 2 fyx � zz; yz � zx; yx; yz; zx; zzg. If h D yx � zz, the
defining relations togetherwithyzz, zzx, zzy and zzz formaGröbner basis of I . The
only normal word of degree> 3 is yzx, which givesHA D H2. If h D yz�zx, then
the defining relations together with zzx form a Gröbner basis of I . The only normal
word of degree n > 3 is zn, which implies HA D H3. If h 2 fyx; yz; zx; zzg, A is
monomial and therefore the defining relations form a Gröbner basis of I . If h D zz,
the only normal word of degree > 3 is yzx and HA D H2. If h D zx, the only
normal words of degree n > 3 are zn and yzn�1, which givesHA D H7. If h D yz,
the only normal words of degree n > 3 are zn�1x and zn, yielding HA D H7. If
h D yx, the only normal words of degree n > 3 are yzn�2x yzn�1, zn�1x and zn.
HenceHA D H9.

Finally, assume that (2.5) is satisfied. That is, A is given by the relations xx,
xy, xz, yy, zz and h with h 2 fyx C zx; yz C zy; yx C zx � yz � zyg. If
h D yx C zx � yz � zy, the defining relations together with yzx, yzy and zyz
form a Gröbner basis of I . There are no normal words of degree > 3 and therefore
HA D H1. If h D yz C zy, the defining relations form a Gröbner basis of I . The
only normal word of degree > 3 is zyx and HA D H2. Finally, if h D yx C zx,
the defining relations together with yzx form a Gröbner basis of I . For n > 3 there
are exactly 2 normal words of degree n being the monomials in y and z in which y
and z alternate: yzyz : : : and zyzy : : : HenceHA D H7. Since we have exhausted
all the options, the proof is complete.

Proof of Lemma 2:4. The fact that R is 6-dimensional is straightforward. Indeed, R
is the image of the 6-dimensional space of the symmetric elements of V ˝ V under
the invertible linear map I ˝ T . Now, replacing the ground field by a field extension
does not change the Hilbert series of an algebra given by generators and relations.
Hence, without loss of generality we can assume that K is algebraically closed. This
allows us to pick a basis x1; x2; x3 in V with respect to which the matrix of T has
the Jordan normal form.

If T has 3 Jordan blocks, T has the diagonal matrix with respect to the basis x1,
x2, x3 with the non-zero numbers (eigenvalues) �1, �2 and �3 on the diagonal. One
easily sees that in this caseR is spanned by x2j with 1 6 j 6 3 and �kxjxkC�jxkxj
with 1 6 j < k 6 3. If T has 2 Jordan blocks, we can assume that the size two
block is in the left upper corner and corresponds to the eigenvalue �, while the size
one block is in the right lower corner and corresponds to the eigenvalue �. In this
case x21 , �x22Cx2x1, x23 , x1x2Cx2x1, �x1x3C�x3x1 and �x2x3Cx3x1C�x3x2
forms a linear basis inR. Finally, if T has just one Jordan block corresponding to the
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eigenvalue �, a linear basis inR is formed by x21 , �x22Cx2x1, �x3x1C�x3x2Cx23 ,
x1x2Cx2x1, x1x3Cx3x1�x2x1 and x2x3Cx3x2Cx3x1. In any case, this linear
basis inR is also a Gröbner basis in I.V;R/with the only normal word of degree > 3

being x3x2x1. This givesHA D H2.

This completes the proof of Proposition 2.1. Note that if K is algebraically
closed and A is a quadratic algebra satisfying HA D Hj for j 2 f8; 9; 10; 11g,
Lemma 1.4 can be applied and A falls into one of the cases considered in the proofs
of Lemmas 2.2 and 2.3. Scanning the proofs, one sees that whenever HA D Hj for
j 2 f8; 9; 10; 11g, A is actually PBW and therefore Koszul. Since the Hilbert series
or Koszulity do not notice an extension of the ground field, we can drop the condition
that K is algebraically closed. This observation automatically implies the following
Koszulity result.
Proposition 2.5. If A is a quadratic algebra satisfying HA D Hj for j 2
f8; 9; 10; 11g, then A is Koszul. Moreover, A is PBW provided K is algebraically
closed.

