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Modular curvature for toric noncommutative manifolds
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Abstract. In this paper, we extend recent results on the modular geometry on noncommutative
two tori to a larger class of noncommutative manifolds: toric noncommutative manifolds. We
first develop a pseudo differential calculus which is suitable for spectral geometry on toric
noncommutative manifolds. As the main application, we derive a general expression for the
modular curvature with respect to a conformal change of metric on toric noncommutative
manifolds. By specializing our results to the noncommutative two and four tori, we recovered
the modular curvature functions found in the previous works. An important technical aspect of
the computation is that it is free of computer assistance.
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1. Introduction

In the noncommutative differential geometry program (cf. for instance, Connes’s
book [10]), the geometric data is given in the form of a spectral triple .A;H ;D/,
where A is a �-algebra which serves as the algebra of coordinate functions of
the underlying space, and D is an unbounded self-adjoint operator such that the
commutators ŒD; a� are bounded operators on H for all a 2 A. More than the
topological structure, the spectral data also reflects themetric and differential structure
of the geometric space. The prototypical example comes from spin geometry:
.C1.M/;L2.=S/; =D/, where M is a closed spin manifold with spinor bundle =S
and =D is the Dirac operator. In Riemannian geometry, local geometric invariants,
such as the scalar curvature function can be recovered from the asymptotic expansion
of Schwartz kernel function of the heat operator e�t�:

K.x; x; t/ v
X
j�0

Vj .x/t
.j�d/=2; where d is the dimension of the manifold.
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Equivalently, one turns to the asymptotic expansion of the heat kernel trace

Tr.fe�tD2/ vt&0
X
j�0

Vj .f;D
2/t .j�d/=2; f 2 A; (1.1)

which makes perfect sense in the operator theoretic setting. In the spirit of Connes
and Moscovici’s work [14], the coefficients Vj .�;D2/ above (in (1.1)), viewed as
functionals on the algebra of coordinate functions, encode the local geometry, such
as intrinsic curvatures, with respect to the metric implemented by the operator D.
This approach was carried out in great depth on noncommutative two tori. The
technical tool for the computation is the pseudo differential calculus associated
to a C �-dynamical system which was developed in Connes’ seminal paper [8],
meanwhile the computation was initiated, see [7]. The first application of such
calculus is the Gauss–Bonnet theorem for noncommutative two torus [15]. The
major progress occurred in Connes and Moscovici’s recent work [14]. The high
lights of the paper contains not only the full local expression for the functional of the
second heat coefficient, but also several geometric applications of the local formulas
which demonstrate the great significance of the approach. The appearance of the
modular curvature functionals in those closed formulas gives vivid reflections of
the noncommutativity. An independent calculation for the Gauss–Bonnet theorem
and the full expressions of the modular curvature functions, was carried out in [20]
and [21], with a different CAS (Computer Algebra System). Modular scalar curvature
on noncommutative four tori was studied in [22] and [19]. Recently, in [32], the
computation was extended to Heisenberg modules over noncommutative two torus
and the whole calculation was greatly simplified so that CAS was no longer need.
See also [3] and [36] for other related work on noncommutative two tori.

It is natural to investigate how to implement the program for other noncommutative
manifolds. An interesting class of examples comes from deformation of classical
Riemannian manifolds, such is the Connes–Landi deformations (cf. [12, 13]), also
called toric noncommutative manifolds in [5]. The underlying deformation theory,
called � -deformation in the literature, was first developed in Rieffel’s work [35].

Following the spirit of the previous work on noncommutative tori, we use a
pseudo differential calculus to tackle the heat kernel coefficients in this paper. The
construction is the first main outcome of this paper. Our pseudo differential calculus
is designed to handle two families of noncommutative manifolds simultaneously:
tori and spheres obtained by the Connes–Landi deformation. In contrast to
noncommutative two tori, the noncommutative four-spheres are different in two
essential ways:

(1) The dimension of the action torus (which is two) is less than the dimension of
the underlying manifold (which is four);

(2) The underlying manifold is not parallelizable.
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The first one implies that the torus action is not transitive, hence the correspondent
C �-dynamical system will not be able to reveal the entire geometry. The second
fact indicates that one should expect a more sophisticated asymptotic formula for the
product of two symbols than the one appears in Connes’ construction. The method
taken in this paper is to apply the deformation theory not only to the algebra of
smooth functions on the underlying Riemannian manifold, but also to the whole
pseudo differential calculus. The resulting symbol calculus blends the commutative
and the noncommutative coordinates in a simplest fashion.

In order for the deformation theory to apply, both the symbol map and the
quantization map in the calculus have to be equivariant with respect to the torus
action. This leads us to work with global pseudo differential calculus on closed
manifolds in which all the ingredients are given in a coordinate-free way. Such
calculus, which appeared first in Widom’s work [41] and [42], turned out to be the
perfect tool to develop the deformation process.

In the rest of the paper, we devote the attention to applications. In contrast to the
work [14, 22, 32], we skip the construction of the spectral triple since only pseudo
differential operators acting on functions are consider in this paper. As a consequence,
we use scalar Laplacian operator (instead of the Dirac operator) to define the metric
and the noncommutative conformal change ofmetric is implemented by a perturbation
of the scalar Laplacian operator via a Weyl factor k. The first consequence of the
pseudo differential calculus is the existence of the asymptotic expansion (1.1). The
associated modular curvature is defined to be the functional density with respect
to the V2 term in the heat kernel asymptotic (1.1). It is worth to point out that
the modular curvature defined here is only part of the full intrinsic scalar curvature
in [9, Definition 1.147].

In this paper, we only test our pseudo differential calculus on the simplest but
totally nontrivial perturbed Laplacian: k�, which is obtained from the degree zero
Laplacian k�k in [14] by a conjugation. Here k is a Weyl factor as before, and �
is the scalar Laplacian associated to the Riemannian metric. As an instance of [14,
Theorem 2.2], we prove that the zeta function at zero is independent of the conformal
perturbation, namely:

�k�.0/ D ��.0/: (1.2)
The main result is the local formula for the modular curvature R 2 C1.M‚/

with respect to a perturbed Laplacian �‚.Pk/ (i.e. a noncommutative conformal
change of metric):

R.k/ D
�
k�m=2K.4/.r2k/C k�.mC2/=2G .4.1/;4.2// .rkrk/

�
g�1

C ck�.
m
2 �1/S�: (1.3)

Let us explain the notations. First, k 2 C1.M‚/ is a Weyl factor, m D dimM is
an even integer, g�1 is the metric tensor on the cotangent bundle and r is the Levi-
Civita connection so that the contraction .r2k/g�1 is equal to��k and .rkrk/g�1,
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which equals the squared length of the covector rk in the commutative situation,
generalizes the Dirichlet quadratic form appeared in [14, Eq. (0.1)]. The scalar
curvature function S� associated to the metric g appears naturally if the metric
is nonflat, the coefficient c is a constant depends only on the dimension of the
manifoldM . The triangle4 (compare to �, the Laplacian operator) is the modular
operator (see (7.10)), while for j D 1; 2, 4.j / indicates that the operator4 applied
only to the j th factor. The modular curvature functions K and G are computed
explicitly in the last section. A crucial property of the modular curvature functions is
that they can be written as linear combinations of simple divided differences1 of the
modified logarithmL0 D log s=.s�1/, which is the generating function of Bernoulli
numbers after the substitution s 7! es . The significance of this feature was explained
in [31].

The second main outcome of this paper is obtained by specializing the result
above onto dimension two. We show that the expressions of K and G agree with the
result in [32, Theorem 3.2] which gives further validation for our pseudo differential
calculus and the computation performed in the last section as in [32] and as a
significant improvement of the previous work, the computation does not require aid
from CAS.

In dimension four, we show that the modular curvature functions are both zero
with respect to the operator k�. Since k� is the leading part of the Laplacian adapted
in [22], the non-zero contributions to the modular functions come from the symbols
of degree one and zero. This fact can be observed in [19] in which the computation
was simplified.

The other significant feature of our approach is that the computation is no
longer require computer assistance. The efficiency of our computation relies on
a tensor calculus over the toric noncommutative manifolds which is obtained from a
deformation of tensor calculus over the toric manifolds. On a smooth manifoldM , a
tensor calculus consists of three parts: the pointwise tensor product and contraction
between tensor fields, and a connection r which is characterized by the Leibniz
property. For instance, a differential operator on C1.M/ can be represented by a
finite sum f 7!

P
˛ �˛j � r

jf , where �˛j is a contravariant tensor field � of rank j
so that the contraction �˛j � rjf produces a smooth function. One of the merits is
this observation is that it has a straightforward generalization to our noncommutative
setting: the tensor product and contractions between tensor fields are pointwise, like
functions on a manifold, therefore the deformation procedure for functions extends
naturally to tensor fields. To obtain a calculus, we show that the Leibniz property
of the Levi-Civita connection still holds in the deformed setting. As an example,
we see that the Dirichlet quadratic form appeared in [14, Eq. (0.1)] with respect to
the complex structure associated to the modular parameter

p
�1 has the following

1“simple” means that at most the third divided difference occurs. For the notion of divided differences,
we refer to [31, Appendix A] and a classical reference [33].
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counterpart in terms of the deformed tensor calculus:

�R.h/ D .rh˝‚ rh/ �‚ g
�1; (1.4)

where g�1 is the metric tensor on the cotangent bundle and ˝‚ and �‚ are
deformed tensor product and contraction respectively. Being technical tools, such
deformed tensor calculus and pseudo differential calculus have many other potential
applications, for instance:
(i) the gauge theory on toric noncommutative manifolds studied in [5];
(ii) exploring generalizations of Riemannian metrics on noncommutative manifolds

(cf. [36]).
We end this introduction with a brief outline of the paper. Section 2 consists of

functional analytic backgrounds of the deformation theory. We split the discussion
into two parts: deformation of algebras and deformation of operators according
to their roles as “symbols” and “operators” in the general framework of pseudo
differential calculi.

In Section 3, we explain that how apply the deformation process to the whole
tensor calculus, which serves as preparation for Sections 4 and 5, which consist of
the construction of pseudo differential calculus for toric noncommutative manifolds.

The remaining two sections are devoted to applications. We first sketch the
proof of the existence of the heat kernel asymptotic following [26] and [6] in
Section 6. Finally, Section 7 consists of explicit computation of the local formula
of the associated modular curvature. Some technical parts of the computation are
moved to the appendixes.

2. Deformation along T n

2.1. Deformation of Fréchet algebras. In this section, we will provide the func-
tional analytic framework which is necessary for our later discussion on toric
noncommutative manifold. We refer to Rieffel’s monograph [35] for further details,
also [5, 24] and [43]. All the topological vectors spaces appeared in this paper are
over the field of complex numbers.
Definition 2.1. Let V be Fréchet space whose topology is defined by an increasing
family of semi-norms k�kk . We say V is a smooth Tn D Rn=Zn module if V admits
a n-torus action ˛t WV ! V such that the function t 7! ˛t .v/ belongs to C1.Tn; V /

for all v 2 V , moreover, we require the action is strongly continuous in the following
sense: 8v 2 V , given a multi-index �, we can find another integer j 0 such that@�t ˛t .v/j � C�;j;j 0 kvkj 0 ; 8t 2 Tn; (2.1)

where the constant Cj 0 depends on j 0 and the vector v.
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Due to the duality between Zn and Tn, Fourier theory tells us that all smooth
Tn-module in definition 2.1 are Zn-graded:

V D
M
r2Zn

Vr ;

where Vr is the image of the projection pr WV ! V :

pr.v/ D

Z
Tn
˛t .v/e

�2�ir �t dt; v 2 V: (2.2)

Namely, any vector in V admits a isotypical decomposition:

v D
X
r2Zn

vr ; with vr D pr.v/ as above: (2.3)

The sequence fvrgr2Zn is of rapidly decay in r due to an integration by parts argument
on (2.2). The precise estimate is given below:
Proposition 2.2. Let V be a smooth Tn-module as in definition 2.1, whose topology
is given by an countable increasing family of semi-norms k�kj with j 2 N. Then for
any element v D

P
r2Zn vr 2 V with its isotypical decomposition, then the sequence

of the j th semi-norms: kpr.v/kj is of rapidly decay in r 2 Zn. More precisely, for
any integer k; j > 0, there exist a degree k polynomialQk.x1; : : : ; xn/ and another
large integer j 0 such that 8v 2 V ,

kpr.v/kj �
Ck;j 0

jQk.r/j
k˛t .v/kj 0 ; (2.4)

In particular, the isotypical decomposition
P
r2Zn vr converges absolutely to v.

The proof can be found in, for instance, [35, Lemma 1.1].
Conversely, suppose V admits a smooth Zn grading:

V D
M
r2Zn

Vr ;

then the Tn action is given by on each homogeneous component Vr

t � vr D e
2�it �rvr ; t 2 Tn: (2.5)

A vector v D
P
r2Zn vr 2 V is smooth respect to the torus action if and only if for

each semi-norm k�kj , the sequence kvrkj decays faster than any polynomial in r , that
is for each semi-norm k�kj and integer k, there is an integer l and a constant Cj;k ,
such that

kvrkj � Cj;k
kvkl

rk
: (2.6)
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Definition 2.3. A Tn smooth algebra A is a smooth Tn module as in Definition 2.1
such that the multiplication map A � A ! A is Tn-equivariant and jointly
continuous, that is for every j , there is a k and a constant Cj such that

kabkj � Ck kakk kbkk ; 8a; b 2 A: (2.7)

Additionally, if A is a �-algebra, we required the �-operator is continuous and
Tn-equivariant. Similarly, a Tn-smooth left (right) A-module V is a Tn-smooth
module while the left (right) module structure is Tn-equivariant and the jointly
continuous as in (2.7).

Definition 2.4. Let A be a Tn smooth algebra as above. For a skew symmetric n�n
matrix ‚, we denote the corresponding bi-character:

�‚.r; l/ D e
�ihr;‚li; r; l 2 Zn; (2.8)

where the pairing h�; �i is the usual dot product in Rn. The deformation of A is a
family of algebrasA‚ parametrized by‚, whose underlying topological vector space
is equal to A while the multiplication �‚ is deformed as follow:

a �‚ b D
X
r;s2Zn

�‚.r; l/ arbs; 8a; b 2 A; (2.9)

and a D
P
r ar , b D

P
s bs are the isotypical decomposition as in (2.2).

Each A‚ inherits the smooth Tn module structure from A and since �‚.r; l/
in (2.9) are complex numbers of length 1, the newmultiplication is jointly continuous
as well. Hence, for any n� n skew symmetric matrix‚, the deformation A‚ are all
smooth Tn algebra as in definition 2.3.

Proposition 2.5. The deformed product �‚ on A‚ is associative. That is, for any
a; b; c 2 A,

.a �‚ b/ �‚ c D a �‚ .b �‚ c/ : (2.10)

If the algebra A is a �-algebra, the deformation A‚ are �-algebras as well with
respect to the original �-operator, that is 8a; b 2 A,

.a �‚ b/
�
D b� �‚ a

�: (2.11)
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Proof. Leta; b; c 2 A‚with their isotypical decomposition: a D
P
r ar , b D

P
s bs

and c D
P
l cl , where r , s, l are summed over Zn. We compute the left hand side

of (2.10),

.a �‚ b/ �‚ c D
X
k;l

�‚.k; l/

� X
rCsDk

�‚.r; s/arbs

�
cl

D

X
r;s;l

�‚.r C s; l/�‚.r; s/arbscl

D

X
r;s;l

�‚.r; l/�‚.s; l/�‚.r; s/arbscl ;

here we have used the estimate (2.6) to exchange the order of summation. Similar
computation gives us the right hand side:

a �‚ .b �‚ c/ D
X
r;s;l

�‚.r; s/�‚.r; l/�‚.s; l/arbscl :

Thus we have proved the associativity. Notice that we have not yet used the skew-
symmetric property of ‚. In fact, the skew-symmetric property is only necessary
for the �-operator to survive after deformation. In particular, it implies that for the
bi-character �‚ defined in (2.8),

�‚.r; l/ D �‚.l; r/
�; 8r; l 2 Zn;

here the � operator is the conjugation on complex numbers. Since the � operator
is Tn-equivariant, it flips the Zn-grading of A, that is, it sends the r component to
the �r component: .ar/� D a��r , where a D

P
r2Zn ar 2 A. Indeed,

.ar/� D

�Z
Tn
e�2�ir �t˛t .a/ dt

��
D

Z
Tn
e2�ir �t˛t .a

�/ dt D a��r :

Therefore:

.a �‚ b/
�
D

� X
r;l2Zn

�‚.r; l/arbl

��
D

X
r;l2Zn

�‚.r; l/
�.bl/

�.ar/
�

D

X
r;l2Zn

�‚.l; r/b
�
�la
�
�r D

X
r;l2Zn

�‚.�l;�r/b
�
�la
�
�r

D

X
r;l2Zn

�‚.l; r/b
�
l a
�
r D b

�
�‚ a

�:

The proof is complete.
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Proposition 2.6. Let �WA ! B be a Tn-equivariant continuous algebra homo-
morphism, where A, B are two Tn smooth algebras which admit deformation as
above. If we identify A and A‚, B and B‚ by the identity maps respectively, then

�WA‚ ! B‚ (2.12)

is still anTn-equivariant algebra homomorphismwith respect to the new product�‚.

