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The maximal quantum group-twisted
tensor product of C*-algebras

Sutanu Roy* and Thomas Timmermann™**

Abstract. We construct a maximal counterpart to the minimal quantum group-twisted tensor
product of C*-algebras studied by Meyer, Roy and Woronowicz [16, 17], which is universal
with respect to representations satisfying certain braided commutation relations. Much like the
minimal one, this product yields a monoidal structure on the coactions of a quasi-triangular
C*-quantum group, the horizontal composition in a bicategory of Yetter-Drinfeld C*-algebras,
and coincides with a Rieffel deformation of the non-twisted tensor product in the case of group
coactions.
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1. Introduction

Let G be a locally compact group acting on C*-algebras C and D. Then the minimal
and the maximal tensor products C @min D and C ®uax D carry canonical diagonal
actions of G. However, this is no longer true when G is replaced by a quantum
group G. This problem appears already on the purely algebraic level, where it
can be solved if the quantum group G is quasi-triangular and the multiplication
of the tensor product is twisted accordingly [13, Corollary 9.2.14]. In the setting
of C*-algebras, building on the work of Vaes [22, Proposition 8.3], such a twisted
tensor product was first constructed by Nest and Voigt in the case where G is the
quantum double or the Drinfeld double of some regular locally compact quantum
group H or, equivalently, when C and D are Yetter—Drinfeld C*-algebras over H
[18, Proposition 3.2]. A systematic study of quantum group-twisted tensor products,
in the general framework of manageable multiplicative unitaries, was taken up by
Meyer, Roy and Woronowicz in [16], and carried on in [17]. These constructions are
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reduced or minimal in the sense that they use canonical Hilbert space representations
and reduce to the minimal tensor product C ® D if G is trivial.

In this article, we introduce a universal or maximal counterpart to the constructions
in [16, 18]. As in [16], we start with two C*-quantum groups G and H (in the sense
of [21]), a bicharacter y € ‘L((/’l\ ® §) and two C*-algebras C and D equipped with
coactions of G and H, respectively. We then consider representations of C and D
on the same C*-algebra that commute in a braided fashion with respect to y, and
construct a C*-algebra C X%, D with nondegenerate *-homomorphisms

Jj¢:C > M(CRY, D) and jp:D — M(C R D)
such that ( jC“, Jj D“) is a universal pair of braided-commuting representations.

For example, this construction subsumes the following special cases.

(1) If y is trivial, it reduces to the maximal tensor product C ®.x D.

) If G = Z/27Z, so that C and D are Z/2Z-graded C*-algebras, we obtain
the universal C*-algebra generated by a copy of C and a copy of D satisfying

de = (=1)l<lldled for homogeneous elements ¢ € C and d € D of degrees
lc], |d] € {0, 1}.

3 IfH = G and D is the universal dual C*-algebra of G, we obtain the universal
crossed product C x, G".

Our maximal twisted tensor product shares many of the properties of the minimal
twisted tensor product, which we denote by &ffﬂn, established in [16] and [17]. We
show that it carries a canonical coaction of the generalised Drinfeld double © , (G, IH)
(see [19]), yields a monoidal structure on the category of G-C*-algebras in the case
where G is quasi-triangular, and is functorial with respect to G and H in a natural
sense.

We also show that the maximal and the minimal twisted and non-twisted tensor

products are related by a commutative diagram of the form

(C R D) 3D (G, H) —=—+ (C ®pax D) x (G x H) (1.1)

| ¢

(C X, D) %D, (G, H) —=— (C ® D) x (G x H),

min

where the lower isomorphism extends [16, Theorem 6.5]. The upper isomorphism
yields a quick proof of the following result, which extends our list of examples:

(4) If G and H are duals of locally compact abelian groups, then C R, D is a
Rieffel deformation of the maximal tensor product C ®pm,x D in the sense of
Kasprzak [8].

The corresponding assertion for the minimal twisted tensor product is contained
in [16, Theorem 6.2]. If C or D are nuclear, then (1.1) implies that the images
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of C B D and C ®X. D in the respective crossed products on the left hand
side, but not necessarily the algebras themselves, are isomorphic. In particular,
the canonical map from the maximal to the minimal twisted tensor product is an
isomorphism if (i) C or D is nuclear and additionally (ii) the coaction of D, (G, H)
on C ®¥,. D is injective.

Finally, we consider the case where C and D are generalized Yetter—Drinfeld
C*-algebras, show that the maximal twisted tensor product is a generalized Yetter—
Drinfeld C*-algebra again, and obtain a bicategory whose objects are C*-quantum
groups and 1-morphisms are generalized Yetter—Drinfeld C*-algebras. Here, we need
to work with coactions of universal C*-quantum groups.

A recurring issue that arises here is to verify that certain pairs of representations
of the C*-algebras C and D or of the C*-algebras A and B underlying the
C*-quantum groups G and H satisfy braided commutation relations, and to check
how such relations transform if various representations are put together. Instead
of case-by-case calculations, we present a categorical approach where braided-
commuting representations are interpreted as 2-morphisms in cubical tricategory,
and the horizontal and vertical compositions account for all constructions that we
need to consider.

This article is organized as follows. In Section 2, we first recall notation and
preliminaries concerning C*-quantum groups and their morphisms. In Sections 3
and 4, we introduce the notion of braided commutation relations for representations
of C*-quantum groups, first on the universal and then on the reduced level. After
these preparations, we define the maximal twisted tensor product in Section 5,
establish several of its properties in Section 6, and construct the isomorphisms in
the fundamental diagram (1.1) in Section 7. In Section 8, we pass to coactions
of universal C*-quantum groups, and in Section 9, we consider the maximal
twisted tensor product of generalized Yetter—Drinfeld C*-algebras. In the appendix,
we summarize the relation between coactions of C*-quantum groups and their
universal counterparts, and consider the push-forward of non-injective coactions
along morphisms of C*-quantum groups.

2. Preliminaries

Throughout we use the symbol “:=" to abbreviate the phrase “defined by”. All
Hilbert spaces and C*-algebras are assumed to be separable.
For two norm-closed subsets X and Y of a C*-algebra, let

X Y ={xy:xeX,yeV ™,

where CLS stands for the closed linear span.
For a C*-algebra A, let M (A) be its multiplier algebra and U (A) be the group of
unitary multipliers of A. The unit of M(A) is denoted by 14. Next we recall
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some standard facts about multipliers and morphisms of C*-algebras from [14,
Appendix A]. Let A and B be C*-algebras. A *-homomorphism ¢: A — M(B)
is called nondegenerate if ¢(A) - B = B. Each nondegenerate *-homomorphism
¢: A — M(B) extends uniquely to a unital *-homomorphism ¢ from M (A4) to M(B).
Let C*alg be the category of C*-algebras with nondegenerate *-homomorphisms
A — M(B) as morphisms A — B; let Mor(A,B) denote this set of morphisms.
We use the same symbol for an element of Mor(A4, B) and its unique extenstion
from M(A) to M(B).

Let # be the conjugate Hilbert space to the Hilbert space J. The transpose
of an operator x € B(H) is the operator x” € B(H) defined by xT(§) := x*& for
all¢ € . The transposition is a linear, involutive anti-isomorphism B (#) — ]B%(J? ).

A representation of a C*-algebra A on a Hilbert space J¢ is a nondegenerate
*-homomorphism 7: A — B(H). Since B(#) = M((K(H)), the nondegeneracy
conditions 7w (A4) - K(H) = K(H) is equivalent to 7w (A)(H) being norm dense in J,
and hence this is the same as having a morphism from A to K(#). The identity
representation of K(#) on J is denoted by idg. The group of unitary operators on
a Hilbert space # is denoted by U(H). The identity element in U(H) is denoted
by 1g.

We use ® both for the tensor product of Hilbert spaces and minimal tensor product
of C*-algebras, which is well understood from the context. We write X for the tensor
flipHX QK —> KQH, x ®y — y & x, for two Hilbert spaces # and K. We
write ¢ for the tensor flip isomorphism A ® B — B ® A for two C*-algebras A
and B.

We use the leg numbering on the level of C*-algebras as follows. Let Ay, A5, A3
be C*-algebras. Fort € M(A; ® A,), we write

t1p =t Q® 1A3 € M(A] ® A, ® A3), 13 1= 1A3 Xt e M(Ay, ® A ®A2),
and 113 1= 012(f23) = 023(t12) € M(A; ® A3 ® A3).

In particular, we apply this notation in case A; = B(J¢;) for some Hilbert spaces #;,
where i = 1, 2, 3, and then o amounts to conjugation by 3.

2.1. C*-bialgebras. A C*-bialgebra is a C*-algebra A with a comultiplication
A4 € Mor(A, A ® A) that is coassociative in the sense that

(Ag®idg) oAy = (ida ® Ag) o Ay.
It satisfies the cancellation conditions if
Ag(A) (14 @A) =AR A= (AR 14) - Ay(A). 2.1

A morphism of C*-bialgebras (A, A 4) and (B, A ) isamorphism f € Mor(A4, B)
satisfying

Apo f=(f® f)oAu.
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A left corepresentation of a C*-bialgebra (A, A 4) on a C*-algebra C is a unitary
U € U(A ® C) satistying

(Ag ®idc)(U) = Ux3Uss. (2.2)
A right corepresentation of (A, A4) on C is aunitary U € U(C & A) satisfying
(ide ® Aa)(U) = UpaUns. 2.3)

If U is a left or right corepresentation, then U= o(U)* is a right or left corep-
resentation, called the dual of U. A corepresentation on a Hilbert space # is just a
corepresentation on the C*-algebra C = K(H).

A bicharacter between C*-bialgebras (A, A4) and (B, Ap) is a unitary
x € U(A ® B) thatis aleft corepresentation of (4, A 4) and a right corepresentation
of (B, Ap). Every such bicharacter has a dual bicharacter

7 =0(1") e UGB ® A). (2.4)

2.2. C*-quantum groups [1,20,21,23]. We follow the approach of Woronowicz,
where a C*-bialgebra is regarded as a C*-quantum group if it arises from a well-
behaved multiplicative unitary, and which includes the locally compact quantum
groups or, more precisely, the reduced C*-algebraic quantum groups of Kustermans
and Vaes [11].

Definition 2.1 ([1, Definition 1.1]). Let # be a Hilbert space. A unitary We U(H & H)
is multiplicative if it satisfies the pentagon equation

Was Wip = Wio Wiz Wos  in U(H @ H ® H). (2.5)

Technical assumptions such as manageability ([23]) or, more generally, modu-
larity ([20]) are needed in order to construct C*-bialgebras out of a multiplicative
unitary.

Theorem 2.2 ([20,21,23]). Let # be a separable Hilbert space and W € U(H Q@ )
a modular multiplicative unitary.

(1) The spaces

A= {(0Qidgp)W : w € B(H):}S, (2.6)
A= {(idg ® ©)W : @ € B(H), S (2.7)

are separable, nondegenerate C*-subalgebras of B(J().

(2) We have W € ‘U(ff@ A) C U(H @ K). We write WA for W viewed as a
unitary multiplier of A ® A.
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(3) There exist unique comultiplications
Ag€Mor(A,A® A) and A4 € Mor(4, A ® A)

such that W4 is a bicharacter for the C*-bialgebras (A, Ay) and (ff, AA).
Explicitly, foralla € Aand a € A,

Aa@) = Win@® DW,  Aa@) = o(WhH(I®a) W),  (28)

These two comultiplications satisfy the cancellation condition (2.1).

(4) There exists a unique ultraweakly continuous, linear anti-automorphism R 4 of A
with
AgoRg4=00(Rg® Ry)o Ay, (2.9)

where o0(x ® y) = y ® x. It satisfies R% = id4.

A C*-quantum group is a C*-bialgebra G = (A, A 4) constructed from a modular
multiplicative unitary as above.

If (A, A4) is a reduced C*-algebraic quantum group in the sense of Kustermans
and Vaes [11], that is, if it satisfies certain density conditions and carries an analogue
of a left and of a right Haar measure, then one can associate to it a right regular
representation W, which is a modular multiplicative unitary, and identify (A4, A4)
with the C*-bialgebra constructed from W as above. Thus, (A4, A 4) is a C*-quantum
group.

The dual multiplicative unitary is

W= SW*S € UW(H ® K),

where X (x ® y) = ¥ ® x. It is modular or manageable if W is. The C*-quantum
group generated byW is the dual G = (A A 4) of G.

