
J. Noncommut. Geom. 12 (2018), 637–670
DOI 10.4171/JNCG/287

Journal of Noncommutative Geometry
© European Mathematical Society

Toeplitz operators and the Roe–Higson type index theorem
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Abstract. Let M be a complete Riemannian manifold and assume that M is partitioned by a
hypersurface N . In this paper we introduce a novel class of functions Cw.M/ on noncompact
manifolds, which is slightly larger than the algebra of Higson functions. Out of � that belongs
to Cw.M/we construct an index class Ind.�;D/ inK1-group of the Roe algebra ofM by using
the Kasparov product. It is supposed to be a counterpart of Roe’s odd index class. We finally
prove that Connes’ pairing of Ind.�;D/ and Roe’s cyclic 1-cocycle is equal to the Fredholm
index of a Toeplitz operator on N . This is an extension of the Roe–Higson index theorem to
even-dimensional partitioned manifolds.
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1. Introduction

Let M be a complete Riemannian manifold and assume that M is a partitioned
manifold. That is, there exists a closed submanifold N of codimension one such
that M is decomposed by N into two components MC and M�, and one has
N D MC \M� D @MC D @M�; see Definition 2.1. Let S ! M be a Clifford
bundle in the sense of J. Roe [16, Definition 3.4] and D the Dirac operator of S .
Denote by SN the restriction of S toN and � a unit normal vector field onN pointing
from M� into MC. Then we can equip SN with a Z2.D Z=2Z/-graded Clifford
bundle structure, where the Z2-grading on SN is defined by using the Clifford action
of �. LetDN be the graded Dirac operator on SN .

LetC �.M/ be the Roe algebra ofM , which is a non-unitalC �-algebra introduced
by Roe in [16]. In [16], Roe also defined the odd index class odd-ind.D/ D ŒuD� 2
K1.C

�.M//, where uD is the Cayley transform ofD.
Roe also defined the cyclic 1-cocycle � on a dense subalgebra X of C �.M/,

which is called the Roe cocycle. The Roe cocycle is constructed to be the Connes–
Chern character of the Fredholm module defined by the partition of M which
corresponds to the Wiener–Hopf extension. Thus Connes’ pairing hx; �i of �
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with x 2 K1.C
�.M// is equal to the index map defined by the Wiener–Hopf

extension; see [13, Remark 4.14] and Section 4.3.
TheRoe cocycle � is related to the PoincarKe dual ofN ,pd.N / 2 H 1

c .M/; see [15,
Section 6.1]. In fact, there uniquely exists a coarse cohomology class ˛ 2 HX1.M/

such that the character map HX1.M/ ! H 1
c .M/ sends ˛ to pd.N /. Moreover,

the character map HX1.M/ ! HC 1.X/ sends ˛ to Œ��. By this relationship of
� and N , it is expected that we could pick up some informations of N by using �.
Indeed, Roe proved Connes’ pairing hodd-ind.D/; �i is equal to the Fredholm index
of DCN up to a certain constant multiple [16]. In [10], N. Higson gave a simplified
proof of a variation of Roe’s theorem, thus we call it the Roe–Higson index theorem
in this paper.

On the other hand, index.DCN / is 0 forN is of odd dimension; see, for instance [16,
Proposition 11.14]. This implies that the Roe–Higson index hodd-ind.D/; �i is trivial
whenM is of even dimension. However, Connes’ pairing of � with x 2 K1.C �.M//

is non trivial in general.
In this paper, we shall develop an index theorem on even dimensional partitioned

manifolds, which is analogous to the Roe–Higson index theorem. For this purpose,
we need to replace two ingredients, odd-ind.D/ and the Dirac operator DCN by an
index class Ind.�;D/ D Œ�� y̋ ŒD� and a Toeplitz operator on N , respectively. In
order to define this index class Ind.�;D/ on M , we need to introduce a new class
of C �-algebra Cw.M/, which is larger than the Higson functions onM and smaller
than the bounded continuous functions on M ; see Definition 3.1. In fact, we use
� 2 GLl.Cw.M// and ŒD� 2 KK0.Cw.M/; C �.M//. By using the algebraCw.M/,
this index class Ind.�;D/ can be regarded as a counterpart of Roe’s odd index; see
Subsection 4.1. It turns out Connes’ pairing hInd.�;D/; �i is equal to the Fredholm
index of a Toeplitz operator on N up to a certain constant multiple. The precise
statement as follows:

MainTheorem (see Theorem 3.6). LetM be a complete Riemannianmanifold which
is partitioned by N as previously. Let S !M be a graded Clifford bundle with the
grading � and denote byD the graded Dirac operator of S . Take � 2 GLl.Cw.M//;
see Definition 3.1. Then the following formula holds:

hInd.�;D/; �i D �
1

8�i
index.T�jN /:

Applying a topological formula of the Fredholm index for Toeplitz operators
proved by P. Baum and R. G. Douglas [2], we obtain the following:

Corollary (see Corollary 3.7). Let M be a partitioned manifold partitioned by
.MC;M�; N /. Denote by … the characteristic function of MC. Let S ! M be
a graded Clifford bundle with the grading �, and denote by D the graded Dirac
operator of S . We assume � 2 C1.M IGLl.C// is bounded with bounded gradient
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and ��1 is also a bounded function. Then one has

index
�
….D C �/�1

�
� 0

0 1

�
.D C �/…W….L2.S//l ! ….L2.S//l

�
D

Z
S�N

��Td.TN ˝C/ch.SC/��ch.�/:

The idea of the proof is as follows. Firstly, we calculate the Kasparov product
Œ�� y̋ ŒD� by using the Cuntz picture of ŒD�. Secondly, we calculate hInd.�;D/; �i
explicitly by using the Hilbert transformation and a homotopy of Fredholm operators
the case for M D R � N and � D 1 ˝  for  2 C1.N IGLl.C//. Finally, we
reduce the general case to R �N by applying a similar argument in Higson [10].

SetM D R�N and assume thatN is of odd dimension. Let i WN 3 x 7! .0; x/ 2

R � N be the inclusion map. Connes [5, 7] defined an element i Š 2 KK1.N;M/.
In this case, the main theorem is derived from the Roe–Higson index theorem by
applying i Š formally as follows. The Dirac operator D on M defines an element
ŒD� 2 KK0.M; pt/. Let us take a function �WM ! GLl.C/ and suppose that �
determines an element J�K 2 KK1.M;M/. By the Kasparov product, we have an
element

J�K y̋ ŒD� 2 KK1.M; pt/

and also
i Š y̋

�
J�K y̋ ŒD�

�
D J�jN K y̋ ŒDN � 2 KK0.N;C/:

On the other hand, the Roe–Higson index theorem implies hA.x/; �i D q�.i Š y̋x/

with x 2 KK1.M; pt/ the fundamental class of the Dirac operator, where
AWKK1.M; pt/ ! K1.C

�.M// is the assembly map and q�WK0.N / ! Z is the
homomorphism induced by the mapping q from N to a point. Thus we have

hA
�
J�K y̋ ŒD�

�
; �i D q�

�
i Š y̋

�
J�K y̋ ŒD�

��
D index.T�jN /;

which is a statement of the main theorem forM D R �N .
This formal argument is correct only if � is an element in GLl.C0.M// since

the aboveKK groups are defined asKK1.M; pt/ D KK1.C0.M/;C/, for instance.
However, if � were chosen as an element in GLl.C0.M//, � should take a constant
value outside a compact set ofM . This implies that �jN is homotopic to a constant
function in GLl.C.N // and thus index.T�jN / should vanish. Therefore, in order to
obtain non-trivial index, we have to employ a larger algebra than C0.M/.

Higson [9] introduced such a C �-algebra Ch.M/ that contains C0.M/, which
is now called the Higson algebra. It plays an important role in a K-homological
proof of the Roe–Higson index theorem. The Higson algebra is defined as follows:
Ch.M/ is the C �-algebra generated by all smooth and bounded functions defined
onM of which gradient is vanishing at infinity [9, p. 26]. Ch.M/ contains C0.M/

as an ideal and is contained in Cw.M/ by definition. Given  2 C1.N /, we note
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that � D 1˝ does not belong to Ch.M/ in general. Thus the Higson algebra is not
large enough to prove our main theorem. On the other hand, we have � 2 Cw.M/.
Moreover, Cw.M/ is the largest C �-algebra A for which we can define ŒD� as an
element in KK0.A; C �.M//. They are reasons why we introduced the C �-algebra
Cw.M/ in our main theorem.

This paper containsmore generalmethod than that of author’s previous paper [17],
which proves the case when two dimension by elementary method and contains a
non-trivial example.

2. Preliminaries

2.1. Partitioned manifolds. We firstly describe a partitioned manifold, which is a
main object in our main theorem.

Definition 2.1. LetM be an oriented complete Riemannian manifold. Assume that
the triple .MC;M�; N / satisfies the following conditions:

� MC andM� are submanifolds ofM of the same dimension asM , @MC ¤ ; and
@M� ¤ ;;

� M DMC [M�;

� N is a closed submanifold ofM of codimension one;

� N DMC \M� D �@MC D @M�.

Thenwe call .MC;M�; N / a partition ofM . M is also called a partitionedmanifold.

Figure 1. Partitioned manifold.

