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Automorphisms of Cuntz—Krieger algebras

Sdren Eilers, Gunnar Restorff and Efren Ruiz

Abstract. We prove that the natural homomorphism from Kirchberg’s ideal-related KK-theory,
KKg(e,e’), with one specified ideal, into Homp (Kg (e), Kg(e’)) is an isomorphism for all
extensions e and e’ of separable, nuclear C *-algebras in the bootstrap category N with the
K -groups of the associated cyclic six term exact sequence being finitely generated, having zero
exponential map and with the K1-groups of the quotients being free abelian groups.

This class includes all Cuntz—Krieger algebras with exactly one non-trivial ideal. Combining
our results with the results of Kirchberg, we classify automorphisms of the stabilized purely
infinite Cuntz—Krieger algebras with exactly one non-trivial ideal modulo asymptotically unitary
equivalence. We also get a classification result modulo approximately unitary equivalence.

The results in this paper also apply to certain graph algebras.
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1. Introduction

Understanding groups of x-automorphisms has been a key ambition since the early
days of C*-algebra theory as perhaps most clearly indicated by the title of [13]. The
subgroups of inner automorphisms and inner automorphisms given by unitaries in
the base component, respectively, have closures

Inn(2A) Inny(2A)
which are normal subgroups, so one usually focuses attention on the quotient groups
Aut(2() / Inn(2) Aut(2l)/ Inng(A),

trying in particular to describe the latter groups by means of K-theory in situations
where the C*-algebra in question has already been seen to be classifiable using a
certain K-theoretical invariant. Such analyses have already been carried out, resulting
in very satisfactory results, in many cases where the C *-algebra in question is either
stably finite or simple, cf. [3,7,9,11, 14], and [12].



218 S. Eilers, G. Restorff and E. Ruiz

In the present paper we consider the group Aut(2()/ Inn(2l) for a selected class of
C *-algebras which are non-simple and purely infinite. We focus on the most basic
class of non-simple Cuntz—Krieger algebras, those in relation to dynamical systems
which are two-component in the sense of Huang [8], and hence are given with a
unique ideal. These C *-algebras are classified up to stable isomorphism by the
cyclic six term exact sequence in K-theory, but although three independent proofs of
this fact have been given — by Rgrdam [16], by Bonkat [1], and by the second named
author [15] — none of these allow the computation of Aut(2)/ Inn(2(). Furthermore,
it was proved in [6] that the most obvious K-theoretical candidate for an invariant
which could be used to compute Aut(2()/ Inn(2l) fails in this case.

Inspired by the work of Kirchberg—Phillips and Dadarlat-Loring in the simple case
and Bonkat, Meyer—Nest and Kirchberg in the non-simple case, we use the profound
isomorphism result by Kirchberg [9] to almost reduce the problem to computing
a certain group in Kirchberg’s equivariant KK-theory. As in the simple case with
Rosenberg—Schochet’s Universal Coefficient Theorem [17], Bonkat’s UCT [1] is not
of much help here, because the existence of such a UCT does not, in itself, aid us in
computing Aut(2()/ Inn(2A), since it mainly gives us information about the additive
structure of KK-groups and not the multiplicative structure (moreover, in contrast
to the usual UCT, Bonkat’s UCT does not even split, cf. [6]). In the simple case,
the problem was already solved by Dadarlat-Loring by having proved a Universal
Multi-Coeflicient Theorem (UMCT), cf. [3]. This UMCT has turned out to be
very important to a large variety of problems, including determining automorphism
groups, extending known and proving new classification theorems for C *-algebras,
providing a large variety of examples and counterexamples, as well as determining KK
as a ring. It turns out, that the tools developed in [5] may be refined to yield a
complete algebraic description of Kirchberg’s ideal-related KK-group in terms of a
UMCT in the case of interest. This then combines with recent results on establishing
semiprojectivity of certain C*-algebras with one distinguished ideal to give the
desired description of Aut(2()/ Inn(2l).

The core of our argument is a rather complex algebraic analysis of the proposed
invariant which draws on the fact that Cuntz—Krieger algebras have real rank zero, and
that the K;-groups of Cuntz—Krieger algebras are always free and finitely generated.
Although it is clear that the present UMCT will hold for a class that is much larger than
the class of Cuntz—Krieger algebras (see Remark 5.5), it is not easy to venture a guess
about whether or not the invariant which allows our description of the automorphism
groups of Cuntz—Krieger algebras could be amended to all cases of purely infinite
C *-algebras with a unique ideal.

The paper is organized as follows. In Section 2, the definitions and results from [5]
are recalled — among there the definition of ideal-related K -theory with coefficients.
In Section 3, some concrete, very specific projective resolutions of extensions of
Kirchberg algebras are constructed. These are important for the proof of the main
theorem. In Section 4, we prove exactness of a certain sequence, which serves as
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the main technical ingredient of the proof of the main theorem. In Section 5, the
main theorem, Theorem 5.3, is given, stating a UMCT for the algebras in question.
In Section 6, a reduced invariant for Cuntz—Krieger algebras is introduced, while
in Section 7, the main theorem is used to determine the above mentioned groups
Aut(2()/ Inn(2A) for two-component Cuntz—Krieger algebras.

2. Definition of K

In this section we recall some definitions and results from [5] — specifically we recall
the definition of the ideal-related K-theory with coefficients, Kg(e). Moreover we
prove a few lemmata which are needed later in this paper. Throughout the paper
N, Ny and N>, will denote the positive integers, the nonnegative integers, and the
integers greater or equal to two, respectively. Moreover, M,, will denote the n x n
matrices with entries from the complex numbers C.

Definition 2.1 (Identical to [5, Def. 2.1]). Let 2 be a C*-algebra. Then we define
the suspension and the cone of 2 as

SA={f e C(0.1.2) : f(0) =0, f(1) =0}
CA = {f € C(0,1],%) : f(0) =0}

respectively.

Definition 2.2 (Identical to [5, Def. 6.1]). Let n € N>,. We let I, o denote the
(non-unital) dimension-drop interval, i.e. I, o is the mapping cone of the unital
*-homomorphism from C to M,,.

Definition 2.3 (Part of [5, Def. 2.7]). For an extension e: % N Aq 5 Ay, we let

lmc Tme

mc(e): Sy — C, —> Ay
Se: S2 & Sy 3 S2,

be the mapping cone sequence and suspension sequence of e, respectively.

Definition 2.4 (Identical to [5, Def. 6.2]). Let n € Ns,. We let ¢,,9 denote the
mapping cone sequence
en,0:SM,;, — I, 0 > C

corresponding to the unital *-homomorphism from C to M,. We let, moreover,
eni = mc' (en,0), foralli € N, and we write
en,1: SC — ]In,l —> ]In,()

eni:Slyi—o =L ; > I, ;—1, fori>2.

id id
Similarly, we set §1,0: C — C — Oand §, 0:1,,0 < I,,0 = 0,foralln € N>,.
Moreover, we set f,,; = mc! (fn,0) foralln € N and all i € N.



220 S. Eilers, G. Restorff and E. Ruiz

Definition 2.5 (Identical to [5, Def. 1.4] — although 3, 4, 5 is missing there). For
each extension e of separable C *-algebras, we define ideal-related K-theory with
coefficients, Kg(e), of e to be the (graded) group

5

Ke(e) = D (KKs v, 0) & @D KKe(enir¢) & KK (i ).
n=2

i=0

A homomorphism & from Kg (e1) to Kg (e3) is a group homomorphism respecting the
direct sum decomposition and the natural homomorphisms induced by the elements
KKg(e,e’), where e and e’ are in {¢,;,fni.f1; : n € N>p,i =0,1,2,3,4,5}.
The set of homomorphisms from Kg(e;) to Kg(ez) will be denoted by

Homy (Kg (e1), Kg(e2)).
Let x € KKg(eq, e2). Then x induces an element of Homp (Kg (e1), Kg(e2)) by

y € KK&(fﬂ,iael) = y XX € KKg(fn,ian)v ne Na
y € KKg(en,i,e1) = y xx € KKg(eni,e2), n € Nxj.

Hence, if ¢:e7 — e, is a homomorphism, then ¢ induces an element Kg(¢) €
Homp (Kg(e1), Kg(e2)). In this way, K¢ becomes a functor on the category of
extensions.

Lemma 2.6. Let e and e, be extensions of separable C*-algebras. Then there is a
natural homomorphism,

Ley,er: KKg(e1,e2) — Homp (Kg(e1), Kg(e2)).

Proof. Let x € KKg(e1,e2). Then (=) x x:KKg(fn,i,e1) — KKg(fn.i,e2)
and (—) x x:KKg(en,i,e1) — KKg(en,i,e2) are group homomorphisms which
respect the natural homomorphisms induced by the elements KKé (e,e’) for j =
0,1, where e and e’ are in {e,;,fni,f1,; : n € N>2,i =0,1,2,3,4,5}. Hence,
Ie e, (x) = (=) x x € Homp (Kg(e1), Ke(e2)). One can check that Iy, ¢, is a
natural homomorphism. O

Definition 2.7. Let ¢:e; — e, be a homomorphism where e; and e, are
extensions of C *-algebras. Note that ¢ induces Kg(¢p) € Homp (Kg(e1), Kg(e2)).
Hence, for every extension e of C*-algebras, ¢ induces a homomorphism
¢*: Homp (Kg(e2), Kg(e)) — Homa (Kg(e1), Kg(e)) by ¢*(a) = o o Ke(¢).
Definition 2.8 (Similar to [5, Def. 6.3]). For each extension e of separable
C *-algebras, we define ideal-related K-theory, Kx(e), of e to be the (graded)
group

5
Ki(e) = D KKg(Fri. ).
i=0
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A homomorphism «: K (e1) — Kiix(e2) is a group homomorphism respecting the
direct sum decomposition and the natural homomorphisms induced by the elements
KKlg(e, e’)for j = 0,1, where e and ¢’ are in {f;; : i =0,1,2,3,4,5}. The set of
homomorphism between Kjix(e1) to Kix(e2) will be denoted by

Homsix (Ksix (61) s Ksix (82)) .