Proof. For any a; a0 2 A with the isotypical decomposition a D
P
r ar , b D

P
l bl ,

thanks to the equivariant property of �, we have �.ar/ D �.a/r and �.bl/ D �.b/l
for any r; l 2 Zn. Use the continuity of �, we compute:

�.a �‚ a
0/ D �

� X
r;l2Zn

�‚.r; l/ara
0
l

�
D

X
r;l2Zn

�‚.r; l/�.ar/�.a
0
l/

D

X
r;l2Zn

�‚.r; l/�.a/r�.a
0/l

D �.a/ �‚ �.a
0/:

The next proposition shows that anyTn-equivariant trace on a smoothTn-algebraA

extends naturally to a trace on all the deformations A‚.
Proposition 2.7. Let � WA ! C be a Tn-equivariant trace and ‚ is a n � n skey
symmetric matrix as before. Then � WA‚ ! C is a continuous linear functional for
the deformation A‚ and A are identical as topological vector spaces. However, � is
indeed a trace on A‚, that is 8a; b 2 A‚

�.a �‚ b/ D �.ab/ D �.ba/ D �.b �‚ a/: (2.13)

Proof. From the Tn-equivariant property of � , we know that for any isotypical
component ar , .r 2 Zn/, of a 2 A,

�.ar/ D �.˛t .ar// D �.e
2�it �rar/ D e

2�it �r�.ar/; 8t 2 Tn:

Therefore �.ar/ D 0 for all r ¤ 0. Follows from the continuity, for any a 2 A,

�.a/ D �

� X
r2Zn

ar

�
D

X
r2Zn

� .ar/ D �.a0/;

that is, the trace of a depends only on its Tn-invariant component. Since ‚ is skew
symmetric, we get

�.a �‚ b/ D � ..a �‚ b/0/ D
X
r2Zn

�‚.r;�r/�.arb�r/ D
X
r2Zn

�.arb�r/ D �.ab/:

Similar computation gives that �.ba/ D �.b �‚ a/. Therefore if � is a trace on A,
then it is a trace on A‚ as well.
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In this paper, we have to deal with certain topological algebras which are not
Fréchet. For instance, the algebra of pseudo differential operators of integer orders,
and the associated algebra of symbols, whose topology is certain inductive limit of
Fréchet topologies. More precisely, we consider a filtered algebra A with a filtration:

� � � � A�j � � � � � A0 � � � �Aj � � � � A; (2.14)

where each Aj (j 2 Z) is a smooth Tn-module as defined before, in particular,
a Fréchet space. As a topological vector space, the total space A is a countable
strict inductive limit of

˚
Aj

	
j2Z, the topology is just called strict inductive limit

topology (cf. for instance [40, Sec. 13] for more details). This topology is never
metrizable unless the filtration is stabilized starting from some Aj , therefore it is not
Fréchet. Nevertheless, we shall not looking at the topology of the whole algebra A

even when considering the continuity of the multiplication map. Instead, we focus
on each Aj , assume that the Fréchet topology is defined by a countable family of
increasing semi-norms

˚
k�kl;j

	
l2N. The multiplication preserves the filtration:

mWAj1 �Aj2 ! Aj1Cj2 (2.15)

such that the continuity condition holds: for fixed j1, j2 and a positive integer l , one
can find a integer k and constant Ck;j1;j2 such that

km.a1a2/kl;j1Cj2 � Ck;j1;j2 ka1kk;j1 ka2kk;j2 ; 8a1 2 Aj1 ; a2 2 Aj2 : (2.16)

The multiplication m is deformed in a similar fashion as in (2.9):

m‚WAj1 � Aj2 ! Aj1Cj2 (2.17)

.a1; a2/ 7!
X
r;l2Zn

�‚.r; l/m ..a1/r ; .a2/l/ : (2.18)

Examples are provided in the next section.

2.2. Deformation of operators. The associativity of the �‚ multiplication proved
in proposition 2.5 is a special instance of certain “functoriality” in the categorical
framework explained in [5]. Let us start with deformation of operators.

Let H1 and H2 be two Hilbert spaces which are both strongly continuous unitary
representation of Tn, denoted by t 7! Ut 2 B.H1/ and t 7! zUt 2 B.H2/

respectively, where t 2 Tn. If no confusions arise, both representations will be
denoted by Ut . Then B.H1;H2/, the space of all bounded operators from H1 to H2,
becomes a Tn-module via the adjoint action:

P 2 B.H1;H2/ 7! Adt .P / WD zUtPU�t ; t 2 Tn: (2.19)
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Denote by B.H1;H2/1, the space of all the Tn smooth vectors in B.H1;H2/. It is
a Fréchet space on which the topology is defined by the semi-norms fk�kj gj2N:

qj .P / WD
X
jˇ j�j

1

ˇŠ

@ˇt Adt .P /B.H1;H2/: (2.20)

The semi-norms above are constructed in such a way that the continuity estimate (2.1)
for the torus action holds automatically. Following from Proposition 2.2, we see that
any Tn-smooth operator P admits an isotypical decomposition P D

P
r2Zn Pr ,

where the operator norms fkPrkgr2Zn decays faster than polynomial in r , in particular
the converges of the infinite sum is absolute with respect to the operator norm
in B.H1;H2/.

Nowwe are ready to define the deformationmap�‚WB.H1;H2/1!B.H1;H2/1.
Definition 2.8. Let H1 and H2 be two Hilbert space with strongly continuous
unitary Tn actions as above, that is 8v 2 Hj , .j D 1; 2/, t 7! t � v is continuous
in t 2 Tn. We denote the actions by t ! Ut and t ! zUt respectively. For a fixedn�n
skew symmetric matrix‚, we recall the associated bi-character �‚.r; l/ D e�ihr;‚li.
Then the deformation map

�‚WB.H1;H2/1 ! B.H1;H2/1WP 7! �‚.P /

is defined as follows,

�‚.P /.f / D
X
r;l2Zn

�‚.r; l/Pr.fl/; P 2 B.H1;H2/1; (2.21)

where P D
P
r2Zn Pr and f D

P
l2Zn fl 2 H1 with their isotypical decompos-

ition. We can assume that f is aTn-smooth vector for the subspace of allTn-smooth
vectors in dense in H1. Alternatively, �‚.P / is given by

�‚.P / D
X
r2Zn

PrUr �‚=2; (2.22)

here r �‚=2 stands for the matrix multiplication between a row vector r and‚whose
result is a point in Tn.
Remark. The deformed operator�‚.P / belongs toB.H1;H2/1. Indeed, in (2.22),
the each isotypical component of P is perturbed by a unitary operator Ur �‚=2,
therefore the right hand side of (2.22) is a sum of rapidly decay sequence, which
implies not only the boundedness of �‚.P /, but also the Tn-smoothness.

Let us give a precise estimate of the operator norm of �‚.P /.
Lemma 2.9. Let B.H1;H2/1 denote the Fréchet algebra of Tn-smooth vectors in
B.H1;H2/whose topology is given by the seminorms in (2.20). Then the deformation

�‚WB.H1;H2/1 ! B.H1;H2/1
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is a continuous linear map with respect to the Fréchet topology with the estimate: for
any multi-index �, one can find any integer l large enough such that@�t �Adt .�‚.P //� � C�ql.P /: (2.23)

Proof. Given P 2 B.H1;H2/1 a Tn-smooth operator with the isotypical
decomposition P D

P
r2Zn Pr . From the definition, �‚.P / has the isotypical

decomposition �‚.P / D
P
r2Zn PrUr �‚=2, thus

Adt .�‚.P // D
X
r2Zn

Adt .PrUr �‚=2/ D
X
r2Zn

e2�ir �tPrUr �‚=2:

If we let h.r/ be the polynomial in r such that @�t .e2�ir �t / D h.r/e2�ir �t , the degree
of h.r/ is equal to j�j, compute

@
�
t .Adt .�‚.P /// D

X
r2Zn

@
�
t .e

2�ir �t /PrUr �‚=2 D
X
r2Zn

h.r/e2�ir �tPrUr �‚=2:

(2.24)
Since that kPrk is of rapidly decay in r , we can find a large integer l such that

kh.r/Prk �
Cql.P /

jr jnC1
:

Therefore @�t �Adt .�‚.P //� � � X
r2Zn

C

jr jnC1

�
ql.P /:

Similar to (2.11), we have the compatibility between the deformation map and
the �-operation (taking the adjoint) on operators.
Lemma 2.10. Let P 2 B.H1;H2/1, then its adjoint P � 2 B.H1;H2/1 as well,
we have

�‚.P �/ D �‚.P /� (2.25)

Proof. Since the torus action is unitary, the adjoint operation is equivariant:

.Adt .P //� D .UtPU�t /� D UtP �U�t D Adt .P �/;

therefore for the isotypical components, P �r D .P�r/� for all r 2 Zn,

�‚.P �/ D
X
r2Zn

P �r Ur �‚=2 D
X
r2Zn

.P�r/
�.U�r �‚=2/

�

D

X
r2Zn

.U�r �‚=2P�r/
�
D

X
r2Zn

.P�rU�r �‚=2/
�

D

X
r2Zn

.PrUr �‚=2/
�

D .�‚.P //�;

here we have used the facts that U�r �‚=2 and Tr commute.
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The next lemma says that the deformation is somehow invertible.
Lemma 2.11. Let ‚ and ‚0 be two n � n skew symmetric matrices and for any
P 2 B.H1;H2/1, we have

�‚ ı �‚
0

.P / D �‚C‚
0

.P /:

In particular, we see that the deformation process is invertible, namely �‚ and ��‚
are inverse to each other.

Proof. Given P D
P
r2Zn Pr , �‚.T / D

P
r2Zn PrUr �‚=2 is the isotypical decom-

position of �‚.T /, therefore

�‚
0�
�‚.P /

�
D

X
r2Zn

PrUr �‚=2Ur �‚0=2 D
X
r2Zn

PrUr �.‚C‚0/=2 D �
‚C‚0.P /:

If we takeH1 andH2 above to be the same Hilbert space,B.H1/ becomes anTn

smooth algebra as in definition 2.3. Following from definition 2.4, we obtain a family
of deformed algebras .B.H1/;�‚/ parametrized by skew symmetric matrices ‚.
The multiplication map is obviously Tn-equivariant, that is Adt .P1/Adt .P2/ D
Adt .P1P2/, for all t 2 Tn and for any P1; P2 2 B.H1/. The associativity of the
�‚ multiplication has the following analogy.
Proposition 2.12. Keep the notations as above. The deformation map

�‚W .B.H /1;�‚/! �‚ .B.H1// � B.H /

is an algebra isomorphism, namely, for any P1; P2 2 B.H /1,

�‚.P1/�
‚.P2/ D �

‚.P1 �‚ P2/; (2.26)

recall that the deformed product �‚ is defined in (2.9).

Proof. The invertiblity of �‚ is proved in Lemma 2.11. It remains to show that it is
an algebra morphism, that is for any Tn-smooth vector v 2 H , we have

�‚.P1/
�
�‚.P2/.v/

�
D �‚ .P1 �‚ P2/ .v/: (2.27)

Observe that �‚.P /.v/ can be formally written as P �‚ v according to (2.21).
Therefore the left hand side and the right hand side of (2.27) becomesP1�‚.P2�‚v/
and .P1 �‚ P2/ �‚ v respectively, thus equation (2.27) is exactly the same as the
associativity of the �‚-multiplication proved in (2.10).

We have seen that the isotypical decomposition of an operator P D
P
r Pr

converges with respect to operator norms. The normality of the trace somehow
allows itself to pass the summation, namely Tr.P / D

P
r Tr.Pr/ whenever P is a

trace-class operator.
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Lemma 2.13. Let H be a saperable Hilbert space with a strongly continuous unitary
Tn-action and P D

P
r Pr 2 B.H /1 is Tn-smooth operator with its isotypical

decomposition. Suppose P is a trace-class operator, then so is �‚.P /. Moreover,
TrP D TrP0 D Tr�‚.P /, whereP0 is theTn-invariant part of bothP and�‚.P /.

Proof. Since H is a strongly continuous unitary representation of Tn, it admits a
orthonormal decomposition

H D
M
l2Zn

Hl ;

in which eachHl consists of eigenvector of the torus action:

Hl D
˚
v 2 H j t � v D e2�it �lv

	
:

For each Hl , one can pick a orthonormal basis f"k;lgk2N, then f"k;lgl2Zn; k2N is an
orthonormal basis of H . Since

P
r2Zn Pr convergence absolutely in the operator

norm, X
l2Zn;
k2N

�� X
r2Zn

Pr

�
."k;l/; "k;l

�
D

X
l2Zn;
k2N

X
r2Zn
hPr."k;l/; "k;li;

observe that for all r 2 Zn, Pr.Hl/ � HrCl , therefore hPr."k;l/; "k;li D 0 except
the case when r D 0. We continue the computation above:X

l2Zn;
k2N

X
r2Zn
hPr."k;l/; "k;li D

X
l2Zn;
k2N

hP0."k;l/; "k;li:

Since P is traceable, the left hand side above converges absolutely, therefore P0 is
traceable as well and has the same trace as P . Recall equation (2.22): �‚.P / DP
r2Zn PrUr �‚=2. Notice that the computation above still works if Pr is replaced

by PrUr �‚=2, therefore �‚.P / is of trace class and Tr�‚.P / D Tr.�‚.P //0,
where .�‚.P //0 is the Tn-invariant part of �‚.P /. Since P and �‚.P / have the
same invariant part, we have finished the proof.

The following corollary is important for our later discussion.
Corollary 2.14. Let H be a separable Hilbert space. Let P1; P2 2 B.H / be
two Tn-smooth vectors such that at least one of them is traceable, then P1P2 and
P1 �‚ P2 are both traceable with

Tr.P1P2/ D Tr.P1 �‚ P2/:

Combine the equation above with (2.26), we obtain:

Tr
�
�‚.P1/�

‚.P2/
�
D Tr.P1P2/:
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2.3. Deformation of functions. Let M be a smooth manifold without boundary.
For any diffeomorphism ' 2 Diff.M/, we defined the pull back action on C1.M/:

U'.f /.x/ D f .'
�1.x//; f 2 C1.M/; (2.28)

which is�-automorphismofC1.M/. Assume thatM admits an-torus action: Tn �

Diff.M/, then one can quickly verify thatTn acts smoothly (cf. Eq. (2.1)) onC1.M/

with respect to the smooth Fréchet topology, also the pointwise multiplication is
jointly continuous (cf. Eq. (2.7)) , therefore we can deform the multiplication to �‚
following definition 2.3 with respect to a skew symmetric matrix ‚, and the new
algebra

C1.M‚/ WD .C
1.M/;�‚/

plays the role of smooth coordinate functions on a noncommutative manifoldM‚.
Later, we will assume the manifold M is compact. The non-compact examples

we are interested in is the cotangent bundle T �M . One can easily lift the torus action
to T �M by the natural extension of diffeomorphims: ' 7! '�, where '� is the
differential of '. Thus the cotangent bundle of the noncommutative manifoldM‚ is
given by the deformed algebra:

C1.T �M‚/ WD .C
1.T �M/;�‚/:

Another crucial example is S†.M/ � C1.T �M/, the spaces of symbols of
pseudo differential operators onM . It is a filtered algebra:

S† D

1[
jD�1

S†j .M/;

where each S†j .M/ consists of smooth functions with the estimate in local
coordinates .x; �/, ˇ̌

@˛x@
ˇ

�
p.x; �/

ˇ̌
� C˛;ˇ .1C j�j/

j�jˇ j; (2.29)

the optimized constants C˛;ˇ define a family of semi-norms that makes S†.M/ into
a Fréchet space. The smoothing symbols S†�1 is the intersection:

S†�1 D

1\
jD�1

S†j .M/;

and the quotient CL D S†=S†�1 is called the space of complete symbols.
For any t 2 Tn viewed as a diffeomorphism onM , let p 2 S†j .M/ be a symbol

of order j , t 7! Ut .p/ is a function valued in C1.T �M/. Observe that the partial
derivatives in t can be written as a finite sum in local coordinates:

@

t Ut .p/ D Ut

�X
j

@
˛j
x @

ˇj
�
p

�
;
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where  , ˛j , ˇj are multi-indices. This shows not only that Ut .p/ still belongs
to S†j .M/ but also the torus action is smooth (cf. Definition 2.1). Therefore we
can twist the pointwise multiplication on the filtered algebra S†.M/ as explained in
Subsection 2.1, the deformed version is denoted by

S†.M‚/ D .S†.M/;�‚/;

where �‚ is given in (2.17).

3. Deformation of tensor calculus

LetM be a compact toric manifoldM as before, that is Diff.M/ contains a n-torus.
So far, we have deformed the “smooth structure” of M , namely we have found the
counterpart of the algebra of smooth coordinate functions in the noncommutative
setting in the previous section. We will extend the deformation process further by
restricting the torus action. For example, if we assume that the torus action is affine:
Tn � Affine.M/ � Diff.M/, then the whole tensor calculus can be deformed. Since
our ultimate goal is to study curvatures, one can assume thatM is Riemannian and
the torus acts as isometries. We make a formal definition here.

Definition 3.1. A toric Riemannian manifolds M is a closed (compact without
boundary) Riemannian manifolds whose isometry group contains a n-torus. In other
words,M admits an Tn-action as isometries.

Example 3.2. Let M D Tn be the n-torus with the usual flat metric, while the
n-torus acts on itself by translations. The deformation gives the well-known family
called noncommutative n-torus.

Example 3.3. Consider the two torusT2 acts on the four-sphereS4 by embeddingT2

into SO.5/ as rotations in the first four coordinates:

.t1; t2/ 2 R2 7!