Let G = (A, A4) be a C*-quantum group constructed from modular multi-
plicative unitary W as above and let C be a C*-algebra. By (2.8), a unitary
U e UC ® A) isaright corepresentation of (A, Ay) and a unitary V € ‘L((A RC)
is a left corepresentation of (A A 4) if and only if

U UisWis = WU, and  WAViaVas = VasWia (2.10)

inU(C Q K(H#) ® A) or ‘U(/f@ K(#) ® C), respectively.
If G = (A, A4) and H = (B, Ap) are C*-quantum groups and y € U(4A ® B)
is a bicharacter, then by [15, Proposition 3.15],

(R4 ® Rp)(Y) = 1- (2.11)
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2 3 Universal quantum groups [15,21].  The universal dual quantum group

(Au A“) associated to G = (A A 4), introduced in [10] in the presence of
Haar weights and in [21] in the general framework of modular multiplicative unitaries,
is a C*-bialgebra that satisfies the cancellation conditions and comes with a universal
bicharacter

4 e UA" ® A)

such that
A" = {([d Q@ w) (V) : w € A}°S
and the following universal property holds. For every right corepresentation U

of (A, A4) on a C*-algebra C, there exists a unique morphism p € Mor(ff Y, C) such
that

(p®id)VA=U in U(C ® A). (2.12)
Taking U = W4, we obtain a reducing map Ay € Mor(//l\“, //1\) such that
(Aa ®idg) VA = WA,

Taking U = 1 € U(C ® A), we obtain the counit '8\1‘;:12“ — C. By [21,
Proposition 31], it satisfies

(B4 ®idg) oAy =idg, = (idg ®8Y) o AY. (2.13)

Takmg U=(j®R A)(’DA) where j denotes the canonical *-anti- 1som0rphlsm
from A" to the opposite C*-algebra, we obtain the unitary antipode RY, which we
can regard as a x-anti-isomorphism of A By [21, Proposition 42], it satisfies
(RY)? =idz, and

~ ~ ~

AgoRY=Rgohy, A40R{=00(Ry® Ry oAY. (2.14)
Similarly, there exist unique bicharacters
AcUARAY) and WA e U @ AY)

that lift W4 € U(A ® A). The latter is constructed in [10] in presence of Haar
weights and in [15] in the general framework of modular multiplicative unitaries.

2.4. Morphisms of quantum groups [15]. Let G=A4A A) and H = (B,AB)
be C*-quantum groups with duals G = (A A 4) and H = (B A B), respectively.
According to [15], morphisms from G to H can be described in terms of bicharacters
XE ‘l,((A ® B) of morphisms from G" to H®, and in terms of right or left quantum
group homomorphisms.
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Definition 2.3. An element Ag € Mor(4, 4 ® E) is a right quantum group homo-
morphism from G to H if it satifies

(Ag ®id§) o Agp = (idg ® AR) o Ay,

~ (2.15)
(ids ® Ap)o AR = (AR ®idg) o Ag.

A left quantum group homomorphism from G to H is an element A 1 €Mor(A, B® A)

that satisfies
(idg ® Ag)o AL = (AL ®idg) 0 Ay,

(Ap®ida)o AL = (idz ® Ar)o Ap.

A morphism f € Mor(A4", BY) of C*-bialgebras is a morphism from G " to He.

(2.16)

The following theorem summarises some of the main results of [15].
Theorem 2.4. There are natural bijections between the following sets:
(1) bicharacters y € ‘U(f’l\® §) from G to H;

(2) bicharacters y € ‘U(§ ® /f) from H to G;

(3) right quantum group homomorphisms Ag € Mor(A, A ® §);
(4) left quantum group homomorphisms Ay, € Mor(A, B® A);
(5) morphisms f € Mor(A", E“) from G" to HeY;

(6) morphisms f € Mor(B", /f“) Sfrom H*" to GY;

(7) bicharacters y* € ‘L((ff“ ® é“).

The mutually corresponding objects are related by the following equations:

=o(*. x=0Aa®Ap)y" (2.17)
2= (ldgu ® £) (W) = (f ®idg,) (W), (2.18)
(id; @ ARWA =Wiixs, (d;®@ AD)WA = y, Wi, (2.19)

We denote the bicharactes y and y" associated to a morphism f:G" — He
by W/ and W/, respectively, so that W4 = Wida and W4 = Wwida,

By [15, Proposition 3.15], every bicharacter y € U(A ® B) satisfies the relation
(R AQR B)(x) = x. Using (2.14) and uniqueness of the lift of a bicharacter, we get:

(R§® Rp)(x") = 1" (2.20)
The bicharacter relations (2.2) and (2.3) together with (2.13) imply
(Ey®idg)(x") =lg.. (dz. ®Ep)(x") =15.. (2.21)

Combining these relations with (2.18), we conclude that the morphism f
corresponding to y and y" intertwines the unitary antipodes and counits,

foRY=Rsof &%of=2Y (2.22)
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The corresponding left and the right quantum group homomorphisms make the
following diagram commute,

~ (f®idgu)A" ({dqu® f)AY ~
BU@ A" AVTA g A, A' @ Bv (2.23)
KB@AA\L AAl lAA(X)RB
~ Ag AR
B®A A A® A.

In particular, this diagram and the relations (2.14) and (2.22) imply
ARORAZUO(RB‘@RA)OAL. (2.24)

2.5. Coactions of C*-quantum groups. A (right)coaction of aC*-bialgebra (4,A 4)
on a C*-algebra C is a morphism y € Mor(C,C ® A) satisfying

(idc ® Ag)oy = (y ®idg) oy. (2.25)

Note that we do not assume injectivity of y. A morphism 7 between C*-algebras C
and D with coactions y and 6 of (A4, A 4) is equivariant if § o w = (w ® id4) o y.
Following [2], we call a coaction (C, y) (strongly) continuous if it satisfies the
the Podles condition
y(C)-(lc ® 4) = C ® A. (2.26)

Note that every such coaction is weakly continuous in the sense that
{(idc @ w)(y(C)) 1w € A} = C. (2.27)

The following straightforward result is well known:

Lemma 2.5. Let G = (A, A 4) be a C*-quantum group with universal C*-bialgebra
(A", AY). Then for every coaction (C,y) of (A", A}), the following conditions are
equivalent:

(1) y is injective;

(2) y is weakly continuous;

(3) (idc ® ey)y = idc.

If y is continuous, then (1)—(3) hold.

Proof. The equivalence of (1) and (3) is straightforward, and clearly, (3) implies (2).
For the converse, observe that

(idc ® ey)y(idc ® w)y = (idc ® w)y

ifw e (4YY. O
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Suppose now that G = (A4, A 4) is a C*-quantum group.

Definition 2.6. We call a C*-algebra with a continuous coaction of (A4, Ay4)
or (A", A})aG-C*-algebraor G"-C*-algebra, respectively, and denote by €*alg(G)
and €*alg(G"Y), respectively, the categories formed by all such coactions and
equivariant morphisms.

Note that in case of (A4, A 4), we do not assume injectivity here.

3. Braided commutation relations

Let G = (A, A4) and H = (B, Ap) be C*-quantum groups. To define the twisted
maximal tensor product of a G-C*-algebra and an H-C*-algebra with respect to a
morphism from G to ﬁ we need to consider certain braided commutation relations
for representations of A and B which generalize the Heisenberg and anti-Heisenberg
commutation relations considered in [16]. We begin with pairs of representations
that lift to the universal C*-algebras A" and B" and interprete them as 2-cells in
a tricategory, where the vertical and horizontal compositions account for various
constructions that will come up later.

3.1. Braided-commuting representations. Denote by G= (/f, A 4) and H =
(B, Ap) the duals of G and H, and let f, g be morphisms from G" to H". Denote by

WwAeUuA'®A4"), wEeu(B'®BY), W/, WEeUA"® BY)

the universal bicharacters associated to A, B, f and g, respectively, see Sub-
section 2.4, by W4, WB W/ W their reduced counterparts, and by o the flip on
a minimal tensor product of C*-algebras.

Lemma 3.1. Let o and B be representations of A" and B", respectively, on the same
Hilbert space #. Then the following relations are equivalent:

W, Wit wE = wEwi ws, in U(A* ® B* @ K(¥)), (3.1)

WhVAVE = VEVAWSE inU(A® BRK(H)), (32

(f @ 0)A4(a) = Wh(g ® )oA(a)(Why)* foralla e A", (3.3)
where

Wﬁx = ((idiu ®“)WA)13’ Wz% = ((idéu ®,8)'WB)23,

et cetera.
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Proof. If (3.1) holds, then an application of A AR A B ®id yields (3.2). Conversely,
suppose (3.2) holds. Let

V/ = (idz, ® Ap)(W/) and V¢ = (idg, ® Ag)(W9).
Then
(IA\A ® idg ® idk () (ﬂlfzwfla) = Wlévﬁx
— vggvgwlgz(vgg)*
=(Aa® Ad(VE)) (Wi VE).

Since '{)'lfz Wi and Wi, ﬁ‘lgz are left corepresentations, [15, Lemma 4.13] implies
5 apA : B AT B qpA 138 (B \*
VleWIa = (ld/Tu ® Ad('Vlﬂ))("Wla'sz) ="V Wlavfz(vzﬂ) .

Thus, our initial relation lifts from 4 ® B ® K(H) to A'® B® K (#). Repeating
the argument similarly as in [15, Proposition 4.14], we can conclude that the relation
lifts to A ® B ® K(J) as well so that (3.1) holds.

Finally, (3.1) is equivalent to (3.3) because

(idg ® (f @ 0)AY) (W) = (idg ® f @ a)(WhEWS) = WhLWE,
and similarly (id 7, ® (g ® @)aAY)(WA) = Wi, W§,. O
Definition 3.2. An (f, g)-pair consists of non-degenerate representations « of A"

and B of B" on the same Hilbert space J satisfying (3.1)—(3.3).

We are primarily interested in the four combinations that arise when one of the
morphisms is the trivial morphism 7 € Mor(A", BY), given by t(a)b = e4(a)b
foralla € A, b € B, or when H = G and one of the morphisms is the identity
on A" = B". Note that the associated bicharacters are just W* = 14 ® 15 and
Wid = W4, respectively.

Definition 3.3 ([16, 19]). A Heisenberg pair for f is a (t, f)-pair, an anti-
Heisenberg pair for f is an ( f, t)-pair, and a Drinfeld pair for f is an (f, f)-pair of
representations.

Example 3.4. A (7, 7)-pair of representations is a commuting pair of representations.

Example 3.5. The counits ¢} and e on A" and B ", respectively, form an ( f, f)-pair
for every f because

(id;. ® ) (W) =1€ M(AY) and (idg, ® e3)(WE) = 1€ M(B").
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Example 3.6. Let I" be a discrete group and consider the C*-bialgebras A = Co(T")
and A = C!(I") that arise from the multiplicative unitary W := Zg Pg ® 8¢
acting on /2(G) ® I?(G), where 8, and pg; denote the canonical projection
and right translation operators on [?(G). Denote by U, € Av = c*(I),
where g € T, the canonical generators, so that W4 = > ¢ Ug ® 8g. Then a

pair of representations (o, ) of A" and A%is a Heisenberg pair, anti-Heisenberg
pair or Drinfeld pair for f = id4u if and only if for all g,2 € G, the product
a(8,)B(Uyg) is equal to

BUg)a(Sng),  B(Uga(8g-15), or B(Ug)a(Bg-1pe),

respectively.

Let us collect a few useful formulas for Heisenberg pairs and anti-Heisenberg
pairs.

Remark 3.7. Taking f or g equal to 7 in (3.3), we find that a pair of representations
(o, B) is a Heisenberg pair for a morphism g from G" to H" if and only if

a(@)® 1z, = (Wh)* (@ ® gAY (@) (Wh) foralla e A", (3.4)
and an anti-Heisenberg pair for a morphism f from G" to HY if and only if
('Wﬁ;)*(f ®o¢)A}}1(a)W£3 =1z, ®a(a) foralla e A" (3.5

In particular, if H = G so that BY = A", then (o, B) is a Heisenberg pair for the
identity on G if and only if

W;Z(a(a) ® 1)(W/§42)* = (@ ®idgu)Ay(a) foralla e A", (3.6)
and an anti-Heisenberg pair for the identity on G if and only if
Wi (1® a(a)(Wi)* = (idas ® 0)AYj(a) foralla € A", (3.7)

Intertwiners of ( f, g)-pairs are defined in a natural way.

Definition 3.8. An intertwiner from an ( f, g)-pair (o, ) on some Hilbert space #
to an (f, g)-pair (¢, ') on some Hilbert space #’ is an operator T € B(H, #')
satisfying Ta(a) = o’(a)T and TB(b) = B'(b)T foralla € A" and b € B". We
call two such (f, g)-pairs isomorphic and write (o, f) =~ (¢, f’) if they admit a
unitary intertwiner,

Evidently, all (f, g)-pairs with intertwiners form a category. We denote it

by R(/. 8).
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We shall also need a weaker notion of equivalence.

Lemma 3.9. Let («, B) be an (f, g)-pair. Then a(A") - B(B") is a C*-algebra.

Proof. Apply slice maps of the form w ® o’ ® id to (3.2) to see that B(B")-a(A") =
a(A") - B(BY). O

Definition 3.10. We call two ( f, g)-pairs (a, ) and (o', B’) equivalent and write
(o, B) ~ (', B') if there exists an isomorphism of C*-algebras ® from a(A")B(B")
toa’(AY)B'(B") suchthat oo = o’ and P o B = B'.

The unitary antipode yields a bijective correspondence between ( f, g)-pairs and
(g, f)-pairs as follows. Given representations o and 8 of A" and B " on some Hilbert
space J, we define representations & and 8 of A" and B" on the conjugate Hilbert
space J as in [16, Section 3] by

@(a) ;= a(R4(@), Bb) = B(Ry®)), (3.8)

where R} and Ry denote the unitary antipodes and TT the transpose of an operator
T € B(#).

Lemma 3.11. Let (o, B) be a pair of non-degenerate representations of A" and B
on the same Hilbert space. Then the following assertions are equivalent:

(1) (e. B) is an (. g)-pair;
) @.B)isa (g, [)-pair;
(3) (B.e) is an (f.§)-pair;
@) (B.@) isa (2. f)-pair

Proof. Copy the proof of [16, Lemma 3.6, 3.7]. 0

Since the assignment T+ T is anti-multiplicative, the assignments
(@.B) (@.f):=@.p) and T T
form a contravariant functor R( f, g) — PR(g, f). Moreover, clearly

(@.p)~@.B) & (.p)~ (. p). (3.9)

3.2. The tensor product. Next, we assemble the categories R( f, g) associated to
morphisms f, g from G" to H" into a bicategory.
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Lemma 3.12. Let f, g, h:G" — H be morphisms of universal C*-quantum groups.