The definition of K« (eq) is different from the definitions in [1] and [5], but
a computation shows that there are natural isomorpisms between the different
definitions.

Remark 2.9 (Identical to [5, Rem. 6.6]). For extensions eq : 2lg < 2A; — 2, and
ey 1 By — By —>» B, of separable C *-algebras, we have natural homomorphisms
Gi:KKg(e1,e2) — KK(2;,;), fori = 0, 1,2. As in the proof of [1, Satz 7.5.6]
the obvious diagram

EXtSiX(KSiX(e1)7 Ksix(SeZ))(ﬁ' KKg (€1 s 62) — Homsix(Ksix(el)’ Ksix(eZ))

|

Ext(Ko(2;), K1(B;)) > KK(2;,B;) — Hom(Ko(;), Ko(B,))
D Ext(K1 (%), Ko(B;)) @ Hom(K (2;), K1(8;))

commutes and is natural in e,, fori = 0, 1,2 — provided that e; belongs to the UCT
class considered by Bonkat.

Remark 2.10. The functor Kg contains both the usual K-theory and the mod — n
K-theory. That is, we can recover the functors Ky, K1, Ko(—; Zy), and K1(—; Zy)
restricted to the ideal, the extension algebra, and the quotient.

Using the above diagram, we get canonical natural isomorphisms

KKg(f1,i,e) — KK(C,2;) = Ko(2l;) KKe (f1,i+3,€) — KK(SC,2;) = K1(2l;),
KKg(fn,i,e) — KK(I,,0,2;) = Ko(Ui; Zy) KKg(fn,it+3,€) — KK(Sln0,2) = K1(i: Zy),

foralln € N>y, andalli =0,1,2.

Since the Bockstein operations, as defined in [3], are defined as natural transfor-
mations given by Kasparov products, also the total K-theory with coefficients, K, is
included in the invariant.

Definition 2.11 (Similar to [5, Def. 7.2] (only first part)). Set
FY; = KKg(f1i.e), F,; =KKg(fni.e), and H,;, = KKg(en,,e)

for all n € Nsp and for all i =0,1,2,3,4,5. For convenience, we will identify

1 . . e _ e e _ e
indices modulo 6, i.e. we write Fn’6 = Fn,O’ Fn,7 = Fn,1 etc.
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For o € Homp (Kg(e1), Ke(e2)), set
af]gi = Ol|Fl£’1.: Fill - Flej? afn,i = O[|Fneli:F:,li - Frf,zi’
and o, = a|H51i:H,f}i — H,%,
foralln € N>y andalli =0,1,2,3,4,5. Foralln € Nyyandi =0,1,2,3,4,5,
we have homomorphisms

e e 1.1,in 1.1,0ut
e fl,i—l e fl,i e e n.,i.e e hn,ie e
Li—1 1,i Li+1 Li+1 i 1,i+3
e fe n,l,in n.1,out
e n,i—1 e n.i e e n.,i,e e n,i,e e
n,i—1 Fn,i n,i+1 Fn,i Hn,i 1,i42
Py.i By i ;11731 ,11'7'51”
Fe N e N e Fe ot e ot Fe
1,i n,i 1,i+3 1Li+2 n,i n,i+1
as defined in [5].
Definition 2.12 (Identical to [5, Def. 7.13]). Foreachn € N, we set f,¢, = f?, for
L Fe _ e P
i = 1,2,4,Sandfn,i = —fui fori =0,3.

Theorem 2.13 ([5, Theorem 7.14]). Let e be an extension of separable C *-algebras.
Foralln € N and foralli =0,1,2,3,4,5,

e e
e n,i—1 e fn,i e
n,i—1 n,i n,i+1
is exact. Foralln € N> andforalli =0,1,2,3,4,5,
hl.l_.fn hl.l_.om hn._l.in hn.!.om
e n,r.e e n.,.e e e n,r.e e n,.e e
Fliva Hy; Flits Fy Hy; Flita
T”ffi "f1‘).i+3l Tfrf.i+5°p;t),i+5 frf.i+2°p£.i+2l
e e e e e e
Fri = s s Fliva Fiivs o Huivs S Faies
n,i+3.e n,i+3,e n,i+3.e n,i+3.e
1.m.i 1.n,0ut
e i He hyie" e Fe Phi Fe By e
1Li+2 n,i n,i+1 1,i n,i 1,i+3
T'Bs,i+5°frf,i+4 ﬂs4i+2°frze.i+li and TX” X”i
e e e e e e
Fn,l+4 1.1,0ut Hn,l+3 1.n.in Fl,l+5 Fl,t B¢ Fn,l+3 e Fl,l+3
h h n.i+3 Pn.i+3

n,i+3.e n.i+3.e
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are exact, and moreover, all the three diagrams

Fe

Fe I Fe
1,i 1,i+1

1.1,in fe-
p’e; ; hn,i,e 1.i+41
hn,l.in

e n..e e e
Fn,l Hnsl hn,l,()m‘ Flal +2
n.i,e _
e

ge lh’i.ll..zut Lfl’H_z

n.i o
e e

Fl,i+3 Xn Fl,i+3

)

e xn e
Fl,i+1 > Fl,i+1

. e
7 Rl Lin Po.i+1
fﬁi+l n,i.e

hl.f?.in

e n.i.e e e
Fl,i+2 Hn,i Lo Fn,i+1 2)

n.i.e
B hl,!,out _,B,f.[_H
flei+2 n,.e

e e
F1,i+3 e Fl,i+4
1,i+3

Fe
n.i+5

e e
Fn,i+5 Fn,i

. Fe
hn . l .in fn K
_'Bs,i+5 n..e
hl R
e

e n.i.e e
Li+2 i o Fuien )

Hn
n.,i.e 5
e
\ lhﬁ’;’;’"’ lfn,m

n
e e
i . Fritva
n

N

commute.

Remark 2.14. By [1, Korollar 3.4.6], for every short exact sequence of extensions of
¢

separable C*-algebras ¢g — ¢, Lp» e, with completely positive coherent splitting,

there exists a six term exact sequence

KKg (e, e0) —2= KKg(e, e1) ——> KK¢g (e, e2)
ST ls
KKg(e,e3) 5 KKg(e,eq) <¢—KKg(e, o)

of abelian groups. Therefore, with e = ¢, ;, the complex

eo K&’(‘ﬁ)eni el K&(‘/f)envi Hel
n,i n,i n,l

is exact, foreachi = 0,1,2, 3,4, 5.
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Lemma 2.15. Let ey and e, be extensions of separable, nuclear C*-algebras in the
bootstrap category N. Assume that the K -theory of ey is free, i.e. F{ ‘l is free for all
i =0,1,2,3,4,5. Then the natural homomorphisms

Le.e,: KKg(e1,€2) > Homy (Kg(e1), Ke(e2))
and

Ay e, Homp (Kg(e1), Kg(e2)) — Homgix (Kisix(e1), Kiix(e2))
are isomorphisms.
Proof. By the UCT of Bonkat [1], the homomorphism
KKg(e1,e2) — Homg (Kix(e1), Ksix(e2))

is an isomorphism. Hence, the first map is injective and the second is surjective.
Therefore, it is enough to prove that the map

Homp (L(S (61), L{S (82)) - Homsix(Ksix (61), Ksix (62))

is injective.
So assume that « € Homy (Kg(e1), Kg(ez)) and « is zero on K (ey). Let

Ay — A; — A, denote the extension e¢;. Since F f i 13 1s free, by the last six term

exact sequence of Theorem 2.13, ,ofl‘i is surjective. Hence, o5, ; = 0.

el . el . . . . el
Letx € H, ;. Since p, ;. is surjective, there exists w € F} ;; such that

1,n,0u
p;:i-ﬁ-l (w) = hn,’il,e)l t(x)’
By Diagram (2) in Theorem 2.13,
1.n, 1,Li
Moy (e, W) = prlir (w).
Therefore,

1,1,i 1,n,0ut A 1,n,i
¥ () € kerhy 12 = im0,

. e
Thus, there exists y € Fl’t. 4o such that

X = hl,l,in (w) + hl,n,in (y)'

n,i,eq n,i,eq
Hence, a., , (x) = 0. O
Lemma 2.16. Let e: 2y <— Ay —> Ay and ey By — B —> B, be extensions

of separable, nuclear C*-algebras in the bootstrap category N. Then T, o, is an
isomorphism if and only if I'se| se, is an isomorphism.
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Proof. Note that the homomorphism S from
Homgix(Ksix(€1). Ksix(e2)) to Homyix(Kiix(Ser), Kiix(Se2))
is an isomorphism (since S? from
Homgy (Kix(e1). Kiix(e2))  to  Homgy (Kqix(S%e1). Kiix(S%e2))

is an isomorphism). The same is true for the derived functor. By Bonkat’s
UCT and the five lemma, it follows that the homomorphism S from KKg (e1,€2)
to KKg(Sey,Sey) constructed in [5] is an isomorphism. It also follows from
the five lemma, that the homomorphism S from Homy (Kg(e1), Ke(ez)) to
Homp (Kg(Se1), Kg(Sez)) is an isomorphism. O