0@e��it1 e��it2

1

1A ;
wherewe identifyR5 withC˚C˚R. Thus anyRiemannianmetric which is invariant
under the rotations above provides an instance of a toric manifold, for example, the
Robertson–Walker metrics with a cosmic scale factor a.t/:

ds2 D dt2 C a.t/2d!2;

where d!2 is the round metric on S3, when a.t/ D sin t , we recover the round metric
on S4.
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3.1. Isospectral deformations of toric Riemannian manifolds. To finished the
story of deforming smooth functions onM , we shall represent the deformed algebra
C1.M‚/ as bounded operators, whose underlying Hilbert space is metric-related.
Therefore we assume thatM is a toric Riemannian manifold. It is straightforward to
see that the integration against the Riemannian metric gZ

M

WC1.M/! C (3.1)

is Tn-invariant, where C is viewed a trivial Tn module. The pairing

hf; hi WD

Z
M

f Nh dg; 8f; h 2 C1.M/;

makes C1.M/ into a pre-Hilbert space, and the completion is H D L2.M/. For
each t 2 Tn, the pull-back action Ut WC1.M/! C1.M/ defined in (2.28) can be
extended to a unitary operator on H . It is easy to check the equivariant property of
the representation f 2 C1.M/ 7! Lf 2 B.H /, whereLf is the left multiplication
operator by f :

UtLf U�t D LUt .f /; 8t 2 Tn:

Recall from Section 2.3 that for a fixed skew symmetric matrix ‚, the deformed
algebra is given by replacing the multiplication in C1.M/: .C1.M/;�‚/. The
deformation map �‚WB.H /1 ! B.H /1 in Section 2.2 gives a new description of
the algebra C1.M‚/ as a subalgebra of B.H /.
Proposition 3.4. LetM be a toric Riemannian manifold and‚ is a skew symmetric
matrix. We denote by C1.M‚/ D �‚.C1.M// � B.H /, the image of C1.M/

under the deformation map �‚. Then

�‚W .C1.M/;�‚/! C1.M‚/

is an �-algebra isomorphism:
As an example, we first compare two sets of notations on noncommutative two

tori.
Example 3.5 (Noncommutative two torus). Let M D T2 D R2=Z2 with the
induce flat metric and .x1; x2/ be the coordinates on T2, put e1.x1; x2/ D e2�ix1 ,
e2.x1; x2/ D e2�ix2 . By elementary Fourier theory on T2, fek1 el2gk;l2Z serves as
basis for the C1.T2/, that is

f D
X
.k;l/2Z

f.k;l/e
k
1 e
l
2; f 2 C1.T2/; (3.2)

moreover the Fourier coefficients ff.k;l/g are of rapidly decay in .k; l/. For t D
.t1; t2/ 2 R2, the torus action is given by

˛t .e
k
1 e
l
2/ D e

2�it1kCt2lek1 e
l
2: (3.3)

Hence, the right hand side of (3.2) is the isotypical decomposition of the function f .
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Let � 2 R nQ, denote ‚ D
�
0 �
�� 0

�
. The deformed algebra C1.T2

�
/ is identical

to C1.T2/ as a topological vector space with the deformed product

f �� g D
X
r;s2Z2

e�ihr;‚sifrgse
r1Cs1
1 e

r2Cs2
2

D

X
r;s2Z2

e��i�.r1s2�r2s1/frgse
r1Cs1
1 e

r2Cs2
2 ;

(3.4)

where r D .r1; r2/, s D .s1; s2/, fr and gs are the Fourier coefficients of f and g.
Take f D e1, g D e2 we see that

e1 �� e2 D e
�2�i�e2 �� e1:

Therefore C1.T� / is isomorphic to the smooth noncommutative two torus2 A1
�

as
a topological algebra.
Example 3.6 (Noncommutative four-sphere). Let M D S4 � R5 be the unit four-
spherewith the two torus rotation action defined in Example 3.3. LetR5 D C˚C˚R
with coordinates .z1; z2; x/, then the polynomial functions on S4 is generated by the
coordinate functions z1, z2 and x with the relation

z1z
�
1 C z2z

�
2 C x

2
D 1:

While the pull-back action on functions on generators is given by

z1 7! e2�it1z1; z2 7! e2�it2z2; x 7! x;

where .e2�it1 ; e2�it2/ 2 T2. Choose ‚ to be

‚ D

�
0 �

�� 0

�
; � 2 R;

then the resulting multiplication �‚ is presented by the relations on generators:
z1 �‚ z2 D e

2�i�z2 �‚ z1 while x0 is central.
Example 3.7 (Higher dimensional noncommutative tori and spheres). Let ‚ be a
n�n skew symmetricmatrix. ConsiderTn acts on itself via translations, the resulting
deformed algebra C1.Tn

‚/ is called a noncommutative n-torus.
To construct noncommutative spheres, we consider the rotation action of Tn

on R2n (resp., R2nC1):

t D .t1; : : : ; tn/ 7!

0B@e2�it1 : : :

e2�itn

1CA ;
2See [14] for the definition.



Modular curvature for toric noncommutative manifolds 529

respectively,

t D .t1; : : : ; tn/ 7!

0BBB@
e2�it1

: : :

e2�itn

1

1CCCA :
The induced action on S2n�1 (resp., S2n) gives rise to the noncommutative sphere
C1.S2n�1‚ / (resp., C1.S2n‚ /).

The complete geometric space ofM‚ is given by a spectral triple .C1.M‚/;H;D/

(or a twisted version, cf. [14, Sec. 1]). For example, if we assume that the toric
Riemannian manifoldM is moreover a toric spin manifold with the spinor bundle =S
and the Dirac operator =D, then .C1.M‚/; L

2.=S/; =D/ is indeed a spectral triple.
Moreover it satisfies all axioms of a noncommutative spin geometry proposed by
Connes (for instance, in [11]). We shall not touch the detail construction of the
spectral triple and examination of those axioms in this paper, and refer to [12,13,43].

3.2. Deformation of tensor calculus. For a diffeomorphism 'WM ! M , one can
lift it to the tesnor bundle overM by its differential d' and the dual .d'/�:

d'x WTxM ! T'.x/M; .d'x/
�
WT �'.x/M ! T �xM; 8x 2M: (3.5)

For vector fields X and one forms ! we have the similar pull-back action:

U'.X/jp WD d''�1.x/.X j'�1.p//; U'.!/jp WD .d'
�1
x /�!j'�1.p/; (3.6)

where p 2M . We verify that the contraction is equivariant, indeed,

U'.X/U'.!/jp D !j'�1.p/ �
�
d'�1 ı d'.X j'�1.p//

�
D !j'�1.p/ �X j'�1.p/

D U'.! �X/jp:

One extends U' to all tensor fields �.T M/ in a natural way such that the tensor
product and the contraction are equivariant. In particular, ifM is a toric Riemannian
manifold and T M be the tensor bundle of all ranks over M , thus any tensor
field s admits a isotypical decomposition s D

P
r2Zn sr . If we treat the tensor

product ˝ and the contraction � as generalized versions (to all tensor fields) of the
multiplication between functions, then (2.9) gives rise to a deformed version: ˝‚
and �‚ respectively.

The essential component of the tensor calculus is a connectionr with the Leibniz
property (see Prop. 3.9). For this purpose, we required that the torus acts as affine
transformations onM . Such transformations ' is define by the property of preserving
linear connections. For example, let r be a linear connection and ' be a affine
transformation onM , for any vector fieldX and Y , we have rXY D rU'.X/U'.Y /.
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Rewrite this according to the notations above: U'.rY / D rU'.Y /. In general, we
have the following lemma.

Lemma 3.8. Given an affine transformation 'WM ! M with the pull-back
action U' , for any tensor field s 2 �.T M/, we have:

U'.rs/ D rU'.s/: (3.7)

The proof is skipped here. See Section 4, Chapter 1 of [28] for a short exploration,
the classical textbook on this subject is [30].

A straightforward consequence of Lemma 3.8 is that the covariant derivative r
preserves the isotypic decomposition, namely, for any tensor field with its isotypic
decomposition s D

P
r2Zn sr , we have:

.rj s/r D r
j .s/r : (3.8)

Now we are ready to prove the Leibniz property.

Proposition 3.9 (TheLeibniz property). Given two tensor fields onM , s1 2 �.T r
s M/

and s2 2 �.T r 0

s0 M/, we have

r.s1 ˝‚ s2/ D rs1 ˝‚ s2 C s1 ˝‚ rs2: (3.9)

For the contraction map �‚, given a vector field X and a one-form !, we get

d.X �‚ !/ D .rX/ �‚ ! CX �‚ r!: (3.10)

Proof. The proof of (3.9) and (3.10) are almost identical, thus we only show the first
one.

r.s1 ˝‚ s2/ D r

� X
�;�2Zn

�‚.�; �/.s1/� ˝ .s2/�

�
D

X
�;�2Zn

�‚.�; �/
�
r.s1/� ˝ .s2/� C .s1/� ˝r.s1/�

�
;

D

X
�;�2Zn

�‚.�; �/.rs1/� ˝ .s2/� C
X

�;�2Zn

�‚.�; �/.s1/� ˝ .rs2/�

D rs1 ˝‚ s2 C s1 ˝‚ rs2:

The crucial step is from the second equal sign to the third one, which requires the
Tn-equivariant property (3.8) for the connection. Also we can switch r and the
summation

P
�;�2Zn for r is a continuous map with respect to the smooth Fréchet

topologies.
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3.3. Lifting the tensor calculus to the cotangent bundle T �M . The symbol
calculus of pseudo differential operator involves not only the smooth functions but
also the whole pull-back tensor fields (smooth sections of pull-back tensor bundles)
on the cotangent bundle T �M :

Br
sM WD �

�T r
s M � T r

z .T
�M/; (3.11)

where � WT �M ! M is the natural projection, and r , s are the contravariant and
the covariant rank respectively as before, BM denotes the collection of tensor fields
of all ranks. From analytical point of view, the only difference between sections
of Br

sM and ordinary tensor fields onM (sections of T r
s M/) is that the base point

coordinates of the former tensor fields depend on .x; �/.
As in the previous section, we assume that 'WM !M is an affine transformation.

Keep in mind that d'x WTxM ! T'.x/M for all x 2 M . The “inverse dual” gives
rise a lift of ' to T �M , denoted by '�

'�W �x 2 T
�
xM 7! .d'�x /

�1.�x/ D .d'
�1
x /�.�x/ 2 T

�
'.x/M; (3.12)

for all x 2 M . For a function f 2 C1.T �M/ on T �M , we define U'.f /.�x/ WD
f ..'�/�1.�x// and similar to (3.6), we extend U' to pull-back tensor fields:

U'.X/.�x/ WD d''�1x
�
X j.'�1/�.�x/

�
; U'.!/.�x/ WD .d'

�1
x /�

�
!j.'�1/�.�x/

�
;

(3.13)
where X is a pull back vector field, hence the evaluation X j.'�1/�.�x/ belongs to
T'�1xM , thus

d''�1x
�
X j.'�1/�.�x/

�
2 T �xM

as expected. Similar explanation for the one form !. As a consequence, we can
quickly verify that U'.X/U'.!/ D U'.X � !/, which means the natural pairing is
equivariant. We extend U' to pull-back tensor fields of all ranks in such a way as
before that the pointwise tensor product and contraction are both equivariant. As a
result, the deformed tensor product and contraction˝‚ and �‚ can be extended to all
pull-back tensor fields.

Since we are on the cotangent bundle, the horizontal differential (along the fibers)
and the vertical differential which is similar to the connection on the underlying
manifold, appear naturally. Before that, we have to introduce another key ingredient
for the calculus.

Consider a pseudo differential operator P acting on C1c .Rn/ with symbol
p.x; �/ 2 C1.Rn;Rn/:

.Pf /.x/ D

Z
Rn
e�i��.x�y/p.x; �/f .y/ dy d�; 8f 2 C1c .R

n/: (3.14)

The function l.x; �; y/ D � � .y � x/ plays a significant role in the quantization map
above. Its generalization tomanifolds is a smooth function `.�x; y/2C1.T �M�M/.
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The linearity in � becomes the linearity of ` on each fiber of T �M , but, the linearity
in x has no straightforward analogy. However, when themanifoldM is equippedwith
a connection r (on the cotangent bundle ofM ), the linearity in x can be described
as the vanishing of higher order (� 2) symmetrized covariant derivatives (along the
y variable) @k`.�x; y/ at x D y for any k � 2.

Another motivation is related to Hömander’s perspective on pseudo differential
operators in [29], which is well-explained in [17].

Definition 3.10. LetM be a smooth manifold with a connection r (on the cotangent
bundle). Let @j WD Sym ı rj be the j th symmetrized covariant derivative. A
phase function with respect to a given connection is a real-valued smooth function
`.�x; y/ 2 C

1.T �M �M/ such that for fixed base point x, ` is linear in �x 2 T �xM
and such that for all �x , the symmetrized covariant derivatives (along y) satisfies:

@j `.�x; y/jyDx D

(
�x; j D 1;

0; j ¤ 1:
(3.15)

The existence of such functions was proved in [42, Proposition 2.1]. Phase
functions defined by (3.15) are, by no means unique. Geometrical, ` can be
constructed locally using the exponential map associated to the given connection:
`.�x; y/ D

˝
�x; exp�1x y

˛
, where exp is the exponential map associated to the

connection r (cf. [17] and [23]). Observe that the property (3.15) is invariant under
affine transformations. Namely, for an affine transformation ' on M , we define the
action on C1.T �M �M/ in the following way to make things equivariant:

U'.`/.�x; y/ D `..'
�1/��x; '

�1y/; ` 2 C1.T �M �M/: (3.16)

Follows from Lemma 3.8, U'.rj `/ D rjU'.`/. In particular, if `.�x; y/ satis-
fies (3.15), so does U'.`/. Therefore when the torus acting as affine transformations
Tn � Affine.M/, we start with any phase function z̀, the average over Tn

` WD

Z
Tn
Ut . z̀/ dt (3.17)

is Tn-invariant. Hence from now on, we simply assume that ` is invariant under the
torus action.

Two important consequences follows from the invariant property.

(1) The mixed derivatives are a family of invariant tensor fields on T �M

Dj
r
i`.�x; x/ WD D

j
r
i
y`.�x; y/jyDx :

Therefore after deformation, they become center elements (commute with everything
else) in the deformed tensor calculus.
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(2) In particular, d` D r` is invariant. Follows from (3.13) and (3.12), the pointwise
version can be written as

d`..'�1/��x; '
�1y/ D .'�1/�d`.�x; y/: (3.18)

The left hand side is a covector in T �
'�1y

M , meanwhile, in the right hand side, we
have d`.�x; y/ 2 T �yM and .'�1/�WT �yM ! T �

'�1y
M .

We are ready to define the horizontal and the vertical differential on pull-back
tensor fields on T �M that play the role of @˛x and @

ˇ

�
respectively in equation (2.29).

Definition 3.11. The vertical derivative D is the differential along the fibers of
on T �M . For any x 2M , p 2 BM a pull-back tensor field, the j th derivativeDjp

evaluate at point �x 2 T �xM gives rise to a j -linear function on T �xM , thus Djp

is a contravariant j -tensor. The precise definition is given as follows: for an integer
j � 1,Dj WC1.T �M/! �.B

j
0M/

.Djp/j�x � .!1 ˝ � � � ˝ !j /

D
d

ds1

ˇ̌̌
s1D0

: : :
d

dsj

ˇ̌̌
sjD0

p.�x C s1!1 C � � � C sj!j /; (3.19)

where p 2 BM , !1; : : : ; !j 2 T �xM .
The vertical differentialD is Tn-equivariant:

Proposition 3.12. The vertical differential D is equivariant with respect to
diffeomorphisms of M . Namely, let 'WM ! M be a diffeomorphism, U' is the
induced pull-back action, then

DjU'.p/ D U'
�
.Djp/

�
: (3.20)

Proof. We only prove the case in which p 2 C1.T �M/ is a smooth function and
j D 1. The general stituation can be handled in a similar way.

Let !.�x/ D !.x/ be a pull-back one form, where !.x/ is a one-form on M .
We would like to show that .DU'.p// � ! D .U'.Dp// � !. For the left hand side,
according to (3.19) and (3.12):�

.DU'.p// � !
�ˇ̌̌
�x
D

d

ds

ˇ̌̌
sD0

U'.p/
�
�x C s!jx

�
D

d

ds

ˇ̌̌
sD0

p
�
.d'�1/�

�
�x C s!jx

��
:

On the other hand,�
.U'.Dp// � !

�ˇ̌
�x
D U'

�
Dp � U'�1.!/

�ˇ̌
�x
D
�
Dp � U'�1.!/

�ˇ̌
.d'�1/��x

D
d

ds

ˇ̌̌
sD0

p
�
.d'�1/��x C U'�1.s!/j.d'�1/��x

�
:
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From (3.12), we see that

U'�1.s!/j.d'�1/��x D .d'
�1/�

�
s!jd'�ı.d'�1/��x

�
D .d'�1/�

�
s!jx

�
:

Therefore the proof is complete.

Finding candidates for horizontal derivative is not as straightforward as for the
vertical one. As a price to pay for a coordinate free construction, the horizontal
derivative involves both x and � in local coordinate. The two directions are linked
by the phase function `.�x; y/.

For a fixed �x 2 T �M , the exterior derivative in y 2 M : dy`.�x; y/ gives rise
a one form supported near by x, then for any smooth function p 2 C1.T �M/,
the evaluation p.d`.�x; y// produces a smooth function in y, which extends the
value p.�x/ to a small neighborhood of x. Indeed, at x D y, d`.�x; y/jyDx D �x .
Hence the covariant derivatives rjyp.d`.�x; y//, j D 0; 1; 2; : : : , make sense near
by x.

Definition 3.13. Keep the notations as above. The j th horizontal covariant derivative
of a symbol p is given by:

.rjp/.�x/ D r
j
yp.d`.�x; y//jyDx; p.�x/ 2 C

1.T �M/: (3.21)

Remarks. (1) When evaluating at y D x, the value in the right hand side of (3.21)
does not depend on the choice of the phase function ` as long as the property (3.15)
is fulfilled.