3. Proof of Lemma 1.4

We start by reformulating Lemma 1.4. First, if we take a pairing on V ˝ V as in
the definition of a dual algebra, then in terms of S D R?, Lemma 1.4 reads in the
following way.
Lemma 3.1. Let V be a 3-dimensional vector space over an infinite field K and S be
a 3-dimensional subspace of V ˝ V . Then at least one of the following statements is
trueW
(P10) there is a 2-dimensional subspaceM � V such that

.V ˝M/˚ S D V ˝ or .M ˝ V /˚ S D V ˝ V I

(P20) there is a 2-dimensional subspaceM � V such that

V ˝M � S or M ˝ V � S I

(P30) there is an invertible linear map T W V ! V such that

S D span fx ˝ Ty � y ˝ T x W x; y 2 V g:

For two vector spaces V1 and V2 over K, L.V1; V2/ stands for the vector space
of all linear maps from V1 to V2. Using the natural isomorphism between V ˝ V
and L.V �; V / together with the fact that a two-dimensional subspace of V is exactly
the kernel of a non-zero linear functional, we can reformulate Lemma 3.1 in the
following way.
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Lemma 3.2. Let V be a 3-dimensional vector space over an infinite field K and S be
a 3-dimensional subspace ofL.V �; V /. Then at least one of the following statements
is trueW

(P100) there is f 2 V � such that the map A 7! Af or the map A 7! A�f from S

to V is injectiveI

(P200) there is a non-zero f 2 V � such that Af D 0 for all A 2 S or A�f D 0

for all A 2 S I

(P300) there is an invertible T 2 L.V; V / such that g.TAf / D �f .TAg/ for
all f; g 2 V � and A 2 S .

In other words, we have to show that (P300) holds if both (P100) and (P200) fail.
Hence, Lemma 3.2 and therefore Lemma 1.4 will follow if we prove the following
result.

Lemma 3.3. Let V1 and V2 be a 3-dimensional vector spaces over an infinite field K
and S be a 3-dimensional subspace of L.V1; V2/. Assume also that

(L1)
T
A2S

kerA D
T
A2S

kerA� D f0gI

(L2) fAu W A 2 Sg ¤ V2 for each u 2 V1 and fA�f W A 2 Sg ¤ V �1 for
each f 2 V �2 .

Then there exist linear bases in V1 and V2 such that S in the corresponding matrix
form is exactly the space of 3 � 3 antisymmetric matrices.

Proof. First, we shall show that

for every non-zero x 2 V1,
the space Sx D fAx W A 2 Sg is two-dimensional. (3.1)

By (L1), Sx ¤ f0g for each x 2 V1 n f0g. By (L2), Sx ¤ V2 for each x 2 V1.
Thus Sx for x 2 V1 n f0g is either one-dimensional or two-dimensional. Assume
that (3.1) fails. Then there is x1 2 V1 such that Sx1 is one-dimensional. Then we
can pick a basis A1; A2; A3 in S such that A1x1 D y1 ¤ 0 and A2x1 D A3x1 D 0.
By (L1), the linear span of the images of all A 2 S is V2. Hence we can pick
x2; x3 2 V1 such that x1; x2; x3 is a basis in V1, while y1; y2; y3 is a basis in V2,
where yj D Ajxj . With respect to the bases x1; x2; x3 and y1; y2; y3, the matrices
of A1, A2 and A3 have the shape0@1 � �0 � �

0 � �

1A ; 0@0 0 �

0 1 �

0 0 �

1A and

0@0 � 0

0 � 0

0 � 1

1A ; respectively.

Keeping the basis in V2 as well as x1 and replacing x2 and x3 by x2 C ˛x1 and
x3Cˇx1 respectively with appropriate ˛; ˇ 2 K, we can kill the second and the third
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entries in the first row of the first matrix. With respect to the new basis, the matrices
of A1, A2 and A3 are0@1 0 0

0 a1 a2
0 a3 a4

1A ; 0@0 0 a5
0 1 a6
0 0 a7

1A and

0@0 a8 0

0 a9 0

0 a10 1

1A with aj 2 K.