For example, we can considerR�N is partitioned by .RC�N;R��N; f0g�N/,
where we set RC D ft 2 R I t � 0g and R� D ft 2 R I t � 0g.

We fix the notation of two functions which are defined by a partition.

Definition 2.2. Assume that M is partitioned by .MC;M�; N /. Denote by … the
characteristic function ofMC and set ƒ D 2… � 1.
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2.2. The Roe algebra. In this subsection we recall the definition of the Roe algebra
C �.M/ and describe some properties of it.

Definition 2.3 ([14, p. 191]). LetM be a completeRiemannianmanifold andS !M

a Hermitian vector bundle. Denote byL2.S/ theL2-sections of S and L.L2.S// the
bounded operators onL2.S/. Denote by X the algebra of bounded integral operators
on L2.S/ which have smooth kernels and finite propagation. Denote by C �.M/ the
closure of X and call it the Roe algebra.

We collect some properties of the Roe algebra which we shall need. Let C0.M/

be the C �-algebra of all continuous functions onM vanishing at infinity.

Proposition 2.4 ([11,14,15]). LetM be a complete Riemannianmanifold andS!M

a Hermitian vector bundle. Denote by D�.M/ the �-subalgebra of L.L2.S// which
contains pseudolocal operators with finite propagation, where T 2 L.L2.S// is
pseudolocal if Œf; T � � 0 for all f 2 C0.M/, that is, Œf; T � is a compact operator.
Denote byD�.M/ the closure of D�.M/. Then the following holds:

(i) D�.M/ is a unital C �-algebra;

(ii) For all u 2 C �.M/ and f 2 C0.M/, one has uf � 0 and f u � 0;

(iii) C �.M/ is equal to the closure of fu 2 L.L2.S// I finite propagation and uf � 0
and f u � 0 for all f 2 C0.M/g;

(iv) C �.M/ is a closed �-bisided ideal inD�.M/;

(v) LetD be a self-adjoint first order elliptic differential operator with finite propa-
gation. Then one has f .D/ 2 C �.M/ for all f 2 C0.R/ and �.D/ 2 D�.M/

for any chopping function � 2 C.RI Œ�1; 1�/. Here � 2 C.RI Œ�1; 1�/ is a
chopping function if � is an odd function and limx!1 �.x/ D 1.

Moreover, we assumeM is a partitioned manifold. Then we can get the following
properties.

Proposition 2.5. IfM is a partitioned manifold, then the following holds:

(i) For all u 2 C �.M/, one has Œ…; u� � 0 and Œƒ; u� � 0.

(ii) For all u 2 C �.M/ and ' 2 C.M/ satisfies ' D … on the complement of a
compact set inM , one has Œ'; u� � 0.

Proof. Due to [14, Lemma 1.5], Œ…; u� is of trace class for all u 2 X. So (i) is proved
by the definition of C �.M/. Since the support of … � ' is compact, there exists
f 2 C0.M/ such that f .…� '/ D .…� '/f D …� '. Therefore, we get (ii).

2.3. The Roe cocycle. We define a certain cyclic 1-cocycle on X, which is called
the Roe cocycle.
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Definition 2.6. For any A;B 2 X, set

�.A;B/ D
1

4
Tr
�
ƒŒƒ;A�Œƒ;B�

�
:

We call �WX �X ! C the Roe cocycle.

Proposition 2.7 ([14, Proposition 1.6]). � is a cyclic 1-cocycle on X.

In our main theorem, we would like to take the pairing of � with the index class
in K1.C �.M//. For this purpose, we have to extend a domain of �.

Definition 2.8. Let M be a partitioned manifold and S ! M a Hermitian vector
bundle. Then we define a subalgebra A in C �.M/ such that one has u 2 A if Œƒ; u�
is of trace class.

We note that A is a Banach algebra with norm kukA D kuk C kŒƒ; u�k1, where
k � k is the operator norm and k � k1 is the trace norm.

Proposition 2.9. Let M be a partitioned manifold and S ! M a Hermitian
vector bundle. Then A is dense and closed under holomorphic functional calculus
in C �.M/.

Proof. Since X � A � C �.M/, A is dense in C �.M/. By [6, p. 92 Proposition 3]
and Proposition 2.5(ii),A is closed under holomorphic functional calculus inC �.M/.

Remark 2.10. Due to Definition 2.8, we can extend a domain of � to AC, the
unitization of A.

2.4. Pairing of the Roe cocycle with an element in K1-group. For any Banach
algebra A, we denote by AC the unitization of A. Denote by GLl.A/ the set of
invertible elements u in Ml.A

C/ such that we have u � 1 2 Ml.A/. Set K1.A/ D
�0.GL1.A//, the K1-group of A. In this subsection, we describe Connes’ pairing
of the Roe cocycle with an element in K1.C �.M//.

Proposition 2.11. Let M be a partitioned manifold and S ! M be a Hermitian
vector bundle. Then the inclusion i WA! C �.M/ induces an isomorphism

i�WK1.A/ Š K1.C
�.M//:

Proof. Use Proposition 2.9 and [6, p. 92 Proposition 3].



Toeplitz operators and the Roe–Higson type index theorem 643

Due to Proposition 2.11, we can take the pairing of the Roe cocycle with an
element in K1.C �.M// through the isomorphism i�WK1.A/ Š K1.C

�.M// as
follows:
Definition 2.12 ([6, p. 109]). Define the map

h�; �iWK1.C
�.M//! C

by hŒu�; �i D 1
8�i

P
i;j �..u

�1/j i ; uij /, where we assume Œu� is represented by an
element u 2 GLl.A/ and uij is the .i; j /-component of u. We note that this
is Connes’ pairing of cyclic cohomology with K-theory, and 1=8�i is a constant
multiple in Connes’ pairing.

We can write its pairing by a Fredholm index.
Proposition 2.13. For any u 2 GLl.C �.M//, one has

hŒu�; �i D �
1

8�i
index

�
…u…W….L2.S//l ! ….L2.S//l

�
:

Proof. Since both sides of this equation do not change by homotopy of u 2
GLl.C

�.M//, it suffices to show the case when u 2 GLl.A/. Then we obtain

8�ihŒu�; �i D
1

4

X
i;j

Tr
�
ƒŒƒ; .u�1/ij �Œƒ; uj i �

�
D
1

4
Tr
�
ƒŒƒ; u�1�Œƒ; u�

�
:

Due to an equality…�…u�1…u… D �…Œ…; u�1�Œ…; u�…, these two operators
…�…u�1…u… and…�…u…u�1… are of trace class on….L2.S//l . Thus we get

index
�
…u…W….L2.S//l ! ….L2.S//l

�
D Tr

�
… �…u�1…u…

�
� Tr

�
… �…u…u�1…

�
by [6, p. 88]. The above calculations implies desired equality.

2.5. Toeplitz operators. We recall the definition of Toeplitz operators for Dirac
operators and its index theorem. The Fredholm index of the Toeplitz operator appears
in our main theorem.
Definition 2.14. LetN be a closed Riemannianmanifold. Let SN ! N be a Clifford
bundle in the sense of [16, Definition 3.4] andDN the Dirac operator of SN . Denote
by HC the subspace of L2.SN / generated by non-negative eigenvectors of DN and
let P WL2.SN /! HC be the projection.

Let � 2 C.N I Ml.C// be a continuous map from N to Ml.C/. Then for any
s 2 H l

C, we define the Toeplitz operator T� WH l
C ! H l

C by T�s D P.�s/.
Toeplitz operators are Fredholm when the range of � is contained in the set of

invertible matrices.
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Proposition 2.15 ([3, Lemma 2.10]). Assume that � is a smooth map, then Œ�; P � is
a pseudodifferential operator of order �1. Therefore Œ�; P � is a compact operator
on L2.SN /l for all � 2 C.N I Ml.C//. This implies a Toeplitz operator T� is a
Fredholm operator for � 2 C.N I GLl.C//.

There exists an index theorem for Toeplitz operators. We can consider that this
index theorem is a corollary of the Atiyah–Singer index theorem. Let � WS�N ! N

be the unit sphere bundle of T �N . Denote by �.x; �/ 2 End..��SN /.x;�// the
principal symbol ofDN for all .x; �/ 2 S�N andSC

.x;�/
the 1-eigenspace of�.x; �/ D

ic.�/ . Set SC D
S
.x;�/ SC

.x;�/
, then SC turns out to be a subbundle of ��SN .

Proposition 2.16 ([2, Cororally 24.8]; [3, Theorem 4]). The Fredholm index of
Toeplitz operators satisfies the following:

index.T�/ D h��Td.TN ˝C/ch.SC/��ch.�/; ŒS�N�i:

3. Main theorem

3.1. The index class. In this subsection, we define the odd index class inK1.C �.M//.
After that, we take the pairing of the Roe cocycle with this class.

Let .M; g/ be a complete Riemannian manifold and S ! M a graded Clifford
bundle with the Clifford action c and the grading �. Denote by D the graded
Dirac operator of S . Set kf k D supx2M jf .x/j for f 2 C.M/ and kXk D
supx2M

p
gx.X;X/ for X 2 C1.TM/. Denote by Cb.M/ the C �-algebra of

continuous bounded functions onM .
Definition 3.1. DefineW.M/ by the subset ofC1.M/ such that one hasf 2 W.M/

if kf k < C1, kgrad.f /k < C1. Define Cw.M/ by the closure of W.M/ by the
uniform norm onM .