(2) The vertical and horizontal derivativesD and r can be extended to all pull-back
tensor fields (cf. (3.11)): p.�x/ 2 C1.Br

sM/, where .r; s/ is the rank.

(3) The vertical D and horizontal r derivatives commute with each other, thus the
mixed derivativesDjrlp.�x/ is well-defined.

Let us prove the equivariant property for the horizontal derivative r.
Let 'WM ! M be an affine transformation onM . According to (3.17), we can

assume that the phase function ` is U'-invariant:

`.z�zx; '
�1.y// D `.�x; y/; y is near by x:

It follows that d` is U'-invariant as well: U'.d`/.�x; y/ D d`.�x; y/. Pointwisely,

.d'�1/�
�
d`
�
.d'�1/��x; '

�1y
��
D d`.�x; y/: (3.22)

Proof. The one form d`.�x; y/ can be treated as a pull-back one form via the
projection pr2WT �M �M !M , similar to (3.13), the U' action looks like:

U'.d`/.�x; y/ WD .d'
�1/�

�
d`
�
.d'�1/��x; '

�1y
��
:
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Let Y be a vector field on M supported near by a point x. Denote zx D '�1.x/,
zy D '�1.y/ and z�zx D .d'�1/�.�x/.�

U'.d`/ � Y
�ˇ̌
.�x ;y/

D .d`/
�
z�zx; '

�1y
�
� d'�1.Y jy/

D
d

ds

ˇ̌̌
sD0

`
�
z�zx; expzy

�
sd'�1.Y jy/

��
:

Since ' is affine transformation, expzy.sd'�1.Y jy// D '�1.expy.sY jy//. We
continue the calculation and use the invaraint property of `:�

U'.d`/ � Y
�ˇ̌
.�x ;y/

D
d

ds

ˇ̌̌
sD0

`
�
z�zx; expzy

�
sd'�1.Y jy/

� �
D

d

ds

ˇ̌̌
sD0

`
�
.d'�1/�.�x/; '

�1
�
expy.sY jy/

� �
D

d

ds

ˇ̌̌
sD0

`
�
�x; expy.sY jy/

�
D .d` � Y /j.�x ;y/:

Proposition 3.14. For any integer j � 1, the j th vertical covariant derivative rj
is equivariant with respect to the group of affine transformations onM . Namely, for
any ' 2 Affine.M/:

U'
�
r
jp
�
D r

jU'.p/; (3.23)

where p 2 Br
sM is a pull-back tensor field over T �M of rank .r; s/.

Proof. We will verify the case when p 2 C1.T �M/ is only a function and j D 1.
The gerneral cases can be work out in a similar way with the Leibniz property of the
connection. We also assume that ` is ' invariant so that (3.18) holds.

Let Y be a pull-back vector field and we will identify Y j�x with Y jx in the rest of
the computation. We need to show that

U' .rp/ � Y D rU'.p/ � Y:

Start with the left hand side,�
rU'.p/ � Y

�ˇ̌
�x
D

d

ds

ˇ̌̌
sD0

U'.p/
�
d`.�x; expx sY jx/

�
D

d

ds

ˇ̌̌
sD0

p
�
.'�1/�

�
d`.�x; expx sY jx/

��
D

d

ds

ˇ̌̌
sD0

p
�
d`
�
.'�1/��x; '

�1 expx sY jx
��
:

On the other hand,�
U'.rp/ � Y

�ˇ̌
�x
D U'

�
rp � U'�1.Y /

�ˇ̌
�x
D
�
rp � U.'�1.Y /

�ˇ̌
'�1/��x

D
d

ds

ˇ̌̌
sD0

p
�
d`
�
.'�1/��x; exp'�1x sU'�1.Y /j'�1x

��
:
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To finish the proof, we just have to observe that U'�1.Y /j'�1x D d'�1.Y jx/ and

exp'�1x sd'�1.Y jx/ D '�1 expx sY jx; s � 0;

provided that ' is an affine transformation.

Similar to tensor fields onM , we define the deformed contraction �‚ and tensor
product˝‚ between pull-back tensor fields and the Leibniz rule below follows from
the equivariant property proved above.
Proposition 3.15. . Given two pull-back tensor fields s1; s2 2 BM , we have

r.s1 ˝‚ s2/ D rs1 ˝‚ s2 C s1 ˝‚ rs2;

D.s1 ˝‚ s2/ D Ds1 ˝‚ s2 C s1 ˝‚ Ds2:
(3.24)

Same results holds for the deformed contraction �‚ .

4. Pseudo differential operators on toric noncommutative manifolds

Let M be a closed manifold with a torus action Tn � Diff.M/ as before. We
would like to apply the construction in Section 2.2 to ‰.M/, the algebra of pseudo
differential operators acting on C1.M/. Namely, the algebra of pseudo differential
operators on the noncommutative manifold M‚ is just the image of ‰.M/ under
the deformation map �‚ (see Definition 2.8). We shall describe a Fréchet topology
for pseudo differential operators so that the convergences of the series in (2.9) make
sense.

Denote by‰j .M/, j 2 Z, consists of pseudo differential operators whose symbol
p.x; �/, when localized on some open chart, belongs to S†j .M/ defined in (2.29).
As usual, we put

‰.M/ D [d2Z‰
d .M/; ‰�1.M/ D \d2Z‰

d .M/: (4.1)

In this paper, we only need pseudo differential operators of integer orders. The
following characterization (called Beals–Cordes type in [39]) of zero-order pseudo
differential operators was proved in [1] with a correction [2], also in [16, 18].
Proposition 4.1. Let M be a closed manifold and ‰0.M/ be the space of all zero
order pseudo differential operators. Given a operator P WC1.M/! C1.M/, then
P 2 ‰0.M/ if and only if for any finite collection of first order differential operators
F D fF1; : : : ; Flg, we have

adFl � � � adF1.P / 2 B.L2.M//; (4.2)

where adFj .P / D ŒFj ; P �, 1 � j � l .
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The existence of elliptic operators allows us to extend the characterization above
to pseudo differential operators of all integer orders.
Corollary 4.2. LetM be a closed manifold with associated Sobolev spaces fHsgs2R
and ‰d .M/ be the space of pseudo differential operators of order d 2 Z. Given a
continuous linear operatorP WC1.M/! C1.M/ that admits a bounded extension
from Hd to H0, P belongs to ‰d .M/ if and only if for any finite collection of first
order differential operators F D fF1; : : : ; Flg, we have

adFl � � � adF1.P / 2 B.Hd ;H0/: (4.3)

Corollary 4.2 leads us to consider the following family of semi-norms on‰d .M/

indexed by .j;F/, where j 2 Z and F D .F1; : : : ; Fk/ is a finite collection of first
order differential operators. A crucial property for pseudo differential operators
acting on functions is that the commutator of two operators ŒP;Q� is of order
ord.P /C ord.Q/ � 1. In particular, if P 2 ‰d .M/, the iterated commutator:
ŒFk; : : : ; ŒF1; P �� still belong to ‰d .M/, thus defines a bounded operator on
HjCd ! Hj . We define a semi-norm k�k.j;F/ on ‰d .M/ as follows:

kP k.j;F/ D kŒFk; : : : ; ŒF1; P ��kjCd;j ; (4.4)

where on the right hand side, k�kjCd;j is the operator norm from HjCd .M/ !

Hj .M/.
Corollary 4.2 implies that any Cauchy sequence in ‰d .M/ with respect to the

family of semi-norms above converges to a pseudo differential operator. Due to the
compactness ofM , one can find a a countable increasing subfamily in the seminorms
that define the same Fréchet topology. We summarize the facts as below:
Proposition 4.3. Keep the notations as above.
(1) For all d 2 Z, the semi-norms k�k.j;F/ defined in (4.4) make ‰d .M/ into a

Fréchet space.
(2) Ford1 < d2 2 Z, then the inclusion .‰d1.M/; k�k.d1;F//! .‰d2.M/; k�k.d2;F//

is continuous, which makes‰d1.M/ into a closed sub-Fréchet space of‰d2.M/.
(3) The subspace of smooth operators ‰�1.M/ D \s2R‰

s is a two-sided closed
ideal in ‰.M/ D [s2R‰

s .
It is well known that pseudo differential operators on a closed manifold M is

stable under the action of the diffeomorphism group ofM , more precisely, given any
diffeomorphism 'WM !M , let U' WC1.M/! C1.M/ be the pull-back operator
defined in (2.28), for any P 2 ‰d .M/, then the conjugation U'PU�1' still belongs
to ‰d .M/. Therefore the Fréchet spaces ‰d .M/ (d 2 Z) become Tn-modules via
the adjoint action:

t � P WD Adt .P / D UtPU�t ; 8t 2 Tn; P 2 ‰d .M/: (4.5)
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In order to apply the deformation machinary, we need to show that the function:
t 7! Adt .P / is smooth in t 2 Tn with respect to the Féchet topology on ‰d .M/

(cf. estimate (2.1)), for all d 2 Z.
Let t D .t1; : : : ; tn/ be a coordinate system on Tn, and then

˚
@t1 ; : : : ; @tn

	
constitute a basis of the Lie algebra, the push-forward vector fields via the action
onM are denoted by fX1; : : : ; Xng.
Proposition 4.4. Keep the notations as above. Given P 2 ‰d .M/ be a pseudo
differential operator of order d , the operator-valued function t ! Adt .P / is smooth
in t . Moreover, for any finite collection of first order differential operators F D
fF1; : : : ; Fkg and any multi-index � D .�1; : : : ; �j /, one can find another finite
collection of first order operators F0 such that:@�t Adt .P /.s;F/ � C kP k.s;F0/ ; t 2 Tn; s 2 R; (4.6)

where the constant C depends on F and �. The subscript s 2 R means that the
operator norm is the one from the s C d th to the sth Sobolev space.

Proof. Apply the product rule onto (4.5), we see that

@ti .Adt .P // D Adt .ad.Xi /.P //;

where ad.Xi / is the commutator: ad.Xi /.P / D ŒXi ; P �. Similarly, the higher order
partial derivatives are given by:

@t�1 � � � @t�j .Adt .P // D Adt
�
ad.X�1/ � � � ad.X�j /.P /

�
: (4.7)

Since the right hand side above is a pseudo differential operator, we have proved that
the function t ! Adt .P / is smooth.

To show the estimate (4.6), we observe that for any vector field F ,

ad.F / ı Adt D Adt ı ad.Ad�t .F //:

Thus for F D fF1; : : : ; Flg, a finite collection of vector fields onM ,

ad.F1/ � � � ad.Fl/.@
�
t Adt .P //

D ad.F1/ � � � ad.Fl/
�
Adt .ad.Xi1/ � � � ad.Xij /.P //

�
D Adt

�
ad.Ad�t .F1// � � � ad.Ad�t .F1//ad.X�1/ � � � ad.X�j /.P /

�
:

Since the torus action is unitary, we can drop Adt when computing operator
norms:

k@
�
t Adt .P /k.s;F/ � CkP k.s;F0/

with
F0 D

˚
F1; : : : ; Fl ; X�1 ; : : : ; X�k

	
:
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Follows from the smoothness of the torus action, the right hand side of the
isotypical decomposition

P D
X
r2Zn

Pr ; 8P 2 ‰
d .M/;

with Pr D
R

Tn Adt .P /e
�2�ir �t dt , converges to P with respect to the Fréchet

topology defined above. Moreover, for each semi-norm k�kd;F, the sequence kPrkd;F
is of rapidly decay in r . Fixed a skew symmetric n � n matrix ‚, the definition 2.8
of the deformation map �‚ is extended to pseudo differential operators of all orders,
namely, for all P 2 ‰.M/, �‚.P / is defined by

�‚.P /.f / WD
X
r;l2Zn

Pr.fl/; 8f 2 C
1.M/: (4.8)

Alternatively,
�‚.P / WD

X
r2Zn

PrUr:‚=2; (4.9)

where r �‚=2 denotes the matrix multiplication in which r is a row vector.
For each d 2 Z, we denote by‰d .M‚/ the image of‰d .M/ under �‚, ‰.M‚/

and ‰�1.M‚/ are the union and intersection as in (4.1) respectively. Due to the
continuity of the map �‚ (cf. (2.23)) we see that the order of P is stable under the
deformation:
Lemma 4.5. LetP 2 ‰d .M/ is a pseudo differential operator onM of order d 2 Z.
Then �‚.P /WC1.M/ ! C1.M/ define in (4.9) extends to a bounded operator
from Hs ! Hs�d for all s 2 R.

We summarize some crucial properties of ‰.M‚/ in the following proposition.
Proposition 4.6. Let‚ be an�n skew symmetricmatrix. The filtrated algebra‰.M/

of all pseudo differential operators admits the following deformation. For any pseudo
differential operators P andQ, order d1 and d2 respectively, the �‚ multiplication

�‚W‰
d1 �‰d2 ! ‰s1Cs2 (4.10)

.P;Q/ 7! P �‚ Q D
X
r;l2Zn

e�ihr;‚liPrQl (4.11)

is well-defined. Due to the skew symmetric property of ‚, the �‚ multiplication is
compatible with the original �-operation in ‰.M/, namely:

.P �‚ Q/
�
D Q� �‚ P

�: (4.12)

Therefore .‰.M/;�‚/ is a filtrated �-algebra. Follows from Lemma 2:10 and
Proposition 2:12, we obtain that the deformation map �‚ makes .‰.M‚/; �/ into
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a filtrated �-algebra, where � denotes the composition between operators. More
explicitly, we have for any P;Q 2 ‰.M/,

�‚.P �‚ Q/ D �
‚.P /�‚.P /; �‚.P �/ D �‚.P /�: (4.13)

Proof. Notice that composition of operators

‰s1 �‰s2 ! ‰s1Cs2 W .P;Q/ 7! PQ; s1; s2 2 R;

satisfies the jointly continuity (cf. (2.7)) with respect to the operator norms, plus
the rapidly decay property in the components of the isotypical decomposition, we
conclude that the infinite sum in the right hand side of (4.11) converges with respect
to the Fréchet topology.

After justifying the convergence, (4.12) is an instance of Proposition 2.5,
while (4.13) is a straightforward generalization of Lemma 2:10 and Proposition 2.12.
At last, the deformation �‚ has an inverse ��‚ (cf. 2.11), therefore, it is an filtrated
�-algebra isomorphism between .‰.M/;�‚/ and .‰.M‚/; �/.

Similar to the commutative case, we define the deformed algebra of classical
pseudo differential operators to be the quotient �‚.‰.M//=�‚.‰�1.M//, where
‰�1.M/ is the space of smoothing operators. Given a pseudo differential
operator P , the deformation �‚.P / is not a pseudo differential operator anymore.
Indeed, �‚.P / is not pseudo-local (cf. [26, Lemma 1.2.7]) in general due to the
fact that the support of P is distorted by the torus action. However, for smoothing
operators, we do have �‚.‰�1.M// D ‰�1.M/.

Lemma 4.7. Let M be a compact smooth manifold without boundary. Given
P WC1.M/ ! C1.M/ a continuous .with respect to the Fréchet topology given
by the partial derivatives in local coordinate/ linear operator with the smoothing
property that for any s; t 2 R, P can be extended to a bounded operator between
associated Sobolev spaces: fromH s toH t . In other words, there exits a constantCs;t
such that for all f 2 C1.M/

kPf ks � Cs;t kf kt : (4.14)

Then the the distributional kernel ofP ,K.x; y/overM�M , belongs toC1.M�M/.

Proof. The proof can be achieved by applying the Sobolev lemma to the estimate
in [26, Lemma 1.2.9]

Let P 2 ‰�1.M/ be a smoothing operator, then the estimate (4.14) holds for
�‚.P / for all real number s. Hence the operator �‚.P / has a smooth Schwartz
kernel by lemma 4.7 above. We summarize the fact in the proposition below:
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Proposition 4.8. Let H be the Hilbert space of L2-functions on a toric Riemannian
manifold M . As a Tn-smooth subspace of B.H /, ‰�1.M/ is stable under the
deformation map �‚, that is

�‚ .‰�1.M// � ‰�1.M/:

We define the deformation of classical pseudo differential operators CL.M‚/ to
be the quotient:

CL.M‚/ D ‰
1.M‚/=‰

�1.M/ D �‚.‰1.M//=‰�1.M/ (4.15)
D �‚ .‰1.M/=‰�1.M// D �‚.CL.M//: (4.16)

5. Widom’s pseudo differential calculus

In the literature, symbol calculus for pseudo differential operators on manifolds
was developed by pasting Fourier integral operators on open sets of Rn. In such
construction, only the leading symbol of an operator is well-defined as a function
on the cotangent bundle, the rest of them depend heavily on the chosen local
coordinates and the transformation rules between different coordinate systems are
quite cumbersome. It is a natural question to ask for an invariant (independent of the
choice of coordinates) construction of such calculus. The construction was developed
long time ago, in Widom’s work [42] and [41], also [4], later various modifications
were suggested [17, 23, 25, 37, 38]. As a price to pay, the resulting symbol calculus
is quite sophisticated geometrically and combinatorially: tensor calculus is heavily
involved several multi-indices are required in the expression of the product formula of
two symbols. In this section, we will follows Widom’s work, focus on explaining the
notations appeared in the main results and refer most of the technical proofs to [42]
and [41].

In this section, M is a always a compact smooth manifold without boundary
endowed with a torsion free connection r.