(D) If (o, B) is an (f, g)-pair on some Hilbert space ¥ and (¢, B') is a (g, h)-pair
on some Hilbert space ', then

(@B ®@.p)=(e®a)o Ay (B®p)oA}) (3.10)

is an (f, h)-pair on # @ H’'. Moreover, the flips H Q@ H' = H' & H are
isomorphisms

(. p)® (&', p) = (&', p) ® (. B). (3.11)
(2) The assignments
((o/,,B’), (oz,,B)) = ()R @,B) and (T,S)— ST (3.12)
define a functor R(g, h) X R(f, g) — R(f, h).
Proof. (1) Denote the pair on the right hand side in (3.10) by («”, 8”). Then (2.3),
applied to W4 and ‘W5, implies
Wi, = Wi, Wi, and Wi, = WiLW3, (3.13)
where
Wi, = (i[dz ® @) (W12 and Wi, = (id;, ® &) (W13

in M(/T“ ® K(H) ® K(H')), and Wz% and Wztie/ are defined similarly. Now two
applications of (3.1) show that
A A B B A B A B
Wlfzwlawla/ Wzﬂ Wz,s’ = wlfzwlawzﬂ Wla/wzﬂ’
B apA A qpB
= Wzﬂ Wie Wigz Wla’WZB’
B apA B apA aph
= Wzﬁ Wlawzﬂ’wla/ Wiz
B 4B qpA apA aph
= Wzﬁ WZ,B’Wlawla/ Wia.,
and hence Wi, W, WE, = WE, Wi, Wi,
The flip provides isomorphisms in (3.11) because the unitary antipodes reverse
the comultiplications.

(2) Straightforward. ]

Recall that a bicategory B consists of a class of objects ob B, a category B( f, g)
for each f, g € ob B whose objects and morphisms are called /-cells and 2-cells,
respectively, a functor

Cren:B(g.h) xB(f.g) = B(f.h) (“composition”)
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for each f, g, h € ob*B, an object

lr€B(f, f) (“identity”)

for each f* € ob ‘B, an isomorphism

afgnila. B, y)fromeyg i(con;(v.B).a) tocrn;(v.cren(B.a))inB(f, )
(“associativity™)

for each triple of 1-cells f 5 g i hL J in 3, and isomorphisms
lr(a):crrela,17) > a and rg(a)icrgqe(lg.a) > inB(f g)

for each 1-cell f 5 g in *B, subject to several axioms [12].

Proposition 3.13. Let G and H be C*-quantum groups. There exists a bicategory B,
where the objects are all morphisms f:G" — H", the category B(f, g) is the
category of (f, g)-pairs with intertwiners as morphisms, the composition functors
B(g,h) xB(f, g) — B(f. h) are given by (3.12), the unit object 1 € B(f, f) is
(e} €g), and the isomorphisms

afeni(@p). @ )" B"). Ir((p). and rs((e.p))

associated to pairs of representations on Hilbert spaces 3, J’', and ' are the
canonical isomorphisms

HRJIH'QH") - (HRQIHNQHK', CRH — H, and HIC — H. (3.14)

Proof. The isomorphisms in (3.14) intertwine the representations of A" involved
because

(dgv ® APAY = (A} ®idgu)AYy, (g4 ®idgu)AY = idyu,
and (idge @ e4)Ay =idge,

and likewise they intertwine the representations of B" involved. The coherence
conditions that these isomorphisms have to satisfy in order to obtain a bicategory
reduce to the corresponding coherence conditions for the monoidal category of
Hilbert spaces. O

From now on, we suppress the isomorphisms in (3.14) and pretend the monoidal
category of Hilbert spaces to be strict. Then the bicategory constructed above
becomes a strict 2-category. We denote this 2-category by €(G", H").
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3.3. The cubical tricategory. We now vary G and H and assemble the associated
2-categories €(G", ]ﬁ[“) into a tricategory that is rather strict, namely, cubical [5,7],
or equivalently, into a category enriched over 2-categories, where the latter are
equipped with the monoidal structure due to Gray [6].

LetF = (A4,A4),G = (B,Ap) and H = (C, A¢) be C*-quantum groups.

Lemma 3.14. Let ¢:F" — G" and :G" — H" be morphisms. Then there exist
strict 2-functors ¢*: €(G", H") — C(F", H") and ¥«: €(F, G) — €(F, H) such that
Jor each morphism f, each pair of representations («, B) and each intertwiner T,

o f=fop, ¢*(@p)=(xod.p), ¢*T=T,
Vuf =V o f. Yu(ap)=(Bov). YT =T

Proof. The verification is straightforward. For example, if f,g:G" — H* are

morphisms and (&, 8) is an ( f, g)-pair, then (x o ¢, B) is an (f o ¢, g o ¢)-pair
because

féC B _ S wa wB — wBwad ws& — wB wC g9
Wiz Witap) Wap = W5, W3, Wap = Wap W3 W5, = Wapg Witas) Wiz -
where we used the relation (idg, ® P (WE) = W¢ = (¢ ® idgu)(WH). O

Lemma 3.15. Given morphisms f,g:F" — G" and f',g":G" — HY, and an
(f, &)-pair (a, B) and an (f’, g")-pair (&', B’), there exists an isomorphism

UL = WE,S: fl@. )@ g* (@ . ) = f* (. B) ® gile. B).

Proof. Denote the underlying Hilbert spaces of («, 8) and (¢/, ') by # and J#’, and
let

(r.8) = fl@.p) @ g* @ .p) = (@@ 'QAL. (BF @ B)A}).
.8 = f . B)®gula. B) = (&' f @ )AL, (B’ ® Bg)AR).
Then by (2.2), (2.3), and (2.18),
Wi, = W WE, € U(A" @ K(JH) @ K(X),
Wi, = W, Wi, € U(A" @ K(H') @ K(H)),
WG = W/, WG € U(C* @ K(H) @ K(H")).
WG = W We, € UC @ K(H') @ K(H)).
and W‘gﬁ Y intertwines (y, 8) and (y’, §') because by (3.1),
WE, Sas Wi, = WE Sos Wik W8, = W/, WE WE 05 = Wi, WE 303,

W5ﬂ223W108 = Ezy,(Wéga/)*WlJ; Wﬁ‘}’ = 223W16“5/Wigﬂ(wga/)* = WICS/Wf/ﬂ 223.
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Finally, if T intertwines (&, ) and some pair

(.8
f — &,

and S intertwines (&', ') and some pair

, (a///’ﬂ///) ,

fr—4g,

then clearly R -
WELE(T®S) = (S®@T)WE, 4,5 O

We can now define a second composition of pairs of representations as one part

of a cubical functor [5]; see also [7].

Proposition 3.16. Let F, G and H be C*-quantum groups. There exists a cubical
Sunctor €(G", H") x &(F", G") — ¢(IF", H"), given on pairs of objects by (f', f) >
f' o f, on pairs of representations

7 @) and 7 @,

by
(@' B).(@.B) = (. ) o (. p):= (' B) ® gl B).
and on pairs of intertwiners by (T", T) — T @ T".
Proof. We show that the functors and the unitary intertwiners obtained in

Lemma 3.14 and Lemma 3.15 satisfy the conditions in [7, Proposition 5.2.2].
Suppose given morphisms, pairs of representations and intertwiners as follows:

(a,8) (@’.8)
/\ . u u /\ . u /\u
f Jr g in¢F",G") and f’ I g’ in¢(G", H").
~ v ~ v
(.8) o'.8"

Then the compositions of the 2-cells in

fi(a,B) Fr@p)
flof T W flog and flof—T"2 o piog
fi(r.8) U((“’Bﬁ‘/’

o8 | T @8 g @) f*@.B) @By | L 8

FL@B)
gog gof T __—glog

M)

«’.8")
Uiy.s)

gof

gh(,6)

coincide because they are just
(T'@ WU T @ 1) = (T 9 HWES(T ® 1)

(.8)
B («,8")
=(T'® T)Wa,ﬂE =(T'® T)U(O‘Zﬂ) .
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Next, suppose that we have morphisms and pairs of braided-commuting represent-
ations

(a,8) .8)

/, 7 /’8/
f——>g—— hin€[F",G") and f’mgu

B in €(G", HY),
(3.15)
with underlying Hilbert spaces #, K, #’, XK', respectively. Write

@.v) =8 ®(@p) and (¢".¥)= (8@, B,
and consider the diagram

frof—LEB gy floh (3.16)

@ ﬁ/)/ | @ ﬁ’)/
S*,B) U(g!"g) g*’,p) U(ﬁg) h*(',B")
= =

JL(.8)

4
gof g4 (@,B) g'og g4 (1,6) g'oh
( 7 5/)/ | ( / 8/)/
108 ul'3 08 Uy W)
= v
Wof hog h oh.
h (e, B)

R (v.8)

Then by (2.2) and (2.3),

/, 7 /’8/ A~ ~
(U((ogm,ﬂli3 ))23(U(Exy,/3) ))12 = (W(gﬁ Eﬂ,ﬂ’)za(wﬁﬂzﬂ,x’)n
= (Wyg)Znaoan = Uls)”
and (U(a ’ﬂ ))lz(U(a 4 ))23 = (Wﬁszxﬂ’)lz(wﬁﬁ EJt’,J(")23

¥,8) (@.8)
= (Wi, ) Sxewnn = U(S;i,’f) ),

where ¥ g g denotes the flip # ® #' — H' ® H et cetera. Thus, the three axioms
in [7, Proposition 5.2.2] hold and the assertion follows. O

Note that for general pairs of representations as in (3.15), the two compositions

((@.B)o(a.B) @ ((y.8) 0 (y.9))

= f*. B) ® gi(@. B) ® g* (v, ) ® W, (y.9),
((@.B)®(y'.8)) o ((@.B)® (y.9))

= . B)® [ (y.8) @ N, (. B) ® hi,(y.6)

are not equal, but naturally isomorphic via 1 ® U, (2’;;‘?) ® 1; see also (3.16).

Theorem 3.17. There exists a cubical tricategory €, where the objects are universal
C*-quantum groups, the 2-category of morphisms between two universal C* -quantum
groups F" and G" is €(F", G"), the composition functors are as in Proposition 3.16,
and the composition of 2-cells is strictly associative.
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Proof. This is straightforward. For example, the composition of 2-cells is strictly
associative because for any sequence of morphisms of C*-quantum groups and pairs
of representations

S S’ S
— |, o /\ O — o
g g//

a short calculation shows that

(@ ") o (@ p))o(p) and (¢ p")o (. B)o (e pB))

are both equal to (o, ,Bg g”) ® (o f, ,B’g”) ® " f f.8"). O

4. Reduced braided-commuting representations

LetG = (4, A4) and H = (B, Ap) be C*-quantum groups as before. We now turn
to consider braided-commuting pairs of representations of the (reduced) C*-algebras
A and B, which can be defined similarly as for their universal counterparts A"
and B". Let y, y' € ‘Ll(f’f ® E) be bicharacters.

Definition 4.1. We say that two representations @ of A and 8 of B on the same
Hilbert space J# form a (x, x')-pair or (x, x')-commute if

XIZWIaWZB = W Wfi)(/lz in ‘L((/f@ B ® K(J)).

We call («, B) faithful if both & and 8 are faithful.

We will primarily be interested in the case where y or y’ is trivial. Clearly, a
(1, 1)-pair is just a commuting pair of representations.

Definition 4.2 ([16,19]). Let y € ‘L((/f ® §) be a bicharacter. A Heisenberg pair
Jor y is a (1, y)-pair, an anti-Heisenberg pair for y is a (), 1)-pair, and a Drinfeld
pair for y is a (y, y)-pair.

We define intertwiners and equivalence of (y, x')-pairs similarly as before for
(f. g)-pairs. Moreover, for every (y, x')-pair («, B), the pair (¢, 8) defined by

@(a) = a(Ra(@)’ and B(b) = B(R(b))'

foralla € A, b € B isa (), x)-pair, and the tensor product of a (y, x')-pair (¢, B)
and a (), x")-pair (&', 8'),

(@.B)® (@ p):=(@®a)ors (B&p) o Ap)

isa (y, y”)-pair again.
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Lemma 4.3. For any rwo bicharacters y, y' € ‘L((/T ® §), there exists a faithful
(X- X))-pair.

Proof. By [16, Lemma 3.8], there exist a faithful anti-Heisenberg pair for y and a
faithful Heisenberg pair for y’. The tensor product of the two is a faithful (y, x')-pair.
O

There exist canonical Heisenberg, anti-Heisenberg and Drinfeld pairs which are
unique up to equivalence:

Example 4.4. Let (o, 8) be a (1, y)-pair, that is, a Heisenberg pair for y, and
denote by t4, tp the canonical morphisms from A and B to A ® B. Since (t4,tp)
is a (1, 1)-pair, the tensor product (¢, ') := (t4,tB) ® (a, B) is a Heisenberg
pair for y again. [16, Theorem 4.6] shows that («’, 8’) does not depend on («, )
up to equivalence. We call (¢, B’) a canonical Heisenberg pair associated to y,
and (o, E/) a canonical anti-Heisenberg pair associated to y. The tensor product
(@', B) ® (o, B') defines the canonical Drinfeld pair associated to y, which plays a
fundamental role in the construction of the generalised Drinfeld double in [19].

