J. Noncommut. Geom. 12 (2018), 577-636 Journal of Noncommutative Geometry
DOI 10.4171/JNCG/286 © European Mathematical Society

Brackets in representation algebras of Hopf algebras

Gwénaél Massuyeau and Vladimir Turaev
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Gerstenhaber bracket in Ap from a Fox pairing in A and a balanced biderivation in B. Our
construction is inspired by Van den Bergh’s non-commutative Poisson geometry, and may be
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spaces of representations of surface groups.

Mathematics Subject Classification (2010). 17B63, 16T0S.

Keywords. Poisson algebra, Hopf algebra, representation algebra, Gerstenhaber algebra, quasi-
Poisson algebra, double Poisson algebra.

1. Introduction

Given bialgebras A and B, we introduce a commutative representation algebra Ap
which encapsulates B-representations of A (defined in the paper). For example, if A is
the group algebra of a group I" and B is the coordinate algebra of a group scheme §,
then Ap is the coordinate algebra of the affine scheme C + Homg, (T, §(C)),
where C runs over all commutative algebras. Another example: if A4 is the enveloping
algebra of a Lie algebra p and B is the coordinate algebra of a group scheme
with Lie algebra g, then Ap is the coordinate algebra of the affine scheme C +—
Homg(p, g ® C).

The goal of this paper is to introduce an algebraic method producing Poisson
brackets in the representation algebra Ap. We focus on the case where A4 is a
cocommutative Hopf algebra and B is a commutative Hopf algebra as in the examples
above. We assume A to be endowed with a bilinear pairing p: A x A — A whichis an
antisymmetric Fox pairing in the sense of [10]. We introduce a notion of a balanced
biderivation in B, which is a symmetric bilinear form o: B x B — K satisfying certain
conditions. Starting from such p and e, we construct an antisymmetric bracket in A p
satisfying the Leibniz rules. Under further assumptions on p and e, this bracket
satisfies the Jacobi identity, i.e. is a Poisson bracket.
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Our approach is inspired by Van den Bergh’s [15] Poisson geometry in non-
commutative algebras, see also [7]. Instead of double brackets and general linear
groups as in [15], we work with Fox pairings and arbitrary group schemes. Our
construction of brackets yields as special cases the Poisson structures on moduli
spaces of representations of surface groups introduced by Atiyah—Bott [3] and studied
by Goldman [5,6]. Our construction also yields the quasi-Poisson refinements of
those structures due to Alekseev, Kosmann-Schwarzbach and Meinrenken, see [1,9,
10,12].

Most of our work applies in the more general setting of graded Hopf algebras. The
corresponding representation algebras are also graded, and we obtain Gerstenhaber
brackets rather than Poisson brackets. This generalization combined with [11] yields
analogues of the Atiyah—Bott—Goldman brackets for manifolds of all dimensions > 3.

The paper consists of 12 sections and 3 appendices. We first recall the language
of graded algebras/coalgebras and related notions (Section 2), and we discuss the
representation algebras (Section 3). Then we introduce Fox pairings (Section 4) and
balanced biderivations (Section 5). We use them to define brackets in representation
algebras in Section 6. In Section 7 we show how to obtain balanced biderivations from
trace-like elements in a Hopf algebra B and, in this case, we prove the equivariance
of our bracket on the representation algebra Ap with respect to a natural coaction
of B. In Section 8, we discuss examples of trace-like elements arising from classical
matrix groups. The Jacobi identity for our brackets is discussed in Section 9, which
constitutes the technical core of the paper. In Section 10 we study quasi-Poisson
brackets. In Section 11 we compute the bracket for certain B-invariant elements
of Ap. In Section 12 we discuss the intersection Fox pairings of surfaces and the
induced Poisson and quasi-Poisson brackets on moduli spaces. In Appendix A, we
recall the basics of the theory of group schemes needed in the paper. In Appendix B
we discuss relations to Van den Bergh’s theory. In Appendix C we discuss the case
where B is a free commutative Hopf algebra.

Throughout the paper we fix a commutative ring K which serves as the ground
ring of all modules, (co)algebras, bialgebras, and Hopf algebras. In particular, by a
module we mean a module over K. For modules X and Y, we denote by Hom(X, Y)
the module of K-linear maps X — Y and we write X ® Y for X ®k Y. The dual
of a module X is the module X* = Hom(X, K).

2. Preliminaries

We review the graded versions of the notions of a module, an algebra, a coalgebra, a
bialgebra, and a Hopf algebra. We also recall the convolution algebras and various
notions related to comodules.
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2.1. Graded modules. By a graded module we mean a Z-graded module X =
®pez X?. An element x of X is homogeneous if x € X? for some p; we call p
the degree of x and write |x| = p. For any integer n, the n-degree |x|, of a
homogeneous element x € X is defined by |x|, = |x| + n. The zero element 0 € X
is homogeneous and, by definition, |0| and |0|,, are arbitrary integers.

Given graded modules X and Y, a graded linear map X — Y is a linear map
X — Y carrying X? to Y? for all p € Z. The tensor product X ® Y is a graded
module in the usual way:

X®Y:€B @ X*“QVYY.

pPEZ u,veZ
utv=p

We will identify modules without grading with graded modules concentrated in
degree 0. We call such modules ungraded. Similar terminology will be applied to
algebras, coalgebras, bialgebras, and Hopf algebras.

2.2. Graded algebras. A graded algebra A = @ pcz A? is a graded module en-
dowed with an associative bilinear multiplication having a two-sided unit 14 € A°
such that A? A9 C AP™4 for all p,q € 7Z. For graded algebras A and B, a graded
algebra homomorphism A — B is a graded linear map from A to B which is
multiplicative and sends 14 to 1. The tensor product A ® B of graded algebras A
and B is the graded algebra with underlying graded module A ® B and multiplication

x®b)(y®c)= ()P xy be (2.1)

for any homogeneous x,y € A and b, ¢ € B.
A graded algebra A is commutative if for any homogeneous x, y € A, we have

xy = (=Dl (2.2)

Every graded algebra A determines a commutative graded algebra Com(A) obtained
as the quotient of A by the 2-sided ideal generated by the expressions x y—(—1)*II?1y x
where x, y run over all homogeneous elements of A.

2.3. Graded coalgebras. A graded coalgebra is a graded module A endowed with
graded linear maps A = A4:A - A® Aand ¢ = €4: A — K such that A is a
coassociative comultiplication with counit ¢, i.e.

(A ®idg)A = (idy ®A)A and (id4®e)A =idy = (e ® idy)A.  (2.3)

The graded condition on & means that (A4?) = 0 for all p # 0. The image of any
x € Aunder A expands (non-uniquely) as a sum ) ; x; ® x; where the index i runs
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over a finite set and xlf , xlf’ are homogeneous elements of A. If x is homogeneous,
then we always assume that for all i,

|xil + 1xi'] = Ix[. 2.4)

We use Sweedler’s notation, i.e. drop the index and the summation sign in the formula
A(x) =) ; x; ® x/ and write simply A(x) = x’ ® x”. In this notation, the second
of the equalities (2.3) may be rewritten as the identity

e(x)x" = e(x")x' = x (2.5)

for all x € A. We will sometimes write x(! for x’ and x® for x”, and we will
similarly expand the iterated comultiplications of x € A. For example, the first of
the equalities (2.3) is written in this notation as

X! ® X" ® X" = x(l) ® x(z) ® x(3) — (x/)/ ® (x/)// ® X" =5 ® (x//)/ ® (x//)//.
A graded coalgebra A is cocommutative if for any x € A,

XY @x" =)y e X (2.6)

2.4. Graded bialgebras and Hopf algebras. A graded bialgebra is a graded alg-
ebra A endowed with graded algebra homomorphisms A = A4: 4 - A ® A and
e = ¢e4: A — K such that (A4, A, ¢) is a graded coalgebra. The multiplicativity of A
implies that for any x, y € A, we have

(xy) ® (xy)" = (=P y @ x"y". 2.7

A graded bialgebra A is a graded Hopf algebra if there is a graded linear map
s = s54: A — A, called the antipode, such that

s(xXx" = x's(x") = eq(x)14 (2.8)

forallx € A. Suchan s is an antiendomorphism of the underlying graded algebra of A
in the sense that s(14) = 14 and s(xy) = (=1)*IPs(y)s(x) for all homogeneous
x,y € A. Also, s is an antiendomorphism of the underlying graded coalgebra of A
in the sense that 645 = ¢4 and forall x € A,

(5(x)) ® (s(x))” = (=1)}¥lIx

These properties of s are verified, for instance, in [11, Lemma 2.3.1].

//|

s(x") ® s(x"). (2.9)

2.5. Convolution algebras. For a graded coalgebra B, a graded algebra C, and an
integer p, we let (Hp(C))? be the module of all linear maps f: B — C such that
f(B¥) c Ck*+P for all k € Z. The internal direct sum

H = Hp(C) = €P (Hp(C))” C Hom(B.C)
DPEZ
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is a graded module. It carries the following convolution multiplication x: for f, g€ H,
the map f * g: B — C is defined by (f * g)(b) = f(b') g(b”) for any b € B.
Clearly, H? * HY C H?%4 for any p,q € 7. Hence, the convolution multiplication
turns H into a graded algebra with unit 3 - 1¢ € H°. The map C — Hp(C)
obviously extends to an endofunctor Hp of the category of graded algebras.

For C = K, the convolution algebra Hp(C) is the dual graded algebra B* of B
consisting of all linear maps f: B — K such that f(B?) = 0 for all but a finite
number of p € Z. By definition, (B*)? = Hom(B~?,K) forall p € Z.

As an application of the convolution multiplication, note that the formulas (2.8)
say that the antipode s: A — A in a graded Hopf algebra A is both a left and a right
inverse of id4 in the algebra H 4(A). As a consequence, s is unique.

2.6. Comodules. Given a graded coalgebra B, a (right) B-comodule is a graded
module M endowed with a graded linear map Ap: M — M ® B such that

(idy ®AB)AM = (Ay ®idp)Ay, (idy Qep)Ay =idy . (2.10)

Form € M, we write Aps(m) = mt®@m’ € M ® B as in Sweedler’s notation (with
"and ” replaced by £ and r, respectively).

An element m € M is B-invariant if Aps(m) = m ® 1p. Given B-comodules
M and N, we say that a bilinear map g: M x M — N is B-equivariant if for
any mij,my € M,

q(my.m3) @ my = q(my.m2)" ® q(mi.mz)"sg(my) €N ®B.  (2.11)
For N =K with Ay(n) =n ® 1p forall n € N, the formula (2.11) simplifies to
q(ml,mg) my = q(mf,mz) sp(m}) € B. (2.12)

A bilinear form g: M x M — K satisfying (2.12) is said to be B-invariant.

3. Representation algebras

We introduce representation algebras of graded bialgebras.

3.1. The algebras Ap and Ag. Let A and B be graded bialgebras. We define a
graded algebra Ap by generators and relations. The generators are the symbols x
where x runs over A and b runs over B, and the relations are as follows:

(i) The bilinearity relations. For allk € K, x,y € A,and b,c € B,

(kx)p = xkp =k xp, (X +Y)p =Xp + Vb, Xpye = Xp + X¢; (3.1
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(ii) The first multiplicativity relations. For all x,y € Aand b € B,

(XY)p = Xpr ypr; (3.2)
(iii) The first unitality relations. For all b € B,

(1a)p = €p(b) 1;
(iv) The second multiplicativity relations. For all x € A and b, c € B,

Xpe = Xp X, (3.3)

(v) The second unitality relations. For all x € A,

X1z =¢€a(x) 1.

Here, on the right-hand side of the relations (iii) and (v), the symbol 1 stands for the
identity element of A g. The grading in Ap is defined by the rule |x;| = |x| + |b| for
all homogeneous x € A and b € B. The definition of Ap is symmetric in A and B:
there is a graded algebra isomorphism Ap ~ By defined by xp > by for x € A,
b € B. Clearly, the construction of Ap is functorial with respect to graded bialgebra
homomorphisms of A and B.

The commutative quotient Ap = Com(/f B) of A B is called the B-representation
algebra of A. 1Tt has the same generators and relations as A p with additional
commutativity relations

xp ye = (=D)PFelPel y (3.4)

for all homogeneous x,y € A and b,c € B.

To state the universal properties of the algebras Ap and Ag, we need the following
definition. A B-representation of A with coefficients in a graded algebra C is a graded
algebra homomorphism u: A — Hp(C) C Hom(B, C) such that for all x € A and
b,c € B,

u(x)(1g) = ea(x)lc and u(x)(be) = u(x)(b) - u(x")(c).  (3.5)

Let ﬁ(C ) be the set of all B-representations of A with coefficients in C. For any
graded algebra homomorphism f:C — C’, let R(f): R(C) — R(C’) be the map
that carries a homomorphism u: A — Hp(C) asabove to Hp(f)ou: A — Hg(C).
This defines a functor R = ng: gA — Sei from the category of graded algebras
and graded algebra homomorphisms g« to the category of sets and maps Sez. The
restriction of R to the full subcategory cg+ of g+ consisting of graded commutative
algebras is denoted by R = Rg.
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Lemma 3.1. For any graded algebra C, there is a natural bijection
R(C) => Homy 4 (A5.C). (3.6)

Consequently, for any commutative graded algebra C, there is a natural bijection
R(C) => Homgga(Ap.C). 3.7)

Proof. Consider the map ﬁ(C ) — Homg 4(Ag, C) which carries a graded algebra
homomorphism u: A — Hpg(C) satisfying (3.5) to the graded algebra homomorph-
ism v = v,: Ag — C defined on the generators by the rule v(xp) = u(x)(b). We
must check the compatibility of v with the defining relations (i)—(v) of A B. The
compatibility with the relations (i) follows from the linearity of u. The compatibility
with the relations (ii) is verified as follows: for x,y € A and b € B,

v((xy)p) = u(xy)(b)
= (u(x) * u(y))(d)
= u(x)(B)u(y)(d") = v(xp) v(ypr) = v(xp ypr).

The compatibility with the relations (iii) is verified as follows: for b € B,

v((14)p) = u(14)(b) = ep(b)1c = v(ep(b)1).

The compatibility with (iv) and (v) is a direct consequence of (3.5): for x € A,
U(X(lB) — gA(x)l) = v(X(lB)) — v(gA(x)l) =ux)(lp) —eq(x)1c =0
and, for b, ¢ € B,
V(xpe — Xpxg) = v(xpe) — v(x) - v(x) = u(x)(be) —u(x)(b) - u(x")(c) = 0.

Next, we define a map Hom, ,A,(/T 5, C)— ﬁ(C ) carrying a graded algebra homo-
morphism v: Ap — C to the graded linear map u = u,: A — Hp(C) defined by
u(x)(b) = v(xp) forall x € A and b € B. The map u is multiplicative:

(u(x) * u(3))(b) = u(x)@") u(y)(d")
= v(xp) v(ypr) = v(xpypr) = v((xy)p) = u(xy)(b)
for any x,y € A and b € B. Also, u carries 1 4 to the map
B—C,b+— v((lA)b) = v(eB(b)l) =¢ep(b)lc,

which is the unit of the algebra Hp(C). Thus, u is a graded algebra homomorphism.
It is straightforward to verify that u satisfies (3.5),i.e. u € R(C).

Clearly, the maps u — v, and v — u, are mutually inverse. The first of them is
the required bijection (3.6). The naturality is obvious from the definitions. O
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If both A and B are ungraded (i.e. are concentrated in degree 0), then A gand Ap
are ungraded algebras and, by Lemma 3.1, the restriction of the functor J%g to
the category of commutative ungraded algebras is an affine scheme with coordinate
algebra Ap.

3.2. The case of Hopf algebras. If A and/or B are Hopf algebras, then we can say
a little more about the graded algebras Ap and Ap. We begin with the following
lemma.

Lemma 3.2. If A and B are graded Hopf algAebras with antipodes s4 and sp,
respectively, then the following identity holds in Ag: forany x € Aand b € B,
(s4(x)), = Xsp)- (3.8)

Consequently, the same identity holds in Ap.
Proof. We claim that for any graded algebra C and any x € 4, u € ﬁg (),
u(s4(x)) = u(x)osg: B — C. (3.9)
The proof of this claim is modeled on the standard proof of the fact that a bialgebra
homomorphism of Hopf algebras commutes with the antipodes. Namely, let
U = Hy(Hp(C)) C Hom (4, Hg(C))

be the convolution algebra associated to the underlying graded coalgebra of A and
the graded algebra Hp(C). We denote the convolution multiplication in U by *
(not to be confused with the multiplication % in Hp(C)). For u € {Rg(C ), set
ut =usq: A — Hp(C) andletu : A — Hp(C) be the map carrying any x € A
tou(x)sg: B — C. Observe that u, u™,u~ belong to U. For all x € A, we have
ut xu)(x) = ut(x) *ux")

=u(sa(x)) xu(x")

=u(s4(x)x") = u(ea(x) 14) = e4(x) 1gzc) = lu(x),
where the third and the fifth equalities hold because u: A — Hpg(C) is an algebra
homomorphism. Hence ut xu = ly. Also, forx € Aand b € B, we have

(uxu™)(x) (D) = (u(x") % u™(x"))(b)
= u(x)()u” (x") (")
= u(x) (D) u(x")(sp(b"))
= u(x) (b’sB (b"))
= u(x)(er(b)1p)
=ep(b)ea(x)lc
= e4(x) Lagc)(0) = lu(x)(b),

where the fourth and the sixth equalities follow from (3.5). Hence, u x u~ = 1y.
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Using the associativity of x, we conclude that

+ +

uT=ut xly =u*

xuxu =lypru =u .