5.1. The symbol map and the quantization map. We start with an observation
on differential operators. Using the connection r, any differential operator P onM
can be defined in a coordinate-free way as of the form of a finite sum:

P.f / D
X
˛

�˛ � .r
˛f /; (5.1)

where each �˛ is a contravariant tensor fields such that the contraction �˛ � .r˛f /
gives rise a smooth function on M . If the tensor field �˛ is symmetric, then the
polarization gives rise a polynomial on the cotangent bundle, which leads to the
classical notion of symbols of differential operators. The bottom line here is that if
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we replace the contraction in (5.1) by the deformed version �‚, then we recovered the
deformed operator �‚.P /.

Let `.�x; y/ 2 C1.T �M �M/ be a phase function as in Definition 3.10 with
respect to the given connection r. Then `.�; y/ can be thought as vector field onM
(supported near by the point y). With the interpretation, we denote:

`.�; y/k D `.�; y/˝ � � � ˝ `.�; y/; (5.2)

which is a symmetric kth order contravariant tensor field and so the pairing

r
kf .x0/ � `.x0; x/

k (5.3)

is well-defined and, by the symmetry of l.x0; x/k ,

r
kf .x0/ � `.x0; x/

k
D @kf .x0/`.x0; x/

k; (5.4)

where @k is the symmetrization of rk as before. An interesting consequence of
such construction is the analogy of the Taylor’s expansion formula on manifolds
(cf. [42, Prop. 2.2]):

f .x/ v
1X
jD0

1

j Š
r
jf .x0/ � `.x0; x/

j ; f 2 C1.M/: (5.5)

Definition 5.1. Let M be a smooth manifold with a linear connection r, and
`.�x; y/ 2 C

1.T �M � M/ be a phase function in Definition 3.10 with respect
to r. Denote by  � 2 C1.M �M/ a cut-off function such that  � D 1 is equal
to 1 on a small neighborhood of the diagonal and also supp � is still closed to the
diagonal so that  �.x; y/ ¤ 0 implies dy`.�x; y/ ¤ 0 for all �x ¤ 0. For any
pseudo differential operator P WC1.M/ ! C1.M/, the symbol �.P / of P is a
smooth function on T �M :

�.P /.�x/ D P �.x; y/e
i`.�x ;y/

ˇ̌
yDx

; (5.6)

where the operator P acts on the y variable.
Remark. Up to smoothing operators, the symbol map � is independent of the choice
of the cut-off function �, and the choice of the connectionr and the phase function
`.�x; y/.

On the other hand, pseudo differential operators are obtained by quantizing
symbols.
Definition 5.2. Let  � be the cut-off function used in Definition 5.1. For any
f 2 C1.M/, put y D expx Y , the quantization map OpWS†d .M/ ! ‰d .M/,
d 2 Z is defined as follows:

.Op.p/f /.x/ D
1

.2�/m

Z
T �xM

Z
TxM

e�ih�x ;Y ip.�x/ �.x; y/f .expx Y / dY d�;

(5.7)
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where m is the dimension of the manifold M , h�x; Y i is the canonical pairing:
T �xM � TxM ! R, and dY , d� denote the densities that are dual to each other.
Different choices of the cut-off function  � give rise the same quantization map
modular smoothing operators.

It is well known that � and Op are inverse to each other up to smoothing operators.
As an exmaple, we compute the symbol of the scalar Laplacian �.

Lemma 5.3. The symbol of the scalar Laplacian �WC1.M/ ! C1.M/ is equal
to �.�/ D j�j2, where j�j2 is the squared length function on T �M .

Proof. In local coordinates,

�f D �.r2f /ijg
ij : (5.8)

To compute the symbol, we can ignore the cut-off function  � because � is a
differential operator:

r
2ei`.�x ;y/ D ei`.�x ;y/

�
ir2`.�x; y/ � r`.�x; y/r`.�x; y/

�
:

Note that r is torsion-free, thus r2 is equal to its symmetrization @2. Therefore by
the definition of `, at y D x, ei`.�x ;y/ D 1, r2` D 0 and rj `.�x; y/ D �j . Pair
r2ei`.�x ;y/ with the metric on T �M : g�1 D gij , we obtain:

�.�/.�x/ D �i�jg
ij
D j�j2 : (5.9)

where .gij / is the metric tensor on T �M .

Given two pseudo differential operators P and Q with symbols p and q

respectively, the symbol of the composition PQ is given by an asymptotic productP
j aj .p; q/, where the aj .�; �/ are bi-differential operators. Similar to the case

of differential operators in C1.M/ described (5.1), the bi-differential operators
aj .p; q/ onC1.T �M/�C1.T �M/ are obtained as the contraction between mixed
derivatives of p and q (cf. (3.13)) and tensor fields of suitable ranks so that the
contraction produces a smooth function.
Proposition 5.4. Keep the notations as above, for any two pseudo differential
operators P ans Q with p D �.P / and q D �.Q/, then �.PQ/ D p ? q has
the following asymptotic form:

p ? q v
1X
jD0

aj .p; q/; (5.10)

where aj .�; �/ are bi-differential operators reducing the total degree by j , namely,
for any d; d 0 2 Z,

aj .�; �/WS†
d .M/ � S†d

0

.M/! S†dCd
0�j .M/:
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Here v means that, if we truncate the sum to the firstK terms, then the remainder is
of order d C d 0 �K, where d and d 0 are the order of P andQ, respectively.

The bi-differential operators aj are given by:

aj .p; q/ D
X i�j

kŠ˛0Š˛1Š � � �˛kŠˇ1Š � � �ˇkŠ�
D˛0C

Pk
1 ˛kp

��
D
Pk
1 ˇsr

˛0q
��
r
˛1Cˇ1`

�
� � �
�
r
˛kCˇk`

�
; (5.11)

where the summation is taken over:

j D �

�
k � ˛0 �

kX
1

.˛s C ˇs/

�
� 0; ˛0 � 0; ˛1; : : : ; ˛k � 1; ˇ1; : : : ; ˇk � 2:

The operation between all factors in (5.11) is mixed type of tensor product and
contraction bewteen tensor fields. The contraction occurs between the contravariant
and covariant tensors with the same index, thus eventually yields a smooth function.
Remarks. (1) The vertical and the horizontal differentials D and r are defined in
Section 3.3.
(2) In (5.11), the order of the multiplication of p, q and ` is arranged in such a way
that it is works for pseudo differential operators on vector bundles.
(3) The constrains ˛1; : : : ˛k � 1 and ˇ1; : : : ; ˇk � 2 gives great simplification for
the first a few aj ’s.
(4) The first a few aj ’s are listed below:

a0.p; q/ D pq; (5.12)
a1.p; q/ D �iDprq; (5.13)

a2.p; q/ D �
1

2
D2pr2q �

1

2
.Dp/.D2q/.r3`/: (5.14)

5.2. Schwartz Kernels and the trace formula. The last piece we need in the
symbol calculus is the trace formula of an operator from its symbol, provided the
operator is of trace-class. Since the symbol only defines an operator upto smoothing
operators. We measure the error by a dilation parameter t 2 Œ1;1/.
Definition 5.5. A dilation of a pseudo differential operator P is a family of pseudo
differential operators Pt with t 2 Œ1;1/ given by dilation of the symbols functions,
in local coordinate:

pt .x; �/ D p.x; �=t/: (5.15)
Let .M; g/ be a m dimensional closed Riemannian manifold with the metric

tensor g. The canonical 2m-form on the cotangent bundle T �M is given in local
coordinates .x; �/ by

� D dx1 ^ � � � ^ dxm ^ d�1 ^ � � � ^ d�m; (5.16)
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while � D dgd�x;g�1 with the volume form dg D .detg/dx1 ^ � � � ^ dxm and

d�x;g�1 D .detg/�1d�1 ^ � � � ^ d�m (5.17)

defines a measure on the fiber T �xM .

Proposition 5.6. Keep the notations as above, let P be pseudo differential operator
whose order is less than m, the dimension of the manifolds such that the Schwartz
kernel function kP .x; y/ exists, then the Schwartz kernel of the dilation Pt .see
Definition 5:5/ on the diagonal is given by

kPt .x; x/ D
tm

.2�/m

Z
T �xM

�.P / d�g�1 CO
�
t�N

�
; 8N 2 N: (5.18)

In particular, we obtain the trace formula for Pt :

Tr.Pt / D
tm

.2�/m

Z
T �M

�.P /�CO
�
t�N

�
; 8N 2 N; (5.19)

where � D dgd�x;g�1 is the canonical 2m-form defined in (5.16).

See [41, Theorem 5.7] for the proof.

5.3. Deformation of the symbol calculus. Now let us take the torus action into
account. The symbol calculus depends on the choice of a linear connection, therefore
if we assume that the torus acts as affine transformations Tn � Affine.M/ so that
the the connection is preserved as explain in Section 3, the all the constructions,
such as the symbol map and the quantization map, are Tn-equivariant. The Fréchet
topologies on symbols and pseudo differential operators are constructed in such a way
that both the symbolmap and the quantizationmap are continuous. As a consequence,
for any pseudo differential operator P D

P
r2Zn Pr and its symbol p D

P
r2Zn pr

with their isotypical decomposition, we have

�.Pr/ v �.P /r v pr ; Op.pr/ v Op.p/r v Pr ;

�.P / v
X
r2Zn

pr ; Op.q/ v
X
r2Zn

Pr :

Given two deformed pseudo differential operators�‚.P / and�‚.Q/with symbolsp
and q respectively, our goal is to find an deformed the asymptotic symbol product ?‚
such that the error

�‚.P /�‚.Q/ � �‚.Op.p ?‚ q//
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belongs to ‰�1.M/. Since �‚.P /�‚.Q/ D �‚.P �‚ Q/, p ?‚ q should be
�.P �‚ Q/ upto a smoothing operator. We formally compute:

�.P �‚ Q/ D
X

�;�2Zn
�‚.�; �/�.P�Q�/ v

X
�;�2Zn

�‚.�; �/p� ? q�

v
X

�;�2Zn

1X
jD0

�‚.�; �/aj .p�; q�/ v
1X
jD0

X
�;�2Zn

�‚.��/aj .p�; q�/

D

1X
jD0

aj .p; q/‚:

The summation
P1
jD0 simply means if we truncate the sum to first N terms, the

remainder belongs to symbol of order �JN , where JN !1 asN !1. ThereforeP1
jD0 behaves like a finite sum.
It remains to compute aj .p; q/‚. Recall from (5.11), each aj .p; q/‚ is obtained

by contraction and tensor product between tensor fields. Both operations are
equivariant with respect to the torus action. Take a1, for instance,

a1.p; q/‚ D
X

�;�2Zn
�‚.�; �/a1.p�; q�/ D

X
�;�2Zn

�‚.�; �/.�i/.Dpr/.rql/X
�;�2Zn

�‚.�; �/.�i/.Dp/r.rq/l D .�i/.Dp/ �‚ .rq/:

In general, for all j � 0, one can quickly verify that aj .p; q/‚ is of the same form
as aj .p; q/ in (5.11), in which the tensor product and the contraction are replaced by
the deformed version˝‚ and �‚ respectively.

We summarize the discussion above in the proposition:
Proposition 5.7. Keep the notations in Proposition 5:4. LetM be a closed manifold
with a n-torus action so that the previous deformation machinery applies. Let�‚.P /
and �‚.Q/ be the deformation of pseudo differential operators. Denote p D �.P /
and q D �.Q/, then

�‚.P /�‚.Q/ v �‚.Op.p ?‚ q//;

with

p ?‚ q v
1X
jD0

aj .p; q/‚;

where the bi-differential operators aj .�; �/ are the deformation of aj .�; �/ in
Proposition 5:4:

aj .�; �/‚ D
X

�;�2Zn
�‚.�; �/aj .p�; q�/; �‚.�; �/ D e

ih�;‚�i:
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Precisely, aj .p; q/‚ can be obtained from aj .p; q/ .in Equation (5.11)/ by replacing
the pointwise tensor product and contraction by the deformed version ˝ and �‚
.cf. Sec. 2:3/:

aj .p; q/‚ D
X i�j

kŠ˛0Š˛1Š � � �˛kŠˇ1Š � � �ˇkŠ�
D˛0C

Pk
1 ˛kp

�
�‚

�
D
Pk
1 ˇsr

˛0q
��
r
˛1Cˇ1`

�
� � �
�
r
˛kCˇk`

�
; (5.20)

where the summation is over:

j D �

�
k � ˛0 �

kX
1

.˛s C ˇs/

�
� 0; ˛0 � 0; ˛1; : : : ˛k � 1; ˇ1; : : : ; ˇk � 2:

Remark. Notice that the phase function ` is Tn-invariant, so are the covariant
derivatives rk` (k D 0; 1; 2; : : : ), as a result, when rk` are involved, the deformed
and undeformed tensor product and contraction make no difference.

6. Heat kernel asymptotic

6.1. Resolvent approximation. The deformation symbol calculus can be quickly
upgraded to the parametric version. Let �‚.P / be the deformation of a second
order differential operator P , whose symbol equals

P2
0 pj with pj of degree j

(j D 0; 1; 2). Let � be the resolvent parameter that lies in some cone region in the
complex plane, denote p2.�/ D p2 � �, and pj .�/ D pj for j D 0; 1. We would
like to solve the resolvent equation

.p2.�/C p1 C p0/ ?‚ .b0.�/C b1.�/C � � � / v 1;

where b�.�/ are parametric symbols of order �2 � �, � D 0; 1; 2; : : : . With the
symbol calculus in hand, if the inverse of p2.�/ exists, which will be b0.�/, that is

a0.b0.�/; p2.�//‚ v a0.p2.�/; b0.�//‚ v 1;

then b� can be constructed inductively as follows:

b�.�/ D �b0.�/ �‚

� X
��D��2���j

�<�

aj .p�.�/; b�.�//‚

�
(6.1)

or b�.�/ D �

� X
��D��2���j

�<�

aj .b�.�/; p�.�//‚

�
�‚ b0.�/; (6.2)

where � D 0; 1; 2 and � D 0; 1; 2; : : : :
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We will need b1 and b2 later:

b1 D
�
.�i/Db0 �‚ rp2 C b0 �‚ p1

�
�‚ .�b0/ (6.3)

b2 D
�
b0 �‚ p0 C p1 �‚ b1.�/C .�i/Db0 �‚ rp1 C .�i/Db1 �‚ rp2

1
2
D2b0 �‚ r

2p2 �
1
2
.r3`/Db0 �‚ D

2p2
�
�‚ .�b0/:

(6.4)

6.2. Perturbation of the scalar Laplacian � via a Weyl factor. From now on,
we shall focus a specific family of deformed elliptic geometric differential operators
which represents a family of noncommutative metrics. Ellipticity simply means we
know how to inverse its leading symbol in the deformed symbol algebra.

Parallel to the work on noncommutative tori (cf. [14, 15, 19, 21]), the new family
of noncommutative metrics is obtained by a noncommutative conformal change of
the Riemannian metric that we started with before the deformation. In terms of
spectral point of view, the new metrics we are looking at in this paper are given by
a perturbation of the scalar Laplacian Weyl factor in the noncommutative coordinate
algebra.
Definition 6.1. Let M be a toric Riemannian manifold as in definition .3:1/ and
C1.M‚/ D �‚ .C1.M// � B.H / is the algebra of smooth functions on its
deformationM‚ with respect to a skew-symmetric n � n matrix ‚. Here, H is the
Hilbert space of L2-functions onM as before. Denote by C.M‚/ the C �-algebra of
the operator norm completion of C1.M‚/. A Weyl factor �‚.k/ is an element in
C1.M‚/ � C.M‚/ (that is k 2 C1.M/) which is invertible and positive.

The Weyl factor k is always of the form k D eh for some self-adjoint operator h.
To be precise, let h 2 C1.M/ real-valued smooth function so that is it self-adjoint as
an operator. Follows from Lemma 2.10, �‚.h/ is also self-adjoint. Let k D exp‚.h/
so that �‚.k/ D e�

‚.h/. In the rest of the computation, we shall drop �‚.�/ and
apply the deformed calculus on to smooth function k and h directly.
Definition 6.2. Fixed aWeyl factor�‚.k/with k 2 C1.M/, a deformed differential
operator �‚.Pk/ is called of perturbed Laplacian type if its spectrum is contained
in Œ0;1/, and Pk 2 ‰2.M/ is a differential operator whose symbol is of the form
�.Pk/ D p2 C p1 C p0, when j D 0; 1, pj .�x/ 2 S†j .M/ is polynomial in � of
degree j . For j D 2, we require the leading symbol is of the form:

p2.�x/ D k j�j
2 ;

where j�j2 D h�; �ig�1 is the squared length function on T �M with respect to the
given Riemannian metric g�1.

Notice that the function j�j2 is Tn-invariant, we have k �‚ j�j2 D k j�j2. Hence
p2.�x/ is the symbol of the operator �‚.k/�. When the complex parameter � is off
the positive real line, k j�j2 � � is invertible in S†.M‚; ƒ/, the inverse is denoted
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by b0.�; �/ D .k j�j2 � �/�1. For the smoothness of the exposition, we move the
detail construction of b0.�; �/ to Appendix A.