The following result is a strengthening of [16, Proposition 3.9]:

Proposition 4.5. Let («, B) and (¢, B') be pairs of representations of A and B on
some Hilbert spaces J and K, and let y, y"" € U(A ® B) be bicharacters such that
(o, B)® (!, B) isa (x, x"')-pair. Then there exists a bicharacter y' such that («, 8)

isa (x, x')-pair and (&', B") is a (), x"")-pair.
Proof. Choose a (1, y)-pair (y,§) and a (y’, 1)-pair (y’,§’). Then
1.8 ® (., ) ® (&', ) ® (v, §)

is a (1, 1)-pair, and by [16, Proposition 3.9], there exists a bicharacter y’ such that

(7.6) ® (. B)
isa (1, y’)-pair and
@ p)® (.8
is a (x/, 1)-pair. By (3.13), the first relation implies
WI/)‘/ Wzg ng: Wz% = Wf;l/ WIIZ Wzg Wz%
= Wzg Wz?} Wlf;l/ ngc X /12 = Wzg Wll;l/ Wz% Wlﬁz X /12-

Since Wl‘;‘, Wzg = Wzg Wl‘;l, X12, we can conclude that («, 8) is a (y, y')-pair. A

similar calculation shows that (&', 8') is a (', x”)-pair. O
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Let now f, g be morphisms from G" to H" and let x =W/, y' = W&. Then
the (x, x’)-pairs defined above correspond to ( f, g)-pairs that are reduced in the
following sense:

Definition 4.6. We call an ( f, g)-pair («, f) reduced if « and f factorize through
the reducing homomorphisms A 4: A" — A and Ag: B" — B, respectively.

Lemma 4.7. Let « and B be representations of A and B on the same Hilbert space.
Then («, B) is a (x, x')-pair if and only if (@A 4, BA g) is an (f, g)-pair.

Proof. Theif partis trivial. Suppose that («, 8) isa (), x’)-pair. Choose a (1, y)-pair
(o, B’) and let

@, ") = (", B") ® (. B).
Then (o, ') and («”, B”) are Heisenberg pairs for y and y’, respectively. Denote

the respective compositions with A4 or Ag by &, g.a. p", respectively. Then
by [16, (4.3)],

A B _ quB A f A B _ quB A
Wl&/ WZE’ - WZE’ Wlfi/ W12 and Wl&” WZE” - WZE” Wl&” WigZ’

and using (3.13), we conclude that "le; W{% Wz% = W%Wﬁ.f sz. O

With respect to the tensor product, reduced pairs of braided-commuting
representations form a two-sided ideal. To prove this, we need the following well-
known result, for which we did not find a convenient reference.

Proposition 4.8. There exist unique morphisms A"} and A%;" that make the following
diagram commute,

A Al
AV @ AY A AV @ AY 4.1
idAu®AAl/ AA‘L l’AA@idAu
Ay AT
A'"® A A AR A"

Proof. Uniqueness is clear. We only prove existence of A"}". Relations (2.3)
and (2.10), applied to the bicharacter V4, imply

(id; ® (Mg ®@idan) AG)(VA) = (id; ® A ® idan) (Vi V]y
= Wlévfg = V;QW{%('V;})*

and hence (A4 ® idgv)AY(a) = VA(Aa(a) ® 140)(VA)*. O

Corollary 4.9. Let («, B) be an (f, g)-pair and let (o', B') be a (g, h)-pair. If one
of the two is reduced, then so is (a, B) ® (¢, ).
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Let us call a morphism f € Mor(4", u) of C*-bialgebras reduced if the
compositions Ago f € Mor(A4", B) and A 4 o f € Mor(B"Y, A) factorize through
A 4 and A g, respectively, such that we obtain commutative diagrams

Av L pu v fu
axf . VRs ap| o VA4
AN Ay

and denote by t € Mor(A", B “) the trivial morphism, given by a > ¢} (a)l 3.
Remark 4.10. (1) In case H =G, the identity f = id4u evidently is reduced.

(2) Itmay happen that f factorizes through A 4 and f does not factorize through A p.
For example, if G is trivial, then f = f"but f = e} need not descend to B.

The following result shows that Heisenberg and anti-Heisenberg pairs are
automatically reduced:

Proposition 4.11. If [ is reduced, then every Heisenberg pair and every anti-
Heisenberg pair for f is reduced.

Proof. Let («, B) be an anti-Heisenberg pair for f. Then by (3.5),
(f @ @)Aj(@) = Wiy(15. @ a(@)(Wip)".
We apply A  on the first tensor factor and obtain
(/7o Aa®a)A%(@) = VE (15 ® a@)(VE)*.

By Proposition 4.8, (A4 ® id4u)A}Y factorizes through A 4. Hence, so does o

Repeating this argument for the ( f ,T)-pair (B,a), we find that B factorizes
through A p. O

Of course, relations (3.4)—(3.7) have reduced counterparts which include, for
example, the following generalization of [15, Theorem 5.3 (33)]:
Lemma 4.12. Let y € ‘U(/’l\® §) be a bicharacter, denote by Ag and Aj the

associated right and left quantum group homomorphisms, and let (7, w) a Heisenberg
pair for WA, Then for all a € A,

(7 ®idg)AR(a) = rz2(m(a@) ® 1) (3,
(idg ® 7)AL(@) = 7,z(1® T(@)¥]5
Proof. We only prove the second equation; the first one follows similarly. By
Lemma 4.7, (7, 7) is an anti-Heisenberg pair for the identity on A. Denote by
f € Mor(A", B") the morphism corresponding to y and apply f ® id to (3.7) to
find that R R
(f ®TAA)Af(@) = Wi (1 ® T(Aa(@)(Wro)*. (42)

Now, apply A B ® id4 and use (2.18) and (2.23) to get the desired relation. ]
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5. The maximal twisted tensor product of C*-algebras

LetG = (A4, A4) and H = (B, Ap) be C*-quantum groups, (C, y) a G-C*-algebra,
(D, 8)aH-C*-algebra,and y € ‘L((ff ®B ) abicharacter. Note that we do not require y
or § to be injective.

We now define the maximal or universal counterpart to the minimal twisted tensor
product of (C,y) and (D, §) with respect to y introduced in [16]. The following
commutation relation (5.1) is the key.

Lemma 5.1. Let E be a C*-algebra, ¢ € Mor(C, E) and € Mor(D, E) such that
[(¢ ® @)y (c). (¥ ® B)S(d)] =0 forallceC,d €D (5.1)

and one y-anti-Heisenberg pair (a, ,g) Then this relation holds for every y-anti-
Heisenberg pair (&, B).

Proof. Denote by (4 and (p the canonical morphisms from A and B to A ® B and
regard (t4,tp) as a (1, 1)-pair. Then (2.27) implies that (5.1) holds if for all ¢ € C
and d € D, the elements

((p@a) oy ®@T4)y(c) = (¢ ® (@ ®T4)A4)Y(c)

commutes with the element
(v @ B8 ®ip)s(d) = (¥ ® (B ®1p)AR)S().
But Example 4.4 and relations (3.11), (3.9) imply that the anti-Heisenberg pair
(@®1)A4. (B®TB)AB) = (@) ® (4.18) = (14.15) ® (2. B)

does not depend on the anti-Heisenberg pair (&, 8) up to equivalence. Note that
in this argument, we could have replaced (i4,7p) by the equivalent pair (t4,tp)
everywhere. O

Definition 5.2. A y-commutative representation of (C,y) and (D, §) consists of a
C*-algebra E and morphisms ¢ € Mor(C, E) and ¥ € Mor(D, E) such that (5.1)
holds for some (and then for every) anti-Heisenberg pair (@, ,8_) for yx.

A morphism of y-commutative representations (E, ¢, ) and (E’,¢’, ') is a
morphism W € Mor(E, E’) satisfying ¢’ = Wo g and ' = Wo . If ¥ can be
chosen to be an isomorphism, we call (¢, V) and (¢, ¥') equivalent.

Let us consider some simple examples.

Example 5.3. Let y be the trivial bicharacter 1 € ‘U(/f ®B ). Then a 1-commutative
representation is just a commuting pair of representations. Indeed, an anti-Heisenberg
pair for y is given by &(a) = a® 1 and 8(b) = 1® b, and two representations (¢, V)
of C and D on a common C*-algebra y-commute if and only if (¢ ® id4)(y(c))12
and (¥ ® idp)(8(d))13 commute for all ¢ € C and d € D, which by (2.27) holds if
and only if ¢(c) and ¥ (d) commute forallc € C andd € D.
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Example 5.4. Suppose that (C,y) = (A,A4) and (D,§) = (B, Ap). Then two
nondegenerate representations ¢ and ¥ of A and B, respectively, on the same Hilbert
space form a y-commutative representation of (A4, A4) and (B, Ap) if and only if
they form a Heisenberg pair for y in the sense of Definition 4.2. Indeed, let (@, ) be
an anti-Heisenberg pair for y, that is, a (y, 1)-pair. Then Proposition 4.5 implies that
(¢ @) A 4(A) and (¥ ® B)A g(B) commute, that is, (¢, V) ® (@, B) is a (1, 1)-pair,
if and only if (¢, ¥) is a (1, y)-pair.

Example 5.5. Let I' be a discrete group and suppose that A = Cy(I") and B :=
A= C;(I") are equipped with the usual comultiplications. Then § corresponds to a
grading of D by G and y corresponds to a (left) action of G on C, which we write
as (g,c) — g - c. In the notation of Example 3.6, an anti-Heisenberg pair (c, B) for
w4 = Zg pg ® 8¢ is given by &(8;) = 6,—1 and ,g(pg) = pg. Hence, a pair of
representations (¢, ¥) of C and D is a W A-commutative representation if and only
if for every ¢ € C and every d € D of degree g,

Y oh-)Y(d) ®8y-1pg = ) Y(d)gh'-¢) ® pgbj1,
h n

that is, if and only if ¥ (d)e(c’) = ¢(g - ')y (d) forall ¢’ € C and all d € D of
degree g.
Every y-commutative representation is a crossed tensor product of C and D in
the sense of [16, Definition 2.1]:
Lemma 5.6. Let (E, ¢, V) be a y-commutative representation of (C,y) and (D, §).
Then
@(C) -y (D) =y(D)-¢(C) S M(E). (5.2)

Proof. Let (&, B) be a y-anti-Heisenberg pair on J. Since @(A) - K(¥) = K(#),
the Podles$ condition (2.26) for y gives

(ide ® @)y(C) - (Ic ® K(H)) = C @ K(H).

Similarly, (idp ® B)¥ (D) - (1p  K(¥)) = D @ K(H#). Using (5.1), we conclude

¢(C)-Y(D) ®K(H) = (¢ @ @)y(C) - (¥ ® B)8(D) - (1 @ K(H))

=(y ® B)8(D)- (¢ ®@)y(C) - (1g @ K(H))
=y(D) 9(C) K(HK).

Slicing the second leg by w € B(#)« completes the proof. O

The y-commutative representations with morphisms as above form a category.
Standard cardinality arguments show that there exists a y-commutative representation
which is universal in the sense that it is an initial object in this category.
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Definition 5.7. The maximal twisted tensor product of a G-C*- algebra (C, y) and an
H-C*-algebra (D, §) with respect to a bicharacter y € ‘L((A ® B) is the C*- algebra
C XL D= jc(C)- jp(D)

max

generated by a universal y-commutative representation (E", j5, jp) of (C.,y)
and (D, §).

Note that by Lemma 5.6, (C XX D, J¢» Jp) is a crossed product of C and D
in the sense of [16, Definition 2.1].

By definition, we obtain for every y-commutative representation (E, ¢, ) of
(C,y) and (D, §) a unique morphism

9Oy € Mor(C R, D,E) such that (¢Oy) /& = ¢ and (¢0Oy)j 5 = V.

max

The assignment ((C, ), (D, 8)) — C R}, D extends to a bifunctor as follows.

If also (C’,y’) is a G-C*-algebra and (D’,§’) is a H-C*-algebra, and if
p € Mor(C,C’) and 6 € Mor(D, D’) are equivariant, we obtain a commutative
diagram

C

CRL, D<"_D

14 PpXnax 0 0

v
T Y L)

where the representations j&, o p and jp, o 6 y-commute and

X ax 0 = (JCl'l/ ° p)D(]Du/ o 9)
Proposition 5.8. The assignments

((C.y). (D.8)) > CRY, D and (p.0)+ pR%X, 6

max
form a bifunctor from €*alg(G) x Cralg(H) to C*alg.

As one should expect, there exists a canonical quotient map from the maximal

twisted tensor product C K.« D to the minimal twisted tensor product C XX, D

introduced in [16]. To prove this, we use the following analogue of Proposition 4.5.