This proves the claim above. As a consequence, for any x € A, b € B and any
graded algebra homomorphism v from Ap to a graded algebra C, we have

v((s4(0))y =Xsp 1) = v((54(0))y) =V (¥s507) = (u(s4(x)) —2(x)os8)(b) =0,

where ¥ = u,: A — Hp(C) is the graded algebra homomorphism corresponding
tov via(3.6). Taking C = Ap andv = id, we obtain that (s 4(x))p—Xs, ) = 0. O

Given an ungraded bialgebra B, a (right) B-coaction on a graded algebra M
is a graded algebra homomorphism A = Apy:M — M ® B satisfying (2.10),
i.e. turning M into a (right) B-comodule.

Lemma 3.3. Let A be a graded bialgebra and B be an ungraded commutative Hopf
algebra. The graded algebra A B has a unique B-coaction A: A B — A B ® B such
that

A(xp) = xpr @ sg(b)b"  forany x € A, b € B. (3.10)

Consequently, the graded algebra Ap = Com(/f B) has a unique B-coaction
satisfying (3.10).

Proof. Wefirst prove that (3.10) defines an algebra homomorphism A: A B— A BRB.
The compatibility with the bilinearity relations in the definition of Ap is obvious.
We check the compatibility with the first multiplicativity relations: for x, y € A and
b e B,

Alxp) Aypr) = (xp ® sp(0)DP) (yye ® s5(0)D©)
= Xp@) V(5 ®sB(b(l))b(3)sB(b(4))b(6)
= xp@Yp» ® sg(B)DW = (xy)pr @ s5(0)D" = A((xy)s).
The compatibility with the first unitality relations: for b € B,
A((1a)p) = (1a)p @ sp(0)D" = ep(b")1 Q sp(b")b"”

— 1 ®sp(b)b"
=epb)1®1p = A(SB(b)l).

The compatibility with the second multiplicativity relations: for x € A and b, c € B,

A(xp) A(x)) = (xp, @ s(0)b") (x) @ sp(c)e™)
= XZ//XZ// ® SB (b/)b///SB (C/)CW
— Xb//c// ® SB (C’)SB (b/)b///cl// — Xb//c'/ ® SB (blcl)blllclll — A(Xbc),
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where in the third equality we use the commutativity of B. Finally, the compatibility
with the second unitality relations: for any x € 4,

A(xap) =Xz ® 1p =c4(x)1 ® 1 = A(ea(x)1).

We now verify (2.10). Since A and A g are algebra homomorphisms, it is enough
to check (2.10) on the generators. Forany x € Aand b € B,

(ing ®AB)A(xp) = xpr @ Ag(sp(b')b")
= xp» ® Ap(sp(b)))Ap(b")
= xp» ® s3(bP)b® @ sp(b V) b
= A(xpr) ® sp(b")b" = (A ® idp) A(xp)
and
(idg, ®ep)A(xp) = ep(sp(b)b")xpr = ep(b") ep (") xpr = ep(b)xpr = xp.

The last claim of the lemma follows from the fact that any B-coaction on a graded
algebra M induces a B-coaction on the commutative graded algebra Com(M). [

3.3. Example: from monoids to representation algebras. Given a monoid G, we
let KG be the module freely generated by the set G. Multiplications in K and G
induce a bilinear multiplication in KG and turn KG into an ungraded bialgebra
with comultiplication carrying each g € G to g ® g and with counit carrying
all g € G to 1. If G is finite, then we can consider the dual ungraded bialgebra
B = (KG)* = Hom(KG,K) with basis {§;}gec dual to the basis G of KG.
Multiplication in B is computed by 55, = 8, forall g € G and 846;, = 0 for distinct
g,h € G. Comultiplication in B carries each §g 10 } ), e pj=g 6n ® &;. The unit
of Bis ), 8¢ and the counit is the evaluation on the neutral element of G.
Consider now a monoid I" with neutral element n and a finite monoid G with
neutral element n. Consider the ungraded bialgebras A = KI" and B = (KG)*.
By definition, the representation algebra Ap is the ungraded commutative algebra
generated by the symbols x; = x(s,) forall x € I', g € G, subject to the relations

1, .f = )
g = CET ) = > wy; forallx,y €T, g€,
0, ifg#n, h,j€G,

hj=g
and
xg, ifg=h,

forallx eI, g,h € G.
0, if g # h,

Identifying the algebra Hp(K) = B* with KG in the natural way, we identify the
set Rg(K) with the set of multiplicative homomorphisms I' — KG whose image
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consists of elements )", . kg € KG such that k7 = kg forall g € G, kgk, =0
for distinct g, € G, and deG kg = 1. If K has no zero-divisors, then this is just
the set of monoid homomorphisms I' — G. Then the formula (3.7) gives a bijection

Hom o (T, G) —> Hom,4(Ap, K), (3.11)

where Mon is the category of monoids and monoid homomorphisms and c is
the category of commutative ungraded algebras and algebra homomorphisms. This
computes the set Hom y, (', G) from Ap.

This example can be generalized in terms of monoid schemes (recalled in
Appendix A.2). Let A = KI' be the bialgebra associated with a monoid I"' and
let now B = K[¥] be the coordinate algebra of a monoid scheme §; both A
and B are ungraded bialgebras. We claim that, for any ungraded commutative
algebra C, there is a natural bijection of the set eﬂg(C ) onto the set of monoid
homomorphisms Hom g, (I, (C)). Indeed, given an algebra homomorphism
u: A — Hp(C), the condition (3.5) holds for all x € A if and only if it holds for
allx € I' C A. For x € I, the condition (3.5) means that u(x): B — C is an algebra
homomorphism, i.e. u(x) € §(C) C Hp(C). Then the map u|p:I' — &(C) is
a monoid homomorphism. This implies our claim. This claim and Lemma 3.1
show that the functor C +— Hom ¢, (I, §(C)) is an affine scheme with coordinate
algebra (KT")k[g;.

For instance, if I" is the monoid freely generated by a single element x, then for
any monoid scheme ¥, the functor Hom s, (I', § (—)) is naturally isomorphic to §.
On the level of coordinate algebras, this corresponds to the algebra isomorphism

(KT)k[g] —> K[8]. xp —> b.

If ¢ is a group scheme, then B = K[§] is a Hopf algebra and this isomorphism
transports the B-coaction (3.10) into the usual (right) adjoint coaction of B on itself
defined by

B—B®B, br—b"®sp)b". (3.12)

3.4. Example: from Lie algebras to representation algebras. Let A = U(p) be
the enveloping algebra of a Lie algebra p, and let B = K[§] be the coordinate algebra
of an infinitesimally-flat group scheme ¥ with Lie algebra g. (See Appendix A for
the terminology.) Both A and B are ungraded Hopf algebras. We claim that, for any
ungraded commutative algebra C, there is a natural bijection of the set ﬁg (C) onto
the set of Lie algebra homomorphisms Homg,,(p, g ® C). Indeed, given an algebra
homomorphism u: A — Hp(C), the condition (3.5) holds for all x € A if and only
if it holds for all x € p C A. For x € p, the condition (3.5) means that u(x): B — C
is a derivation with respect to the structure of B-module in C induced by the counit
of B. By (A.11), this is equivalent to the inclusion u(x) € g ® C. Then the map
ulp:p — g ® C is a Lie algebra homomorphism. This implies our claim. This claim
and Lemma 3.1 show that the functor C — Homg,;,(p, g ® C) is an affine scheme
with coordinate algebra (U(p))k[g]-
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4. Fox pairings
We recall the theory of Fox pairings from [10].

4.1. Fox pairings and transposition. Let A be a graded Hopf algebra with counit
& = ¢4 and invertible antipode s = s4. Following [10], a Fox pairing of degree
n € Z in A is a bilinear map p: A x A — A such that p(4?, A7) C APT4T" for
all p,q € Z and

p(x,yz) = p(x,y)z + &(y)p(x, 2), (4.1)
p(xy,2) = p(x,2) e(y) + xp(y, z) (4.2)
for any x, y,z € A. These conditions imply that p(14, A) = p(4,14) = 0.

The transpose of a Fox pairing p: A x A — A of degree n is the bilinear map
p: A x A — A defined by

px, y) = (=D)F¥l g™ p(5(y), 5 (x)) 4.3)

for any homogeneous x, y € A.

Lemma 4.1. The transpose of a Fox pairing of degree n is a Fox pairing of degree n.

Proof. Let p be a Fox pairing of degree n in A. For any homogeneous x, y,z € A,

plxy,z) = (=)l p(s(2), s(xy))

— (—l)lxyln|Z|”+|x”y|s_1p(s(z),s(y)s(x))

= (=PRI T (o (s (2), 5(0)s () + e(s(9)) p(5(2). 5(2)))

= (=)Wl s o(s(2), 5 (1) + (=D e(y) 571 p(s(2), 5(x))

= xp(y,2) + p(x,z) e(y).
This verifies (4.2), and (4.1) is verified similarly. That p has degree n is obvious. [J

We say that a Fox pairing p in A is antisymmetric if p = —p. It is especially

easy to produce antisymmetric Fox pairings in the case of involutive A. Recall that
a graded Hopf algebra A is involutive if its antipode s = s4 is an involution. For
instance, all commutative graded Hopf algebras and all cocommutative graded Hopf

algebras are involutive. In this case, we have p = p for any Fox pairing p and, as a
consequence, the Fox pairing p — p is antisymmetric.

Lemma 4.2. Let p be a Fox pairing of degree n in a cocommutative graded Hopf
algebra A with antipode s = s 4 and counit ¢ = € 4. Then for any x,y € A, we have

p(s(x),s(y)) = s(x") p(x", y") s(y"). (4.4)

If p is antisymmetric, then so is the bilinear form ep: A x A — K.
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Proof. We have

s(x")x", y)

s(x"), ) e(x") + s(x")p(x", y)
s(x'e(x")), y) + s(x)p(x", y)
s(x),y) +s(x)p(x", y).

0= p(e(x)14,)

p(
o(
o(
p(

Therefore,
p(s(x),y) = =s(x)p(x", y). (4.5)

A similar computation shows that p(x,y) = —p(x,s(y"))y”. Replacing here y
by s(y) and using the involutivity of s and the cocommutativity of A, we obtain that

p(x,5(») = =D p(x, y)s(V) = —p(x, ¥)s (). (4.6)
The formulas (4.5) and (4.6) imply that

p(s(x).5(»)) = =s(x) p(x".5(»)) = s(x)p(x", y)s(y").

If we now assume that p = —p, then for any homogeneous x, y € A, we have
“.3)

ep(x.y) = —(=D P lep(s(y). s(x))
4.4

—(=DFPhe(y) ep(y”, ¥ e(x") = —(=1)HPlmep(y, x). O

4.2. Examples.

(1) Given a graded Hopf algebra A, any a € A" with n € Z gives rise to a Fox
pairing p, in A of degree n by

pa(x,y) = (x —ea(x) 14) a (y —e4(y) 14) 4.7)

forany x,y € A. If s4(a) = (—1)""'a, then p, is antisymmetric.

(2) Consider the tensor algebra

A=TX) =D x®”

p=0

of an ungraded module X, where the pth homogeneous summand X ®7 is the tensor
product of p copies of X. We provide A with the usual structure of a cocommutative
graded Hopf algebra, where A4(x) = x ® 1 + 1 ® x, e4(x) = 0,and s4(x) = —x
for all x € X = X®!. Each bilinear pairing *: X x X — X extends uniquely to a
Fox pairing p, of degree —1 in A such that p.(x,y) = x x y forall x,y € X. Itis
easy to see that p, is antisymmetric if and only if * is commutative.
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(3) Let M be a smooth oriented manifold of dimension d > 2 with non-empty
boundary. Suppose for simplicity that the ground ring K is a field and consider the
graded algebra H(2;K), where Q2 is the loop space of M based at a point of IM
and H(—;K) is the singular homology of a space with coefficients in K. Using
intersections of families of loops in M, we define in [11] a canonical operation
in H(€2;K) which is equivalent (see Appendix B.2) to an antisymmetric Fox pairing
of degree 2 —d in H(2; K). A parallel construction for surfaces is quite elementary;
it will be reviewed and discussed in Section 12.

5. Balanced biderivations

We introduce balanced biderivations in ungraded Hopf algebras.

5.1. Biderivations. Let B be an ungraded algebra endowed with an algebra
homomorphism ¢: B — K. A linear map u: B — K is a derivation if u(bc) =
e(b)u(c) + e(c)u(b) for all b,c € B. Clearly, u is a derivation if and only if
w(lp + I?) = 0, where 12 C B is the square of the ideal / = Ker(s) of B. A
bilinear form e: B x B — K is a biderivation if it is a derivation in each variable,
ie.

(bc)oed =e(b)ced +e(c)bed, (5.1)
be(cd)=¢c(c)bed +c(d)bec (5.2)

for any b,c,d € B. Clearly, e is a biderivation if and only if both its left and right
annihilators contain 13 + I2. Thus, there is a one-to-one correspondence

restriction

T

{biderivations in B} {bilinear forms in 7/12} (5.3)

\_/
pre-composition with p X p
where p: B — I/1? is the linear map defined by p(b) = b — &(b)1gmod I? for
any b € B.

For further use, we state a well-known method producing a presentation of the
module 7/1? by generators and relations from a presentation of the algebra B by
generators and relations. Suppose that B is generated by a set X C B and that R
is a set of defininig relations for B in these generators. Then the vectors {p(x)}xex
generate the module 7/72. Each relation r € R is a non-commutative polynomial
in the variables x € X with coefficients in K. Replacing every entry of x in r by
e(x) + p(x) for all x € X, and taking the linear part of the resulting polynomial,
we obtain a formal linear combination of the symbols {p(x)}rex representing zero
in 1/I2. Doing this for all r € R, we obtain a set of defining relations for the
module 7/1? in the generators {p(x)}rex.
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5.2. Balanced bilinear forms. Let B be an ungraded Hopf algebra with counit
& = ¢p and antipode s = sp. A bilinear form e: B x B — K is balanced if

(bec"ys(c")"” = (ced”)s(b")b (5.4)

for any b,c € B. Balanced forms are symmetric: to see it, apply & to both sides
of (5.4). The following lemma gives a useful reformulation of (5.4) for commut-
ative B.

Lemma 5.1. A bilinear form e: B x B — K in a commutative ungraded Hopf
algebra B is balanced if and only if for any b, ¢ € B,
(" ec"yb's(c") = (" ob')s(c")b". (5.5)

Proof. For any b,c € B, we have

(" ey b's(c") = (b@ o) e(b®)pWs(c")
= (b? o) s(d@P)bDpPBs(c")
(Sé‘)(c(z) e b)) s(cM)e®p"s(c@)
= (@ o 1) s(cM)e(c®)b” = (¢" o b')s(c')b".

Conversely,

(b ° C//)S(C/)cl// — (b/ ° C//)S(C/)S(b//)c///
— (b/ ° c//) s(c/)b//s(b///)c///

5.5)

p C/ ° b//) b/s(c//)s(b///)c///
— (C/ ° b//) bls(bl//)g(c//) — (C ° b//) b/S(b/N). D

We will mainly consider balanced biderivations in commutative ungraded Hopf
algebras. Examples of balanced biderivations will be given in Sections 7 and 8.

5.3. Remarks. Let B be an ungraded Hopf algebra.
(1) If B is cocommutative, then all symmetric bilinear forms in B are balanced.

(2) Assume that B is commutative. It follows from the definitions that a symmetric
bilinear form in B is balanced if and only if it is B-invariant with respect to the adjoint
coaction (3.12) of B. This is equivalent to the invariance under the conjugation action
of the group scheme associated with B, see Appendices A.3—-A.4.

6. Brackets in representation algebras

In this section, we construct brackets in representation algebras.
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6.1. Brackets. Letn € Z. An n-graded bracket in a graded algebra A is a bilinear
map {—,—}: A x A — A such that {A?, A9} C APT4*" for all p,q € 7 and the
following n-graded Leibniz rules are met for all homogeneous x, y,z € A:

(x,yzy ={x,yyz + (=D)FPly fx 2y, 6.1)
(xy.zh=x{y.z} + (=D {x 2}y, (6.2)

An n-graded bracket {—, —} in A is antisymmetric if for all homogeneous x, y € A,

{x,y} = —(=D)Xhlln 6y xy (6.3)

For an antisymmetric bracket, the identities (6.1) and (6.2) are equivalent to each
other.

Given an n-graded bracket {—, —} in a graded algebra A, the Jacobi identity says
that

(=Dl ey 2+ DRIy z g+ ()P E 2y =0
(6.4)
for all homogeneous x, y,z € A. An antisymmetric n-graded bracket satisfying the
Jacobi identity is called a Gerstenhaber bracket of degree n. Gerstenhaber brackets
of degree 0 in ungraded algebras are called Poisson brackets.

6.2. The main construction. We formulate our main construction which, under
certain assumptions on Hopf algebras A and B, produces a bracket in Ap from an
antisymmetric Fox pairing in A and a balanced biderivation in B.

Theorem 6.1. Let p be an antisymmetric Fox pairing of degree n € 7 in a
cocommutative graded Hopf algebra A. Let o be a balanced biderivation in a
commutative ungraded Hopf algebra B. Then there is a unique n-graded bracket
{—,—} in Ap such that

(X, Yoy = (=DF (" 0 b@) p(x', ') L b Xy Y (6.5)
forall x,y € Aand b,c € B. This n-graded bracket is antisymmetric.