6.3. Some estimates. Parametric pseudo differential operators is more that just a
map� 7! P.�/. For instance, we require that our families of operators is holomorphic
in �, moreover, when parametric symbols are considered, differentiating its symbol
in the parameter reduces the order of the operator:ˇ̌

D˛
xD

ˇ

�
D
j

�
p.x; �; �/

ˇ̌
� C˛;ˇ;j

�
1C j�j2 C j�j

�.d�jˇ j�2j /=2
: (6.5)

As a result, the operator norm has some control in the resolvent parameter:

Lemma 6.3. Given any positive integer k, one can find another integer K > 0

such that for any �‚.Q.�// 2 ‰�K.M‚; ƒ/, the operator norm of �‚.Q.�// 2
B.H�k;Hk/ has the estimate:�‚.Q.�//

�j;j
� C

�
1C j�j

��j
: (6.6)

Proof. This fact is well known, see [26, Lemma 1.7.1(b)] for instance, for parametric
pseudo differential operators on closed smooth manifolds. Namely, we haveQ.�/ 2
‰�K implies Q.�/

�j;j
v O

�
j�j�j

�
as j�j ! 1:

Now we take the torus action into account, notice that for any partial derivative in
t 2 Tn 7! Adt .Q.�//, the resulting operator @�t Adt .Q.�// with a multi-index �,
still lies in ‰�K ifQ.�/ does. In particular,@�t Adt .Q.�//�j;j v O� j�j�j � as j�j ! 1; 8t 2 Tn:

From the standard Fourier theory on torus,�‚.Q/
�j;j
� C sup

t2Tn

@�t Adt .Q.�//�j;j ;
provided that the total order of the partial derivative � is greater that the dimension
of the torus. The proof is complete.

Let us consider a smooth family ks D exp‚.sh/ of Weyl factors, where s 2 Œ0; 1�
and h is a real valued function onM so that it is a self-adjoint operator. Recall that we
have dropped the deformation map �‚.�/ when dealing with k and its logarithm h,
the calculation is taken in the deformed version. So we will simply write ks D esh

in the rest of the computation.
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We fix a h and consider the family of Laplacian operators perturbed by ks D esh:

Ps D ks�C lower order terms; (6.7)

where � is the scalar Laplacian operator. In our application, the lower order terms
involve the Weyl factor k upto its second covariant derivative. In particular, the
symbol of Ps depends smoothly in s and differentiating in s do not increase the order
of the symbol (or the operator).

Denote the resolvent byR.�; s/ D .Ps��/�1. Base on the fact that the spectrum
of Ps is contained in Œ0;1/ for all s 2 Œ0; 1�, one can repeat the argument in [26,
Lemma 1.6.6] to show that for any integer j � 0,R.�; s/

�j;j
v O

�
j�jl.j /

�
; as j�j ! 1.

The power l.j / is positive and uniform with respect to s.
The resolvent approximation in Section 6.1 gives us a sequence of deformed

pseudo differential operators fRj .�; s/g1jD0 such that the difference R � Rj is of
order �j � 1 for each j . With Lemma 6.3, arguing as in [26, Lemma 1.7.2], we
conclude that for any integer j � 0,one can choose l larger enough so thatR.�; s/ �Rl.�; s/�j;j v O� j�j�j �; as j�j ! 1. (6.8)

We also need the variation in s:

d

ds

�
R.�; s/ �Rl.�; s/

�
D R.�; s/

�
I � .Ps � �/Rl.�; s/

�
�R.�; s/

dPs

ds
R.�; s/

�
I � .Ps � �/Rl.�; s/

�
:

When apply the operator norm k�k�j;j (j � 0) on both sides, the error term has the
estimate: I � .Ps � �/Rl.�; s/�j;j v O� j�j�j �;
provide l large enough. As a result, d

ds

�
R.�; s/ �Rl.�; s/

�
�j;j
v O

�
j�j�j

�
; as j�j ! 1. (6.9)

For the complete argument, see [6, Eqs. (3.12)–(3.14)].

6.4. Heat kernels and the variation. Notice that the spectrum of Ps is contained
in Œ0;1/, therefore the heat operator e�tPs can be defined by a contour integral:

e�tPs D
1

2�i

Z
C

e�t�.Ps � �/
�1 d�; (6.10)
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where C is a curve in the complex plane that circle around Œ0;1/ in such a way that

e�ts D
1

2�i

Z
C

e�t�.s � �/�1 ds; 8s � 0:

If one replaces the resolvent .Ps � �/�1 by its l th approximation Rl.�; s/ in the
integral above, denote El.t; s/ D

R
C
e�t�Rl.�; s/ d�, then the estimate (6.8) gives

rise to e�tPs �El.t; s/�j;j v o�tj � as t ! 0, (6.11)

provided l large enough. In order to study the trace, it is easier to consider
the associated pseudo differential operators before the deformation, for which the
Schwartz kernel functions make sense. Write e�tPs and El.t; s/ as

e�tPs D �‚
�
zE.t; s/

�
; El.t; s/ D �

‚
�
zEl.t; s/

�
;

where zE and zEl are smoothing operators (means of order �1) on M . Thanks to
the continuity of �‚, (6.11) implies that: k zEs � zEl.�; s/k�j;j v o.tj /, in terms of
their Schwartz kernel functions (see [26, Lemma 1.7.3]): we haveˇ̌

H zEs .x; y; t/ �H zEl .t;s/
.x; y; t/

ˇ̌
L2
j

v o
�
tj
�

as t ! 0.

In particular, for the L2-trace,

Tr
�
zEs.t/ � zEl.�; s/

�
v o

�
tj
�
; as t ! 0.

Since the trace is preserved under the deformation process (Lemma 2.13), we have
proved that Tr e�tPs has an asymptotic expansion as t ! 0 given by TrEl.t; s/,
l D 0; 1; 2; : : : . To be precise: for given integer j � 0, one can find l large enough
such that

Tr
�
e�tPs �El.t; s/

�
v o

�
tj
�
; as t ! 0. (6.12)

The variation in s can be performed in a similar fashion. Start with (6.9), we have
the operator norm estimate: d

ds

�
e�tPs �El.t; s/

�
�j;j
v o

�
tj
�

as t ! 0,

which leads to the Schwartz kernel estimate:ˇ̌̌ d
ds

�
H zEs .x; y; t/ �H zEl .t;s/

.x; y; t/
�ˇ̌̌
L2
j

v o
�
tj
�

as t ! 0.

Finally we can conclude that the heat kernel asymptotic can be differentiated term by
term in the parameter s:

Tr
� d
ds

�
e�tPs �El.t; s/

��
v o

�
tj
�
; as t ! 0; (6.13)

provide l large enough. More details can be found in [6]. Again, (6.13) means that
the heat kernel asymptotic defined byEl.t; s/ can be differentiate term by term in s.
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To complete the formula of the heat kernel asymptotic, it remains to compute the
trace: Tr.El/ D Tr. zEl/ for each l D 0; 1; 2; : : : . Let fbj .�; s/g1jD0 be the sequence
of symbols defined inductively in (6.1) with respect to the perturbed Laplacian Ps .
Although the symbols bj are constructed out of deformed calculus, the following
homogeneity (of degree �2 � j ) in .�; �/ is preserved as in the classical situation:

bj .c�; c
2�/ D c�2�j bj .�; �/; 8c > 0; j D 0; 1; 2 : : : : (6.14)

As a consequence (see [26, Section 1.7]), the following symbols

zej .t; s/ D
1

2�i

Z
C

e�t�bj .�; s/ d�; j D 0; 1; 2 : : : ; (6.15)

belong to S†�1. We define zEl D
Pl
jD1Op.ej / and El D �‚. zEl/. When taking

the homogeneity property (6.14) into account, the trace formula in Proposition 5.6
becomes:

Hbj .�/.x; x; �/ D
1

.2�/m

Z
T �xM

bj .�x; �/ d�x;g�1 CO
�
j�j�N

�
for all positive integer N . Here Hbj .�/ is the Schwartz kernel of the quantization
operator of bj . After the contour integral, we get, for any positive integer N :

Hej .�/.x; x; t/ D
1

2�i

1

.2�/m

Z
C

e�t�
Z
T �xM

bj .�x; �/ d�x;g�1 d�C o
�
t�N

�
;

as t ! 0.

Use the homogeneity property (6.14) again, one can perform a substitution t�! �

to show thatZ
C

e�t�
Z
T �xM

bj .�x; �/ d�x;g�1 d� D t
.j�n/=2

Z
C

e��
Z
T �xM

bj .�x; �/ d�x;g�1 d�:

Finally, we have proved that

H zEl
.x; x; t/ D

lX
jD0

t .j�n/=2Vj .x/C o
�
t�N

�
; 8N 2 N;

as t ! 0, with

Vj .x/ D
1

2�i

1

.2�/m

Z
C

e��
Z
T �xM

bj .�x; �/ d�x;g�1 d�:



Modular curvature for toric noncommutative manifolds 553

We summarize the long discussion above into the theorem below.
Theorem 6.4. Let Ps with s 2 Œ0; "/ for small " > 0 be a family of perturbed
Laplacians defined in (6.7). For any f D �‚. zf / with zf 2 C1.M/, viewed as a
deformed zero-order pseudo differential operator by left-multiplication, then

Tr
�
fe�tPs

�
v
1X
jD0

t .j�m/=2Vj .f; Ps/ (6.16)

where upto a factor .2�/�m, m D dimM ,

Vj
�
f; �‚.Pk/

�
D

Z
M

f .x/Vj .x/ dg D

Z
T �M

�
1

2�i

Z
C

e��bj .�x; �/ d�

�
�;

D

Z
M

Z
T �xM

�
1

2�i

Z
C

e��bj .�x; �/ d�

�
d�x;g�1 dg;

(6.17)
here� is the canonical volume form on T �M defined in (5.16) and C is the contour
that defines the heat operator.

Moreover, the heat asymptotic (6.16) can be differentiated term by term in s:

d

ds
Tr
�
fe�tPs

�
v
1X
jD0

t .j�m/=2
d

ds
Vj .f; Ps/: (6.18)

We end this section with a quick application of the technical fact (6.18).

6.5. Zeta functions and conformal indices. The original notion of conformal index
for manifolds was introduced in [6], which admits a generalization in the setting of
spectral triples [14]. As an instance, let us state the result for toric noncommutative
manifolds. Denote ks D esh with s 2 Œ0; 1� and h D h� 2 C1.M‚/.
Theorem 6.5. Consider the perturbed Laplacian in (6.7) without lower order terms
Ps D ks�. We assume that m D dimM is even and denote Vj .Ps/ WD Vj .1; Ps/

defined in (6.17), then

d

ds
Vm.Ps/ D 0; 8s 2 Œ0; 1�:

In particular, at j D m, the coefficient

Vm.�/ D Vm.P0/ D Vm.P1/ D Vm.k�/; (6.19)

that is the value Vm.k�/ does not depend on the Weyl factor k.
After verifying the technical assumption that the heat kernel asymptotic can

be differentiated term by term in s (Eq. (6.18)), the theorem is a special case of
Section 2.1 in [14].
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The result can be rephrased using zeta functions. Again, letPk D k� 2 ‰2.M‚/.
To define the complex power P z

k
where z is a complex number, we need to remove

zero from the spectrum of Pk . To do so, we consider�Pk WD Pk.I �PkerPk /;

where PkerPk is the projection on to the kernel of Pk . For z 2 C, the complex power
is defined by the contour integral

P zk WD
1

2�i

Z
C

�z. �Pk � �/�1 d�:
For <z large enough, P�z

k
is of trace-class, so the corespondent zeta function is

well-defined:
�.Pk; z/ D TrP�zk :

It is well known that, for instance, see [26, Lemma 1.10.1], the heat kernel asymptotic
(6.16) gives rise to a meromorphic extension of �.Pk; z/ to C with at most simples
poles. Moreover, the coefficients Vj .Pk/ correspond to the value or the residue of the
zeta function at zj D .m� j /=2, j D 0; 1; 2; : : : , wherem D dimM . In particular,
at z D 0, the zeta function is regular and

�.k�; 0/ D Vj .k�/ � dim ker k�:

Sincek is invertible, dim ker k� D dim ker�, combine thiswith (6.19), we conclude:
Theorem 6.6. Let k be a Weyl factor, then the zeta function of k� at zero is
independent of k, that is

�k�.0/ D ��.0/: (6.20)

7. Modular curvature

Definition 7.1. Let Pk be a perturbed Laplacian via a Weyl factor k as before, which
stands for a noncommutative metric for the noncommutative manifold M‚. Via
analogy, we define the associated modular curvature to be the functional density of
the second heat coefficient. Precisely, the modular curvature R D �‚. zR/ with with
zR 2 C1.M/, is defined by the property: for any f D �‚. zf /,

V2.f; Pk/ D

Z
M

zf �‚ zR; 8f 2 C
1.M/:

We have shown in Theorem 6.4 that

R.x/ D .2�/� dimM
Z
T �xM

1

2�i

Z
C

e��b2.�x; �/ d� d�x;g�1 ; x 2M;
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where b2 is the second term in the resolvent approximation of .Pk � �/�1. We will
process the integration as follows:

zR.x/ D

Z 1
0

1

2�i

Z
C

�Z
S�xM

e��b2.�x; �/ d!x;g�1

�
d�.rm�1 dr/; (7.1)

where d!x;g�1 is the volume form on the unit cosphere inside T �xM associated to
the metric g�1 and m is the dimension of the underlying manifold.

At the end, we showed that the results agree with the previous work [14, 32]
and [22]. In the rest of the computation, the tensor calculus is always the deformed
version, we will suppress all˝‚, �‚ to simplify the notations.

7.1. Set up and the complete expression of the b2 term. We perform the calcula-
tion with respect to a perturbed Laplacian �‚.Pk/ (cf. Definition 6.2) whose symbol
is of the form:

�.�‚.Pk// D k j�j
2
C p1.�x/C p0.�x/: (7.2)

Here p1.�x/ and p0.�x/ are the degree one and zero parts respectively whose explicit
expressions will be determined in specific examples. Let us consider, at first, the
simplest perturbation �‚.k/�, whose symbol is the leading term of all the perturbed
Laplacians appeared in the previous work [14, 21] and [22]:

Lemma 7.2. The symbol of the perturbed Laplacian k� is equal to

k �‚ j�j
2
D k j�j2 ;

where j�j is the length function on T �M .

Proof. We have seen in Lemma 5.3 that �.�/ D j�j2. Since k is independent of the
fiber direction variable � , aj .k; �/ D 0 for all j > 0, thus,

k ?‚ j�j
2
D a0.k; j�j

2/‚ D k �‚ j�j
2
D k j�j2 ;

the last equal sign holds because j�j2 is Tn-invariant.

Denote by
p2.�x; �/ D k j�j

2
� � (7.3)

the parametric leading symbol, and its inverse in the deformed algebra C1.T �M‚/.

b0.�x; �/ D .k j�j
2
� �/�1:

The construction of b0 is explained in Appendix A in detail. Recall (6.3) and (6.4),
the explicit expressions of b1 and b2 can be calculated by repeatedly applying the
Leibniz property ofD and r. We shall leave the lengthy calculation in Appendix B
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and C, instead, we start with Proposition C.7: in (7.1), the integral over the unit
sphere

R
Sm�1

b2d�Sm�1 is equal to, up to an overall factor Vol.Sm�1/:
4
m
2b30k

2.rk/b0.rk/b0 j�j
6 g�1 � .2C 4

m
/b20k.rk/b0.rk/b0 j�j

4 g�1

C
4
m
b20k.rk/b

2
0k.rk/b0 j�j

6 g�1 � b20k.r
2k/b0 j�j

2 g�1

C
4
m
b30k

2.r2k/b0 j�j
4 g�1 C 1

m
2
3
b20k

2S�b0 j�j
2 :

(7.4)

7.2. Integration in �. As explained in [14, Section 6], the resolvent parameter can
be taken to be �1 due to the homogeneity of the symbol. The argument works in
higher dimensions in the following way.

Letm D dimM be even. We fix a point x 2M and identify T �xM Š Rm so that
the Riemannian metric is the usual Euclidean metric. Put

b2.r; �/ WD

Z
Sm�1

b2.�; �/ d�Sm�1 ; (7.5)

where r 2 Œ0;1/ and � 2 ƒ, a cone region in C in which
p
� is well-defined. We

would like to switch the order of d�.rm�1 dr/ in (7.1). Integration by parts gives
us: for any integer j > 0,Z 1

0

1

2�i

Z
C

e��b2.r; �/ d�.r
m�1 dr/

D

Z 1
0

1

2�i

Z
C

e��
d j

d�j
b2.r; �/ d�.r

m�1 dr/:

Recall that by saying “b.r; �/ is homogeneous in .r;
p
�/ of degree d 2 Z” we mean

that for any c > 0, b.cr; c2�/ D cdb.r; �/. Observe that differentiating in � lower
the homogeneity by 2, thus if we take j to be j0 D m=2 � 1, the smallest integer so
that the homogeneity of dj

d�j
b2.r; �/ is strictly less than �m, then integral

Bj0.�/ D

Z 1
0

d
j
0

d�
j
0

b2.r; �/.r
m�1 dr/

exists and Bj0.�/ is homogeneous in � of degree �1, that is, Bj0.c�/ D c�1Bj0.�/
for any c > 0. Indeed,

Bj0.c�/ D

Z 1
0

� d j0
d�j0

b2

��p
c
r
p
c
; c�

�
rm�1 dr

D

Z 1
0

c
�4�2j0

2

� d j0
d�j0

b2

�� r
p
c
; �
�
rm�1 dr

D c�2�j0Cm=2
Z 1
0

� d j0
d�j0

b2

�
.r; �/rm�1 dr;

and �2 � j0 Cm=2 D �1 since j0 D m=2 � 1.
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Lemma 7.3. Keep the notations as above. Assume that m D dimM is even and set
j0 D m=2 � 1. We have

1

2�i

Z
C

e��Bj0.�/ d� D Bj0.�1/: (7.6)

Therefore:

1

2�i

Z
C

e��
�Z 1

0

b2.r; �/r
m�1 dr

�
d� D

Z 1
0

d
j
0

d�
j
0

ˇ̌̌
�D�1

b2.r; �/r
m�1 dr:

(7.7)

Proof. Let C 2 C be a contour around Œ0;1/ used before to define the heat operator
via holomorphic functional calculus, then

1

2�i

Z
C

e�t�
1

s � �
d� D e�ts; 8s; t � 0: (7.8)

Upto homotopy equivalence in the region C n Œ0;1/, we can force the contour C to
be contained in a cone region Uı D fz 2 C j� � ı < arg z < � C ıg for any ı > 0.
Write � D rei� in its polar form, due to the homogeneity:

Bj0.�/ D
1

rei�
ei�Bj0

�
ei�
�
D
1

�
ei�Bj0

�
ei�
�
;

where � can be chosen to be contained in .� � ı; � C ı/ for any ı > 0, hence:
1

2�i

Z
C

e�t�Bj0.�/ d� D

�
1

2�i

Z
C

e�t�
�
�
1

�

�
d�

�
Bj0.�1/ D Bj0.�1/:

Here we have used (7.8) to conclude that 1
2�i

R
C
e�t�.� 1

�
/ d� D e0 D 1.

