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Graded twisting of comodule algebras and module categories
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Abstract. Continuing our previous work on graded twisting of Hopf algebras and monoidal
categories, we introduce a graded twisting construction for equivariant comodule algebras and
module categories. As an example we study actions of quantum subgroups of G � SL�1.2/
on K�1Œx; y� and show that in most cases the corresponding invariant rings K�1Œx; y�G are
invariant ringsKŒx; y�G0 for the action of a classical subgroupG0 � SL.2/. As another example
we study Poisson boundaries of graded twisted categories and show that under the assumption
of weak amenability they are graded twistings of the Poisson boundaries.
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1. Introduction

Let A, B be Hopf algebras, and assume that B is a 2-cocycle twisting of A. Then we
have a monoidal equivalence between the categories of left comodules

F WComod.A/ '˝ Comod.B/:

It is a simple observation that F induces an equivalence between the respective
categories of comodule algebras, and that ifR is an A-comodule algebra, we have an
isomorphism between the fixed point algebras

coBF .R/ ' coAR:

In other words, the invariant theory of A determines that of B .
One of the main goals of this paper is to give a version of this principle when B

is a graded twisting of A [8]. In this case there is also an equivalence Comod.A/ '
Comod.B/, but it is not monoidal in general, so we cannot expect a correspondence
�The research leading to these results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP/2007-2013)/ ERC Grant Agreement
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between the categories of comodule algebras. We will show that nevertheless for
A-comodule algebras with some additional structure we do getB-comodule algebras,
and this construction preserves the fixed point algebras. We also develop a categorical
version of this construction and consider several examples. Specifically, the contents
and main results of the paper are as follows.

Section 2 consists of recollections and preliminaries on graded twistings, both in
Hopf algebraic and categorical settings. Here we also point out that the underlying
product of the graded twisting of a Hopf algebra is a particular case of the twisted
product from [41]. In fact, some of our basic observations easily extend to the setting
of [41], and we indicate this in several remarks.

In Section 3 we study quotients of graded twistings of commutative Hopf algebras
of functions on affine algebraic groups, giving a complete description of such
noncommutative quotients when the group � defining the grading is finite of prime
order. This complements our results on graded twistings of compact groups in [8],
but while in [8] we used C�-algebraic tools, here the proofs are purely Hopf algebraic.

In Section 4 we introduce graded twisting of �-equivariant comodule algebras.
When � is abelian we show that this construction defines an equivalence between the
categories of such algebras. As an example we study actions of quantum subgroups
of SL�1.2/ onK�1Œx; y�, a situation that cannot be covered by the 2-cocycle twisting
framework. Our results are refinements of some of those in [11], where one of
the conclusions is that the invariant rings K�1Œx; y�G for actions of finite quantum
subgroups G � SL�1.2/ share similar homological properties with invariant rings
KŒx; y�G for classical finite group actions: indeed, using the results of Section 3, we
show that in most cases these invariant rings K�1Œx; y�G are in fact invariant rings
KŒx; y�G

0 for the action of a classical subgroup G0 � SL.2/.
In Section 5 we define a categorical counterpart of the construction of Section 4,

the graded twisting of equivariant module categories. In the categorical setting the
construction is actually almost tautological, but we show that it is indeed the right
analogue of that in Section 4, the two being related to each other by a Tannaka–Krein
type duality result.

In Section 6 we study the graded twistings of module categories provided by the
Poisson boundary theory. In fact, these are more than just module categories, as the
module category structure is defined by a tensor functor, so in principle such a study
could have been carried out already in [8]. Our main result here is that under the
assumption of weak amenability the constructions of Poisson boundaries and graded
twistings commute (up to equivalence).

Acknowledgements. Wewould like to thankCésarGalindo for comments on the first
version of the paper, and the referee for having drawn our attention to the references [7,
41] and for his careful reading which helped us to improve the presentation.
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2. Preliminaries

We mainly follow the conventions of [8]. Thus, K stands for a field of characteristic
zero, � is a discrete group, and A is a Hopf algebra. All algebras, linear categories,
vector spaces and so on are considered over K. The group algebra of � (over K) is
denoted by K� . When we talk about �-algebras, it is always assumed that K D C.
We also assume that “the” category ofK-vector spaces has a strict tensor product. We
denote the category of left A-comodules by Comod.A/. Identity maps and identity
morphisms are tacitly denoted by �.

2.1. Graded Hopf algebras. Our starting point is the following structure on A,
which can be defined in two equivalent ways [8]:
(i) a cocentral Hopf algebra homomorphism pWA! K� , i.e. we have

p.a.1//˝ a.2/ D p.a.2//˝ a.1/

for all a 2 A;
(ii) a direct sum decomposition A D

L
g2� Ag such that AgAh � Agh and

�.Ag/ � Ag ˝ Ag for all g; h 2 � .
Namely, given (i), the grading is defined by

Ag D fa 2 A j p.a.1//˝ a.2/ D g ˝ ag D fa 2 A j a.1/ ˝ p.a.2// D a˝ gg;

while if (ii) is given, the map p is defined by p.a/ D ".a/g for every a 2 Ag . Note
that we always have 1 2 Ae and S.Ag/ � Ag�1 for the antipode S . In particular,
Ae is a Hopf subalgebra of A. The map p is surjective if and only if Ag ¤ f0g for
every g 2 � .

This structure implies a number of properties of A. To formulate a precise result
let us first recall the following definition.
Definition 2.1 ([4, 34]). A sequence of Hopf algebra homomorphisms

K ! B
i
! A

p
! L! K

is said to be exact if the following conditions hold:
(i) i is injective, p is surjective, and pi.b/ D ".b/1, for every b 2 B;
(ii) kerp D Ai.B/C D i.B/CA, where i.B/C D i.B/ \ ker."/;
(iii) the image of i is equal to the coinvariants of L, that is,

i.B/ D AcoKL
D fa 2 A j .id˝p/�.a/ D a˝ 1g

D
coKLA D fa 2 A j .p ˝ id/�.a/ D 1˝ ag:

Note that the condition pi D ".�/1 follows from the other ones.
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Proposition 2.2. Assume we are given a surjective cocentral Hopf algebra homo-
morphism pWA! K� . Then

(i) the grading on A is strong, i.e. AgAh D Agh for all g; h 2 �; we also have
ACg Ah D AgA

C

h
D AC

gh
;

(ii) Ag is a finitely generated projective left and right Ae-module for every g 2 �;

(iii) A is a faithfully flat left and right Ae-module, as well as a faithfully coflat left
and right K�-comodule;

(iv) we have a Hopf algebra exact sequence K ! Ae ! A! K� ! K.

Proof. (i) Let us fix g; h 2 � . Since Ah�1 is a nonzero subcoalgebra of A, we can
take b 2 Ah�1 such that ".b/ D 1. Then for each a 2 Agh we have

a D ab.1/S.b.2// 2 AgAh:

The same argument shows that if a 2 AC
gh
, then a 2 ACg Ah. Similarly one checks

that AC
gh
D AgA

C

h
.

(ii) This is a general property of strong gradings: if we choose xi 2 Ag and
yi 2 Ag�1 such that

Pn
iD1 yixi D 1, then we can define a left Ae-module map

Ag ! Ane by a 7! .ayi /
n
iD1 and its left inverse Ane ! Ag by .ai /niD1 7!

P
i aixi .

(iii) The faithful flatness follows immediately from (ii). The faithful coflatness
follows from the cosemisimplicity ofK� , but is also easy to check directly, since if V
is a leftK�-comodule, then the cotensor product AlK� V is equal to

L
g Ag ˝Vg

with respect to the induced �-gradings.

(iv) We only have to check that kerp D AACe D ACe A. As kerp D
L
g A
C
g , this

follows from (i).

2.2. Graded twisting of Hopf algebras. Let us now recall the graded twisting
construction of Hopf algebras introduced in [8].

Definition 2.3 ([8]). An invariant cocentral action of � on A is a pair .p; ˛/ where
� pWA! K� is a cocentral Hopf algebra homomorphism,
� ˛W� ! Aut.A/ is an action of � by Hopf algebra automorphisms on A, with
p˛g D p for all g 2 � .

In terms of the �-gradings, the last condition is equivalent to ˛g.Ah/ D Ah for all
g; h 2 � . When .p; ˛/ is such an action, the graded twisting At;˛ of A is the Hopf
algebra

At;˛ D
X
g2�

Ag ˝ g � A Ì �;
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equipped with the algebra structure of the crossed product A Ì � , which we identify
withA˝K� as a linear space, and with the coalgebra structure induced by the linear
isomorphism

j WA! At;˛;
X
g

ag 7!
X
g

ag ˝ g: (2.1)

Note that zp D p ˝ "WAt;˛ ! K� is a cocentral Hopf algebra homomorphism,
which is surjective when p is. However, the maps z̨g D .˛g ˝ �/jAt;˛ are not
necessarily algebra automorphisms unless � is abelian, see the discussion in [8,
Section 2.3].
Remark 2.4. The algebra structure on a graded twisting as above is a very special
case of the one constructed in [7, 41]. Indeed, following the setting in [41], consider
an algebra A graded by a group � as in Subsection 2.1, and a map � from � into the
group of graded linear automorphisms of A such that, for every g 2 � , �g is unit
preserving, �1 D �A, and such that, for all g; h 2 � , a 2 Ah, b 2 A, we have

�g.a�h.b// D �g.a/�gh.b/:

Following [41], one defines a new product on A by

a �� b D a�g.b/; a 2 Ag ; b 2 A;

and this produces a new twisted associative algebra, denoted A� . Now, if we assume
in addition thatA is a Hopf algebra as in Subsection 2.1 and themaps �g are coalgebra
automorphisms, one can easily check that A� , with the original coalgebra structure
on A, becomes a Hopf algebra.

It is straightforward that, starting from an invariant cocentral action .p; ˛/, the
map ˛ satisfies the � -conditions above, and that the graded twisting Hopf algebraAt;˛
is isomorphic with the A˛ above. Therefore the � -setting generalizes the setting of
invariant cocentral actions. Some of the basic results on graded twisting can then be
extended to A� , as will be indicated in several places. At the same time most of our
considerations in the subsequent sections do not seem to have simple generalizations
to this setting. Nevertheless, one clear advantage of the � -setting, pointed to us by the
referee, is that it puts the original Hopf algebra and the twisted one on an equal footing,
since one can come back to the original A by twisting again using the map g 7! ��1g .
This observation overcomes the difficulty that the maps z̨g D .˛g ˝ �/jAt;˛ are not
necessarily algebra automorphisms unless � is abelian, and would have simplified
and clarified the discussion in [8, Section 2.3].

