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1. Introduction

Working with semigroup C*-algebras of cancellative semigroups we face several
significant problems. The full semigroup C*-algebra C �.S/ of a left cancellative
semigroup S was introduced by X. Li in [14], and it was immediately noticed by the
author in Section 2.5 that this construction is not functorial, i.e. not every semigroup
morphism of two cancellative semigroups extends to a �-homomorphism of their
C*-algebras. It fails already for a morphism with domain the free monoid, as we
show in Example 5.14. The reason for such behavior is that the generators of C �.S/
imitate the left regular representation of S , while for functoriality one needs to
consider a larger class of isometric representations.

Another problem concerns the reduced semigroup C*-algebra. Many results
in [14,15] and in other papers on the subject assume independence of the constructible
right ideals in S . But this fails even in the simplest example of an abelian semigroup
ZC n f1g with usual addition operation, see Paragraph 5.15.
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We solve these problems by constructing the universal inverse semigroup of S ,
and associating to S the full and reduced C*-algebras of this inverse semigroup.
These algebras have quotients isomorphic to C �.S/ and C �r .S/ correspondingly,
and a certain quotient is a group C*-algebra for some group associated with S .

An inverse semigroup naturally arises in the left regular representation of a
left cancellative semigroup S , and relations between the C*-algebras of these two
semigroups were studied by several authors. The latest results in this direction were
obtained by M. Norling in [21], where C �r .S/ is described as a quotient of the
C*-algebra of the left inverse hull Il.S/ of S . The author also gives a surjective
homomorphism between the full C*-algebras C �.S/ ! C �.Il.S//. One can see
that the full semigroup C*-algebra C �.S/ is by definition a C*-algebra of an inverse
semigroup W generated by the elements of S as isometries, where idempotents
correspond to the constructible right ideals in S . These ideals are domains and
images of operators in Il.S/.

The semigroup Il.S/ represents only the canonical action of S on itself, and
cannot capture all possible actions of S , neither canW . As we show, a more efficient
way is first to embed S in a universal inverse semigroup, and then obtain through it
the C*-algebra of S , and actions and crossed products by S . For this purpose we use
the notion of a free inverse semigroup and the results on the problem of embedding
cancellative semigroups in inverse semigroups.

Any injective action of a cancellative semigroup generates an inverse semigroup of
partial bijections. This leads to a construction of the universal inverse semigroup S�
generated by S , as we explain in Section 2. We give a description of S� and its
relation to the left inverse hull. The existence follows from the work [28] of B. Shain.

In Section 3 we answer the question when the universal inverse semigroup S� is
E-unitary. This question is important, because so far the class of E-unitary inverse
semigroups is the most well-studied. The answer is that S� is E-unitary precisely
when S is embeddable in a group. In this case we give a concrete model for S�,
describing it as a semigroup generated by an action on the group G generated by S .
This action is the one which gives the isomorphism C �.S�/ Š C �.E/ ÌG due to a
result by Milan and Steinberg in [16].

Section 4 contains a study of the reduced semigroup C*-algebra of S�. We prove
that the left regular representation of S is a subrepresentation of the left regular
representation V of S�. It follows that C �r .S/ is a quotient of C �r .S�/. When S
embeds in a group, the model for S� described in Section 3 allows to compute V .
We prove that V is a direct sum of representations, each of them can be realized as
some restriction of the left regular representation of G onto a subspace of `2.G/,
where G is a group generated by S . And the left regular representation of S is one
of these summands.

We compare the full semigroup C*-algebras of S and S� in Section 5. By virtue
of general theory of inverse semigroups, a natural quotient of C �.S�/ is a group
C*-algebra C �.G/, where G is the maximal group homomorphic image of S�, and
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the same holds for their reduced versions. In the case when S embeds in a group,
G is isomorphic to the group generated by S . We point out that the assignment
S 7! C �.S�/ is functorial, unlike the assignment S 7! C �.S/. Example 5.14
of a free monoid FCn illustrates this difference. Unlike C �.FCn /, which almost
never admits a homomorphism onto C �.S/ for an n-generated left cancellative
semigroup S , the quotient map C �.FCn

�
/ 7! C �.S�/ always exists. A natural

quotient of C �.FCn
�
/ is the Cuntz algebra On.

In Paragraph 5.15 we note that the idempotent generators of S� under the left
regular representation are linearly independent, due to the general theory of inverse
semigroups. Therefore, an important question of independence of constructible right
ideals has no importance for C �r .S�/. We note that C �.S�/ and C �r .S�/ are nuclear
for an abelian semigroup S .

We apply our constructions to the connection between amenability of a
cancellative semigroup S and nuclearity of its reduced C*-algebra in Section 6.
In particular, we prove that if S embeds in an amenable group, then C �r .S/ is
nuclear. Thus we generalize results of [15] on this question. Moreover, in the above
mentioned case, S� has the weak containment property and C �r .S�/ is nuclear. We
also show that amenability of S implies amenability of S� in any case.

It is a known fact thatC �r .FCn / is nuclear despite the fact that FCn is not amenable.
Using our constructions, we obtain that C �r .FCn

�
/ is not nuclear, which makes it a

more natural candidate for the C*-algebra associated with the free monoid.
In Section 7 we give connections between actions of S and S� on spaces,

C*-algebras, and prove isomorphisms of crossed products. We consider actions of
cancellative semigroups by endomorphisms; the case of automorphisms was studied
in [14]. According to the definition by [30], an inverse semigroup acts on aC*-algebra
by �-isomorphisms between closed two-sided �-ideals of the C*-algebra. Therefore,
with a view to connect actions by cancellative semigroups with actions by inverse
semigroups, we are forced to restrict ourselves to the case when the images of
endomorphisms are ideals.

First we prove that injective actions of a cancellative semigroup S are in one-to-
one correspondence with unital actions of S�, so that an action of one induces an
action of the other. Then we prove an isomorphism between the crossed products
A Ì˛ S and A Ìz̨ S�, where z̨ is induced by ˛ or the other way round. The case
of a unital C*-algebra A is more common for the crossed products by cancellative
semigroups, hence we consider the unital and the non-unital case separately. We use
the definition of a crossed product with non-unital C*-algebra of N. Larsen [13]. This
result allows us to describeC �.S�/ as a crossed product of a commutative C*-algebra
by S , and C �.S/ as a crossed product by S�. If S is a left Ore semigroup, then any
unital action of S� can be dilated to an action of a group, and the crossed product is
Morita equivalent to the group crossed product.

In Section 8 we study connections of actions and crossed products of semigroups
with partial actions and partial crossed products of groups. If S is embeddable
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in a group, the model for S� gives a partial action of the group G (the group
generated by S ), such that C �.S�/ is isomorphic to a partial crossed product by G.
This isomorphism is precisely the one given by Milan and Steinberg in [16]. A
stronger result holds in the case of a left Ore semigroup, that is, a semigroup S such
that G D S�1S is a group. Using the semigroup S� and the work of Exel and
Vieira [10], we prove that any injective action of S generates a partial action of G,
and the corresponding crossed products are isomorphic.
1.1. Let us recall the main definitions and facts used in this paper. Let P be a
semigroup. Elements x and x� in P are called inverse to each other if

xx�x D x and x�xx� D x�:

The semigroup P is called an inverse semigroup if for any x 2 P there exists a
unique inverse element x� 2 P . Further, P always stands for an inverse semigroup.
We proceed to recall basic facts on inverse semigroups.
Theorem 1.2 (V. V. Vagner [31]). For a semigroup S in which every element has an
inverse, uniqueness of inverses is equivalent to the requirement that all idempotents
in S commute.

The set of idempotents of an inverse semigroupP forms a commutative semigroup
denoted E.P /. In fact,

E.P / D fxx� j x 2 P g D fx�x j x 2 P g:

Every inverse semigroup P admits a universal morphism onto a group G.P /,
which is the quotient by the congruence: s � t if se D te for some e 2 E.P /. The
groupG.P / is called themaximal group homomorphic image ofP . Note thatG.P / is
always trivial ifP contains a zero, i.e. an element denoted 0, satisfying 0�a D a�0 D 0
for any a 2 P . Let � WP ! G.P / denote the quotient homomorphism onto the
maximal group homomorphic image of P . The semigroup P is called E-unitary
if ��1.1/ D E.P /.
1.3. A semigroup S is called left (right) cancellative if for any a; b; c 2 S the
equation ab D ac (ba D ca) implies b D c. A unit in a semigroup is an element
denoted by 1, satisfying a � 1 D 1 � a D a for any a in the semigroup.
1.4. Let us compare inverse and left cancellative semigroups. These two classes
of semigroups have radical differences, which follow directly from the definitions.
The notion of an inverse semigroup is a natural generalization of the notion of a
group, where a group inverse element (ss�1 D 1 and s�1s D 1) is substituted by
a “generalized inverse” (ss�s D s and s�ss� D s�). This is the reason why at the
early stage the inverse semigroups were called “generalized groups” ([31]). Inverse
semigroups have many idempotents and may have a zero, while a left cancellative
semigroup may have only one idempotent, namely the unit element, and no zero
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element. A left cancellative semigroup is very often embedded in a group, while
an inverse semigroup is a subsemigroup in a group only if it is a group itself. In
particular, the intersection of these classes is the class of groups.

One meets the consequence of these differences in the theory of semigroup
C*-algebras, starting with the left (right) regular representation. An inverse
semigroup is represented on itself by partial bijections. A left cancellative semigroup
is represented on itself by injective maps, where the domain is the whole semigroup.
An inverse semigroup has an involution, which is a map assigning to every element
of S its inverse element. And the presence of an involution makes it very natural
to consider �-representations in B.H/. Despite the different nature, soon after the
establishment of inverse semigroups, it was noticed that these two classes are closely
related. In the following sectionwe construct a universal inverse semigroup generated
by a left cancellative semigroup.

2. Universal inverse semigroup

2.1. Recall the basic example of an inverse semigroup. LetX be a set, and let Y � X .
A one-to-one map ˛WY ! X is called a partial bijection of X . In particular, any
injective map X ! X is a partial bijection of X . Suppose that ˛ and ˇ are partial
bijections of X with domains Y and Z respectively. Then the product ˛ˇ is defined
to be a composition of ˛ and ˇ with domain ˇ�1.ˇ.Z/\Y /. The set I.X/ of partial
bijections with this product forms an inverse semigroup called the symmetric inverse
semigroup of X . Note that this semigroup contains a zero and a unit.

In what follows we always assume that every semigroup contains a unit element,
denoted by 1.

2.2. The first inverse semigroup associated with a left cancellative semigroup S
arises from the left regular representation of S . For any a 2 S , define an operator of
left ranslation �aWS ! S by �a.b/ D ab for all b 2 S . Since S is left cancellative,
each �a is injective. Then f�a j a 2 Sg forms a semigroup of partial bijections
on S , and it is a subsemigroup of I.S/. The inverse of �a is a partial bijection with
a domain fab j b 2 Sg. Taking inverses of all such partial bijections and products of
them, one obtains a subsemigroup of I.S/. This is an inverse semigroup called the
left inverse hull of S ([5]), denoted Il.S/.