Proof. Observe first that the condition (5.4) allows us to rewrite the formula (6.5) in
the following equivalent form

(xpye) = (DXl (p 0 ¢ D) p(x, y) ey e Xpn Yty (6.6)

Every graded module X determines a graded tensor algebra 7'(X) = Py¢ X ®k
with the grading

X1 @ X2 ® -+ @ xg| = |x1] + |x2] + -+ + ||
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for any k > 0 and any homogeneous x1, ..., x; € X. Applying this construction to
X = A® B, we obtain a graded algebra T = T(A ® B). Forany x € Aand b € B,
wesetxp = x®b € X CT. Let ;: T — Ap be the projection carrying each
such xp to the corresponding generator xj of Apg. It follows from the definition of T
that the formula (6.5) defines uniquely a bilinear map {—,—}:7 x T — Ap such
that for all homogeneous «, B8,y € T,

{o, By} = {a, By w(y) + (=D Bl 2 (B) {a, y}, 6.7)
{aB.y} = n(@){B.y} + (=) fa 3 2 (B). (6.8)

It is clear from the definitions that {T'?, T4} C A" for any p,q € Z.
We check now that for any homogeneous o, § € T,

(B.a} = —(=1)lelnlbln (g g1

In view of the Leibniz rules (6.7) and (6.8), it suffices to verify this equality for the
generators @ = xp and § = y. with homogeneous x,y € A and b,c € B. In this
computation and in the rest of the proof, we denote the (involutive) antipodes in 4
and B by the same letter s; this should not lead to a confusion. We have

(6.5) AT
(Yo, xp} = (_1)|y 11/ (b" 6(2)) o(y, x/)s(c(3))c(1) yé/(4) XZ/

(4,3) 7" ’ ’ ’

= —(_1)|y 1/ 1n 41y |n1x|n (b// ° C(2)) (SP(S(XI),S(y/)))s(c(s))c(l) y;/(‘” xg/
(3.3 ’

= —(_1)|J’|n|x |n (b// ° C(Z)) (P(S(X/),S(y/)))s(cm)c(s) yé/(4) ng

(4,4) aw
= _(_1)|J’|n|x x"|n (b C(Z)) (s(x/)p(x”, y/)s(y”))s(c(l))cG) y;/(/‘” xg//

(2.9),=(3‘2_) (_l)lylnlx/x”ln (b// ° C(4))

A V4 A V4 " "
5(X) 5(c®)e® P(X", ¥ ) 5(c@)e@ S (V) sy Vos) Xpy

38 _ (_1)|y|nIX’X”In (" o c™®)
x;(C‘S))cG)'O(xN’ y/)S(C‘Z))c(é) y;/(c(7))c(1) yé’(& Xpr

33 _ (_1)|y|nIX’X”In (" o c™®)
x;(6<5))c<3)P(x”’ y/)s(c(z))c(é) y;/(cm)c(l)C(s) xg,’

(2.8) i 4
= _(_1)|YIn|x x"|n (b ol )) x;(c(S))c(,%)p(x”, yl)s(c(z))c(é) )’;/(1) x}/)///

26 _ (— )Pl It 7 1 g o (4))

" / / 14 n
xs(c(5>)c(3):0(x Y )s(e@)e® Vo) Xpy

2.2) ’
= _(_1)|YIn|x In (b" C(4)) p(x/’y/)s(c@))c(é) y(/:/(l) x;/(c(S))CG) XZ:

(33) I
= _(_l)lylnlx | (b" e 0(4)) p(x’, y/)s(c(z))c(é) ysm x;/(c(s))ce)b/
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G4 nlx’|n
= —(—l)lyl ol (C(3) i b(a)) p(x’, y/)s(c(z))c(‘” yé/m x;/(b(2>)b(4)b(l)

(2.8) ,
= (=)Wl 0 ) p(x, ) sene@ Vi, Xy

2.2 ’ aTeNZ

2 ()b 0 D) (a3 e X ¥

6.6
©6) _(_1)|x|n|J’|n {Xp. Vel
where at the end we use the congruence
[y 1nX 10 + X"1y"| = |x]aly]n + [x"]]y’]n mod 2.

The antisymmetry of the pairing {—, —}:T x T — Ap implies that its left and
right annihilators are equal. We show now that the annihilator contains Ker 7r. This
will imply that the pairing {—, —} descends to a bracket in Ap satisfying all the
requirements of the theorem. We need only to verify that the defining relations of A p
annihilate {—, —}. For any homogeneous x,y € A and b,c,d € B, we have

6.5) AT
(Xp.yeat = (DI ((cd)” o BP) p(x'. ) 533150 Xpiy Vieay

() d" 0 5P p(x, ) gp@np) Xpew Yivar
(=D W ne(c”)(d” o b@) p(x', ¥')sp@yp 1 X gy Yir V1
+ (=D ne (@) (" 0 b@) p(x', ¥) s p@yp 1 Xpiay Voo VL
(=D (3" 0 BP) p(x’, 3)gp31y5) Xpiar Vi Vi
+ (=D (e 0 5P p(x', ) gp3rpeH Xpeay Y VY

(DI 0 b p, ) sp@npn Xy 7 Vi
+ {xp. yo} v5

(5.1),(3.3)

(3.1),(2.5)

(2.6), (6.5)

3.4 "y’
G4 (_1)\x 1 |n (d" b(2)) o(x, y/)s(b(3))b(l) x[/)/(4) y:i// yé//
+ {xp. ¥} va
6.5) ’ " / "
= {xb’yd}yc+{xb’yc}yd
2.6),3.4)

(=D Tyl L v+ {x. 00 vy
RN A
For any homogeneous x, y,z € A and b, c € B, we have
(6.5)

{0))pze} = (DI (" 0 @) p((xp)', 2') s gy K9y 2

2.7) AT TG
= (_l)lx Y2 n+1x" ||y |(C// o b(Z)) p(x,yl,zl)s(bﬁ))b(l) (xl’y")bm) Z;//
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4.2) awaT ATV,
= (_l)lx Yz ln+1x"1ly ‘(C//ob(z))(x’p(y/, Z/))s(b<3))b(1) (x//y”)b<4)zg/

+ (_1)|x”y”||2’|n+|x”|\y/\(c” o H @)
e(Y)p(x'. 25y (XY ) p@ 2y
(3.2),=(2.5)(_l)lx//y//llzrln+|x//||y/|(C// o b(?’))

!/ / !/ " " "
Xs(b<s))b(1)/0(y 2 )s(b(4>)b(2> Xp©) Yp ) Z¢r
+ (_1)\x ylz’ln (" e b(2)) o(x, Z/)s(b(3))b(1) (x//y)b(4) ZZ/
(3.4),(3.2) i 3
= (—1)|y 127l (c" o b )) x;(b(S))b(nxll,/(s)P(y,v Z/)s(b(4))b(2) yll,/w) Zg’
+ (_l)lx Y12’ 1n (" » b(Z)) o(x', Z/)s(b(3))b(1) xl/)/(4) Yy 2l

3.3),(3.4) 2T
= (_])ly [z’ |n (C” o b(3)) xs(b(5))b(1)b(6),0(y/’ Z/)s(b(4>)b(2) y[/;/(7) ZZ,//

” /7
+ (_l)lx Nz'ln+1y1lzln ("o b(2)) p(x/9z/)s(b<3))b(l) XZ<4> Zé// Vp(s

@8),
2.5, (6.5) s
= (=P (¢ 0 b)) xyn p(3 2 ) spnp@ Viis) Za

+ (1P i, 2}y

(6.5)
= xp b zeh + (=DPIE L z0) ypn

6.8
w0 {Xp Yo, ze}

Forany y € A and b, ¢ € B, the equality p(1 4, y) = 0 implies that {(14)p, y.} = 0.
The Leibniz rule (6.7) implies that {17, y.} = 0. Hence,

{0)e —epB)Ir, ye} = {(1a)p, ye} — (D) {11,y =0—-0=0.

The formula (5.1) implies that 15 ®« B = 0. Hence, forany x,y € A andc € B,
{X(IB) —sA(x)IT,yC} = {X(IB),yc} —eq(){l7, .} =0—-0=0.

Finally, the Leibniz rule (6.7) easily implies that {T, By — (—=D)Bllvlyp } = 0 for
any homogeneous 8,y € T. This concludes the proof of the claim that all defining
relations of A g annihilate {—, —} and concludes the proof of the theorem. O

6.3. A special case. The bracket constructed in Theorem 6.1 may not satisfy the
Jacobi identity. We will formulate further conditions on our data guaranteeing the
Jacobi identity. The next theorem is the simplest result in this direction.

Theorem 6.2. [f, under the conditions of Theorem 6.1, B is cocommutative, then the
bracket constructed in that theorem is Gerstenhaber of degree n.
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Proof. For any homogeneous x, y € A and any b, ¢ € B, we have

(6.5) VAT
(xp,ye} = (=Dl 0 bP) p(x', y')  pnpH) Xpwy VL

— (_l)lx/’||y/|n ("o b(Z)) o(x’, y/)sB(b(3))b(4) xl/,/(l) yé//
— (_1)|x 1Y/ |n (C// .b//) ,O(X/’y/)lg ng yé//
_ (_l)lx//lly/ln (C// ° b//) SAP(X/, y/) xg/ y(,;,/
— (_l)lx//||x/\(c// ° b//) SAP(X/, y/) x;}// yé//
= (" 0 b") eap(x". ) Xpy VU
Here, in the second equality we use the cocommutativity of B, in the penultimate
equality we use thatif e 4 p(x’, y’) # 0, then |x’| = —|y’|n, and in the last equality, we
use the graded cocommutativity of A. Therefore, for any homogeneous x, y,z € A
and any b,c,d € B,
(_l)lyInIZIn {za. {xp, ye}} = (_1)\y|n|z|n (c” .b//) 8Ap(x”,y’) {Zd»xll,/yé//}
= (_1)\yx’|n|2|n (C” o b//) SA/O(XN,y/) x[/)/ {Zd, y(/://}
+ (_1)\y|n|2|n (C” . b//) sAp(x”, y/) {Zdaxl/,/} yé//
= P(z,x,y;d,b,c)+ Q(z,x,y;d,b,c),

where
P(z,x,y;d,b,c) = (=1)P¥nlzli (" o py (d" @ "
EAP(X//s y') SAP(Z”, y”) xz/zg/yé’/,
0(z,x,y;d,b,c) = (=D)PIZln (" o« ") (d” 0 b")
eap(xX", ¥ eap(@”, X") 2 xp e
We have

P(z,x,y;d,b,c)

— (_1)|Yx’|n\z|n (d// . c///) (b// o CN) EA,O(Z//, y//) SA,O(XU, y/) x;,/zgxyé/f
- (_I)IX\nIZ\nHy”y”'InIZIn (d"ec")(b" oc"
"

eap(Z".y") eap(x". ¥') Xy zq v
= (= 1)zl nlzln Y"1 (g7 o Y (b @ ¢”

n_r

eap(z", y") eap(x". y') xp vz
- _ (_l)lxln|2|n+|y”\n|Z’|+|y’”|\2”|n (d” ec")(b" oc”

eap(y",z") eap(x", y") xp vz

" ’ " 7
— _(_1)|x|n|z|n+|z Iz’ |+1y" ||z I”(d”‘cm) (b//.c//

n_r

eap(y”.2") eap(x", y") xp vz



Brackets in representation algebras of Hopf algebras 597

- _ (_1)IXIn|Z|n+|y’”||Z’|n (d" ° c"’) (b” P
eap(y”.2) eap(x”, y") xp vz
= — (=)l (G o Y (b 0 ¢
eap(".2) eap(e”. ¥ xh i
= —(=DPIE@" 0 ") (0" 0 ") eap(y" 2 e ap(x", ¥') Xpy vz
=—-0(x,y,z;b,c,d).
These nine equalities are consequences, respectively, of the following facts:
(1) the bilinear form e is symmetric and B is cocommutative;
(2) ifeqp(x”, y") # 0, then |x'| = [xx"| = |x|p —[y'] mod 2;
(3) the (graded) commutativity of Ap;
(4) the antisymmetry of € 4p (Lemma 4.2);
(S) ifeap(y”,z") # 0, then |y"|, = —[z"|;
(6) the cocommutativity of A4;
(7) ifeqap(y”.2') # 0, then |2'|, = —|y"[;
(8) the cocommutativity of A4;

(9) the definition of Q(x, y,z;b,c,d). The Jacobi identity easily follows. O

7. Balanced biderivations from trace-like elements

From now on, we focus on balanced biderivations associated with so-called trace-
like elements of Hopf algebras. Here we introduce trace-like elements and define the
associated balanced biderivations.

7.1. Trace-like elements. Consider an ungraded Hopf algebra B with comulti-
plication A = Ap, counit ¢ = ¢p and antipode s = sp. An element ¢ of B is
cosymmetric if the tensor A(¢) € B ® B is invariant under the flip map, that is

ret"'=t"t. (7.1)

Lemma 7.1. Ift € B is cosymmetric, then for any integer n > 2, the (n — 1)st
iterated comultiplication of t is invariant under cyclic permutations:

MNetPg.ett Vg —-Dg:g..0:Mg M, (7.2)
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Proof. Forn = 2, thisis (7.1). If (7.2) holds for some n > 2, then it holds for n 4 1
too:

WP g @i et

= (idg ®A @ idgen— )tV ®1P @ - @t g ™)

= (idp ®A ®idgen—2 )P ®1P @ . @1™ 1)

=P gi®¥gWg. .0t M. O

Recall the notion of a derivation B — K from Section 5.1, and let g = gp be

the module consisting of all derivations B — K. (When B is commutative, g is
the Lie algebra of the group scheme associated to B.) Restricting the derivations to
I = Ker e, we obtain a K-linear isomorphism g ~ (//1%)* = Hom(I/1?,K). Let
p: B — I/1? be the surjection defined by p(h) = b — e(b) mod I? for b € B. An
element ¢ of B is infinitesimally-nonsingular if the linear map

g—> 1/1%, s p(t) p(t") (7.3)

is an isomorphism. Givensuch at, forany b € B, we let b=b e g be the pre-image
of p(b) € I/I1? under the isomorphism (7.3).
An element of B is trace-like if it is cosymmetric and infinitesimally-nonsingular.

Lemma 7.2. If B is commutative and t € B is trace-like, then the bilinear form
o;: B x B — K defined by b e; ¢ = b(c) is a balanced biderivation in B. Moreover,
forany b,c € B, we have

be,c=(be;t')(ce, t"). (7.4)

Proof. 1t is clear that both the left and the right annihilators of e = e, contain
1 + I?; hence e is a biderivation. To verify that it is balanced, we check (5.4) for
any b, ¢ € B. Tt follows from the definitions that

b—e(b) = b(t')(t" —&(t")) mod I?
and, since t'e(t"”") = t, we obtain

b=e(b)—b(t)+ b+ die

where the index i runs over a finite set and d;, e; € I for all i. Hence

b’ ® b" ® b = (S(b) _ b_(l)) 1pR1p® 15 + b_(l‘/) " ® " ® P
+ Zdi/ez/' ® di//el{/ ® diwez{//'
i
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Using this expansion and the equality ¢(1p) = 0, we obtain that
(C ° b//)s(b///)b/ — E(b//)s(b///)b/
— l;(t/) C—(t///) s([l///)t// + Z C—(dl//el//) s(di/”el/'”) di/el{.
i

The ith term is equal to zero for all i. Indeed, for any d, e € I, we have
C—(d//e//)s(d///el//)d/e/ — g(d//)c—(e//)s(e///)s(d//l)d/e/ + S(e//)c—(d//)s(e///)s(d///)d/el
— C—(e//)s(e/l/)s(d//)d/el + 6(d//)s(e/l)s(d///)d/el
= g(d)c(e")s(e")e’ + e(e)c(d”)s(d")d" = 0,
where we use the commutativity of B and the equalities £(d) = e(e) = 0. Thus,
(C ° b//)s(bl//)bl — b_(t/) E(tll/) S(t””)t”. (75)
Similarly, starting from the expansion ¢ = &(c) — ¢(t) + ¢(¢')t" mod 12, we obtain
(be C//)S(C/)CW — E(t/)B(t/”)s(l”)lW. (7.6)

It follows from (7.2) that the right-hand sides of the equalities (7.5) and (7.6) are
equal. We conclude that (c  b”) s(b"")b’' = (b e c") s(c')c".
Formula (7.4) is proved as follows:

bec=b(c)=b(t")c(t") = (be 1) (ce "),
Here the second equality holds because ¢ = ¢(¢/)t” = ¢(t"")t’ mod (K1g+1?). O

7.2. Brackets re-examined. We reformulate the bracket constructed in Theorem 6.1
in the case where the balanced biderivation arises from a trace-like element.

Theorem 7.3. Assume, under the conditions of Theorem 6.1, that ¢ = e, for a trace-
like element t € B. Then the resulting bracket {—, —}: Ap x Ap — Ap is computed
by

{Xp, Vel = (_1)|x//||y’|n (b o t(2)) (" o t(4)) lo(x/7y,)sB(t(l))t(3) x}/)/” yé’/ (1.7

forany x,y € A and b,c € B. Furthermore, the bracket {—, —} is B-equivariant
with respect to the B-coaction on Ap defined in Lemma 3.3.