An even more general construction arises from [7]. Assume we are given a Hopf
algebraH , a (right)H -comodule algebraA and a convolution invertible linear map �
fromH into the space of linear endomorphisms ofA. A new product onA is defined
by

a �� b D a.0/�a.1/.b/; a; b 2 A:
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Conditions that ensure that the new product is associative (with 1 as unit) are given
in [7, Theorem 1.1]. Assuming in addition that A is a Hopf algebra, it is not
difficult to write down axioms that ensure that the new algebra A� is a Hopf algebra
(the coalgebra structure being the original one of A). While it is hard to imagine
that there are meaningful analogues of most of the results of the present paper to this
setting, this construction is probably worth studying for other purposes. For example,
in view of the results of [7, Section 3], this general twisting procedure should enable
one to treat the crossed product Hopf algebras as studied in [1, 2].

Coming back to a Hopf algebra A endowed with an invariant cocentral
action .p; ˛/ of the group � , since the coalgebras A and At;˛ are isomorphic, there
is an equivalence of comodule categories

F WComod.A/! Comod.At;˛/; V 7! V t;˛ D
M
g2�

Vg ˝ g; (2.2)

asK-linear categories, see [8, Section 2] for the case of finite dimensional comodules.
Here, Vg denotes the g-homogeneous component of V for the �-grading induced
by the coaction of K� given by the composition of A-coaction and p. The
At;˛-comodule structure of V t;˛ is defined by

v ˝ g 7! v.�1/ ˝ g ˝ v.0/ ˝ g

for v 2 Vg .
In general this equivalence is not an equivalence of monoidal categories, but it

is a quasi-monoidal equivalence when the cocentral action is almost adjoint in the
sense of [8]. In Section 4 we will see that for appropriate categories of comodules F
does become a monoidal equivalence.

2.3. Graded twisting of monoidal categories. Let us now recall the categorical
counterpart of the above construction [8].

Let C be a �-graded K-linear monoidal category. Thus, we are given full
subcategories Cg for g 2 � such that any object X in C admits a unique (up to
isomorphism) decomposition X '

L
g2� Xg with Xg 2 Cg (and Xg D 0 for all

but a finite number of g’s), there are no nonzero morphisms between the objects in
Cg and Ch for g ¤ h, 1 2 Ce , and the monoidal structure satisfies X ˝ Y 2 Cgh for
all homogeneous objects X 2 Cg and Y 2 Ch.

Consider now a weak action of � on C , that is, a monoidal functor

˛W� ! Aut˝.C/;

where � is the monoidal category with objects the elements of � , no nontrivial
morphisms, and with the tensor structure given by the product in � , and where
Aut˝.C/ is the monoidal category of monoidal autoequivalences of C , with the
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tensor structure given by the composition of monoidal functors. More concretely, this
means thatwe are givenmonoidal autoequivalences .˛g ; ˛g2 ; ˛

g
0 / ofC for eachg 2 � ,

which we usually denote simply by ˛g , where
� ˛g is an autoequivalence of C as a K-linear category,
� ˛

g
2 W˛

g.X/˝ ˛g.Y /! ˛g.X ˝ Y / is a natural family of isomorphisms for X; Y
in C ,

� ˛
g
0 W 1! ˛g.1/ is an isomorphism,

which satisfy the standard set of compatibility conditions for associator and unit, and
natural monoidal isomorphisms

�g;h D
�
�
g;h
X W˛

g˛h.X/! ˛gh.X/
�
X2C

from ˛g˛h to ˛gh such that ˛e ' IdC and

�
g;hk
X ˛g.�

h;k
X / D �

gh;k
X �

g;h

˛k.X/

asmorphisms from˛g˛h˛k.X/ to˛ghk.X/. Replacing� ! Aut˝.C/ by a naturally
monoidally isomorphic functor we may and, when convenient, will assume that

˛e D IdC ; �
e;g
X D �

g;e
X D �: (2.3)

If C is strict, then similarly we may assume that

˛g.1/ D 1; ˛
g
2 .1; X/ D ˛

g
2 .X; 1/ D �: (2.4)

Note that we then also have

˛
g
0 D �; �

g;h
1 D �: (2.5)

A weak action .˛; �/ is called invariant if every ˛g preserves the homogeneous
subcategoriesCh for all h 2 � . Given such an action, we denote byC t;.˛;�/, or simply
by C t;˛ , the full monoidal K-linear subcategory of C Ì˛;� � (called the semidirect
product in [37]) obtained by taking direct sums of the objects X � g for g 2 �
and X 2 Cg , and call C t;˛ the graded twisting of C .

By construction, C t;˛ is equivalent to C as a �-graded K-linear category.
Identifying C and C t;˛ asK-linear categories, we may express the twisted monoidal
structure as a bifunctor on C given by X ˝˛ Y D X ˝ ˛g.Y / for X 2 Cg .
Remark 2.5. It is possible to define a categorical analogue of � -twisting discussed in
Remark 2.4. Let C be a �-gradedK-linear monoidal category. Assume we are given
autoequivalences �g , g 2 � , of C as a graded linear category such that �g.1/ D 1
and �e D IdC , and natural isomorphisms

 g;hW �g
�
X ˝ �h.Y /

�
! �g.X/˝ �gh.Y /; X 2 Ch; Y 2 C :
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We then define a new tensor structure on C such that

X ˝� Y D X ˝ �g.Y /; X 2 Cg ; Y 2 C :

We then need to impose an additional requirement on � and , a detailed formulation
of which we leave to the reader, saying that this product together with associativity
morphisms given by the compositions

�
X ˝ �g.Yh/

�
˝ �gh.Z/

ˆ
�! X ˝

�
�g.Yh/˝ �gh.Z/

� �˝ �1
g;h

�����! X ˝ �g
�
Y ˝ �h.Z/

�
for X 2 Cg and Y 2 Ch (ˆ is the associativity morphism in C ) defines a monoidal
category, which we denote by C � .

3. Quantum subgroups of twisted algebraic groups

In this sectionwe extend some of our results on graded twistings of compact groups [8]
to affine algebraic groups.

3.1. Quotients of twistedHopf algebras. We start with an arbitrary Hopf algebraA
endowed with an invariant cocentral action .p; ˛/ of � . Assume I � A is a proper
�-graded and �-stable Hopf ideal, so that I D

L
g.I \ Ag/ and ˛g.I / � I for

all g 2 � . Then I � ker ", hence I � kerp D
L
g A
C
g , so the invariant cocentral

action .p; ˛/ induces an invariant cocentral action . xp; x̨/ on A=I . We can then form
the graded twisting .A=I /t;x̨, which is nothing else than the quotient At;˛=j.I /,
with j as in (2.1).

Recall that even when ˛g ˝ � are not algebra automorphisms of At;˛ , a subspace
X � At;˛ is said to be �-stable if .˛g ˝ �/.X/ � X for all g 2 � . The following is
a reformulation of [8, Proposition 4.2].
Proposition 3.1. Let A be a Hopf algebra endowed with an invariant cocentral
action .p; ˛/ of a group � . Let Ip;˛.A/ (resp., I zp;z̨.At;˛/) denote the set of �-stable
and �-graded ideals of A (resp., of At;˛). Then we have a bijection between these
sets given by

Ip;˛.A/ 3 I D
M
g2�

Ig 7! j.I / D
M
g2�

Ig ˝ g 2 I zp;z̨.At;˛/:

This bijection respects the Hopf ideals on both sides, and if I � A is a proper
�-graded and �-stable Hopf ideal, then At;˛=j.I / ' .A=I /t;x̨.

It is worth mentioning that this result can also be easily established using well-
known properties of strongly graded rings. Namely, by [27, Corollary I.3.2.9] the
map I 7! I \Ae defines a bijection between the graded ideals of A and the ideals J
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of Ae such that AgJAg�1 � J for all g 2 � . The same is true for At;˛ . Then the
first statement of the above proposition follows from the observation that a �-stable
ideal J � Ae has the property AgJAg�1 � J if and only if the �-stable ideal
j.J / D J ˝ 1 of .At;˛/e ' Ae has the property j.Ag/j.J /j.Ag�1/ � j.J /.

In view of Proposition 3.1, a natural question is under which conditions a Hopf
ideal of A or At;˛ is �-stable and �-graded. The next result shows that under quite
general assumptions the only reason why a Hopf ideal may be nongraded is the
existence of nontrivial quotients of � .

Proposition 3.2. Let pWA ! K� be a surjective cocentral Hopf algebra
homomorphism and f WA! L be a surjective Hopf algebra homomorphism. If L is
faithfully flat over f .Ae/ as a left or right module, then there exists a surjective group
morphism uW� ! x� and a commutative diagram of Hopf algebra homomorphisms

K // Ae
i //

f jAe
��

A
p //

f

��

K� //

u
��

K

K // f .Ae/ // L
q // Kx� // K

with exact (as sequences of Hopf algebras) rows, where q is cocentral.
The faithful flatness assumption is satisfied in each of the following cases:

(i) Ae is commutative;

(ii) L is cosemisimple;

(iii) L is pointed, that is, simple comodules are one-dimensional.

Proof. Since ACe A D AACe by Proposition 2.2, we have f .Ae/CL D Lf .Ae/
C.

Hence we can form the quotient Hopf algebra Q D L=f .Ae/
CL, together with

the canonical surjection qWL ! Q. Since L is faithfully flat over f .Ae/, by [25,
Proposition 3.4.3] we get an exact sequence

K ! f .Ae/! L
q
�! Q! K

of Hopf algebra homomorphisms. Since we also have kerp D ACe A, we see
that qf vanishes on kerp and there exists a surjective Hopf algebra homomorphism
uWK� ! Q such that up D qf . It follows that we can identify Q with Kx� for a
quotient x� of� in such away thatuWK� ! Kx� is induced by the factormap� ! x� .
The cocentrality of q follows then from that of p. This finishes the proof of the first
part of the proposition.

As for the concrete conditions that ensure faithful flatness of L over f .Ae/,
for the case (i) this is [5, Proposition 3.12], for (ii) this is [13], while for (iii) see,
e.g. [32, 35].
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Corollary 3.3. Under the assumptions of the proposition, if � is simple, then either
L D f .Ae/ or ker f � A is a proper �-graded Hopf ideal.

