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Symmetric noncommutative birational transformations
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Abstract. In [11] certain birational transformations were constructed between the noncom-
mutative schemes associated to quadratic and cubic three dimensional Sklyanin algebras. In
the current paper we consider the inverse birational transformations and show that they are of
the same type. Moreover we extend everything to the Z-algebras context, which allows us to
incorporate the noncommutative quadrics introduced by Van den Bergh in [18].
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1. Introduction

Throughout this paper k will be an algebraically closed field and all rings will be
algebras over k. Following tradition [5] we associate a noncommutative projective
scheme X D Proj.A/ to a connected graded k-algebra A D k ˚ A1 ˚ � � � , which is
generated by A1. Proj.A/ is defined via its category of “quasicoherent sheaves”:

Qcoh.X/ WD QGr.A/ D Gr.A/=Tors.A/;

where Gr.A/ is the category of graded right A-modules and Tors.A/ is the full
subcategory of torsionA-modules, i.e. those graded rightA-modules that have locally
right bounded grading [5]. A non-trivial class of noncommutative surfaces is given
by three dimensional Artin–Schelter regular algebras as defined in [1]. Recall that
a connected graded algebra A is called AS-regular of dimension d if it satisfies the
following conditions:

(i) The Hilbert series hn.A/ WD dimk.An/ is bounded by a polynomial in n;

(ii) A has finite global dimension d ;

(iii) A has the Gorenstein property with respect to d .
�The author was supported by a Ph.D. fellowship of the Research Foundation Flanders (FWO).
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Such algebras with d D 3 and which are generated in degree 1 are classified in [1,2].
There are two possibilities for the number of generators and relations:
(i) A is generated by three elements satisfying three quadratic relations (the
“quadratic case”). In this case A has Hilbert series 1=.1 � t /3, i.e. the same Hilbert
series as a polynomial ring in three variables. Therefore we think of Proj.A/ as being
a noncommutative P2;
(ii) A is generated by two elements satisfying two cubic relations (the “cubic case”).
In this case A has Hilbert series 1=.1 � t /2.1 � t2/ and we can think of Proj.A/ as
being a noncommutative P1 � P1. (The rationale for this is explained in [18].)
We write .r; s/ for the number of generators of A and the degrees of the relations.
Thus .r; s/ D .3; 2/ or .2; 3/ depending on whether A is quadratic or cubic.

The classification of three-dimensional AS-regular algebras A is in terms of
suitable geometric data .Y;L; �/ where Y is a k-scheme, � is an automorphism
of Y and L is a line bundle on Y . More precisely: starting from .Y;L; �/ one can
construct a twisted homogeneous coordinate ring B.Y;L; �/ (see, for example, [4]).
This is a connected graded k-algebra with r WD dimk.B1/ equal to 2 or 3. Setting
s D 5� r as above, we can then find the AS-regular algebra A.Y;L; �/ by dropping
all relations in degree s C 1 and higher. In particular there is a surjective morphism
A.Y;L; �/! B.Y;L; �/ giving rise to a fully faithful functor

QGr.B/ ,! QGr.A/: (1.1)

Moreover, there is an equivalence of categories QGr.B/ Š Qcoh.Y / (see, for
example, [4]). Therefore one often says there is a commutative curve Y contained
inside the noncommutative surface X .

Below we say that A is a (quadratic or cubic) Sklyanin algebra if Y is smooth
and � is a translation.

Inspired by the commutative case it makes sense to expect that in a suitable sense
noncommutative P2s are birationally equivalent to noncommutative P1�P1s. Such
birational equivalences were constructed in [12] and [11].