Proof. Set s = sp. We first prove formula (7.7):

{Xp, ye} = (_1)|x 1Y'In (b(2) o) pl(x, y/)s(b(3))b“) xl/,/(4> yé//

7.4) a18%
(14 (_1)|x 1y |n (b(Z) ot')(c" o t") p(x', y/)s(b(3))b(l) x;)/(4> yé’/

(5i4)(_1)|x//|\y/\n (b e [(2)) (o 1(4)) o(x, y,)s(t“))tG) xg” yé[/'
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In order to prove the B-equivariance of {—,—}, we must show that for any
my,my € Ap,

{mi,m5} @ mh = {mf,mz}e ® {mi,ma} s(m?). (7.8)

Using the n-graded Leibniz rules for {—, —} and the fact that the comodule map
A: Ap — Ap ® B isagraded algebra homomorphism, one easily checks that if (7.8)
holds for pairs (m1,m5) and (ms3, m4), then (7.8) holds for the pair (mms3, momy).
Also, both sides of (7.8) are equal to 0 if m; = 1 or m, = 1. Therefore it suffices
to verify (7.8) formy = xp and my = y. with x, y € A and b, c € B. In this case,
(7.8) may be rewritten as

(%6, yer} ® s(c)e"” = {xpr, yc}e ® {xpr. ye} s (7.9)

Applying A: Ap — Ap ® B to both sides of (7.7), we obtain

A({xp, yc})
— (_1)|x”||y’|n (b/ o [(2)) (c” . t(4)) A(p(x/, y/)s(t“))t(3)) A(XZ//) A(yé//
@ 3)( I)IX”IIY (b 0t @) (c” 0 t™®)
( (x > ) );(tm)) ( (x y )t(s)) A(xb,/) A(y /)
(3 10) VZATINYG
(— l)lx 1131 (b(l) ° t(4)) (6(4) ° [(8)) (p(x’, yl);(t(Z)) ® t(3)s(t(1)))
(P Yk ® sEDND) (2 ® sB)D) (1, @ 5(cD)e®)
(DXl p® 0 (@) (€@ 01D p(x', 1), 20y PO, Y0 X Vi
t(3)s(t(1))s(t(5))t(7)s(b(2))b(4)s(c(l))c(3)
(=D (D ¢ @) (¢ 0 1®) p(x’, ') s @y00 X3 Vo)
® t(3)s(t(1))s(t(5))t(7)s(b(z))b(4)s(c(1))c(3)
(=D (P 0 1)) (¢ 0 1O) p(x’, ¥ g2y X5 Vi
® S(l(l))t(s)s(b(l))b(3)s(b(4))b(6)s(c(1))c(3)
(=D (P ¢ 1)) (¢ 0 1®) p(x’, ¥ s 4@y X2 Vi
® S(l‘(l))l‘(S)S(b(l))b(4)s(c(1))c(3)
(=Dl (@) o 1) (€@ 0 1D) p(x, 3540y X)) VL
® s(t(6))1(4)s(b(l))b(4)s(c(l))c(3)

(=D In (5@ ¢ 1@ (cO) 0 1 @) p(x’, 3') g1y 3 X0 3) Vo)
® s(b(l))b(4)s(C(l))c(3)s(c(4))c(6)

@b

G3)

G4

@8

72

G4
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(2.8) VATV
= (=) (@ o @) (¢ 0 1) p(x', Y50y ® Xy Vo

® s(b(l))b(4)s(c(1))c(4)
(g){xb”’ yc”} ® S(b/)bmS(C/)Cw.
It follows that

(X, et @ {xpr, yel (BB = (x50, yer} ® s(b@)bPs(c)e"s(b®)pD
= {xp, yer} ® s(c)e”.

This proves (7.9) and concludes the proof of the theorem. 0

7.3. Remarks. Let B be a commutative ungraded Hopf algebra.

(1) It can be verified that an element of B is cosymmetric if and only if it is B-
invariant under the adjoint coaction (3.12) of B. Note that an element of B is
invariant under the adjoint coaction if and only if this element is invariant under the
conjugation action of the group scheme determined by B, see Appendix A.3.

(2) We call a symmetric bilinear form X x X — K in a module X nonsingular
if the adjoint linear map X — X* is an isomorphism. For a trace-like ¢ € B, the
symmetric bilinear form in 7 /7?2 induced by e; is nonsingular. As a consequence,
not all balanced biderivations in B arise from trace-like elements. For instance, the
zero bilinear form B x B — K is a balanced biderivation not arising from a trace-like
element of B.

(3) In general, a trace-like element ¢ € B cannot be recovered from e;. For instance,
s(t) € B is also a trace-like element and e;(;) = e,. However, in many examples,

s(t) #t.

8. Examples of trace-like elements

We give examples of trace-like elements in commutative ungraded Hopf algebras
arising from classical group schemes, and we compute the corresponding brackets
in representation algebras. Throughout this section, we fix an integer N > 1 and set
N={l,...,N}.

8.1. The general linear group. Consider the group scheme GLy assigning to
every commutative ungraded algebra C the group GLy (C) of invertible N x N
matrices over C. The coordinate algebra, B, of GLy is the commutative ungraded
Hopf algebra generated by the symbols u and {;; }i’ jeN subject to the single relation
udet(T") = 1, where T is the N x N matrix with entries #;;. The comultiplication A,
the counit ¢, and the antipode s in B are computed by

A(tij) = Z Lk Qtyj, Aw)=u®u, &t;)=28j, eu)=1I,
keN
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and
s(u) = det(T), s(ti;) = (—1)"T/u - ((j,i)th minor of T).

It is clear from the definitions that the element

t=) Li€B (8.1)
ieN

is cosymmetric. We claim that ¢ is infinitesimally-nonsingular. To see this, for
any i,j € N, denote by t;; the class of t;; — 8; € I = Ker(e) in I/I2.
Computing /1?2 from the presentation of B above, we obtain that this module
is free with basis {z;;};,j. Let {z;}i,; be the dual basis of g =~ (I/1%)*. Ttis
easy to check that the linear map (7.3) sends rij to 7j; for any 7, j. This map is an
isomorphism, and so ¢ is infinitesimally-nonsingular and trace-like. The balanced
biderivation ¢;: B x B — K is computed by #;; ®; tx; = 8;;6 foralli, j, k,[ € N.
Consider a cocommutative graded Hopf algebra A carrying an antisymmetric
Fox pairing p of degree n € Z. Theorem 6.1 produces a bracket {—, —} in the
representation algebra Ag. We compute this bracket on the elements x;; = x(,,)
and yg; = y(y,) forany x,y € Aandi, j. k.l € N. In the following computation

(and in similar computations below) we sum up over all repeating indices:

6.5) VTN
{Xij, J’kl} = (—1)‘x 157 (o1 ® lpq) p(x/, y/)s(tqr)t,-p x;/] y;’g,,
1

= (_1)\x//||y’|np(x/’ Y)s@orrtis Xr7 Vi

= (DX Vs (o yY) PO Vi Ty Y

— (_1)\X”lIy’p(X’,y’)”\n+\y”||Xy’|n yllc/UsA (p(x’, y/)/)vr x;’J o(x, y/);'l

— (_1)\X"||y’0(x’,y’)”\n+\y”||Xy’|n (yNSA (p(x’, y/)/)x”)kj o(x, y’);fl

= (_1)\x’lIp(x”,y”)’|+|y’llx|n (y/SA(/O(XN,yU)/)X/)kj p(x", Y, (82)
where the last equality follows from the cocommutativity of A. The formula (8.2)

fully determines the bracket {—, —} in Ap because the algebra Ap is generated by
the set {x;; | x € A,i, j € N}. The latter follows from the identity

Xy = Xs(de(T)) = (5(X))der(ry forany x € A.

8.2. The special linear group. Assume that N is invertible in K, and consider
the group scheme SLy assigning to every commutative ungraded algebra C the
group SLy(C) of N x N matrices over C with determinantl. The coordinate
algebra, B, of SLy is the commutative ungraded Hopf algebra generated by the
symbols {7;;}; ;<5 subject to the single relation det(T") = 1 where T is the N x N
matrix with entries #;;. The comultiplication A, the counit ¢, and the antipode s in B
are computed by

Ay) =Y tik ®tj,  etyy) =8, s(tiy) = (1)’ - ((j.i)th minor of T).
keN



Brackets in representation algebras of Hopf algebras 603

The same formula (8.1) as above defines a cosymmetric t € B. To show that 7 is
infinitesimally-nonsingular, let 7;; be the class of #;; —8;; € I = Ker(e) in 1/1? for
i,j € N. Computing I/1? from the presentation of B above, we obtain that this
module is generated by the {z;; };,; subject to the single relation t11 +---+twyny = 0.
Hence /17 is free with basis {7 };; U {zii }izn. Let {t;}iz; ULt }ixn be the
dual basis of g ~ (I/I?)*. The linear map (7.3) defined by ¢ carries ri’;. to 7;; for
any i # j and carries 7; to 7;; + ) _; .y Tjj forany i # N;since 1/N € K, this
map is an isomorphism. So, ¢ is trace-like. The balanced biderivation e; in B is
computed by t;; ®; tx; = 8;;8x — 8;;8k1/N foralli, j k,l € N.

Consider a cocommutative graded Hopf algebra A carrying an antisymmetric
Fox pairing p of degree n € Z. The bracket {—, —} in Ap given by Theorem 6.1
is determined by its values on the elements x;; = x(;;) and yk; = y(,), Where
x,ye€eAandi, j, k,l € N. We have

(6.5) "y’
{xij, ykl} = (—l)lx 1571 (ty o qu) :O(xla yl)s(tqr)tfp x;'/] yllc,v
=(_1)|x [y lnp(x/’y/)s(tvr)til x;/j yl/c/v
(=DK1 In
N
= (_1)|x [ly I"SA(,O(X/,y/)/)vr p(x/’y/);/l X;,] y]/c/v
(=111
TN
= (=X Y PG D nA D  llxy Inyl/c/vsA(p(xl’y/)/)vr x;’] p(x', Y
(=1)X"11Y"In
= o 3y
= (=)t YT i (375 4 (p (' 'Y )X ) PO YT
(=D In
— Tgir eap(x’.y") x;/‘ yllc/l
= (=PRI (375 4 (p(x, y"))x') 5 P, YV
(=711l
- —

PO V) steprtip Xrj Vi

4

p(x/, y/)s(t,-,) xr ] y]/(/l

4

eap(x’, y") x[ yi;-

8.3. The orthogonal group. A matrix over an ungraded algebra is orthogonal if it
is a 2-sided inverse of the transpose matrix. Assume that 2 is invertible in K, and
consider the group scheme Oy assigning to every commutative ungraded algebra C
the group O (C) of N x N orthogonal matrices over C. The coordinate algebra, B,
of Oy is the commutative ungraded Hopf algebra generated by the symbols {#;;}; ;<
subject to the relations t;xt;x = 6;; forall i, j € N (here and below we sum over
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repeated indices). The comultiplication A, the counit €, and the antipode s in B are
computed by

Ay) =D tik @y, eltyy) = 8. s(tiy) = 1ji.
keN

The formula (8.1) defines a trace-like t € B. To show that ¢ is infinitesimally-
nonsingular, let 7;; € I/1? be the class of tij —8;j € I = Ker(e) forany i, j € N.
Computing /12 from the presentation of B above, we obtain that this module is
generated by the {;;}; ; subject to the relations 7;; + 7;; = Oforalli, j € N. The
set {zj }i<; is a basis of I/1?, and we let {7} }; <; be the dual basis of g ~ (1 /1?)*.
The linear map (7.3) defined by ¢ carries Ti’; to —2t;; for any i < j, so that (7.3) is
an isomorphism. The balanced biderivation e; in B is computed by

tij ot = 8118k — 8ikbj1)/2

foralli, j, k,I € N.

Let p be an antisymmetric Fox pairing of degree n € Z in a cocommutative graded
Hopf algebra A. The bracket {—, —} in A p given by Theorem 6.1 is determined by its
values on the elements x;; = x(,,) and yg; = y(, ) forx,y € Aand i, j, k,I € N.
We compute

2 {xij. yki}
(6.5) AT
= (D)2t o tpg) PO Y Vsttgrriiy X1 Vit
14

= (=Dl o Y stumes X1 ity — (D0 Y s X1 Vi

The first term in the last expression is computed as in the GLy case and is equal to
(_1)|x'||p(x”,y”)/H‘|y/||x|n (y/SA (p(x//’ y//)/)x/)kj p(x//’ y//);/l'

The second term in the expansion of 2 {x,- i ykl} is computed as follows:

3t ¥y s
= (=D s (0, Y ), 0O 3y X7y 540 ok
= (DI sy (0, )y, 7y 0 YN 5A G ok
= I (o' 7))y (Y 5400
= A 0, 3) )y (0 540
= (DI s (", 1Y) ¥')y (PG 3 540



Brackets in representation algebras of Hopf algebras 605

We conclude that

(= 1) NG ") 11y l1x 1
2

(=11 llo™,y")']
- 2

{xij7 Ykl} = (y/SA (,O()C”, y//)/)x/)kj ,O(X”, y//);/l

(sa(pGx".3)) 2, (0" ) "54(") -

9. The Jacobi identity in representation algebras

We formulate additional conditions in Theorem 6.1 ensuring the Jacobi identity.

9.1. Tritensor maps. Given a graded algebra A and a permutation (i1, i2,i3) of
the sequence (1,2, 3), we let P;,;,i,: A®? — A®3 be the linear map carrying any
X1 ® x2 ® x3 with homogeneous x1, x2, x3 € A to (—1)'x;, ® xj, ® x;; wheret € Z
is the sum of the products |x; , || x;, | over all pairs of indices p < g such thati, > ij.
We call Py, ;,;, the graded permutation. For n € Z, we similarly define the n-graded
permutation Pj, iy n: A®* — A®3 using ||, = |—| + n instead of |—|.

Assume now that A is a graded Hopf algebra with antipode s = s4. Any
antisymmetric Fox pairing p: A x A — A of degree n determines a linear map
F = Fp: A®3 — A®3 by

F(x,y,z) = (_1)\y’\len+|Z’||x”y”\+|x’2’|\p(x”,y”)’|+|p(x”,y”)”|\p(p(X”,y”)’”,Z”)’l
b b

. y/s(p(x//’ y//)/)x/ ® Z/S(,O(,O(XN, y//)///’ Z”)/)p(x//, y//)// ® p(p(x//’ y//)///’ Z//)

"

for any homogeneous x,y,z € A. The tritensor map ||—,—,—| = [—,— —|,
induced by p is defined by
2
l— ==l =) P 0 FoP3], , € End(4%?). ©.1)
i=0

If this endomorphism of A®3 is identically equal to zero, then we say that p is
Gerstenhaber of degree n. For instance, as explained in Appendix B.2, the Fox
pairing in Example 4.2(3) is Gerstenhaber of degree 2 — d.

9.2. The main theorem. We state our main theorem concerning the Jacobi identity.

Theorem 9.1. Let A be a cocommutative graded Hopf algebra carrying an
antisymmetric Fox pairing p of degree n € 7. Let B be a commutative ungraded
Hopf algebra endowed with a trace-like element t € B. If p is Gerstenhaber, then so
is the n-graded bracket {—, —} in the algebra Ap produced by Theorem 6.1 from p
ande = e;: B x B — K.
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This theorem is a direct consequence of the following lemma. To state the lemma,
we let s = sp be the antipode of B and define a bilinear map Y = Y;: Bx B — B
by

byc=(b"ec")b"s(c) 9.2)
for any b, c € B. By (5.5), we also have
byc=(b"ec)b's(c"). 9.3)

Lemma 9.2. Set p = t + s(t) € B. Then, for any homogeneous x,y,z € A
and b,c,d € B,

(=D)Inlzle gy Aye,zady 4+ (=D)EnIn 2, Uxy yedd + (=) Gyt a0

= _(_1)\x”\Iy’Z’|+|y”HZ’|n+|x|nIZIn

L
: ||x’,y’,z’ “pm ||x’, yl’Z/H::(s) ||x’, v,2 ||:,<3) XZYp(z)y;’Ypm)ZZypm» (9-4)
where the tritensor map induced by p is expanded in the form
L
== =I=l-—=I"&l-—=I"®-—-I".
Proof. Applying (7.7) and the Leibniz rule, we obtain
e veszaty = (DYl (0 1@ (@ 0 19) {xp, p(v' 2 )y i 2
= P(x,y,z;b,c,d)+ Q(x,y,z;:b,c,d) + R(x,y,z;b,c,d),
where
P(x,y,z;b,c,d) = (_1)|J’”||Z’|n(c/ ot @)(d" 1@
Axp, POV 250y ) Vi 20,
O(x,y.z:b,c.d) = (_l)ly”|\2’|n+|y’2’|nlen (c'e 1(2))(d” ° t(4))
PV 2 )50y X Yo} 20,
R(x,y,z;b,c.d) = (_l)ly”IIZ’ln-i-lyZ’InIXIn (c' 0 t@)(d” o1 ¥)
(¥, Z/)S(t(l))t(s) yé’/, {xb, Zg/} .
We claim that
(=D O (x, y, z:b.c.d) = —(=1)?WEn Rz, x, y1d. b, o). 9.5)

To prove (9.5), we let u be another “copy” of the element ¢t € B. Then

O(x,y,z;b,c,d)
— (_1)|y~||z/|n+|y/z’|n\x\n (e t(z))(d” o t(4)) p(ylvzl)s(t“))to) {xb’yé/”} Zg/
(7:‘7)(_1)|y”y’”||Z’|n+|y’2’|nIXIn+IX”I\y”|n (' 0 1D)(d" o 1) (b e u®)(c"” 0 u®)

/ !/ / " " n_n
. P(y , Z )S(l‘(]))t(3) ,O(.X , Yy )s(u(l))u(S) Xprr Yerr Zgr
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and

R(z,x,y;d,b,c)
= (=PI XY Inlzln (7 o 1) (" 0 1) p(x, Y )50y Xp {za. 90}
= — (=D lntbxrlizln b/ o 1) (" 0 1 @) p(x’, Y sy Xpo AV 2a)
D _ (_l)lx/’lly/|n+|xy||Z|n+|y”/|\Z’In (b o t@)c" o t®) (' o uP)(d" e u®)
P Y ) sy ® Xy POV 2D 0y Ve 2
- _ (_l)lx”lIy’|n+|xy||2|n+|y”’|\Z’In+|xy’|n\y”Z’
(b e [(2))(0/// ° 1(4))(6/ ° u(z))(d” ° u(4))
(", 2 sy PO Y5y Xy Yo 2y

= — (=) A by lizln "2l 12y |1y 2 17117

(B 0 1) e 1D o u®)(d” 0 u®)

! !/ !/ " " n_n
P Z2) 5@ PX Y7 (103 Xpyr Yerr Zgs

— (_I)IX”IIy”In+|xy||Z|n+|y”y’”||2’\n+IX\n 1¥'z'|n

(b e [(2))(6/// ° l‘(4))(6, ° u(z))(d” ° u(4))

/ / s V4 14 " _n
: P(y , Z )s(u(l))u(3) P(x , Y )S(l‘(l))t(3) xb// yC” Zd"

In

Comparing these expressions, we obtain (9.5). Formula (9.5) implies that all Q-terms
and R-terms on the left-hand side of (9.4) cancel out. It remains to compute
(D)Wl P,y zib, e d) + ()P P(y 2 x:c.d )
+ (=Dl pz x yid, b, c).

