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On steady non-commutative crepant resolutions

Osamu Iyama and Yusuke Nakajima

Abstract. We introduce special classes of non-commutative crepant resolutions (= NCCR)
which we call steady and splitting. We show that a singularity has a steady splitting NCCR if
and only if it is a quotient singularity by a finite abelian group. We apply our results to toric
singularities and dimer models.
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1. Introduction

Geometric tilting theory gives a framework to study the derived categories of schemes
and stacks in terms of non-commutative algebras obtained as the endomorphism
algebras of tilting complexes. A well-studied class of geometric tilting is called
McKay correspondence, which are given by resolution of singularities [12, 36].
Recently, Van den Bergh introduced the notion of non-commutative crepant
resolutions (= NCCR) [43, 44] to explain Bridgeland’s theorem [11] on derived
equivalence of crepant resolutions [9], from a viewpoint of geometric tilting theory.
For example, in the case of McKay correspondence, skew group algebras are NCCRs
of quotient singularities.

For nice classes of singularities, NCCRs provide a method to construct non-
commutative rings derived equivalent to their resolutions directly from the given
singularities. The notion of NCCRs is quite useful thanks to the fact that it naturally
appears in Cohen—Macaulay representation theory initiated by Auslander—Reiten in
the 1970s [2]. In fact, the recent notion of cluster tilting subcategories gives a
categorical framework to study NCCRs (see [28, 30, 33,35]).

An interesting family of NCCRs is given by a dimer model, which is a quiver with
potential drawn on a torus and gives us an NCCR of a Gorenstein toric singularity
in dimension three (see e.g. [5,7,13,24,27,39]). For more results and examples of
NCCRs, we refer to [15,16,19-21,32,34,41,45]. See also a survey article [37], and
the references therein.
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In this paper, we introduce nice classes of NCCRs which we call steady and
splitting, and discuss existence of such NCCRs. We start with recalling the definition
of a non-commutative crepant resolution due to Van den Bergh [44] (see also [43]).
For further details on terminologies, see later sections.

Definition 1.1. Let R be a CM normal domain and A be a module-finite R-algebra.
We say

(1) A isan R-order if A is a CM R-module (see Subsection 2.1),
(2) an R-order A is non-singular if gl.dim A, = dim R, for all p € Spec R.

We refer to [33, 2.17] for several conditions which are equivalent to A is a non-
singular R-order. Using this notion, Van den Bergh [44] introduced the notion of
NCCR. (Note that unlike [44], we do not assume that R is Gorenstein in this paper.)
Also we recall the notion of NCR (see [22]).

Definition 1.2. Let R be aCM normal domain, and 0# M eref R. Let E :=Endg(M).

(1) We say E is a non-commutative crepant resolution (= NCCR) of R or M gives
an NCCR of R if E is a non-singular R-order.

(2) We say E is a non-commutative resolution (= NCR) of R or M gives an NCR
of R if gl.dim E < oo.

1.1. Our results. The existence of an NCCR of R shows R has a mild singularity.
For example, it was shown that under mild assumptions, any CM normal domain
which has an NCCR has at worst rational singularities [40] (see also [22]) and at
worst log-terminal singularities [23,26].

In this paper, we impose extra assumptions on NCCRs, and we will show the
existence of such an NCCR characterizes some singularities. Our point is that the
size of Endg (M) as an R-module becomes much bigger than that of M, that is,
rankg Endg(M) = (rankg M)?. Therefore, as an R-module, End g (M) usually has
a direct summand which does not appear in M. Therefore the following class of
NCCREs is of interest.

Definition 1.3. We say a reflexive R-module M is steady if M is a generator (that
is, R € addg M) and Endg(M) € addg M holds. We say an NCCR (resp. NCR)
Endg (M) is steady NCCR (resp. steady NCR) if M is steady.

We refer to Lemma 2.5 for basic properties of steady modules. Also note that
the first condition “M is a generator” is a consequence of the second condition
“Endgr(M) € addg M” in many cases (see Lemma 2.6).