Proof. By assumption, either x� is trivial or u is an isomorphism. In the first case
we have f .Ae/ D LcoKx� D L. In the second case ker f � kerp and hence ker f is
�-graded.

Remark 3.4. It is not true that a Hopf algebra is always faithfully flat over its Hopf
subalgebras [33]. It is, however, still open whether this is true for Hopf algebras with
bijective antipode.

3.2. Quotients of twisted commutative Hopf algebras. We now turn to graded
twistings of commutative Hopf algebras. In that case there is no loss of generality in
assuming that � is abelian.

Lemma 3.5. Let A be a commutative Hopf algebra endowed with an invariant
cocentral action .p; ˛/ of a group � . If J is a �-graded ideal of At;˛ , then J is
automatically �-stable.

Proof. Since J is �-graded, we can write J D
L
g2� Jg ˝ g with Jg � Ag . Then

J.Ah ˝ h/ D
M
g2�

Jg˛g.Ah/˝ gh � J;

hence JgAh D Jg˛g.Ah/ � Jgh for all g; h. Similarly, from

.Ah ˝ h/J D
M
g2�

Ah˛h.Jg/˝ hg � J

we obtain Ah˛h.Jg/ � Jhg for all g; h. We thus have

˛g.Jh/ � ˛g.AeJh/ D Ae˛g.Jh/ D Ag�1Ag˛g.Jh/ � Ag�1Jgh:

But by the commutativity of A the last term is equal to JghAg�1 � Jh. This shows
the �-stability of J .

Combining this with Corollary 3.3 we get the following result.

Theorem 3.6. Suppose that� is a cyclic group of prime order andA is a commutative
Hopf algebra endowed with an invariant cocentral action .p; ˛/ of � such that
pWA ! K� is surjective. Then for any Hopf algebra quotient L of At;˛ one of the
following holds:

(i) L is commutative and isomorphic to a Hopf algebra quotient of Ae;

(ii) L is isomorphic to .A=I /t;x̨, for a �-graded and �-stable Hopf ideal I � A.
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Proof. Write L as At;˛=J . Since .At;˛/e ' Ae is commutative, we can apply
Corollary 3.3 to At;˛ and conclude that either L is a quotient of .At;˛/e or J is
�-graded. In the second case, by the previous lemma, J is also �-stable and then, by
Proposition 3.1, we have J D j.I / for a �-graded and �-stable Hopf ideal I � A,
so that L ' .A=I /t;x̨.

Recall that by Cartier’s theorem A has no nilpotent elements ([9]; [39, Sec-
tion 11.4]). Let us further assume that K is algebraically closed and A is finitely
generated over K, so that A is isomorphic to the algebra O.G/ of regular functions
on some affine algebraic group G defined over K (which can be identified with a
Zariski closed subgroup of GLn.K/ for some n). In this case an invariant cocentral
action of � , with surjective homomorphism pWA ! K� , amounts to a pair .i; ˛/,
where
� i W y� D Hom.�;K�/! Z.G/ is an injective morphism of algebraic groups,
� ˛W� ! Aut.G/ is a group morphism,

such that for all g 2 � and  2 y� , ˛g.i. // D i. /. By an invariant cocentral
action of � on G we will mean such a pair .i; ˛/ and denote by O.Gt;˛/ the Hopf
algebra O.G/t;˛ . See Subsection 4.2 for concrete examples of this kind, or more
generally [8].

Note that the �-grading on O.G/ is described as

O.G/g D fa 2 O.G/ j a.i. /x/ D  .g/a.x/ 8x 2 G; 8 2 y�g .g 2 �/:

In particular, O.G/e D O.G=i.y�//. In this setting, a proper �-graded Hopf ideal
of O.G/ is defined by an algebraic subgroup H � G such that i.y�/ � H . Such an
ideal is �-stable if and only if H is globally invariant under the automorphisms ˛g ,
g 2 � , in which case we say thatH itself is �-stable.

In this language, Theorem 3.6 says that if � is a cyclic group of prime order, then
any Hopf algebra quotient of O.Gt;˛/ is isomorphic either to O.H/ for an algebraic
subgroup H � G=i.y�/ or to O.H t;˛/ for a �-stable algebraic subgroup H � G

such that i.y�/ � H .
We next want to analyze when the algebra O.Gt;˛/ is noncommutative. For this,

it is convenient, as in [8], to consider the following subgroup of G:

G1 D fx 2 G j �:x � i.y�/xg;

where �:x D f˛g.x/gg2� .

Lemma 3.7. Let .i; ˛/ be an invariant cocentral action of a finite abelian group �
on an affine algebraic group G. Assume that G1 ¤ G. Then the algebra O.Gt;˛/

is noncommutative. Conversely, if O.Gt;˛/ is noncommutative and � is cyclic,
then G1 ¤ G.
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Proof. First assume G nG1 ¤ ;. Take an element x from this set and choose g 2 �
such that ˛g.x/ 62 i.y�/x. We then have

i.y�/˛g�1.x/ \ i.y�/x D ;:

Hence, for every h 2 � , we can find a function ah 2 O.G/ such that it vanishes on
i.y�/˛g�1.x/ and

ah.i. /x/ D  .h/ for all  2 y�:

Define a0
h
2 O.G/ by

a0h.y/ D
1

j�j

X
 2y�

 .h/�1ah.i. /y/:

Then we have a0
h
2 O.G/h, a0h.x/ D 1, and a

0
h
.˛g�1.x// D 0. In particular we have

a0g˛g.a
0
e/ ¤ a

0
ea
0
g by comparing their values at x, and

.a0g ˝ g/ � .a
0
e ˝ 1/ ¤ .a

0
e ˝ 1/ � .a

0
g ˝ g/

in the crossed product, which shows that O.Gt;˛/ is indeed noncommutative.
Conversely, assume that G1 D G. Then for all x 2 G and g 2 � , there exists

 x;g 2 y� such that ˛g.x/ D i. x;g/x. If we fix x 2 G, we obtain a bicharacter

� � � ! K�; .g; h/ 7!  x;g.h/:

If we further assume that � is cyclic, this must be a symmetric bicharacter. It follows
that for all a 2 O.G/g and b 2 O.G/h, we have a˛g.b/ D b˛h.a/, or in other words

.a˝ g/ � .b ˝ h/ D .b ˝ h/ � .a˝ g/;

which shows that O.Gt;˛/ is commutative.

This lemma together with Theorem 3.6 give the following.
Theorem 3.8. Let � be a cyclic group of prime order, .i; ˛/ be an invariant cocentral
action of� on an affine algebraic groupG defined over an algebraically closed fieldK
of characteristic zero, and L be a Hopf algebra quotient of O.Gt;˛/. Then one of the
following assertions holds:

(i) L is commutative and is isomorphic to O.H/ for an algebraic subgroup
H � G=i.y�/;

(ii) L is commutative and is isomorphic to O.H t;˛/ for a �-stable algebraic
subgroupH � G such that i.y�/ � H and

fx 2 H j �:x � i.y�/xg D H I
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(iii) L is noncommutative and is isomorphic to O.H t;˛/, for a �-stable algebraic
subgroupH � G such that i.y�/ � H and

fx 2 H j �:x � i.y�/xg ¤ H:

Remark 3.9. As opposed to cases (ii) and (iii), we do not claim that (i) is actually
realized, that is, given an algebraic subgroup H � G=i.y�/ it is not always true that
O.H/ can be obtained as a quotient of O.Gt;˛/.

For complexifications of compact Lie groups a similar result describing Hopf
�-algebra quotients of O.Gt;˛/ was obtained in [8, Theorem 4.8] using C�-algebraic
tools.

4. Twisting of comodule algebras

4.1. Comodule algebras and their coinvariants. As before, letA be aHopf algebra
and .p; ˛/ be an invariant cocentral action of � on A. Recall that by (2.2) we have
an equivalence between the categories Comod.A/ and Comod.At;˛/. We now want
to consider more refined classes of comodules and comodule algebras respecting the
action of � .

Definition 4.1. Let �V WV ! A ˝ V be a left A-comodule, and ˇV D ˇ be a
linear representation of � on V . We say that .V; ˇ/ is �-equivariant, or that it is a
�-A-comodule, if � is �-equivariant with respect to ˇ and ˛ ˝ ˇ. We denote the
category of �-A-comodules with the �-linear and A-colinear maps as morphisms by
Comod.A; �; ˛/.

As a basic example of a �-A-comodule, we have of course A D .A; ˛/ itself.

Remark 4.2. The action ˛ endows A with a left K�-module coalgebra structure,
and the category just defined is the category of Doi–Hopf modules M.K�/A

K� [16].
The aim of our present terminology is to emphasize the A-comodule structure. Note
that in [7], the authors focus on the category of relative Hopf modules MK�

A instead.

It is straightforward to check that the monoidal structures on Comod.A/ and
Mod.K�/ induce amonoidal structure onComod.A; �; ˛/, with the obvious forgetful
functors being strict monoidal.

Definition 4.3. A �-A-comodule algebra is given by the following data:

� .R; �RWR! A˝R/ is a left A-comodule algebra, and

� ˇW� ! Aut.R/ is an action of � on R by algebra automorphisms,

such that �Rˇg D .˛g ˝ ˇg/�R for every g 2 � .
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In other words, a �-A-comodule algebra is just an algebra object in the monoidal
category Comod.A; �; ˛/.

By analogywith the construction ofAt;˛ wecan define twistings of�-A-comodule
algebras. Let R D .R; ˇ/ be such an algebra. Recall that the A-comodule structure
map composed with p ˝ � defines a K�-comodule algebra structure on R, and we
have a direct sum decomposition R D

L
g2� Rg . Note that by the equivariance

condition we have ˇg.Rh/ D Rh for all g; h 2 � . Now, identifying R ˝ K�

with R Ìˇ � as a linear space, we obtain an algebra structure on

Rt;˛ D
M
g2�

Rg ˝ g � R Ìˇ �

defined by that on the crossed product. We denote the At;˛-comodule Rt;˛ with this
algebra structure by Rt;˛;ˇ , or simply by Rt;ˇ . Similarly to Remark 2.4, the algebra
structure of Rt;˛;ˇ is a special instance of the construction from [41].