Of course, W.M/ is a unital �-subalgebra of Cb.M/. Therefore, Cw.M/ is a
unital C �-algebra.
Remark 3.2. Let Ch.M/ be the Higson algebra of M , that is, Ch.M/ is the C �-
algebra generated by all smooth and bounded functions defined on M with which
gradient is vanishing at infinity [9, p.26]. By definition, one has Ch.M/ � Cw.M/.

We assumeM D R�N and � 2 C1.N /. In this case, we have 1˝� 2 Cw.M/

but 1˝ � 62 Ch.M/ in general. This is a merit of using Cw.M/ (see Section 6).
We define a Kasparov .Cw.M/; C �.M//-module which is made of the Dirac

operatorD. We assume that the Roe algebra C �.M/ is an evenly graded C �-algebra
and a graded Hilbert C �.M/-module simultaneously, where the grading is induced
by �. Since �0.x/ D x.1 C x2/�1=2 is a chopping function, the left composition
of FD D D.1 C D2/�1=2 2 D�.M/ on an element of C �.M/ is an odd operator
on C �.M/.
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Proposition 3.3. Let �WCw.M/ ! B.C �.M// be the left composition of the
multiplication operator: �.f /u D f u 2 C �.M/ for f 2 Cw.M/ and u 2 C �.M/.
Then one has ŒC �.M/; �; FD� 2 KK.Cw.M/; C �.M//.

Proof. Our proof is similar to the Baaj-Julg picture of Kasparov modules [1,
Proposition 2.2]. Firstly, we obtain FD 2 B.C �.M//, since FD is a self-adjoint
bounded operator on L2.S/ and one has FDu 2 C �.M/ for any u 2 C �.M/.
Because of 1� F 2D D 1�D

2.1CD2/�1 D .1CD2/�1 2 C �.M/ D K.C �.M//

and F �D D FD , it suffices to show Œ�.f /; FD� 2 C �.M/.
Now, the following integral formula

Œ�.f /; FD� D
1

�

Z 1
0

��1=2.1C �/.1CD2
C �/�1Œf;D�.1CD2

C �/�1d�

C
1

�

Z 1
0

��1=2D.1CD2
C �/�1ŒD; f �D.1CD2

C �/�1d�

is uniformly integrable for any f 2 W.M/ by

k.1CD2
C �/�1k � .1C �/�1 and kD.1CD2

C �/�1k � .1C �/�1=2

for any � � 0, and

Œ�.f /;D� D �c.grad.f // 2 D�.M/

for any f 2 W.M/. So we obtain

Œ�.f /; FD� 2 C
�.M/

for any f 2 W.M/ byD.1CD2C �/�1 2 C �.M/ for any � � 0. Thus we obtain

Œ�.f /; FD� 2 C
�.M/

for any f 2 Cw.M/, since we have kŒ�.f /; FD�k � 2kf k for any f 2 W.M/

and W.M/ is dense in Cw.M/. This implies .C �.M/; �; FD/ is a Kasparov
.Cw.M/; C �.M//-module.

Remark 3.4. Set ŒD� D ŒC �.M/; �; FD� 2 KK.Cw.M/; C �.M//. Let � be a
chopping function. Then one has �.D/ � FD 2 C �.M/ by � � �0 2 C0.M/.
Therefore, we obtain ŒD� D ŒC �.M/; �; �.D/�, that is, ŒD� is independent of the
choice of a chopping function �.

This class ŒD� 2 KK.Cw.M/; C �.M// goes to the E-theoretic class introduced
by C. Wulff [19] by using the canonical map

KK
�
Cw.M/; C �.M/

�
! E

�
Cw.M/; C �.M/

�
:
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Any � 2 GLl.Cw.M// determines Œ�� 2 K1.Cw.M//. Due to the Kasparov
product

y̋ Cw.M/WK1
�
Cw.M/

�
�KK

�
Cw.M/; C �.M/

�
! K1

�
C �.M/

�
;

we get the index class in K1.C �.M// as follows.

Definition 3.5. For any � 2 GLl.Cw.M//, set

Ind.�;D/ D Œ�� y̋ Cw.M/ŒD� 2 K1
�
C �.M/

�
:

3.2. The operator on N . Roughly speaking, our main theorem is Connes’ pairing
of the Roe cocycle with Ind.�;D/ 2 K1.C �.M// is calculated by the Fredholm
index of a Toeplitz operator on a hypersurface N . In this subsection, we define its
operator.

LetM be a partitionedmanifold partitioned by .MC;M�; N /. LetSDSC˚S�,
c and D are same in Subsection 3.1. Let � 2 C1.TN / be the outward pointing
normal unit vector field on N D @M�.

Set SN D SCjN and define cN WC1.TN / ! C1.End.SN // by cN .X/ D
c.�/c.X/. Then SN can be equipped with a Clifford bundle structure with the
Clifford action cN . Denote by DN the Dirac operator of SN . We denote the
restriction of � 2 GLl.Cw.M// to N by the same letter �. Let T� be the Toeplitz
operator with symbol �. This Toeplitz operator T� is the operator on N in our main
theorem.

3.3. The index theorem. We recall that we can take Connes’ paring of the Roe
cocycle with Ind.�;D/ 2 K1.C �.M//. Our main theorem gives the result of its
paring.

Theorem 3.6. LetM be a partitioned manifold partitioned by .MC;M�; N /. Let
S !M be a graded Clifford bundle with the grading � and denote byD the graded
Dirac operator of S . We denote the restriction of � 2 GLl.Cw.M// to N by the
same letter �. Then the following formula holds:

hInd.�;D/; �i D �
1

8�i
index.T�/:

If a function � 2 C1.M IGLl.C// satisfies k�k < 1, kgrad.�/k < 1 and
k��1k <1, one has � 2 GLl.Cw.M// since the gradient of ��1 is also bounded.
The index theorem for Toeplitz operators (see Proposition 2.16) implies the following:

Corollary 3.7. Let M be a partitioned manifold partitioned by .MC;M�; N /,
and … the characteristic function ofMC. Let S ! M be a graded Clifford bundle
with the grading � and denote by D the graded Dirac operator of S . Assume
that � 2 C1.M IGLl.C// satisfies k�k <1, kgrad.�/k <1 and k��1k <1.
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Then one has

index
�
….D C �/�1

�
� 0

0 1

�
.D C �/…W….L2.S//! ….L2.S//

�
D

Z
S�N

��Td.TN ˝C/ch.SC/��ch.�/:

The proof of Theorem 3.6 and Corollary 3.7 is provided in Sections 6 and 7.

4. Suspensions and extensions

4.1. A relationship with Roe’s odd index. In this subsection, we give a formal
discussion about a relationship with Roe’s odd index. Firstly, we recall the definition
of Roe’s odd index class odd-ind.D/ [14, Definition 2.7]. Let M be a complete
Riemannian manifold, S !M a Clifford bundle,D the Dirac operator of S and � a
chopping function. Then we have �.D/ 2 D�.M/ and q.�.D// is independent of a
choice of �, where qWD�.M/! D�.M/=C �.M/ is a quotient map. Moreover, we
have �

q..�.D/C 1/=2/
�
2 K0

�
D�.M/=C �.M/

�
by�2�1 2 C0.RIR/. Let ıWK0.D�.M/=C �.M//! K1.C

�.M// be a connecting
homomorphism of the six-term exact sequence in operator K-theory. Set

odd-ind.D/ D ı
��
q..�.D/C 1/=2/

��
2 K1

�
C �.M/

�
:

Remark that we have

odd-ind.D/ D
�
.D � i/.D C i/�1

�
if we choose

�.x/ D
1

�
Arg

�
�
x � i

x C i

�
;

where we choose the principal value of the argument is .��; ��. Note that the map
defining the odd index class is called the assembly map

AWK1
�
C0.M/

�
! K1

�
C �.M/

�
:

Secondly, we reconstruct this odd index in terms of KK-theory. Define
c�WC ! Cw.M/ by cz.x/ D z for z 2 C and x 2M . Then we have

c� 2 KK
�
C; Cw.M/

�
since this map c� is a �-homomorphism. On the other hand, we have�

C �.M/˚ C �.M/; �˚ �; �.D/˚ .��.D//
�
2 KK1

�
Cw.M/; C �.M/

�
since �0.x/ D x.x2C 1/�1=2 is a chopping function and we have ���0 2 C0.R/.
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We denote by ŒD� this KK-element. Then we obtain

c� y̋ Cw.M/ŒD� D odd-ind.D/:

Finally, wemay suppose our Kasparov product is a counterpart of Roe’s odd index
as follows. We composite the suspension isomorphism

KK
�
C; Cw.M/

�
! KK1

�
C; Cw.M/˝ C0.R/

�
and the induced homomorphism by an inclusion

Cw.M/˝ C0.R/! Cw.M/˝ C.S1/! Cw.M � S
1/:

Thus we get a homomorphism

� WKK
�
C; Cw.M/

�
! KK1

�
C; Cw.M � S

1/
�
:

On the other hand, there is a homomorphism

KK1
�
Cw.M/; C �.M/

�
! KK1

�
Cw.M/; C �.M � S1/

�
since KK is stable. Let DS1 be a Dirac operator on S1. DS1 determines ŒDS1 � 2

KK1.C.S1/;C/. By the composition of the Kasparov product ŒDS1 �˝C � and the
induced map of this �-homomorphism

Cw.M � S
1/ 3 f 7! f jM�f1g ˝ 1 2 Cw.M/˝ C.S1/;

we get a homomorphism

� WKK1
�
Cw.M/; C �.M/

�
! KK

�
Cw.M � S

1/; C �.M � S1/
�
:

Consequently, by using homomorphisms � and � , we may suppose our Kasparov
product is a counterpart of Roe’s odd index.