Lemma5.9. Let (¢, ) be a y-commutative representation of (C, y) and (D, §), and
let (o, B) be an (x, x')-pair on some Hilbert space #. Then

@) ® (@.B) := ((¢p ® ). (¥ ® B)3)

is a y'-commutative representation of (C,y) and (D, §). In particular, there exists a
morphism

(¢ ® @)yO(jp ® B)§ € Mor(C ®%, D, (C KX, D) @ K(K)),

max

where j~ and jp, denote the canonical morphisms from C and D, respectively,
to C R¥.x D.
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Proof. Let (@', B') bea (y', 1)-pair. Then (o, B) ® (@', B is a (. 1)-pair and hence
(p@a)y®a’)y(c) and (v ® 8)8 ® B)8(d) commute forallc € C andd € D. [

The minimal twisted tensor product C K*. D of (C,y) and (D, §) with respect

min
to y was introduced in [16] as follows. Choose a y-Heisenberg pair (¢, §) on # and
define morphisms j¢ and jp from C and D to C ® D ® K(H) by

jc(e) == (idec ® @)y(c)13, Jjp(d):= (idp ® B)é(d)23s forallc € C,d € D.
Then the minimal twisted tensor product is the C*-algebra

CRY,.D = jc(C)-jp(D) S M(C ® DQK(H)).

This C*-algebra does not depend on the choice of (c, B) [16, Section 4].

Proposition 5.10. For every G-C*-algebra (C,y) and H-C*-algebra (D, §), there
exists a unique quotient map C R D — C &ém D that makes the following
diagram commute:

c— ' cwx, p<2 D
jc l JD
C X¥, D.

These quotient maps form a natural transformation from the maximal to the minimal
twisted tensor product.

Proof. The natural morphisms ¢, tp from C and D to C ® D form a 1-commutative
representation by Example 5.3, and (jc, jp) = (tc,tp) ® (o, B) is a y-commutative
representation by Lemma 5.9. The desired quotient map is jcOjp. O

Let y € U(A ® B) be a bicharacter as before, and Y=o0(p* e U(A ® B) its
opposite.

Proposition 5.11. There exists a natural isomorphism C K. D = D &fﬁax C which
intertwines the canonical maps of C and D.

Proof. By Lemma 3.11, (@, ) is an anti-Heisenberg pair for y if and only if (8, &)
is an anti-Heisenberg pair for y. Therefore, two representations (¢, ) form
a y-commutative representation of (C,y) and (D,§) if and only if (¥, ) is a
¥-commutative representation of (D, §) and (C, y). O

In the case where G is a finite group and H is its dual, we can describe the
commutation relations between elements of C and D in the maximal twisted tensor
product as follows.
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Example 5.12. Suppose that I" is a finite group, that A = Co(I") and B = A= Cx(I)
as in Example 5.5 and that y = W4. Then y and § correspond to an action of I’
on C and a grading on D, and the algebraic tensor product C ® D can be endowed
with the structure of a *-algebra with multiplication and involution given by

(cod)(cod)=c(g-c")Odd and (cOd)*=(E '-c*od* (53)

for all ¢,¢’ € C and d,d’ € D such that d has degree g € I'. Example 5.5
shows that y-commutative representations of C and D correspond to nondegenerate
representations of C ® D, and therefore the maximal twisted tensor product C XY D
is canonically isomorphic to the enveloping C*-algebra C*(C © D).

In the case I' = Z/27Z, the coactions y and § correspond to Z /27Z-gradings on C
and D, and (5.3) takes the form

(cod)(cdod)= DM odd, (od)* =D oqa*,

where |x| € {0, 1} denotes the degree of a homogeneous element x.

6. Some properties and special cases of the maximal twisted tensor product

Throughout this section, let G = (A4, A 4) and H = (B, Ap) be C*-quantum groups

~

with a bicharacter y € U(A ® B) as before.

6.1. Exactness. Let (C,y) be a G-C*-algebra with an ideal / C C that is
G-invariant in the sense that y(c) = ¢ ® 1 for all ¢ € I. Denote by i: I — C the
inclusion and by g: C — C /I the quotient map. By assumption on /, y descends to
a *-homomorphism y: C/I — M(C/I ® A). Clearly, ¥ is a coaction, satisfies the
Podles condition, and makes g equivariant.

Proposition 6.1. For every H-C*-algebra (D, ), the sequence

ixr)l(mxidD qgr)m(‘laxidD

0—>IXKX D— S CKX D—S> (C/I)RX D —0

max max max

is exact.

Proof. Denote by Eg, E1 and E,, respectively, the C*-algebras in the sequence
above, read from the left to the right, and by

¢y € Mor(1, Ey), ¢; € Mor(C, Ey),
@, € Mor(C/I, Ez), V;" € Mor(D, E;),

fori = 0, 1, 2 the canonical morphisms.
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First, the map ¢ XX« idp is surjective because

Ey = 93(C/1)-¥3(D) = 93(q(C)) - ¥3(D)
= (q |Zr)1(1ax ldD)(gplu(C) ' 1#111(D)) = (q gr)fqax ldD)(El)

Next, we show that the map i KX« idp is injective. Since the natural map
r:C — M(I) is equivariant and (¢,,V,') is a y-commutative representation,
also (¢ o r,¥y) is a y-commutative representation. The induced morphism
(pg o )0y from C K. D to I B D is aleft inverse to i R, idp.

Let us finally prove exactness in the middle. Clearly, the ideal

J = (i W, idp)( B, D) =i (I)-y{(D) € C R, D

max max

is contained in ker(g XX idp). To deduce the converse inclusion, consider the
natural maps

o:C 2 M(C B, D) > M((C R, D)/J),

max max

vl D AN M(C RX, D) — M((C R, D)/J).

max max

Since ¢'(I)(C Riax D) C J, the map ¢, factorizes through the quotient map
q:C — C/I and yields a map

Py:C/1 — M((C ®E,, D)/J).

max

Since (¢, ¥y is a y-commutative representation and the quotient map ¢ is
equivariant, (¢,', ¥,') and (¢,', ¥,') are y-commutative representations. The induced
morphism

m = @30y, € Mor((C/I)RX, D, (C R, D)/J)

makes the following diagram commute,

qgr)r(mxidD

C Rt D (C/1)REx D

T /,,/

(C R¥. D)/ J,
whence ker(g KX idp) € J. O

6.2. Relation with the universal crossed product. The universal crossed product
construction can be regarded as a special case of a maximal twisted tensor product
as follows.
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Let (C, y) be a G-C*-algebra. Recall that a covariant representation of (C,y)
on a Hilbert space ¢ consists of a nondegenerate representation ¢: C — B(H) and
a right representation U € U(K(H) ® A) of G on J satisfying

U(p(c) @ 1)U* = (¢ ®idg)y(c) forallc € C. 6.1)

The universal crossed product C X A" is the C*-algebra ¢(C) - ,o(/f Y) generated by
a universal covariant representation (¢, U) of (C, y), where p is the representation
of A on J determined by (p ® idA)('\7A) = U. Here, ¢ is faithful if and only
if y is.

The C*-algebra A" of the universal dual quantum group G" of G can be regarded
asa @-C*—algebra via the coaction

§ = (idg ® Ag) o AY € Mor(4", A" ® 4),

where A 4 € Mor(//f“, //1\) denotes the reducing morphism. Note that §’ need not be
injective.

We now consider the maximal twisted tensor product of (C, y) and (ff v, 8") with
respect to the bicharacter W4 e ‘L((/’l\ ® A).

Theorem 6.2. There exists a unique isomorphism C RV A >~ C x A" that

e max
intertwines the canonical morphisms of C and A" to both sides.

Proof. Tt suffices to prove the following assertion: If ¢ and p are representations of C
and A" on some Hilbert space J, then (¢, p) is a W4-commutative representation
ifand only if g and U = (p ® id A)('gA) form a covariant representation of (C, y).

So, suppose that ¢ and p are representations of C and A" on aHilbert space J and
let (@, B) be a faithful anti-Heisenberg pair for W4 on a Hilbert space K. Since Av
is generated by slices of V4, the representations (¢, p) form a W4-commutative
representation if and only if (¢ ® @)y (C )12 commutes with

(0 ® B8’ @ ida) (V)
in M(K(#) @ K(K) ® A). Since V4 is a bicharacter, the operator above is equal to
(0 ® BA4 ®ida) (Vi3 Vi3) = WL V.
Thus, (¢, p) is a W4-commutative representation if and only if (¢ ® @)y(C)12

commutes with Wﬂig 17‘;43 or, equivalently, if and only if

Va0 @ Dy(@1i3(V)" = Wizlp @ @)y (©)1s(W5p)* (62)

forall ¢ € C. Since (&, B) is an anti-Heisenberg pair for W4, (3.7) implies
Wise @ Dy i(W5H* = (¢ ® (ids ®T)A4)y(c)
= ((p ®ida)y ® @)y(c).
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Slicing the third tensor factor above and in (6.2), and using (2.27), we conclude that
(¢, p) is a WA-commutative representation if and only if for all ¢ € C,

Vi (9(c) ®ida) (V)™ = (¢ ® ida)y(c). O

6.3. The quasi-triangular case. Suppose that G is quasi-triangular in the following
sense.

Definition 6.3 ([17, Definition 3.1]). A C*-quantum group G (A, A 4) is quasi-
triangular if it comes with a fixed bicharacter R € ‘L((A ® A) called its R-matrix,
satisfying

R(0 0 Ag(@)R* = Ag@) foralla e A. (6.3)
A short calculation shows that (6.3) is equivalent to the relation
RZSWﬁWi“z = szﬁ/fyﬂ% in ‘M(A ®A® ‘LD (6.4)

which in turn is equivalent to (id4,1d4) being an (R, R)-pair, that is, a Drinfeld pair
for R.
Suppose that R € U(A ® A) is an R-matrix.

Proposition 6.4. Let (C,yc) and (D, yp) be G-C*-algebras. Then there exists a

unique continuous coaction ycrp of G on C Igmax D that makes the canonical

morphisms j& and jp, from C and D to C IZImax D equivariant.

Proof. Lemma 5.9, applied to (&, j) and the (R, R)-pair (id4,id4), shows that
= (Jc ®idg)oyc and Y :=(jp ®ids)oyp

form an R-commutative representation. The induced morphism

Ycwp) := ¢y € Mor(C RE D, (C RR D) ® A)

max

is easily seen to be a coaction and to satisfy the Podle$ condition. O

Denote by tg the trivial coaction of G on C.

Theorem 6.5. Let G be a quasi-triangular C*-quantum group with R-matrix R.
Then the assignment

((C9 VC)? (D, VD)) = (C IZ;?ax D, yC&D)

extends to a bifunctor €*alg(G) x C*alg(G) — €*alg(G) which endows C*alg(G)
with the structure of a monoidal category. Its unit is (C, tg).
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Proof. Clearly, the assignment extends to a bifunctor. To show that C*alg(G)
becomes monoidal, it suffices to prove the following two assertions:

(1) For any G-C*- algebra (C, y), the canonical morphisms to (C, y) &max (C,1g)
and (C, tg) W7 (C, y) are isomorphisms.

(2) For any G-C*-algebras (C,yc), (D,yp), (E,yg), there exists a unique
isomorphism of G-C*-algebras

max

CcxX D)RR E— CRR (DRX E)

max max

that intertwines the canonical maps of C, D and E to these C*-algebras.

Both follow easily from Yoneda-type arguments. For example, to prove (2), it suffices
to note that for every C*-algebra F with morphisms w¢,np,ng from C, D, E,
respectively, to F, the following conditions are equivalent:

e (nc,np) and (mcOnp, 7g) are R-commutative representations;
e (mc,7p), (mc,nEg) and (wp, ) are R-commutative representations;

e (np,ng) and (w¢c, rpOng) are R-commutative representations. O

We can also define the notion of braided commutativity for G-C*-algebras. In
the von-Neumann algebraic setting, the corresponding notion was introduced in
[3, Definition 2.5.3].

Definition 6.6. Let G be a quasi-triangular C*-quantum group. A G-C*-algebra (C, y)
is braided-commutative if (idc,idc¢) is an R-commutative representation or, equiv-
alently, if there exists a morphism

CRE C—C, i) e,

max

where j~ and jj, denote the two canonical morphisms from C to C xR C.

7. An isomorphism of two crossed products

Let G = (A,Ay4) and H = (B, Ap) be C*-quantum groups with a bicharacter
X € U(A ® B), and let (C,y) be a G-C*-algebra and (D, §) an H-C*-algebra
as before.

Then the maximal tensor product C O max - D carrles a natural coaction of the
product C*-quantum group G x H := (A ® B 023(AA ® AB)) and we can form
the crossed product A

(C ®mux D) 1 (A ® B). (7.1)

The maximal twisted tensor product C XX« D can informally be regarded as a
deformation of C ®p.x D with respect to y. Likewise, there exists a deformation of
G x H with respect to y, the generalised Drinfeld double D, (G, H) = (Dy, Ap,)
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associated to the bicharacter y in [19]. We show that like the minimal twisted tensor
product C R}, D, see [19, Theorem 6.3], also the maximal twisted tensor product
carries a natural coaction of ©,(G,H). Moreover, we show that the associated
crossed product

(C By D) 3 Dy (1.2)

is naturally isomorphic to the crossed product (7.1).

Recall that the C*-quantum group ©,(G,H) comes with two morphisms
p:A— Dy and 0: B — D, of C*-bialgebras such that (p, ) form a Drinfeld
pair for y and p(A) - 0(B) = D, [19].

Proposition 7.1. There exists a unique coaction of D (G, H) on C Rl D that
makes the following diagram commute, and this coaction is continuous:

C s C ®X.. D Ib D

(R N,

®0
CRA (CREND)® Dy <2— D ® B

Proof. Lemma 5.9, applied to the y-commutative representation (j &, j5) and the
(X, x)-pair (p, 0), yields the desired morphism (j&~ ® p)y0O(j5 ® 0)8. A routine
computation shows that this morphism is a coaction and satisfies the Podles condition.