The following property is immediate by definition.
Proposition 4.4. For any �-A-comodule algebra R, we have a canonical
isomorphism Re ' .Rt;ˇ /e of algebras. Furthermore, if we identify the Hopf
algebras Ae and .At;˛/e , then this is an isomorphism of Ae-comodule algebras. In
particular, we have coAt;˛.Rt;ˇ / ' coAR.
Remark 4.5. It will be useful to slightly strengthen this simple observation.
Assume we are given a proper �-graded and �-stable Hopf ideal I � A as in
the previous section. Then a �-A-comodule algebra R can also be viewed as a
�-.A=I /-comodule algebra. The construction of Rt;ˇ is independent of the point
of view. Hence by applying the above proposition to A=I instead of A, we get
co.A=I/t;x̨.Rt;ˇ / ' co.A=I/R.

Let us assume now that � is abelian. Then At;˛ is equipped with the action
of � by the algebra automorphisms z̨g D ˛g ˝ � and the monoidal category
Comod.At;˛; �; z̨/ is well-defined. Similarly, if .R; ˇ/ is a �-A-comodule algebra,
then we have an action of � on Rt;ˇ by the automorphisms žg D ˇg ˝ �, so that
.Rt;ˇ ; ž/ becomes a �-At;˛-comodule algebra.

The functor F WComod.A/ ! Comod.At;˛/ extends in the obvious way to a
functor

Comod.A; �; ˛/! Comod.At;˛; �; z̨/;

which we continue to denote by F . It is easy to see that this is an equivalence of
categories, but in fact the following stronger result is true.
Theorem 4.6. If � is abelian, then the functor

F WComod.A; �; ˛/! Comod.At;˛; �; z̨/

can be enriched to an equivalence of monoidal categories.
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Proof. We have to specify a natural family of isomorphisms

F2.V;W /WV
t;˛
˝W t;˛

! .V ˝W /t;˛

in the categoryComod.At;˛; �; z̨/ forV D.V; ˇ/ andW D.W; / inComod.A; �; ˛/,
satisfying the compatibility conditions with unit and associator. We claim that it can
be given as

F2.V;W /..v ˝ g/˝ .w ˝ h// D v ˝ g.w/˝ gh .v 2 Vg ; w 2 Wh/: (4.1)

Indeed, for v 2 Vg and w 2 Wh, we have v ˝ g.w/ 2 .V ˝W /gh, hence our map
is well-defined. It is a linear bijection, since

.V ˝W /t;˛ D
M
g2�

.V ˝W /g ˝ g D
M
g2�
rsDg

Vr ˝Ws ˝ g D
M
r;s2�

Vr ˝Ws ˝ rs

and our map identifies Vg ˝ g ˝ Vh ˝ h and Vg ˝ Vh ˝ gh. Next let us verify the
�-linearity. For r 2 � , we have

F2.V;W /.r � .v ˝ g ˝ w ˝ h//

D F2.V;W /.ˇr.v/˝ g ˝ r.w/˝ h/

D ˇr.v/˝ gr.w/˝ gh D ˇr.v/˝ rg.w/˝ gh

D r � .v ˝ g.w/˝ gh/ D r � F2.V;W /.v ˝ g ˝ w ˝ h/;

hence F2.V;W / is �-linear. The At;˛-colinearity comes from the identities

v.�1/g.w/.�1/ ˝ gh˝ v.0/ ˝ g.w/.0/ ˝ gh

D v.�1/˛g.w.�1//˝ gh˝ v.0/ ˝ g.w.0//˝ gh

D ..v.�1/ ˝ g/.w.�1/ ˝ h//˝ F2.V;W /.v.0/ ˝ g ˝ w.0/ ˝ h/:

We now know that F2.V;W / is a natural transformation

F2WF.V /˝ F.W /! F.V ˝W /:

Since themonoidal unit is represented byK concentrated at degree e,F2 is compatible
with the unit. As for the compatibility with associator, since both Comod.A/ and
Comod.At;˛/ are strict it amounts to verifying the identity

F2.F.V ˝W /;Z/.F2.V;W /˝ �/ D F2.V; F.W ˝Z//.�˝ F2.W;Z//

for .V; ˇ/, .W; /, and .Z; �/ in Comod.A; �; ˛/. It can be directly checked that
both sides are characterized by

.v ˝ g/˝ .w ˝ h/˝ .z ˝ k/ 7! v ˝ g.w/˝ �gh.z/˝ ghk

for v 2 Vg , w 2 Wh, and z 2 Zk . This completes the proof.
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Consequently, F induces an equivalence between the respective categories of
algebra objects, that is, the categories of �-A-comodule algebras and of �-At;˛-
comodule algebras. It is easy to check that this recovers the construction of Rt;ˇ
from .R; ˇ/ introduced above for arbitrary � .

Remark 4.7. A similar result can be proved in the � -setting discussed in Remark 2.4;
in particular, a formof the above theorem is true for non-abelian groups. Namely, letA
be a �-graded Hopf algebra equipped with coalgebra automorphisms �g as in that
remark. Denote by Comod� .A; �/ the category of triples .V; �; ˇ/, where .V; �/ is a
left A-comodule (inheriting in this way a �-grading) and ˇ is a (not necessarily
multiplicative) map from � into the group of linear automorphisms of V such
that �ˇg D .�g ˝ ˇg/�, so that the automorphisms ˇg are graded automorphisms
of V . Define a tensor product on this category by taking the usual tensor product
of comodules V and W and equipping it with the maps

.ˇ ˝ /g.v ˝ w/ D ˇg.v/˝ gh
�1
h .w/; v 2 Vh; w 2 W:

This makes Comod� .A; �/ into a strict monoidal category.
Consider now the � -twisting A� and equip it with the maps z�g D ��1g , so that

.A� /z� D A. Any A-comodule V can be considered as a A� -comodule V � , and if V
is equipped with linear automorphisms ˇg as above, then we equip V � with the linear
automorphisms žg D ˇ�1g . We thus get a functor

F WComod� .A; �/! Comodz� .A� ; �/; F.V / D V � :

Similarly to the above theorem, it can then be easily checked that F , being equipped
with the tensor structure

F2.V;W /WV
�
˝W �

! .V ˝W /� ; v ˝ w 7! v ˝ h.w/; v 2 Vh; w 2 W;

becomes an equivalence of monoidal categories.

4.2. Quantum planes. As an example, let us explain how the framework developed
above can be used to obtain information on the fixed point algebras for quantum
groups actions on quantum planes. Throughout this section we assume that K is
algebraically closed and, as usual, has characteristic zero.

Let us recall the two-parameter quantum group GLp;q.2/ for p; q 2 K� which
can be found in, e.g. [36]. Its coordinate algebraO.GLp;q.2// is the algebra presented
by generators a, b, c, d , ı�1 subject to the relations

ba D qab; dc D qcd; ca D pac; db D pbd; qcb D pbc;

da � ad D .p � q�1/bc; .ad � q�1bc/ı�1 D 1 D ı�1.ad � q�1bc/:
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The Hopf algebra structure on O.GLp;q.2// is given by the usual formulas

�.a/ D a˝ aC b ˝ c; �.b/ D a˝ b C b ˝ d; �.c/ D c ˝ aC d ˝ c;

�.d/ D c ˝ b C d ˝ d; �.ı�1/ D ı�1 ˝ ı�1;

".a/ D ".d/ D ".ı�1/ D 1; ".b/ D ".c/ D 0;

S.a/ D dı�1; S.b/ D �qbı�1;

S.c/ D �q�1cı�1; S.d/ D aı�1; S.ı�1/ D ad � q�1bc:

Let us denote the quantum plane algebra Khx; y j yx D pxyi by KpŒx; y�. There
is an algebra homomorphism �WKpŒx; y�! O.GLp;q.2//˝KpŒx; y� characterized
by

�.x/ D a˝ x C b ˝ y; �.y/ D c ˝ x C d ˝ y

This defines a left O.GLp;q.2//-comodule algebra structure on KpŒx; y�.
Denote by �q the cyclic group of the same order as q as an element in the

multiplicative group K�, and fix its generator g. There is a cocentral Hopf algebra
homomorphism

pWO.GLp;q.2//! K�q;

�
a b

c d

�
7!

�
g 0

0 g

�
:

The dual group y�q can be identified with a subgroup of K� by taking the image
of g: it becomes �N .K/ if q has finite order N � 1, otherwise it is K�. The
above Hopf algebra homomorphism gives an identification of y�q as a quantum
subgroup of GLp;q.2/. For a quantum subgroupG � GLp;q.2/, we write y�q � G if
the corresponding surjective Hopf algebra homomorphism O.GLp;q.2// ! O.G/

factorizes p.
As shown in [8, Example 4.11], GLq�1;q.2/ is a graded twisting of GL.2/, and

more generally GLq�1�;q��1.2/ is a graded twisting of GLq�1;q.2/, for every � 2 K�.
Denote by ˛g the Hopf algebra automorphism of O.GL.2// defined by

˛g

��
a b

c d

��
D

�
a q�1b

qc d

�
and consider the group morphism ˛W�q ! Aut.O.GL.2//, g 7! ˛g . We then have
that .p; ˛/, or .i; ˛/ with the inclusion map i W y�q ! Z.GL.2// as scalar matrices, is
an invariant cocentral action of �q on O.GL.2//. This leads to the identification

O.GLq�1;q.2// ' O.GL.2//t;˛;
�
a b

c d

�
7!

�
a˝ g b ˝ g

c ˝ g d ˝ g

�
:

By Proposition 3.1, the Hopf ideals in Ip;˛.O.GL.2// correspond to certain
subgroups of GL.2/. Let us give them a name.
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Definition 4.8. We say that an algebraic subgroup H � GL.2/ is q-admissible if
y�q � H and ˛g.H/ D H .

Theorem 4.9. Let G � GLq�1;q.2/ be a quantum subgroup with y�q � G. Then
there exists a q-admissible algebraic subgroup G0 � GL.2/ such that

Kq�1 Œx; y�
G
' KŒx; y�G

0

as algebras.

Proof. LetG � GLq�1;q.2/ be a quantum subgroup such that y�q � G, and consider
the corresponding surjective Hopf algebra homomorphism

f WO.GLq�1;q.2//! O.G/:

The assumption y�q � G precisely means that ker f is �q-graded, hence, by
Lemma 3.5, ker f is also �q-stable. By Proposition 3.1 there exists a q-admissible
algebraic subgroupH � GL.2/ such that O.G/ ' O.H t;˛/.