4.2. Wrongway functoriality. In this subsection, we see a correspondence between
an index theorem for partitioned manifolds with Connes’ wrong way functoriality.
For the simplicity, we assume M D R � N with N closed. Let i W fptg ! R be an
inclusion map defined by i.pt/ D 0, and pWR! fptg a constant map. Due to Connes
(see, for instance, [5, 7]), they define wrong way functoriality i Š 2 KK1.C; C0.R//,
.i� idN /Š 2 KK1.C.N /; C0.M// and pŠ 2 KK1.C0.R/;C/, respectively. We note
the following:

i Š˝C0.R/ pŠ D .p ı i/Š D 1C 2 KK
0.C;C/:

Let DN be the Dirac operator on N and DR the Dirac operator on R defined by
a spin structure of R. These Dirac operators define elements inK-homology, that is,
they define

ŒDN � 2 KK
�
�
C.N/;C

�
and ŒDR� D pŠ 2 KK

1
�
C0.R/;C

�
;



Toeplitz operators and the Roe–Higson type index theorem 649

respectively. Moreover, DN and DR determine the Dirac operator DM on M D

R �N satisfies

ŒDM � D ŒDR�˝C ŒDN � 2 KK
�C1

�
C0.M/;C

�
:

Firstly, we assume � D 0. Let JEK 2 KK0.C0.M/; C0.M// be a KK-element
defined by a vector bundle E !M by using the inclusion map

KK0
�
C; C0.M/

�
! KK0

�
C0.M/; C0.M/

�
:

Then we have

.i � idN /Š˝C0.M/

�
JEK˝C0.M/ ŒDM �

�
D JEjN K˝C.N/ .i � idN /Š˝C0.M/

�
ŒDR�˝C ŒDN �

�
D JEjN K˝C.N/ ŒDN �:

Therefore, by using the map

q�WKK
0
�
C.N/;C

�
! KK0

�
C;C

�
Š Z;

which is the homomorphism induced by the mapping q from N to a point, we have

q�
�
i Š˝C0.M/

�
JEK˝C0.M/ ŒDM �

��
is equal to the Fredholm index of the Dirac operator on N twisted by EjN . This is a
similar formula to the Roe–Higson index theorem. Combine the Roe–Higson index
theorem, this implies the composition of the assembly map A with Connes’ pairing
of � is equal to q�.i Š˝C0.M/ �/.

On the other hand, we assume � D 1. Take � 2 GLl.C0.M//, then it defines an
element J�K 2 KK1.C0.M/; C0.M// by using the inclusion map

KK1
�
C; C0.M/

�
! KK1

�
C0.M/; C0.M/

�
:

The similar argument in � D 0 implies

q�
�
i Š˝C0.M/

�
J�K˝C0.M/ ŒDM �

��
D index.T�jN /:

However, since � � 1 vanishes at infinity, �jN is homotopic to a constant function in
GLl.C.N //. Therefore the right hand side is always 0.

One might suspect that this computation can be (partially) extended to a
larger class of �. This suspicious is natural, however, the equality hA.x/; �i D
q�.i Š˝C0.M/ x/ is only proved when x 2 KK1.C0.M/;C/ is the fundamental
class of the Dirac operator by using the Roe–Higson index theorem. In particular,
the left hand side vanishes when dimM is even, that is, the above x is an element in
the kernel of hA.�/; �i. Therefore, we have to directly prove at least the equality

hInd.D; 1˝  /; �i D q�
�
i Š˝C0.M/

�
ŒDR�˝C

�
J K˝C.N/ ŒDN �

���
for  2 GLl.C1.N // in order to prove our main theorem by using wrong way
functoriality. Of course, our main theorem implies this formula.
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4.3. The Roe cocycle and an extension. In this subsection, we see a relationship
between the Roe cocycle � and an extension. LetM be a partitioned manifold and…
the characteristic function of MC. Set H D ….L2.S//. Let qWL.H/ ! Q.H/

be the quotient map to the Calkin algebra. Define � WC �.M/ ! L.H/ by �.A/ D
…A… and � WC �.M/! Q.H/ by � D q ı � . Set

E D
˚
.A; T / 2 C �.M/˚L.H/ I �.A/ D q.T /

	
:

Then we get an extension � of C �.M/:

0!K.H/ ,! E ! C �.M/! 0:

This extension � corresponds to the Fredholm module .L2.S/;ƒ/ on X and the
Connes–Chern character of .L2.S/;ƒ/ equals the Roe cocycle.

By the definition of a pairing h�; �iindWK1.C �.M// � Ext.C �.M// ! Z and
Proposition 2.13, we obtain

hŒu�; �i D hŒu�; Œ� �iind D index.…u…/

up to a certain constant multiple for any Œu� 2 K1.C �.M//.
Moreover, these are equal to the connecting homomorphism of this extension:

@WK1
�
C �.M/

�
! K0

�
K.H/

�
Š Z:

In fact, for any unitary

u 2 U
�
C �.M/

�
D
˚
u 2 U.C �.M/C/ I u � 1 2 C �.M/

	
;

denote by v.u/ the partial isometry part of the polar decomposition of �.u/. Then
we have �.u/ D q.v.u// since �.u/ is an essential unitary operator onH . Therefore,
.u; v.u// 2 E is a partial isometry lift of u. So we obtain

@
�
Œu�
�
D
�
… � v.u/�v.u/

�
�
�
… � v.u/v.u/�

�
2 K0

�
K.H/

�
:

By the identification K0.K.H// Š Z, we have

@
�
Œu�
�
D index

�
v.u/

�
D index

�
�.u/

�
:

Therefore, we obtain

hŒu�; �i D hŒu�; Œ� �iind D @
�
Œu�
�
D index.…u…/

up to a certain constant multiple.
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5. Calculation of the Kasparov product in the index class

5.1. Explicit formula of the index class. In this subsection, we represent the
index class by an element in GLl.C �.M//. For this purpose, we present ŒD� by
the Cuntz picture of KK.Cw.M/; C �.M// and then we calculate Kasparov product
Œ�� y̋ Cw.M/ŒD�. Set

C �b .M/ D
n
uC

h
f 0
0 g

i
I u 2 C �.M/; f; g 2 Cb.M/

o
:

Then C �
b
.M/ is a C �-subalgebra of D�.M/ and contains C �.M/ as an essential

ideal. Let � 2 C.RI Œ�1; 1�/ be a chopping function. Set �.x/ D .1 � �.x/2/1=2 2
C0.R/. Then � is a positive even function and we have �.D/ 2 C �.M/.
Proposition 5.1. Let �WC �

b
.M/ ! M1.C

�
b
.M// be the standard inclusion and K

the C �-algebra of all compact operators on a countably infinite dimensional Hilbert
space. Set D� D �.D/C ��.D/ 2 D

�.M/,

 �;C.f / D �

�
D�

�
f 0

0 0

�
D�

�
and  �.f / D �

��
0 0

0 f

��
:

Then
. C;  �/WCw.M/! B

�
HC�.M/

�
F C �.M/˝K

is a prequasihomomorphism from Cw.M/ to C �.M/ ˝ K in the sense of [8,
Definition 2.1] and one has ŒD� D Œ C;  �� in KK.Cw.M/; C �.M//. We note
that . C;  �/ is a quasi-homomorphism in the sense of [12, Definition 3.3.1]. Here,
we omit the subscript � for the simplicity.

Proof. We assume C �.M/op is equipped with the interchanged grading of C �.M/.
Then .C �.M/op; 0; �.D// is a degenerate Kasparov .Cw.M/; C �.M//-module. So
we obtain

ŒD� D

�
C �.M/˚ C �.M/op;

�
� 0

0 0

�
;

�
�.D/ 0

0 �.D/

� �
:

Since the following difference�
�.D/ ��.D/

��.D/ �.D/

�
�

�
�.D/ 0

0 �.D/

�
D

�
0 ��.D/

��.D/ 0

�
2M2

�
C �.M/

�
is an C �.M/-compact operator, we obtain ŒD� D ŒC �.M/˚ C �.M/op; �˚ 0;G�,
where G is the operator of the first term of the above difference.