3. Geometric projective resolutions for extensions of Kirchberg algebras

In this section, we will — for each given cyclic six term exact sequence (Gi)f:0 of
finitely generated abelian groups with G3 = 0 and G5 being a free abelian group —
construct a very specific, concrete projective resolution and realize it as coming from

a short exact sequence of extensions of simple C *-algebras.
m
——

First we note that the homomorphism that sends f to diag( f, /..., f) induces
a morphism from ¢, o to ¢,,,,0 and a morphism from f, o to §,,,0. Therefore, we
have homomorphisms

e . e e
Kn,mn,i' an,i g Fn,i

e . e e
Op mn,i+ Hmn,i - Hn,i'

By identifying I, 0 with the sub-C *-algebra
{f € Co((0,1],M, ® My,) : f(1) € Cly, ® Clp,,}

we get morphisms from esz.0 to My (¢4,0) and from §pu 0 to M, (§22,0). Hence, we
get homomorphisms

e . e e
Yomn,m,i+ Fm,i = Ty

e . ge e
an,m,i' Hm,i e Hnm,i'

Lemma 3.1. Let e:Ry — Ay — A, be an extension of separable, nuclear
C*-algebras. Then

4 e e e e e
o) . = . o) . = .
Kn,mn,t pnm,z pn,l J{mn,m,t pm,z npmn,z
e e _ ﬂe e e __ pe
n,i o Kn,mn,i =m nm,i nm,i o J{nm,m,i — Fm,i
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and the following diagrams

].m}"l,in l,)’lrr!,out hl’”-l’in hl.m,tlut
e mn.i.e e mn.i,e ) e m.,i,e e m.i.e )
Fl,i+2 Hmn,i Fnni+1 Fl,i+2 - Hm,i —  Im,i+1
e e e e
l jwn,mn,i LKn,mn,i—H l lxmn,m.i jxmn,m,i—i-l
F¢. He. F, Fe. —H¢ . — = F, .
1,i+2 hl,n.in n,t hl,n,oul ni+1 1:1+2h1,mn,[n mn,l hl.nm.om mn,i+1
n.i,e n.i.e mn.i,e mn.i.e
1,1,1'(1 l,l,a'ut hl,l',in hl,]',uut
e mn.i.e e mn.i.e ) e m,i,e e m,i.e )
Fl,i+1 Hmn,i Fiits Fl,i+1 > Hm,i — Fiit3
e e
‘ jwn,mn,i Lxm lxn lxmn.m.i ‘
Fe. He. Fy; F¢. —H¢ . —— = Fy;
1,i+1 hl.l,m n,t hl,l,oul Li+3 1:l+1hl,l.in mn,i hl,l.mu Li+3
n.i.e n..e mn.i.e mn.i.e

are commutative fori = 0,1,2,3,4,5.

Proof. The first four equations follow just like in ordinary K-theory with coefficients.
For every extension
e Ay — AL — A,

of C*-algebras, we let i(¢’) and q(e’) denote the extensions
A S A 50 and 0 A, > A,

respectively [5, Section 2]. For commutativity of the four diagrams, we note the
following.

(1) Note that the map f + diag(f, f...., f) induces a homomorphism

i(en,Z)( €n,2 q(en,Z)

o

i(enm,Z)C—> Chm,2 ——>> q(enm,Z)

of extensions. Applying mc to this diagram, fori = 0,1,2,3,4,5, we get the
first diagram.

(2) Note that the homomorphism from e, 0 to M, (¢,,0) induces a homomorphism
i(enm,2)(—> Chm2 ——>> q(enm,Z)
i (Mn (em,Z))(—) My, (em,Z) —q (Mn (em,2))

of extensions. Applying mc to this diagram, fori = 0,1,2,3,4,5, we get the
second diagram.
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(3) Note that the map f + diag(f, f...., f) induces a homomorphism

i(en,O)( €n,0 Q(en,o)

l

i(enm,O)(_> Chm,0 — > q(enm,O)

of extensions. Applying mc to this diagram, fori = 0, 1,2, 3,4, 5, we get the
third diagram.

(4) Note that the homomorphism from e, o to M, (es,,0) induces a homomorphism

i(enm,O)Cé Chm,0 ——>> q(enm,O)

| |

i (Mn (em,O))C—> M (em,0) —q (Mn (em,O))

of extensions. Applying mc’ to this diagram, for i = 0,1,2,3,4,5, we get the
fourth diagram. O

Definition 3.2. By a Kirchberg algebra we mean a simple, purely infinite, separable,
nuclear C*-algebra.

Remark 3.3. Strong pure infiniteness is considered in [10], and it is shown that a
separable, stable, nuclear C *-algebra 2l is strongly purely infinite if and only if 2
absorbs O, i.e. if and only if A = A Q@ Oo.

It is shown independently by Kirchberg, and by Toms and Winter (cf. [18,
Theorem 4.3]) that (0 ,-stability passes to extensions, i.e. if 2l and B are ().-stable,
so is every extension of [ and ‘B. The opposite was shown by Kirchberg and Rgrdam
(cf. [10, Proposition 8.5]).

Thus we can note that a separable, stable, nuclear C *-algebras with finitely many
ideals is strongly purely infinite if and only if it is O -absorbing if and only if it is in
the smallest class of C*-algebras closed under extensions and containing all stable
Kirchberg algebras.

In particular, every extension of a Kirchberg algebra by another Kirchberg algebra
is strongly purely infinite.

Proposition 3.4. Let (G; )f=0 be a cyclic six term exact sequence of countable abelian
groups, and let
(Hi)io = (F)i=p > (Gi)i=g (3.1)

be any projective resolution with countable abelian groups, only. Then there exists a
short exact sequence
Se — ¢” — ¢ (3.2)
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of extensions where e and e’ are extensions of stable Kirchberg algebras in the
bootstrap category N, and e” is an extension of nuclear, separable C*-algebras in
the bootstrap category N, such that the cyclic six term exact sequence associated
with (3.2) degenerates into short exact sequences

Ksix(e”) — Ksix(e/) —> Ksix(Sze)

which are isomorphic to the projection resolution in (3.1) (in such a way that F f;/ o~
H;, Fle; ~ F;, and Flsie ~ Gjfori =0,1,2,3,4,5, of course).

Proof. According to Proposition 5.4 of [16], there exist essential extensions e and e’
of stable Kirchberg algebras in the bootstrap category N, such that K, (e) and
Kix(€’) are (isomorphic) to the sequences (G;)?_, and (F;);_,, resp.

We have an epic morphism ¢: K (¢') — Kgix(e) given from (3.1). Using the
UCT of Bonkat (see [1, Satz 7.5.3]), we can lift this to an element x € KKg(e, e’).
Using Kirchberg’s lifting result for nuclear, stable, strongly purely infinite
C*-algebras (see [9, Hauptsatz 4.2]), we know that x can be lifted to a morphism
Y = (Yo, Y1, ¥2): e — ¢ of extensions.

Consequently, K () = ¢. Let now

Se e — ¢
be the mapping cone sequence of the morphism 1 (see [1]). Then e” is an extension
of nuclear, separable C *-algebras in the bootstrap category V. Since the index and
exponential maps correspond to the epic morphism Kjix (), the cyclic six term exact
sequence degenerates into short sequences of the form

Ksix(e”) — Ksix(el) e Ksix(sze)-

Necessarily, Kix(e”) has to correspond to (H,-)is=0 since this is (up to isomorphism)
the kernel. O

Assumption 3.5. For the rest of this section, let

Goﬁ-GlﬁGz

T |

GshG4hG3

be a given cyclic six term exact sequence of finitely generated abelian groups. Assume
moreover, that Gz = 0 and that Gs is a free abelian group. Consequently, G4 is also

free.
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According to the structure theorem for finitely generated abelian groups, we can,
up to isomorphism, write G, as

(Z m )™M @ (L m)™M2 @ B (L nyay) "1
D (Z ny 1 )mz,l D (Z ”2,2)m2’2 D P (Z "k, )m2,k2
Dy Py P
@ Tt @ (Z ne,l)’nz’1 @ (Z I‘le.z)’nﬂ2 @ e @ (Z ne.ke )m(.ke
Py Dy Py
®Z°

where £,s € Ny and ( pi)le is a strictly increasing sequence of prime numbers,
(kj)§'=1’ (mi,j)];izl C N, forall i = 1,...,¢, and (ni,j)’;iz1 C N is strictly
increasing, foralli = 1,..., 4.

For each canonical generator of this group, we fix a lifting to an element of G;.
Let F, denote the group

7ML @ 7m2 gy... @ 7k
P 7" @M P .. P T2k
D---PpZ™ I P ... P L ke
YWAR

Let ¢: F, — G be the surjective homomorphism from F, to G; which sends each
canonical generator to the lifting of the corresponding generator of G, (chosen above).

There exists a ﬁnitely generated free abelian group FO and a surjective
homomorphism 79: Fo — Gy. Then we have a projective resolution of (G,~)i5=0
as follows:

0 0 Hs Hy H, H,
T
0 G4 G1®Gs—>Gs@Fg——>Fo® F, —> F, ——
Lm N4 ins ino im inz

0 Gy Gs Gy G, G

where (ni)f:() are defined in the obvious way (we use, of course, ¢ in the definition
of 1), and the (H; )f:() is the kernel of (; f:(). An easy diagram chase shows that n;
is surjective. To match the notation from Proposition 3.4, we let F3 = 0, Fy = G4,
F5 =G4@G5,F0 =G569750,andF1 =F0@F2.
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We will, in the canonical way, identify H, with
7ML @72 @ .. @ 7MLk
@ ZmZ.l @ Zm2.2 @ e 69 ZmZ.k2
B---PIZML T2 PP LK

and under this identification the injection A,: H» — F, can be identified with the
diagonal matrix

mi.1 mi.2 mi.k,
; nii ny1o N2 ni2 kg ni.kq
diag( pi "' ... ptt Pt Pt T
ma.1 myp o m3 ko
na.1 n21 N2 n22 n2.ko n2.ky
JZ2 Y /S Y Sy /)X N 2 s
m 1 mg 2 Mmeke
nel nea neg2 ngo ek neky
ey T py ).