2.3. More generally, suppose we have an injective action ˛ of a left cancellative
semigroup S on a space X . It means that for every s 2 S , the map ˛sWX ! X

is injective and ˛s ı ˛t D ˛st for all t 2 S . Denote the image of ˛s by Ds � X .
Then ˛s is a bijection between X and its image Ds , and there exists an inverse map,
which we denote by ˛�s WDs ! X . For convenience set Ds� D X for every s 2 S .
One can easily verify thatDst D ˛s.Dt /.
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Clearly, ˛�s ı ˛s is the identity on X and ˛s ı ˛�s is the identity on Ds . It
follows that ˛s ı ˛�s ı ˛s D ˛s and ˛�s ı ˛s ı ˛�s D ˛�s . But the composition
˛�s ı ˛t is defined only on a subset of X , namely on ˛�t .Ds \ Dt /. Thus we put
D.s�t/� D ˛�t .Ds \ Dt / and define the product ˛�s ˛t D .˛�s ı ˛t /jDt�s

. One
should check that this definition is compatible with multiplication in S , namely
˛�st˛v D ˛�t ˛

�
s ˛v . Continuing this way we define all finite products w of the maps

from the collectionF D f˛s; ˛�t for all t; s 2 Sgwith domainDw . We put ˛��s D ˛s
for all s 2 S .

It is easy to see that for a1; : : : ; an 2 F , the element .a1a2 : : : an/� D a�n : : : a�2a�1
is the inverse (in a semigroup sense) of w D a1a2 : : : an, and that ww� and w�w
are idempotents. Obviously, w�w and v�v commute for any words v;w and any
idempotent has the form w�w. Thus, we get an inverse semigroup, which is a
subsemigroup in a set of all partial bijections on a space X . Note that in the case
that ˛ is an action of S by injective maps, we have ˛�s ˛s D id, so ˛s is an isometry.
We have verified the following statement.
Lemma 2.4. An injective action ˛ of a left cancellative semigroup S on a space X
generates an inverse semigroup S�˛ � I.X/.

This motivates a notion of a universal inverse semigroup generated by a left
(right) cancellative semigroup. A problem of embedding a semigroup in an inverse
semigroup is analogous to the well-known and widely studied problem of embedding
it in a group. Recall a famous result of O. Ore and P. Dubreil on this problem, which
we will use later.
Theorem 2.5 ([6]). A semigroup S can be embedded into a group G such that
G D S�1S if and only if it is left and right cancellative and for any p; q 2 S we
have Sp \ Sq ¤ ;. The group G is called the group of left quotients of S .
2.6. The question of embedding a semigroup in an inverse semigroup is more general
and is approached in the following way. For any set X there exists a free inverse
semigroup F.X/, generated byX (see [27] for the proof). Thus, if S is a semigroup,
we can consider the quotient of F.S/ by all the relations in S . Namely, if xy D z

in S we put xy � z in F.S/, and the same for inverses. The resulting semigroup
is called the free inverse semigroup of S , and we denote it SF . So, the question
becomes whether the natural map S ! SF is an embedding. In fact, there were
found many sufficient conditions for this to hold. Among these results we mention
the most important for our research.
Theorem 2.7 (B. Shain [28]). If a semigroup S is left (or right) cancellative, then S
can be embedded into an inverse semigroup.
2.8. Therefore, working with a left cancellative semigroup S we always have an
embedding S ,! SF . B. Shain also gave an explicit form of SF . Namely, it is the
semigroup generated by the set˚

vp; v
�
p W p 2 S; vpv

�
pvp D vp; v

�
pvpv

�
p D v

�
p
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with the additional requirement that all idempotents in SF commute. Since we
want S to be represented by isometries, we take the congruence on SF generated by
the equivalence relation v�pvp � 1 for all p 2 S . The quotient inverse semigroup,
denoted by S�, is then generated by isometries vp for p 2 S . The semigroup S�
is in some sense the largest inverse semigroup generated by S as a semigroup of
isometries.

2.9. For the moment we have mentioned two inverse semigroups associated with
a given left cancellative semigroup S , constructed in different ways: the universal
inverse semigroup S�, and the left inverse hull Il.S/. In order to see the relation
between them, we make a short review of [5] and the notion of the left inverse hull.
Note that we adapt all the relations and notations, because, unlike the left cancellative
case selected here, the semigroup S in [5] is right cancellative. Also, a semigroup
with a unit is always left and right reductive, so the semigroup S which we consider
fits into the requirements of [5]. For the generators of F.S/, we use symbols vp
for p 2 S as above.

The left inverse hull Il.S/ is proved in [5] to be isomorphic to the quotient ofF.S/
by four collections of relations. In the notation of [5], the above mentioned relations
v�pvp � 1 for all p 2 S are denoted R1, and R4 is a collection of all relations in S .
Therefore, passing to the quotient of F.S/ by the congruence generated by R1 [R4
we obtain exactly S� (introduced above). The relations R2 and R3 ensure that the
elements are equivalent if the corresponding operators in Il.S/ have the same domain
and act in the same way (see below).

An explicit form for the domains of the maps in Il.S/ is given using the notation
in [14]. For any subset A � S and any a 2 S set

aA D fax j x 2 Ag; (2.1)
a�1A D fx 2 S j xa 2 Ag: (2.2)

In [5] these sets are denoted aA and a W A respectively. Then the domain of
� D ��1a1

�a2
: : : ��1an�1

�an
2 Il.S/ is the set a�1n .an�1 : : : a

�1
2 .a1S//, which is the

image of ��1an
�an�1

: : : ��1a2
�a1
D �� 2 Il.S/. Such domains are right ideals in S .

In fact, these sets were called the constructible right ideals of S by X. Li in [14] and
used there for the definition of C �.S/ and for the study of C �r .S/. The set of such
ideals with an empty set is denoted by J, so J is the set of all domains (and images)
of all maps in Il.S/.

We can now formulate the relations R2 and R3 on F.S/. The first of them
introduces the zero element:

v�a1
va2

: : : v�an�1
van
�R2

uv�a1
va2

: : : v�an�1
van

w

for any u;w 2 F.S/ iff a�1n .an�1 : : : a
�1
2 .a1S// D ;:
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The relations R3 ask for elements to be equivalent if when represented on S they
act in the same way.

v�a1
va2

: : : v�an�1
van
�R3

v�b1
vb2

: : : v�bk�1
vbk

iff a�1n .an�1 : : : a
�1
2 .a1S// D b

�1
k .bk�1 : : : b

�1
2 .b1S//;

and for any x 2 a�1n .an�1 : : : a
�1
2 .a1S// there exist x1; : : : ; xn; y1; : : : ; yk 2 S ,

such that

x1 D y1

and
anx D an�1xn; an�2xn D an�3xn�1; : : : ; a2x2 D a1x1;

bkx D bk�1yk; bk�2yk D bk�3yk�1; : : : ; b2y2 D b1y1:

The main result of [5] is that Il.S/ is isomorphic to the quotient F.S/=R�,
whereR� is the congruence generated byR D R1[R2[R3[R4. Comparing this
fact with our definition of S�, we obtain the following.
Lemma 2.10. There are surjective homomorphisms of inverse semigroups

F.S/
˛
! SF

ˇ
! S�


! Il.S/; (2.3)

where ˛ is the quotient by R4, ˇ by R1, and  by R2 [R3.

3. E-unitarity and a model for the universal inverse semigroup

As explained in Paragraph 1.1, for any inverse semigroup P there exists a maximal
group homomorphic image G.P /, which is not trivial if the semigroup does not
contain a zero. This is the case for S� due to its definition.
Lemma 3.1. For a left cancellative semigroup S , its universal inverse semigroup S�
(as well as SF ) is E-unitary if S is embeddable in a group. In this case G.S�/ D
G.SF / is isomorphic to the group generated by S .

Proof. First, SF ! G.SF / factors through ˇWSF ! S� given by v�ava � 1.
Therefore, by maximality SF and S� share the same maximal group homomorphic
image, i.e. G.S�/ D G.SF /.

Let S� be E-unitary and assume �.va/ D �.vb/ in G.S�/. Then vbv�a is a
self-adjoint idempotent, and we obtain

va D vav
�
bvb D vbv

�
avb D vbv

�
avbv

�
ava D vbv

�
ava D vb:

Therefore, � is an embedding of the semigroup fvaW a 2 Sg in G.S�/, which can be
identified with S . Since va are generators of S�, their image under � generates the
group G.S�/ by maximality.
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If SF is E-unitary and �ˇ.va/ D �ˇ.vb/, then vbv�a is a self-adjoint idempotent
in SF and therefore so is vbv�a 2 S�. Hence, S is embeddable in a group in this case
as well.

3.2. In the case when S is embeddable in a group, there exists a model realizing
the universal inverse semigroups S� and SF . First, let us give a model for SF , the
predecessor of S�.

For any set X there exists a free inverse semigroup F.X/. The proof in [27]
and [3], uses essentially the free group G.X/ on the set X , and embedding of X in
the free group. The idea of our model is based on the model given in [3] for F.X/.

As shown in Lemma 2.10, SF is a quotient of the free inverse semigroup onF.S/
by congruence generated by relations in the semigroup S . Therefore, the quotient of
the model for F.S/ gives a correct model for SF if S is embeddable in a group. And
in this case, a group generated by S is used instead of the free group on the set. We
denote by G a group generated by S , and let exp.G/ be the set of all finite subsets
of G containing 1. Due to maximality of the maximal group homomorphic image
of SF , and the fact that SF is generated by elements va, we have G.SF / D G.
Denote by � the quotient map SF ! G.

For any A 2 exp.G/, g 2 G, a; b 2 S define a relation

A [ f1; g; ga; gabg � A [ f1; g; gabg: (3.1)

One can easily verify that this is an equivalence relation and generates a congruence
on exp.G/. It follows in particular that

f1; g; ga�1; ga�1b�1g � f1; g; ga�1b�1g; f1; g; ga�1; gbg � f1; ga�1; gbg:

We will formally write g1 � g � g2 if g D g1a, g2 D gb for some a; b 2 S . Then
the relation � on exp.G/ can be formulated as

A [ fgg � A if and only if there exist g1; g2 2 A such that g1 � g � g2:

For any A 2 exp.G/ denote its equivalence class by ŒA� and the set of all
equivalence classes by exp.G/= �. Clearly, � is stable under taking union, i.e.

A � A0; B � B 0) A [ B � A0 [ B 0:

This equivalence is also stable under multiplication by elements of G from the left:

gA D f1g [ fga W a 2 Ag;

so that the class gŒA� D ŒgA� is well-defined. Note that this is not an action of G on
exp.G/, because in general .gh/A ¤ g.hA/. And we have g�1.gA/ D fg�1g [ A
for any A 2 exp.G/, g 2 G.
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Define a partial order on exp.G/= �, for any A;B 2 exp.G/:

ŒA� � ŒB� if and only if there exists B 0 � B such that A � B 0:

This means in particular, that for any A;B 2 exp.G/ and g 2 G, a; b 2 S

A � B ) ŒA� � ŒB�;

Œf1; g; gag� � ŒA [ f1; g; gabg�; Œf1; ga�1; ga�1b�1g� � ŒA [ f1; g; ga�1b�1g�;

Œf1; g; ga�1g� � ŒA [ f1; gb; ga�1g�; Œf1; g; ga�1g� � ŒA [ f1; g; ga�1b�1g�:

The partial order � on exp.G/= � is stable under multiplication from the left by
elements of G due to stability of �.

We say that an element g D a1a2 : : : an 2 G is written in a reduced form if ai ’s
are alternating elements fromS andS�1 with ai ¤ a�1iC1 for all 1 � i � n�1. Define
a set Ig D f1; a1; a1a2; : : : ; a1a2 : : : ang 2 exp.G/ corresponding to a fixed reduced
form of g. A set A 2 exp.G/ is called full if for any g 2 A it contains the subset Ig
for some reduced form of g. This means that any full set equals Ig1

[ Ig2
[ � � � [ Ign

for some gi 2 G. Denote by E the set of equivalence classes with respect to � of
full sets in exp.G/. Note that a full set may be equivalent to a non-full set.