The even grading of C �.M/ is defined by the decomposition of SC˚ S�, so we
have

ŒD� D

�
E D C �.M/tri ˚ C �.M/tri;

�
� 0

0 0

�
˚

�
0 0

0 �

�
;

�
0 D

D 0

� �
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under the canonical isomorphism (see [4, p.119]):

KK0
�
Cw.M/; C �.M/

�
Š KK0

�
Cw.M/; C �.M/tri

�
;

where tri means the trivially grading. Now, we conjugate by D ˚ 1 2 B.E/. Then
we obtain

ŒD� D

�
E;

�
D.�˚ 0/D 0

0 0˚ �

�
;

�
0 1

1 0

� �
:

Byadding a degenerate .Cw.M/; C �.M/tri/-module .HC�.M/˚HC�.M/; 0;
�
0 1
1 0

�
/,

we obtain

ŒD� D

�
.C �.M/tri ˚HC�.M//

2;

�
.D.�˚ 0/D/˚ 0 0

0 .0˚ �/˚ 0

�
;

�
0 1

1 0

��
;

where HC�.M/ is a countably generated Hilbert space over C �.M/tri. We define a
unitary operator

W WC �.M/tri ˚HC�.M/ ! HC�.M/

by W.a0; .ai /1iD1/ D .ai /
1
iD0 and conjugate by W ˚W . So we obtain

ŒD� D

�
HC�.M/ ˚HC�.M/;

�
 C 0

0  �

�
;

�
0 1

1 0

� �
:

We can show  C.f / 2M1.C �b .M// by using� �
 C 0

0  �

�
;

�
0 1

1 0

� �
2 K

�
yHC�.M/tri

�
:

Therefore,
. C;  �/WCw.M/! B

�
HC�.M/

�
F C �.M/˝K

is a prequasihomomorphism from Cw.M/ to C �.M/˝K and we obtain

ŒD� D Œ C;  ��:

Remark 5.2. By definition, one has

D

�
f 0

0 0

�
D �

�
0 0

0 f

�
D D

�
f �.D/C Œf; �.D/��

0 �.D/�f

�
2 C �.M/

for any f 2 Cw.M/. We get another proof of  C.f / 2M1.C �b .M//.
The Cuntz picture of Kasparov modules suits the Kasparov product with an ele-

ment in K1-group [8, Remark 1, Theorem 3.3]. See also [12, p. 60], which contains
an explicit formula.
Proposition 5.3. For any � 2 GLl.Cw.M//, one has

Ind.�;D/ D
�
D

�
� 0

0 1

�
D

�
1 0

0 ��1

� �
2 K1

�
C �.M/

�
:
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Proof. Firstly, we obtain

 C.� � 1/C 1 D j

�
D

�
� 0

0 1

�
D

�
and  �.� � 1/C 1 D j

��
1 0

0 �

��
;

where j WGLl.C �b .M//! GL1.C
�
b
.M// is the standard inclusion. Thus we get

Ind.�;D/ D
�
D

�
� 0

0 1

�
D

�
1 0

0 ��1

� �
2 K1.C

�.M//:

The last of this subsection, we back to Connes’ pairing in our main theorem.
Remark 5.4. By Proposition 2.13, one has

hInd.�;D/; �i

D �
1

8�i
index

�
…D

�
� 0

0 1

�
D

�
1 0

0 ��1

�
…W…

�
L2.S/

�l
! …

�
L2.S/

�l�
:

On the other hand,…u… is Fredholm for any u2GLl.C �b .M// because of Œf;…�D0
for any f 2 Cb.M/. This implies

hInd.�;D/; �i D �
1

8�i
index

�
…D

�
� 0

0 1

�
D…

�
:

In order to use bellow sections, we fix notation here. Set

u�;� D D�

�
� 0

0 1

�
D� and v�;� D u�;� �

�
1 0

0 �

�
:

Then we obtain

v�;� D D�

�
.� � 1/�.D/C Œ�; �.D/��

0 �.D/�.� � 1/

�
:

5.2. Another formula in the special case. By Remark 5.4, our main theorem is the
coincidence of two Fredholm indices:

index
�
…u�;�…

�
D index.T�/:

Both sides of this equation do not change a homotopy of �. Therefore, it suffices
to show the case when � 2 GLl.W.M//. In this case, �WM ! GLl.C/ is a
smooth function such that k�k <1, kgrad.�/k <1 and k��1k <1. Moreover,
we also assume that � satisfies ŒjDj; �� 2 L.L2.S//. This condition is a technical
assumption in this subsection. For example, if S ! M has bounded geometry and
all derivatives of � are bounded, then � satisfies this technical assumption. Set

W1.M/ D
˚
f 2 W.M/I

�
jDj; f

�
2 L

�
L2.S/

�	
:
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In this subsection, we use �0.x/ D x.1 C x2/�1=2 as a chopping function, that is,
we use D D D�0

.
In order to prove our main theorem, we perturb the operator D

�
� 0
0 1

�
D by a

homotopy. Firstly, for any t 2 Œ0; 1�, set

Ft D t C .1 � t /.1CD
2/�1=2 2 D�.M/:

For any t 2 .0; 1� and x 2 R, set

ft .x/ D
1

t C .1 � t /.1C x2/�1=2
:

Then we obtain ft .D/ 2 D�.M/ since we have ft � 1=t 2 C0.M/. Thus Ft has a
bounded inverse F �1t D ft .D/ for any t 2 .0; 1�.

Secondly, because of

.D C �/�1
�
f 0

0 0

�
.D C �/� �

�
0 0

0 f

�
� D .D C �/�1

�
f �c.grad.f //�
0 f

�
�

for any f 2Ml.W.M// and � 2 C1c .S/, we obtain.D C �/�1 �f 0

0 0

�
.D C �/�


L2

�
�
2kf k C kgrad.f /k

�
k�kL2 :

This implies

�.f / D .D C �/�1
�
f 0

0 0

�
.D C �/ 2 L

�
L2.S/

�
sinceC1c .S/ is dense inL2.S/. Moreover, we obtain �.f /2C �

b
.M/ by .DC�/�12

C �.M/ and �
f �c.grad.f //�
0 f

�
2 D�.M/:

Finally, set �0.f / D D
�
f 0
0 0

�
D and �t .f / D F �1t �.f /Ft for any t 2 .0; 1� and

f 2 W.M/. Formally, we set F �10 D .1CD2/1=2. Then we obtain

�t .f / D F
�1
t �.f /Ft 2 L

�
L2.S/

�
for any t 2 Œ0; 1� and f 2 W.M/. We note that we have

�0.f / D D

�
f 0

0 0

�
D and �1.f / D �.f /:

This family of bounded operators t 7!�t .f / is continuous inC �b .M/ for f 2W1.M/.
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Proposition 5.5. For any t2 Œ0; 1�andf2Ml.W1.M//, one has�t .f /2Ml.C
�
b
.M//.

Moreover,

Œ0; 1� 3 t 7! �t .f / 2Ml

�
C �b .M/

�
�Ml

�
L
�
L2.S/

��
is continuous.

Proof. It suffices to show the case when l D 1.
Firstly we show �t .f / 2 C �b .M/. When t D 0; 1, we already proved. We assume

t 2 .0; 1/. We have

�t .f / �

�
0 0

0 f

�
D F �1t .D C �/�1

�

�
tf C .1 � t /f .1CD2/�1=2 tc.grad.f //� C .1 � t /Œf;D�.1CD2/�1=2�

0 tf C .1 � t /.1CD2/�1=2f

�
:

Because of F �1t 2 D�.M/, .D C �/�1 2 C �.M/ and�
tf C .1 � t /f .1CD2/�1=2 tc.grad.f //� C .1 � t /Œf;D�.1CD2/�1=2�

0 tf C .1 � t /.1CD2/�1=2f

�
2 D�.M/;

we obtain �t .f / 2 C �b .M/.
Next we show continuity of t 7! �t .f /. F �1t , �.f /, andFt are bounded operators

for any t 2 .0; 1�, and Œ0; 1� 3 t 7! Ft 2 L.L2.M// is continuous. Thus t 7! �t .f /

is continuous on .0; 1�. The rest of proof is continuity at t D 0. First, we show
k.D C �/�1F �1t k � 2 for any t 2 Œ0; 1�. Set

gt .x/ D
x

.1C x2/.t C .1 � t /.1C x2/�1=2/

and ht .x/ D
1

.1C x2/.t C .1 � t /.1C x2/�1=2/
:

Then we have

jgt .x/j D
1

t.jxj C 1=jxj/C .1 � t /
p
1C 1=x2

�
1

2t C 1 � t
� 1

and jht .x/j � 1. Thus we obtain k.D C �/�1F �1t k � 2 by

.D C �/�1F �1t D D.1CD2/�1F �1t C �.1CD
2/�1F �1t D gt .D/C �ht .D/:
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By using k.D C �/�1F �1t k � 2, we can prove continuity at t D 0. For any t > 0, a
difference �t .f / � �0.f / equals

.D C �/�1F �1t

�
tf � tf .1CD2/�1=2 tc.grad.f //� � t Œf;D�.1CD2/�1=2�

0 tf � t .1CD2/�1=2f

�
C f.D C �/�1F �1t �Dg

�
f .1CD2/�1=2 Œf;D�.1CD2/�1=2�

0 .1CD2/�1=2f

�
:

The first term converges to 0 with the operator norm as t ! 0.
We show the second term converges to 0 with the operator norm as t ! 0. Due

to
D � .D C �/Ft D t .D C �/

˚
1 � .1CD2/�1=2

	
;

the second term is equal to

t .D C �/�1F �1t
˚
.1CD2/�1=2 � 1

	
.1CD2/1=2

�

�
f .1CD2/�1=2 Œf;D�.1CD2/�1=2�

0 .1CD2/�1=2f

�
:

Therefore, if .1CD2/1=2f .1CD2/�1=2 and .1CD2/1=2Œf;D.1CD2/�1=2� are
bounded, the second term converges to 0 with the operator norm as t ! 0. We show
that .1CD2/1=2f .1CD2/�1=2 and .1CD2/1=2Œf;D.1CD2/�1=2� are bounded.
By using the following equalities

.D2
C 1/1=2f .D2

C 1/�1=2 D
�
.D2
C 1/1=2; f

�
.D2
C 1/�1=2 C f

and

.D2
C 1/1=2

�
f;D.D2

C 1/�1=2
�
D
�
.D2
C 1/1=2; f

�
D.D2

C 1/�1=2 C Œf;D�;

it suffices to show that Œ.D2 C 1/1=2; f � is a bounded operator. Because of ˛.x/ D
p
x2 C 1�jxj 2 C0.R/, we have ˛.D/ 2 L.L2.S//. This implies Œ.D2C1/1=2; f �

is bounded if and only if ŒjDj; f � is bounded. We note that boundness of ŒjDj; f � is
required the definition of the algebra W1.M/. Hence,

.D2
C 1/1=2f .D2

C 1/�1=2 and .D2
C 1/1=2

�
f;D.D2

C 1/�1=2
�

are bounded. Thus the second term converges to 0 as t ! 0. Therefore t 7! �t .f /

is continuous.

Due to Proposition 5.5, the following maps

…
˚
�t .� � 1/C 1

	
…W…

�
L2.S/

�l
! …

�
L2.S/

�l
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determines a continuous family of Fredholm operators for any � 2 GLl.W1.M//.
Therefore, we obtain

hInd.�;D/; �i D �
1

8�i
index

�
….D C �/�1

�
� 0

0 1

�
.D C �/…

�
for any � 2 GLl.W1.M//.
Remark 5.6. In the definition of �t , we do not use the assumption ŒjDj; f � 2
L.L2.S//. In particular, one has �.f / 2 C �

b
.M/ for f 2 W.M/. Set %.�/ D

�.� � 1/C 1 for any � 2 GLl.W.M//. Then the operator…%.�/… is Fredholm for
all � 2 GLl.W.M//.

6. The case for R � N

Let N be a closed manifold. In this section, we prove Theorem 3.6 in the case that
M D R � N . Recall that R � N is partitioned by .RC � N;R� � N; f0g � N/.
Let SN ! N be a Clifford bundle, cN the Clifford action on SN and DN the Dirac
operator on SN . Given � 2 C1.N IGLl.C//, we define the map z�WR � N !
GLl.C/ by z�.t; x/ D �.x/. We often denote z� by � in the sequel. Note that we
have � 2 GLl.W1.R �N//.

Let pWR � N ! N be the projection to N . Set S D p�SN ˚ p
�SN and

� D 1˚ .�1/, where � is the grading operator on S . Then we define a Clifford action

cWC1.TM/! C1
�
End.S/

�
by

c.d=dt / D
�
0 1

�1 0

�
; c.X/ D

�
0 cN .X/

cN .X/ 0

�
for all X 2 C1.TN /:

Here d=dt is a coordinate unit vector field on R. Then S ! M is a Clifford bundle
and the Dirac operatorD of S is given by

D D

�
0 d=dt CDN

�d=dt CDN 0

�
:

Denote by HC the subspace of L2.SN / which is generated by non-negative
eigenvectors ofDN . Also denote byH� the orthogonal complement ofHC inL2.S/.
Set F D 2P � 1, where P is the projection toHC.

Due to Subsection 5.2, it suffices to show

index
�
….D C �/�1

�
� 0

0 1

�
.D C �/…

�
D index.T�/:

For this purpose, we perturb the operator…%.�/… by a homotopy. We firstly estimate
the supremum of some functions to prove a continuity of the homotopy.
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Lemma 6.1.
(i) Set

fs.x/ D
x

x2 C .1 � s/2
and gs.x/ D

1

x2 C .1 � s/2

for all s 2 Œ0; 1� and x 2 R n .�s; s/. Then one has supx jfs.x/j � 2 and
supx jgs.x/j � 2 for all s 2 Œ0; 1�.

(ii) Set

��;s.x/ D
1

x2 C f.1 � s/�C ssgn.�/g2 C .1 � s/2

and ��;s.x/ D x��;s.x/ for all � 2 R, s 2 Œ0; 1/ and x 2 R, where sgn.�/ is 1
if � � 0 or �1 if � < 0. Then one has

sup
x
j��;s.x/j �

1

.1 � s/2.�2 C 1/
and sup

x
j��;s.x/j �

1

2.1 � s/
p
�2 C 1

for all � 2 R, s 2 Œ0; 1/.

Proof. (i) For 0 � s � 1=2, we have

jfs.x/j � fs.1 � s/ � 1:

For 1=2 � s � 1, we have
jfs.x/j � fs.s/ � 2:

This implies supx jfs.x/j � 2. On the other hand, we have jgs.x/j � gs.s/ � 2.
(ii) For � � 0, we have

.1 � s/�C ssgn.�/ � .1 � s/� � 0:

On the other hand, for � < 0, we have

.1 � s/�C ssgn.�/ � .1 � s/� < 0:

So we obtain j��;s.x/j � h�;s.0/ � 1=.1 � s/2.�2 C 1/.
On the other hand, we obtain

j��;s.x/j � ��;s

�p
f.1 � s/�C ssgn.�/g2 C .1 � s/2

�
�

1

2.1 � s/
p
�2 C 1

:

Proposition 6.2. Set

Ds D

�
0 d=dt C .1 � s/DN C sF

�d=dt C .1 � s/DN C sF 0

�
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for all s 2 Œ0; 1� and

u�;s D
�
Ds C .1 � s/�

��1 �� 0

0 1

� �
Ds C .1 � s/�

�
:

Then the map Œ0; 1� 3 s 7! u�;s 2 L.L2.S/l/ is continuous.

Proof. It suffices to show the case when l D 1. Since we have .d=dt /� D �d=dt
andDN is a Dirac operator onN ,Ds is a self-adjoint closed operator densely defined
on domain.Ds/ D domain.D/.

Next we show �.Ds/ \ .�s; s/ D ; for all s 2 .0; 1�. Set

Ts D

�
0 d=dt C .1 � s/DN

�d=dt C .1 � s/DN 0

�
and J D

�
0 F

F 0

�
:

These operators Ts and J are self-adjoint and we have

Ds D Ts C sJ and TsJ C JTs D 2.1 � s/DNF � 0

on domain.D/. So for any � 2 domain.D/, we obtain

kDs�k
2
L2 D kTs�k

2
L2 C s

2
kJ�k2

L2 C sh.TsJ C JTs/�; �iL2

� s2kJ�k2
L2 D s

2
k�k2

L2 :

This implies �.Ds/ \ .�s; s/ ¤ ;. In particular,D1 has a bounded inverse.
On the other hand, when s 2 Œ0; 1/, we have .Ds C .1 � s/�/�1 2 L.L2.S//

since .DsC .1� s/�/2 D D2
s C .1� s/

2 is invertible. Therefore u�;s is well defined
as a closed operator on L2.S/ with domain.u�;s/ D domain.D/ for all s 2 Œ0; 1�.
Thus we obtain u�;s 2 L.L2.S// by

u�;s D

�
1 0

0 �

�
C .Ds C .1 � s/�/

�1

�

�
.1 � s/.� � 1/ �.1 � s/cN .grad.�//C sŒ�; F �

0 .1 � s/.� � 1/

�
:

Next we show continuity of Œ0; 1� 3 s 7! u�;s 2 L.L2.S//. First, because�
Ds C .1 � s/�

��1
D fs.Ds/C .1 � s/�gs.Ds/;

we have

k
�
Ds C .1 � s/�

��1
k � sup

x
jfs.x/j C .1 � s/ sup

x
jgs.x/j � 4 (�)

by Lemma 6.1. Therefore fk.Ds C .1 � s/�/�1kgs2Œ0;1� is a bounded set.
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Next, for any s; s0 2 Œ0; 1�, a difference u�;s � u�;s0 equals

.Ds C .1 � s/�/
�1

�
.s0 � s/.� � 1/ .s � s0/cN .grad.�//C .s � s0/Œ�; F �

0 .s0 � s/.� � 1/

�
C
˚
.Ds C .1 � s/�/

�1
� .Ds0 C .1 � s

0/�/�1
	

�

�
.1 � s0/.� � 1/ �.1 � s0/cN .grad.�//C s0Œ�; F �

0 .1 � s0/.� � 1/

�
DW ˛s;s0 C ˇs;s0 :

The first term ˛s;s0 converges to 0 with the operator norm as s ! s0.
The rest of proof is the proof of the convergence to 0 of the second term ˇs;s0 .