For example, quotient singularities have steady NCCRs (see Example 2.3). A
natural question is the converse, that is, singularities having steady NCCRs are
quotient singularities. The aim of this paper is to give a partial answer to this
question. To consider such a question, we introduce another class of nice NCCRs
called splitting, and show that existence of steady splitting NCCRs implies quotient
singularities.
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Definition 1.4. We say a reflexive R-module M is splitting if M is a direct sum of
reflexive modules of rank one. We say an NCCR (resp. NCR) Endg (M) is splitting
NCCR (resp. splitting NCR) if M is splitting.

There are several examples of splitting NCCRs (see Example 2.4).
We are now ready to state the main theorem, which will be shown in Section 3.

Theorem 1.5 (see Theorem 3.1). Let R be a d-dimensional complete local Cohen—
Macaulay normal domain containing an algebraically closed field of characteristic
zero. Then the following conditions are equivalent.

* R is a quotient singularity associated with a finite abelian group G C GL(d, k)
(ie. R = SO where S = k[x1,...,x4]).

* R has a unique basic module which gives a splitting NCCR.

* R has a steady splitting NCCR.

* There exists a finite subgroup G of CI(R) such that @ y ¢ X gives an NCCR of R.
* CI(R) is a finite group and Py cci(r) X gives an NCCR of R.

When R is a toric singularity, we obtain the following simple equivalent condition
by applying results in toric geometry.

Corollary 1.6. Let R be a completion of a toric singularity over an algebraically
closed field of characteristic zero. Then all the conditions in Theorem 1.5 and the
following condition are equivalent.

* CI(R) is a finite group.

Now we apply this result to dimer models.

Let us recall basic facts on dimer models. For more details, see Example 2.4(b)
and references therein. A dimer model is a polygonal cell decomposition of the
two-torus whose vertices and edges form a finite bipartite graph, and we can obtain
a quiver with the potential (Qr, Wr) as the dual of a dimer model I". From a quiver
with the potential (Qr, Wr), we define the complete Jacobian algebra #(Qr, Wr).
Under a certain condition called “consistency condition”, the center R of 2 (Qr, Wr)
is acomplete local Gorenstein toric singularity in dimension three, and # (Qr, Wr) is
a splitting NCCR of R.

Thanks to our Theorem 1.5, we have the following result which characterizes
when & (Qr, Wr) is a steady NCCR of R.

Corollary 1.7. Let I be a consistent dimer model, k an algebraically closed field
of characteristic zero and R the corresponding complete local Gorenstein toric
singularity in dimension three. Then the following conditions are equivalent.

* T is homotopy equivalent to a regular hexagonal dimer model (i.e. each face of a
dimer model is a regular hexagon).
* T gives a steady NCCR of R.



460 O. Iyama and Y. Nakajimae

* R is a quotient singularity associated with a finite abelian group G C SL(3, k)
(i.e. R = SO where S = k[xy, x2, x3]).

We show some examples of dimer models.

Example 1.8. The following figures are a consistent dimer model which is homotopy
equivalent to a regular hexagonal dimer model, and the associated quiver. This quiver
is just the McKay quiver of G = (diag(w, »”>, ®®)) where w is a primitive 14th root
of unity. Also, the center of the Jacobian algebra is the quotient singularity associated
with G.

B Z/&‘Z‘/S\J
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N/\\l 7\7\1 3
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On the other hand, the following consistent dimer model is not homotopy
equivalent to a regular hexagonal dimer model, and it gives the toric singularity
defined by the cone o:

o = Cone{(1,1,1),(—=1,1,1),(=1,=1,1), (1, =1, D}.

In what follows, we will investigate properties of steady NCCRs, and those of
splitting NCCRs in Section 2. In Section 3, we will give a proof of Theorem 1.5 in a
more detailed form.