Define the set

zG D
˚�
g; ŒA�

�
2 G �E W ŒIg � � ŒA� for some reduced form of g

	
:

In fact, it is sufficient to require that g 2 A0 for some full set A0 � A. We define
product and inverse operation on zG:�

g; ŒA�
��
h; ŒB�

�
D
�
gh; ŒA [ gB�

�
; (3.2)�

g; ŒA�
��
D
�
g�1; g�1ŒA�

�
: (3.3)

Since ŒIg � � ŒA�, we have that ŒIg�1 � D g�1ŒIg � � g
�1ŒA�. Hence .g; ŒA�/� 2 zG.

Theorem3.3. The set zG with product and inverse operation defined by (3.2) and (3.3)
forms an inverse semigroup isomorphic to SF .

Proof. To see that the product is associative, take g; h; f 2 G and full sets A;B;C
in exp.G/ and compute

A [ gB [ .gh/C D A [
�
gB [ fgg

�
[ .ghC/ D A [ g

�
B [ hC

�
:

For any .g; ŒA�/ 2 zG we may assume Ig � A, which implies g.g�1A/ D A.
Consequently,�

g; ŒA�
��
g�1; g�1ŒA�

��
g; ŒA�

�
D
�
g; ŒA [ g.g�1A/ [ A�

�
D
�
g; ŒA�

�
:

Checking similarly the corresponding equation for .g�1; g�1ŒA�/, we obtain that (3.3)
defines an inverse element for .g; ŒA�/.
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The idempotents in zG correspond to elements of E:�
g; ŒA�

��
g; ŒA�

��
D
�
1; ŒA�

�
$ ŒA� 2 E:

The product ŒA�ŒB� D ŒA [ B� on E is commutative. Moreover, ŒA� � ŒB� if and
only if idempotents .1; ŒB�/ � .1; ŒA�/.

Thus, zG is an inverse semigroup.
As mentioned above, the semigroup SF is a quotient of the free inverse semi-

group F.S/ on S as a set by equivalence relation generated by relations among
elements in S . Therefore it is sufficient to show that the model described is a quotient
of the model for F.S/ by relations in S . Let T be the free monoid generated by
the set S . For a; b 2 S we denote their product in T by ab and their product in S
by a � b. Now T is a cancellative monoid and clearly T F D F.S/ by definition, with
a maximal group homomorphic imageG.T / equal to the free group on the set S and
to G.F.S//. One can easily see that the model for T F coincides with the model
in [27] for F.S/, which we describe further.

Since G.T / is a free group, every its element has a reduced form. For any
g 2 G.T / with a reduced form r.g/ D a1a2 : : : an, where ai 2 S [ S�1 � G.T /,
we define

Og D
˚
1; a1; a1a2; : : : ; a1a2 : : : an

	
:

The set A 2 exp.G.T // is called saturated if g 2 A implies Og � A. Then

F.S/ D
˚
.a; A/ W A is saturated and r.a/ 2 A

	
� G.T / � exp.G.T //:

The product and inverse operation on F.S/ are given by

.a; A/.b; B/ D .ab; A [ bB/;

.a; A/� D .a�1; a�1A/:

The idempotent semilattice in F.S/ consists of elements .1; A/ for all saturated
sets A.

The generators of F.S/ are

ta D
�
a; f1; ag

�
; t�a D

�
a�1; f1; a�1g

�
for all a 2 S , where a�1 is the inverse of a in G.T /. Note that for a; b 2 S we have

tatb D
�
ab; f1; a; abg

�
and t.a�b/ D

�
a � b; f1; a � bg

�
;

and the same for their inverses. The homomorphism F.S/! SF is a quotient map
by equivalence tatb � t.a�b/. This consists of equivalences onG.T / and exp.G.T //:

ab � a � b; f1; a; abg � f1; a � bg:
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It is easy to see that the quotient of G.T / by the first equivalence equals G. The
second reduces subsets of G.T / to subsets of G and induces a new equivalence on
it, which is given by (3.1). Under this equivalence a saturated subset of G.T / turns
into a full subset of G. Thus we obtain the model zG.

For the sake of completeness, we give an isomorphism between zG and SF . For
any element in SF we define a corresponding element in G � E. Obviously, any
element of SF can be written as a product of alternating symbols of the type va
and v�

b
, for a; b 2 S . We call such a form of an element a reduced form. Let s 2 SF

be an element with a reduced form v�a1
va2

: : : v�an
, where a1; : : : ; an 2 S . Define

Is D
˚
1; �.v�a1

/; �.v�a1
va2
/; : : : ; �.s/

	
2 exp.G/; Qs D

�
�.s/; ŒIs�

�
2 G �E:

Then because of the equivalence relation we put on exp.G/, the map s 7! Qs

does not depend on the choice of the reduced form for s. Clearly, this map is a
�-homomorphism.

Let us define the reverse map zG ! SF . Consider a full set

Ig D
˚
1; a�11 ; a�11 b1; a

�1
1 b1a

�1
2 ; : : : ; a�11 b1a

�1
2 : : : a�1n bn

	
2 exp.G/

corresponding to g 2 G and its reduced form g D a�11 b1a
�1
2 : : : a�1n bn.

First assume that Ig contains precisely one element of S�1 (or S ), denote it a�11
(or a1). Then assume that Ig contains precisely one element in a�11 S (or a1S�1), etc.
Under all these assumptions we get a unique chain a�11 ; b1; : : : ; a

�1
n ; bn and define

sg D v
�
a1
vb1

: : : v�an
vbn
;

as an element corresponding to .g; ŒIg �/.
If on some step this is not true and we have, for instance

a�11 b1 : : : a
�1
k bka

�1
kC1bkC1 : : : a

�1
i bi D a

�1
1 b1 : : : a

�1
k bkc

�1

for some c 2 S , then we split Ig into a union of sets

Ig1
D
˚
1; a�11 ; : : : ; a�11 b1 : : : bk; a

�1
1 : : : bkc

�1; a�11 : : : bkc
�1a�1iC1; : : :

: : : ; a�11 : : : bkc
�1a�1iC1 : : : bn

	
and Ig2

D
˚
1; a�11 ; : : : ; a�11 : : : bk; a

�1
1 : : : bkc

�1; a�11 : : : bkc
�1b�1i ; : : :

: : : ; a�11 : : : bkc
�1b�1i : : : b�1kC1

	
;

and then consider these sets separately and check them for the assumptions. Repeating
this process at the endwe get Ig D [ljD1Igl

, where each of the sets is full and satisfies
the required property, and at least one of them ends with g. For each of these sets

Igj
D
˚
1; c�11 ; c�11 d1; : : : ; c

�1
1 d1c

�1
m dm

	
define sgj

as above.
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Now the element corresponding to .g; Œ[ljD1Igl
�/ is .sg1

s�g1
: : : sgl

s�gl
/sgr

,
where sgr

is the element corresponding to the set containing g. The element
corresponding to the idempotent .1; Œ[ljD1Igl

�/ is .s1s�1 : : : sls�l /. This map is well-
defined on equivalence classes, because it depends on a unique representative of the
class. Since any full set is a union of Ig , we obtain a well-defined map zG ! SF .
One can easily verify that this map is also a �-homomorphism. Clearly, the maps
SF ! zG and zG ! SF are inverse to one another.

For the model of S� we need to formulate the homomorphism ˇWSF ! S� in
terms of the model of SF . Recall that ˇ is given on SF by equivalence v�ava �0 1
for all a 2 S and generates the following equivalence for the model of SF .

A [ f1; g; ga�1g �0 A [ f1; gg

for any A 2 exp.G/, g 2 G, a 2 A. It follows in particular that

f1; a�1g �0 f1g; f1; g; gag �0 f1; gag:

Similarly to�, this new equivalence is stable under taking the union and multiplying
by elements of G from the left as defined above. Moreover, �0 substitutes �:

f1; g; ga; gabg �0 f1; ga; gabg �0 f1; gabg:

Denote by E 0 the quotient of exp.G/ by �0, and by ŒA� the equivalence class of
A 2 exp.G/. The product, inverse operation and partial order on E 0 are defined
similarly to E. Thus Theorem 3.3 implies the following.

Corollary 3.4. The inverse semigroup S� is isomorphic to the inverse semigroup˚�
g; ŒA�

�
2 G �E 0 W ŒIg � � ŒA� for some reduced form of g

	
;

with the product and inverse operation defined above, idempotent semilattice equal
to E 0, generated by elements

va D
�
a; Œf1; ag�

�
; v�a D

�
a�1; Œf1g�

�
:

Corollary 3.5. The inverse semigroups SF and S� are E-unitary if and only if S is
embeddable in a group.

Proof. Due to Lemma 3.1, it is sufficient to show the ”if” part. Suppose S generates
a group G. Then looking at the model for SF given by Theorem 3.3, any s 2 SF
equals .�.s/; ŒA�/ for some setA 2 exp.G/. Moreover, s is an idempotent if and only
if it equals .1; ŒA�/. Therefore, ��1.1/ D E.SF /. A similar proof works for S�.
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4. The reduced C*-algebras of the universal inverse semigroups

4.1. As a consequence of the facts described in the previous section, there is a
connection between the representation theories of S and S�.

Let P be an inverse semigroup. A �-representation of P is a homomorphism �

of P into B.H/ such that �.s�/ D �.s/� for any s 2 P . It is clear that each �.s/
is a partial isometry. We say that � is unital if it sends the unit in P to the identity
operator. We want to avoid further subtle details concerning the zero element. For
this we ask that a �-representation of an inverse semigroup should assign the zero
operator to the zero element in P if the latter exists.

4.2. Let S be a left cancellative semigroup. Similarly to the definition given in [11],
we say that a representation� ofS is an inverse representation if the set�.S/[�.S/�
generates a semigroup of partial isometries, i.e. generates an inverse semigroup. It is
known that the left regular representation of S is inverse. Note that the well-known
requirement of commuting range projections is not sufficient for a representation to
be inverse. An example of an abelian semigroup with isometric but non-inverse
representation and a condition for admitting such a representation for general abelian
semigroup were given in [2].

Lemma 4.3. There are one-to-one correspondences between inverse representations
of S and �-representations of SF ; and between isometric inverse representations
of S and unital �-representations of S�.

Proof. Given an inverse representation � of S and p 2 S , set z�.vp/ D �.p/, and
z�.vp

�/ D �.p/�. Then extend z� to SF multiplicatively. Uniqueness of an inverse
then follows from Vagner’s theorem (1.2) and the fact that a product of two partial
isometries is a partial isometry if and only if the source projection of the first one
commutes with the range projection of the second (see also Proposition 2.3 in [26]).
Given a �-representation z� of SF just set �.s/ D z�.s/, and the image of an inverse
semigroup under �-homomorphism is an inverse semigroup.

The second statement is verified similarly. If z� is a unital �-representation of S�,
since v�pvp D 1 we get that �.p/ D z�.vp/ is an isometry.

4.4. Recall the definition of the reduced C*-algebra of an inverse semigroup (see [23]
for details). Consider the Hilbert space `2.P / with standard basis ıs; s 2 P . Define
the left regular representation V WP ! B.`2.P // by

Vsıt D

(
st; if s�st D t ;
0; otherwise:

(4.1)

Then V is a �-representation. The reduced C*-algebra of P is

C �r .P / D C
�.Vs j s 2 P / � B.`

2.P //:
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4.5. Recall the construction of the C*-algebra of a left cancellative semigroup
(see [14]). Let S be a left cancellative semigroup. Consider the Hilbert space
`2.S/ with standard basis ıp; p 2 S . Define Vp 2 B.`2.S// by

Vpıq D ıpq

for all p; q 2 S . Then one can check that

V �p ıq D

(
ır ; if q D pr;
0; otherwise:

(4.2)

This is a faithful representation of S by isometries called the left regular
representation of S . The C*-algebra

C �r .S/ D C
�.Vp j p 2 S/ � B.`

2.S//

is the reduced semigroup C*-algebra of S .
Lemma 4.6. The left regular representation of S induces a non-degenerate unital
�-representation V 0 of S� on `2.S/.