O

We thus find:

Theorem 7.2. The maximal twisted tensor product is a bifunctor
XX €alg(G) x C*alg(H) — C*alg(D (G, H)).

Let us now turn to the crossed products (7.1) and (7.2). First, we recall their
definition.

Denoteby i¢, L, and j&, jp the canonical morphisms from C and D to C ®yax D
and to C X%, D, respectively.

Choose faithful Heisenberg pairs (,7) and (n,7) for G and H on Hilbert
spaces J¢ and K, respectively. Then (7 ® n, 7 ® 77) is a Heisenberg pair for G x H,
and the reduced crossed product (C Qumax D) % (/T ® §) can be identified with the
C*-subalgebra of M((C Qmax D) ® K(H) ® K(K)) generated by all elements of
the form

¢= @MY, di=(H@N6d)3 &= (7 @)@ (1.3)

whereceC,deDanda)eg@E.
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Following [19], we next define a y-Heisenberg pair (¢, 8) on KX Q@ # by
a@) =1®n(@), Bb)=n®2)ARD).

see [19, Proposition 2.35]. Denote by («, E) the associated y-anti-Heisenberg pair
and define, as in [19, Proposition 3.10], representations p, 0,& tof A, B, A, B,
respectively, on X @ # ® K ® H by

pla) = (@ ® a)A(a), 0(b) = (B® B)Ap(D).
FQ)=1010107@), (B)=101”7(b)® 1.

Then the reduced crossed product (C K¥.x D) x D, can be identified with the
C*-subalgebra of

M((C BE, D) @ K(K) @ K(¥) @ K(X) ® K(¥))

max

generated by all elements of the form
E=(E®py), d=(jp®08d), &=7H®7)(0(@)as

wherec € C,d € Dandw € AQ B. Moreover, the C*-quantum group © (G, H) =
(Dy. Ap,) arises from the modular multiplicative unitary

WP = WAWG € UK ®@ I & K ® JH).

see [19, Theorem 4.1].

Lemma 7.3. There exists a non-degenerate x-homomorphism

®: (C ®@max D) ¥ (A® B) — (C KX, D) x D,

max

such that forallc € C,d € D and w € /T(X) §,
D) =¢, (d) = jdi*, D)= .

Proof. Since (j¢, jp) is a y-commutative representation, the morphisms ¢¢ and ¢p
from C and D, respectively, to (C KX D) ® K(K ® #) given by

pc(c) = (j¢ ®@)y(c) and ¢p(d) = (jj ® F)8(d)

commute and induce a morphism ¢ from C ®uax D to (C Ko D) ® K(J? R H ).
Since the representations (n® ) oo and (® 7 ) oo form a Heisenberg pair for G x H,
we obtain a morphism

® € Mor((C ®max D) x (A ® B),
(C ®X, D) ®@K(K) @ K(H) ® K(K) ® K(H))

max
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satisfying

®(¢) = (pc @ M)y(c)123s = (¢ ® (@ ® 1) Aa)y(c)1235 = ¢,
(d) = (pp @ N8(d)123a = (jp ® (B ® N)AB)S(d)1234,
D) = (H® 7)o (w)as = &

forallc € C,d € Dandw € A ® B. But by Lemma 4.12 and definition of j,
AR BN (Mb)@ DA R)(F*) = 1@ 7)ARD)) = Bb),  (74)
and hence
7o) = (jé ® (B ® B)Ap)S(dzss = (j& ® O)8(d)izsas =d. O

To show that @ is an isomorphism, we shall construct its inverse and use the
following result.

Lemma 7.4. There exists a representation > of A® B on X @ # ® K ® H such
that foralla € Aand b € B,

AMa®b) = (@ @T)Asa) (B ®B)Ag(D).

Proof. Denote by (7, 7) and ™, hT) the anti-Heisenberg pairs associated to (7, 7)
and (n, 7]), respectively, and write

7P =@ en)As, 7P =GFA)As 1P =0 R7)AB.
Then there exists a representation k of A ® B such that
k(a ®b) = 1 (a)23n® (b)1a.

Let U := (1 ® @) (?)123. Since 7@ (4) and 7@ (4) commute [16, Proposi-
tion 3.15],
Uk(a ® DU* = 7P ()23 = (@ ® 7)(Aa(@))123.

On the other hand, Lemma 4.12 implies that
Uk(1@b)U* = (n® 7@ @ 7)(Ar ® idg)Ap(h).

Here, (2.15) and the relation (ﬁR ®idp)Ap = (idp ® &L)AB [15, Lemma 5.7]
imply
(idB ® AA ® idB)(AR ® idB)AB = (KR ®idgy ® idB)(AR ® idB)AB
= (AR ® AL)As,
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whence
Uk(1®@b)U*=(n@7@707)(Ar ® AL)Ap(h)
= (B®7®7)(idp ® AL)Ag(D).

Flipping the third and fourth tensor factor, we obtain the desired representation A

because a(a) = 1 ® 7w (a) and by (2.24), AroRp = o(R; ® RB)KL, and hence
O

B(b) = ([1® R)aALD).

Theorem 7.5. The reduced crossed products
(C ®max D) ¥ (A® B) and (C KX D)xD,
are isomorphic.
Proof. We construct an inverse to ® as follows. The morphisms ¥¢ and ¥ p from C
and D to (C Quax D) @ K(K ® H) given by
Yo = (& ®a)y and Ypi= () ® p)S
form a y-commutative representation by Lemma 5.9 and induce a morphism i =
Ve Oyp from C K. D to (C ®Omax D) ® K(X ® ). This, in turn, yields a
morphism W from (C KXo D) % Dy to
(C ®max D) ®K(K) @ K(H) @ K(K) @ K(H) ® K(K) ®K(K) (7.5

such that forallc € C,d € D,and w € ff@ E
V(@) = (e ®p)y(e) = (& @ (@@T@w)AL)y(e),
v(d) = (Yo ®0)5(d) = (1h ® (BB @ BIAZ)3(d),
V(@) = (7 ® 7)o ()67,
where A® = (id ® A)A. By the preceding Lemma 7.4, we can define represent-
ations k and Kk of AQ Band A Bon K @ # @ K @ K ® K ® H by the

formulas
k(@ ®b) = (@®a®1)AP@)12346(B ® B ® NAS (0)12345.

R@®Db) = (7@ 7)(b ® a)se,
and («,k) forms a faithful Heisenberg pair for G x H. We therefore obtain an
embedding E of (C ®max D) ¥ (A ® B) into the C*-algebra (7.5) such that

E@) = (& @ (@®a®m)AD)y(c)isr = ¥(©),
E(d) = (tp®B® B® U)Ag))5(d)123456,
E(0) = ¥(@) = (7 ® 7)o ()67
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Now, we conclude from (7.4) that
¥(d) = EGHEDER).
Evidently, the composition E ! o W is inverse to ®. O

The arguments above can be adapted to the minimal twisted tensor product:

Theorem 7.6. There exists an isomorphism ®, that makes the following diagram
commute, where the vertical maps are the canonical quotient maps:

(C ®max D) x (A ® B) 2— (C Bl D) x Dy

l |

(C®D)x(A® B) (C R, D) x D,.

Proof. A straightforward modification of the proof above yields embeddings Wiin
and E i, from (C R, D) x Dy and (C ® D) x (A ® B), respectively, into

MCR®D)RK(KRH RK®H ®K Q@ H))

such that, denoting by ¢, d,® and ¢ <, d, & the canonical images of ¢ € C,d € D
andw € A® B in (C ®X. D) x J)X and (C ® D) x (A ® B) respectively,

Wiin(@) = Emin(@). Yrin(d) = Emn(F*df). Yain(@) = Eqin(@). O
As before, denote by ¥, C = {¢ : ¢ € CYand D = {d : d € D} the natural

images of y, C and D, respectively, in the crossed product (C ®mnax D) % (ff ® §)

Corollary 7.7. Suppose that the coaction of D y(G,H) on C K. D is injective.
Then:

(1) ® maps C R D isomorphically to [3C x* - D] € (C Qumax D) % (A ® B).
(2) IfC isnuclear, then the canonical map C XX.D — CXX

o D is anisomorphism.

Proof. Assertion (1) follows immediately from Theorem 7.5. Suppose that C is
nuclear. Then we can identify

(C @max D) ¥ (A® B) = (C ® D) x (A® B)

using the quotient map, and ® and ®, map C IZ]Inax D and C ®X. D, respectively,
isomorphically to the same C*-subalgebra [C x* - D]. OJ

Remark 7.8. If the coaction of ©, (G, H) on C XX D is injective, one can use the
isomorphism ¢ of Corollary 7.7 (1) and functoriality of the maximal tensor product
and the reduced crossed product to construct a twisted maximal tensor product f X g
for equivariant *-homomorphisms/completely positive maps/completely positive
contractions f and g on C and D, respectively.
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Let us end this section with an application of Corollary 7.7 to the case where G
and H are duals of locally compact abelian groups G and H, respectively. In that
case, the minimal twisted tensor product C K. D can be regarded as a Rieffel
deformation of the minimal tensor product C ® D as defined in [8]. This result
carries over to the universal setting easily as follows.

Let G and H be locally compact abelian groups with Pontrjagin duals G and H,
respectively. Let C be a @—C*-algebra, Dan H -C*-algebraand y € C,(G x H,T)
a bicharacter. Then the maximal tensor product C ®,.x D carries the product action
of T':= G x ﬁ, the formula

W((g.h).(g'.h")) = x(g. ') (7.6)

defines a bicharacter W on I', which we can regard as a 2-cocycle, and as in [8],
we can form a Rieffel deformation of C ®@mnax D with respect to W in the form of a
C*-subalgebra

(C ®max D)¥ € M((C @max D) % T).

The following explicit description of this Rieffel deformation was obtained already
in [16, Theorem 6.2], but we include the proof for convenience of the reader. Note
that the bicharacter W above is denoted by W’ in [16, Theorem 6.2], but the difference
is inessential. For elements of M((C ®max D) x I'), we use the notation (7.3) as
before.

Lemma 7.9. (C ®uax D)¥ = [4C x* D] as C*-subalgebras of M((C Qpmax D) X T).

Proof. We follow [16, Proof of Theorem 6.3] and only switch ¥ and ¥’.
The Rieffel deformation (C ®max D) Y is defined as a C* -subalgebra of the crossed
product (C ®uax D) x I' by means of the unitaries

Ugh € Co(G x H,T), Ugp(g' .h)=¥((g'.h) (g.h)=x(g h),

see [8]. Since
Cc R max D = [(C & max 1)(1 Qmax D)],

[9, Lemma 3.4] implies that
(C ®max D)\p - [(C <gmax 1)‘1!(1 ®max D)\p] (77)

Since the unitaries Uy j, lie in the subalgebra C, (G, T) ® 1 and G acts trivially on D,
the images of Ug 5 in (C ®max D) x I' commute with D. Therefore,

(1 ®max D)¥ = D S M((C @max D) % T). (7.8)
The 2-cocycle W is cohomologous to the 2-cocycle W’ defined by

V' ((g.h). (g h)) == x (g h).
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Indeed,

x(gg' hh')
x(g. (g n)

and hence ¥ = (dy)¥’. By [8, Lemmas 3.4 and 3.5], we get

@x)((g.h), (g'. 1)) = = x(g. W) x(g' 1)

(€ @max )Y = 4(C @max D' 1* (7.9)
in M((C ®max D) x T'). Now, a similar argument as above shows that
(C ®max DY = € € M((C ®pnax D) x T).
Combining formulas (7.7)—(7.9), the assertion follows. [

Theorem 7.10. Let C be a G-C*-algebra and D a H-C*-algebra. Then there
exists an isomorphism C Rl D — (C ®max D)‘I' that intertwines the canonical
embeddings of C and D.

Proof. Combine the preceding result and Corollary 7.7 (1). Note that here, the
coaction of £, is injective because it just corresponds to an actionof G x H.  [J

8. Passage to coactions of universal quantum groups

The results that we would like to present next involve the push-forward of coactions
along morphisms of C*-quantum groups. Such a push-forward, however, can only be
defined under additional assumptions on the coaction, like injectivity, see [15] and
the Appendix, which we are unable to verify in the cases of interest to us.

We therefore switch to coactions of universal quantum groups, which subsume
injective, continuous coactions of C*-quantum groups and where the push-forward
is straightforward.

Indeed, let G = (A, A 4) be a C*-quantum group and let (C, y) be a (continuous)
coaction of the universal C*-bialgebra (4", AY). If (D, A p) is another C*-bialgebra
and f € Mor(A", D) is a morphism of C*-bialgebras, then

fxy :=(idc ® f)y € Mor(C,C ® D)

is a (continuous) coaction again. In the case where (D, Ap)=(4,A4)and f =A4,
we write
)/r = (AA)*)/ = (ldc (024 AA))/ (S Mor(C, C & A),

and then the assignment (C,y) — (C,y") identifies the normal and continuous
coactions of (4", AYy) with the injective and continuous coactions of (4, A 4).

The construction of the maximal twisted tensor product lifts to coactions of
universal C*-quantum groups as follows.
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SupposethatG = (A4, A 4) and H = (B, A ) are C*-quantum groups with a mor-
phism of C*-bialgebras f € Mor(A", §“), and denote by y = W/ ¢ UA ® l?)
the corresponding bicharacter. Let (C,y) be a G"-C*-algebra and (D,$)
a H"-C*-algebra.