Notations and conventions. Let R be a commutative Noetherian ring. We denote
Mod R to be the category of R-modules, mod R to be the category of finitely generated
R-modules, addg M to be the full subcategory consisting of direct summands of
finite direct sums of some copies of M € mod R. When R is G-graded for an
abelian group G, we denote by Mod® R the category of G-graded R-modules,
and mod® R the category of finitely generated G-graded R-modules. We say an
R-module M = M; &---® M, is basic if M;’s are mutually non-isomorphic. Also,
we denote by CI(R) the class group of R. When we consider a rank one reflexive
R-module 7 as an element of CI(R), we denote it by [/].
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2. Steady NCCRs and splitting NCCRs

2.1. Preliminaries. We start with preparing basic facts used in this paper. We
denote the R-dual functor by

(—)* := Homg(—, R) : mod R — mod R.

We say that M € mod R is reflexive if the natural morphism M — M™** is an
isomorphism. We denote ref R to be the category of reflexive R-modules.

Let (R, m) be a commutative Noetherian local ring. For M € mod R, we define
the depth of M as

depthg M := inf{i > 0 | Extx(R/m, M) # 0}.

We say M is amaximal Cohen—Macaulay (or CM for short) R-module if depthp M =
dimR or M = 0. When R is non-local, we say M is a CM module if M, is a
CM module for any maximal ideal m of R. Furthermore, we say that R is a Cohen—
Macaulay ring (= CM ring) if R is a CM R-module. We denote CM R to be the
category of Cohen—Macaulay R-modules.

The following is well known. For example, see [4, II. 2.1].

Lemma 2.1. Let R be a commutative Noetherian ring and M € mod R. Suppose M
is a generator. Then the functor Homg(M,—) : mod R — mod Endg (M) is fully
faithful, restricting to an equivalence addg M =~ projEndg(M).

Also, the following property of modules giving NCCRs is important.

Proposition 2.2 (see [33, 4.5]). Let R be a d-dimensional normal CM local ring.
Suppose M € ref R givesan NCCR of R. Thenforany X € ref RwithEndg(M & X)
€ CM R, we have X € addg M.

2.2, Examples. = We provide examples of steady NCCRs and those of splitting
NCCRs.

Example 2.3. Let S = k[xy,...,x4] be a formal power series ring, G be a finite
subgroup of GL(d, k) such that |G| is invertible in k. Let R := S©.

(a) The R-module S gives a steady NCCR.
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(b) Assume that G is small (i.e. it contains no pseudo-reflections except the identity).
Let {V; | i € I} be the set of simple k G-modules. Then we have

S = DS @k Vi) Vi
iel
as R-modules, where (S ® V;)? is an indecomposable CM R-module with rank
dimg V;.
Proof. (i) We prove the statements under the assumption that G is small.

In this case, we have Endr (S) >~ S*G, where S G is the skew groupring [1] (see
also [31, 4.2], [38, 5.15]). Since S * G is a non-singular R-order (see e.g. [33, 2.12])
and Endg(S) € addg S holds, we have the assertion (a).

We have

5= (5 & kG)G _ (S - (@Vieadimk V,))G _ @((S Rk Vi)G)

iel i€l

@ dimg V;

as R-modules. This is a decomposition into indecomposable R-modules since
Endg(S)/rad Endg(S) ~ S * G/rad(S * G) = kG holds. Thus we have the
assertion (b).

(i) We prove the statement (a) for general case. In this case, there exists a formal
power series ring 7 and a finite small subgroup G’ C GL(d, k) such that R C
T CS,R= TG/, and S is a free T-module of finite rank (see [33, Proof of 5.7]).
Suppose S ~ T®". Then Endg(S) = M, (Endg(T)) belongsto addg T = addg S.
Therefore, the assertion follows from (i). ]

Also, we provide Examples of splitting NCCRs.

Example 2.4. (a) Let R = S© be a quotient singularity by a finite abelian group
G C GL(d, k) such that |G| is invertible in k. In this situation, S gives a steady
splitting NCCR of R by Example 2.3.

(b) Let R be a Gorenstein toric singularity in dimension three. Then the method
of dimer models gives splitting NCCRs of R (see e.g. [0, 13,27]). Conversely any
splitting NCCR of R is given by a consistent dimer model [8, Theorem 7.7].