Proof. As noticed before, the left regular representation of S is inverse, i.e. the
semigroup V.S/ generated by the set fVp j p 2 Sg [ fV �p j p 2 Sg is an inverse
semigroup. The reason is that any element of V.S/ is a shift operator on the standard
basis fıpg. Then due to Lemma 4.3, V induces a �-representation of S� on `2.S/,
given on the generators by

V 0.vp/ıq D ıpq:

Note that V 0 is not in general faithful, see Example 5.14. But the image V 0.S�/
can be identified with the left inverse hull Il.S/ represented on `2.S/.
Lemma 4.7. The left regular representation V of the inverse semigroup S� restricts
to a �-representation on `2.S/ � `2.S�/. This subrepresentation coincides with the
�-representation V 0 and its image is Il.S/.

Proof. The Hilbert space `2.S/ is naturally embedded in `2.S�/ by the map given
by ıs 7! ıvs

for all s 2 S . It is sufficient to show invariance of `2.S/ under the
generating operators. For s; t 2 S due to (4.1) and equality v�s vs D 1, we have

V.vs/ıvt
D ıvsvt

D ıvst
:

Before checking the same for v�s , let us show that vsv�s vt D vt if and only if t D sr
for some r 2 S . The implication “(” is obvious.

Now suppose t ¤ sr for any r 2 S . Then using Lemma 4.6, we have
V 0.vt /ı1 ¤ ısr for any r 2 S . Since by relation (4.2) operator V 0.vs/V 0.v�s / is
a projection onto a closed linear span of fısr j r 2 Sg, we have

V 0.vsv
�
s vt /ı1 D V

0.vs/V
0.v�s /V

0.vt /ı1 D 0 ¤ V
0.vt /ı1:
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We conclude that vsv�s vt ¤ vt . Hence, using (4.1) we obtain

V.v�s /ıvt
D

(
ıvr
; if t D sr;

0; otherwise:

We see that `2.S/ as a subspace in `2.S�/ is invariant under all V.vs/, V.v�s / an
therefore under the whole image V.S�/. Moreover, using identification ıvt

$ ıt we
get V j`2.S/ D V

0.

Lemma 4.8. The C*-algebra C �V 0.S
�/ is isomorphic to C �r .S/ and the following

short exact sequence holds.

0 �! Jr �! C �r .S
�/ �! C �r .S/ �! 0; (4.3)

whereJr is the kernel of restriction of the left regular representation ofS� onto `2.S/.

Proof. Due to Lemma 4.7 and Lemma 4.6, V 0 can be viewed as a restriction of the left
regular representation of S� onto `2.S/, and at the same time as a �-representation
of S� induced by the left regular representation VS of S . So, viewing C �r .S/ as a
C*-subalgebra in B.`2.S�// generated by V 0.S�/ we obtain C �r .S�/=Jr Š C �r .S/.

4.9. In the case of a semigroup S embeddable in a group we can compute the
left regular representations of SF and S�. Namely, both representations are
decomposable into a direct sum of representations, each of which can be realized by
a representation on the group G, generated by S . For this we use the models for SF
and S� given in Theorem 3.3 and Corollary 3.4 and notations therein.

Recall that in this case the maximal group homomorphic image of SF equals G,
� denotes the homomorphismSF!G. For any element sDv�a1

va2
: : : v�an�1

van
2SF,

Is D
˚
1; �.v�a1

/; �.v�a1
va2
/; : : : ; �.s/

	
� G:

This set depends on the form in which s is written. But all forms of s give equivalent
sets in the class ŒIs�. In the model for SF , s D .�.s/; ŒIs�/ with idempotent ss�
corresponding to ŒIs�.

Define for s 2 SF , g 2 G

Gs D
˚
g 2 G W there exist g1; g2 2 Is such that g1 � g � g2

	
� G;

Ls D
˚
t 2 SF W It� � Gs

	
D
˚
t 2 SF W It � �.t/Gs

	
� SF ;

Ls;g D
˚
t 2 SF W It � �.t/g�.s/

�1Gs
	
:

Suppose g 2 G, g1; g2 2 A, g1 � g � g2, and A � Is for some fixed form of s.
Then by definition of �, there exist g01; g02; g001 ; g002 2 Is such that

g01 � g1 � g
0
2; g001 � g2 � g

00
2 :
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Therefore, g01 � g � g002 and g 2 Gs . This shows why Gs does not depend on the
form of s and is well-defined. Similarly the sets Ls and Ls;g are well-defined.

For s1; s2 2 SF define

s1 �
0 s2 if Is�

1
� Is�

2
:

This is an equivalence relation on SF which does not generate a semigroup
congruence. We denote by Œs� an equivalence class of s 2 SF and by Q the set
of equivalence classes.
Theorem 4.10. Let S be embeddable in a group, denote by G the group generated
by S . The left regular representation V of SF is isomorphic to

L
Œs�2Q �s , where �s

are unital �-representations of SF on `2.G�1s �.s// � `2.G/ defined by

�s.t/ıg D

(
ı�.t/g ; if t 2 Ls;g ;
0; otherwise:

(4.4)

Proof. For any inverse semigroup P and any s1; s2 2 P we have s�1 s1 D s�2 s2 if and
only if there exists t 2 P such that

ts1 D s2 and t�ts1 D s1:

Therefore, for any s 2 P , the space

`2
�
fp 2 P W p�p D s�sg

�
is invariant under the left regular representation of P .

Now fix an element s 2 SF . Using the model for SF , s�s D .1; ŒIs� �/. Hence,
p �0 s if and only if there exists t 2 SF such that ts D p and t�ts D s. It follows
that `2.Œs�/ is an invariant subspace of `2.SF / under the representation V .

If t�ts D s, then ŒIt� � D Œ�.t/�1It � � ŒIs�. It follows that for any fixed form of
t and s we have It� � Gs , i.e. t 2 Ls . This implies �.t/�1 2 Gs and

ts D
�
�.t/; ŒIt �

��
�.s/; ŒIs�

�
D
�
�.ts/; ŒIt [ �.t/Is�

�
D
�
�.ts/; �.t/ŒIs�

�
:

Hence, if t 2 Ls , the product ts depends only on �.t/.
And due to Theorem 3.3 for any g 2 G�1s we have ŒIs� D ŒIs [ fg�1g� and there

exists an element t 2 SF such that ŒIt� � � ŒIs� and �.t/ D g.
Therefore, � gives a bijection between Œs� � SF and G�1s �.s/ � G. Denote

by ˛s the corresponding isomorphism between `2.Œs�/ and `2.G�1s �.s//.
Repeating calculations as above, for any r 2 SF and ts 2 Œs�, g D �.t/ we have

for any Ir� corresponding to a fixed form of r that

r�r.ts/ D ts” Ir� � g�.s/
�1Gs” r 2 Ls;g :
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Consequently, defining the representation �s by formula (4.4) we obtain for any
t; x 2 SF :

˛s.Vtıx/ D �s.t/ı�.x/:

Thus, ˛s is an isomorphism between the restriction of V onto `2.Œs�/ and �s .

4.11. A similar result holds for the semigroup S�. We use � to denote the
homomorphism S� ! G. Recall the equivalence on SF defining S�. For any
g 2 G, a 2 S :

v�ava � 1; f1; g; gag �
0
f1; gag:

For any s 2 S� define
Ps D ft 2 S

�
W It� �

0 Is�g:

Denote by R the set of all sets Ps � S�. Also define

Ds D Is � S
�1
D
˚
ga�1 W g 2 Is; a 2 S

	
� G:

Theorem 4.12. Let G be a group generated by a semigroup S . The left
regular representation V of S� is isomorphic to

L
Ps2R

�s , where �s are unital
�-representations of S� on `2.D�1s �.s// � `2.G/ defined by

�s.t/ıg D

(
ı�.t/g ; if It� � g�.s/�1Ds;
0; otherwise:

(4.5)

Proof. The proof is similar to Theorem 4.10, the difference is in the quasi order �
on exp.G/ under the equivalence �0. For A;B 2 exp.G/, ŒA� � ŒB� if and only if
for any g 2 A there exists a 2 S such that ga 2 B .

Fix an element s 2 S� and Is for one of its forms. Then for any t 2 S� we have
ŒIt� � � ŒIs� if and only if It� � Ds for any form of t . This implies that �.t/ 2 D�1s
and �.ts/ 2 D�1s �.s/. As in Theorem 4.10, when t satisfies t�ts D s, the product ts
depends only on �.t/. Consequently,

Ps D fts W t
�ts D sg � S�

is bijective toD�1s �.s/ � G, with bijection implemented by � .
Let g 2 D�1s �.s/. Then we can find t 2 S� such that t�ts D s and �.t/ D

g�.s/�1. For any r 2 S� we have r�rts D ts if and only if

Ir� � Dts D ItsS
�1
D �.t/Ds D g�.s/

�1Ds:

Hence, the statement of the theorem follows.
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5. The full C*-algebras of the universal inverse semigroups

5.1. Let P be an inverse semigroup. Consider the space `1.P /, define product and
involution: �X

s2P

asıs

��X
t2P

btıt

�
D

� X
s;t2P

asbtıst

�
;�X

s2P

asıs

��
D

X
s2P

asıs� :

Then `1.P / is a Banach �-algebra. Any �-representation of P extends to a
�-representation of `1.P / and the converse is true. The full semigroup C*-algebra
C �.P / of P is the completion of `1.P / under the supremum norm over all
�-representations of P ([23]).

5.2. For a left cancellative semigroupS letJ be the set of all constructible right ideals
in S (see Paragraph 2.9). Define an inverse semigroupW generated by isometriesws ,
s 2 S and projections eX , X 2 J satisfying the following relations for all s; t 2 S ,
X; Y 2 J:

wst D wswt ; wseXw
�
s D esX ;

eS D 1; e; D 0; eX\Y D eXeY :

The universal C*-algebra generated by W is the full semigroup C*-algebra of S ,
denoted C �.S/ ([14]).

Lemma 5.3. There exists a surjective �-homomorphism C �.S�/! C �.S/.

Proof. Clearly,W is an inverse semigroup. ByCorollary 2.10 in [14],W is generated
by isometries fws j s 2 Sg, i.e. the relations defining W can be formulated in terms
of ws . Namely, for X D a�1n .an�1 : : : a

�1
2 .a1S// we have

eX D w
�
an
wan�1

: : : w�a2
wa1

.w�an
wan�1

: : : w�a2
wa1

/�:

Then W is defined by requirements that idempotent monomials are equal when
corresponding ideals in S are equal as sets, and that the product of ideals is
respected. Imposing the same relations on S� denotedR5, we obtain that the quotient
S�=R5 equals W . Then this semigroup �-homomorphism extends to a surjective
�-homomorphism C �.S�/! C �.S/.

Remark 5.4. In terms of Paragraph 2.9 the relations R5 consist of R2 and the first
half of R3. Therefore, the �-homomorphism  WS� ! Il.S/ in Lemma 2.10 factors
through S� ! W defined above.
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5.5. As pointed out in the Section 2.5 of [14], the construction of the full semigroup
C*-algebra is not functorial, i.e. not every semigroup morphism of two cancellative
semigroups extends to �-homomorphism of their C*-algebras. This is demonstrated
further in Example 5.14. The reason lies in the construction of the inverse
semigroupW in the definition ofC �.S/. As we will see now, the map S ! C �.S�/,
on the contrary, is functorial.
Proposition 5.6. Let �WS ! T be a semigroup morphism between two left
cancellative semigroups. Then � extends to a �-homomorphism z�WC �.S�/ !
C �.T �/.