Now, if we let G0 D H , in order to prove the theorem, by Proposition 4.4 and
Remark 4.5 it suffices to show that there exists an action ˇ of �q on KŒx; y� turning
KŒx; y� into a �q-O.GL.2/-comodule algebra such that

KŒx; y�t;ˇ ' Kq�1 Œx; y�

as O.GLq�1;q.2//-comodule algebras. We define the action ˇ by

ˇg.x/ D x and ˇg.y/ D qy:

It is then a simple matter to verify that the map

Kq�1 Œx; y�! KŒx; y�t;ˇ ; x 7! x ˝ g; y 7! y ˝ g;

defines the required isomorphism.

Remark 4.10. The theorem is of little interest (and trivial) if q is not a root of unity:
in that case we have K� � G, and Kq�1 Œx; y�G � Kq�1 Œx; y�K

�

D K.

It is well known that O.GLq�1;q.2// is a 2-cocycle twisting of O.GL.2// for a
2-cocycle induced from the subgroup Tq of diagonal matrices in GL.2/ with entries
in y�q , see for example [36]. Hence a statement similar to Theorem 4.9 can be obtained
from the usual transport result in the cocycle twisting case, for quantum subgroupsG
containing Tq . Our formulation is more general, and as seen in the next corollary it
includes SL�1.2/ and its quantum subgroups, which are not 2-cocycle twistings of
ordinary groups.
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Corollary 4.11. Let G � SL�1.2/ be a quantum subgroup. Assume that G is
nonclassical or, more generally, that f˙1g � G. Then there exists a .�1/-admissible
algebraic subgroup G0 � SL.2/ such that

K�1Œx; y�
G
' KŒx; y�G

0

as algebras.

Proof. The fact that if G is nonclassical then f˙1g � G (and, moreover, G D H t;˛

for a .�1/-admissible algebraic subgroup H � SL.2/) follows from Theorem 3.8.
Therefore the result is a consequence of Theorem 4.9.

Note that by Lemma 3.7 a quantum group G � SL�1.2/ with f˙1g � G is
nonclassical if and only if the corresponding G0 � SL.2/ contains a matrix that is
neither diagonal nor anti-diagonal.
Remark 4.12. A less precise version of Corollary 4.11 can be obtained more directly
as follows. Let G � SL�1.2/ be a quantum subgroup with f˙1g � G. We get a
Hopf algebra exact sequence

K ! O.H/! O.G/! KZ2 ! K

whereH � PSL.2/ is an algebraic subgroup. Hence we have

K�1Œx; y�
G
' .K�1Œx; y�

Z2/H :

It is straightforward that

K�1Œx; y�
Z2 D KŒx2; xy; y2� D KŒx; y�Z2 ;

so we have
K�1Œx; y�

G
' .KŒx; y�Z2/H ' KŒx; y�G

0

;

whereG0 D ��1.H/, with � WSL.2/! PSL.2/ the canonical surjection. This direct
reasoning, however, does not detect the .�1/-admissibility of G0.

Our technique applies as well to actions on quantum Weyl algebras. Recall [21]
that the quantum Weyl algebra A1.q�1/ is the algebra presented by generators x,
y subject to the relation yx � q�1xy D 1. The quantum group SLq�1.2/ acts
onA1.q�1/, with the action given by the same formula as for the action onKq�1 Œx; y�.
The algebra A1.�1/ is denoted W2 in [10], where the invariants under finite group
actions are studied, see [12] as well. We denote the ordinary Weyl algebra A1.1/
simply byA1. Similarly to the previous corollary, we have the following result, which
in many cases reduces the invariant theory for a (quantum) group action onW2 to the
invariant theory for a group action of A1 (see, e.g. [3]).
Theorem 4.13. Let G � SL�1.2/ be a quantum subgroup. Assume that G is
nonclassical or, more generally, that f˙1g � G. Then there exists a .�1/-admissible
algebraic subgroup G0 � SL.2/ such that W G

2 ' A
G0

1 as algebras.
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5. Graded twisting of module categories

In this section we introduce twistings of equivariant module categories, which is a
categorical counterpart of the construction in Section 4. Throughout this section we
assume that all categories (except for � and Aut.D/), and correspondingly functors
between them, are K-linear.

5.1. Equivariant module categories. Let D be a category. By a weak action of �
on D we mean a monoidal functor ˇW� ! Aut.D/. In this case we also say that D

is a �-equivariant category. In other words, a weak action is given by the following
data:
� a family of autoequivalences .ˇg/g2� of D , with ˇe ' IdD ,
� natural isomorphisms �g;h

ˇ
Wˇgˇh ! ˇgh,

satisfying the compatibility condition

�
g;hk

ˇ
ˇg.�

h;k
ˇ
/ D �

gh;k

ˇ
�
gh

ˇ
:

A weak action is called strict if ˇe D IdD and �g;h
ˇ

are the identity transformations.
Let C be a monoidal category. Recall [15, 31, 40] that a category D is said to be

a right C -module category if we are given a monoidal functor C˝op ! End.D/, or,
more concretely, a bifunctor

D � C ! D ; .X; U / 7! X � U

and natural isomorphisms

�X WX � 1! X and �
U;V
X W .X � U/ � V ! X � .U ˝ V /

satisfying standard compatibility conditions. When C is strict, we say that the
right C -module category structure on D is strict if �X and �U;VX are the identity
morphisms. In general the morphisms � are determined by �, so we will usually
omit them.

In this terminology a weak action of � on D is the same thing as the structure
of a right �-module category on D : given a weak action ˇW� Õ D , the module
category structure is defined by X � g D ˇg�1.X/ and �g;h D �h

�1;g�1

ˇ
.

When D and D 0 are right C -module categories, a C -module functor from D

to D 0 is given by a pair .F; �/, where F is a functor D ! D 0 and � is a family of
natural isomorphisms

F.X/ � U ! F.X � U/;

compatible in the obvious way with the isomorphisms �U;VX on both categories.
Applying this to the case C D � we get the notion of a �-equivariant functor

between�-equivariant categories. This can be rephrased in terms of the data defining
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weak actions. Namely, let ˛W� Õ D and ˇW� Õ D 0 be weak actions of � . Then a
�-equivariant functor from D to D 0 is given by a functor F WD ! D 0 and natural
isomorphisms of functors �g WF˛g ! ˇgF such that the diagrams

F˛h˛k.X/
�h
˛k.X/

((

F.�
h;k
˛ /

vv
F˛hk.X/

�hk
X
��

ˇhF˛k.X/

ˇh.�k
X
/

��
ˇhkF.X/ ˇhˇkF.X/

�
h;k
ˇ

oo

(5.1)

commute for allX 2 D . By abuse of notation we also write F instead of .F; .�g/g/.
Such an equivariant functor is said to be strict if �g is the identity for all g.
For monoidal �-equivariant categories (discussed already in Subsection 2.3) and
monoidal functors, we of course require �g to be natural isomorphisms of monoidal
functors.

Assume next we are given a monoidal category C and a weak action ˛W� Õ C .

Definition 5.1. By a right �-C -module category, or a right �-equivariant C -module
category, we mean a right C -module category D equipped with a weak action
ˇW� Õ D and a family of natural isomorphisms

ˇ
g
2 Wˇ

g.X/ � ˛g.U /! ˇg.X � U/

compatible with �, �˛ and �ˇ in the sense that the following two diagrams commute:

.ˇg.X/ � ˛g.U // � ˛g.V /
ˇ
g
2
��
//

�
˛g.U/;˛g.V /

ˇg.X/
��

ˇg.X � U/ � ˛g.V /
ˇ
g
2 // ˇg..X � U/ � V /

ˇg.�
U;V
X

/

��
ˇg.X/ � .˛g.U /˝ ˛g.V //

��˛
g
2

// ˇg.X/ � ˛g.U ˝ V /
ˇ
g
2

// ˇg.X � .U ˝ V //

ˇg.ˇh.X/ � ˛h.U //

ˇg.ˇh
2
/
��

ˇgˇh.X/ � ˛g˛h.U /
ˇ
g
2oo

�
g;h

ˇ
��
g;h
˛

��
ˇgˇh.X � U/

�
g;h

ˇ
''

ˇgh.X/ � ˛gh.U /

ˇ
gh
2

ww
ˇgh.X � U/:
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Remark 5.2. Equivariant module categories have been defined in [17]. It is not
difficult to check that the above definition is equivalent to the one in [17].

Example 5.3. Let A be a Hopf algebra with an action of � by Hopf algebra
automorphisms .˛g/g2� . As the category C we take the category of left
corepresentations (finite dimensional left comodules) Corep.A/. Given a left
corepresentation

U D .EU ; ı
U
WEU ! A˝EU /;

the monoidal functor ˛g is defined by

E˛g.U / D EU and ı˛
g.U /
D .˛g ˝ �/ıU :

Next, consider a �-A-comodule algebra .B; ıB WB ! A ˝ B; ˇ/. Then the
category zDB of rightB-modulesM with a compatible leftA-comodule structure ıM
becomes a right Comod.A/-module category. Concretely, for M 2 zDB , we take
(following the convention of [29]) M � U to be EU ˝M with the left A-coaction
given by

v ˝ x 7! S.v.�1//x.�1/ ˝ v.0/ ˝ x.0/

and the right B-action
.v ˝ x/:b D v ˝ xb:

The induced action of � on zDB is as follows: ˇg.M/ has the same underlying space
asM , while theA-coaction becomes .˛g˝ �/ıM and the rightB-module structure is
twisted by ˇg�1 , so that v:x in ˇg.M/ is the same as v:ˇg�1.x/ inM . We thus get
a �-Corep.A/-module category zDB . Note that the action of � on zDB is strict, and
if the tensor product of vector spaces is strict, then the Corep.A/-module structure is
also strict. Note also that the trivial case B D K gives (essentially) Corep.A/ as a
�-Corep.A/-module category in a natural way.

The following has already been observed by Galindo [19].

Proposition 5.4 ([19, Proposition 5.12]). Any C Ì �-module category can be
considered as a �-C -module category. Conversely, the structure of a �-C -module
category extends in an essentially canonical way to that of a C Ì�-module category.