By (L2), for every u D .x; y; z/ 2 K3, A1u;A2u;A3u are linearly dependent and
AT1 u;A

T
2 u;A

T
3 u are linearly dependent as well (hereAj stand for the matrices of the

linear maps Aj ), where T denotes the transpose matrix. Computing these vectors,
we see that these conditions read

det

0@ x a1y C a2z a3y C a4z

a5z y C a6z a7z

a8y a9y a10y C z

1A
D det

0@x a1y C a3z a2y C a4z

0 y a5x C a6y C a7z

0 a8x C a9y C a10z z

1A D 0
for all x; y; z 2 K. Since K is infinite, the above two determinants must be zero as
polynomials in x; y; z. The first determinant has the shape

x.a10y
2
C a6z

2
C .1C a6a10 � a7a9/yz/C g

with g 2 KŒy; z�. Hence a10 D a6 D 0 and a7a9 D 1. Taking into account that
a10 D a6 D 0, we see that the xyz-coefficient of the second determinant is a7a9.
Hence a7a9 D 0, which contradicts a7a9 D 1. This contradiction proves (3.1).

Now we pick a non-zero u 2 V1. By (L2), there is a non-zero A1 2 S such that
A1u D 0. Since A1 ¤ 0, there is x 2 V1 such that A1x ¤ 0. Since a Zarisski
generic x will do, we can assure the extra condition Su ¤ Sx (otherwise (L1) is
violated). Obviously, u and x are linearly independent. By (3.1), we can findA2 2 S
such that A1x and A2x are linearly independent. Again suppose A2 is Zarisski
generic and therefore we can achieve the extra condition that A1x, A2x and A2u
are linearly independent (otherwise Su D Sx). Now y1 D �A2u, y2 D A1x and
y3 D A2x form a basis in V2. By (L2), there is a non-zero A3 2 S such that
A3x D 0. Clearly, Aj are linearly independent (=they form a basis in S ). Pick
a basis x1; x2; x3 in V1 such that x1 D x and x3 D u. With respect to the bases
x1; x2; x3 and y1; y2; y3, the matrices of A1, A2 and A3 have the form0@0 � 0

1 � 0

0 � 0

1A ; 0@0 � �10 � 0

1 � 0

1A and

0@0 � �0 � �

0 � �

1A ; respectively.

Keeping the basis in V2 as well as x1 and x3 and replacing x2 by x2 C ˛x1 C ˇx3
with appropriate ˛; ˇ 2 K, we can kill the middle entry in the first matrix and the
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second entry of the first row of the second matrix. With respect to the new basis, the
matrices of A1, A2 and A3 have shape:0@0 a1 0

1 0 0

0 a2 0

1A ; 0@0 0 �1

0 a4 0

1 a5 0

1A and

0@0 a6 a9
0 a7 a10
0 a8 a11

1A with aj 2 K.

By (L2), for every vector u D .x; y; z/ 2 K3, A1u;A2u;A3u are linearly dependent
and AT1 u;AT2 u;AT3 u are linearly dependent. Computing these vectors, we see that
these conditions mean:

det

0@ a1y x a2y

�z a4y x C a5y

a6y C a9z a7y C a10z a8y C a11z

1A
D det

0@ y a1x C a2z 0

�z a4y C a5z x

0 a6x C a7y C a8z a9x C a10y C a11z

1A D 0
for all x; y; z 2 K. SinceK is infinite, these two determinants are zero as polynomials
in x; y; z. The terms containing x2 in the first determinant amount to x2.a6yCa9z/,
which implies a6 D a9 D 0. The yz2-coefficient of the same polynomial is �a2a10.
Hence a2a10 D 0. First, we show that a2 D 0. Indeed, assume the contrary.
Then a2 ¤ 0 and therefore a10 D 0. Now z3-coefficient in the second determinant
is �a2a11. Hence a11 D 0. Taking into account that a6 D a9 D a10 D a11 D 0, we
see that in the first determinant the terms containing z amount to z.a8xy �a2a7y2/.
It follows that a7 D a8 D 0 and therefore A3 D 0, which is a contradiction. Hence
a2 D 0. Recall that we already know that a6 D a9 D 0. Next, we show that a1 ¤ 0.
Indeed, assume the contrary: a1 D 0. Then the first determinant simplifies to
zx.a8y C a11z/. Hence a8 D a11 D 0. Now the second determinant simplifies to
a4a10y

3C a5a10y
2z� a7xy

2. Hence a7 D 0 and a4a10 D a5a10 D 0. If a10 D 0,
we have A3 D 0, which is a contradiction. If a10 ¤ 0, we have a4 D a5 D 0.
In this case the second column of each Aj is zero. Thus the second basic vector
in V1 is in the common kernel of all elements of S , which contradicts (L1). These
contradictions prove that a1 ¤ 0. By normalizing the second basic vector in V1
appropriately, we can assume that a1 D �1. Taking this into account together with
a2 D a6 D a9 D 0, we see that the xy2 and xz2 coefficients in the first determinant
are �a7 and a11 respectively. Hence a7 D a11 D 0. Now the determinants in the
above display simplify to