Proof. Due toTheorem4.8 in [29], the imbeddingS ,! S� is functorial, so� induces
a �-homomorphism S� ! T �. By the universal property of inverse semigroup
C*-algebras we obtain the required �-homomorphism between the full C*-algebras.

Theorem 5.7. For any left cancellative semigroup S we have the following
commutative diagram in which every line is a short exact sequence and vertical
maps are surjective �-homomorphism.

0 ����! J ����! C �.S�/ ����! C �.S/ ����! 0??y ??y
0 ����! Jr ����! C �r .S

�/ ����! C �r .S/ ����! 0

(5.1)

Here J is a closed ideal in C �.S�/ generated by fx � y j x; y 2 S�; x �R5
yg,

and Jr is defined in Lemma 4.8.

Proof. The upper short exact sequence is given by Lemma 5.3, the lower one was
proved in Lemma 4.8. The vertical maps are the left regular representations of S�
and S respectively. The commutativity of the diagram then follows from the fact that
all these �-homomorphisms are induced by �-homomorphisms of the corresponding
inverse semigroups.

Remark 5.8. Due to Remark 5.4, C �r .S/ is a C*-algebra generated by a �-
representation ofW (in the same way as S� and Il.S/) on `2.S/, which may be not
the same as the left regular representation of W and may be not faithful. Therefore
in general C �r .S/ is not isomorphic to C �r .W /.
Corollary 5.9. Using the results of [21], one has the following commutative diagram
where each map is a surjective �-homomorphism:

C �.S�/ ����! C �.S/ ����! C �.Il.S//??y ??y ??y
C �r .S

�/ ����! C �r .S/  ���� C �r .Il.S//
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Remark 5.10. Note that the last arrow is reversed due to the fact that C �r .S/ is
generated by a subrepresentation of the left regular representation of S� (or Il.S/).
Note also that for inverse semigroups we consider only 0-preserving representations,
so that in our notation C �.Il.S// is the same as C �0 .Il.S// used in [21].
5.11. We denoteG D G.S�/ the maximal group homomorphic image of S� defined
in Paragraph 1.1. Then the semigroup homomorphism � WS� ! G extends to
a surjective �-homomorphism C �.S�/ ! C �.G/. This surjection is a quotient
homomorphism by a closed ideal I in C �.S�/ generated by the set

f1 � p j p 2 S�; p is an idempotentg:

And using the definition of S� one can see that this ideal is generated by a smaller
set f1 � vsv�s j s 2 Sg. By Proposition 1.4 of [7] with a proof in Proposition 4.1
of [24], the �-homomorphism P ! G.P / extends to a surjective �-homomorphism
of the reduced C*-algebras. Therefore we obtain the following statement.
Proposition 5.12. Let S be a left cancellative semigroup and G the maximal group
homomorphic image of S�. Then the following diagram is commutative, every line
is a short exact sequence and vertical maps are surjective �-homomorphism.

0 ����! I ����! C �.S�/ ����! C �.G/ ����! 0??y ??y ??y
0 ����! Ir ����! C �r .S

�/ ����! C �r .G/ ����! 0

(5.2)

Here I is a closed ideal in C �.S�/ generated by the set f1 � vsv�s j s 2 Sg and Ir
is its image under the left regular representation of S�.
Remark 5.13. There is one more ideal in C �.S�/ worth to be mentioned, namely
a closed ideal C generated by all commutators. Clearly, C contains the ideal I ,
because v�s vs D 1. In the case of an abelian semigroup S , these ideals coincide. In
the case S D ZC, one can easily verify C �.S/ D C �.S�/ is the Toeplitz algebra
and then the ideal C is isomorphic to the ideal of compact operators. In the general
case C �.S�/=C Š C �.Gab/, where Gab is an abelianization of G.
Example 5.14. For any natural number n let FCn denote the free monoid on n
generators a1; : : : ; an with the empty word e. Let us compareC �.FCn / (see [15] for a
detailed description) withC �.FCn

�
/. We have FCn D X1tX2t� � �tXntfeg, where

Xi D aiFCn for i D 1; : : : ; n are constructible right ideals in Sn (see Paragraph 2.9).
Therefore in C �.FCn / for i ¤ j we have

vai
v�ai
vaj

v�aj
D eXi

eXj
D e; D 0; (5.3)

which implies v�ai
vaj
D 0. The same holds in C �r .FCn /, V �ai

Vaj
D 0. Hence, the

maximal group homomorphic image of Il.FCn / is trivial. It follows that there is no
canonical surjective �-homomorhism from C �.FCn / onto C �.G/.
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Moreover, knowing that every semigroup is a homomorphic image of a free
monoid, one would expect the same to hold for the corresponding semigroup
C*-algebras, but this is not true. To see this consider the semigroup S D ZC � ZC,
which is an abelian semigroup generated by t1 D .1; 0/ and t2 D .0; 1/. Then
there is a canonical homomorphism �WFC2 ! S sending a1 7! t1, a2 7! t2.
And we have .1; 0/S \ .0; 1/S D .1; 1/S , hence vt1v�t1vt2v

�
t2
D v.1;1/v

�
.1;1/
¤ 0.

Consequently, due to (5.3) homomorphism � does not extend to a �-homomorphism
C �.FC2 /! C �.S/.

In the semigroup FCn
� (and its C*-algebra) the product va1

v�a1
va2
v�a2

is a non-
zero idempotent which allows the desired homomorphism to exist. And in general,
the semigroup FCn

� has no zero, and its maximal group homomorphic image is the
free group Fn. So, from the diagram (5.2) we get the following short exact sequence:

0! I ! C �.FCn
�
/! C �.Fn/:

The same holds for the reduced C*-algebras.
Since every semigroup is a homomorphic image of a free monoid using

Proposition 5.6 we deduce that for any n-generated cancellative semigroup S the
C*-algebra C �.S�/ is a homomorphic image of C �.FCn

�
/.

There is a natural quotient for C �.FCn
�
/ in the case n D 2 and n D 3. Consider a

closed two-sided ideal In generated by the elementp D 1�
P
i vai

v�ai
. Multiplyingp

by idempotents vaj
v�aj

one by one we obtain that In contains every vai
v�ai
vaj

v�aj

and so contains v�ai
vaj

for all i ¤ j . Consequently, the quotient C �.FCn
�
/=In is

canonically isomorphic to the Cuntz algebra On. The quotient homomorphism can
also be seen as the composition C �.FCn

�
/! C �.FCn /! On, where the last map is

given in Paragraph 8.2 of [15]. In order to get the same in the case n � 4 one has to
add elements v�ai

vaj
to the ideal In.

5.15. Many of the results in [14] and [15] hold only under the assumption of
independence of the constructible right ideals. According to [14], for a cancellative
semigroup S the set of constructible right ideals J is said to be independent, if
X D [niD1Xi for X;X1; : : : ; Xn 2 J implies X D Xi for some i .

If some of the constructible right ideals are not independent, then the images of
corresponding idempotents under the left regular representation of S are not linearly
independent. In such case the diagonal subalgebra D D C �.eX WX 2 J/ in C �.S/
is not isomorphic to its image under the left regular representation.

Let us illustrate such situation on a semigroup S D ZC nf1g D f0; 2; 3; : : :gwith
the usual addition operation. In the notation (2.1), (2.2) we have:

2CS D f2; 4; 5; 6; : : :g; 3CS D f3; 5; 6; 7; : : :g; .�3/C2CS D f2; 3; 4; : : :g:

It follows that .2C S/ [ .3C S/ D .�3/C 2C S . Therefore, in C �r .S/ we have

V2V
�
2 C V3V

�
3 � V2V

�
2 V3V

�
3 D V

�
3 V2V

�
2 V3:
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But this problem does not exist for the algebraC �r .S�/. Due to [32] the left regular
representation of an inverse semigroupP extends to a faithful representation of `1.P /
on `2.P /. Hence, images of elements of S� under the left regular representation
are all linearly independent. The reason is that there are enough vectors in the basis
of `2.S�/ to differ elements of S�, unlike the subspace `2.S/. In the same way the
semigroup elements of S� are independent in C �.S�/ and in C �.S/, since these are
full semigroup C*-algebras of inverse semigroups (S� and W respectively).

We end this section with a note on nuclearity of semigroup C*-algebras in the
case when S is abelian. This is a direct consequence of Murphy’s [19].
Proposition 5.16. For an abelian cancellative semigroup S the algebras C �.S�/,
C �r .S

�/, C �.S/, C �r .S/, C �.Il.S//, C �r .Il.S// are nuclear.

Proof. All of the mentioned C*-algebras in this case are generated by commuting
isometries with commuting range projections, so we can apply Theorem 4.8 of [19].

6. Amenability and nuclearity

The classical definition of amenability is common for all semigroups [25], we recall
it further. Let P be a semigroup. Right action of P on `1.P / is given by

�t.x/ D �.tx/;

where � 2 `1.P /, t; x 2 P . A mean m on `1.P / is called left invariant if
m.�t/ D m.�/ for all t 2 P , � 2 `1.P /. The semigroup P is left amenable if
there exists a left invariant mean. For an inverse semigroup left amenability, right
amenability and (two-sided) amenability are equivalent. A result of Duncan and
Namioka [8] states that an inverse semigroup is amenable if and only if its maximal
group homomorphic image is amenable. The following result of [17] connects
amenability of inverse semigroup with the weak containment property.
Theorem 6.1 (D. Milan [17]). Let P be an E-unitary inverse semigroup. Then the
following statements are equivalent:
(1) P is amenable;
(2) P satisfies the weak containment property, i.e. C �.P / D C �r .P /;
(3) the maximal group homomorphic image G.P / is amenable.
Corollary 6.2. Let S be embeddable in a group. Then the following conditions are
equivalent and imply that C �r .S/ and C �.S/ are nuclear:
(1) the group G generated by S is amenable;
(2) S� is amenable;
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(3) SF is amenable;

(4) S� has the weak containment property, i.e. C �.S�/ D C �r .S�/;

(5) SF has the weak containment property;

(6) C �r .S�/ is nuclear;

(7) C �r .SF / is nuclear.

Proof. ByCorollary 3.5, inverse semigroups SF and S� are E-unitary andG.SF / D
G.S�/ coincides with the group generated by S . Applying Theorem 6.1, we get
equivalence of all the conditions (1)–(5) above. By Proposition 6.6 in [18], the
maximal group homomorphic imageG.P / of an inverse semigroup P is amenable if
and only if the universal groupoid ofP is amenable, which is equivalent to nuclearity
of its reduced C*-algebra by Theorem 5.6.18 in [4]. Hence, we obtain equivalence
of (6) and (7) to (1). Finally, conditions (6) and (7) and the diagram (5.1) imply that
C �r .S/ and C �.S/ are nuclear.

Corollary 6.3. Let S be a left amenable cancellative semigroup. Then S� and SF
are amenable inverse semigroups.

Proof. By Proposition 1.27 in [25], every left amenable cancellative semigroup
embeds in a groupG, such thatG D SS�1 andG is amenable. Hence, condition (1)
in Corollary 6.2 is satisfied.

Remark 6.4. Nuclearity of the C*-algebra C �r .S/ does not imply nuclearity of
C �r .S

�/ (or C �r .SF /). The counterexample is given by the free monoid FCn ,
the subsemigroup generating the free group Fn. By Example 5.14, there exist
surjective �-homomorphisms C �.FCn

�
/ ! C �.Fn/ and C �r .FCn

�
/ ! C �r .Fn/.