7.3. The rearrangement lemma. Integration in r is handle by the rearrangement
lemma which will be explained below. We will feel free to use the notations in [32]
and [31]. From now on, the parameter � is taken to be �1. Put r D j�j. After a
substitution r 7! r2, the summands in (7.4) contain two types:

kf0.rk/�f1.rk/ or kf0.rk/�1f1.rk/�2f2.rk/; (7.9)

here k is the Weyl factor and fj ’s are some smooth functions on RC, while �j ’s are
tensor fields overM on whichC1.M‚/ acts from both sides. Introduce the modular
operator4:

4 .�/ WD k�1�k; (7.10)
then the rearrangement lemma (cf. [14, Lemma 6.2]; [31, Corollary 3.9]) yields:Z 1

0

kf0.rk/�f1.rk/ dr DK.4/.�/; (7.11)

with K.s/ D

Z 1
0

f0.r/f1.rs/ dr; s 2 .0;1/: (7.12)
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For the second type,Z 1
0

kf0.rk/�1f1.rk/�2f2.rk/ dr D G .4.1/;4.2//.�1 � �2/; (7.13)

with G .s; t/ D

Z 1
0

f0.r/f1.rs/f2.rst/ dr; s; t 2 .0;1/; (7.14)

where 4.j / indicates that 4 acts on the j th factor with j D 1; 2. We introduce the
following families of modular curvature functions:

K.p;q/.s; r/ D r
pCq�2.r C 1/�p.sr C 1/�q; (7.15)

H.p;q;l/.s; t; r/ D r
pCqCl�2.r C 1/�p.sr C 1/�q.st r C 1/�l ; (7.16)

where the parameter r 2 Œ0;1/ and the arguments s; t 2 .0;1/. For in-
stance, when applying the lemma to b20k.r2k/b0 j�j

2 g�1 in (7.4), the associated
function is K.2;1/.s; r/. For the term b30k

2.rk/b0.rk/b0 j�j
6 g�1, the function

isH.3;1;1/.s; t; r/.

7.4. Modular curvature on noncommutative two tori. LetM D T2 be the two
torus with the Euclidean metric, thus m D dimM D 2 and the scalar curvature
function S� D 0. Recall that the modular curvature R is obtained by applyingR1
0
.�/r dr to all terms in (7.4) while the resolvent parameter � is replaced by �1.

After a substitution r 7! r2, r dr becomes dr=2. View r 7! k j�j2, then for example,
the b0 yields the function f1.r/ D .r C 1/�1. We would like to apply (7.9) to

2b30k
2.r2k/b0 j�j

4 g�1 D k�12kb30k
2.r2k/b0 j�j

4 g�1;

therefore

k�1
Z 1
0

�
2kb30k

2.r2k/b0 j�j
4 g�1

�
.dr=2/ DK1.4/.r

2k/g�1

with K1.s/ D
R1
0
K.3;1/.s; r/ dr . Other terms in (7.4) can be handled in a similar

way, for instance, b20k.rk/b20k.rk/b0 j�j
6 g�1 a term yields a modular function

with two variables: we first bring the k in the middle of rk in front via the modular
operator, that is: .rk/k D k 4 .rk/, so we rewrite

b20k.rk/b
2
0k.rk/b0 j�j

6 g�1 D k�2kb20k
3
4 .rk/b20.rk/b0 j�j

6 g�1

and apply (7.13):

k�2
Z 1
0

kb20k
3
4 .rk/b20.rk/b0 j�j

6 g�1 .dr=2/

D k�2 zG1.4.1/;4.2// .4.rk/k/ g
�1

D k�2G1.4.1/;4.2// .rkrk/ g
�1;

with G1.s; t/ D s zG1.s; t/ and zG1.s; t/ D
R1
0
H.2;2;1/.s; t; r/ .dr=2/.
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We collect the terms that involve r2k and their associated functions as below:
which are 4

m
b30k

2.r2k/b0 j�j
4 g�1 and �b20k.r2k/b0 j�j

2 g�1,

4

m
b30k

2.r2k/b0 j�j
4 g�1;

4

m
K.3;1/.s; r/

� b20k.r
2k/b0 j�j

2 g�1; �K.2;1/.s; r/;

(7.17)

they yield the following term in (7.22):

k�1K.4/.r2k/g�1;

where
K.s/ D

1

2

Z 1
0

4

m
K.3;1/.s; r/ �K.2;1/.s; r/ dr:

The constant 1=2 comes from the substitution r 7! r2. Plug in (7.15) and m D 2,
we obtained

K.s/ D
�2s C .s C 1/ log.s/C 2

2.s � 1/3
: (7.18)

Similarly, according to (7.13) and (7.14), we collect terms in (7.4) that contribute to
the function G in (7.22) in the following table:
4

m
2b30k

2.rk/b0.rk/b0 j�j
6 g�1;

4

m
H.3;1;1/.s; t; r/;

�

�
2C

4

m

�
b20k.rk/b0.rk/b0 j�j

4 g�1; �
�
2C

4

m

�
H.2;1;1/.s; t; r/;

4

m
b20k.rk/b

2
0k.rk/b0 j�j

6 g�1;
4

m
sH.2;2;1/.s; t; r/:

(7.19)

When m D 2, the two variable function G is given by:

G .s; t/ D
1

2

Z 1
0

�
4H.3;1;1/ � 4H.2;1;1/ C 4sH.2;2;1/

�
.s; t; r/ dr

The explicit expression is given by:

G .s; t/ D

�
.st � 1/3 log.s/ � .s � 1/..t � 1/.s.t � 2/C 1/.st � 1/

C .s � 1/.st.2t � 1/ � 1/ log.st//

�
.s � 1/2s.t � 1/2.st � 1/3

(7.20)

Finally, taking two overall factors into account: Vol.Sm�1/ and .2�/�m (cf. (7.4)
and Theorem 6:4), we have proved the following theorem.
Theorem7.4. LetM‚ D T2

‚, the noncommutative two torus andPk D k�. Then the
functional V2.�; Pk/ of the second heat coefficient can be express in in the following
way: 8f 2 C1.M/, put f D �‚. zf /,

V2.f; Pk/ D

Z
M

zf �‚ zR dg: (7.21)
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Keep the notations as in (7.10)–(7.14), then upto a constant factor .2�/�1,

zR D k�1K.4/.r2k/g�1 C k�2G .4.1/;4.2// .rkrk/ g
�1; (7.22)

where the modular curvature functions K and G are given in (7.18) and (7.20).
Remarks. (1) R D �‚. zR/ 2 C1.M‚/ is the associated modular curvature.
(2) Originally, the integrand of the right hand side of (7.21) should be xR �‚ zf , but
since R is self-adjoint and

R
M

is a trace with respect to the deformed product, we
see that Z

M

xR �‚ zf dg D

Z
M

zf �‚ R dg:

(3) One can verify that the functions K and G agree with the modular curvature
functions �F0;0.s/ and GR

0;0.s; t/ in [32, Thm. 3.2] in the following way:

K.s/ D �F0;0.s/; G .s; t/ D
1

s
GR
0;0.s; t/:

The appearance of the negative sign in front ofF0;0 is due to the fact that .r2k/g�1 D
��k. In [32, Thm 3.2], the quadratic form is defined as .k�1rk/.k�1rk/g�1,
compare to our quadratic form k�2.rk/.rk/g�1. The factor 1=s in front of GR

0;0

that stands for the inverse modular operator 4�1 D k.�/k�1 is exactly the price to
pay to move k�1 in front of rk.
(4) The Laplacian k� considered in the theorem is related to the degree zero
Laplacian with complex structure

p
�1 appeared in [14] via the conjugation by

k: k2� 7! k�k. After converting the Weyl factor k and the modular operator 4
to their own logarithms: h D log k (defined by k D eh) and 5 D log4 D �Œh; ��,
our modular curvature functions agree with those in [14]. This issue is explained
in [32, Sec. 4.7] in detail. Therefore our calculation gives a new confirmation of the
results for noncommutative two tori which is independent of the aid of CAS.

7.5. Modular curvature for even dimensional toric noncommutative manifolds.
Now let us assume that M is even dimensional and m D dimM � 4. From
Lemma 7.3, is modular curvature is obtained by integrating b2 defined in (7.4) in the
following way: set j0 D m=2 � 1,

zR D

Z 1
0

� d j0
d�j0

b2

�ˇ̌̌
�D�1

.rm�1 dr/:

As before, we perform replace r by r2 so that the volume form rm�1 dr becomes
rm=2�1dr=2. Recall the functions K.p;q/.s; r/ and H.p;q;l/.s; t; r/ defined in (7.15)
and (7.16), take again the term

4

m
b30k

2.r2k/b0 j�j
4 g�1
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as an example, it leads to the function in s:

4

m

1

2

Z 1
0

d j0

d�j0

ˇ̌̌
�D�1

r2

.r � �/3
1

sr � �
rm=2�1 dr; j0 D m=2 � 1:

Let us consider in generalZ 1
0

d j0

d�j0

ˇ̌̌
�D�1

rpCq�2

.r � �/p
1

.sr � �/q
rm=2�1 dr; j0 D m=2 � 1: (7.23)

Via a substitution u D 1=r , the integral becomes:Z 1
0

u�j0
d j0

d�j0

ˇ̌̌
�D�1

1

.1 � u�/p
1

.s � u�/q
.�du/

D

Z 1
0

d j0

dxj0

ˇ̌̌
xD�u

1

.1 � x/p
1

.s � x/q
.�du/

D

Z 1
0

d j0

duj0

1

.1 � u/p
1

.s � u/q
.�du/ D

�
d

du

�j0�1 ˇ̌̌
uD0

1

.1 � u/p
1

.s � u/q
;

here we need the fact that p; q are both positive integers so that the limit at infinity
equals zero. Due to the homogeneity of b2 in r , all the terms in (7.4) can be handle
in a similar way, therefore, we upgrade functions in (7.15) and (7.16) as follows:

zK.p;q/.s;m/ D
� d
du

�m=2�2 ˇ̌̌
uD0

1

.1 � u/p
1

.s � u/q
; (7.24)

zH.p;q;l/.s; t; m/ D
� d
du

�m=2�2 ˇ̌̌
uD0

1

.1 � u/p
1

.s � u/q
1

.st � u/l
: (7.25)

Base on (7.17) and (7.19), we can write down the modular curvature function for
dimension m � 4:

K.s;m/ D
1

2

� 4
m
zK.3;1/.s;m/ � zK.2;1/.s;m/

�
; (7.26)

G .s; t; m/ D
1

2

� 8
m
zH.3;1;1/ �

�
2C

4

m

�
zH.2;1;1/ C

4

m
s zH.2;2;1/

�
.s; t; m/: (7.27)

The only term left in (7.4) is

1

m

2

3
b20k

2S�b0 j�j
2 :

Apply the rearrangement lemma, we see that it becomes

1

m

2

3
k�m=2C1F.4/.S�/
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after integration, where the function F.s/ D 1
2
zK.2;1/.s;m/. Since S� is

Tn-invariant, in particular, it commutes with k, in other words, 4.S�/ D S�,
therefore F.4/.S�/ D F.1/S� and we denote

F.1/ D
1

2
zK.2;1/.1;m/ D

1

2

�
.1 � u/�3

�.m=2�2/ ˇ̌̌
uD0

D

(
1
4
.�1/m=2�2.m=2/Š; m D 6; 8; 10; : : : ;
1
2
; m D 4:

(7.28)

Theorem 7.5. LetM‚ be a noncommutative toric manifold whose dimension is an
even integerm and �‚.Pk/ D �‚.k/�. Then the associated modular curvature zR,
up to an overall constant Vol.Sm�1/.2�/�m, is of the form:

zR D
�
k�m=2K.4; m/.r2k/C k�m=2�1G .4.1/;4.2/; m/ .rkrk/

�
g�1

C cmk
�m=2C1S�: (7.29)

When m � 4, the modular curvature functions K and G are given in (7.26), (7.27)
respectively. While the constant cm is equal to 1

m
2
3
F.1/, where F.1/ is calculated

in (7.28).
In dimension four,m=2�2 D 0, thus no differentiation involves when computing

zK.p;q/ and zH.p;q;l/. So one can quickly compute zK.3;1/.s; 4/ D zK.1;1/.s; 4/ D 1=s,
therefore K.s; 4/ D 0. Meanwhile,

zH.3;1;1/.s; t; 4/ D zH.2;1;1/.s; t; 4/ D
1

s2t
; zH.2;2;1/.s; t; 4/ D

1

s3t
;

as a result, G .s; t; 4/ D 0.
Corollary 7.6. Let m D dimM D 4. For the perturbed Laplacian �‚.Pk/ D
�‚.k/�, the modular curvature is simply:

R.k/ D ck�1S�; (7.30)

where
c D .4�/�2

1

6
:

Remark. The value of c agrees with the classical result: upto a factor .4�/� dimM=2,
the density of the second heat coefficient for the scalar Laplacian operator equals 1=6
times the scalar curvature.

Proof. It remains to determine the coefficient for the scalar curvature term. We recall

F.1/ D
1

2
; Vol.S3/ D

2�4=2

�.2/
D 2�2;

thus
c D Vol.S3/.2�/�4

1

m

2

3
F.1/ D .4�/�2

1

6
:



Modular curvature for toric noncommutative manifolds 563

7.6. Comparison with [22] and [19]. In this section, we would like to reproduce
the results on noncommutative four tori in [22] and [19]. The perturbed Laplacian
�‚.Pk/ considered in [22, Lemma 3.3] has the following symbol:

�.Pk/ D p2 C p1 C p0

with

p2 D k j�j
2 ; p1 D

�i

2
.rk/D j�j2 ; p0 D ��k C .rk/k

�1.rk/g�1; (7.31)

where the Laplacian � is associated to the flat metric on T4. Based on the previous
computation, the contribution to the modular curvature functions K and G from the
leading term p2 is equal to zero. It remains to count the contribution from p1 and p0
which is in the last line of the b2 term in (B.8):

� iD.b0p1b0/.rp2/b0 � b0p0b0 � b1p1b0 C iDb0.rp1/b0: (7.32)

Similar to the computation in Appendix B, we list the result of each summand as
below: For �iD.b0p1b0/.rp2/b0:

1

2

�
b20k.rk/b0.rk/b0 C b0.rk/b

2
0k.rk/b0

�
.D j�j2/2 j�j2

�
1

2

�
b0.rk/b0.rk/b0.D

2
j�j2/ j�j2

�
:

For �b1p1b0:

1

2
b20k.rk/b0.rk/b0.D j�j

2/2 j�j2 C
1

4
b0.rk/b0.rk/b0.D j�j

2/2:

For �b0p0b0:
b0.�k/b0 � b0.rk/k

�1.rk/b0g
�1:

The last one:
iDb0.rp1/b0 D

1

2
b20k.r

2k/b0.D j�j
2/2:

Sum up the terms above and perform integrating over the cosphere bundle, namely
the following substitution:

.D j�j2/2 7!
4 j�j2

m
Vol.Sm�1/g�1; D2

j�j2 7! 2Vol.Sm�1/g�1;

We group the sum into two parts associated to the modular curvature function K.s/

and G .s; t/ respectively. More precisely, (7.32) can be written as I1 C I2 upto an
overall factor Vol.S3/, with

I1 D b0.�k/b0 C
1

2

4

m
b20k.r

2k/b0 j�j
2 g�1; (7.33)
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and:

I2 D
4

m
b20k.rk/b0.rk/b0 j�j

4 g�1 C
1

2

4

m
b0.rk/b

2
0k.rk/b0 j�j

4 g�1

C

�1
4

4

m
� 1

�
b0.rk/b0.rk/b0 j�j

2 g�1 � b0.rk/k
�1.rk/b0g

�1: (7.34)

Notice that �k D �.r2k/g�1, therefore I1 is of the form

I1 7! k�2K.4/.r2k/g�1

after integration, with

K.s/ D
1

2

�
�K.1;1/.s; 4/C

1

2

4

m
K.2;1/.s; 4/

�
D �

1

4

1

s
: (7.35)

Meanwhile,
I2 7! k�3G .4.1/;4.2//.rkrk/

where G .s; t/ equals .8s2t /�1, which comes from the sum:

1

2

�� 4
m
H.2;1;1/ C

1

2

4

m
sH.1;2;1/ C

�1
4

4

m
� 1

�
H.1;1;1/

�
.s; t; 4/ �

1

s
K.1;1/.st; 4/

�
;

here we have used the fact that

H.2;1;1/.s; t; 4/ D sH.1;2;1/.s; t; 4/ D H.1;1;1/.s; t; 4/ D
1

s
K.1;1/.st; 4/ D

1

s2t
:

We summarize the computation as below.
Theorem 7.7. Let M‚ D T4

‚ be a noncommutative four torus. With respect to the
perturbed Laplacian �‚.Pk/ whose symbol is defined in Eq. (7.31), the modular
curvature is of the form:

R D k�2K.4/.r2k/g�1 C k�3G .4.1/;4.2//.rkrk/

upto an overall factor Vol.S3/.2�/�4, where

K.s/ D
1

4s
; G .s; t/ D �

1

8s2t
: (7.36)

The result should be compared with [19, Eq. (1)].