Lemma 8.1. Let E be a C*-algebra with morphisms ¢ € Mor(C, E) and
¥ € Mor(D, E), and suppose that (&, B) is an anti-Heisenberg pair for f on some
Hilbert space H. Then the following conditions are equivalent:

(1) (¢ ® @)y(c) and (¥ ® B)8(d) commute forall ¢ € C, d € D.
(2) (@, V) is a y-commutative representation of (C, y") and (D, 6").
Note that if f is reduced, then the assertion follows immediately from Prop-

osition 4.11.

Proof. Since the coactions y" and §" are (strongly) continuous, they are also weakly
continuous. Hence, (1) is equivalent to the commutation of the elements

((p ® @)y ®ida)y ()123 = (¢ ® @ ® Ag)AY)y(C)123
and (v ® B)S ®idp)8 (d)12a = (¥ ® (B® Ap)AS)S(d)124

in M(E Q@ K(#)® A® B) forallc € C andd € D. By Corollary 4.9,
(@@ A4)AY, (B AB)AY) = @ B) ® (A, AB)

is a reduced anti-Heisenberg pair for f and hence, by Lemma 4.7, of the form
(@' A 4, B’ A p) for some anti-Heisenberg pair (&', 8’) for y. Now, (1) is equivalent to
commutation of (¢ ® &’)y*(c) and (¥ ® B')8"(d) for all c € C and d € D, which
is (2). O

Thanks to this result, we can quickly define an f -commutative representation of
(C,y) and (D, §) to be a y-commutative representation of (C, y") and (D, "), and
the maximal twisted tensor product of (C, y) and (D, §) with respect to f to be the
C*-algebra

(C.y) By (D.8) 1= (C.y") B, (D8

max max

The construction of the maximal twisted tensor product is functorial with
respect to the C*-quantum groups involved in the following sense. Denote by
f € Mor(B", A") the dual morphism of f; see Theorem 2.4.

Lemma 8.2. Let E be a C*-algebra with morphisms ¢ € Mor(C, E) and
Y € Mor(D, E). Then the following conditions are equivalent:

(1) (@, V) is an f-commutative representation of (C,y) and (D, §);
(2) (¢, V) is an id g, -commutative representation of (C, fxy) and (D, §);

(3) (@, V) is an id gu-commutative representation of (C,y) and (D, ﬁS)
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Proof. We only prove equivalence of (1) and (2); equivalence of (1) and (3) follows
similarly. Choose an anti-Heisenberg pair (@, 8) for id pu- Then by Lemma 8.1,
(2) holds if and only if (¢ ® & f)y(c) commutes with (¥ ® B)8(d) forall ¢ € C
and d € D. But by Lemma 3.14, (@ f, B) is an anti-Heisenberg pair for f, and so,
by Lemma 8.1 again, this commutation relation is equivalent with (1). O

We obtain the following immediate consequence:

Theorem 8.3. There exist canonical isomorphisms

(C, fu7) RS, (DY) = (C,y) B, (D,8) = (C,y) B, (D, £.8)

which intertwine the canonical morphisms from C and D, respectively, to the three
C*-algebras above.
Corollary 8.4. Let G; = (A;, A;) be a C*-quantum group for i = 1,2,3,4, let
f® e Mor(A}', A}, ) be morphisms of C*-bialgebras fori = 1,2, 3, and let (C, y)
be a G,-C*-algebra and (D, 8) a G4-C*-algebra. Write f := f® o f@ o f1),
Then there exists a canonical isomorphism

(C.7) Bl (D.6) = (C. f[Vy) &L (D, f28).

max max

Proof. Use the sequence of isomorphisms

(C,y) B/ (D,8) = (C, 2 f@ fVy) i (D,35)

max max

=~ (C, [P fWy) RS (D, f5)

max

~ (C, fVy) RIS (D, 7). 0

max

By Proposition 7.1, the maximal twisted tensor product C XX« D carries a
canonical coaction of the generalised Drinfeld double D, (G, H) = (Dy, Ap, ). We
show that this coaction lifts to the universal level. Recall that the C*-algebra D, is
generated by the images of two morphisms p € Mor(A4, D) and 6 € Mor(B, D)
of C*-bialgebras which form a Drinfeld pair for y [19]. By [15, Section 4], the
compositions po A 4 and 6 o A p lift uniquely to morphisms p" € Mor(4", D,/) and
0" € Mor(B", D,) of C*-bialgebras.

Lemma 8.5. (p",0") is a Drinfeld pair for f.

Proof. Denote by V4 and VB the maximal corepresentations. By Lemma 3.1, it
suffices to show that the products

Vi Vape and  x1, Vi Vipuriz 8.1

in ‘M(/f ®B® D) coincide. Since p" and 6" are morphisms of C*-bialgebras, both
products are right corepresentations. We apply the reducing morphism to £,' and
obtain the right corepresentations Wl‘; Wzlé and x7, WZI; W{; X 12, respectively, which
coincide because (p, 8) is a (y, y)-pair. By [15, Lemma 4.13], the products (8.1)
have to coincide. O



The maximal quantum group-twisted C*-tensor product 319

Now, the proofs of Proposition 7.1 and 7.2 carry over to the universal setting and
we obtain the following results:

Proposition 8.6. Let (C,y) be a G"-C*-algebra and (D, §) be a H"-C*-algebra.
Then there exists a unique coaction of ©y(G,H) on C &{iﬂx D that makes the
following diagram commute, and this coaction is continuous:

ic Jb

C C®/.D D

y | 5

A‘U®u A-u®0u
cea L (crl.D) @D <" DgB"

Theorem 8.7. The maximal twisted tensor product extends to a bifunctor

K/ Calg(GY) x Calg(H") — Calg(D (G, H)).

max-*

Let us finally consider the case where G is quasi-triangular with R-matrix
ReUAR® A).
Theorem 8.8. Let G be a quasi-triangular C*-quantum group with R-matrix R and
denote by [ = fg € Mor(A", A") the corresponding morphism of C*-bialgebras.
(1) Let (C,yc) and (D,yp) be G"-C*-algebras. Then there exists a unique
continuous coaction ycrp of G* on C &r{m D that makes the canonical
morphisms j& and jp from C and D to C &éax D equivariant.

(2) The assignment ((C,yc). (D, yp)) — (C B/ D, ycmp) extends to a bifunctor
Cralg(G") x C*alg(GY) — C*alg(GY),

which endows C*alg(G") with the structure of a monoidal category. Its unit
is (C, 1g).

Proof. As observed after (6.4), (id 4, id4) is a Drinfeld pair for R. A similar argument
like the one used in the proof of Lemma 8.5 shows that (id 4u, id 4u) is an ( f, f)-pair.
Now, (1) and (2) follow by similar argument as in the proofs of Proposition 8.6 and
of Theorem 6.5. O

9. Yetter-Drinfeld C*-algebras

For every quasi-triangular C*-quantum group G, the maximal twisted tensor product
endows the category of G-C*-algebras with a monoidal structure, as we saw in
Subsection 6.3 and Theorem 8.8. More generally, we now consider Yetter—Drinfeld
C*-algebras and their maximal twisted tensor products, and thus obtain not a monoidal
category but a bicategory.
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In the reduced setting, Yetter—Drinfeld C*-algebras were introduced in [18]
and generalized in [19]. We need to work in the universal setting, because the
following constructions will involve the push-forward of coactions along morphisms
of C*-quantum groups in situations where we do not know whether this is well-defined
in the reduced setting.

LetG =(A4,A 4) and H = (B,A g) be C*-quantum groups and let € Mor(A",B")
be a morphism of C*-bialgebras with corresponding bicharacter

W/ = (idz, ® f)(WH).

The definition of Yetter—Drinfeld C*-algebras over f involves the twisted flip
map

o}:B"®@A" > A"®B"., b"'®ad"+— W @ eb") (W)
Since W/ = 2 (W/)*3, we have
uy—1 u
=gl A
(Uf) Uf 9.1
Moreover, (2.2) implies the following cocycle relation:
(idg, ® o) (0} ®idz,)(idps ® AY) = (A§ ® idpu)o . 9.2)

Now, we can give the following the universal counterpart to [19, Definition 7.2].
Definition 9.1. An f-Yetter-Drinfeld C*-algebra is a C*-algebra with continuous
coactions y of G" and § of H" satisfying

(y ®idp) o8 = (idc ® 6}) o (§®idy) oy. (9.3)

A morphism of f-Yetter-Drinfeld C*-algebras (C,yc,8¢) and (D, yp,8p) is a
morphism ¢ € Mor(C, D) that is equivariant with respect to the respective coactions
of G" and H".

Denote by ¥D-C*alg( f) the category of f-Yetter—Drinfeld C*-algebras.
Remark 9.2. Denote by f € Mor(B", A") the morphism dual to f. Then (9.1)
implies that the assignment (C, y, §) +— (C, §, y) defines an isomorphism

YD-Cralg(f) — YD-Cralg( f). (9.4)

Denoteby y = W/ = (lA\ 4 ® A g)(W/) the reduced bicharacter corresponding
to f. Then the reduced y-Yetter—Drinfeld C*-algebras defined in [19, Definition 7.2]
form a full subcategory of ¥D-C*alg( f):
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Proposition 9.3. Let C be a C*-algebra with normal continuous coactions y of Gv
and § of H". Then the following assertions are equivalent:

(1) (C,y,$) is an f-Yetter-Drinfeld C*-algebra;
(2) (C,y", 8" is a y-Yetter-Drinfeld C*-algebra.

Proof. We need to show that (9.3) holds if and only if
(y' ®idg) o8 = (idc ® 0y) 0 (5 ®idj) oy, (9.5)

where 0, (b ® @) = y(a ® b) x*. Clearly, (9.5) follows from (9.3) upon application
ofidc ® A 4 ® A p. Conversely, suppose (9.5). We first show that

(idc ®6)(8" ®idz,)y = (v ® idp)d", (9.6)
where 5: B ® A" — A" ® B is givenby b ® 4 — §(@ ® b)7* with
7= (dz, ® Ap)(W).
Denote by A A A — A ® A" the canonical coaction. Then
(idc ® Aq)y" = (idc ® ¥y
and
(' ®idp ®id;.) (8" ®id7.)y
= (idc ® 0, ®id3,)(§" ® idp ®id7,) (Y ®idg,)y
= (idc ® 0y ®idg,)(8" ® A4)y*
= (id¢ ® 0y ®id3,)(idc ® idp ® Ay)(idc ® 07 ") (y" ® idp)s".
Now, (9.2) implies
(0y ®idg,)(idp ® Ag)oy! = (id; ® 5 ")(A4 ®idp)
as morphisms from A® Bto A® B ® A", and hence
(y' ®idp ®idy,) (8" ®id;,)y
= (idc ®id; ® 5 ") (idc ® Aq ® idp)(y" ® idp)s"
= (Y ®idg ®id;,)(idc ® ") (y ® idp)s".
Since y is normal, " is injective and (9.6) follows. Now, denote by Ag:B — BQB"
the canonical coaction. Then
(8" ®idz, ® idpu)(y ® idpu)s
= (idc ® 5! ® idpu)(y ® idp ® idpu)(§" ® idpu)§
= (idc ® 57! ®idpu)(y ® Ap)s"
= (idc ® 57! ®idgu)(idc ®idz, ® Ap)(idc ® 5)(8" ®id;,)y.
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Now, (9.1) and (9.2), applied to f instead of £, imply
@' ®idpu)(idf, ® Ap)F = (i[d®0;")(Ap ®id)

and hence

(0" ®id;, ®idpu)(y ® idge)s
= (idc ®id7, ® 07" (idc ® Ap ®id;,)(8" ®idg,)y
= (idc ® idp ® 07")(8" ® idps ®id4,)(8 ® id 7.,)y.
Since §" is injective, we can conclude the desired relation (9.3). ]

Suppose now that we have three C*-quantum groups G = (4, A4), H = (B, Ap),
and I = (C, Ac¢) with morphisms f € Mor(A"Y, B") and g € Mor(B",C") of
C*-bialgebras.

Lemma 9.4. (1) Let (D,yp.dp) be an f-Yetter-Drinfeld C*-algebra. Then the
triple (D, yp, g+8p) is a (g o f)-Yetter—Drinfeld C*-algebra.

(2) Let (E,yEg.8E) be a g-Yetter-Drinfeld C*-algebra. Then (E, f*yE,SE) is a
(g o f)-Yetter-Drinfeld C*-algebra.