Hence, C �r .FCn
�
/ is not nuclear. This is natural considering the fact that FCn is

not amenable. Nevertheless, as shown by Nica in [20], the C*-algebra C �.FCn /
is nuclear.

We finish this section with a result connecting directly amenability of S� to
amenability of S , analogous to Proposition 1.27 in [25].

Proposition 6.5. Let S be a left cancellative left amenable semigroup. Then S� is
an amenable inverse semigroup.

Proof. We consider S embedded in S� by a map a 2 S 7! va 2 S
� and `1.S/ �

`1.S�/. Let m0 be a left invariant mean on `1.S/ and define a mean on `1.S�/
by m.�/ D m0.�jS /, where for any x 2 S we put

�jS .x/ D �.vx/:
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Since S� is generated by S , it is sufficient to check left invariance ofm on generators
va; v

�
b
for all a; b 2 S . Take � 2 `1.S�/ and a 2 S and calculate using left

invariance of m0:

m.�va/ D m0
�
.�va/jS

�
D m0.�jSa/ D m0.�jS / D m.�/;

m.�v�a/ D m0
�
.�v�a/jS

�
D m0

�
.�v�a/jSa

�
D m0

�
.�v�ava/jS

�
D m0.�jS / D m.�/:

Hence, m is a left invariant mean on `1.S�/.

7. Crossed products of universal inverse semigroups

Definition 7.1. Let P be an inverse semigroup. An action ˛ of P on a space X
is a �-homomorphism P ! I.X/, ˛sWDs� ! Ds , such that the union of all Ds
coincides with X . We call it unital if the image of the unit element in P is the
identity map onX . IfX is a locally compact Hausdorff topological space, we require
every ˛s to be continuous andDs to be open in X .

Lemma7.2. There is a one-to-one correspondence between actions ofS on a spaceX
by injective maps and unital actions of S� on X .

Proof. Let ˛ be an action of S on X , i.e. ˛s˛t D ˛st for any s; t 2 S , such that
each ˛s is injective. By Lemma 2.4, denotingDs � X the image of ˛s and defining
˛�s WDs ! X as the inverse of ˛s , we get a set generating an inverse subsemigroup S�˛
in I.X/. Clearly, in this semigroup the map ˛�s ˛s is an identity on X for any s 2 S .
Hence, there is a surjective �-homomorphism z̨WS� ! S�˛ , which gives an action
of S� by partial bijections on X . And we see that z̨ is a unital action of S� on X .

Now suppose ˛ is a unital action of S� on X . Then define z̨.s/ D ˛.vs/ for
all s 2 S . Then multiplicativity follows immediately. Unitality of ˛ implies that

z̨.s/� z̨.s/ D ˛.v�s vs/ D id:

Hence, for every s 2 S z̨.s/ is a bijection with the domain equal to X .

Remark 7.3. The previous lemma holds also in topological setting, i.e. when X is a
locally compact Hausdorff topological space and each ˛s is continuous.

Definition 7.4. By an injective action with ideal images ˛ of a left cancellative
semigroup S on a C*-algebra A we mean a set of injective �-homomorphisms ˛s
onA such that for every s; t 2 S , ˛st D ˛s˛t and ˛s.A/ is a closed two-sided �-ideal
in A. In this case we say that .˛; S; A/ is an injective C*-dynamical system.

A partial automorphism � on a C*-algebra A is a �-isomorphism �WJ1 ! J2,
where J1, J2 are closed two-sided �-ideals in A. For a C*-algebra A denote by I.A/
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the inverse semigroup of partial automorphisms on A, with a product and an inverse
map defined similarly to I.X/ (see Section 2).

An action ˛ of an inverse semigroup P on a C*-algebra A is a �-homomorphism
P ! I.A/, ˛sWEs� ! Es , such that the union of all Es coincides with A. In this
case we say that .˛; P;A/ is a C*-dynamical system. If P has a unit 1 and ˛1 D idA,
we say that the action ˛ is unital.

Lemma 7.5. There is a one-to-one correspondence between injective actions of S
with ideal images on a C*-algebra A and unital actions of S� on A.

Proof. For an injective action ˛ of S on A, we define for any s 2 S the domain
Ev�s D A and the range Evs

D ˛s.A/ of z̨.vs/ D ˛s . For the inverse map we
put z̨.v�s / D ˛�s WEvs

! Ev�s . Following the proof of Lemma 7.2, we obtain an
action of S� on the underlying space of A. Since ˛s is a �-homomorphism, the same
is true for z̨.vs/, z̨.v�s / and the products of such maps. Hence, z̨ given by Lemma 7.2
is an action of S� on the C*-algebra A. The reverse statement follows similarly from
Lemma 7.2.

Remark 7.6. Notice that if A is unital and z̨ is an induced action of S� on A as in
the lemma, we may extend z̨.v�s / to a �-endomorphism on A by setting z̨.v�s /.a/ D
˛�s .˛s.1/a/. But one should remember that this extension is injective only on Evs

.
Then z̨ is an action of S� on A by �-endomorphisms.

Definition 7.7. Let S be a left cancellative semigroup with an action ˛ on a
C*-algebra A. A covariant representation (see [12]) of the C*-dynamical system
.˛; S; A/ is a pair .�; T / in which

(1) � is a non-degenerate �-representation of A onH ;

(2) T WS ! B.H/ is a unital isometric representation of S ;

(3) the covariance condition �.˛s.a// D Ts�.a/T �s holds for every a 2 A, s 2 S .

Lemma 7.8. If .�; T / is a covariant representation of an injective C*-dynamical
system with ideal images .˛; S; A/ andA is unital, then T is an inverse representation
of S .

Proof. It is sufficient to show that all idempotents in the semigroup ST generated
by T .S/ [ T .S/� commute, i.e. xx�yy� D yy�xx� for any monomials x and y.
Obviously, in the notation of Lemma 7.5, TsT �s D �.˛s.1// 2 �.Es/. Due to the
Remark 7.6 and the covariance condition, �.z̨.v�s /.a// D T �s �.a/Ts . Generally, for
any monomial x 2 ST and a 2 A we have

xx� D �
�
z̨.x/.1/

�
; (7.1)

x�.a/x� D �
�
z̨.x/.a/

�
: (7.2)
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For x D T �s , s 2 S using the fact that images of z̨ are ideals we deduce:

T �s �.a/ D T
�
s �
�
z̨.s/.1/a

�
D T �s �

�
a z̨.s/.1/

�
D T �s �.a/TsT

�
s ; (7.3)

�.a/Ts D �
�
a z̨.s/.1/

�
Ts D �

�
z̨.s/.1/a

�
Ts D TsT

�
s �.a/Ts: (7.4)

For general type of monomial these formulas can be shown by induction on the length
of monomial. Suppose the formulas hold for the length equal n and take x D yz,
where y has length n and y is a generator. First assume z D Ts and for a 2 A
calculate

�.a/x D �.a/yTs D yy
��.a/yTs:

By (7.2), we have y��.a/y 2 �.A/, and due to (7.4)

y
�
y��.a/y

�
Ts D yTsT

�
s y
��.a/yTs D xx

��.a/x:

If z D T �s , by T �s Ts D 1 we similarly have

�.a/x D �.a/yT �s D yy
��.a/yT �s D yT

�
s Tsy

��.a/yT �s D xx
��.a/x:

Thus, for any monomial x we have

�.a/x D xx��.a/x: (7.5)

In the same way, splitting x into Tsy or T �s y and using (7.3), we obtain

x�.a/ D x�.a/x�x: (7.6)

Then for any monomials x; y using that yy� 2 �.A/ by (7.1), we get

xx�yy�
(7.6)
D xx�yy�xx�

(7.5)
D yy�xx�:

Definition 7.9. Let P be an inverse semigroup with an action ˛ on a C*-algebra A.
A covariant representation (see [30]) of the C*-dynamical system .˛; P;A/ is a pair
.�; T / in which

(1) � is a non-degenerate �-representation of A onH ;

(2) T WP ! B.H/ is a unital �-representation of P , such that for every s 2 P ,
T �s TsH D �.Es�/H and TsT �s H D �.Es/H ;

(3) the covariance condition�.˛s.a// D Ts�.a/T �s holds for every a 2 Es� ; s 2 P .

Lemma 7.10. Let ˛ be an injective action of a left cancellative semigroup S on a
C*-algebra A and z̨ the induced action of S� on A. Then there is a one-to-one
correspondence between the covariant representations of .˛; S; A/ and .z̨; S�; A/.
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Proof. Let .�; T / be a covariant representation of .˛; S; A/ on H . By Lemma 4.3
and Lemma 7.8, T induces a �-representation zT of S� onH given by

zTvs
D Ts; zTv�s D T

�
s :

The condition (7.2) gives the condition (3) of the Definition 7.9.
Now we prove condition (2) of Definition (7.9). Let v 2 S�; a 2 Ev� and

b D z̨v.a/. Due to covariance condition, we have

�
�
˛v.a/

�
D zTv�.a/ zT

�
v D

zTv zT
�
v
zTv�.a/ zT

�
v D

zTv zT
�
v �
�
˛v.a/

�
: (7.7)

Hence, �.Ev/H � zTv zT �v H .
We prove the reverse inclusion by induction on the length of v. First suppose

v D vsw, where s 2 S , w 2 S�, and assume that the inclusion is proved for w. It
implies that for x 2 H , the vector zTv zT �v x D zTvs

zTw zT
�
w
zTv�s x can be approximated byP

i
zTvs
�.ai /yi for some ai 2 Ew and yi 2 H . Hence, we obtain

zTv zT
�
v x �

X
i

zTvs
�.ai / zT

�
vs
zTvs
yi D

X
i

�
�
˛s.ai /

�
zTvs
yi 2 �.Evsw/H:

Now suppose v D v�sw for s 2 S , w 2 S�, and assume that the inclusion is
proved for w. Similarly the vector zTv zT �v x D zT �vs

zTw zT
�
w
zTvs
x is approximated byP

i
zT �vs
�.ai /yi for some ai 2 Ew and yi 2 H . Denote by u� the approximate unit

ofA. Due to the fact that � is a non-degenerate representation ofA, �.u�/ converges
to the identity operator on H in the strong operator topology, i.e. y � �.u�/y for
any y 2 H . Then we obtain

zTv zT
�
v x D

X
i

zT �vs
zTvs
zT �vs
�.ai /yi �

X
i

zT �vs
zTvs
�.u�/ zT

�
vs
�.ai /yi

D

X
i

zT �vs
�
�
˛s.u�/

�
�.ai /yi D

X
i

zT �vs
�
�
˛s.bi;�/

�
yi ;

where bi;� D ˛s.u�/ai 2 Evs
\Ew . Since bi;� 2 Evs

, using (7.7) we getX
i

zT �vs
�.bi;�/yi D

X
i

zT �vs
�.bi;�/ zTvs

zT �vs
yi D

X
i

�
�
z̨
�
vs
.bi;�/

�
zT �vs
yi ;

which belongs to �.Ev�s w/H due to definition of Ev�s w . Thus, .�; zT / is a covariant
representation of .z̨; S�; A/.

If .�; zT / is any covariant representation of .z̨; S�; A/, then Ts D zTvs
gives a

unital inverse representation of S by Lemma 4.3. Since ˛ is just a restriction of z̨,
the covariance condition also holds.

Remark 7.11. The reverse statement to the previous Lemma also holds. Let S be a
left cancellative semigroup and ˛ be an action of the universal inverse semigroup S�
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on a C*-algebra A, z̨ the induced action of S on A. Then there is a correspondence
between the covariant representations of .˛; S�; A/ and .z̨; S; A/. The proof is the
same as above.
7.12. We now recall the definitions of crossed products by partial automorphisms
of inverse semigroups and crossed products by injective actions of cancellative
semigroups. For the case of inverse semigroups acting on (in general non-unital)
C*-algebras by partial automorphisms there is a well-established definition, given
in [9, 10, 30].