4. Exactness of a sequence

If we let e; and e, be essential extensions of stable Kirchberg algebras in the
bootstrap category N with all the K-theory appearing in the cyclic six term exact
sequences being finitely generated and the Ki-groups of the quotients being free

and the K;-groups of the ideals being zero. Now let Se; i) e l//» ¢’ be a short
exact sequence of essential extensions of stable Kirchberg algebras in the bootstrap
category N such that the induced sequence K (e”) < K (e') — Kix(S%ey) is
exactly (isomorphic to) the projective resolution given in the previous section. Then
this induces a cyclic six term sequence

Ke(Sey) —— Kg(e”") — Kg(€')
Kg(Se') <—— Kg(Se”) <—— Kg(S?%er)

In this chapter we show, that when we apply the functor Homp (Kg(—), Kg(Se3)) to
this sequence, the sequence

Hom (Ke (¢). Ke (Ses)) —— Hom (Ke ("), Ke (Se)) — Homa (K¢ (Se1). Ke (Se2))
ls
Homp (Kg(Se’), Kg(Sez))

is exact. This is the main ingredient in the proof of the UMCT in the next section.
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Assumption 4.1. Let (G;);_, be as in Assumption 3.5, and let

(e, S50 (Fs_ T2 (G

be the projective resolution given right after Assumption 3.5.

¢ ¥ . . .

Let, moreover, Se1 — e’ — ¢’ be a geometric resolution corresponding exactly
fo this resolution according to Proposition 3.4, i.e. the induced sequence K (e") —
Kgx(e') = Ky (S2ey) is exactly (isomorphic to) the above resolution.

Let

i EL4 I ’ v n’”
Ag > Ay —>» Ay, Ay > A > A, and Ay — A > AJ

denote the extensions eq, ¢', and e”, resp.

Lemma 4.2. Supposen = p?i‘j . Then H,f//l is isomorphic to

(Zn)"4 @ (Zn)™12 @ -+ @ (L)"')
@ (Zn)mz.l @ (Zn)mz,z ED v ED (Zn)mz’kZ
® - @ (L) & (Z)"? @ ® (Zn)"0 e,

HE 1 is isomorphic to

(Zn)™ & (Zn)™' > ® -+ ® (Zn)™" 1
& (Zn)"' & (Zn)"? &+ & (Zn)mz’k2
D---P (Zn)me.l st (Zn)me,z D P (Z,,)me’ké
® (Zn)*

and we may identify ker(Kg(¥')e,, ;: H — H? 1) with

008---00
@...

nij.j—ni1 m; 1 ni,j—ni j—1 m; i m; ; mj k.
® p; (Zn)™ ' @+ @ p; (Zp)™7 7 @ (Zn)™ @ -+ @ (L)
ea...
080 ---®0.

Proof. Note that n fl‘i;:Fﬁ/4 — Ff/S and n ff,:;:Ff:1 — Ff/; are injective
homomorphisms. Therefore, by Theorem 2.13,

e/ 1.1.in
e .1,
nfl 1 / hn,l,e’

e/ : e
Fl,l F1,2

HE, 0 4.1)
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1.1,in
Nz
n,l.e He//

n,l

” ”fle,/l/ ”
F 16,1 F ﬁ 5 0 4.2)

. 6‘/ e’/ . . . . e/ _ e’
are exact sequences. Since f’; and fi°; are surjective functions, im(nfy*;) = nFy,
. e’N e’ e e’
and im(nfy°;) = nFy,. Thus, H; | and H,] , are as stated.

Recall that Kg (V)5 ,: Ff; — Ff/z is equal to A,. Suppose

x = (X110, X120 X1k s
X2,1,X2,25 -+ -5 X2 ko>

e XE1LXE D X )

is an element of F¢, such that Kg (V). , (h:"1™",(x)) = 0. Since h!1™ (X (x)) =
1,2 n,1

n,l,e” n,l,e’
Ke(¥)e, (hrll”ll’,f,,(x)) = 0, by Equation (4.1), A»(x) = nfl‘il(y) forsome y € Ff,l.
Since

ni.1 ni2 n,kq
Aa(x) = (p1" ' x11. P X100 Py Xy
no 1 n2 2 n2,k2
Py X2,1, Py X1,25---5 Pp X2 ko
nea L) ek
’p({ xﬁ,lvp( xe,Zv--'spZ xe,ke’
0)
i
= P,-I’J (y1,1,y1,z,...,y1,k1,
Y2,1, V2,255 V2,kos
"7y€,17y(,23"’7y5,kgv
0).
we have that

(1) Xpp = p;" 2o, fort #1i,

(2) Xip = p?i’j_ni’vyi,v, for v < j,

3) p?i’”x,',v = p?i’j (p:’f'”_ni"’ Xi), for v > j, where p?i'v_ni"’ Xiy = iy isan
element of Z™i.v,

The lemma now follows. O

Lemma 4.3. Let e: By < B, — B, be an extension of separable C *-algebras.
If o is an element of Homp (Kg(e1), Kg(e2)) and

Qe .. =0 foralli=1,... . Landj=1,... k;,
pl-"j,4

and
a5, =0 forallk =0,1,...,5,
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then
e, 4 =0 foralln € Nxj.
Consequently, if « € Homp (Kg(Sey), Kg(ez2)) and
Qe p; =0 foralli=1,....0and j =1,...,k;,
p;
and
o, =0 forallk =0,1,...,5,
then
o, =0 foralln € Nxs.
Proof. Claim I: If a; , = Oforall k = p;, thena,, , =O0foralln = p ,_pze.
and let x =

2. Let x = h,llzzbl”(z) € F,

Let z € Hel4 with n = pi'--- p,
,3 5(x) € F . Note that X = (X1,...,Xy), where X; is in
08 @0 (Z,11)"! &+ & (Z nis)"" @0 &0

Since pi' o+ p, Xi = 0and ged(p;, p;) = 1 forall i # ¢, we have that p;'x; =0
By Theorem 2.13, there exists y; € F;}i s such that ,6;15,. 5(y,-) =X;.

By Lemma 3.1

(Z% (yl ) Zﬂ s 5(}’1 )=XxX= ﬂ;fs(x).

i=1

By Theorem 2.13, there exists a € F f ‘5 such that

4
X = Pzis(a) + Z%ij?'i 5(}’1’)-
i=1 P

Since FI]3 = 0, by Theorem 2.13, we have that & ’p’4’ is surjective. Thus, there
p;'4.e1

exists b; € H®}, . such that

i

( i) = Vi

By Lemma 3.1,
L
,pl ,()ut _
(b;)) =2 5O
i=1

12
1,n,0ut el
n,4,eq (Z Yl 4(b )) Z% gl 5( p '4,eq

N ’l’
1=
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By Diagram (2) in Theorem 2.13, p;,'s(a) = plonmoutpllin (4))  Therefore,

n,4,e1 \'n,4,e;

14 14

1,n, 1,1,i
hn,'Z,ZT’(Z X! i () + e, (a)) - Z”ij?’i SO+ As@
i i=1 !

i=

1,n,0ut
=x = h,}0"(2).

Hence, by Theorem 2.13, there exists v € F f ’10 such that

14
1,1,in 1,n,in
7= Z Xf,lps,- L6 + hy i (@) + hy 'y, (V).

i:1 9 l £
. . el el €l —
Since « is zero on pri 2 F1,0’ and F1,5’ we have that «.,, ,(z) = 0.
L

Claim 2: Ifa, , = Oforallk = pj'--- p,*, thena,, , = Oforalln € Ny,.

Se

Suppose n = pj' ~--pzem, where ged(m, p;) = 1. Setk = pi'---p,°. Let
z € Hyly Setx = h,llﬁz‘;”:t(z) € F/sandletX = B,'s(x) € Fy}. Since nX =0
and since gcd(m, p;) = 1, kx = 0. Using a similar argument as in Claim 1 we get
that
1,1,i 1n,i
z= hn,4,len1 (a) + hn,ﬁ,zll (1)) + Xf,l,k’4(y)

for some v € Fy§,a € Fis,and y € H}!,. Since « is zero on Fyy, Fys, and H',,
we have that o, ,(z) = 0.
Claim 3: a., , = Oforalln = p;.

Letn = p; forsomei = 1,...,£ and some r € N. We can assume that r # n; ;

forevery j = 1,...,k;. Lett be suchthatn;; <r <njsy; (andt = 0ifr < n;;

and t = k; if njp, <r). Letz € H,, and set x = h,llﬁzzbf(z) € F, . Note that

there exists y € F{ % and z1, . .. ,Zk; € F/\ such that
ki
e
x=pls(N+ Yz
j=1

and B,'s(z;) € F{4 is anelementof 0 @ --- ® 0 & (Zp(t,gj Y @O@--- @ 0. Set
nj = p:’ "/ We will show that either

el 1,n; out . el
n,n;,5 °© hnj,4,el ) +1m (Ion,S)

zZj € im(K
or

zj €im (%;}nj’s o h,lljnﬁzl:t) +im (oy,'s)

depending on whether r < n; j orr > n; ;.
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First note that nf;'s(z;) = 0. Note that the ker(xn: Fy, — Fy}) is

OEB EBO@(Z nll)mll@ EB(Z n”)m!t@( nzl+l )mi.t+1€B...

nik;

@ (p; Tk B OD - 0.