To this end, we expand

P(x,y,z;b,c,d)
= (=)l (" 0 1) (@" 0 1D) {xp, p(3', 2 )0y} Y 2
= (=)l (" 0 @) (@ 0 1) {xp, p(, 2,y PO 2 Yy 2
= Pi(x,y,z;b,c,d) + Pr(x,y,z;b,c,d),
where
Pi(x,y,z;b,c.d) = (D)1l (" 0 D) (" o t®)
{Xb, p(y', Z/);(,(l))}/o()’/’ Z/);/(3) Yo Zgr

and
Py(x,y,z;b,c.d) = (_1)|y”\|2’|n+|x|nIp(y’,Z’)/I(c/ 01 D)(d" o1 ®)

" "

POV 2y 4560 (Y20 0} v 25
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We claim that

(_1)IXIn|Z|n Py(x,y.z:b,c.d) + (_1)|y\nIX\n Py(y.z,x:c.d,b)
+ (=)Wl py(z %, y;d, b, c)

= _(_1)Ix/’lly’Z’IJr\y”IIZ’In+IXInIZ\n

Y2 e 13" 2 s 1% 32 s X Vigio Zagcnrs 96)

and similarly that

(=D)nlzle py(x, y, zb, e, d) + (=) Py (y 2 x5 e, d, b)
+ (_1)|Z|n|}’|n Pi(z.x,y;d.,b,c)

= _(_1)|X”||y’2’|+\y”||2’|n+|x|nIZ\n

A e 163 s 1552 oo Xy Yoo Zpgiars - OT)

where v = s(¢). Since p =t + v, these two claims will imply (9.4). Observe that
Pi(x,y,z;b,c,d)
— (_1)|y//||z/|n (C/ . S(U(3))) (d// . s(v(l))) {xb,P(y/,Z,);m)} p(y/’Z/)/s/(v(z)) yé/// ZZ,

= (_1)|y 12 |n (c'o v(3))(d// ° U(l)) {xb, P(y/,Z,);(4)} p(y, Z/)N(v(z)) yé/” Zg/

N
(7.2) T
= (_1)|y 12’ |n (' o v(2))(d// . v(4)) {Xb, ,o(y’,z/);@)} (v, Z/);/(v(l)) v Z;;/

— (_1)|J/”||Z’|n+|P(y’,z’)”|\xp(y',Z’)’ln (c'e U(Z))(d” ° U(4))
-p(y', Z/);/(v(l)) {xb’ p(y', Z’);@)} Yer Zgr
— (_1)|y”||2’|n+|p(y’,2’)’IIXIn (c'o U(2))(d// ° v(4))

4

: P(y/, Z/);(v(l)) {Xb, P(y/, Z/)v(3)} yé’/” Z:é”

which shows that Py(x, y,z;b,c,d) is obtained from P,(x,y,z:b,c,d) by the
change ¢ ~> v. Since the balanced biderivation ¢ = e, coincides with e,, (9.7) is
equivalent to (9.6). Thus we need only to prove (9.6). To this end, we compute

Py(x,y.z:b,c.d)
- _ (_1)\y”||2/|n+IXInIy'Z'I(C/ o 1@D)(d" e t®)
PO 2y 1O 2N s X0} Y 2
©) (_1)\y”||2/|n+IXInIy'Z’|+|p(y’,Z’)’”\IX’In (c'o 1(2))(d” ° t(7))(b" ° t(4))
0" 2y PP 2N XD sy PO 2 e Xy Ve 2
- _ (_])\y”llz/lnHXInIy'Z'|+|p(y/,Z/)’”\Ix/ln (' 0t@)(d" o tD)(b" 0 1™¥)

" "

/ "
(" 2y s(0(p (. 2)" X)) s P (0 2 X) 3 POV 2N ) X Ve 2
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- _ (_1)\y”||2’|n+|x|n 12 [+10(y",2")"1x" p(0(¥",2")" XY |n
(' 0 t@)(d" ¢ t©) (b 0 1)
(7 gy (s(0(p(Y.2) X)) p( 2)") s (0 2) X ) o X3 v 21y

//l

= — (=) Nl 5l ly 2 1+ G2 X o0, 2") ) nHxy 2|z
. (c/ ° t(Z))(d// ° t(6))(b” ° t(4))
/ 4
2 POV 2y (s(p (0 2" X)) POV 2)") s P(P(Y', 2)" X)) X Y
= — (=P NG0B el ly 2 0B 2) X p(e (2 )X ) Xy 212"
X (C, ° t(2))(d// ° [(6))(b// ° [(4))
/ 4
22 PO 2y yer (s(o(p (Y. 2)" X)) p(v'.2)") 5 P (Y 2" X)) Xy
= — (=P 2Y Y x|y 2 I+10G"2) 1 000,26 I +xy 2112
. (c/ ° t(2))(d// ° t(6))(b// ° t(4))
/ 4
2 POV 2y e (s(p(p (Y, 2)" X)) p (0. 2)") ) (P (Y 2)" X)) Xty
= — (=) N2 Y I Ixlaly2 1+ 100,211 o2 x)
(=Pl XY 2 G2 Y |
X (C/ ° 1(2))(d” ° [(6))(b// ° [(4))
/ "
20 POV 2y yer X (s(p(p (Y. 2)". X)) (' 2)") 5 P(P(Y' 2" X))
@D _ e 2 Y [+ xlnly2 |+ .2 |x (e (v’ ,2') %) |n
=D
(=Pl XY (2 |
. (C, ° t(S))(d// ° [(3))(b” ° [(1))
/ 4
' Z[/i/’ S(p(y/’ Z/)/)t(4) yé’” xl/;/ (s(p(p(ylﬂ Z/)//’ xl) ) p(ylﬂ Z/)///)t(2) p(p(y/, Z/)//’ x/)t(é)

_ (_1)\y”llp(y/,z/)/y/Hlx\nIyz/l+\p(y/,z/)”’lIx/p(p(y/,z/)”,x/)”ln

’

. (_1)|xy2’||Z”|+|x/’||x’y/z/p(y 2|
(" ot M) (d" 0 tO) (D" 0 tD) ZZ/S(,(Q)N) s(p(y' Z,)/),(fs) yt”(9)s(,(1o>)c//
/ 1
Xy (e 2)" X)) (v 2" ) P (0 2" X) a2
_ (_1)\y”y”’lIp(y’,Z’)’y’IJrlen\y2’|+|p(y’,2’)”’\Ix’p(p(y’,Z’)”,x’)”ln
X (_1)|xyZ/||Z//Z///|+|x//x///\|x/y/Z/p(y/,Z/)/|
. (C/ ° 1(8))(61// ° t(4))(b// ° t(l)) 22’5(1(5)) (Z”/S(,O(yl, Z’)’)y”),«,) y;/(,z(7))c"
/ 1

Xy (Xs(p(e(y 2 X)) oY 2)"), 6 P(P(Y. )" X) o)
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©-2),093) (— 1)\y "y, 2'Y ¥ |+ x1n vz 1+ ,2") " 1X o ,2") %) |n
X (_1)|xyZ/||Z//Z///|+|x//x///‘|x/y/Z/p(y/,Z/)/|
1 " / N/ 1 "
Zavi® (Z S(P()’ ,Z") )J’ ),(4) Yeyi®

! 1
Xy (x7s(p(p(y".2)" . X)) (Y 2)") 0 p(P(Y' ) X))
() RO Y a2 oG 2 I (e ) Y

( 1)|xyHZ/ZW|+|ZW‘|Z/Z”|+|XN)CW||X/ / //p(y Z//)/l

ZdYt<3) (Z S(P(y 2" )y )t(4) ycvz(S’

1 " n’ / 1IN / 1
Xpyr \X ( ( (P(y z" ))P(y ,Z") )r<2) P(P()’ 2Z0) X ),(6)
- _ (_1)\y/”\Ip(y”,Z”)’y”IJrly llo(y”,2"y |+\x|n\yZ”\+Ip(y”,Z”)’”IIx’p(p(y”,Z”)”,x’)”In

. (_1)|xy||Z Z///‘+|Z///||Z/Z//|+|x//x///‘|x/ 14 //p(y// Z//) |
" / VA 1\/ / "
2o (250" 2"))Y") Y s)

V4 " V4 1IN / / 14 TN 1 1

X (s (o(p(r". 2 %)) o 2"Y), 0 (PO 2" X ) ey

byt t t
- _ (_1)\y”/\Ip(y”,z/’)/y”l+|y’||p(y”,2”)/|+\x|n\yZ”\+Ip(y”,z/’)/”l|X’/p(p(y”,Z”)”,x”)”In

. (_1)lxy||Z/Z///‘+|Z///||Z/Z//|+|x/// /||y// //p(y//’z//)/l+|x///||x/x//‘

Zg/yt(s) (Z,S (P(J’N» Z”)/))’/)z(m y(/;/\,(t(s)

Xy (s(e(o(r”. 2" x") ) p(r" . 2")") 00 P (. 2") X ey
()G Y S Y oG Y Fxlalyz o0 2 (el ) Y

X (_1)|xy||Z/Z///|+|Z///||Z/Z//|+‘x///x ||y// //P(y//,Z,/)/‘+|xW|‘x/x//l
" ! 14 "\’ / "
Zavi® (Z s(p(y ,Z") )y )t(4> Yeve®

" / V4 1IN V4 / 1 VAN 1 /i
X (Xs(e(p(r", 2" x")) oV, 2")") 0 £(P(Y" 2
- _ (_1)\y”/\Ip(y”,Z”)’y”I+|y’||p(y”,z/’)’|+\x|n\yZ”\JrIp(y”,Z”)”||p(p(y”,2”)”’,x”) |

" X )5(6)

( 1)|xy||Z/Z///|+|Z///||Z/Z//|+‘x/||y// //p(y//’zl/)/l

Zd‘(t(3) (Z S(P()’ »Z )) ),(4> ycy,(S)

. ( ( (p(y Z//)/// l/) )p(y Z//)//)t(2) p(p(y Z//)/// //)t(G) x;)/((t(l)
— (N x I e 2V | Hx v 2 [+ e (27 leCe(r” s27)" XY |
(=1

Ly llz’z" |+ 2" ||z’ 2" |+1x ||y 2" p(y",2"")' | ’ NAN
(=1 Zavi® (Z S(p(y .z") )y )t<4)

(s (p(p(" 2" X)) oG 2" (PO 2 X" e Xrcty Vi)
= — (=DP7IEEHY Q"2 I+ Xy 2" 10O 2 ey, 2") " x|

()Y XY (2
i (Z/S('O(y//’z// /)y/)m) (X/S(P(P(yﬁ,z”)w,x/,)/) P(y//,Z”)”)ﬂz)

NI " m " "
(P(y )", ),(6) Xpve Yoy Zgyi3)
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" ‘ |Z//

x|+xyl|z [+1x [y 2" |+ x[n |y 2"

= - (=D

. (_1)\x/y’lIp(y”,z//)/l+\p(y”,2”)”|Ip(p(y”,z//)/”,x”)/l

. (Z/s(p(y//’ Z//)/)y/)t(4) (x/s(p(p(y//’zfl)///’ x//)/) p(y//’ Z//)//)t(z)
(00" 2")" XY s6) Xyt Yy Zapen

- _ (_1)\yZ’IIXIn+|y”||xZ’|
/ !/ Y4 !/ / nm / / Nr " " 1
F(y',z'x )t(4)F(y v 2, X ),(2)F(y v 2, X )t(G)XbYt(l) Yeve® Zgy:®
72 _ (_1)\y2’||x|n+|y”||x2’|
[ AN 4 1o m I LN " " "
F(y,zhx ),(5)F(J’ yZ X )t(s)F(y V20X )1 Xy @ Yey® Zgye@ -
It follows that the left-hand side of (9.6) is equal to
_ (_l)lyZ”In|x|n+|y”||x2’\

/ !/ IAY4 / / nm / / nNr " " "
F(y',z'x )t(S)F(y v 2, X )1(3)F(y s 25X ),(1)xbw<2) Yeve© Z gy @
_ (_l)lzx”ln|y|n+|2”||yx/\

1o N o Nm 1oL INT " " "
FEZ XL Y) s Pz xy )t(3>F(Z XY 0 Yoy @ Zaye© Xpy i@

— (=)} nlzlnt 12711z
AN o \m I INT " " "
: F(x 7y y Z )t(S)F(x 7y s Z )t(3)F(x 7y y Z )t(l)Zdyt(Z) bet(év) ycyt(4)
72 [yz"|nlx|n+1y"lx2’|
== _(_l)y n|Xln Ty
1o L I \m 1ol LINT " " "
FOL 2 XD PO 2 XD FO 20 X)) 00 Xy @ Yeye® Zgye@
_ (_1)\ZX”InIy\n+|Z”HyX’|
[N 4 ’ol M roINT 1 " ”
-F(zxy ),(3)’:(2 » XY ),(1)":(2 XY )t(S)yc\(t(G) Zavi® Xpyr@
_ (_1)\xy”\n|Z|n+\x”HZY’|

/ / "NE / / nm /! / Nr " " "
F(X Yz )t(l)F(-x » Vs Z ),(5)F(x Vs Z )t(3)Zdy,(4) Xpvt@ Yoy
= — (=1)PZ Inlxla 1" llxz]

/AN 4 /ol \m Il INF " Vi "
FOL 2o PO 2, X0 e FO 25 X100 Xy, Yoy © Zaye@
_ (_1)\ZX”InIy\n+IZ”\IyX’|+|x”||y”Z”|
AN ) o \m /o N " 7 "
R XL )i P X YD) [0 FE X )10 Xy @ Yoy Zavea
_ (_1)\XY”\n|Z|n-HX”\IZY’|+|Z”|IX”Y”\
/ / YA / / nm /! / AN 4 " " "
-F(x' )z )t(l)F(x A ),(5)F(x Y.z )t(3)bet(2) Yeve® Zgye@
— _ (_1)\X”\ly'Z'|+IY”HZ’|n+|x|n|Z|n
y4 m r
/ / !/ / / 4 / / !/ " 1 1
X"y 2 [ |57y 2 s 1575 2 o Xy Vivio 2y

This proves (9.6) and concludes the proof of the lemma. O
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9.3. Remark. The formula (9.4) may be rewritten in the form

o Vs zaty + ()P 2y (g, yelk + (D)X (e (2, 30}

= _(_1)|x”||y’2’|+\y”||2’\n

)4 m r
: ||x/,yl’2,||p(1) Hx/’yl’zlnp(s) ”xl,yl,zlnpm x;,'y,,u)y;'wm)zgypu;- 9.8)

Though we will not need it, we mention an equivalent version of (9.8). Assume
the conditions of Theorem 9.1 and set v = sp(¢). It can be proved that, for any
homogeneous x, y,z € A and any b, c,d € B, we have

1ot 1o M P T " " "
X"y 2 [ X ¥ 2 [ 127" 2 [ Xpvpe Yevp©Zayp

"lnly’ oot ro M 1o T ” " ”

= = (=D B 2 [ X2 [ 12 s e Vi Zyeer-
Therefore (9.8) is equivalent to the following identity:

(xXp Ve zaly + (DI () o, ye bt + (= D)FYE e oz )
— (_1)|x|n|y/|n+‘x”y//||z/|n

fm Hy/’x/vZ/H:?n ||y’,x’,z/||t’(5) Xpvi@ Y ey ® 2y ©)

AT 2T
—_ (_1)|x 1y 2" 1+1y" 112"

. Hy/’x/’ Z/’

: Hx’,y’,z’ilfm ||x"y'vzl||:r<ls> Hx'vy'vZ/H:m Xyt Y eyt © 2y 14

10. Quasi-Poisson brackets in representation algebras

Quasi-Poisson structures on manifolds were introduced by Alekseev, Kosmann-
Schwarzbach, and Meinrenken [1]; see also [15]. We adapt their definition to an
algebraic set-up and establish a version of Theorem 9.1 producing quasi-Poisson
brackets.

10.1. Quasi-Poisson brackets. Let B be a commutative ungraded Hopf algebra
endowed with a trace-like element 1 € B. Let M be an ungraded algebra with a
B-coaction Apy: M — M ® B. A bilinear map {—, —}: M x M — M is a quasi-
Poisson bracket with respectto ¢ if itis B-equivariant, antisymmetric, and if it satisfies
the Leibniz rules and the following quasi-Jacobi identity: for any u,v,w € M,

s v, wiy + {w, u, viy 4 v, {w, ug)
— (ur ° [/)(vr ° t//)(wr ° [///) u£v€w€ _ (ur ° [/)(vr ° t///)(wr ° t//) ufvfwﬁ’
(10.1)

where ¢ = o;: B x B — K is the balanced biderivation associated with ¢ and we use
Sweedler’s notation A ps(m) = m* ® m” form € M.
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Observe that a quasi-Poisson bracket in M restricts to a Poisson bracket on the
subalgebra M™ of M consisting of B-invariant elements:

M™ ={meM:Ay(m) =m® Il

10.2. The quasi-Jacobi identity in representation algebras. A Fox pairing (of
degree 0) in an ungraded Hopf algebra A is quasi-Poisson if it is antisymmetric and
the induced tritensor map (defined in Section 9.1) satisfies

X, 9,2 =14Q@y®xz+ yx®@®14Q2z+xQzyR@lga+yQzQx

— 14 Rzy@x—yQR14Q@xz2—yxR®zR14—x®y®z (10.2)
for any x,y,z € A. A geometric example of a quasi-Poisson Fox pairing will be
given in Section 12.