(c) Let R = k[x,y,u,v]/(f(x,y) —uv) be a cA, singularity. If f is a product
f1+ fm with f; & (x, y)?, then R has a splitting NCCR [35].

2.3. Basic properties. We show some basic properties of steady NCCRs and splitt-
ing NCCRs.

Lemma 2.5. Let M be a steady R-module.
(a) addR M = addR EndR (M)
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(b) addg M = addg M*.
(¢c) If M gives an NCCR, then M € CM R.

Proof. (a) Since M is a generator, we have M ~ Hompg (R, M) € addg Endg(M).

(b) We have M* ~ Homg(M, R) € addgr Endg(M) = addgr M by (a). Similarly
we have M >~ Homg(M*, R) € addg Homg(M, R) = addg M *.

(c) This is clear since M >~ Homg(R, M) € addg Endr(M) C CMR. O
Lemma2.6. Let R be a CM normal domain. Suppose M satisfiesEndgr (M) €addgr M.
Then M is a generator if one of the following conditions is satisfied.

* R contains a field of characteristic zero,

* M has a rank one reflexive module as a direct summand.

In particular, if M is splitting, then M is a generator.
Proof. Firstly, if R contains a field of characteristic zero, we have
R € addg EndR(M) C addy M

by [3, 5.6]. Next, we suppose that [ is a rank one reflexive R-module such that
I € addg M. Then we have R >~ Hompg(/, /) € addg M. O

The following characterization of steady splitting modules is important.

Proposition 2.7. Let R be a complete local normal domain, and let M be a finite
subset of C(R) and M := @y <y X. Then M is steady if and only if M is a subgroup
of CI(R).

Proof. LetM = {[M4],...,[My]}. Then Endg(M) € addg M means that [M;] —
[M ] € Mholds for any i and j. This is clealy equivalent to that M forms a subgroup
of CI(R). O

We denote by Ko(R) the Grothendieck group of R. The following propositions
play the crucial role to proof the main theorem.

Proposition 2.8. Let R be a complete local CM normal domain. Suppose M =
@?:1 M; gives a splitting NCR of R, and M is a generator.

(a) Ko(R) and CI(R) are generated by [M1], ..., [M,].

(b) If M is steady, then CI(R) = {{M4], ..., [My]}.

Proof. (a) We have a surjection Ko(R) — CI(R) by [10, VIL.4.7]. Thus, it is
enough to show that Ko(R) is generated by [My],...,[My]. Let E := Endg(M).

Forany X € mod R, let Y := Homg(M, X) € mod E. Since gl.dim E < oo, there
exists a projective resolution of the E-module Y of the form

0> P —:-+—> Py—>Y —0.
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Since M is a generator, P; = Hompg(M, N;) for some N; € addg M and we have
an exact sequence below (see Lemma 2.1),

0O—->N,—>-+-—>Ng—> X —0.

Thus X belongs to the subgroup {[M1], ..., [M,]) of Ko(R).

(b) The assertion follows from (a) and Proposition 2.7. ]

3. Proof of the main theorem

In this section, we give a proof of Theorem 1.5 in a detailed form (see Theorem 3.1).
To state it, we prepare general observations on graded rings. Let G be a finite abelian
group and § = ;.5 Si a G-graded ring. We say that S is strongly G-graded if the
map S; — Homg,(S;, S;+;) sending x € S; to (y — yx) € Homg(S;, Si+;) is
an isomorphism for any 7, j € G.

Now we restate Theorem 1.5 in a detailed form.

Theorem 3.1. Let R be a d-dimensional complete local Cohen—Macaulay normal
domain. Consider the following conditions.

(1) R is a quotient singularity associated with a finite (small) abelian group G C

GL(d, k) (i.e. R = SC where S = k[xi,...,x4] for a field k).

(2) There exist a finite abelian group G and a complete regular local ring S which
is strongly G-graded such that R = S).

(3) R has a unique basic module which gives a splitting NCCR.
(4) R has a steady splitting NCCR.
(5) R has a steady splitting NCR.