�a4a8y
3
C.a8Ca10/xyzCa5a10y

2z and a4a10y
3
Ca5a10y

2z�.a8Ca10/xyz:

Since they vanish, a10 D �a8. If a8 D 0, then a10 D 0 and A3 D 0, which is a
contradiction. Thus a8 ¤ 0. Now vanishing of the polynomials in the above display
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implies a4 D a5 D 0. Hence, the matrices A1, A2 and A3 acquire the shape0@0 �1 0

1 0 0

0 0 0

1A ; 0@0 0 �1

0 0 0

1 0 0

1A and a8

0@0 0 0

0 0 �1

0 1 0

1A with a8 ¤ 0

and S becomes the space of all antisymmetric matrices.

Since Lemma 3.3 is equivalent to Lemma 1.4, the proof of Lemma 1.4 is now
complete.

4. Specific algebras satisfying HA D Hj

For each j 2 f1; : : : ; 11g, we provide a quadratic algebra Aj (generated by degree 1
elements x, y and z) satisfyingHAj

D Hj . In each case the last equality is an easy
exercise since we supply the finite Gröbner basis in the ideal of relations and describe
the normal words. These 11 examples are presented in Table 1.

Counting normal words is trivial for all Aj except the last one, where the normal
words of degree n > 3 are exactly monomials in z and y, which do not contain yy as
a submonomial. In this case, as it was already observed in the proof of Lemma 2.3,
the numbers an of such monomials of degree n are consecutive Fibonacci numbers
with a3 D 5, yieldingHA11

D H11.

Proof of Theorem 1:1. By Proposition 2.1,HA 2 fH1; : : : ;H11g for every quadratic
K-algebra A satisfying dimA1 D dimA2 D 3. The examples in Table 1 show that
eachHj with 1 6 j 6 11 is indeed the Hilbert series of a quadratic K-algebra.

It remains to deal with Koszulity. We need the following elementary observation.
Lemma 4.1. Assume that A is a degree graded algebra on generators x1; : : : ; xn,
that the monomials in xj carry a well-ordering compatible with the multiplication
and that ƒ is the set of the leading monomials of all members of the corresponding
Gröbner basis of the ideal of relations of A. Let also 1 6 j; k 6 n be such that
xj ¤ 0, xk ¤ 0 and xjxk D 0 in A. Finally, assume that ƒ contains no monomial
ending with xsxk for s ¤ j . Then for u 2 A, uxk D 0 ” u D vxj for
some v 2 A.

Proof. Since xjxk D 0 in A, uxk D vxjxk D 0 if u D vxj for some v 2 A.
Assume now that u 2 A and uxk D 0. It remains to show that u D vxj for some

v 2 A. LetN be the set of all normal words forA. That is,N is the set of monomials
containing no member ofƒ as a submonomial. SinceN is a linear basis inA, we can
write u as a linear combination of elements of N . We also separate those words in
this combination ending with xj from the rest of them: u D

P̨
c˛w˛xj C

P̌
dˇvˇ ,
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where both sums are finite (an empty sum is supposed to be zero), w˛xj , vˇ are
pairwise distinct normal words, none of vˇ ends with xj and c˛; dˇ 2 K�. Then

0 D uxk D
X
˛

c˛w˛xjxk C
X
ˇ

dˇvˇxk D
X
ˇ

dˇvˇxk in A;

where the last equality is due to xjxk D 0. Since vˇ does not end with xj and ƒ
contains neither xj nor xk nor any monomial ending with xsxk with s ¤ j , we
easily see that each vˇxk is a normal word. Since the set of normal words is linearly
independent in A, the above display implies that the sum

P
ˇ dˇvˇ is empty and

therefore u D
P
˛ c˛w˛xj D vxj with v D

P
˛ c˛w˛ .