. er 1,k ,out el el
Also, since F1,3 = 0, by Theorem 2.13, we have that hk4e 'Hk,4 — Fk,5 is
surjective. Hence,

im (Kel o hl’nj’”m) = im (Kel )

n,n;,5 nj,4,.eq n,n;,5
and
1,n ; ,out . e
sy — 1
im (%n M5 ° hnj,4,el ) = 1m (%n,nj,S)’

when n < n; respectively n > n;.

Suppose r < n;, ;. Then
Buls(zj) =p;" g,
forsome g; € 0P --- B 0P (Z nl,)muEBOEB - @ 0. Since p;"/g; = 0, by
Theorem 2.13, there exists d; € F s such that ,3 5(dj) =g;. By Lemma3.1,

ﬂ (nn,,S( J))_plnlj_rlg )_pnlj rgj:ﬂEZS(Zj)'
Hence, z; — «,, n, s(d)) € ker(B;'s) = im(p's

Suppose r > n; ;. Then njﬂn,s(zj) = 0. By Theorem 2.13, there exists
dj € F,! 1.5 such thatﬂ 5(dj) = B,'s(zj). By Lemma 3.1,

ﬁ ( nn,,S(d )) ﬂn,, (d ) = IBZ}s(Zj)-

Hence, z; — x, n]’ s(dj) € ker(B,'s) = im(p;,'s
By Lemma 3.1,

1,n,0ut el _ Kel hl,nj,out
n,4,e; n.n;,4 = “nnj,5S nj,4,eq

when r < n; ;, and

Linj,out _ 5 1,n,0ut
Xn,nj,5© hnj,4,e1 - hn,4,e1 Xn,nj,4
when r > n; ;. Consequently,

hy'so(2) = x € im (p2‘5)

t

z : 1,n,0ut el 1,n,0ut el

+ im hn4e1 nnj, + im hn4e1 Xn,n_/,4)'
j=t+1 j=1



236 S. Eilers, G. Restorff and E. Ruiz

By Diagram (2) in Theorem 2.13, i1 o pl-Lin - — = p;'s. Hence,

n,4,eq n,4,e1

ki
. 1,1,in s el . el 1,n,0ut
z €1m (hn 4 el) + Z m (wn,n_/,4) + Z m (Xn,nj ,4) + ker (hn 4 e1)
j=t+1 Jj=1
ki t
. 1,1,in . 1,n,in
_1m(hn’4’el)—|— Zlm nnj, —|—Zlm )(nnj’ +1m(hn4el)
j=t+1 ji=1
Therefore, a., ,(z) = 0 since «a is zero on F1 0 Fle’ls, and H,f;A, for all j =
1,2,....,kj. O

Lemma 4.4. Let e;:B9 — B; — B, be an extension such that K{(B,) is
torsion free and K1($8¢) = 0. If o is an element Homp (Kg(e1), Kg(e2)) such that
o5, =0and ., , = 0foralln € Nsyandforallk =0,1,...,5, then a is zero.
Consequently, if « € Homp (Kg(Se1), Kg(Sez)), then a = 0 if o, | = 0 for all
ne€Nsyandaj, , =0forallk =0,1,...,5.

Proof. Suppose « satisfies the assumption of the first part of the lemma. Since F f 4
and F f L are torsion free and since F} % = 0, by Theorem 2.13,

oo Fii — Fh
is surjective fori = 0, 1,2, and

hllm . 1811 N H;l(), hnlm Fel N Hel

1,n,0ut, e1 el
n,0,e1°" n,le;" n,1° and h,’ : n4_>Fn,5

n,4,eq

. . . . e e
are SuI‘JCCthC homomorphisms. Hence, « is zero on F), '0, F, '1,

el el el

Fn,2’ Fn,S’ Hn,O’
el el el

and H 1 since « is zero on F1 0’ F1 1> F1,2’ and Hn,4.

Since F1,13 = Ff23 = 0, by Theorem 2.13,

1,1,0ut ﬁe,‘ n,l,in
n,2,e; ° n,3’ n,4.e;
are injective homomorphisms. Let x € Hn 5, 4 € F 3 and b € . Then

hy5 e (@2 (V) = gy 5 (hy5ler () =
,3253(0&"’3(0)) =010 (ﬁn,3(a)) =
Ty i (@5, 4 (1) = ae, o (B2, (1)

Hence, a., ,(x) = 0, a;, (@) = 0,and o3, ,(b) = 0. Thus, « is zero on Hn o Fnel3,
and F,f,'4.
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We are left with showing that « is zero on H,, 33 and H, ,'5. We first show that « is
zeroon H,'s. Letx € H,'s. Since Fy = 0, by Theorem 2.13, there exists y € Fy}
such that ffll (y) = h,ll’é”‘:;t(x). By Diagram (2) in Theorem 2.13,

1,1,0u 1,n,in r 1,1,0u
hn,S,elt(hn,Z,el (y)) = le,ll (y) = hn,S,(elt(x)'
SO, . . .
x €im (hl,n,m ) + ker (hl,l,out) — im (hl,n,zn ) +im (hl,l,ln )

n,5,eq n,5,eq n,5,e1 n,5,e1

. 1,n,in 1,1,in . el el . . .
Since h,’s’,, and h,’s’, are functions on Fy} and F ;, respectively, and since o is

zero on Fy and FY |, we have that that a,, ;(x) = 0. Thus, « is zero on H,.
Let x € H, . First note that

,1,out ,1,out
hz,3,zz (acn,3 (x)) =055 (hZ,3,(e”; (x)) =0,
1,1,0ut _ 1,1,0ut _
hn,3,e2 (Olen_3 (X)) =059 (hn,3,e1 (X)) =0.

Hence, by Theorem 2.13, there exists y € Fy7 such that h,llé’:z (¥) = ae, 5(x). By

Diagram (1) in Theorem 2.13,
FEO) = 3 (5, (0) = b3y (@, . () = 0.
Since Fy3 = 0, by Theorem 2.13, f]"’i F{% — F[% is injective. Hence, y = 0.
Thus, a., ;(x) = 0. Therefore, « is zero on H,fg. O
Theorem 4.5. Let e5:B¢ <— B —»> B, be an extension of separable C*-algebras
with K1(58¢) = 0 and K (58,) torsion free. Then the sequence
Homy (Ke (¢'). Ke (Sez)) > Homy (Ke (e"). Ke(Se2))

¢*
—> Homy (Ke(Ser), Ke(Sez))

induced by the exact sequence Se cf) e’ ip» e’ is exact.

Proof. A computation shows that the above sequence is a chain complex. Let
« € Homp (Kg(e”). Kg(Sez))

such that @ o Kg(¢p) = 0. We want to construct
B € Homy (Kg(e'), Ke(Se2))

such that 8 o Kg (V) = a.
We will construct

(:81')1'5=0: Ksix(e,) g Ksix(SEZ)
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such that B; o Kg (), ; = aj, ;. Then by Lemma 2.15, there exists a unique
B € Homp (Kg(e), Ke(Sez))

such that B o Kg(¢) = a. Recall that Kg(¥);, ; = A; in the projective resolution
of Ksix (el)' , s

For convenience, we set o; = a5, ;. We must construct Bi: FY, — F fz such
that the diagrams

A A A
0%0 0 4 Gy HS;G4EBG5
l// A l/ l// )4 L/ l// j/
Ffy ——=—Ff, Ffy—"—Ff, Ffs ——=— Ffs
a a a
| A4 | A | A
s i i

Az

A ~
Hy—2~Gsa F,

A ~
H —2'>FodF

Hy— 2 - F,

e Ao e’ e Al e/ e Ao e/
o o Fr, FY, i Fi,
aol / onl / azl /
0 1 2
Sep Ser Ses
Fro Fry Fry

are commutative. It is clear from this that a3 = 0, a4 = 0. Since Flsf)z ~ F{3=0,
¢ = 0. Also, we must necessarily have that 83 = 0 and B¢y = 0. So, it is only the
third, fifth, and sixth diagram we need to check for commutativity.

Definition of B,: Since F 16/2 is free, we will define B, on its canonical generators.
Leti € {1,...,£}and j € {l,...,k;}. Let x be one of the canonical generators of
.o / ~ . . .o 4
Z™MiJ < FY, and let X be the corresponding canonical generator of Z™i-/ C FY ,.

Setk; ; = p;"’. We claim that h,lci,’l]’_iﬁ,e,/ (X) € im(Kg(@)e, , ,)- First note that

’

58(¢)cki,j B

Seq e’
_—
Hk,"j,l Hk,'.j,l

KS(‘/’)eki'j 1

e
Hki_j,l

is exact (cf. Remark 2.14). Note that

1,1,in ~ 1,1,in ~ 1,1,in
K&(w)ekingl (hki,j,l,e”(x)) = hk,'.j,l,e/ (/\'Z(X)) = hki’j,l,e’(ki’jx)'
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By Lemma 4.2, h,lc;l”‘" (ki,jx) = 0. Hence,

R
1,1, o .
hk,'.jl,nl,e” (X) €1im (KS (d))ek,‘._/,l)'
Since o o Kg(¢) = 0, we have that o, e (h,lcil’_i”1 (X)) = 0. Since
JJ i.js1s
1,1,in ~ _ 1,1,in ~ _
hki’j,l,sez (a2(x)) - acki!j,l (hki’j,l,e//(x)) - 0’

by Theorem 2.13, there exists zz € Fyi> such that k; j f'12(z5) = aa(¥). Set

Ba(x) = fls"fz (zz). We do this for all the generators of Z™i./ and for all i, j.
Moreover, we let 8, be zero on Z°. By construction, we have that 8, o A, = a5.