Proof. Let us sketch an argument. Suppose we have an action of C Ì� on D . Then
we put

ˇg.X/ D X � .1C � g�1/:

The natural isomorphisms �g;h
ˇ

and ˇg2 are defined using the structure morphisms
of D . Explicitly,

�
g;h

ˇ
D �1�h�1;1�g�1
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and ˇg2 is given by the compositions

.X � g�1/ � ˛g.U /! X � .g�1 � ˛g.U //

D X � .˛g
�1

˛g.U /� g�1/! X � .U � g�1/! .X � U/ � g�1;

where we have abbreviatedU �e and 1C�g asU and g respectively, and the middle
equality follows from the way monoidal product in C Ì � is defined.

Conversely, given a �-C -module category D , we can define

X � .U � g/ D ˇg�1.X � U/;

and then extend this definition to direct sums in an essentially unique way. The
structure morphisms are defined using those given by the �-C -module structure.
The axioms are verified by a straightforward but tedious computation.

From this we obtain the notion of a �-equivariant C -module functor. It is
also possible to formulate it in terms of �-actions and C -module structures from
outset, and then the above argument provides an equivalence of two 2-categories,
that of the .C Ì �/-module categories (as 0-cells, module functors as 1-cells, and
natural transformations of module functors as 2-cells) on the one hand, and that of
�-C -module categories on the other, but we are not going to pursue this.

Let C be a �-graded monoidal category equipped with an invariant weak action
˛W� Õ C . Assume D is a right �-C -module category, with the action of � denoted
by ˇ. Then we can consider D as a C t;˛-module category, since by definition C t;˛

is a subcategory of C Ì � . We denote the C t;˛-module category D by D t;˛;ˇ ,
or by D t;ˇ . As we will see below, this almost tautological definition is the right
analogue of the construction in Section 4.

5.2. Strictification. Let us show that any �-C -module structure can be replaced by
a strict one in the strongest sense. A part, if not all, of the arguments below should be
known to the experts. In fact, as we were finalizing this paper, Galindo’s work [20]
appeared, which discusses strictification of equivariantmonoidal categories and relies
on similar ideas.

Given a monoidal category C , by Mac Lane’s theorem there exists a strict
monoidal category C 0 equivalent to C . Next assume that D is a right C -module
category. Since this simply means that we are given a monoidal functor
C˝op ! End.D/, D can also be considered as a C 0-module category. The following
is a folklore result, see, e.g. [22, Proposition 5] for a weaker early version.
Proposition 5.5. There exists a strict right C 0-module category D 0 equivalent to D .

Proof. Let D 0 be the category of pairs .X;U /, with X 2 D and U 2 C 0. The
morphisms are defined by

D 0..X;U /; .Y; V // D D.X � U; Y � V /;



354 J. Bichon, S. Neshveyev, and M. Yamashita

and the C 0-module structure by

.X;U / � V D .X;U ˝ V /:

The equivalence .F; �/WD 0 ! D is given by F.X;U / D X � U and

� D �
U;V
X WF.X;U / � V ! F.X;U ˝ V /:

Suppose now that we have a weak action .˛; �/ of � on a category D . We
may assume that ˛e D IdD . Define a new category zD as follows. The objects are
pairs .X�; �/, where:
� X� is a formal direct sum

L
g Xg � g, with Xg 2 C ,

� � is a collection of isomorphisms �hg W˛h.Xg/! Xhg making the diagram

˛k˛h.Xg/
˛k.�hg / //

�k;h

��

˛k.Xhg/

�k
hg

��
˛kh.Xg/

�khg

// Xkhg

(5.2)

commutative.
A morphism from .X; �/ to .X 0; � 0/ is given by a family of morphisms Xg ! X 0g
compatiblewith � and � 0 (of course, more succinctly, we could just take themorphisms
Xe ! X 0e).

The group � acts strictly on zD as follows. For each h 2 � , we define an
endofunctor z̨h of zD by sending

L
g Xg � g to

L
g Xgh � g and � D .�kg /k;g

to .�k
gh
/k;g . Since we are only translating the variable on � on the right, we have the

equality z̨h z̨k D z̨hk .
Proposition 5.6. The categories D and zD are �-equivariantly equivalent via the
functors

F WD ! zD ; X 7!
�M

g

˛g.X/� g; �hg D �
h;g
W˛h˛g.X/! ˛hg.X/

�
F 0W zD ! D ;

�M
g

Xg � g; �
�
! Xe:

The construction D  zD is natural in the sense that any �-equivariant functor
.G; �/ from D to D 0 induces a canonical strict �-equivariant functor zD ! zD 0.

Proof. Since ˛e D IdD , we have F 0F D IdD . On the other hand, we can define a
natural isomorphism FF 0 ! Id zD by combining

�ge W˛
g.Xe/ D .FF

0.X�; �//g ! Xg

for g 2 � . Thus, these functors are equivalences of categories.
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When h 2 � , the required natural isomorphism �hWF˛h ! z̨hF is given by
collecting

�g;h � �g W˛g˛h.X/˝ g! ˛gh.X/� g

for g 2 � . Commutativity of the diagram (5.1) follows from �g;hk˛g.�h;k/ D

�gh;k�gh.
Consider now a �-equivariant functor .G; �/ from D ! D 0. Let

.X�; �/ D
�M

g

Xg � g; .�hg /h;g
�

be an object in zD . Then we define an object zG.X�; �/ of zD 0 to be the pair consisting
of Y� D

L
g G.Xg/� g and the isomorphisms

�hg D G.�
h
g /�

h
Xg
WˇhG.Xg/! G.Xhg/:

That the family .�hg/h;g satisfies the commutativity of (5.2) follows from the
corresponding condition for � and the commutativity of (5.1).

Remark 5.7. The above argument is inspired by work of Tambara [37]. For finite
groups the category zD is .D � Vect�f;K/

� (see [37] or the next subsection for the
meaning of this notation; here Vect�f;K is the category of finite dimensional �-graded
vector spaces over K), and the equivalence D ' .D � Vect�f;K/

� appears in the
proof of Theorem 4.1 in op. cit.

The conclusion of the above proposition might look counter-intuitive at first,
since on D D Vectf;K (considered as a K-linear category, so without the monoidal
structure), the weak actions of � are parametrized by H 2.�IK�/ up to equivalence
(see, e.g. [18, Exercise 2.7.3]). However, strictness is not preserved under the natural
correspondence of weak actions on equivalent categories, so we are not claiming that
all weak actions on D can be simultaneously strictified on some equivalent category.

Let us next consider a monoidal category C and a weak action .˛; �/ of � on C .
Then the category zC defined as above admits the structure of a monoidal category.
Namely, the tensor product of .X�; �/ and .Z�; �/ is defined to be the pair consisting
of the object

L
g.Xg ˝Zg/� g and the family of morphisms

.� ˝ �/hg D .�
h
g ˝ �

h
g/.˛

h
2 /
�1
W˛h.Xg ˝Zg/! Xhg ˝Zhg :

If C is strict, then the tensor product in zC is also strict. If we further assume that
conditions (2.4)–(2.5) are satisfied, then the tensor unit .

L
g 1�g; .�hg D �/h;g/ in zC

is also strict, so that zC becomes a strict monoidal category. Then z̨g becomes a strict
tensor functor, and we get the following.
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Lemma 5.8. Given a weak action of � on a strict monoidal category C satisfying
conditions (2.3)–(2.5), the functors F WC ! zC and F 0W zC ! C of Proposition 5.6
can be enriched to �-equivariant monoidal equivalences.

Proof. The functor F 0 is already a strict tensor functor, so we only have to define F2.
Given X and Z in C , we define the natural transformation

F2WF.X/˝ F.Z/! F.X ˝Z/

by the collection of morphisms

˛
g
2 W˛

g.X/˝ ˛g.Z/! ˛g.X ˝Z/:

The fact that this gives morphisms in zC follows from monoidality of �g;h. For
the same reason the natural isomorphisms �h from the proof of Proposition 5.6 are
monoidal.

Let us summarize the above considerations. We start with a �-C -module
category D and perform the following steps:
� take a strict monoidal category C 0 equivalent to C ; since Aut˝.C 0/ is monoidally
equivalent to Aut˝.C/, we have a weak action of � on C 0 such that the monoidal
equivalence between C and C 0 becomes �-equivariant;

� next we modify the action on C 0 to get an isomorphic action satisfying
conditions (2.3)–(2.5);

� we then apply toC 0 the procedure described before Proposition 5.6 and Lemma 5.8
to get a strict monoidal category zC equipped with a strict action of � by strict
tensor functors such that zC ' C 0 as �-equivariant monoidal categories;

� as zC Ì � is monoidally equivalent to C Ì � , we can consider D as a zC Ì �-
module category; applying Proposition 5.5 we finally get an equivalent strict
zC Ì �-category D 0.
Therefore in developing a general theory of�-equivariant module categories there

is no loss of generality in assuming that for every such category everything that can
be strict is strict.

Note, however, that we still need nonstrict functors between such categories.
But if we consider only singly generated categories, as we do below, even this is
unnecessary.

5.3. Duality. We want to show next that the constructions of the algebras Rt;ˇ and
module categories D t;ˇ given in Sections 4.1 and 5.1, respectively, are related by a
Tannaka–Krein type duality.

The Tannaka–Krein duality principle states that quantum groups can be encoded
bymonoidal categories and fiber functors into the category of vector spaces. Pursuing
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this correspondence, the A-comodule algebras are encoded by Corep.A/-module
categories, see [14, 28, 29, 31] for precise statements in various contexts. Since for
infinite dimensional Hopf algebras complete results of this type seem to be available
only for compact quantum groups, we will work now in this setting.

Specifically, we need the following Tannaka–Krein type duality result for compact
quantum groups G and unital G-C�-algebras.

Theorem 5.9 ([14, Theorem 6.4]; [28, Theorem 3.3]). Let G be a reduced compact
quantum group. Then the following two categories are equivalent:

� the category of unitalG-C�-algebrasB with unitalG-equivariant�-homomorphisms
as morphisms;

� the category of pairs .D ; X/, where D is a right .RepG/-module C�-category
closed under subobjects and X is a generating object in D , with equivalence
classes of unitary .RepG/-module functors respecting the prescribed generating
objects as morphisms.