j defining relations of Aj other elements of
the Gröbner basis

normal words of
degree > 3

Hilbert
series

1 xx � zx, xy � zz,
xz, yx, yy � zy, yz

zzx, zzy, zzz none H1

2 xx, yx, yy, zx, zy, zz none xyz H2

3 xx � zx, xy, xz, yx,
yy � zy, yz

zzx, zzy zn for n > 3 H3

4 xx, xy, xz � zz, yx,
yy, yz � zz

zzz zzx, zzy H4

5 xx � yx, xy, yy, yz,
zx, zz

zyx xzy, yxz, yxzy H5

6 xz � yz, xy, yx, yy,
zx, zz

zyz yzy, xn for n > 3 H6

7 xx, xy, xz, yy, zx, zy none zn, yzn�1 for n > 3 H7

8 xy, xz, yx, yz, zx, zy none xn, yn, zn for n > 3 H8

9 xx, xz, yx, zx, zy, zz none xyn�1, xyn�2z, yn,
yn�1z for n > 3

H9

10 xx, xy, xz, yx, yz, zx none zmyn�m for n > 3,
0 6 m 6 n

H10

11 xx, xy, xz, yx, yy, zx none all monomials in y, z
without yy as a sub-
word

H11

Table 1. Algebras Aj for 1 6 j 6 11.



Two problems from the Polishchuk and Positselski book on quadratic algebras 271

Proposition 4.2. The algebras Aj with j 2 f2; 5; 6; 7; 8; 9; 10; 11g are Koszul.

Proof. For j 2 f2; 7; 8; 9; 10; 11g, Aj is a monomial algebra, hence it is Koszul.
It remains to verify Koszulity of A5 and A6. Consider the algebra B given by the
generators x; y; z and the relations xx C yx, xz, zy and the algebra C given by the
generators x; y; z and the relations xx, xzCyz, zy. A direct computation shows that
B Š D A5 and C Š D A6. Hence Koszulity of A5 and A6 is equivalent to Koszulity
of B and C respectively. It remains to prove that B and C are Koszul, which is our
objective now.

Consider the following sequences of free graded left B-modules and C -modules:

0! B
d4
�!B2

d3
�!B3

d2
�!B3

d1
�!B

d0
�!K! 0; (4.1)

� � �
ı5
�!C

ı5
�!C

ı5
�!C

ı4
�!C 2

ı3
�!C 3

ı2
�!C 3

ı1
�!C

ı0
�!K! 0; (4.2)

where d0 and ı0 are the augmentation maps,

d1.u; v; w/ D ux C vy C wz; d2.u; v; w/ D .u.x C y/; vz; wx/;

d3.u; v/ D .0; ux; v.x C y//; d4.u/ D .u.x C y/; 0/;

ı1.u; v; w/ D ux C vy C wz; ı2.u; v; w/ D .ux; vz; w.x C y//;

ı3.u; v/ D .ux; v.x C y/; 0/; ı4.u/ D .ux; 0/ and ı5.u/ D ux:

Using the relations of B and C , one easily sees that the composition of any two
consecutive arrows in both sequences is indeed zero. By definition of Koszulity, the
proof will be complete if we show that these sequences are exact. The exactness
of (4.1) and (4.2) boils down to verifying the following statements:

for u 2 B u.x C y/ D 0 ” u D 0; (4.3)
for u 2 B; ux D 0 ” u D v.x C y/ for some v 2 B , (4.4)
for u 2 B; uz D 0 ” u D vx for some v 2 B , (4.5)
for u 2 C ; ux D 0 ” u D vx for some v 2 C , (4.6)
for u 2 C ; u.x C y/ D 0 ” u D 0; (4.7)
for u 2 C ; uz D 0 ” u D v.x C y/ for some v 2 C . (4.8)

Indeed, the exactness of (4.1) at the leftmost B is equivalent to (4.3), its exactness
atB2 is equivalent to (4.3) and (4.4) and its exactness at the leftmostB3 is equivalent
to (4.3), (4.4) and (4.5). The exactness of (4.2) at each C which is to the left of C 2
is equivalent to (4.6), its exactness at C 2 is equivalent to (4.6) and (4.7), while its
exactness at the leftmost C 3 is equivalent to (4.6), (4.7) and (4.8). Checking the
exactness of both complexes at three terms on the right is a straightforward exercise.
Alternatively, one can notice that (4.1) and (4.2) are the Koszul complexes ofB andC
respectively, and that the Koszul complex happens to be exact at three right terms for
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every quadratic algebra, see [23] (exactness of the Koszul complex at the two right
terms holds for every graded algebra generated in degree 1, while the exactness at
the term third from the right holds for all quadratic algebras).