Theorem 10.1. Let A be a cocommutative ungraded Hopf algebra carrying a quasi-
Poisson Fox pairing p. Let B be a commutative ungraded Hopf algebra endowed
with a trace-like element t. Then the bracket {—, —} in Ap produced by Theorem 6.1
from p and e = e; is quasi-Poisson with respect to t.

Proof. The bilinear map {—,—}: Ap x Ap — Ap is antisymmetric and satisfies
the Leibniz rules by Theorem 6.1. This bracket is B-equivariant by Theorem 7.3.
It remains to verify the identity (10.1). It is easily seen that both sides of (10.1)
define trilinear maps Ap X Ap x Ap — Ap which are derivations in each variable.
Therefore it is enough to check (10.1) on the generators of the algebra Ap. We need
to prove that, for any x,y,z € Aand b,c,d € B,

X Aye,zayy +{za. Axp, yelt + Ve 1za. xp}}
=V(x,y,z;b,c,d;t)—V(x,z,y;b,d,c;t), (10.3)

where
V(x,y,ziboe,dit) = ((xp)" 0 ') ((ye) 0 ") ((za)" o ") (xp) (ve) (za)".

Here and below we use Sweedler’s notation for the B-coaction on Ap.
In the sequel, we denote the comultiplication, the counit and the antipode in A
and B by the same letters A, ¢ and s, respectively. Lemma 9.2 gives

{Xb, {y()’ Zd}} + {Zd’ {Xb, J’c}} + {yC’ {Zd,Xb}}
=—-U(x,y,z;b,c,d;t)—U(x,y,z;b,c,d;s(t)), (10.4)

where, for any cosymmetric u € B,
U(x,y,z;b,c,d;u)

b4 m r
— ! / / / / ! / / / 1 14 17
= ||x Yz ||u<n Hx Yz ||u(5) Hx Y,z “u<3> Xoyu@ Y evu©®©Zgyy@® -
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We compute the latter expression using (10.2):

U(x,y,z;b,c,d;u)
= 8(”(1)))’;@ (X,Z,)uﬁ)XZYM<2))’ZYM(6>ZZYM<4)
+ (y,x/)u(l)S(U(S))Z;mx;’y“(z) y:Yu(@ngu(‘”
+ x;(l) (Z/y/)u<5)8(”(3))x;/,/y“(2) y(/:/yu(G) ijmm)
F V0205 %03 Xy Ve Z
— M)y )y XXy Y ey © 2y
- J’;(l)3(”(5))(35,2/)14(3)362“(2) J’;/Yu(ngy,,m
- (y/x/)u(l)z;@)5(14(3)))5;/)/\(”(2)yé/Yu(ﬁ)Zg\(uM)
- x;(l)y;(s) Z;(3>xgyu(2> y;’mm) ZZYum
= Y (2@ X0 Vv Zavae + O XD)u0 2,60 X0 Y D) 2@
+ 2,0 Y )@ X0 Y w9 Z i T Y0706 03 Xy Y ey © Z gy
- (Z’y')u<4>x;mxl’,’m(nyé’ymazgm(» - y,’,a>(x’2’)u<3>x§,’y,,<z> ygy,,w)zgy,,m)
= "X )u 2,0 Xy Vi u® Zadvu® = X0 Y 05 20X by Y ey © Z gy
= Y,,,(5>x;a)Z;(3>XZW(1>ygyu(wzgy,,m) + Y,/,mx;<2)Z;(4>XZYu(3>J’gYu(6>ZZYu<s>
+ x;mZ,’,(4>y;<s>x;’yu<z>y2’m<e>zgm(s> + )’,;(1>Z;<5)x;mxgm(z)ygyu(é)Zgy,,(m
= 20 Y5 0@ Xy Y ey © Z iy ~ Y0 X3 2@ Xy Y e© Z ()
~ VX205 Xy Y exu© Z dyu® ~ X0 Y9 203 Xy Y e © Z gy ®
= XbYuD)u@ Yu® (cYu©)Zy3) (d yu®) + Xu@ BYu®) Y (evu®)u® 2y (dyud))
+ Xy Byu) Yu® eYu®)Z(@dyu®)yu@® T Xbyu@)u® Yeyu©)uW Z(@yu@®)yu
~ XBYuM)u@ Yu®G (cYu®)Z(@dyu®)u@® — XByu@)u® YV (evu®)u® Zy@® dyu®)

~ Xu@ BYu®) Y (eYu®)uMZ(@yu®)yu® — Xy (pyu@) Vu®G (cYu®)ZuG) (dyu®)

(1.2)
= XBvu)u® Yu® (cyu®)Zu® @vu@®) T Xu3 Gyu@®) Y (e vyuD)u@ ZuG) (@ yu®)

+ Xy BYu@) Yu® (eYu©) Z(@dvu®)u® T Xbyu®)u@® Y(evu)yu@ Z(dyu))u©

~ XbYuD)u@ Yu® (cvu®)Z(@dyu®)u® — XByuG)u@® Vievu D) u@ Zu® (dyu'®)

~ Xu® BbYu®) Y (eyu)u@ Z(@dyu®)u® — Xy Byu@) VuG) (cYu®)Zu® (dyu®)
OV o) (¢ o u")(d' @ u") xpyyerzar + (B o u")(c" o u')(d o u") X yerzar
+ (0 e u')(c o u")(d" o ") xpryerzar + (B o u")(c" o u')(d" o u") xpyyerzar
_ (b// ° u/)(c/ ° u///)(d// ° u//) Xb/yc//Zd/ _ (b// ° u//)(c// ° u/)(d/ ° u///) xb/yc’Zd’/
— (0 o u")(c" o u')(d" o u") xpryerza — (b o u')(c o u")(d' o u") Xy yerzar.
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In particular, we have

U(x,y,z:b,c,d;s(t))
= (b 0 5("))( @5 » (")) xpryerzar
+ (0 o s 05" o () Xpryerzar
+ (O es(t"))(c" o s(t)(@" @ 5(t") xpryerzar
+ (" o s 0 5("))(d" @ 5(t)) xpyerzar
— (0" 0 s(”)(c 0 5" 0 5(") Xpverzar
— (0" e s(”)(" @ 5" @ () Xy yerzar
— (b s 5”@ 0 () Xpryerzar
— (b o s(@"))(c o s(t))(d" ®5(t")) xprycrzar
= — (" ") 0 ) 0 1") xpyyerzar — (b 0 1")(" @ ") (d" 0 1') Xpryerzar
— (B 0 t")( o 1)(d" 01"y xpryerzar — (B @ )" 9 1”)(d" @ 1) xpyerar
+ (B 0 t")(C 0 1)(d" 0 1") Xy yerzar + (B" 9 1")(c” o 1")(d o 1') Xpy yerzan
+ (' 0 1")(c" 0 t")(d" ot Xpryerzar + (B 0 t”)(C @ 1')(d @ 1") Xpryerzar

@—U(x, z,y:b,d,c;t)

and it follows from (10.4) that
{xXp.{ye. zat} +{za. Axp, Y}t +{ve. {za. Xp}}
=-U(x,y,z;b,c,d;t)+ U(x,z,y;b,d,c;t).
Formula (10.3) will follow from the equality
V(x,z,y;b,d,c;t) =U(x,y,z;b,c,d;t), (10.5)
which we now prove. Computing the coaction on x; by Lemma 3.3, we obtain
Vx.y.ziboe.dit) = ((5()0") 1) ((v)" @ 1")(za)" @ 1) 3 () (za)"
= — (") o 1)((ye)" @ 1") ()" @ 1") xpr(ye)(za)*
+e(0) (0" o 1) (ve) o1")((za)" 1" xpr () (2a)"
= — (b e t)((ye) o ")((za)" @ 1") xpr (ye) (za)"
+ (" ) () ") ((za) o ") xpr(ve) (za)*
Further computing the coaction on y. by Lemma 3.3, we obtain
Vx.y.zibc.dit) = =(b" o 1')(c @ 1")((za)" & 1" )xpryer(za)*
+ (0 e 1) (" o 1")((za)" & 1" )xpryer (za)"
+ (0" e 1) 0 1")((za)" @ 1"") xpyyer (za)"
— (0" e 1')(c" @ 1")((za)" @ 1"") xpy yer(za)".
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Finally, applying Lemma 3.3 to z4, we obtain

V(x,y,z;b,c,d;t)
= (b e 1')(c' @ 1")(d" 01" xpryerzan + (b o 1)(c' 0 1")(d" 01" xpryerzar
+ (b et")(c" ot")(d ot") xpryerzgr — (b ot )(c" ot")(d" @t"") xpryerzgr
+ 0" ot')(c"ot")(d o t") xpyycrzar — (b @ 1)) (" 0 t")(d" @ t") xpyyerzar
—(b" et')(c" ot")(d ot") xpyyerzgr + (b" o t')(c" o t")(d" o t") xpyyerzar.

The equality (10.5) follows. This concludes the proof of the theorem. O

10.3. Remark. The definition of a quasi-Poisson bracket in Section 10.1 involves
a trace-like element in a commutative ungraded Hopf algebra B. One can give a
more general definition depending only on the choice of a balanced biderivation
in B whose associated symmetric bilinear form in 1/I? (where I = kerep) is
nonsingular. A quasi-Poisson algebra in this general sense is also a “quasi-Poisson
algebra over a Lie pair” in the sense of [10]. We do not study this general definition
here.

11. Computations on invariant elements

We discuss algebraic operations associated with a Fox pairing and use them to
compute our brackets on certain invariant elements of the representation algebras.

11.1. Operations derived from a Fox pairing. Let A be a cocommutative graded
Hopf algebra. We define modules A and A" ® 4%A4 as follows. Set A = A/[A, A],
where [A4, A] is the submodule of A generated by the commutators yz — (—1)1?!1Zlzy
for any homogeneous y,z € A. The class of an x € A in A is denoted by X.
Next define the left adjoint action ad®> 4 x A — A and the right adjoint action
ad:AxA— Aby

ad‘(y,z) = (=D Y z54(0") and  ad"(z,y) = (=)W ls (3" 2 y”

for any homogeneous y, z € A. These actions yield left and right A-module structures
on A; the resulting left and right A-modules are denoted by ‘A and A" respectively.
The tensor product A” ® 4“4 over A is the module mentioned above. Note the
following linear maps:
A" Q44 — A, X ® y — xy mod [A4, A], (11.1)
A" @44 — A, X ®yr— xs4(y) mod [A4, 4], (11.2)
AR4U49—> AQA, x®@yr—X® Y. (11.3)
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Lemma 11.1. Let p be a Fox pairing of degree n € 7, in A. Then there is a bilinear
map
O=0,AxA— A"®4%%

such that for any x,y € A,
O, y) =ad” (¥, p(x",y)) @y =x"® ad* (p(x",¥").y").
Proof. For any x,y € A, we set
O(x,y) = ad” (¥, p(x",y")) ® " = x’ @ ad® (p(x", "), y") € A" ®4"A.
We need to check that
O(x1x2.y) = (=DMl O (011, y) (11.4)
for any homogeneous x1, x2, y € A, and that

O(x, y1y2) = (=112l @(x, y,y1) (11.5)

for any homogeneous x, y;, y2» € A. We have
Ox1x2.y) = (=DMl ad” (xixg. p(xf 3. y)) @ "
= (=DMl ad” (x5 05 ) ®
+ (=) I%2le(x) ad” (x]xp. p(x]. ") ® V"
= (=Dl ad™ (ad” (x)x5, x7), p(x5, ) ® y”
+ (=Dl ad” (x]xa. p(x7. ) ® 3"
— (_1)Ix’{x/l”llxglﬂx’{l\xix’zl ad” (S(X/l/)x/lxéx/lﬁ, p(xy, y’)) Q y"
+ (=DFlad” (x|, p(x], ) ® ¥
= (D2l ad” (s(x])xyxox]. p(xh. ) ® ¥
+ (=)l ad” (x]xa, p(x7, 1)) ® "
= (=Dl ad” (x)xy, p(xy. y') ® "
+ (=Dl ad (x]xa, p(x], ) ® 7,
which immediately implies (11.4). The identity (11.5) is verified similarly. O

The compositions of ® with the maps (11.1), (11.2), (11.3) are denoted, resp-
ectively, by
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Explicitly, we have for any x, y € A,

(%, 7) = (=D IeC"Y g (p(x”, y'Y)x" p(x", y')"y" mod [4, A], (11.6)
(% 9F = (- 1)'*""’("””’)"sA<p<x“,y’)’)x/p(x",y)”sA(y”) mod [4, 4], (11.7)
X, 7| = eap(x". y") ¥’ ® 3" (11.8)

11.2. The invariant subalgebra. Let A be a cocommutative graded Hopf algebra,
and let B be an ungraded commutative Hopf algebra. Recall the B-coaction
A:Ap — Ap ® B given by Lemma 3.3 and the subalgebra A’} C Ap of B-
invariant elements of Ag. Lemma 7.1 implies that x;, € Ag" for all x € A and
all cosymmetric b € B. The defining relations of the algebra A g imply that such x
depends only on X € A. We will compute our bracket in A g on such elements. We
start with the following lemma.

Lemma 11.2. Let o: B X B — K be a balanced biderivation. For any cosymmetric
elements b, ¢ € B, there is a linear map
b—ci A" ®44 — Al

carrying any x ® y € A®? to (b’ @ ¢') xpr yor € Ap.

Proof. Fix cosymmetric b,c € B. Forany x, y € A, set
(b —o)(x,y) = (" o) xprycr € Ap.

Let s = sp denote the antipode of B. For any homogeneous x, y,z € A, we have

(b — c)(ad"(x.y).2) = (=D o ') (s4(y)xy"), zer
— (_1)\x\|y I(b(l) o) y;(b<2))xb<3)y1;/(4>20”
— (_1)\X\|y|(b(1) ° C/) Vs(b@)p@ Xp3) Zer

2

e 4)( DD 0 @)y cryexprzea

= (=DPIHEYID 0 ¢P) (54(3")) g Vi X Ze
= (—DP"1EB 0 @) xpry! 2o (s400) 1)

E )P B 0 D) xpry )20 (540™) e

= (D)X 0 ¢y xpr (y254(")) o0

=(b— c)(x,ade(y,z)).



Brackets in representation algebras of Hopf algebras 619

Thus we obtain a linear map b — ¢: A”® 44 — Ap, and it remains to verify that it
takes values in A'z". Indeed, for any x, y € A, we have

A((b — ) (x ®y)) = (b o ') Alxpr) A(yer)
— bW 0 V) x5 v, @ 5(B@)pDs (@)@
(7:'2)(b(2) @) Xy Vo) ® S(b(3))b(1)s(c(3))c(l)
DD 0 @) x, .0 @ sBP)DPs(c@)c®
=0 ec)xpryr ®1p=(b—0)(x®y)® 13,
which shows that (b — ¢)(x ® y) € A", O

Theorem 11.3. Assume the conditions of Theorem 6.1. Then, for any x,y € A and
any cosymmetric b, ¢ € B, we have

(X, ye} = (b — ) ©p(X,§) € A"

Proof. Indeed,
{Xp, Yo} = (_l)lx 1Y |n (C// o b(Z)) ’O('xl’y/)SB(b(S))b(l) XZ(4> yé//
- (_1)|x 1Y |n (C" ° b(2)) S4 (,o(x', y')')b(3)p(X’, y/)Z“) xZ(4) yé//

= (_1)|x 1y o(x", ") |n ("o b(2)) 54 (,o(x’, y/)/)b(3)xg(4) p(x', y/)Z(l) yé//

(7.2) AT A
= (_l)lx 1y o(x", ") |n ("o b(l)) sS4 (,O(X,, y,)/)b(Z)xZG) p(x, y/)gm) yéf/

= (=) 0 1Y) (s (o, ¥) )X 3) ) 0
— (_1)|x//||P(x”y/)/x/|(c// ° b/) (SA (;O(X/, y/)/)x//p(x/’ y/)”)b// y(/://
_ (_l)lx/Hp(x//,y/)/\(c// ° b/) (SA(,O(X//, y/)/)x/p(x//’ y/)//)b” yé//
= (b ec")(ad" (x/,p(x”,y/)))b,, Yl = (b — ¢c)Bp(X, ). O
We illustrate Theorem 11.3 by considering the examples of Section 8, where B is
the coordinate algebra of one of the classical group schemes GLy, SLy or Oy, and
the balanced biderivation ¢ = e;,: B x B — K is induced by the usual trace t € B.

Themap? — t: A7 ®4%4 — A} is easily computed from the formulas given there:
forany x, y € A,

(¥ if B = K[GLy],
(t—Dx®y)={(xy) — %xtyn if B = K[SLy],
29 = 3(xsa(¥)e, if B = K[ON].
Theorem 11.3 implies that, in the notations (11.6)—(11.8),
(X, ¥)e, if B = K[GLw],
y | v, if B = K[SLy], (11.9)
g if B =K[On],

y
where we expand |—, —| = |-, —|* ® |-, —|" in the second formula.
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12. From surfaces to Poisson brackets

In this section, ¥ is a connected oriented surface with non-empty bondary and
7w = m1(X, %) is the fundamental group of X based at a point * € dX. We assume
that 2 is invertible in the ground ring K and view the group algebra A = K as an
ungraded Hopf algebra in the standard way.