Here, by a generating object X in a C -module category D we mean that every
object of D is a subobject of X �U for some U . Having generating objects X 2 D

and X 0 2 D 0 specified, we only consider the module functors .F; �/ such that
F.X/ D X 0. The equivalence relation on such functors .F; �/; .F 0; � 0/WD ! D 0

is defined as the existence of a natural unitary transformation �WF ! F 0 which
satisfies �X D � and is compatible with module functor structures � and � 0, in the
sense that the diagrams of the following form are commutative:

F.Y / � U
� //

���

��

F.Y � U/

�

��
F 0.Y / � U

� 0
// F 0.Y � U/:

Briefly, the correspondence in the above theorem is defined as follows. Given a
unital G-C�-algebra B , as DB we take category of G-equivariant finitely generated
right Hilbert B-modules (which is a full subcategory of the category zDB considered
in Example 5.3). The distinguished object X is B itself.

In the opposite direction, given a pair .D ; X/ as in the theorem, the corresponding
G-C�-algebra AD;X is defined as a suitable completion of the regular algebra

AD;X D

M
ŒU �2IrrG

xHU ˝D.X;X � U/;

where xHU is the conjugate Hilbert space ofHU , endowed with the product structure
coming from the monoidal structure on RepG and the .RepG/-module category
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structure on D . In more detail, the product of N� ˝ S 2 xHU ˝D.X;X � U/ and
N� ˝ T 2 xHV ˝D.X;X � V / is obtained by writing

.� ˝ �/˝ �U;V .S � �/T 2 xHU˝V ˝D.X;X � .U ˝ V //

as an element of AD;X using a decomposition of U ˝ V into irreducibles.
Turning to equivariant module categories, recall the following notion.

Definition 5.10 ([37]). Given a weak action .ˇ; �ˇ / of � on a category D , a
�-invariant, or �-equivariant, object is a pair .X; �/ consisting of an object X 2 D

and a family � of isomorphisms �g Wˇg.X/! X such that the diagrams

ˇgˇh.X/
ˇg.�h/ //

�
g;h

ˇ
��

ˇg.X/

�g

��
ˇgh.X/

�gh
// X

commute for g; h 2 � . The category of �-invariant objects is denoted by D� .
In the C�-setting we of course also assume that the isomorphisms �g are unitary.

Remark 5.11. If D is a �-C -module category, then any invariant object .X; �/
defines a �-C -module functor C ! D mapping 1 into X .

Let us say that � fixes X 2 D if .X; �/ 2 D� for some �. We have the following
result complementing Theorem 5.9.
Proposition 5.12. Let G be a reduced compact quantum group endowed with an
action ˛ of � , D a right .RepG/-module C�-category closed under subobjects,
and X 2 D be a generating object. Then the following conditions are equivalent:
(i) there is an action of � on AD;X turning this algebra into a �-equivariant

G-C�-algebra;
(ii) the .RepG/-module category structure on D extends to that of a right

�-.RepG/-module C�-category such that � fixes X .

Proof. IfB D AD;X , then by Theorem 5.9wemay assume thatD is the categoryDB

introduced above and X is B itself. Assume we are given an action ˇ of � on B
turning it into a �-equivariant G-C�-algebra. Then by Example 5.3 we can define a
strict action of � on DB , so that DB becomes a �-.RepG/-module category. Taking
as �g Wˇg.X/! X the maps ˇg WB ! B , we see that .X; �/ 2 D�

B .
Conversely, suppose that D is a �-.RepG/-module C�-category, with the action

of � on D denoted by ˇ, and X is fixed by � . By Proposition 5.5 we may assume
that the .RepG/ Ì �-module category D is strict, so that both the action of � and
the .RepG/-module structure on D are strict and the isomorphisms

ˇ
g
2 Wˇ

g.Y / � ˛g.U /! ˇg.Y � U/

are the identities.
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Choose � such that .X; �/ 2 D� . Note that for every irreducible representationU
of G, the space xHU ˝D.X;X � U/ can be identified with a subspace of AD;X in
a canonical way, no matter which representatives of irreducible representations were
used to define AD;X . We then define a map ˇg WAD;X ! AD;X by

xHU ˝D.X;X � U/ 3 N� ˝ T

7! N� ˝ .�g � �/ˇg.T /.�g/�1 2 xH˛g.U / ˝D.X;X � ˛g.U //:

It is easy to see that this is a �-automorphism. The cocycle identity �gh D �gˇg.�h/
implies that ˇgh D ˇgˇh, so we get an action of � on AD;X . Finally, it is again
immediate by definition that the action of G on AD;X is �-equivariant.

Remark 5.13. Assume .D ; .X; �// is as in the above proof. If we consider D as a
.RepG/Ì�-module and carry out the reconstruction for .D ; X/, then we obtain the
C.G/ Ì˛;r �-comodule algebra AD;X Ìˇ;r � . If the .RepG/ Ì �-module category
structure is strict, the canonical unitaries ug 2 AD;X Ìˇ;r � are given by

ug D N1˝ .�
g�1/�1 2 xC ˝D.X; ˇg

�1

.X// D xC ˝D.X;X � g/:

Recall that the universal grading group of a monoidal category C is called the
chain group and denoted by Ch.C/ [6, 26] (see also [24]). For C D RepG, we also
denote this group by Ch.G/.

We are now ready to establish a duality between the constructions of Rt;ˇ
and D t;ˇ .
Proposition 5.14. Let G be a reduced compact quantum group, � a quotient
of Ch.G/, and ˛ an invariant action of � on G with respect to the associated
�-grading. Let D be a �-.RepG/-module C�-category, with the action of �
denoted by ˇ, and .X; �/ be an object in D� . Consider the corresponding
�-equivariantG-C�-algebra AD;X , and denote the action of � again by ˇ. Then the
Gt;˛-C�-algebraADt;ˇ ;X associated with the .RepGt;˛/-module category D t;ˇ and
the object X is isomorphic to the closure .AD;X /

t;ˇ of .AD;X /
t;ˇ in AD;X Ìˇ;r � .

Proof. As linear spaces, .AD;X /
t;ˇ and ADt;ˇ ;X can be identified in a straight-

forward way. Moreover, since O.Gt;˛/ can be regarded as a sub-�-bialgebra of
O.G/Ì˛ � , the algebra ADt;ˇ ;X embeds into ADÔRepGÌ˛�;X , which is the crossed
productAD;X Ìˇ;r � by Remark 5.13. Combining these observations, we obtain that
ADt;ˇ ;X can be indeed identified with the ‘diagonal’ subalgebra ofAD;X Ìˇ;r � .

6. Poisson boundaries of twisted categories

In this final section we study the relation between the categorical Poisson boundaries
and graded twisting. We follow the conventions and terminology of [30]. In
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particular, we assume that C is a rigid C�-tensor category, closed under finite direct
sums and subobjects, with simple unit and (at most) countable number of irreducible
classes.

Fix representatives fUsgs of isomorphism classes of simple objects in C . Denote
bymsrt the multiplicity ofUs inUr˝Ut . More generally, for any objectX we denote
by msXt the multiplicity of Us in X ˝ Ut and write �X for the matrix with entries
ast D m

s
Xt .

For each s, consider the Markov operator

PsW `
1.Irr.C//! `1.Irr.C//; .Psf /.r/ D

X
t2X

ps.r; t/f .t/

with transition probabilities

ps.r; t/ D m
t
sr

d.t/

d.s/d.r/
;

where we write d.s/ for the intrinsic dimension d.Us/ of Us . For an arbitrary
probability measure � on Irr.C/ we put P� D

P
s �.s/Ps .

Recall that C is said to be weakly amenable if there is a left-invariant mean on
`1.Irr.C//, that is, a state invariant under the operators Ps . This is equivalent to
existence of an ergodic probability measure �, meaning that the only P�-invariant
functions in `1.Irr.C// are scalars. Recall also that C is called amenable if
d.X/ D k�Xk for all X .

The next proposition was already proved [8] when C is of the form RepG for
some coamenable compact quantum group G.

Proposition 6.1. Suppose that C is weakly amenable. Then its chain group Ch.C/
is amenable.

Proof. From the amenability of the Poisson boundary for an ergodic measure [30],
we know that the map X 7! k�Xk is a dimension function, which we denote by da.
Thus, we obtain a semiring homomorphism from Z�0ŒIrr.C/� to R�0 by sending ŒX�
to da.X/.

Consider the convolution of measures on Irr.C/ defined using the dimension
function da, so

.� � �/.t/ D
X
s;r

�.s/�.r/mtsr
da.t/

da.s/da.r/
:

We write �n instead of ��n. Let � be any nondegenerate probability measure
on Irr.C/ which is symmetric, i.e. �.Ns/ D �.s/ for s 2 Irr.C/, with UNs ' xUs . One
of equivalent ways of expressing the amenability of da [23, Section 4] is

lim
n!1

2n
p
�2n.Œ1�/ D 1:
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Define a probability measure on Ch.C/ by z�.g/ D
P
ŒU �2Irr.C/WgUDg �.ŒU �/, where

gU 2 Ch.C/ is the degree of a simple object U . We have

A� � � D
X

ŒU �;ŒV �2Irr.C/;W�U˝V

�.ŒU �/�.ŒV �/
da.W /

da.U /da.V /
ıgW ;

where W runs through a maximal family of mutually orthogonal simple summands
of U ˝ V . Since for suchW we have gW D gUgV by definition of the chain group,
and since X

W�U˝V

da.W / D da.U /da.V /;

we get
A� � � D

X
ŒU �;ŒV �

�.ŒU �/�.ŒV �/ıgU gV D z� � z�:

It follows that z�2n.e/ � �2n.Œ1�/, which implies the amenability of Ch.C/.

Proposition 6.2. Suppose that Ch.C/ ! � is a surjective homomorphism and
˛W� Õ C is an invariant weak action on C with respect to the associated �-grading.
Then
(i) if C is weakly amenable, then C t;˛ and C Ì � are weakly amenable;
(ii) if C is amenable, then C t;˛ and C Ì � are amenable.

Proof. (i) By the previous proposition we already know that � is amenable. LetmC

be a left invariant mean on `1.Irr.C//, and m� be a left invariant mean on `1.�/.
The group � acts on Irr.C/ and wemay assume thatmC is invariant under this action.
Indeed, for f 2 `1.Irr.C// and g 2 � put fg D f .g�1�/. Define a state zmC on
`1.Irr.C// by

zmC D m�.g 7! mC .fg//:

This state is �-invariant, so zmC .fg/ D zmC .f /, and it is still an invariant mean,
which can be easily seen by checking first that Ps.f /g D Pgs.fg/ for all s 2 Irr.C/
and g 2 � .