For cancellative semigroups there exist several constructions of the crossed
product, by automorphisms ([14]) and by endomorphisms ([12]), both of them
for unital C*-algebras. Though an automorphism is a particular case of an
endomorphism, the construction of the crossed product by an automorphism is not a
particular case of the one by an endomorphism.

Themain difference of the constructions is that in the case of an automorphism the
crossed product contains the whole semigroup C*-algebra, while the crossed product
by an endomorphism contains only isometries corresponding to the elements of the
semigroup. A connection between crossed products by automorphisms and crossed
products by inverse semigroups is given in Proposition 5.7 of [15]. It describes the
isomorphism betweenAÌa˛S and .A˝D/Ìˇ zS in the case whenS is a subsemigroup
of a group. HereD is the canonical commutative C*-subalgebra in C �.S/, and zS is
some specific �-homomorphic image of S�. Thus, the subject of the present paper
is the notion of crossed product by an endomorphism of S .
Definition 7.13. Let ˛ be an action of a left cancellative semigroup S on a unital
C*-algebra A. The crossed product associated to the C*-dynamical system .˛; S; A/

is a C*-algebra A Ì˛ S with a unital �-homomorphism iAWA ! A Ì˛ S and an
isometric representation iS WS ! A Ì˛ S such that:
(1) .iA; iS / is a covariant representation for .˛; S; A/;
(2) for any other covariant representation .�; T / there is a representation � � T of

A Ì˛ S such that � D .� � T / ı iA and T D .� � T / ı iS ;
(3) A Ì˛ S is generated by iA.A/ and iS .S/ as a C*-algebra.

As noticed in [12], the crossed product is non-trivial if S acts by injective
endomorphisms. AÌ˛S can be defined as a C*-algebra generated bymonomials aws
and .aws/� D w�s a

� where a 2 iA.A/, and ws D iS .s/. The completion is taken
with respect to the norm given by the supremum of k.� � T /.x/k over all covariant
representations .�; T /. Obviously, for any covariant representations .�; T /, the
representation � � T of A Ì˛ S is given by

.� � T /.w�t aws/ D T
�
t �.a/Ts:

Note that sinceA and S are unital, the elementsws generate a semigroup isomorphic
to S� and we can change the notation ws to vs .
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Definition 7.14. Let ˛ be an action of an inverse semigroup P on a C*-algebra A.
Denote by L the linear space of finite sums

P
s2P asıs where as 2 Es and ıs is a

formal symbol. Multiplication and involution are defined in the following way.

.aıs/.bıt / D ˛s.˛s�.a/b/ıts; .aıs/
�
D ˛s�.a

�/ıs� :

For any covariant representation .�; T / define a non-degenerate �-representation
of L:

.� � T /

�X
s2P

asıs

�
D

X
s2P

�.as/Ts:

The crossed product A Ì˛ P is the Hausdorff completion of L in the norm

kxk D sup…k….x/k;

where the supremum is taken over all representations of L of the form … D � � T

for all covariant representations .�; T /.

Theorem 7.15. Let A be a unital C*-algebra and let ˛ be an injective action with
ideal images of S on A, z̨ be an action of S� on A, where one of them is induced by
another. Then the crossed product C*-algebrasAÌ˛ S andAÌz̨ S� are isomorphic.

Proof. Due to Lemma 7.10 and Remark 7.11, it is sufficient to give a �-isomorphism
of the underlying �-algebras of monomials, K for A Ì˛ S and L for A Ìz̨ S�
respectively.

First note that any monomial in K can be written as av�s1vs2 : : : vsn , where
a 2 Ev�s1

vs2
:::vsn

in the notation of Lemma 7.5. Indeed, using the covariance
condition and the assumption that the images of the endomorphisms are ideals, we
obtain for any a 2 A, s 2 S :

avs D avsv
�
s vs D a˛s.1/vs;

v�s a D v
�
s ˛s.1/a D v

�
s ˛s

�
˛�s
�
˛s.1/a

��
D ˛�s

�
˛s.1/a

�
v�s ;

vsa D ˛s.a/vs:

As noticed in the proof of Lemma 7.5, we may assume that z̨.v�s /.a/ D ˛�s .˛s.1/a/
for any a 2 A, remembering that z̨.v�s / is an isomorphism only on Evs

. Therefore,
for any monomial x D v�s1vs2 : : : vsn and a 2 A we obtain

xa D z̨.x/.a/x:

Define �WK ! L on generators by a ! aı1, vs ! z̨.vs/.1/ıvs
and on an

arbitrary monomial x and a 2 Ex by

�.ax/ D aıx :



C*-theory of the universal inverse semigroups 723

Extend � linearly to K. Then clearly, �.K/ D L. To show that � is multiplicative,
calculate the product of arbitrary monomials av�t1vt2 : : : vtn and bv�s1vs2 : : : vsk ,
where a 2 Ex , b 2 Ey , x D v�t1vt2 : : : vtn , y D v

�
s1
vs2 : : : vsk :

axby D a z̨.x/.b/xy D z̨.x/
�
z̨.x�/.a/b

�
xy:

Therefore, due to the Definition 7.14

�.axby/ D �
�
z̨.x/.z̨.x�/.a/b/xy

�
D z̨.x/

�
z̨.x�/.a/b

�
ıxy D .aıx/.bıy/:

In the same way we verify that � preserves involution:

�.ax/� D .aıx/
�
D ˛.x�/.a�/ıx� D �

�
˛.x�/.a�/x�

�
D �.x�a�/:

Thus, � is a �-isomorphism onto L.

Corollary 7.16. There exist an injective action ž of S on C �.E/, where E is the
semigroup of idempotents in S�, and an action z̨ of S� on EJ D feX j X 2 Jg.
With respect to thess actions,

C �.S�/ Š C �.E/ Ì ž S; C �.S/ Š C �.EJ/ Ìz̨ S�:

Proof. For any inverse semigroup P there exists an action ˇ by partial bijections
on its subsemigroup E of idempotents. Namely, for x 2 P , the domain of ˇx is
Dx� D ff W f D x�xf g, and ˇx.f / D xf x�. This action extends to an action ˇ
of P on the commutative C*-algebra C �.E/ and by Proposition 4.11 of [30], C �.P /
is isomorphic to the crossed product C �.E/ Ìˇ P . Take P D S� and see that ˇ
is unital and ˇvs

is injective since vs are isometries for s 2 S , and the images of
the extension of ˇ to C �.E/ are closed ideals. Then by Lemma 7.5 we get an
action ž of S on C �.E/ by injective endomorphisms with ideal images. Applying
Theorem 7.15 we obtain

C �.S�/ Š C �.E/ Ìˇ S� Š C �.E/ Ì ž S:

By Lemma 2.14 in [14], C �.S/ Š C �.EJ/ Ì˛ S , where ˛ is an injective action
given on generators by ˛s.eX / D esX for s 2 S;X 2 J. Therefore, by Lemma 7.5 ˛
generates an action z̨ of S� on C �.EJ/. Using again Theorem 7.15, we obtain the
required isomorphism.

Remark 7.17. The isomorphism C �.S/ Š C �.EJ/ Ì˛ S of [14] mentioned above
could be deduced directly from the fact that C �.S/ is a C*-algebra of an inverse
semigroup W , which is a quotient of S�, using Theorem 7.15.
Corollary 7.18. Let S be a left Ore semigroup generating a group G D S�1S

and ˛ be a unital action of S� on a C*-algebra A. Then there exists a unique
up to isomorphism C*-dynamical system .B;G; ˇ/, where ˇ is an action of G by
automorphisms of a C*-algebra B and an embedding i WA ,! B such that:
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(1) ˇ dilates ˛, i.e. ˇs ı i D i ı ˛vs
for all s 2 S ;

(2) [s2Sˇ�1s .i.A// is dense in B;
(3) A Ì˛ S� is isomorphic to i.1/.B Ìˇ G/i.1/, which is a full corner.

Proof. Use Theorem 7.15 and apply Theorem 2.4 in [12].

7.19. The crossed product with a non-unital C*-algebra is defined using themultiplier
algebra (see [13] for details), but the notion of the covariant representation is
the same as in Definition 7.7. For an extendible �-homomorphism between
C*-algebras �WA ! M.B/, its unique strictly continuous extension is denoted
x�WM.A/!M.B/.
Definition 7.20. Let .˛; S; A/ be a C*-dynamical system, where A is non-unital
and S is a semigroup. A crossed product for .˛; S; A/ is a C*-algebra B denoted
A Ì˛ S with a proper homomorphism iAWA! B and a semigroup homomorphism
iS WS ! Isom.M.B// such that:
(1) .iA; iS / is a covariant representation for .˛; S; A/;
(2) for any other covariant representation .�; T / there is a non-degenerate

representation � � T of A Ì˛ S such that

� D .� � T / ı iA and T D .� � T / ı iS I

(3) A Ì˛ S is generated by fiA.a/iS .s/ j a 2 A; s 2 Sg as a C*-algebra.
Theorem 7.21. LetA be a non-unital C*-algebra and let ˛ be an extendible injective
action of S on A, ˇ be an extendible action of S� on A, where one of them is
induced by another. Then the crossed product C*-algebras AÌ˛ S and AÌˇ S� are
isomorphic.

Proof. The action ˛ of S on A extends to an action ˛ on M.A/. Then es D
˛.s/.1M.A// is a strict limit of ˛.s/.u�/ D ˛s.u�/ and thus it is the projection onto
Evs
D ˛s.A/. Moreover, ı is a unit inM.Evs

/ and the mapm! esmes implements
an embedding M.Evs

/ ,! M.A/. On the other hand, one can easily verify that
˛.s/.M.A// � M.Evs

/. Hence, ˛.s/.M.A// D M.Evs
/ and we also have that

˛.s/.M.A// is a closed two-sided �-ideal in M.A/. By Lemma 7.5 we also obtain
an action ˇ of S� onM.A/, which clearly extends the action ˇ on A.

By definition and the fact that non-degenerate representations ofA are extendible,
the crossed productAÌ˛ S is a closed ideal inM.A/Ì˛ S generated as a C*-algebra
by fiM.A/.a/iS .s/ j a 2 A; s 2 Sg. Take a; b 2 A, s; t 2 S and calculate the
following products insideM.A/ Ì˛ S :

iS .s/
�iM.A/.a/ D iS .s/

�iS .s/iS .s/
�iM.A/.a/

D iS .s/
�iM.A/.esa/ D iM.A/

�
˛.s/�.esa/

�
iS .s/

�;

iM.A/.a/iS .s/iM.A/.b/iS .t/ D iM.A/.a/iS .s/iM.A/.b/iS .s/
�iS .s/iS .t/

D iM.A/
�
a˛s.b/

�
iS .s/iS .t/:
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It follows that A Ì˛ S is the closure of the linear span of the set˚
iM.A/.a/x j a 2 A; x D iS .s1/

�iS .s2/ : : : iS .sn/; si 2 S; n 2 N
	
:

As usual, we call elements of the form iS .s1/
�iS .s2/

� : : : iS .sn/
� monomials.