12.1. The intersection pairing. The Hopf algebra A = K carries a canonical Fox
pairing p called the homotopy intersection pairing of X. It was first introduced (in a
slightly different form) in [17], and is defined as follows. Pick a point x € 9% \ {*}
lying slightly before * with respect to the orientation of X induced by that of X. Let
Vsx be a short path in dX running from * to * in the positive direction, and let D
be the inverse path. Given a loop 8 in X based at *, we let [8] € 7 be the homotopy
class of B. Every simple point p on such a 8 splits 8 as a product of the path B4,
running from * to p along B and the path B, running from p to * along B. Similar
notation applies to simple points of loops based at . For any x, y € 7, set

1
p(x,y) = Z Sp((xa B) [‘_)**a*pﬁp*] + E(X —D(y—1) €A, (12.1)

peanp

where we use the following notation: « is aloop in X based at * such that [Vsx Vx| =
x; B is aloop in X based at * such that [8] = y and B meets « transversely in a
finite set &« N B of simple points; for p € o N B, we set €,(a, B) = +1 if the
frame (the positive tangent vector of « at p, the positive tangent vector of § at p)
is positively oriented and ¢, («, B) = —1 otherwise. Then p: A x A — A is a well-
defined antisymmetric Fox pairing. As explained in Appendix B.2, this Fox pairing
is quasi-Poisson.

12.2. The operation ®. The module A = A4 /[A, A] can be identified with the mod-
ule K7 freely generated by the set 7 of homotopy classes of free loops in . By
Lemma 11.1, the intersection pairing p: A x A — A induces a bilinear pairing

0 = 0,:Ki xKit — (Kn)" ®kr " (Kn),

where the left and right Kr-module structures ¢ (K) and (K)™ on K are induced
by the conjugation action of 7. A direct computation shows that, for any X, y € 7,

O 7) = Y ep(e.B) vpap¥p] ® [¥oBp¥p]: (12.2)
peanpB

where we use the following notations: o, 8 are free loops in X representing,
respectively, X, y and meeting transversely in a finite set « N B of simple points;
op, B are the loops «, B based at p € o N B, and y,, is an arbitrary path in ¥ from
* to p.
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12.3. Brackets in Ag. Let B be a commutative ungraded Hopf algebra carrying
a balanced biderivation e. By Theorem 6.1, p and e induce a bracket {—, —} in
the representation algebra Ap. Using (6.5) and (5.5), we obtain for any x,y € &
and b,c € B,

Xp, Yo} = Z ep(a,B)(c" e b(Z)) [ﬁ**a*pﬁp*]sg(b(3))b“>xb(4)J’C’
peanp

1

+ (" 00"y xpryer + (" @ ) xpryer — (" 0 b") xpyyer — (' @ b') yerxp),

(12.3)

[\

where we use the same notation as in (12.1). If b and ¢ are cosymmetric, then
Theorem 11.3 gives a simpler expression for the bracket:

(Xp.yeh =Y ep(a.B) (D' o) [ypop 5 lor [VoBpVp e (12.4)

peanp
Assume now that ¢ = e, where t € B is a trace-like element. It follows
from Theorem 10.1 that the bracket {—, —} in Ap is quasi-Poisson with respect

to t. As observed in Section 10.1, this bracket restricts to a Poisson bracket
in (Ap)™. According to Section 3.3, the algebra Ap is the coordinate algebra
of the affine scheme Homg, (77, ¥ (—)) where § is the group scheme associated to B.
By Appendix A.5, the biderivation e = e, is tantamount to a metric on the Lie
algebra of §. The Poisson bracket {—, —} in (A4g)™ is an algebraic version of the
Atiyah—Bott—Goldman Poisson structure on the moduli space of representations of
in a Lie group whose Lie algebra is endowed with a metric, see [3,5]. Indeed,
formula (12.4) is the algebraic analogue of Goldman’s formula [6, Theorem 3.5],
where the operation (12.2) appears implicitly; for instance, the formulas (11.9)
correspond to [6, Theorems 3.13-3.15]. The quasi-Poisson bracket {—, —} in Ap is
an algebraic version of the quasi-Poisson refinement of the Atiyah—Bott—Goldman
bracket introduced in [1] and studied in [9, 12]. Indeed, formula (12.3) is the algebraic
analogue of the quasi-Poisson refinement of Goldman’s formulas obtained by Li-
Bland & Severa [9, Theorem 3] and Nie [12, Theorem 2.5]. For § = GLy,
formula (12.3) was obtained in [10] using Van den Bergh’s theory (see Appendix B).
Note that our proof of the quasi-Jacobi identity in A g (and, consequently, of the Jacobi
identity in (Ap)™) is purely algebraic and involves neither infinite-dimensional
methods of [3, 5, 6] nor the inductive “fusion” method of [1,9, 12].

A. Group schemes

We review group schemes (following mainly [8]) and reformulate in terms of group
schemes some of the notions introduced in the main body of the paper. In this
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appendix, by a module/algebra we mean an ungraded module/algebra over the ground
ring K.

A.1. Affine schemes. Let c# be the category of commutative algebras and algebra
homomorphisms. Let et be the category of sets and maps. By a K-functor we mean
a (covariant) functor csA — §et; for instance, the forgetful functor cA — et is a
K-functor which we denote by K. A morphism «: X — Y of K-functors is a natural
transformation of functors; for a commutative algebra C, we let ac: X(C) — Y(C)
be the map determined by «. Such a morphism « is an isomorphism if ac is a
bijection for all C.

For example, a commutative algebra B determines a [K-functor Hom, 4 (B, —)
and a homomorphism (respectively, isomorphism) of commutative algebras B — B’
determines a morphism (respectively, isomorphism) of K-functors Hom. 4 (B’, —) —
Hom, 4 (B, —).

An affine scheme X (over K) with coordinate algebra B is a triple consisting
of a K-functor X/, a commutative algebra B, and an isomorphism of K-functors
n: X — Hom,4(B,—). For shorteness, such a triple is denoted simply by X, the
algebra B is denoted by K[X], and the isomorphism 7 is suppressed from notation.
The evaluation of an f € B at x € X (C) is defined by f|. = nc(x)(f) € C. By
the Yoneda lemma, these evaluations define a canonical bijection

B —> Mor(X, X), (A.1)

where Mor(X, K) is the set of morphisms of K-functors X — XK.

A morphism of affine schemes is a morphism of the underlying K-functors. By
the Yoneda lemma, given a morphism of affine schemes a: X — ¥, there is a unique
algebra homomorphism a*: K[¥] — K[X] such that

ac(x) = xoa* € Homgy (K[¥],C) ~ ¥(C) (A.2)
for any commutative algebra C and any x € Hom, 4 (K[X], C) ~ X (C). Note that

a*(@)lx = x(a*(g) = (ac(0))(8) = glac ) (A.3)

for any g € K[¥].

Given two K-functors X and ¥, the product K-functor X x ¥ carries any
commutative algebra C to (X x ¥)(C) = X(C) x Y(C). If X,¥Y are affine
schemes, then so is X x ¥ with coordinate algebra K[X x ¥] = K[X] ® K[Y].

Given an affine scheme X and a commutative algebra C, we let Xc be the
C-functor which assigns to any commutative C-algebra D the set X(D). Then

Xc (D) ~ Homg 4 (K[X], D) = Homc-c4 (K[X] ® C, D),

where C-c A is the category of commutative algebras over C. Hence, X ¢ is an affine
scheme over (the underlying ring of ) C with coordinate algebra C[X¢] = K[X]®C.
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A.2. Monoid schemes. Let Mon be the category of monoids and monoid homo-
morphisms. A monoid scheme (over K) is an affine scheme whose underlying
K-functor is lifted to the category Mon with respect to the forgetful functor Mon —
8et. The theory of monoid schemes is equivalent to the theory of commutative
bialgebras. If B is a commutative bialgebra, then Hom, 4 (B, —) is a monoid scheme:
for any commutative algebra C, the set Hom, 4 (B, C) with the convolution product
is a monoid with unit egl¢: B — C. Conversely, if § is a monoid scheme, then its
coordinate algebra B = K[$] is a commutative bialgebra: the counit eg: B — K
is the neutral element of the monoid §(K) ~ Hom,4 (B, K); the comultiplication
Ap:B — B® B=K[§ x§]isevaluatedonany f € Bby Ag(f)|(x,y)=/flxy€C
for any commutative algebra C and any x,y € §(C).

A (left) action of a monoid scheme § on a K-functor X is a morphism of
K-functors w: § x X — X such that for any commutative algebra C, the map

we: (€ x X)(C) = 9(C) x X(C) — X(C)

is a (left) action of the monoid ¥ (C) on the set X' (C). The image under w¢ of a pair
(g €9(C),x € X(C)) is denoted by g - x.

A (left) action of a monoid scheme § on a module M (over K) is an action of §
on the K-functor M = M ® (—) such that, for any commutative algebra C, the
monoid §(C) acts on M(C) = M ® C by C-linear transformations. The study of
such actions is equivalent to the study of (right) B-comodules, where B = K[¢].
Specifically, a comodule map Apr: M — M ® B induces the following action of §
on M: for a commutative algebra C, an element g of §(C) ~ Hom,4 (B, C) acts
onm®@ceMQC by

g-(m®c)=me®(m’|gc):me®g(m’)c (A.4)

where A (m) = m* @ m” € M ® B in Sweedler’s notation. Conversely, an action
of ¥ on M induces a comodule map Ap: M — M ® B carrying any m € M
to idg -(m ® 1), where idgp € §(B) ~ Hom.4(B, B) acts on M ® B. Note that
an element m € M is §-invariant (in the sense that g - (m ® 1¢) = m ® 1¢ for
any g € §(C) and any commutative algebra C) if and only if Ayr(m) = m ® 1p.
Note also that, when M is an algebra, Ay is an algebra homomorphism if and only
if for all commutative algebras C, the monoid §(C) acts on M ® C by C-algebra
endomorphisms; we speak then of an action of § on the algebra M .

A.3. Group schemes. A group scheme (over K) is a monoid scheme & such that the
monoid §(C) is a group for every commutative algebras C. Under the equivalence
between monoid schemes and commutative bialgebras, the group schemes correspond
to the commutative Hopf algebras. The antipode in the coordinate algebra B of a
group scheme is the inverse of idp in the group Hom,4 (B, B). Conversely, if B
is a commutative Hopf algebra and C is a commutative algebra, then the monoid
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Hom, 4 (B, C) is a group with inversion obtained by composition with the antipode
of B.

In the next two lemmas, § is a group scheme with coordinate algebra B = K[§]
and sg: B — B is the antipode of B.

Lemma A.1. A (left) action w of § on an affine scheme X induces a (left) action
of § on the algebra K[X]. Specifically, for any commutative algebra C, the action
ofage§(C)onan f e KIX]® C = C[X¢] is given by

(g Plx= f|g—1-x = fla)D(g_l,x) €D (A.5)

for any commutative C-algebra D and any x € X ¢ (D) = X (D). The correspond-
ing (right) comodule map A = Ag[x): K[X] — K[X] ® B is computed by

A = (idg[x] ®sB)Pw* (A.6)

where w*: K[ X]— K[§x X]| = BQK|[X] is induced by the morphism w: § x X, — X
and P: B ® K[X] — K[X] ® B is the permutation.

Proof. Fix acommutative algebra C and g € ¥(C). Foracommutative C -algebra D,
the algebra homomorphism C — D, ¢ + ¢ - 1p allows us to view g € §(C) as an
element of §(D). Consider the automorphism of the affine scheme X¢ given, for
any commutative C-algebra D, by the bijection

wp(g.—): Xc(D) = X(D) — X(D) = Xc (D).

Thus we obtain a group homomorphism §(C) — Aut(X¢ ), which we compose and
pre-compose with the following group anti-isomorphisms:

group inversion

g(C) .~ 5(C) Aut(Xc) —=> Autc-cA (C[XC]) C Autc 4, (K[X] ® C).

The composed group homomorphisms §(C) — Aut. 4 (K[X] ® C) defined for all
commutative algebras C yield an action of & on the algebra K[X']. The formula (A.5)
easily follows from this definition. To show (A.6), we need to verify that for all

m € K[X],
A(m) = (idg[x) ®sB)Pw*(m) € K[X]® B = K[X x g].

It suffices to show that the evaluations of both sides at (x, g) coincide for any
commutative algebra C and any

x € X(C) >~ Homg, 4 (]K[X]C) and g € §(C) >~ Hom.4(B,C).
Observe that
g x=wc(g”

Emultc o(g™' ® x) 00" € X(C) = Home 4 (K[X]. C).

1’ X)
(A7)
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By definition,
A(m)|(x,g) = multc (x ® g)(A(m)) = m*|ym"|g € C
where A(m) = m* ® m” in Sweedler’s notation. On the other hand,

(idK[x] ®SB)Pa)*(m)|(x,g) = multc (x ® g) ((idK[x] ®sB)Pa)*(m))

= multc (g_1 ® x)(w*(m))
g™ x)m)
=(g " m®lc)

Cr(g-me1c))
Ex(m' @ gn") = x(m")g(m") = m |,

where, in the last three lines, X (C) ~ Hom, 4 (K[X], C) is also identified with the
set Homc-. 4 (K[X] ® C, C). Hence the two evaluations at (x, g) coincide. O

We now recall the “group scheme” interpretation of the adjoint coaction (3.12).

Lemma A.2. The action of § on itself by conjugation induces an action of § on the
algebra B = K[§]. The corresponding comodule map A: B — B ® B is given by

Af) = f"®sp(f)Sf" (A.8)
forany f € B, where (Ap Q@ id)Ap(f) = ' ® f" ® f" in Sweedler’s notation.

Proof. The first statement directly follows from Lemma A.1 and we only need to
prove (A.8). The conjugation action of ¥ on itself is given by the morphism
w: g x § — § defined by wc(g,m) = gmg~! for any commutative algebra C
and any g,m € §(C). The value of w*: B — B ® B on an element f € B is
computed by

O (Nlgm = loc g.m
= flgmg*l
— f/|gf//|mf///|g—1
— (f/sB(f///))lgf/llm — (f/SB(fl//) ® f//)l(g,m)-
Thus, 0*(f) = f'sp(f"") ® f” and (A.8) follows from (A.6). O]

By Remark 7.3.1, an element of B = K[¢] is cosymmetric if and only if it is
invariant under the §¥-action given by Lemma A.2. This observation can be used
to produce cosymmetric elements from linear representations of ¥. Consider an
action w of the group scheme § on a finitely-generated free module M. The character
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of w is the morphism y,:§ — K defined, for any commutative algebra C, by the
composition

G(C) -2 Aute (M ® C) 2= .

Clearly, y, is §-equivariant if K is endowed with the trivial ¥-action. Therefore
the element ¢, € B corresponding to y, € Mor(§, K) via the bijection (A.1) is
§-invariant, and we deduce that ¢, is cosymmetric. The examples of trace-like
elements given in Section 8 for § = GLy,SLy,Op arise in this way; further
examples are obtained by considering other matrix group schemes.

A.4. Equivariant pairings. Let § be a group scheme acting on modules M, N and
let g: M x M — N be a bilinear map. Given a commutative algebra C, we define a
C-bilinear map gc: (M  C) x (M ® C) - N ® C by

gc(my ® c1,my ® ¢2) = q(my,mz) ® ci1c2
for any m;,m, € M and ¢y, c, € C. The pairing ¢ is said to be §-equivariant if

gc(g-(mi ®c1). g (M ®c2)) = g-qc(my ® c1,mz ® ¢2)
for all C,my,m,,cq,c, as above and all g € §(C). If N = K with the trivial
g -action, then the pairing g is said to be §-invariant.

Lemma A.3. A bilinear map q: M x M — N is §-equivariant if, and only if, it is
B-equivariant in the sense of Section 2.6, where B = K[§] and M, N are viewed as
B-comodules.

Proof. Assume first that g is §-equivariant. We must prove that

12
q(my,m5) @ mh = (g(m%.my))” ® (q(m%.my))"sp(m}) e N® B  (A9)
for any m,m, € M. For a commutative algebra C and g € §(C), we have

qmy,m3) ® mi|g = gc(m1 ® lc,ms ® m3| )

(A4)
=gc(mi ®1c.g- (m> ® 1¢))

=g-qc(g7'-mi®1c).my®1c)

(A.4)
= g'CIC(mf ® mi|g-1.m2 ® I¢)

= g (q(m%, m2) ® sp(m?)|,)

(A=-4>(q(m§ , mz))Z R (q(m{ , mz))r |g sp(mh)|g.

Hence the formula (A.9) follows.
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Conversely, assume (A.9) and let my,my € M, c1,¢c5 € C and g € §(C)
where C is an arbitrary commutative algebra. Consider the comodule map
Apy:M — M ® B and expand (Ay ® idg)Ay(m) = m* @ m*" @ m” for
allm € M. Then

gc(g-(mi ®c1).g- (mz2 ® ¢2))

(A4)
=qc (m] ® mf|ger,ms @ mg c)

= q(m{,m5) ® mh|gm’|y cic

gm.m))" @ ((qmt.ma)) spmiN)| ,mh|g crc2

= (g, m2))" ® (qnt, m2))’ |, (53§t g crcs
= (Q(mhmz))e ® (q(ml,mz))r|g c162

(A=4)g . (q(ml,mz) ® 0162) =g qc(ml ® C1,my ® C2)'

This proves the §-equivariance of ¢q. O

For example, consider the action of ¥ on the algebra B = K[¢] induced by
conjugation (see Lemma A.2). Remark 5.3(2) and Lemma A.3 imply that a bilinear
form B x B — K is balanced if and only if it is symmetric and §-invariant.

A.5. The Lie algebra of a group scheme. Let§ be a group scheme with coordinate
algebra B = K[§]. Consider the ideal / = Ker(ep) of B, where ep: B — K is the
counit.

Lemma A.4. The action of § on B induced by conjugation (see Lemma A.2) stabilizes
the ideal I and all its powers.