Definition of By: Recall that Ff'; = Fy = Fo® F,. We define f: F{'| — F{? by
setting it to zero on fo andon Z* C F,. We now define B; on the rest of the canonical
generators. Leti € {1,...,£}and j € {1,...,k;} be given. We want to define 8,

on the generators of Z™i./. Let x be one of the canonical generators of Z™i./. Define
/
B1(x) = zz where z53 is defined as above. By construction, fi"fz of1=po0 fle’l.

Since F'¢? = 0, we have that f,°(? is injective and since
Sep e’
11 oB1oAr=paro f1oA
= 132 (o) /\2 @) fle;ll/
=0po fl‘i/l/
= flsjz oo
we have that B; o A1 = ;.
Definition of Bo: As mentioned above, we need to have B¢ = 0.

Definition of Bs: Since S2, < 2 — A, is an extension of separable, nuclear
C*-algebras in the bootstrap category N with all the K-theory being finitely
generated, the sequence

Hom (K (2), K(S%5)) ——~ Hom (K(22), K(S%,)) —2 = Hom (K(S2), K(S%5))

T

Hom (K(22). K(S%B2)) < - Homa (K (S213), K(8%B2)) <, Homa(K (8213), K(8%B2))

is exact (using the UMCT of Dadarlat and Loring, cf. [3]). Since @ o K(¢) = 0,
there exists 7 € Homp (K (2(,), K(SB,)) such that n o K(¥) = « on K(2}). Set
Bs = ’7|Ff’ :Ff/5 — FIS?. Consequently, 5 0 A5 = as.

5 ’ ’
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.. . / e . Ser . . . .
Definition B4: Since Ff, = F;! is free and ;> is surjective, there exists a
: . e Ses Sen _ e’
homomorphism f4: FY , — Fyj? such that f14° o fa = Bs o ff,.

Definition B3: As mentioned above, we need to have 3 = 0.

By construction, BjoA; = a; fori =0, 1,...,5and (B;)}_, is ahomomorphism
from Kjix(e’) to Kix(Ses). O

Theorem 4.6. Let e:By — B —»> B, be an extension of separable C*-algebras
with K1(B¢) = 0 and K1(*B,) torsion free. Then the sequence
¢*
Homy (Keg(e”), Ke(Sez)) — Homy (Ke(Ser), Ke(Sez))

2 Homy (Ke(Se'). Ke (Sea))

. ¢ Voo,
induced by the exact sequence Sey — e’ —» e’ is exact.

Proof. It is easy to check that the above sequence is a chain complex.
Let « € Homp (Kg(Se1), Kg(Sez)) such that §(o) = 0. By Lemma 2.15, if
(Bi):_, is a homomorphism from Kjix(e”) to Kqix(Se>), then there exists a unique

B € Homp (Kg(e”), Kg(Sez))

such that B;, , = B;. By Lemma 4.3 and Lemma 4.4, it is enough to construct
(Bi);_, such that its unique lifting

B € Homy (Kg(e”), Ke(Ses))

satisfies the property that « — 8 o Kg(¢) is zero on H,f‘ ’ell and F ls Zl foralln = p?i’j
andk =0,1,...,5.
/ 2
Since the homomorphisms from Ff, to F 18 kel are surjective and §(a) = 0, we

have that o is zero on FlS 2‘. Note also that any choice of chain map (,Bi)fzo, its
unique lifting B satisfies the property that

BoKe(¢) =0

on F IS “!. Consequently, we need a chain map (B;)7_, from Ky (e”) to Kx(Sez)
such that its unique lifting B satisfies the property that

(ﬁ OKS(Q&))QH.I = Q¢ 4

for n =p?i'j foralli =1,....,£and j = 1,..., ky.
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First we want to define a homomorphism from F¢’ L 2 to F Sez. It will be defined
on each of the direct summands as follows. Leti € {1 Z} and j € {1,...,k;}
and setn = p?”’ . Recall that Ff; is
Tl @y @ 7k
® Zmz,l ®---P Zmz,k2
- PZEL PP LK,

Let e; j, be one of the canonical generator of Z™i-/. Note that
1,1,i 1.1, 1,1
Ke(W)e,, (n n, 1len (eij)) = h,, 1?()‘2(‘31}],0) = hn,l,len/(”ei,j,t)-

By Lemma 4.2, h}3" (ne; ;) = 0. Since

n,l,e’

Se;
_—
n,l n,l

K€(¢)L’n’] He/, S(W)en 1

el He
is exact (cf. Remark 2.14), there exists x; j; € H 1‘ such that

11,
Ke(@)e, 1 (xije) =Ny len//(ei,j,t)-

Se1 1,1,0ut o Seq
Since o is zero on Fy,' and 1, 7’s, (xi,j) € Fpy

1,1,0ut _ 1,1,0ut
e (e, (Xi ) = gy 4 (1 8e, (Xijin))
—0.

By Theorem 2.13, there exists y; j; € FISZZ such that h,ll 11 ’S”ez (i jr) = @eyy  (Xiji2)-
Note that

n,1,out 1 1,in n ,1,0ut
n,1,3e2( n,1 Sez(yl s t)) n 1,Se> (“en 1(xi,j,t))
n,1,out
=053 (hn 1,Se; (xiaj!t))

=0.
By Diagram (1) in Theorem 2.13,
iy es (148, 01.0) = Fi52 Oj) = 0.
By Theorem 2.13, there exists z; j; € F; Sez such that f~18? (zi,jt) = Yi,jt- Note that
Sez = flS . Define ¢; j: Z™i7 — Fse2 by
Gijeije) = Zijit-

Define ¢: Fﬁz — Fse2 by
ki

=iziu~

i=1j=1
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Definition of the chain map (B;);_,: Define fi: Ffﬁ — Fls’el2 by ¢ o fle/l/ Define
Ba: Ffy — F2 by f2 0. Set B; = 0fori = 0,3,4,5. A computation shows
that (B;);_, is a homomorphism from K (e”) to Ky (Se2).

Let 8 € Homp (Kg(e”), Kg(Sez)) be the unique homomorphism such that
Bs, ; = Bi. We need to check that

oa—pBoKg(p) =0

on Hnsi‘ foralln = p;*/
Since §(«) = 0 and §(B o Kg(¢)) = 0, we have that
Ue, ) = (:3 o KS(¢))en’] (y) =0

forall y € im(HnS,e]/ - Hnsﬁl)'

Note that
1,1,
(BoKe@), ,,, Gijo) =BT (eio)
p; i ,1,
= phLin A __ 1 1L,1,in Sex,
= hp;’li,j,l’Sez (Bleij)) = hp;’li_j,l’sez (f 12 zig0)

1,1,in
= i ijt) = Qe n; ;o Xijr).
P?l"l,l,Sez(y i) ep?l’j.l( i)
Foreachi =1,...,fandeach j = 1,...,k;, set

Xij = span Xij.
1<t=<m; ;

By the above equation, we have that

(BoKe(@)), , = () =0, (x). forallxeX,;.
pil“ 1 P

For convenience, set d; ; = p?i’j. We will first show that (8 o Kg(¢p)) = o on

Se| Seq :
Hdi,l,l‘ Letx € Hd,-~1,1' Since

. rge” e
Ke()ey, 1 () € ker (Ke(W)ey, | HY 1 — H, | 4).
by Lemma 4.2 there exist z1, z2, ..., 2, € Ff; with z; in

0P---p0p Z™J EBOEB"'EBOEFf,;

such that

l

ki
1,1,i
Ks(@)ey () =Y hy'™ 0(2)).
j=1
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By Lemma 3.1,
1 1,in 1,1,in
l 1 ]e//(Z.]) - l 1, lj,l(hdl‘_j,],e”(zj))'

By Lemma 4.2, h1 L (z;)is in the subgroup of Hy e” 1 generated by

e//

1,1,
g en(eige) i1 <t <myj}.

Since
K&(d’)m 1(xl,] t) hl oLoin e//(el,]t)

Se]

there exists x; € X; j € H; " | such that

Ke@)e, ;1 () =hg"y 0(25).

. .Sep )
Sety; = wd,-,l,d,-,,-,l(xf)' Then

Ke@)ey, 1 1) = 05, a1 (Ke@)ey, , 1 (x)) =y ().

Hence,
ki
Ke@ey, 10 = Ke@ey, 1 X 00)
j=1
Hence,
i S
X = Z yj € ker (KS(‘p)edi_l.l) im (Hd, L1 Hd:i,l)’
Jj=1
Thus,
ki
Pea; 11 (x) = Peg; 11 ( Z )’j)
j=1
and

(BoKe),, ()= (BoKks@), (Zy,)

243
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Note that
(BoKe @), ) = Pegy 1 (Ke@ley, . )
= ﬁed 1. 1(K8(¢)ed 1,1( Slell d,,,1( 1)))

ﬁed,ll( d; 1.d (8(¢)€d 1(xj)))
= 05 (ﬂed V(K @)ey, , 1 (x))))

zls Ij’

Se
=wg 4 1 ((B 0K&(¢))% ,l(xj))

J i
_ Sez . : . ..
=041 a1 ooy , 41(xj)) [since x; € X; ;]
Se

:aedi.lvl( 1]1: lj’l( ]))

= aedi,lsl (yj)

Therefore, (8 o Kg (¢))edi . (x) = Ueg, | (x). We have just shown that

(:B OK8(¢))edi!1!1 = aedi,lJ .
Let x € H;,e‘ |- Since
i,2s

. e// e//
K&(qs)edi'z!] (X) € ker (KE (W)edilJ . Hdi,z,l - Hdi,z,l)’
by Lemma 4.2, there exist z1, z2, ..., zk; € Ff; with z; in

0P---p0p Z™.i @0@...@0§Fﬁ;

such that
2 in in
K8(¢)ed 2 1(x) l hlllz 1,e” 1)+ thll' 12 le”

Arguing as in the case d; 1, for j > 2, there exists x; in Hz_e; 1 satisfying the
following:

M) (BoKe@),, (w4 1(x,))=ozed,_2,1(

d127 i,j>

(2) Ke(@)ey, . (@ j,elz,d, i) =

By Lemma 3.1,

o dr 1 (50)
L (Ke@)ey, 1 () = hy" 0 (2)).