Thus it remains to prove (4.3)–(4.8). Observe that the defining relations xxCyx,
xz, zy of B together with xykxCykC1x; k > 1 form the Gröbner basis of the ideal
of relations ofB , while the defining relations xx, xzCyz, zy ofC together with xyz
form the Gröbner basis of the ideal of relations of C . Now a direct application of
Lemma 4.1 justifies (4.5) and (4.6). In order to prove the rest, we perform the
following linear substitution. Keeping x and z as they were, we set the new y to
be x C y in the old variables. This substitution provides an isomorphism of B and
the algebra A given by the generators x, y, z and the relations xz, yx, zx � zy.
These relations together with zyz form the Gröbner basis of the ideal of relations
of A. The same substitution provides an isomorphism of C and the algebraD given
by the generators x, y, z and the relations xx, yz, zx � zy. These relations together
with zyx form the Gröbner basis of the ideal of relations ofD.

Now we can rewrite (4.3), (4.4), (4.7) and (4.8) in terms of multiplication in A
andD. Namely, they are equivalent to

for u 2 A; uy D 0 ” u D 0; (4.9)
for u 2 A; ux D 0 ” u D vy for some v 2 A, (4.10)
for u 2 D; uy D 0 ” u D 0; (4.11)
for u 2 D; uz D 0 ” u D vy for some v 2 D, (4.12)

respectively. Again, Lemma 4.1 justifies (4.10) and (4.12). Next, one easily sees that
the sets of normal words for both A and D are closed under the multiplication by y
on the right. This implies (4.9) and (4.11). Hence (4.3)–(4.8) hold and therefore B
and C are Koszul.

Proposition 4.3. Let A be a quadratic algebra such that HA 2 fH1;H3;H4g.
Then A is non-Koszul.

Proof. Assume the contrary. Then A is Koszul and by (1.1), HAŠ.t/ D 1
HA.�t/

. In
particular, all coefficients of the series 1

HA.�t/
must be non-negative. On the other

hand,

1

H1.�t /
D 1C 3t C 6t3 C 9t3 C 9t4 � 27t6 C � � �

and
1

H3.�t /
D 1C 3t C 6t3 C 10t3 C 14t4 C 16t5 C 12t6 � 4t7 C � � �

HenceH1 andH3 can not be Hilbert series of a Koszul algebra.
It remains to consider the case HA D H4. Since replacing the ground field by

a field extension does not effect the Hilbert series or Koszulity, we can without loss
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of generality assume that K is algebraically closed. By Lemmas 1.4, 2.3 and 2.4,
A D A.V;R/ with R satisfying condition (P1) of Lemma 1.4. Thus, by passing
to the algebra with the opposite multiplication, if necessary, we can assume that
R ˚ .L ˝ V / D V ˝ V for a 1-dimensional subspace L of V . Now choose a
basis x, y, z in V such that x spans L. Then R? ˚ .M ˝ V / D V ˝ V , where
M D span fy; zg. It follows that we can choose a basis f , g, h in R? such
that the leading monomials of f , g and h are xx, xy and xz respectively. Since
HA D H4 D 1C 3t C 3t

2 C 2t3, a direct computation shows that

HAŠ D
1

HA.�t /
D 1C 3t C 6t2 C 11t3 C 21t4 C 42t5 C 85t6 C � � �

(we need few first coefficients). Since dimAŠ3 D 11, there should be exactly one
degree 3 element q of the Gröbner basis of the ideal of relations of AŠ. The leading
monomial q of q can have either the shape u1u2x or the shape u1u2u3, where
uj 2 fy; zg. First, assume that q D u1u2u3. Then AŠ4 is spanned by v1v2v3x
with vj 2 fy; zg and v1v2v3 ¤ u1u2u3 and by v1v2v3v4 with vj 2 fy; zg and
v1v2v3 ¤ u1u2u3, v2v3v4 ¤ u1u2u3. The number of these monomials is 20 if
u1 D u2 D u3 and is 19 otherwise. Thus dimAŠ4 6 20. Since by the above display
dimAŠ4 D 21, we have arrived to a contradiction, which proves that q can not be of
the shape u1u2u3.