Firstly, we assume s0 D 1. Then we obtain

ˇs;1 D
˚
.Ds C .1 � s/�/

�1
�D�11

	 �0 Œ�; F �

0 0

�
and

.Ds C .1 � s/�/
�1
�D�11 D .s � 1/.Ds C .1 � s/�/

�1D�11

�
0 DN
DN 0

�
C .1 � s/.Ds C .1 � s/�/

�1.J � �/D�11

sinceDN commutes F and d=dt on domain.D/, respectively. Therefore, we have

ˇs;1 D .s � 1/.Ds C .1 � s/�/
�1D�11

�
0 0

0 DN Œ�; F �

�
C .1 � s/.Ds C .1 � s/�/

�1.J � �/D�11

�
0 Œ�; F �

0 0

�
and thus ˇs;1 converges to 0 with the operator norm as s ! 1 since DN Œ�; F � is a
pseudo-differential operator of order 0 on N and k.Ds C .1 � s/�/�1k, kJ k, k�k,
and kD�11 k are uniformly bounded.

We assume 0 � s0 < 1. Since an operator�
.1 � s0/.� � 1/ �.1 � s0/cN .grad.�//C s0Œ�; F �

0 .1 � s0/.� � 1/

�
is bounded, it suffices to show�Ds C .1 � s/���1 � �Ds0 C .1 � s0/���1! 0

as s ! s0. We have�
Ds C .1 � s/�

��1
�
�
Ds0 C .1 � s

0/�
��1

D .s � s0/
�
Ds C .1 � s/�

��1 � 0 DN
DN 0

� �
Ds0 C .1 � s

0/�
��1

C .s0 � s/
�
Ds C .1 � s/�

��1
.J � �/

�
Ds0 C .1 � s

0/�
��1
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and the second term converges to 0 with the operator norm as s ! s0 by (�). So it
suffices to show that an operator U defined by

U D

�
0 DN
DN 0

�
.Ds0 C .1 � s

0/�/�1

D

�
DNA

�1
s0 .d=dt C .1 � s

0/DN C s
0F / �.1 � s0/DNA

�1
s0

.1 � s0/DNA
�1
s0 DNA

�1
s0 .�d=dt C .1 � s

0/DN C s
0F /

�
is a bounded operator on L2.S/ D L2.R/2 ˝ L2.SN /, where set

As0 D �d2=dt2 C
˚
.1 � s0/DN C s

0F
	2
C .1 � s0/2:

Now, if DNA�1s0 , iDNA
�1
s0 d=dt , and DNA�1s0 DN are bounded, then U is also

bounded. We showDNA�1s0 DN is bounded. Denote byE� the �-eigenspace ofDN .
ThenDNA�1s0 DN acts as

�2
˚
� d2=dt2 C

�
.1 � s0/�C s0sgn.�/

�2
C .1 � s0/2

	�1
on L2.R/˝E�. This operator is equal to �2��;s0.id=dt / and we have

k�2��;s0.id=dt /k � 1=.1 � s0/2

by Lemma 6.1. Therefore we obtain

kDNA
�1
s0 DN k � 1=.1 � s

0/2:

Similarly, we can show

kDNA
�1
s0 k � 1=.1 � s

0/2 (use ��;s0)
and

kiDNA
�1
s0 d=dtk � 1=2.1 � s

0/ (use ��;s0):

Thus U is bounded. Therefore we obtain�Ds C .1 � s/���1 � �Ds0 C .1 � s0/���1! 0

as s ! s0 as required.

By Proposition 6.2,…u�;s… is a continuous path in L.….L2.S//l/. In fact, this
continuous path is a desired homotopy of Fredholm operators.
Proposition 6.3. Set

v�;s D u�;s �

�
1 0

0 �

�
for all s 2 Œ0; 1�. One has Œ…; v�;s� � 0. Therefore,

…u�;s…W…
�
L2.S/

�
! …

�
L2.S/

�
is a Fredholm operator.
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Proof. It suffices to show the casewhen l D 1. Due to Proposition 6.2 and closedness
of K.L2.S//, we may assume s 2 Œ0; 1/.

First, we show g.Ds C .1 � s/�/
�1 � 0 for any g 2 C0.R/. Since C1c .R/ is

dense in C0.R/, it suffices to show the case when g 2 C1c .R/. Because Ts (see
in the proof of Proposition 6.2) is a first order elliptic differential operator and g
commutes with a operator on N , we haveg�Ds C .1 � s/���1uH1

� C
�g�Ds C .1 � s/���1uL2 C

Tsg�Ds C .1 � s/���1u�
� C 0kukL2

for any u 2 L2.S/. Here, k � kH1 is the Sobolev first norm on a compact set
Supp.g/ � N . By the Rellich lemma, we have g.Ds C .1 � s/�/�1 � 0. Thus we
also have �

Ds C .1 � s/�
��1

g D
�
Ng
�
Ds C .1 � s/�

��1��
� 0:

Second, we show Œ'; .Ds C .1 � s/�/
�1� � 0 for any ' 2 C1.R/ satisfying

' D … on the complement of a compact set inM . Since ' commutes with a operator
on N , we have�
';
�
Ds C .1 � s/�

��1�
D
�
Ds C .1 � s/�

��1 � 0 '0

�'0 0

� �
Ds C .1 � s/�

��1
� 0:

By a similar proof in the proof of Proposition 2.5(ii), we have

Œ…; .Ds C .1 � s/�/
�1� � 0:

This proves…v�;s � v�;s…, and thus

…u�;s…W…
�
L2.S/

�
! …

�
L2.S/

�
is a Fredholm operator.

Due to Propositions 6.2 and 6.3,

index
�
…%.�/…W…

�
L2.S/

�
! …

�
L2.S

��
is equal to index.…u�;1…/. LetH WL2.R/! L2.R/ be the Hilbert transformation:

Hf.t/ D �
i

�
p:v:

Z
R

f .y/

t � y
dy:

Then the eigenvalues of H are only 1 and �1 by H 2 D 1 and H ¤ ˙1. Let H� be
the .�1/-eigenspace ofH and yP WL2.R/! H� the projection to H�.
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Proposition 6.4. Set T� D .�i t C F /
�1�.�i t C F /. Then yP T� yP

� is a Fredholm
operator and one has

index
�
…%.�/…W…

�
L2.S/

�
! …

�
L2.S/

��
D index

�
yP T� yP

�
WX ! X

�
;

where X D H� ˝ L
2.SN /.

Proof. Due to Propositions 6.2 and 6.3, we have

index
�
…%.�/…W…

�
L2.S/

�
! …

�
L2.S/

��
D index

�
…u�;1…W…

�
L2.S/

�
! …

�
L2.S/

��
:

Because of
u�;1 D

�
1 0

0 .d=dt C F /�1�.d=dt C F /

�
;

the quantity
index

�
…%.�/…W…

�
L2.S/

�
! …

�
L2.S/

��
equals

index
�
….d=dtCF /�1�.d=dtCF /…W…

�
L2.R/

�
˝L2.SN /! …

�
L2.R/

�
˝L2.SN /

�
:

Let F WL2.R/! L2.R/ be the Fourier transformation:

F Œf �.�/ D

Z
R
e�ix�f .x/ dx:

Then, we have F �1…F D .1 �H/=2 D yP and F �1d=dtF D �i t . This implies

index
�
…%.�/…W…

�
L2.S/

�
! …

�
L2.S/

��
D index

�
yP T� yP

�
WX ! X

�
:

Thus it suffices to calculate index. yP T� yP
�/ in order to prove the main theorem.

For this purpose, we use eigenfunctions of the Hilbert transformation.
Lemma 6.5 ([18, Theorem 1]). Define an 2 L2.R/ by

an.t/ D
.t � i/n

.t C i/nC1

for all n 2 Z. Then fan=
p
�g is an orthonormal basis of L2.R/ and

Han D

(
an; if n < 0;
�an; if n � 0:

This implies H� D SpanCfangn�0.
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Proposition 6.6. One has index. yP T� yP
�/ D index.T�/. Therefore Theorem 3.6 in

the case whenM D R �N holds.

Proof. Set X0 D Cfa0g ˝HC and X1 D .SpanCfangn�1 ˝HC/˚ .H� ˝H�/.
We note that we have

X0 ˚X1 D H� ˝ L
2.SN / D X:

Let pWH� ! Cfa0g be the projection to Cfa0g. Then p0 D p˝P WX ! X0 is the
projection to X0 and p1 D idX � p0WX ! X1 is the projection to X1.

By the decomposition of L2.SN / D HC ˚H�, we have

T� D

24 idL2.R/ ˝ P�P
� t�i

tCi
˝ P�.1 � P /�

tCi
t�i
˝ .1 � P /�P � idL2.R/ ˝ .1 � P /�.1 � P /

�

35 :
So we obtain

yP T� yP
�p�0 D p

�
˝ P�P � D idCfa0g

˝ T�

and

T� yP
�p�1 D

24 . yP � p/� ˝ P�P � t�i
tCi
yP � ˝ P�.1 � P /�

tCi
t�i
. yP � p/� ˝ .1 � P /�P � yP � ˝ .1 � P /�.1 � P /�

35 :
This implies Image. yP T� yP

�p�0 / � X0, Image.T� yP �p�1 / � X1 and�
yP T��1

yP �p�1
��
yP T� yP

�p�1
�
D yP T��1T� yP

�p�1 D idX1
:

So yP T� yP
� forms a direct sum of an invertible part yP T� yP

�p�1 and another part
yP T� yP

�p�0 :

yP T� yP
�
D

�
yP T� yP

�p�0 0

0 yP T� yP
�p�1

�
on X0 ˚X1:

This proves index. yP T� yP
�/ D index. yP T� yP

�p�0 / D index.T�/.