Repeating the same reasoning as in Theorem 7.15, for any product

iM.A/.a/iS .s1/
�iS .s2/ : : : iS .sn/

we may assume that a 2 Es�
1
s2:::sn

.
In the same way the crossed product A Ìˇ S� can be viewed as a closed ideal in

the unital crossed product M.A/ Ìˇ S�. Denote by jA;x the embedding of Ex in
M.A/ Ìˇ S�. Then A Ìˇ S� is the closure of the linear span of the set˚

jA;x.a/ıx j x 2 S
�
	

with the algebraic structure given by Definition 7.14.
Theorem 7.15 gives an isomorphism � between the C*-algebras M.A/ Ì˛ S

and M.A/ Ìˇ S
�. For any a 2 A and a monomial x the map � sends iM.A/.a/x

to jA;x.a/ıx . By the Lemma 7.10, the covariant representations of the systems
.˛; S; A/ and .ˇ; S�; A/ are the same. Therefore, iA.a/ D 0 iff jA;1.a/ D 0. Hence,
� restricts to an isomorphism between A Ì˛ S and A Ìˇ S�.

Corollary 7.22. Let ˛ be an action of S on a locally compact Hausdorff space X by
continuous injective maps and ˇ the induced action of S�. Then the crossed product
C*-algebras C0.X/ Ì˛ S and C0.X/ Ìˇ S� are isomorphic.

Proof. The action ˛ induces an action z̨ on C0.X/ by the formula

z̨s.f /.x/ D f
�
˛�s .x/

�
;

where f 2 C0.X/, x 2 Ds in the notation of Lemma 7.2. Then clearly Es D
C0.Ds/ � C0.X/, so z̨sWC0.X/ ! C0.Ds/ and every z̨s is injective. The action
of S� given by z̨ by Lemma 7.5 coincides with the action ž induced by ˇ on C0.X/.
Therefore by Theorem 7.21 the crossed products are isomorphic.

8. Partial crossed products, Ore semigroups

The results of [16] show that a C*-algebra of an E-unitary inverse semigroup P is
isomorphic to a partial crossed product of the commutative subalgebra generated
by idempotents in P by a partial action of G, where G is the maximal group
homomorphic image of P .
Definition 8.1. Apartial action˛ of a groupG on a setX is a pair .fDggg2G ; f˛ggg2G/,
where Dg are subsets of X and ˛g WDg�1 ! Dg are bijections, satisfying for
any g; h 2 G:
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(1) D1 D X , ˛1 D idX ;
(2) ˛g.Dg�1 \Dh/ D Dg \Dgh;
(3) .˛g˛h/.x/ D ˛gh.x/ for all x 2 Dh�1 \Dh�1g�1 .
Theorem 8.2 (D. Milan and B. Steinberg [16]). Let P be an E-unitary inverse semi-
group with idempotent setE and maximal group imageG. Then there exists a partial
action of G on E such that

C �.P / Š C �.E/ ÌG; C �r .P / Š C
�.E/ Ìr G:

In a view of Corollary 3.5, we get an immediate Corollary.
Corollary 8.3. If a semigroup S is embeddable in a group,C �.SF / Š C �.EF /ÌG,
C �.S�/ Š C �.E/ ÌG, where EF and E are subsemigroups of idempotents in SF
and S� correspondingly, and G is the group generated by S . The same holds for the
reduced C*-algebras and reduced crossed products.

The models for SF and S� described in Theorem 3.3 and Corollary 3.4 give us
concrete formulas for the partial actions in Corollary above.

For every g 2 G define using the notation of Theorem 3.3:

Dg�1 D
˚
ŒA� 2 EF W there exist g1; g2 2 A such that g1 � g�1 � g2

	
;

or equivalentlyDg�1 D fŒA� W Œf1; g�1g� � ŒA�g. For ŒA� 2 Dg�1 define

˛g
�
ŒA�
�
D gŒA� D

�
f1g [ fghW h 2 Ag

�
:

One can easily see that ˛g is a bijection between Dg�1 and Dg�1 and formula (3)
from the definition is satisfied as well. Hence, ˛ is a partial action of G on EF , and
it coincides with the partial action in Theorem 8.2.

ConsiderS� and its idempotent subsemigroupE. Now ŒA� denotes an equivalence
class defined in Corollary 3.4. For every g 2 G we define

zDg�1 D
˚
ŒA� 2 E W g 2 A � S�1

	
;

where A �S�1 denotes pointwise product of sets and S�1 D fa�1W a 2 Sg � G. For
ŒA� 2 zDg�1 define

z̨g

�
ŒA�
�
D gŒA� D

�
f1g [ fghW h 2 Ag

�
:

Again, z̨ is a partial action of G on S�, which gives an isomorphism C �.S�/ Š

C �.E/ ÌG.
8.4. For a particular class of semigroups we can say more about the connection
between S� and partial crossed products of groups.
Definition 8.5. A partial action ˛ of a group G on a C*-algebra A is a pair
.fEggg2G ;f˛ggg2G/, whereEg are closed two-sided�-ideals inA and˛g WEg�1!Eg
are �-isomorphisms, satisfying for any g; h 2 G:
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(1) E1 D A;
(2) ˛g.Eg�1 \Eh/ D Eg \Egh;
(3) .˛g˛h/.x/ D ˛gh.x/ for all x 2 Eh�1 \Eh�1g�1 .
Then .A;G; ˛/ is a C*-partial dynamical system.

In [10] it was shown, that the partial actions and partial representations of a
group G are in one-to-one correspondence with actions and representations of a
special inverse semigroup S.G/. Moreover, an isomorphism between a partial
crossed product by G and a crossed product by S.G/ was proved in [10] and earlier
in [30]. We recall these results.

Following [10] S.G/ is a semigroup generated by elements tg for all g 2 G
satisfying the following relations:

tg�1 tg th D tg�1 tgh; (8.1)
tg thth�1 D tghth�1 ; (8.2)

tg t1 D tg : (8.3)

Then S.G/ is an inverse semigroup with unit t1 and involution t�g D tg�1 . A
partial representation of G on a Hilbert space H is a map T WG ! B.H/, sending
g! Tg , where Tg satisfy relations (8.1)–(8.3).
Lemma 8.6 ([10]). Partial actions (partial representations) of G are in one-to-one
correspondence with actions (resp., �-representations) of S.G/.
Theorem 8.7 ([10]). Let ˛WG ! I.A/ be a partial action of a group G on a
C*-algebra A, and ˇ the action of S.G/ induced by ˛. Then AÌ˛G and AÌˇ S.G/
are isomorphic.

Let us consider a particular case of a group. Namely, letS be a left Ore semigroup,
so that byTheorem2.5 ofOre andDubreil there exists a groupG such thatG D S�1S .
Nowwe study the connections betweenS.G/ and the inverse semigroupS� generated
by S as defined in Section 2.

In S.G/ all elements are partial isometries, including ts for all s 2 S . Moreover,
S.G/ is generated not only by elements corresponding to S . It follows that S.G/ is
not isomorphic to SF or to S�. We implement the choice of generators by setting
which elements should be represented by isometries. Namely, define on S.G/ a
relation t�s ts � 1 for all s 2 S and denote by R the generated congruence.
Lemma 8.8. The quotient semigroup of S.G/ by the congruence R is isomorphic
to S�.

Proof. For all g 2 G we denote by Qtg the image of tg under the quotient map
S.G/! S.G/=R. Then S.G/ is characterised by R and the conditions (8.1)–(8.3).
For any s; p 2 S set g D s�1, h D p and consider equation (8.1):

Qts Qt
�
s
Qtp D Qts Qts�1p:
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Multiplying from the left by Qt�s we obtain Qts�1p D Qt
�
s
Qtp . In the same way setting

g D s, h D p in (8.2) we get Qtsp D Qts Qtp . Since a quotient of an inverse semigroup is
an inverse semigroup, we deduce that S.G/=R satisfies the definition of S� having Qts
at the place of vs . The converse is also true, let us show for instance (8.1) for the
generators of S�. Take arbitrary g D p�1q, h D s�1r where p; q; r; s 2 S . Let
qs�1 D a�1b for some a; b 2 S , then gh D p�1qs�1r D p�1a�1br and we have

vavq D vbvs H) v�s D v
�
qv
�
avb:

Then the left hand side of (8.1) equals

.v�qvp/.v
�
pvq/.v

�
s vr/ D v

�
qvpv

�
pvqv

�
qv
�
avbvr

D v�qvqv
�
qvpv

�
pv
�
avbvr D .v

�
qvp/.v

�
pv
�
avbvr/:

Therefore, the map Qts�1p ! v�s vp is an isomorphism between S.G/=R and S�.

Combining this result with Proposition 6.3 and Theorem 4.2 (presented here as
Lemma 8.6) in [9] and Lemmas 4.3, 7.2, 7.5, we immediately get the following.
Corollary 8.9. Any isometric inverse representation of S induces a partial
representation of G. Any injective action of S on a space X induces a partial
action of G on X . Any injective action of S on a C*-algebra A with ideal images
induces a partial action of G on A.

Remark 8.10. The reverse statement is true under some conditions. If a
�-representation T of S.G/ on some Hilbert space H factors through the quotient
map S.G/ ! S.G/=R, then clearly T induces a �-representation of S�, which we
denote by the same symbol. It follows that any partial representation T of G which
satisfies the property that Ts are isometries for all s 2 S , gives a �-representation
of S� (and an isometric inverse representation of S ).
Theorem 8.11. Let S be a left Ore semigroup, and let ˛ be an extendible injective
action of S on a C*-algebra A, and z̨ the induced partial action of G on A. Then
the crossed product A Ì˛ S is isomorphic to the partial crossed product A Ìz̨ G.

Proof. By Theorems 7.15 and 7.21, the crossed product AÌ˛ S is isomorphic to the
inverse semigroup crossed product A Ì˛ S�. On the other hand, by the Lemma 8.6
the partial action z̨ induces an action ˇ of S.G/ on A, and by Theorem 8.7 the
crossed products AÌ˛ G and AÌˇ S.G/ are isomorphic. So, it remains to prove the
isomorphism between A Ì˛ S� and A Ìˇ S.G/.

Let .�; T /be a covariant representation of .ˇ; S.G/; A/. WehaveEt�s D EQt�s D A
due to the fact that ˇ is induced by ˛. By condition (2) of Definition 7.9, for any s 2 S
the operator T �tsTts D Tt�s ts is a partial isometry with initial and final spaces equal
to H , hence a unitary; and at the same time it is a projection. It implies that Tts
is an isometry on H . By Remark 8.10, the representation T WS.G/ ! B.H/
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factors through the quotient map S.G/ ! S� defined in Lemma 8.8 and gives a
representation zT of S� on H . So, we obtain a covariant representation .�; zT / of
.˛; S�; A/.

If .�; T / is a covariant representation of .˛; S�; A/, then Corollary 8.9 gives a
covariant representation of .ˇ; S.G/; A/. Therefore these dynamical systems have
the same set of covariant representations. The underlying algebra L for the two
crossed products are different, but the completions under the supremum norm over all
covariant representations are isomorphic. Indeed, if s; t 2 S.G/ are such that s �R t ,
then for any a 2 Es D Et and for any covariant representation .�; T / we have

� � T .aıs/ D �.a/Ts D �.a/Tt D � � T .aıt /:

Thus, A Ì˛ S� and A Ìˇ S.G/ are isomorphic.

9. Conclusion

One can see that the semigroup C*-algebras (both universal and reduced) of a
cancellative semigroup S are in fact C*-algebras (the full C*-algebra and a C*-
algebra generated by some special representation) of some inverse semigroup. All
phenomena of these algebras, discussed in the Introduction, can be explained by
this fact, and indicate that the concept of these algebras is imperfect. We have
shown that to every left cancellative semigroup S one can associate a universal
inverse semigroup S�. Then the full and reduced C*-algebras of S� do not have the
mentioned problems and can be regarded as “new” C*-algebras of S . The universal
inverse semigroup captures many properties of S , of its “old” C*-algebras and also
of actions and crossed products by S . All together this convinces us that S� serves
the purpose of describing the C*-theory of S .
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