(6) There exists a finite subgroup G of CI(R) such that @y .5 X gives an NCCR
of R.

(7) There exists a finite subgroup G of CI(R) such that @y X gives an NCR of R.
(8) CI(R) is a finite group and EBXeCl(R) X gives an NCCR of R.
(9) CI(R) is a finite group and @XGCI(R) X gives an NCR of R.

Then the conditions (2)—(9) are equivalent. If R contains an algebraically closed
field of characteristic zero, then all the conditions (1)—(9) are equivalent.
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In order to prove this, we need some preparations. Let G be a finite abelian group
and S = @, Si a G-graded ring. Then the smash product [17]

SHG = (Sj-i)i,jec

is a ring whose multiplication is given by the multiplication in S and the matrix
multiplication rule. We have a natural morphism

¢ : S#G — Endg, (S) 3.1)

of rings sending (x;;)i,jec € S#G to (S 3 (yi)iec = (Qjeq YiXij)jeG € S) €
Endg(S). Clearly S is strongly G-graded if and only if ¢ is an isomorphism.
We need the following observations to prove Theorem 3.1.

Proposition 3.2. (a) Let G be a finite abelian group and S a G -graded ring. Then we
have an equivalence Mod® § ~ Mod(S#G), which preserves finitely generated
modules.

(b) Let R be a normal domain and G a finite subgroup of CI(R). Then there exists a
strongly G -graded ring S such that So = R and [S;] = i in CI(R) foranyi € G.
Moreover, if R is complete local, then so is S.

(c) Let G be a finite abelian group, S a local normal domain which is G-graded and
R = So. If CI(S) = 0 holds and the R-module S; has rank one for anyi € G,
then CI(R) = {[S;] | i € G}.

Proof. For (a), we refer to [29, Theorem 3.1]. For (b), we refer to [23].

(c) Let I be a divisorial ideal of R. Then X = (S ®g [)** is a divisorial ideal
of S which is G-graded. Since C1(S) = 0, there exists an isomorphism f:S — X
of S-modules. Let f(1) = (x;)ieg. Since X has a unique maximal submodule
and f(1) generates X, some x; also generates X. Thus x;: S >~ X(i) as G-graded
S-modules. Taking the degree i part, we have an isomorphism S; ~ Xy = [
of R-modules. 0

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We prove the following implications, where the implications
written by the arrows == are clear.

(4) == (@)= (6)

|1

) =—= O =) 2 (©) 4)

(4)=(8) (resp. (5)=(9)). This follows from Proposition 2.8(b).
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(7)=(2). By Proposition 3.2(b), there exists a strongly G-gradedring S = Pycg X
such that S is a complete local and So = R and [S;] = i holdin CI(R) forany i € G.
We only have to show that S is a regular, or equivalently, the residue field k£ has a
finite projective dimension as an S-module. Note that k is a G-graded S-module
concentrated in degree 0. By Proposition 3.2(a) and (3.1), we have equivalences

mod® S ~ mod(S#G) ~ mod Endg(S).

Since S gives an NCR of R, the abelian category mod® S has a finite global
dimension. Thus k has a projective resolution in mod® S which has finite length.
Forgetting the grading, the S-module k has a finite projective dimension.

(2)=(3). Since S is strongly G-graded, we have an isomorphism S#G =~ Endg(S)
of rings in (3.1). In particular Endg(S) belongs to CM R. By Proposition 3.2(a),
we have an equivalence mod® S ~ mod Endg(S). Since S is regular, the categories
mod S and mod® S have finite global dimension at most dim S. Therefore S gives
an NCCR of R.

It remains to prove that there are no other splitting R-modules giving NCCRs up
to additive equivalences. By Proposition 3.2(c), any rank one reflexive R-module is
a direct summand of S. Thus the assertion follows from Proposition 2.2.

(3)=(4). We suppose N = N; & --- @& N, is basic, and it gives the unique
splitting NCCR. Since Endg(Hompg(N;, N)) >~ Endgr(N), Homg(N;, N) also
gives a splitting NCCR. By the uniqueness, Homg(N;, N) >~ N for any i. Thus,
Endg(N) = @}_, Homg(N;, N) >~ N®" is a steady NCCR.