Hence q D u1u2x with u1; u2 2 fy; zg. In this case, were the relations f , g, h
together with q is the Gröbner basis, the dimension of AŠ4 would have been 22.
Since dimAŠ4 D 21, there is exactly one degree 4 element p of the Gröbner basis
of the ideal of relations of AŠ. The leading monomial p of p can have either the
shape w1w2w3x or the shape w1w2w3w4, where wj 2 fy; zg. Again, first, assume
that p D w1w2w3w4. Then AŠ5 is spanned by v1v2v3v4x with vj 2 fy; zg and
v3v4 ¤ u1u2 and by v1v2v3v4v5 with vj 2 fy; zg and v1v2v3v4 ¤ w1w2w3w4,
v2v3v4v5 ¤ w1w2w3w4. It easily follows that dimAŠ5 6 41. Since by the above
display dimAŠ5 D 42, we have arrived to a contradiction, which proves that p can
not be of the shape w1w2w3w4.

Hence p D w1w2w3x with wj 2 fy; zg and w2w3 ¤ u1u2. In this case, AŠ6
is spanned by 64 elements v1v2v3v4v5v6 with vj 2 fy; zg and by 20 elements
v1v2v3v4v5x with vj 2 fy; zg, v4v5 ¤ u1u2, v3v4v5 ¤ w1w2w3. Hence
dimAŠ6 6 84. Since by the above display dimAŠ6 D 85, we have arrived to a
contradiction. ThusH4 is not the Hilbert series of a Koszul algebra.

Proof of Theorem 1:2. By Proposition 4.2, for j 2 f2; 5; 6; 7; 8; 9; 10; 11g, there is
a Koszul algebra A satisfying HA D Hj . By Proposition 4.3, every quadratic
algebra A satisfyingHA D Hj with j 2 f1; 3; 4g is non-Koszul.
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4.1. Some remarks.

1. The condition of K being infinite in Lemma 1.4 can be relaxed to K having
sufficiently many elements. More precisely, examining closely the idea behind the
proof, one gets that Lemma 1.4 holds if the condition of K being infinite is relaxed
to jKj > 4. On the other hand, the following example shows that the conclusion of
Lemma 1.4 fails if jKj D 2.

Example 4.4. Let x, y, z be a basis of a 3-dimensional vector space V over the
2-element field K D Z2. Let also R � V ˝ V be the linear span of x ˝ x, y ˝ y,
z ˝ z, y ˝ z C z ˝ y, x ˝ y C z ˝ x C z ˝ y and x ˝ z C y ˝ x C z ˝ y. Then
R is a 6-dimensional subspace of V ˝ V for which each of the conditions (P1)–(P3)
of Lemma 1:4 fails.

We leave the verification to the reader. It can be done by brute force since
V C D V n f0g has just 7 elements. For example, to show that (P1) fails, one has
to find for every u 2 V C, v;w 2 V C such that u ˝ v;w ˝ u 2 R. Note that
extending K to a 4-element field forces R from the above example to satisfy (P1).
We do not know whether the conclusion of Lemma 1.4 holds if jKj D 3.

2. By Proposition 2.5, A is automatically Koszul ifHA D Hj for j 2 f8; 9; 10; 11g.
Note that if A is a quadratic algebra satisfying HA D Hj with j 2 f2; 5; 6; 7g, this
does not necessarily mean that A is Koszul. We construct the following examples
to illustrate this. In these examples we assume jKj > 2 and ˛ 2 K is an arbitrary
element different from 0 or 1. Table 2 is completed by computing the Gröbner bases
of ideals of relations of algebras Bj .

j relations of Bj other elements of
the Gröbner basis

HBj
relations of B Šj

2 xx C yz, xz, yx,
yy C zx, zy, zz

yzx � zxy,
xyz � zxy

H2 xx � yz, xy, yy � zx

5 xx � zx, xy � zx,
yx � zx, yy � zx,
xz C ˛zx � 1

1�˛
zz,

yz C ˛zx � 1
1�˛

zz

zzx, zzzz H5 zy, xz C yz C .1 � ˛/zz,
xx C xy C yx C yy C

zx C ˛.1 � ˛/zz

6 xx � ˛zx, xy � zy,
yx, xz � ˛zx, yz, yy

zzx, zzzy H6 xx C xz C 1
˛
zx,

xy C zy, zz
7 xx � zx, xy, yx,

xz � ˛zx, yz, yy
zzx H7 xxC˛xzCzx, zy, zz

Table 2. Algebras Bj for j 2 f2; 5; 6; 7g.
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Computing the Gröbner bases of ideals of relations of algebrasB Šj up to degree 4,
we easily obtain the data presented in Table 3.