We note that we also get

index
�
…u�;�…

�
D index.T�/:

7. The general case

In this section we reduce the proof for the general partitioned manifold to that of
R �N . Our argument is similar to Higson’s argument in [10]. By above sections, it
suffices to show the case when � 2 GLl.W.M//. Firstly, we shall show a cobordism
invariance. See also [10, Lemma 1.4].
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Lemma 7.1. Let .MC;M�; N / and .MC0;M�0; N 0/ be two partitions of M .
Assume that these two partitions are cobordant, that is, symmetric differences
M˙4M˙0 are compact. Let … and …0 be the characteristic function of MC
andMC0, respectively. Take � 2 GLl.W.M//. Then one has

index
�
…u�;�…

�
D index

�
…0u�;�…

0
�

and index
�
…%.�/…

�
D index

�
…0%.�/…0

�
:

Proof. It suffices to show the case when l D 1. Since we have Œ�;…� D 0 and
Œu�;� ;…� � 0, we obtain

index
�
…u�;�…W…

�
L2.S/

�
! …

�
L2.S/

��
D index

�
.1 �…/

�
1 0

0 �

�
C…u�;� WL

2.S/! L2.S/

�
D index

��
1 0

0 �

�
C…v�;� WL

2.S/! L2.S/

�
:

Therefore, it suffices to show…v�;� � …0v�;� . Now, sinceM˙4M˙0 are compact,
there exists f 2 C0.M/ such that… �…0 D .… �…0/f . So we obtain

…v�;� �…
0v�;� D .… �…

0/f v�;� � 0:

By the similar argument, we can prove

index
�
…%.�/…

�
D index

�
…0%.�/…0

�
:

Secondly, we shall prove an analogue of Higson’s Lemma [10, Lemma 3.1].
Lemma7.2. LetM1 andM2 be twopartitionedmanifolds andSj !Mj aHermitian
vector bundle. Let …j be the characteristic function ofMCj . We assume that there
exists an isometry  WMC2 !MC1 which lifts an isomorphism �WS1jMC

1

! S2jMC
2

.
We denote the Hilbert space isometry defined by � by the same letter

�W…1

�
L2.S1/

�
! …2

�
L2.S2/

�
:

Take uj 2 GLl.C �b .Mj // such that �u1…1 � …2u2
�. Then one has

index
�
…1u1…1

�
D index

�
…2u2…2

�
:

Similarly, if there exists an isometry  WM�2 !M�1 , which lifts an isomorphism

�WS1jM�
1
! S2jM�

2
and �u1…1 � …2u2

�;

then one has
index

�
…1u1…1

�
D index

�
…2u2…2

�
:
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Proof. It suffices to show the case when l D 1. Let

vW .1 �…1/
�
L2.S1/

�
! .1 �…2/

�
L2.S2/

�
be any invertible operator. Then

V D �…1 C v.1 �…1/WL
2.S1/! L2.S2/

is also invertible operator. Hence we obtain

V
�
.1 �…1/C…1u1…1

�
�
�
.1 �…2/C…2u2…2

�
V

D �…1u1…1 �…2u2…2
�
� �u1…1 �…2u2

�
� 0:

Therefore, we obtain

index
�
…1u1…1

�
D index

�
…2u2…2

�
since V is an invertible operator and one has

index
�
…juj…j

�
D index

�
.1 �…j /C…juj…j

�
for j D 1; 2.

Applying Lemma 7.2, we prove the following:
Corollary 7.3. Let M1 and M2 be two partitioned manifolds. Let Sj ! Mj be
a graded Clifford bundle with the grading �j , and denote by Dj the graded Dirac
operator of Sj . We assume that there exists an isometry  WMC2 ! MC1 which lifts
isomorphism �WS1jMC

1

! S2jMC
2

of graded Clifford structures. Moreover, we
assume that �j 2 GLl.W.M// satisfies �1..x// D �2.x/ for all x 2 MC2 . Then
one has

index
�
…1u�;�1

…1

�
D index

�
…2u�;�2

…2

�
:

Proof. Fix small R > 0. It suffices to show �u�;�1
…1 � …2u�;�2

� the case
when a chopping function � 2 C.RI Œ�1; 1�/ satisfies Supp.y� / � .�R;R/. Set
N2R D fx 2 M

C
1 I d.x;N1/ � 2Rg: Let '1 be a smooth function onM1 such that

Supp.'1/ � MC1 n N2R and assume that there exists a compact set K � M1 such
that '1 D …1 on M1 n K. Set '2.x/ D '1..x// for all x 2 MC2 and '2 D 0

onM�2 . Then we have

�v�;�1
…1 � 

�v�;�1
'1 and …2v�;�2

� � '2v�;�2
�:

Thus, if we have �v�;�1
'1 � '2v�;�2

�, then we obtain

�u�;�1
…1 � 

�v�;�1
'1 C 

�

�
1 0

0 �1

�
…1

� '2v�;�2
� C…2

�
1 0

0 �2

�
� � …2u�;�2

�:
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We shall show �v�;�1
'1 � '2v�;�2

�. Now, we have �v�;�1
'1 D v�;�2

�'1
since the propagation of�.D/ and �.D/ is less thanR, respectively, and �D D D�
onMC. Moreover, we have Œv�;�2

; '2� � 0 since v�;�2
2 Ml.C

�.M//. Therefore,
we obtain

�v�;�1
'1 D v�;�2

�'1 D v�;�2
'2

�
� '2v�;�2

�:

In order to prove Corollary 3.7, we apply Lemma 7.2 as follows.

Corollary 7.4. We also assume as in Corollary 7.3. Then one has

index
�
…1%.�1/…1

�
D index

�
…2%.�2/…2

�
:

Proof. It suffices to show �%.�1/…1 � …2%.�2/
�. Let '1 be a smooth function

onM1 such that Supp.'1/ �MC1 and assume that there exists a compact setK �M1

such that '1 D …1 onM1 nK. Set '2.x/ D '1..x// for all x 2 MC2 and '2 D 0
onM�2 . Set v�j

D %.�j / �
h
1 0
0 �j

i
. Then we have

�v�1
…1 � 

�v�1
'1 and …2v�2

� � '2v�2
�:

Thus, if one has �v�1
'1 � '2v�2

�, then we obtain

�%.�1/…1 � 
�v�1

'1 C 
�

�
1 0

0 �1

�
…1

� '2v�2
� C…2

�
1 0

0 �2

�
� � …2%.�2/

�:

We shall show �v�1
'1 � '2v�2

�. In fact, we obtain

�v�1
'1 � '2v�2

�

�
˚
�'1.D1 C �1/

�1
� .D2 C �2/

�1�'1
	 ��1 � 1 �c.grad.�1//�

0 �1 � 1

�
� .D2 C �2/

�1�ŒD1; '1�.D1 C �1/
�1

�
�1 � 1 �c.grad.�1//�
0 �1 � 1

�
� 0

since grad.'1/ has a compact support and ŒD1; '1� D c.grad.'1//. Thus, we get
�u�1

…1 � …2u�2
�. Therefore, we obtain

index
�
…1u�1

…1

�
D index

�
…2u�2

…2

�
by Lemma 7.2.
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Proof of Theorem 3.6, the general case. We assume � 2 GLl.W.M//. Firstly, let
a 2 C1.Œ�1; 1�I Œ�1; 1�/ satisfy

a.t/ D

�
�1; if �1 � t � �3=4;
0; if �2=4 � t � 2=4;
1; if 3=4 � t � 1:

Let .�4ı; 4ı/ �N be diffeomorphic to a tubular neighborhood of N inM satisfies

sup
.t;x/;.s;y/2Œ�3ı;3ı��N

j�.t; x/ � �.s; y/j < k��1k�1:

Set  .t; x/ D �.4ıa.t/; x/ on .�4ı; 4ı/ � N and  D � on M n .�4ı; 4ı/ �N .
Then we obtain  2 GLl.W.M// and k � �k < k��1k�1. Thus a map

Œ0; 1� 3 t 7!  t D t C .1 � t /� 2 GLl
�
W.M/

�
is continuous with the uniform norm. Therefore it suffices to show the case when
� 2 GLl.W.M// satisies �.t; x/ D �.0; x/ on .�2ı; 2ı/ �N . Due to Lemma 7.1,
we may change a partition ofM to�

MC [
�
Œ�ı; 0� �N

�
;M� n

��
� ı; 0� �N

�
; f�ıg �N

�
without changing index.…u�;�…/. Then, due to Corollary 7.3, we may change
MC [ .Œ�ı; 0� � N/ to Œ�ı;1/ � N without changing index.…u�;�…/. Here, �
is equal to �.0; x/ on Œ�ı;1/ � N and the metric on Œ0;1/ � N is product. We
denote this manifold by

M 0 D
�
Œ�ı;1/ �N

�
[
�
M� n

�
.�ı; 0� �N

��
:

M 0 is partitioned by�
Œ�ı;1/ �N;M� n

�
.�ı; 0� �N

�
; f�ıg �N

�
:

We apply a similar argument toM 0, we may changeM 0 to a product R�N without
changing index.…u�;�…/. Now we have changedM to R �N .

Proof of Corollary 3.7, the general case. Similar.
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