Now, in order to prove that C t;˛ is weakly amenable, let us identify Irr.C t;˛/with
Irr.C/. We denote by P t;˛s the Markov operators on `1.Irr.C// D `1.Irr.C t;˛//
defined by C t;˛ . Then if s 2 Irr.C/ has degree g, we have

P t;˛s .f / D Ps.fg�1/:

As mC is �-invariant, from this we see that mC is a left-invariant mean for C t;˛ .
It is even easier to see that if we identify Irr.C Ì �/ with Irr.C/ � � , then the

formula
f 7! m�.g 7! mC .f .�; g///

defines a left-invariant mean for C Ì � .
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(ii) We already know that C Ì � is weakly amenable. Hence X 7! k�Xk is a
dimension function on C Ì� . Since C is a full rigid monoidal subcategory of C Ì� ,
we have k�U k D k�U�ek. Moreover, since 1� g is invertible, we have

k�U�gk D k�U�ek D k�U k:

On the other hand, the intrinsic dimension satisfiesd.U�g/ D d.U /. Combining
these observations, we obtain

k�L
i Ui�gi

k D

X
i

k�Uik D
X
i

d.Ui / D
X
i

d.Ui � gi /:

This shows the amenability of C Ì � . As C t;˛ is a full subcategory of C Ì � , it is
also amenable.

We next want to compare the Poisson boundaries of twisted categories. As
above, assume that a rigid C�-tensor category C is �-graded using a surjective
homomorphism Ch.C/! � , and that we are given an invariant action ˛ of � on C .
By the considerations in Section 5.2, we may assume that both C and the action ˛
are strict, and that ˛g is a strict monoidal autoequivalence for all g.

Consider the category yC as in [30], which is the C�-tensor category (with
nonsimple unit) with the same objects as in C and with the morphismsU ! V given
by bounded natural transformations between the endofunctors �˝ U WX 7! X ˝ U

and �˝V onC . Then the category yC is still �-graded and we have an invariant action
of � on it, so we can form a graded twisting yC

t;˛
. Define a functor F W yC

t;˛
! bC t;˛

as follows. On the one hand we set F.U � g/ D U � g for the objects. On the
other hand, take a morphism � 2 yC

t;˛
.U � g; V � g/. By definition it has the

form z�� �, with z� 2 yC.U; V /. We then define F.�/ 2 bC t;˛.U � g; V � g/ as the
unique morphism such that

F.�/X�h D ˛
h.z�

˛h
�1
.X/
/� �W .X ˝ ˛h.U //� hg! .X ˝ ˛h.V //� hg (6.1)

for all h 2 � and X 2 Ch.

Lemma 6.3. The functor F W yC
t;˛
! bC t;˛ is a unitary strict monoidal isomorphism

of categories.

Proof. It is immediate that F is bijective on morphisms and objects and that it is
�-preserving. So we only need to check that it is a strict tensor functor. This is a
routine verification. Let us check, for example, that F.�Y�k ˝ �/ D �Y�k ˝ F.�/.
Using the notation before the lemma, we have

.�Y�k ˝ F.�//X�h D F.�/.X�h/˝.Y�k/ D F.�/.X˝˛h.Y //�hk

D ˛hk.z�
˛.hk/

�1
.X˝˛h.Y //

/� �:
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On the other hand,

F.�Y�k ˝ �/X�h D F..�Y ˝ ˛
k.z�//� �/X�h D ˛h..�Y ˝ ˛k.z�//˛h�1 .X//� �

D ˛h.˛k.z�/
˛h
�1
.X/˝Y

/� � D ˛hk.z�
˛k
�1
.˛h
�1
.X/˝Y /

//� �;

and we see that we get the desired equality.

Define Markov operators Ps on yC.U; V / by

Ps.�/X D .trs˝�/.�Us˝X /;

where trs˝� is the normalized categorical partial trace. When U D V D 1, so that
yC.U; V / can be identified with `1.Irr.C//, these are the same operators Ps that we
introduced earlier.

Definition 6.4. We say that a natural transformation � 2 yC.U; V / is absolutely
harmonic if Ps.�/ D � for all s 2 Irr.C/.

We will also say that a morphism in yC Ì � is absolutely harmonic if its
homogeneous components are absolutely harmonic.

Denote by P .U; V / � yC.U; V / the subspace of absolutely harmonic elements.
For U D V this is an ultraweakly closed operator subspace of the von Neumann
algebra yC.U /, so it admits at most one structure of a C�-algebra. If C is weakly
amenable, such a structure indeed exists by results of [30]. By considering P .U; V /

as a subspace ofP .U˚V /we then get a composition rule for all absolutely harmonic
elements, so P becomes a C�-tensor category. We then complete this category with
respect to finite direct sums and subobjects and continue to denote this completion
by P . This category together with the embedding functor C ! P is the Poisson
boundary of C with respect to any ergodic measure [30]. We will therefore call it the
absolute Poisson boundary. When needed, we will write P .C/ instead of P .

Theorem 6.5. The strict tensor functor F W yC
t;˛
! bC t;˛ defined by (6.1) maps the

absolutely harmonic elements onto the absolutely harmonic ones. In particular, if C

is weakly amenable, then F defines an isomorphism between C t;˛ ! P .C/t;˛ and
the absolute Poisson boundary of C t;˛ .

Proof. Take � D z�� � 2 yC
t;˛
.U � g; V � g/ D yC.U; V /� �. We have to show

that z� is absolutely harmonic if and only if F.�/ is absolutely harmonic. For this,
take Y D Us and let k be the degree of Y . We will write P t;˛s for the Markov
operator on bC t;˛ defined by Y � k. Then for X 2 Ch we have

P t;˛s .F.�//X�h D .trY�k˝�/.F.�/.Y�k/˝.X�h//

D .trY�k˝�/.˛kh.z�˛.kh/�1 .Y˝˛k.X///� �/:
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Now observe that if T D zT � � 2 C t;˛..Y � k/˝ .W � l// D C.Y ˝ ˛k.W //� �,
then

.trY�k˝�/.T / D ˛k
�1

.trY ˝�/. zT /� �:
It follows that

P t;˛s .F.�//X�h D ˛
k�1.trY ˝�/

�
˛kh.z�

˛.kh/
�1
.Y˝˛k.X//

/
�
� �

D ˛h.tr
˛.kh/

�1
.Y /
˝�/

�
˛kh.z�

˛.kh/
�1
.Y /˝˛h

�1
.X/
/
�
� �

D ˛h.P.kh/�1s.z�/˛h�1 .X//� �:

As F.�/X�h D ˛h.z�˛h�1 .X//� �, we therefore see that F.�/ is absolutely harmonic
if and only if

z�
˛h
�1
.X/
D P.kh/�1s.z�/˛h�1 .X/

for all h; k 2 � , X 2 Ch and s 2 Irr.C/ of degree k. As the action of � preserves
the degree, this is equivalent to absolute harmonicity of �.

Assume now that C is weakly amenable. By Proposition 6.2(i) we know that C t;˛

is also weakly amenable, so it has a well-defined absolute Poisson boundary. As F
defines a complete order isomorphism between the spaces of absolutely harmonic
elements, it respects the composition rule for such elements, hence it defines an
isomorphism between C t;˛ ! P .C/t;˛ and the absolute Poisson boundary of C t;˛ .

Remark 6.6. IfG is a coamenable compact quantum group, then it is known that the
absolute Poisson boundary of RepG is the forgetful functor RepG ! RepK, where
K � G is the maximal quantum subgroup of Kac type [29, 38]. Applying the above
theorem in this case we conclude that the maximal quantum subgroup ofGt;˛ of Kac
type isKt;x̨, where x̨ is the action of� onK induced by ˛. This conclusion, however,
is true for any G and it does not require the Poisson boundary theory. Indeed, one
of the equivalent ways of defining O.K/ is as the quotient of O.G/ by the ideal I
generated by the elements a � S2.a/. This ideal is �-graded and �-stable, so, as
discussed in Section 3.1, we get a Hopf ideal j.I / � O.Gt;˛/. By working with
homogeneous components it is easy to see that j.I / is again the ideal generated
by a � S2.a/, so for the maximal quantum subgroup zK � Gt;˛ of Kac type we get

O. zK/ D O.Gt;˛/=j.I / D .O.G/=I /t;x̨ D O.Kt;x̨/:

For completeness, let us also briefly consider Poisson boundaries of crossed
products. For g 2 � define a map

Fg W yC.U; V /! 1C Ì �.U � g; V � g/
by

Fg.�/X�h D ˛
h.�

˛h
�1
.X/
/� �W .X ˝ ˛h.U //� hg! .X ˝ ˛h.V //� hg:
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Using these maps we easily get the following result.

Proposition 6.7. For any g 2 � and U; V 2 Cg , the map Fg defines a bijection
between the absolutely harmonic elements in yC.U; V / and in 1C Ì �.U �g; V �g/.
Furthermore, ifC is weakly amenable (so thatCÌ� is alsoweakly amenable), thenFe
defines a unitary monoidal equivalence between P .C/ and the full subcategory of
P .C Ì �/ formed by the objects X � e, which then extends to a unitary monoidal
equivalence between P .C/ Ì � and P .C Ì �/.

Remark 6.8. The equivalence between P .C/Ì� and P .C Ì�/ can be established
even without the minimal amount of computations indicated above. Namely, one
of the main properties of the absolute Poisson boundary C ! P .C/ is that this
is a universal amenable functor [30]. Therefore, by this universality, the natural
embedding C ! C Ì � ! P .C Ì �/ induces an essentially unique tensor functor
P .C/ ! P .C Ì �/ (which is of course the functor Fe). We also have a canonical
embedding of � into P .C Ì �/. These two embeddings combine to give a tensor
functor P .C/ Ì � ! P .C Ì �/. Conversely, by Proposition 6.2, P .C/ Ì �
is amenable. Moreover, the embedding C ! P .C/ Ì � induces a tensor functor
CÌ� ! P .C/Ì� . Again by the universality, we obtain a tensor functorP .CÌ�/!
P .C/Ì� . The tensor functors between P .C Ì�/ and P .C/Ì� are identities on C

and � , hence by the universality they are equivalences.
When� is abelian, similar arguments provide an alternative route to Theorem 6.5.

Namely, we have an embedding of C t;˛ into P .C/t;˛ , which induces a unitary
tensor functor „˛WP .C t;˛/ ! P .C/t;˛ . Using the commutativity of � , we can
“untwist” C t;˛ and go back to C . Then the universality implies that „˛ is a unitary
monoidal equivalence.
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