12a Ij’

e ° 1,1,in _di,2 1,1,in
Xd,'.z,d,',l,l di1,1,e” — dil din,1,e”"
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By Lemma 4.2, htli 11"; o~ (21) is in the subgroup of H 1 generated by

(b (eing) 1<t < mi,l}-

l 15 le//
Since
1.1,
K&’((P)ed 1(xi,1,l) hd lml e//(ei,l,l)’
there exists x; € X;; C H , such that
1,1,
Kg(d))cdi,l’l (xl) hd llY; e//(Zl)'
Note that
Se 1
Kg(d))edil’]( 112, di 1, 1( 1)) = Xfii,Zadi 1,1(K8(¢)ed. 1.1 (xl))
e’ 1 1,in
= Xd; 5.d; 1.1 ( d;i 1, le”(zl))
din, 1.,
- di lh Izml e”( z1).
Moreover,

(BoKe@))., (a1 C0) = Beg, o, (Ke@ey, ;1 (x5 b 4,0 (D)

= ﬁed, 2.1 (Xfi;/,z,di’lJ(K&(‘ﬁ)edu,l (xl)))
= X5 a1 Begy 1 (Ke@)ey, (1))
= g (BoKe@),, ()

12:11;

Seo
- th 2: i, 1,1

Seq
aedl 2, I(Xd, 2, d s l(xl))'

(ozedi'l’1 (x1)) [since x1 € X; 1]

Set y; = ijlz:di,lsl(xl) and y; = ‘”Silz,di,j,l(xf) for all j > 2. Then we have that

(Bo 58(‘75))%-,2.1 (V) = ey, 1 (¥))

forall j = 1,2,...,k;. Also note that

ki
Y Ke@)ey, ,.1 (7)) = Ke @)y, , 1 (X)-

Jj=1

Therefore,

X = Z yj € ker (Kg(qs)ed,-!z.l) (Hd, 51 7 Hieil)
j:



246 S. Eilers, G. Restorff and E. Ruiz

Hence,

ki ki

g1 (¥) = D ey, 0)) = D (BoKe@),, () = (BoKe(@),,, ().

Jj=1 Jj=1

We have just shown that Oeg, y1 = B o Kg((l)))edi T

We can continue this process to show that

Aey. .1 = (IB OK8(¢))edi’

L,J il

Jj:

forall j = 1,2,...,k;. Hence,

Ceg; ;.1 = (’B OKS((]&))%,-JJ

foralli =1,2,...,Land j = 1,2,...,k;. O

5. Isomorphism theorem

In this section we prove a UMCT for a certain class of extensions, i.e. we prove
that the natural homomorphism I, ., from KKg(e1, e2) to Homp (Kg(e1), Ke(e2))
is an isomorphism, for extensions e¢; and e, of separable, nuclear C *-algebras in
the bootstrap category N with K-groups of the associated cyclic six term exact
sequences being finitely generated, zero exponential map and with the K;-groups of
the quotients being free abelian groups.

Lemma 5.1 (General 5-lemma). Let there be given a commutative diagram

A B C D E
R
A— B —>C'—>D—>F

with abelian groups and group homomorphisms, where both rows are complexes.
Then the following holds:

(1) If the first row is exact at C, the second row is exact at B', and « is surjective,
and B and § are injective, then y is injective.

(2) If the first row is exact at D, the second row is exact at C’, and B and § are
surjective, and € is injective, then y is surjective.

Proof. Diagram chase. O
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Proposition 5.2. Lete1: R0y — Ay —» U, and e5: By — B —»> B, be extensions
of separable, nuclear C *-algebras in in the bootstrap category N, with the associated
cyclic six term exact sequences in K-theory being finitely generated, Ki(2lo) =
K1(Bo) = 0, and K1(242) and K1(®8,) being torsion free.

Then I, ¢, is an isomorphism.

Proof. Let moreover e’ and e” be as in the previous section. Since I'_ _ is natural,

KKg(e',Se;) ——————— KKg(e”,Se;) ————— KKg(Seq, Sep) ———

Fe’,Sez l Fe”.Sez l Tsey.sey l

Homy (Kg(¢'), Kg(Sez)) — Homy (Kg(e”), Kg(Sez)) ——= Homp (Kg(Ser), Ke(Sez)) —

KKg(Se', Ses) KKg(Se”, Ses)

FSe’.Sez l FSe”,Sez l

————— Homy (Kg(Se'), Kg(Se2)) — Homy (Ke(Se”). Kg (Ses))

is commutative, the top row is exact, and by Theorems 4.5 and 4.6,

Homy (Kg(e'). Kg(Sez)) —— Homp (Kg(e”). Kg(Ser)) —
—— Homy (Kg(Se1). Kg(Sez)) — Homy (Kg(Se'). Kg(Ses))

is also exact.

Since Kix(e') and Kiix(e”) are projective, e/ se,, [er ses» I'se’,sen» aNd T'se s,
are isomorphisms (cf. Lemma 2.15). So by the general 5-lemma (see above), I's, ,se,
is an isomorphism. By Lemma 2.16, I';, ., is an isomorphism. O

Theorem 5.3. Let e1: Ry <— Ay —> Ay and e>: By — B —> B, be extensions
of separable, nuclear C*-algebras in the bootstrap category N with the associated
cyclic six term exact sequences in K -theory being finitely generated, zero exponential
map, and K;(2,) and K1 ($B») being torsion free.

Then the natural map T, ¢,: KKg(e1,e2) — Homp (Kg(e1), Kg(ez)) is an
isomorphism.

Proof. Note that for each j = 1,2, we have that Ky (e;) = Kx(e;,1) ® Kix(e.0)
where e;; is an extension of separable, nuclear C*-algebras in the bootstrap
category N such that K (e; 1) is of the form
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and Kjix(e;,0) is of the form

where the K’s of Kix(e},1) is finitely generated and free, and the K;’s of Kix(ej,0)
are finitely generated.
By Bonkat’s UCT and since I'_ _ is natural, we have that the diagrams

KKg(e1,e2) = KKg(e1,1 @ e1,0,€2)
Fel.ezt jrt‘l,lﬂﬁl.osez

Hom, (Kg(e1), Ke(e2)) —=> Homy (Kg(e1,1 @ e1,0). Ke(e2)).

KKg(e1,1 @ e1,0,€2) = KKg(e1,1 D er,€2,1 D ezo)

Ft?l,léBel,(Ji’zl lrel,lﬁBel,ofz,]@E’z,o

Homy (Kg(e1,1 ® e1,0), Ke(e2)) —= Homy (Kg(e1,1 @ e1,0), Ke(e2,1 @ €2,0))

are commutative.

Hence, to prove that I'y, ., is an isomorphism it is enough to prove that
Ley \@ey 0,601 ®es o i an isomorphism. Since e .er ;@es o and ey e, , are iso-
morphisms (this follows from Lemma 2.15 and an argument using [1, Lemma 7.1.5]
and the UMCT of Didarlat and Loring, cf. [3]), it is enough to prove that ¢, | e, |
is an isomorphism.

Since e; 1 is KK g-equivalent to an extension as in Proposition 5.2, by the naturality
of I'_ _ and by Proposition 5.2, I¢; | e, , is an isomorphism. O

Remark 5.4. The class of extensions that the above theorem applies to contains the
following classes:

¢ The class of all Cuntz—Krieger algebras satisfying condition (IT) of Cuntz with one
specified ideal.

* The class of all purely infinite Cuntz—Krieger algebras with one specified ideal.
* The class of all Cuntz—Krieger algebras with one specified gauge invariant ideal.

* The class of all graph algebras satisfying condition (K) with one specified ideal
and finitely generated K.

* The class of all unital graph algebras satisfying condition (K) with one specified
ideal.
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» The class of all purely infinite graph algebras with one specified ideal and finitely
generated K.

* The class of all graph algebras with one specified gauge invariant ideal and finitely
generated K.

Remark 5.5. We do not know of any counterexample to a general UMCT for the
ideal-related K-theory with coefficients, neither do we know how to prove a general
UMCT with one specified ideal. But it is clear that we can get the analogue result
when we rotate the conditions on the K-theory. We also get the analogue result when
either of the variables has four zero groups in the associated cyclic six term exact
sequence. Moreover, it is possible do certain direct sums of these as well.

6. Reduced invariant

Remark 6.1. By going over the proof once again, it is clear that if we use the invariant
consisting of all the groups Fﬁi, F,f’i, H,‘f,i foralln € N>pandi =0,1,2,3,4,5,
and all the homomorphisms

e e e e e e e e
fl,i’ n,i n,i pn,i’ Kn,mn,i’ J{mn,m,i’ a)n,mn,i’ an,m,i’
1,1,in hl,l,out hl,n,in hl,n,aut hn,l,in n,1,out
n,,e’ n,i,e ° n,e’ n,i,e ° n,e’ n,i,e

for all m,n € N>, and i =0,1,2,3,4,5, then the corresponding theorem still
holds, i.e. Theorem 5.3 still holds if we replace Homp (Kg(e1), Kg(e2)) with the
homomorphisms between the groups only respecting those natural transformations
mentioned above.