j .HBj
.�t //�1 up to t4 HBŠ

j
.t/ up to t4

2 1C 3t C 6t2 C 10t3 C 15t4 C � � � 1C 3t C 6t2 C 10t3 C 17t4 C � � �

5 1C 3t C 6t2 C 11t3 C 20t4 C � � � 1C 3t C 6t2 C 11t3 C 21t4 C � � �

6 1C 3t C 6t2 C 11t3 C 20t4 C � � � 1C 3t C 6t2 C 11t3 C 21t4 C � � �

7 1C 3t C 6t2 C 11t3 C 19t4 C � � � 1C 3t C 6t2 C 11t3 C 20t4 C � � �

Table 3. The series .HBj
.�t //�1 andH

BŠ
j
.t/ up to degree 4.

Table 3 ensures that each Bj fails to satisfy HBj
.�t /HBŠ

j
.t/ D 1 and therefore

each Bj is non-Koszul. Thus the following statement holds true.
Proposition 4.5. Assuming jKj > 2, for each j 2 f2; 5; 6; 7g, there is a non-Koszul
quadratic algebra B satisfyingHB D Hj .

3. By the duality formula (1.1), Theorem 1.2 implies the list of all Hilbert series
of Koszul algebras A satisfying dimA1 D 3 and dimA2 D 6. They are the series
1=H.�t / for H from the list specified in Theorem 1.2. Thus we have the following
corollary.
Corollary 4.6. For Koszul algebras A satisfying dimA1 D 3 and dimA2 D 6, the
complete list of Hilbert series consists of 1

Hj .�t/
with j 2 f2; 5; 6; 7; 8; 9; 10; 11g.

4. Aquadratic algebraA satisfyingHA.t/HAŠ.�t / D 1 is called numerically Koszul.
There are examples of numerically Koszul quadratic algebras which are not Koszul,
see [23]. While proving Proposition 4.3, we have actually shown that Hj with
j 2 f1; 3; 4g can not be the Hilbert series of a numerically Koszul quadratic algebra.
We do not know an answer to the following question.
Question 4.7. Let A be a numerically Koszul quadratic algebra satisfying dimA1 D
dimA2 D 3. Is it true that A is Koszul‹

We are especially interested in the following particular case.
Question 4.81. Let A be a quadratic algebra satisfying HA.t/ D .1 � t /�3 and
HAŠ.t/ D .1C t /3. Is it true that A is Koszul‹

Note that .1 � t /�3 is the Hilbert series of KŒx; y; z�. The following example
shows that for a quadratic algebra A, the equality HA D .1 � t /�3 alone does not
guarantee numeric Koszulity.

1In the meantime we have acquired an affirmative solution of this question.
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Example 4.9. Let A be the quadratic algebra given by the generators x, y, z and the
relations xx, xzCyyCzx, xyCyxCzz. ThenHA D .1� t /�3, whileHAŠ D H3.
In particular, A is not numerically Koszul and therefore is non-Koszul.

Proof. A direct computation shows that the defining relations of A together with
yyz � zyy and yzz � zyy form a Gröbner basis for the ideal of relations of A. Now
one easily sees that the normal words for A are zk.yz/lymx" with k; l;m 2 ZC and
" 2 f0; 1g and that the number of normal words of degree n is .nC1/.nC2/

2
. Hence

HA.t/ D .1� t /
�3. The dual AŠ is given by the relations yz, zy, yy � zx, xz � zx,

xy � zz and yx � zz, which together with zxx, zzx and zzz form a Gröbner basis
for the ideal of relations of AŠ. The only normal word of degree n > 3 is xn, which
givesHAŠ.t/ D H3.

5. The following question remains open.
Question 4.10. Which series feature as the Hilbert series of quadratic algebras
satisfying dimA1 D 3 and dimA2 D 4‹Which of these occur for Koszul A‹

The answer to the above question would complete the list of Hilbert series of
Koszul algebras A satisfying dimA1 D 3. In [23], it is mentioned that it is unknown
whether there is a Koszul algebra A satisfying dimA1 D 3, dimA2 D 4 and
dimA3 D 3. It is important to answer also because if such an algebra exists, it
would provide a counterexample to the conjecture on rationality of the Hilbert series
of Koszul modules over Koszul algebras. However if such an algebra does not exist,
nothing can be derived about rationality.
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