Thus we have shown that all the conditions (2)—(9) are equivalent. In the rest, we
assume R contains an algebraically closed field k of characteristic zero.
(1)=-(4). This is shown in Example 2.4(a).

(2)=(1). The dual abelian group G¥ = Hom(G, k™) acts on S by f(x) = f(i)x
forany /' € GY,i € G and x € S;. Moreover, the action of GV is linearizable (see
e.g. [38, 5.3]), and we can assume that GV is a small subgroup of GL(d, k) (see the
proof of Example 2.3). Since R = Sy = S, we have the assertion. O

Next we prove Corollary 1.6.

Proof of Corollary 1.6. Suppose that R ~ A is the m-adic completion of a toric
singularity A where m is the irrelevant maximal ideal. That is, let S be a positive
affine normal semigroup, and let A := k[S]. Here, we note the relationship of class
groups. We define a natural morphism

Cl(4) — CI(R) (U]~ [T ~ I ®4 R)).

This is injective (see e.g. [46, 15.2]).
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It is clear that the equivalent conditions in Theorem 3.1 implies CI(R) is a
finite group. Conversely, we assume CI(R) is a finite group. Since we have
Cl(A) — CI(R), C1(A) is also a finite group. Therefore, a semigroup S is simplicial,
and it is equivalent to A is a quotient singularity associated with a finite abelian group
(see e.g. [14, 4.59], [18, 1.3.20]). Consequently, R is also a quotient singularity
associated with a finite abelian group. O

Finally we prove Corollary 1.7.

Proof of Corollary 1.7. The second and the third conditions are equivalent to each
other by Theorem 3.1 (1)< (3)4(4). It remain to show that they are equivalent to
the first condition.

Assume that I' is a regular hexagonal dimer model. Then by [25, Lemma 5.3],
there exists a finite abelian subgroup G of SL(3,k) such that £(Qr, Wr) =
k[x1,x2,x3] * G. Thus R = k[xy, x2, x3]¢ holds.

Assume that R = SY with S = k[x;,x2,x3] and a finite small abelian
subgroup G of SL(3, k). By Theorem 3.1(1)=(3), S is a unique R-module which
gives an NCCR up to additive equivalence. Thus we have P (Qr, Wr) >~ Endr(S) ~
S * G as R-algebras. This implies that Qr is the McKay quiver of G, and therefore
each face of I' is hexagon (see [42, Section 5]) and it is homotopy equivalent to a
regular hexagonal dimer model. O

4. Remarks and questions

We end this paper with a few remarks. We do not know an answer to the following
question.

Question 4.1. Assume that R contains an algebraically closed field of characteristic
zero. Does existence of steady NCCRs of R imply that R is a quotient singularity?

This is true in dimension two. More strongly, we have the following observation.

Proposition 4.2. For a two dimensional complete local normal domain R containing
an algebraically closed field of characteristic zero, the following conditions are
equivalent.

(a) R is a quotient singularity associated with a finite group G C GL(2,k) (i.e. R =
SC where S = k[x1,x2] for a field k).

(b) R has a steady NCCR.

(¢) R has an NCCR.

(d) R has only finitely many isomorphism classes of indecomposable MCM R-
modules.

Moreover, in this case, NCCRs of R are precisely additive generators of CM R, and
hence any NCCR of R is steady.
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Proof. (a)=(b). This is shown in Example 2.3 (a).

(b)=(c). This is clear.

(c)=(d). It is well known that, in dimension two, modules giving NCCRs are
precisely additive generators of CM R (see Proposition 2.2).

(d)=-(a). This is well known (see [3, 2.1 and 4.9], [46, Chapter 11]). ]

We pose the following question, which we do not know an answer even for quotient
singularities.
Question 4.3. Are all steady NCCRs Morita equivalent? More strongly, are all
modules giving steady NCCRs additive equivalent?

This is true in dimension two by Proposition 4.2.
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