Remark 6.2. We do not know yet whether these are all the homomorphisms to
include. Let

6119[0 ;)Qh —»912 and €2Z%0 L)%l —»232

be extensions of separable C *-algebras, with e; in the bootstrap category . Then
we have, as noted in [5, Remark 6.6], natural homomorphisms

Gi:KKg(e1,e2) — KK(2;,°B;),

for i = 0,1,2. Using [5, Remark 6.6], we see that G¢ is an isomorphism if
Ko(®3) = K1(®3) = 0, G; is an isomorphism if K¢(2lp) = K1(Rlp) = 0, G5 is
an isomorphism if K¢(2l;) = K;1(21) = 0. Using this, the UCT of Rosenberg
and Schochet and the UCT of Bonkat, it is not so hard to see that KKg (e, e’)
fore,e’ € {fn,i :n € N>p,i =0,1,2,3,4,5} are generated by the KK¢g-classes of
the maps mentioned above. We believe that it is true also when one of the entries
is of the form ¢,; and the proof should be similar as well. For KKg(¢n,i,em,;),
Example 9.1 of [5] indicates that there might be some natural homomorphisms we
have not described yet.
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Definition 6.3. We now define a reduced invariant, the reduced ideal-related K -
theory with coefficients Kg‘d(e), which consists of all the groups FY;, F;,, Hy 4
foralln € N> andi =0,1,2,3,4,5. A homomorphism between such invariants
should be a family of group homomorphisms between these groups which respects

the natural homomorphisms

e e e e 4 4 e e
fl,i’ fn,i’ IBn,i’ pn,i’ Kn,mn,i’ J{mn,m,i’ C0n,mn,4’ an,m,4’
hl,l,in hl,l,nut hl,n,in hl,n,out hn,l,in hn,l,out
n,4,e’ n,4.e > n,4,e’ n,4,e ° n,4,e’ n,4,e

forallm,n € Ny andi =0,1,2,3,4,5.

Theorem 6.4. Let e1:24¢ — A1 —> Ay and e: By — B —> B, be extensions
of separable, nuclear C*-algebras in the bootstrap category N with the associated
cyclic six term exact sequences in K -theory being finitely generated, zero exponential
map, and K1 (2,) and K1 (9B,) being torsion free.

Then the natural map

Iy, :KKg(eq. e2) — Hompwa (K5 (e1). Kg'(e2))

e1,e2°’

is an isomorphism.

Proof. By going through the whole proof once again, we see that this is all we need
in order to prove the theorem. O

Remark 6.5. There are of course a few informations in the invariant which are
uniquely determined e.g. the homomorphism from Ko (2(,) to Ko(B>) is uniquely
determined by the rest of the invariant. But it would make the definition of a reduced
invariant quite fragmented if we were to take all such things out of the invariant.

7. Automorphisms of Cuntz—Krieger algebras

In this section, we use our invariant Kgd to classify the automorphism group
of a stabilized Cuntz—Krieger algebra with exactly one non-trivial ideal up to
equivalences: unitary homotopy equivalence and approximate unitary equivalence.

7.1. Unitary homotopy equivalence.

Definition 7.1. Let 2 and B be C *-algebras. We say that two *-homomorphisms
@, A — M(B) are unitarily homotopic if there exists a norm-continuous map
[0,00) 5t > uy; € U(M(®B)) such that fora € A and ¢ € [0, o0) we have that

p(a) —u;y(a)u, € B
and, moreover,

Tim g (@) = p(a),

—>00

for all @ € 2. If the images of ¢ and ¥ lie inside B, the first condition is superfluous.
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For each C*-algebra 2 we let Inny(2) denote the set of automorphisms of 2,
which are unitarily homotopic to the identity morphism on I.

Kirchberg has a very general classification theorem for (strongly) purely infinite
C*-algebras in [9, Folgerung 4.3], which in the case we are looking at specializes to
the following.

Theorem 7.2 (Kirchberg). Let e:Ry — Ay —> 2Ap be an essential extension

of separable, nuclear, stable, simple, purely infinite C*-algebras in the bootstrap
category N. Then we have a short exact sequence of groups

{1} — Tnnj, (Ay) — Aut(;) — KKg' (e, e) — {1},

where the group operation on Aut(2l,) and KKg(e,e)™! are composition of maps
and Kasparov product, respectively.

When we combine this theorem with the UMCT from previous sections we get
the following corollary.
Corollary 7.3. Let e:20y — Ay —> A, be an essential extension of separable,
nuclear, stable, simple, purely infinite C *-algebras in the bootstrap category N with
all groups in the associated cyclic six term exact sequence being finitely generated,
zero exponential map, and K1 (21,) being torsion free. Then we have a short exact
sequence of groups

{1} — Tnny (A1) — Aut(2;) — Autpe (K5 (e)) — {1}.

Remark 7.4. We can apply the above corollary to the following C *-algebras:

(1) Ay = *B; ® K, where ‘B, is a Cuntz—Krieger algebra satisfying condition (II)
of Cuntz with exactly one non-trivial ideal.

(2) 2; = B; ® K, where B, is a purely infinite graph algebra with exactly one
non-trivial ideal and finitely generated K-theory.

7.2. Approximately unitary equivalence.

Definition 7.5. Let 2 and B be C *-algebras. We say that two *-homomorphisms
@, A = M(B) are approximately unitarily equivalent if there exists a sequence
of elements {u, }52 ; in U(M(*B)) such that fora € 2 and n € N we have that

p(a) —u, ¥ (a)u, € B
and, moreover,

lim u, ¥ (a)u, = ¢(a),

n—>oo

foralla € 2L If the images of ¢ and V¥ lie inside B, the first condition is superfluous.
For each C*-algebra 2 we let Inn(2l) denote the set of automorphisms of 2,
which are approximately unitarily equivalent to the identity morphism on 2.
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Theorem 7.6. Let e1: 2y — Ay —> Ay and ez:Bg — B1 —> B, be extensions
of separable C*-algebras. Let ¢, V:e; — ey be homomorphisms. If 2y is
semiprojective, o is generated by projections, and ¢1 and 1 are approximately
unitarily equivalent, then Kg (¢) = Kg (V).

Proof. We identify 2(p with its image in %[; and B¢ with its image in B;. With
this identification, ¢o becomes the restriction ¢]g,. Since 2, is semiprojective,
by [2, Proposition 2.3], there exists a unitary u € M(8;) such that ad(u) o ¢ is
homotopic to ¥;. Let ®:2(; — C([0, 1], 2B1) be a homotopy from ad(u) o ¢; to ¥ry.

We claim that ®(a) € C([0, 1],By) for all a € y. Since 2y is generated by
projections, it is enough to show that ev, o ®(p) € By for all projections p € Ay
and for all ¢ € [0,1]. Let p be a projection in 2ly. Then there exists a partition
0=ty <ty <-+ <ty <ty =10f][0,1] such that

lev: o @(p) —evs o D(p)| <1
forall¢,s € [ti—1,t;]. In particular,
[evo o @(p) —ev: o D(p)| < 1

for all # € [0, #1]. Therefore, ev; o ®(p) is Murray—von Neumann equivalent to

evo o @(p) = ad(u) o ¢1(p)

for all + € [0,#;]. Since ¢ is a homomorphism from e; to e,, we have that
ad(u) o ¢1(p) € By. Since By is an ideal of B, we have that ev; o D(p) € By
for all £ €[0,#;]. Using the same argument in the interval [t1,%5], we get
that ev; o ®(p) € By for all ¢ € [t1,t2]. Continuing this process, we get that
evy o ®(p) € By for all t € [0,1]. Hence, ®(p) € C([0,1],Bp). We have
just proved our claim.

We have shown that ad(u) o ¢; and i are homotopic with the homotopy
respecting the canonical ideals 2y and By. Thus, KKg(ad(u) o ¢) = KKg(¥).
Since KKg(ad(u) o ¢) = KKg(¢), we have that KKg(¢p) = KKg(). Therefore,

Ke(¢) = Ke(¥). O

We believe that Theorem 7.6 is true without the semiprojectivity assumption and
the assumption that the ideal %Iy is generated by projections but we have not been
able to obtain a proof.

Corollary 7.7. Let e:20y — Ay —> A, be an essential extension of separable,
nuclear, stable, simple purely infinite C *-algebras in the bootstrap category N with
finitely generated K-theory, zero exponential map, and Ki(2l,) being torsion free.
If Ay semiprojective, then we have a short exact sequence of groups

{1} ——Inn(2A;) —— Aut(2A1) — Autpra (Kg*(€)) — {1}
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Proof. By Theorem 7.6,
Inn(2;) — Aut(A;) — Autpea(Kg4(e))
the chain complex is an exact sequence. It is clear that
{1} —Inn(2;) — Aut(2,)
is an exact sequence. By Corollary 7.3,
Aut(2;) —> Autp s (K§*(€) — {1}

is exact. O

Remark 7.8. We can apply the above corollary to the following C *-algebras:

(1) 2; = B; ® K, where 98, is a Cuntz—Krieger algebra satisfying condition (II)
of Cuntz with exactly one non-trivial ideal.
(2) Uy =*B; ® K, where *B; is a unital purely infinite graph algebra with exactly

one non-trivial ideal. The fact that 2(; is semiprojective follows from the results
in [4].
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