Proof. Since § acts on B by algebra automorphisms, it suffices to prove that the
action of § on B stabilizes 7, i.e. that

g-UI®C)CcI®C (A.10)
for any commutative algebra C and any g € §(C). Observe that
I ® C = Ker(ep ®idc) = Ker(ecg.1),

where §¢ denotes the group scheme over C induced by ¥ and C[gc] is the
corresponding commutative Hopf algebra over C. Then, forany b € I and ¢ € C,
we have

ectscl(g-(b®c)) = (g-(b®c)h

(A.5)
= (b & C)|g—11g

= (b® )1 = ecgb ® ) = ep(b) ®c =0

where 1 denotes the neutral element of the group ¢ (C) = §(C). It follows that
g-(b®c) el ®C. This proves (A.10). O
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Denote by g the module of derivations B — K, where K is regarded as a
B-module via ep. Then g is a Lie algebra with Lie bracket

[, v](0) = (@) (@B") = v(B)®")

for any u,v € gand b € B, where Ag(b) = b’ ® b” is the comultiplication in B.
Any derivation B — K induces a linear map ///%? — K, and this identifies g
with (1/1?)*.

We say that the group scheme § is infinitesimally-flat if the module 1/1? is
finitely-generated and projective, or, equivalently, is finitely-presented and flat, cf. [4,
Chap. I1, §5.2]. Our condition of infinitesimal flatness is somewhat weaker than the
one in [8] and, when K is a field, is equivalent to the condition that the Lie algebra g
is finite-dimensional. If § is infinitesimally-flat, then for any commutative algebra C,
we have isomorphisms

g®C =(I/1*)*®C ~Hom(I/I?,C) ~Homc ((I/I*) ® C,C). (A.1])

Lemma A.4 yields an action of § on the module 7 /12, which induces an action of §
on g via (A.11). The latter action is called the adjoint representation of §. A metric
in g is a §-invariant nonsingular symmetric bilinear form g x g — K.

Lemma A.5. Let § be an infinitesimally-flat group scheme with Lie algebra g.
There is a canonical embedding of the set of metrics in g into the set of balanced
biderivations in B = K[§].

Proof. The linear map p: B — 1/I? defined by b + (b — ep(b)1p)mod 12 is
§-equivariant, and the §-invariance of a symmetric bilinear form e: B x B — K is
equivalent to the condition (5.4) as we saw at the end of Section A.4. Therefore, we
have a bijective correspondence

restriction

/—\

{balanced biderivations in B} {g-invariant symmetric bilinear forms in 7/12}.

\//

pre-composition with p X p

Since g = (I/1?)*, there is a canonical bijective correspondence between the set
of nonsingular §-invariant symmetric bilinear forms in 7 /12 and the set of metrics
in g. O

A.6. Representation algebras. We give an interpretation of the coaction in Lem-
ma 3.3 (at least in the ungraded case).

Lemma A.6. Let § be a group scheme with coordinate algebra B = K[9g] and let
Sp: B — B be the antipode of B. For any (ungraded) cocommutative bialgebra A,



Brackets in representation algebras of Hopf algebras 629

the action of § on B given by Lemma A.2 induces, in a natural way, an action of §
on the affine scheme yg of B-representations of A. The corresponding comodule
map A: Ap — Ap ® B is the unique algebra homomorphism such that

A(xp) = xpr @ sp(b")b"” (A.12)
forany x € Aand b € B.

Proof. Let C be a commutative algebra. Recall that in our notation,
Hgp(C) = Hom(B, C) >~ Hom¢ (B ®C, C)

and that Hg(C) is an algebra with convolution multiplication. For g € §(C) and
u € Y4(C) C Hom(A, Hg(C)), we define a linear map g - u: A — Hp(C) by

(g-w)x)(b) =ux) (g™ - (b®1c)) €C, (A.13)

where x runs over A and b runs over B. It can be easily verified that g - u is an
algebra homomorphism satisfying (3.5), thatis g-u € Z/g (C). This defines an action
of the group ¥(C) on the set yg (C). Varying C, we obtain an action, w, of the
group scheme § on the affine scheme Z/g. The induced map w*: Ap — B ® Ap is
evaluated on any generator x; of Ap as follows: for any C, g, u as above,

(A3)
‘U*(xb)|(g,u) = (xb)|wc(g,u) = (xb)|g-u

= (g-w)(x)(b)

Ll v e 10)

) (b @ b [5-1)
= u(x)(b" ® (s5(6)D") 1)
= (u(x)(®")) - (s5 (D)D"

g*l
= (sg(B)D")|g—1 - (u(x)(b")
= (b'sg(b"))lg - (xp)|u

= (b'sp(") ® xp)(g.u)-

Here the third and the ninth identity follow from the description of the bijection
Zyg (C) ~ Hom,4(Ap, C) in the proof of Lemma 3.1, we use Lemma A.2 in the
sixth identity to compute A(b) = b* ® b” € B ® B, and, starting from the seventh
identity, the dot denotes the multiplication in C. We deduce that

w*(xp) =b'sp(b"") @ xpr € B® Ap

and (A.12) then follows from (A.6). O
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We illustrate Lemma A.6 with two examples. In both, § is a group scheme with
coordinate algebra B. Let A = KI" be the bialgebra of a monoid I" and recall from
Section 3.3 the isomorphism of group schemes

Y4 ~ Homuon (T, 6(-)).

Under this isomorphism, the action of ¥ on Zyg given in Lemma A.6 corresponds to
the action of ¥ on Hom 4, (I', & (—)) by conjugation on the target.

Assume now that § is infinitesimally-flat, and let A = U(p) be the enveloping
algebra of a Lie algebra p. Recall from Section 3.4 the isomorphism of group schemes

Under this isomorphism, the action of § on yg given in Lemma A.6 corresponds to
the action of ¥ on Homg.(p, g ® (—)) induced by the adjoint representation of g.

B. Relations to Van den Bergh’s double brackets
We outline relations between our work and Van den Bergh’s theory of double brackets.

B.1. Double brackets. Van den Bergh [15] introduced double brackets in algebras
as non-commutative versions of Poisson brackets in commutative algebras. We recall
here his main definitions and results reformulated for graded algebras.

Fix an integer n. Ann-graded double bracket in a graded algebra A is a linear map
f{—, =0 : A®%2 — A®2 satisfying certain conditions formulated in [15] (see also [11]
for the graded case). These conditions amount to an n-graded version of the Leibniz
derivation rule with respect to each of the two variables, the inclusion

gar. A% c @ A A

i+j=p+q+n

for any p, g € Z, and the n-antisymmetry

(o =~ T g eyt @

for any homogeneous x, y € A where we expand {x, y}} = {x, y}}Z ® fx, yi.
Pick now an integer N > 1. The functor

Homg 4 (4, Maty (—)): cgA —> Set,

which assigns to any commutative graded algebra C the set of C-linear actions of 4
on CV is representable: one defines by generators and relations a commutative
graded algebra Ay such that Homg 4 (A4, Maty (C)) >~ Homg 4(An, C) for any C.
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The generators of Ay are the symbols x;; where x runs over 4 and 7, j run over
the set N = {1,..., N}. Van den Bergh shows that any n-graded double bracket
{{—, —}} in A induces an n-antisymmetric n-graded bracket in Ay by

{Xij. yun} = 4, v 5 € BT, (B.2)

for x,y € Aand i, j,u,v € N. To study the Jacobi identity, Van den Bergh
associates to {{—, —}} an endomorphism {{—, —, —}} of A®3, the triple bracket, by

2
f—— =3 = Pin(f— -} ®ida)(ida ® {—. =} P31, (B.3)
i=0

where P31, P312., € End(A®3) are as in Section 9.1. The double bracket {{—, —}}
is Gerstenhaber of degree n if {—, —, —}} = 0. This condition implies that, for any
N > 1, the bracket (B.2) in Ay is Gerstenhaber of degree n. Gerstenhaber double
brackets of degree 0 in ungraded algebras are called Poisson double brackets.

B.2. Fox pairings versus double brackets. As we now explain (without proofs),
Fox pairings and double brackets in Hopf algebras are closely related. Consider
an involutive graded Hopf algebra A with counit €4, comultiplication A4, and
antipode s4. Any antisymmetric Fox pairing p of degree n € Z in A induces an
n-graded double bracket {{—, —}} , in 4 by

{x, )’}}p — (_1)\y/\|x|n+|x’|\(p(x”,y”))’\ y’sA((,o(x”, y”))/)x/® (,o(x”, y//))//’ (B.4)

where x, y run over all homogeneous elements of A. The pairing p may be recovered
from this double bracketby p = (¢4 ® id4) {{—, —}},- Thus, for an involutive graded
Hopf algebra A, we can view n-graded double brackets in A as generalizations of
antisymmetric Fox pairings in A of degree n. For cocommutative A, we make a few
further claims:

(i) An n-graded double bracket {—, —}} in A arises from an antisymmetric Fox
pairing of degree n in A if and only if {{—, —}} is reducible in the sense that

x'sa( {{x”,y'}}e) ® { x”,y/}}r 540" eA (A CARA

forany x,y € A. If {—, —}} = {—, —}}, arises from an antisymmetric Fox pairing p
in A of degree n, then the tritensor map (9.1) and the tribracket (B.3) are related by

{— — =} =Paizo|— — —| oP2i3.. (B.5)

(ii) If {{—, —}} is an n-graded double bracket in A and B is a commutative ungraded
Hopf algebra equipped with a trace-like ¢ € B, then there is a unique n-graded
n-antisymmetric bracket {—, —} in the graded algebra A p such that

{Xp, Vel = (_l)lx//lly’ln {{x’, y/}}f(l) {{x/’y/}}trm xZYt(z) ygwm) (B.6)



632 G. Massuyeau and V. Turaev

for any x,y € A and b,c € B, where Y is defined by (9.2). When {—, —}} =
{{—., —}}, arises from an antisymmetric Fox pairing p of degree n, the bracket (B.6)
coincides with the bracket (6.5) derived from p and e = e;.

These claims have the following consequences. First of all, it follows from (B.5)
that an antisymmetric Fox pairing p in a cocommutative graded Hopf algebra A
is Gerstenhaber in our sense if and only if the double bracket {{—, —}}, defined
by (B.4) is Gerstenhaber in the sense of [15]. For instance, it is proved in [11]
that {{—, —}} , is Gerstenhaber for the Fox pairing p evoked in Example 4.2.3 which
implies that p is Gerstenhaber.

Next, the above claims and Theorem 9.1 imply that the bracket (B.6) in 4 p derived
from a reducible Gerstenhaber double bracket of degree n in A is Gersthenhaber
of degree n. We wonder whether this extends to non-reducible double brackets.
Note that the reducibility property is quite restrictive: for instance, most of the
Poisson double brackets in free associative algebras constructed in [13, 14] are not
reducible with respect to the standard Hopf algebra structures in these algebras.
When B = K[GLy] and ¢ is the usual trace (see Section 8.1), the bracket (B.2) is
carried to the bracket (B.6) by the algebra homomorphism Ay — Ap. x;; — X(t;,)
forall x € Aand i, j € N. Since the image of this homomorphism generates Ap,
the bracket (B.6) in Ap determined by any (possibly, non-reducible) Gerstenhaber
double bracket in A is Gerstenhaber for these B and 7.

Finally, the above claims have similar implications in the quasi-Poisson case. In
particular, (B.5) implies that an antisymmetric Fox pairing p in a cocommutative
ungraded Hopf algebra is quasi-Poisson if and only if the double bracket {—, —}},
defined by (B.4) is quasi-Poisson in the sense of Van den Bergh [15]. By [10],
{i—, =}, is quasi-Poisson for the Fox pairing p in Section 12 so that p is quasi-
Poisson in our sense.

C. Free commutative Hopf algebras

We consider commutative Hopf algebras freely generated by coalgebras in the sense
of Takeuchi, see [16] and [2, Appendix B]. We show that balanced biderivations in
these Hopf algebras naturally arise from cyclic bilinear forms on coalgebras defined
in [18]. Unless otherwise mentioned, in this appendix, by a module/algebra/coalgebra
we mean an ungraded module/algebra/coalgebra.

Let M be a coalgebra with comultiplication A and counit €p7. Takeuchi
introduced a commutative Hopf algebra F(M) called the free commutative Hopf
algebra generated by M. This Hopf algebra is defined in [16, Section 11] as an
initial object in the category of commutative Hopf algebras X endowed with a
coalgebrahomomorphism M — X. Itcan be explicitly constructed as follows, see [2,
Appendix B]. As an algebra, F(M) is generated by the symbols {m™, m™ }mem
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subject to the following relations: forany k € K and /,m € M,

(km)® =km*, ( +m* =1% +m*, (C.1)
Fm* =m* 1%, 1TmT =mT I, (C.2)
(m)*(m")” =epm(m)1 = (m')"(m")", (C.3)

where Ay (m) = m’ ® m” in Sweedler’s notation. It is easily verified that there are
algebra homomorphisms

AFM) > FIM) FIM), eFM)—>K, si:F(M)— F(M)
defined on the generators by

Am™) = (m*" @ m"*, Am™)=m")" & m),
em*) = ey (m), s(m*) =mT,
for any m € M. These homomorphisms turn F(M) into a commutative Hopf
algebra which, together with the map M — F(M),m +— m™, has the desired
universal property.
Consider the ideal / = Kere C F(M). Computing the module //1? from the
presentation of F'(M), we obtain that the linear map

M —I/I*>,m+— m" —g(m™) mod I?

is an isomorphism. As a consequence, the linear map M — F(M), m — m™*
is injective. This allows us to treat M as a submodule of F(M). By the
correspondence (5.3), every bilinear form M x M — K extends uniquely to a
biderivation F(M) x F(M) — K.

A bilinear form e37: M x M — K is said to be cyclic, see [18], if

(l .M m//) ml ® m/// — (m .M l//) l/l/ ® l/ (C4)
for any /,m € M. Applying ey ® &) to both sides of (C.4), we obtain that cyclic
bilinear forms are symmetric.

Lemma C.1. Any cyclic bilinear form ep: M x M — K extends uniquely to a
balanced biderivation F(M) x F(M) — K.

Proof. By the above, e, extends uniquely to a biderivation e in F'(M). We only
need to show that e is balanced. Define a bilinear map x: F(M) x F(M) — F(M)
by

k(b,c) = (bec")s(c")c"" — (c eb")s(b")b’

for any b, c € F(M). Straightforward computations show that

Kk(b1by, ) = e(bz) k(b1,c) + e(b1) k(Db2, ¢),
k(b,c1c2) = e(c2) k (b, c1) + e(c1) k(D c2)
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for any b, by, ba, ¢, cy,ca € F(M). Therefore the submodule K - 1 + 12 of F(M) is
contained both in the left and the right annihilators of k. Hence, « is fully determined
by its restriction to M x M. The condition (C.4) implies that « (M, M) = 0. Hence
k = 0 and e is balanced. O

The following claim is a particular case of Theorem 6.1.

Corollary C.2. Let p be an antisymmetric Fox pairing of degree n € 7 in a
cocommutative graded Hopf algebra A. Let ep be a cyclic bilinear form in a
coalgebra M and let B = F(M). Then there is a unique n-graded bracket {—, —}
in Ap such that

{Xp, e} = (_1)Ix’llp(x”,y”)’\-i-Iy’llxln (b erc")
(y/SA (p(x//’ y//)/)x/)c/ (p(x”, y”)”)c/// (C.5)

for any homogeneous x,y € A and b,c € M. This n-graded bracket is antisym-
metric.

Proof. Since the algebra B is generated by the set {m, s(m)}mep, the algebra Ap is
generated by the set {x,, } xe4,mem Which proves the unicity. To prove the existence,
consider the balanced biderivation e in B extending e, and the bracket {—, —}in Ap
obtained by an application of Theorem 6.1 to p and e. Note that (C.4) implies that

(loem"ym' = (mel)l” (C.6)

for any I, m € M. Then, for any homogeneous x, y € A and b,c € M, we have

{xb, ye}

= (DX 0 bP) p(x' ¥y X Ve
SN e 0 b @) o )y Tes) Vi

= (DF V(e 0 b s (p (', YY)y P YN Xy Yy

= (_1)Ix”lIy’p(X’,y’)”In-I-Iy”llxy’\n (co b(z)) yl/,/<3) S4 (p(x/, y/)/)b<4) XZ(S) p(x/, y/)Z(l)
= (=PI Y 1xY In (- o 7Y (" sa(p(x', y/)/)xu)bm p(x' YV,

= (_1)IX”Ilp(x’,y’)’x’lJrly”lIxy’\n (co b”) (y” sS4 (p(x’, y/)/)x//)bm p(x’, y’)},//

= (_1)|x’\IP(X”,y’)’|+|y”|IXy’|n (c e b”) (y// sS4 (p(x", y/)/)x/)bm p(x”, y/)g/

= (_1)|x/\Ip(x”,y”)/|+|y’IIXIn (cob”) (y/SA (,o(x”, y//)/)x/)bw p(x”, y”)g/

so that (C.5) now follows from (C.4). ]
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We briefly discuss trace-like elements of F (M) lying in M C F(M). Assume
for simplicity that the underlying module of M is free of finite rank. An element
t € M is cosymmetric if and only if the bilinear form

(= )eM*xM* —K, (,m)vr—I1{t)mt")

is symmetric. An element 1 € M is infinitesimally-nonsingular if and only if
the form (—, —); is nonsingular. Consequently, # € M is trace-like if and only
if the algebra M™* dual to M and equipped with the bilinear form (—,—); is a
symmetric Frobenius algebra. For a trace-like 1 € M, the balanced biderivation e,
in F (M) restricts to a cyclic bilinear form on M. This connection between symmetric
Frobenius algebras and cyclic bilinear forms on coalgebras was first observed in [18].
The bracket (B.6) specializes in this case to the bracket in [18]; this directly follows
from (C.5) if the double bracket in (B.6) is reducible.

For example, consider the coalgebra M = (Maty (K))* dual to the algebra
of N x N matrices Maty (K). Then the Hopf algebra F (M) is nothing but the Hopf
algebra B from Section 8.1. Indeed, it is easily checked that B verifies the universal
property of F(M) (cf. [2, Example B.3]). The trace-like element ¢ € B pointed
out in Section 8.1 belongs to M C B. Thus, the balanced biderivation e; in B is
induced by a cyclic bilinear form in M. Corollary C.2 applies and yields again the
formula (8.2).
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