A. Inverse of the leading symbol .k j�j2 � �/

For � 2 C n Œ0;1/, we would like to show that the leading symbol of a perturbed
Laplacian k j�j2 � � (see Definitions 6.1 and 6.2) is invertible in the symbol algebra
S†.M‚; ƒ/, upto smoothing symbols.
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First, we recall a technical result. Given a toric Spin manifoldM with spinor bun-
dle =S and the Dirac operator =D, the deformed spectral triple .C1.M‚/; L

2.=S/;D/

is a regular spectral triple in the sense of, for instance, [27, 34]. In particular,
the subalgebra C1.M‚/ inside B.L2.=S// is closed under holomorphic functional
calculus. We refer to [43, Prop. 5] for the proof.

Given a Weyl factor �‚.k/ (with k 2 C1.M/), whose spectrum is contained in
.0;1/, thus for any s > 0, and � 2 Cn.0;1/, the resolvent .s�‚.k/��/�1 still lies
in C.M‚/ D �‚.C1.M//. In particular, there exists a unique smooth function in
C1.M/, denoted by .sk��/�1 (here the �1 power stands for the deformed inverse,
other than the reciprocal of a function), such that�‚..sk��/�1/ D .s�‚.k/��/�1.

As a C1.M/-valued function, .s; �/ 7! .sk � �/�1 is smooth in s 2 .0;1/ and
holomorphic in � 2 C n .0;1/. To avoid the singularity caused by s being zero, we
choose a cut-off function

�.s/ D

(
0; for t � 1=2;
1; for t � 1;

(A.1)

and denote
r.s; �/ D �.s/.sk � �/�1:

Finally, we claim that the inverse (upto smoothing symbols) of k j�j2 � � in
S†.M‚/=S†

�1 is given by composing r.s; �/ with the squared length function
on T �M :

b0.�x; �/ D r
�
j�xj

2 ; �
�
; �x 2 T

�
xM; (A.2)

which is a well-defined smooth functions on T �M .
Proposition A.1. The function b0.�x; �/ defined in (A.2) belongs to S†�2.M‚; �/

and serves as the inverse of p2.�x; �/ D k j�j2 � � in the deformed symbol algebra
S†.M‚; ƒ/, that is p2 �‚ b0 v 1 and b0 �‚ p2 v 1. Here v means “upto
smoothing symbols”.

Proof. Let �‚ and �‚ denote the multiplication in S†.M‚; ƒ/ and C1.M‚/

respectively. Since the length function j�j is Tn-invariant, let s 2 .0;1/ as before
and fix a �, we see that

.p2 �‚ b0/j�x D
�
.sk � �/ �‚ r.s; �/

�ˇ̌
sDj�x j

2 :

In the right hand side above, .sk � �/ and r.s; t/ are functions in s valued in
C1.M/, thus the �‚-multiplication makes sense. By the construction of r.s; �/,
.sk � �/ �‚ r.s; �/ D 1 when s � 1, hence .p2 �‚ b0/j�x D 1 for all j�xj � 1, thus
p2 �‚ b0 v 1. Same argument shows that b0 �‚ p2 v 1.

One can quickly verify that for any c > 0,

b0.c�x; c
2�/ D c�2b0.�x; �/;

provided j�xj large enough. Hence b0 belongs to S†�2.M‚; �/.



566 Y. Liu

B. Computation of the b2 term

The goal of this section is to compute the full expression of the b2 term in the resolvent
aproximation. Recall from (6.3) and (6.4), we need to compute:

b1 D
�
b0p1 C .�i/Db0rp2

�
.�b0/; (B.1)

b2 D
�
b0p0 C b1p1 C .�i/Db0rp1 C .�i/Db1rp2

�
1
2
D2b0r

2p2 �
1
2
Db0D

2p2.r
3`/
�
.�b0/;

(B.2)

where b0 D p�12 D .k j�j
2
� �/�1.

Since r j�j2 D 0 (proved in Lemma C.4), the Leibniz rule gives us

rk j�j2 D .rk/ j�j2 ; (B.3)

r
2k j�j2 D .r2k/ j�j2 C k.r2 j�j2/: (B.4)

The derivatives of b0 D .k j�j2 � �/�1 are obtained by applying the standard
resolvent identity:

.Db0/ D �b0.Dp2/b0;

which holds as well whenD is replaced byr. We notice thatDp2 commutes with b0,
butrp0 does not, becauserk and k do not commute. We continue the computation:

Db0 D �.b0b0/Dp2 D �.b
2
0k/D j�j

2 ; (B.5)
and

D2b0 D D.�b0b0Dp2/

D �b0b0D
2p2 C 2b0b0b0Dp2Dp2

D �b22kD
2
j�j2 C 2b30k

2.D j�j2/2: (B.6)

Combine (B.1), (B.5), and (B.3), we get:

b1 D �ib
2
0k.D j�j

2
� rk/b0 j�j

2
� b0p1b0: (B.7)

Proposition B.1. The b2 term is given by:

b2 D 2b
3
0k
2.rk/b0.rk/b0 j�j

4 .D j�j2/2

� b20k.rk/b0.rk/b0
�
j�j2 .D j�j2/2 C j�j4D2

j�j2
�

C b20k.rk/b
2
0k.rk/b0 j�j

4 .D j�j2/2

�
1

2
.b30k

2/.r3`/.D j�j2/.D2
j�j2/ �

1

2
b30k

2D2
j�j2 r2 j�j2

�
1

2
b20k.r

2k/b0 j�j
2D2

j�j2 C b30k
2.r2k/b0 j�j

2 .D j�j2/2

� iD.b0p1b0/.rp2/b0 � b0p0b0 � b1p1b0 C iDb0.rp1/b0:

(B.8)
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Proof. Wefirst compute the last two terms (termswith 1=2 in front) in Equation (B.2).
From (B.6) and (B.4):

D2b0 �‚ r
2p2 D

�
� b22kD

2
j�j2 C 2b30k

2.D j�j2/2
��
.r2k/ j�j2 C k.r2 j�j2/

�
D � b20k.D

2
j�j2 � r2k/ j�j2 � b20k

2D2
j�j2 r2 j�j2

C 2b30k
2
�
.D j�j2/2r2k

�
j�j2 C 2b30k

3.D j�j2/2r2 j�j2 :
(B.9)

Combine (B.5) and (B.4):

.r3`/Db0D
2p2 D .r

3`/.�b20k/.D j�j
2/k.D2

j�j2/

D .�b20k
2/.r3`/.D j�j2/.D2

j�j2/:
(B.10)

ApplyD onto (B.7),

Db1 D � i
h
D.b20k/.D�

2
� rk/b0�

2
C b20kD.D j�j

2
� rk/b0 j�j

2

C b20k.D j�j
2
� rk/.Db0/ j�j

2
C b20k.D j�j

2
� rk/b0D j�j

2
i

�D.b0p1b0/

D � i
h
� 2b30k

2D j�j2 .D j�j2 � rk/b0 j�j
2
C b20k.D j�j

2
� rk/b0D j�j

C b20k.D
2
j�j2 � rk/b0 j�j

2
� b20k.D j�j

2
� rk/b20k.D j�j

2/ j�j2
i

�D.b0p1b0/;

thus

Db1rp2 D �i
h
� 2b30k

2.D j�j2 � rk/b0.D j�j
2
� rk/ j�j4

C b20k.D j�j
2
� rk/b0.D j�j

2
� rk/ j�j2

C b20k.D
2
j�j2 � rk/b0.rk/ j�j

4

� b20k.D j�j
2
� rk/b20k.D j�j

2
� rk/ j�j4

i
�D.b0p1b0/rp2: (B.11)

We substitute (B.9), (B.10) and (B.11) into (B.2):

b2 D 2b
3
0k
2.D j�j2 � rk/b0.D j�j

2
� rk/b0 j�j

4

� b20k.D j�j
2
� rk/b0.D j�j

2
� rk/b0 j�j

2

� b20k.D
2
j�j2 � rk/b0.rk/b0 j�j

4

C b20k.D j�j
2
� rk/b20k.D j�j

2
� rk/b0 j�j

4

C
1

2
.�b20k

2/.r3`/.D j�j2/.D2
j�j2/b0
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�
1

2
b20k.D

2
j�j2 � r2k/b0 j�j

2

�
1

2
b20k

2D2
j�j2 r2 j�j2 b0

C b30k
2..D j�j2/2r2k/b0 j�j

2

� iD.b0p1b0/.rp2/b0 � b0p0b0 � b1p1b0 C iDb0.rp1/b0:

To obtain (B.8), we just need to move the vertical and the horizontal derivatives
of j�j2 to the right end for each summand above. This operation is valid because of
the Tn-invariant property of the function j�j2.

C. Integration over the cosphere bundle S �M

Using symmetries, one can quickly compute the surface integral of the function x2
over the unit sphere x2 C y2 C z2 D 1 in R3:Z

x2Cy2Cz2D1

x2 dS D
1

3

Z
x2Cy2Cz2D1

.x2 C y2 C z2/ dS D
1

3
Vol.S2/:

In general, we have
Lemma C.1. Let � D .�1; : : : ; �m/ be a coordinate system of Rm and Sm�1 is the
unit sphere with induced measure d�Sm�1 . ThenZ

Sm�1
�s�a d�Sm�1 D

(
0; when s ¤ a;
j�j2

m
Vol.Sm�1/; when s D a.

(C.1)

In an orthonormal local coordinate system: gij D �ij and j�j2 D
P
j �

2
j , hence

..D j�j2/2/ij D
�
.D j�j2/˝ .D j�j2/

�
ij
D 4�i�j ; .D2

j�j2/ij D 2ıij :

Apply the lemma above, one can quickly conclude:
Lemma C.2. Let Sm�1 � T �xM Š Rm be the unit sphere with respect to the
Riemannian metric g�1 and d�Sm�1 be the induced measure as before. ThenZ

S�xM

.D j�j2/2 d�Sm�1 D
4 j�j2

m
Vol.Sm�1/.g�1jx/; (C.2)Z

S�xM

D2
j�j2 d�Sm�1 D 2Vol.Sm�1/.g�1jx/: (C.3)

Now we have to deal with the horizontal derivatives rj j�j2 with j D 1; 2 which
leads to the appearance of the scalar curvature function S�. Start with r3`, the
following lemma was proved in [41], which is recalled here for completeness:
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Lemma C.3. In local coordinates at a given point x 2M ,

.r3`/ijk D �
1

3

X
p

�p
�
R
p

ikj
CR

p

jki

�
:

Proof. We adopt the following convention for the curvature tensor on the tangent
bundle TM : �

R.X; Y /Z
�l
D RlijkX

jY kZl ;

where X , Y and Z are vector fields. In local coordinates:

.r3`/ikj � .r
3`/ijk D

�
.rjrk � rkrj /.r`/

�
i

D �.r`/pR
p

ijk
D �pR

p

ikj
:

The negative sign appears because the covariant derivatives are taken on the cotangent
bundle. Since the connection is torsion free, .r3`/ is symmetric in the first two
indices, thus

.r3`/jki D .r
3`/j ik C �pR

p

jki
D .r3`/ijk C �pR

p

jki
:

Again, due to the symmetry in the first two indices, all the components of the tensor
r3` fall into f.r3`/ijk; .r3`/ikj ; .r3`/jkig. Since @3` D 0, summing up the three
terms gives us

0 D 3.r3`/ijk C �pR
p

ikj
C �pR

p

jki
;

.r3`/ijk D �
1

3

�
�pR

p

ikj
C �pR

p

jki

�
:

Lemma C.4. Evaluating at at given point x 2 M , the horizontal and the vertical
derivatives of j�j2 are given by:

r j�j2 D 0; (C.4)

.r2 j�j2/ D .r3`/.r`/g�1 C .r`/.r3`/g�1; (C.5)

where the contraction is implemented in the following way:

.r2 j�j2/jk D .r
3`/kij .r`/ag

ka
C .r`/a.r

3`/kijg
ak :

In particular, when gij D ıij ,

.r2 j�j2/jk D
2

3

X
p;i

�p�iRpjik : (C.6)

Proof. According to the definition of the horizontal differential r, we have to
compute:

r
k
ˇ̌
dy`.�x; y/

ˇ̌2ˇ̌
yDx
D r

k
hdy`.�x; y/; dy`.�x; y/ig�1 ; k D 1; 2:
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Set d` D dy`.�x; y/, we rewrite the metric pairing hd`; d`ig�1 as d`˝ d` � g�1.
Using the Leibniz’s rule and the fact that the connection is Levi-Civita: rg�1 D 0:

r j�j2 D r.d`˝ d` � g�1/ D .2rd`/˝ d` � g�1

D r
2`˝ ` � g�1:

Notice that r is torsion-free, when evaluating at y D x

.r2`/jyDx D .@
2`/jyDx D 0;

here @2 is the symmetrization of r2. Thus we have proved (C.4). However, the
second covariant derivative is nonzero. Again, since rg�1 D 0:

r
2
�
.d`˝ d`/ � g�1

�
D .r2d`/˝ d` � g�1 C d`˝ .r2d`/ � g�1

C .rd`/˝ .rd`/ � g�1:

At y D x: .rd`/ D r2` D 0 as before, thus we have reached (C.5).
At last, we need to compute the contraction (C.6). When gij D ıij , apply

Lemma C.3:

.r3`/ijk.d`/ag
aj
D �

1

3

X
i;p

�p�i
�
Rpikj CRpjki

�
:

Since the curvature tensorRpikj is anti-symmetric in .p; i/ and in .k; j / respectively,
the first term summed to zero and for the second term, we use the minus sign to switch
k and j , thus the result becomes:

.r3`/ijk.d`/ag
aj
D
1

3

X
i;p

�p�iRpjik :

The second term in (C.5) provides the same answer, therefore we have proved (C.6).

Corollary C.5. In an orthonormal local coordinate system, we compute the following
contractions:

.D j�j2/.D2
j�j2/.r3`/ D �

8

3

X
k;p;i

�p�kRpiki ; (C.7)

.D2
j�j2/.r2 j�j2/ D

4

3

X
k;p;i

�p�kRpiki ; (C.8)

.D j�j2/2.r2 j�j2/ D 0: (C.9)
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Proof. Since .D2 j�j2/ij D 2g
ij D 2ıij , take (C.6) into account:

.D2
j�j2/.r2 j�j2/ D

4

3

X
p;i;k

�p�iRpkik;

which is (C.8). For (C.7), we need .D j�j2/j D 2�j and lemma C.3:

.D j�j2/k.D
2
j�j2/ij .r

3`/ijk D �
1

3
.2�k/.2ıij /

X
p

�p
�
Rpikj CRpjki

�
D �

8

3

X
p

�p�kRpiki :

At last, �
.D j�j2/2

�
ij
.r2 j�j2/ij D

X
p;l

.4�i�j /
2

3
.�p�lRpilj /:

Due to the anti-symmetries of the curvature tensor, the right hand side vanishes when
summing over all indices i; l; p; j .

Corollary C.6. Keep the notations as above,Z
S�M

.D j�j2/.D2
j�j2/.r3`/ d�Sm�1 D �

8

3m
j�j2Vol.Sm�1/S�; (C.10)Z

S�M

.D2
j�j2/.r2 j�j2/ d�Sm�1 D

4

3m
j�j2Vol.Sm�1/S�: (C.11)

Proof. According to (C.7) and (C.8), it suffices to show thatZ
S�xM

�X
p;i;k

�p�iRpkik

�
d�Sm�1 D

1

m
j�j2Vol.Sm�1/S�;

hereS� D
P
p;k Rpkpk is the trace of the Ricci tensor. Indeed, we apply Lemma C.1

again, Z
S�xM

�X
p;i;k

�p�iRpkik

�
d�Sm�1 D

Z
S�xM

�X
p;k

�2pRpkpk

�
d�Sm�1

D
1

m
j�j2Vol.Sm�1/

X
p;k

Rpkpk

D
1

m
j�j2Vol.Sm�1/S�:
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Apply the following substitution rules (Eqs. (C.10), (C.11), (C.2), and (C.3))

.D j�j2/.D2
j�j2/.r3`/ 7! �

8

3m
j�j2Vol.Sm�1/S�;

.D2
j�j2/.r2 j�j2/ 7!

4

3m
j�j2Vol.Sm�1/S�

.D j�j2/2 7!
4 j�j2

m
Vol.Sm�1/.g�1jx/; D2

j�j2 7! 2Vol.Sm�1/.g�1jx/;

to the b2 term in Proposition B.1. The result is summarized below.

Proposition C.7. Keep the notations as above. Assume that the lower order symbols
of the Laplacian is zero, that is p1 D p0 D 0. Along the fiber T �xM for some x 2M ,
the integral over the unit sphere

R
Sm�1

b2d�Sm�1 is equal to, up to an overall factor
Vol.Sm�1/:

4

m
2b30k

2.rk/b0.rk/b0 j�j
6 g�1 �

�
2C

4

m

�
b20k.rk/b0.rk/b0 j�j

4 g�1

C
4

m
b20k.rk/b

2
0k.rk/b0 j�j

6 g�1 � b20k.r
2k/b0 j�j

2 g�1

C
4

m
b30k

2.r2k/b0 j�j
4 g�1 C

1

m

2

3
b20k

2S�b0 j�j
2 ;

(C.12)
where m is the dimension of the manifold.

Remark. The contraction .r2k/g�1 D ��k is nothing but the Laplacian of the
conformal factor k.
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