Proof. We only prove (1); a similar argument applies to (2). By (2.18), the universal
bicharacters W/ and ‘W&°/ corresponding to f and g o f, respectively, are related
by the equation

(idz, ® ) (W) = (i, ® (g0 [)(WH) = W,
and hence
(id 7, ® )0} (b ®a) = (idz, ® ) (W @@b)(W/)*) = ofy, ) (g(b) @A) (9.7)

forallb € B andd € A Now, we apply idp ® id 7, ® g to (9.3) and conclude
that

(yp ®idcu)g«p = (idp ® 0(ye 1)) (8x8p ®id3.)¥D. O
Clearly, the assignments
(D,yp.8p) +> (D,yp.g«8p) and (E,yg,8g) v (E. fxvE.8E)
extend to functors

g+ YD-Calg(f) — YD-C*alg(g o f)
and [ YD-Calg(g) — YD-CTalg(g o f),

respectively.
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Proposition9.5. Let (D, yp,dp) bean f -Yetter-Drinfeld C*-algebraand (E, Vg, 0g)
a g-Yetter-Drinfeld C*-algebra. Denote by D KIS E the maximal twisted tensor
product of D and E formed with respect to §p, Yg and the identity morphl'fm on B".
Then there exist unique continuous right coactions ypxrg and Spxrg of G* and 1Y,
respectively, on D R E such that

YorE)©jp = (jp ®idz)yp. vrE)©Jjg = (g ® /VE,

SpwmEe) © jp = (/p ® 8)dp, SprEy o jg = (jg ®idcu)dE.
Moreover, the triple (DR E.yprEe.SprEg)isa(go f)-Yetter-Drinfeld C*-algebra.

max

Proof. Uniqueness is clear since jj (D) - jg(E) = D Xid E.

max
To prove existence of §(px ), we need to show that the representations

¢:=(jp®gSp and ¥ :=(jg ®idc:)SE

form an id gu-commutative representation. By Lemma 8.1, it suffices to choose an
anti-Heisenberg pair (7, 7) for the identity morphism on B", and to show that the
elements

(¢ ®7)Sp(d) = (jp®(E®TA})SD

and
(¥ ® 7)yE(e) = ((j£ ®idcs)Sg ® 7)yE(e)

commute for all d € D and e € E. We use (4.2) and the Yetter—Drinfeld condition
for (E, yE, 6E) to rewrite these elements in the form

(¢ ®D)p(d) = (W)2s(j ® D)3p ()13 (W35,
and
W ® Dye(e) = (j ® (idcs ® 7)(0,) ") (vE ® idcv)SE (e)
= (W2)23(j§ ® (ides ® R)0) (7E ® ide)SE (@)(WE)3s.

Now, (jj ® m)ép(d)13 commutes with (jg ®_(idcu R 7?[)0)()/5 ® idcu)dg (e)
because (/5 ® 7)3p(d) commutes with (5 ® 7)yg(e’) foralle’ € E.
The universal property of D X4 E yields a morphism § pg £ as desired, and it is

max
easy to see that this morphism is a continuous coaction. Existence of yprg follows
similarly.

Finally, the relation j5(D) - jg(E) = D Xid E and Lemma 9.4 imply that the

max

triple (D XY E.ypmEe.8pmEe)isa(go f)-Yetter—Drinfeld C*-algebra. O

max
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We thus obtain a bifunctor
YD-C*alg(f) x YD-C*alg(g) — YD-C*alg(g o 1) (9.8)
which sends a pair of Yetter—Drinfeld C*-algebras ((D, yp,dp), (E, YE,SE)) to

(D,yp,8p) RS (E,yE,8g) := (D RS, E,ypxE.SpxE),

and a pair (¢, ¥) of morphisms to ¢ X .
Letting G, H, I and f, g vary, we obtain a bicategory:

Theorem 9.6. There exists a bicategory YD-C*alg, where the 0-objects are
C*-quantum groups, the category of 1-morphisms between two C*-quantum groups
G = (A, Ay) and H = (B, Ap) is the disjoint union of the categories Y D-E*alg( f)
for all morphisms f € Mor(A", BY) of C*-bialgebras, and the horizontal
composition is given by the bifunctors in (9.8).

Proof. The main points to prove are existence of units and associativity of the
horizontal composition.

For every C*-quantum group G = (A4, A 4), the C*-algebra C, equipped with the
trivial coactions TGu of G" and tgu of G", is an id 4u-Yetter-Drinfeld C*-algebra,
and this is the identity of G in the sense that for every morphism f as above and
every f-Yetter—Drinfeld C*-algebra (C, yc, 8¢ ), one has natural isomorphisms

(C.1g.. 16v) B4 (C.yc.8¢) = (C.yc.8¢c) = (C.yc,8¢) Bigd (C. .. THY).

Let us prove associativity. Suppose that G = (4;, A;), where i = 1,...,4,
are C*-quantum groups with morphisms f@ e Mor(A}', A, ;) of C*-bialgebras
and f@-Yetter—Drinfeld C*-algebras (C;,y;,8;) for i = 1,...,3. Denote
by id; the identity on A/'. We claim that there exists a unique isomorphism of
(f® o f@ o fM) Yetter-Drinfeld algebras

Cl |Zid2

max

(C; K% C3) — (C; K2 C,) KB ¢, 9.9)
that intertwines the canonical morphisms from each C; to these C*-algebras. This
follows from a similar Yoneda-type argument as used in the proof of Theorem 6.5.
Indeed, suppose that F is a C*-algebra with morphisms n;: C; — F fori =1,...,3
such that

(1) (71, ) is an idy-commutative representation of (Cy, 61) and (C», y»); and

(2) (10m,, w3) is an idz-commutative representation of (C Xliggx C2.6c,mc,)
and (C3, )/3).
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NOW, C1 &idz

ma C» is generated by the images of the canonical morphisms from C;

and C, , and the first morphism is equivariant with respect to f*(z) 81 and 8¢, ®c,,
while the second one is equivariant with respect to d, and §¢,xc,. Hence, (1)—(2)
are equivalent to (1) together with the following two conditions:

(2a) (w1, m3) is an f>-commutative representation of (Cy, 8;) and (Cs, y3), and
(2b) (72, 73) is an id3-commutative representation of (C5, §,) and (Cs3, y3).
But if (2b) holds, then a similar argument shows that (1) and (2a) are equivalent to

(3) (1, m20ms) is an id,-commutative representation of (Cy, §1) and

(C2 xiﬂ;x C3’ YCRC3 8C2®C3)-

Thus, we obtain a bijectiion between the morphisms from C; K92 (C, K93 C3) to F

and the morphisms from (C; K92 C,)Kid3 C; to F, and this bijection is compatible

max max
with the canonical morphisms from each C; to the two domains. O

A. Normal coactions of universal C*-bialgebras

This appendix summarises the relation between coactions of a C*-quantum group
and coactions of its universal counterpart. It does not contain any new results but
is included for convenience of the reader because we did not find a good reference
besides [4].

Let G = (A, A4) be a C*-quantum group.

Definition A.1. A coaction y of (4%, AY) on a C*-algebra C is normal if the
morphism

Yii=(dc ®Ag)oy:C >CQA (A.1)

is injective. Denote by €*alg"(G") the full subcategory of €*alg(G") of all normal
and continuous coactions.

G-C*-algebras with injective underlying coaction can be identified with normal
G"-C*-algebras as follows. The assignment (C, y) + (C, y") evidently defines a
functor

C*alg™(G") — ¢*alg (G), (A.2)

where ¢*alg'(G) denotes the full subcategory of ¢*alg(G) formed by all injective
coactions, and this functor is an isomorphism [4]. To describe the inverse, we use the
coaction A"} of G" on A obtained in Proposition 4.8. Clearly, A 4 is an equivariant
morphism from (4", AY) to (4, A}").
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Theorem A.2. Let (C,y) be a G-C*-algebra. Suppose that y is injective. Then
there exists a unique coaction y" of (A", AYy) on C such that the following diagram

commutes,
Y

C C®A
y“l/ lidc@Ar/’lu
CoAa— 8 oA A,

and (C,y") is a normal G"-C*-algebra. The assignment (C,y) — (C,y") extends
to a functor €*alg'(G) — C*alg"(G") which is inverse to the functor given by
(C.y) = (C.¥D.

Proof. Essentially, but not literally, this is contained in [4, Section 3.3]. To get
existence of y " and that (C, y") is a normal G"-C*-algebra, one can simply copy the
proof of [15, Theorem 6.1], replacing Ag and Ay with A}" and AY}', respectively.
The relation

(y ®ida)(idc ® Ag)y" = (idc ® Ay = (y ®ida)y

and injectivity of y imply (idc ® A4)y" = y. Finally, if y = (id¢ ® A 4)y’ for
some normal coaction y’ of (4", A}) on C, then

(y ® idgu)y’ = (idc ® Ag ® idq0)(y' ® idg0)y’
= (idc ® A’} o Ay’ = (idc ® A})y

and hence y" = y’. O

B. Push-forward of weakly continuous coactions along morphisms
of C*-quantum groups

In this section we consider the push-forward of coactions along morphisms of
C*-quantum groups, but not for injective coactions as in [15], but for weakly
continuous ones.

Let G = (4,Ay4) and H = (B, Ap) be C*-quantum groups with a morphism
from G to H in the form of a bicharacter X € ‘Ll(A ® B) and let (C, y) be a coaction
of G.

If y is injective, it was shown in [1A5, Theorem 69] that there exists a unique
injective continuous coaction y.y of H on C that makes the following diagram
commute,

c Y C®A (B.1)
X*Vl lidc@AR
~ V®id§ A~
C®B CRAR B,

where Ag: A — A ® B denotes the right quantum group homomorphism associated
to x.
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Definition B.1. Let (C, y) be a weakly continuous coaction of G. We say that y.y
exists if there exists a morphism y«y € Mor(C,C ® B) that makes the following
diagram commute:

C CRA (B.2)
yl l/idC®AL
Xy ®id 4 -~
CRIA—C ® B® A.

Example B.2. (1) Ifyisinjective, then the action y.) definedin [15] makes diagram
(B.2) commute; see the proof of [15, Theorem 69].

(2) If y lifts to a coaction y " of (A", A}) such that y = (idc ® A4)y", then y.y
exists and is equal to (id¢ ® A f)y", where Ap:BY — B denotes the reducing
morphism and f: A" — B denotes the morphism of C*-bialgebras corresponding
to x, because

(idc ® AL)y = (idc ® ALA4)y"
= (idc ® (A} f ® AD)ADY"
= (idc ® Apf ® Aa)(y" ®idge)y"
= ((idc ® Ap f)y" ®ida)y.

For example, the coaction y := (id4u ® A)A} of G on A" has such a lift Yt =AY
and y isinjective if and only if the reducing morphism A is injective. For acomparison
of coactions of (A", AY) and of (A, A4), see also [4], but note that only injective
ones are considered there.

Proposition B.3. Let (C,y) be a weakly continuous coaction of G. If yxy exists,
then this morphism is uniquely determined, a weakly continuous coaction of H, and
diagram (B.1) commutes. If y is continuous, then so is x Y.

Proof. Since y is weakly continuous, the map y.y is uniquely determined by (B.2).
To see that it is a coaction, note that

(x+y ®idg ®id)(x+y ®ida)y = (xxy ® AL)y
= (idc ®idz ® Az)(idc ® Ar)y
= (idc ® Ap ®id4)(idc ® Ar)y
= (idc ® Ap ®ids)(x+y ® idg)y.

Slicing the third tensor factor, we find that y.y indeed is a coaction.
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The following computation shows that y.)y makes diagram (B.1) commute, and
uses the relation (idg ® Ap)A4 = (Ag ® id4)A [15, Lemma 5.7 (36)]:
(y ®idz ® ida) (x+y ®ida)y = (v ® AL)y
= (idc ®idg ® Ap)(idc ® Ay)y
= (idc ® AR ®id4)(idc ® Aq)y
= (idc ® Ar ®ida)(y Q@ ida)y.

To see that y.y is weakly continous, note that

{(idc ® ) y+y(c):w € B',c € C}
C {(idc ® w ® 0')(x+y ®id4)y(c) 1w € B', 0 € A"}
= {(idc ® (0 @ W)AL)y(c) :w € B0 € A'}.
Since Ay is injective, functionals of the form (w ® @") A, above are linearly dense
in A’. Since y is weakly continuous, we can conclude that y.y is weakly continuous
as well.
Finally, suppose that y.y is continuous. Then the Podles$ condition for y and Ay,
implies
(xxy ®id)y(C)-(1® B® 4) = (ide ® Ap)y(C) - (1® AL(A)(B ® A))
= (idc @ AL)(Y(C)1® A)-(1® B® A)
=C®ALA)(B ® 4)
=C®B® A

Slicing on the third tensor factor, we find that y.y(C)(1 ® E) =C®B. O

Let us now consider the iteration.

Proposition B.4. Let (C,y) be a weakly continuous coaction of G such that y.y
exists. Suppose that 1 = (D, Ap) is a C*-quantum group with a bicharacter
¥ € U(B ® D). Then x.(x«y) exists if and only if (' * x)«y exist, and in that
case, both coincide.

Proof. Let " = x' * x and denote by Az, A, A the left quantum group
homomorphisms associated to y” and y, y’, y x”, respectively. Then a left-handed
analogue of [15, Proposition 6.3] shows that

(A7 ®idg)AL = (ids ® AL)AT
and hence

(idc ® A} ® ida)(+y ®id4)y = (idc ® idp ® Ar)(idc ® A})y.  (B.3)
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Suppose that y’, (y«y) exists. Then the left hand side above is equal to

(o () ®idg ® ida) (rxy ® ida)y = (1u(x+y) ® AL)Y.

Since A is injective, we can conclude that

(X (xsy) ®idy)y = (idc ® AT)y,

whence x|y exists and equals y, (y«y).
Conversely, if y”/y exists, then the right hand side in (B.3) is equal to

(idc ®idp ® AL)(xyy ®ida)y = (xiy ®ida)(idc ® AL)y
= (xyy ®idg ®idg) (xxy @ ida)y.

Slicing the third tensor factor, we conclude that (idc ® A7) x«y = (xiy ®idg) x«y
so that x/, (x«y) exists and equals yy. O]
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