In [11] we provide a noncommutative version of the standard birational
transformation P1 � P1Ü P2 by showing that for each cubic Sklyanin algebra A
there exists a quadratic Sklyanin algebra A0 and an inclusion

LA0 ,! LA.2/; (1.2)

where LA and LA0 are the associated Z-algebras. (See §2 for more on Z-algebras.)
We then check that this inclusion gives rise to an isomorphism of the function fields
Frac0.A0/ Š Frac0.A/, a result which was already announced in [15] and [14].
In [11], we also provide a noncommutative version of the Cremona transform
P2Ü P2 by showing that for each quadratic Sklyanin algebra A there exists a
quadratic Sklyanin algebra A0 and an inclusion

LA0 ,! LA.2/: (1.3)
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The construction was based on the choice of 3 non-collinear points p; q; r on Y and
if A D A.Y;L;  / then

A0 D A
�
Y;L˝  �L˝OY .�p � q � r/;  

�
:

In §3 we recapitulate the construction of (1.2) and (1.3).
In §4 we extend the above to the level of Z-algebras (see §2 and Remark 4.2 for

the appropriate definitions) and prove the following:
Theorem (Theorem 4.1). Let A be a cubic Sklyanin Z-algebra. Then there is
a quadratic Sklyanin Z-algebra A0 and an inclusion A0 ,! A.2/ inducing an
isomorphism between their function fields. This inclusion is constructed with respect
to a point p on Y such that if A D A.Y;L0;L1;L2/ then

A0 D A
�
Y;L0 ˝L1 ˝OY .�p/;L2 ˝L3 ˝OY .��

�1p/
�
;

where � D ˛2 2 Aut.Y / is some nontrivial translation (see §4 for the appropriate
definitions. In the special case where A comes from a Z-graded cubic Sklyanin
algebra A.Y;L; �/, one has � D �4).
Remark 1.1. The existence of the function field a cubic Sklyanin Z-algebra (or more
generally a “quadric”) is proven in Appendix A.

In §4 we also provide noncommutative versions of the inverse birational
transformation P2Ü P1 � P1 as follows:
Theorem (Theorem 4.4). Let A be a quadratic Sklyanin Z-algebra, then there is a
cubic Sklyanin Z-algebra A0 and an inclusion A0 ,! A inducing an isomorphism
between their function fields. This inclusion is constructed with respect to points p; q
on Y such that if A D A.Y;L;  / then

A0 D A
�
Y;L˝OY .�p/;  

�L˝OY .�q/;  
�2L˝OY .� 

�3p/
�
:

In §5 we show (Theorem 5.2) that, modulo some technical hypothesis, the non-
commutativeCremona as in (1.3) factors through the noncommutativeP2ÜP1�P1

and P1 � P1Ü P2. As such all of these are examples of “quadratic transforms”,
a more general type of noncommutative birational transformations introduced in §5.

In the last sectionswe show that quadratic transforms are invertible in the following
sense (for simplicity we omit some technical hypotheses):
Theorem (Theorem 6.4). Let 
 WA0 ,! A.w/ be a quadratic transform. Then there
exists a quadratic transform ıWA,!A0.v/ such that the compositions
 ı ıWA,!A.vw/

and ı ı 
 WA0 ,! A0.vw/ induce the identity map on the function fields.
Remark 1.2. In the above theorem the possible values for w are determined by the
definition of a quadratic transform. Moreover v can be chosen as a function of w and
v
w
2
˚
1
2
; 1; 2

	
.
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In §6 we show that it suffices to prove this theorem in case 
 is as in Theorem 4.1
or Theorem 4.4. Both of these cases are covered in §7. The proof is quite technical
and uses a Z2-algebra which in a certain sense glues A and A0. These Z2-algebras
have been further investigated in [10], where it was shown that they are related to
noncommutative blowups. On the other hand the geometric picture is rather simple.
For example if A D A.Y;L;  / is a quadratic Sklyanin algebra and 
 WA0 ,! A is
constructed with respect to points p; q on Y as in Theorem 4.4, then the inverse
ıWA ,! A0.2/ is constructed with respect to p0 where p C q C p0 � Œ �L� in the
Picard group of Y . Conversely ifA D A.Y; .Li /i / is a cubic Sklyanin Z-algebra and

 WA0 ,! A.2/ is constructed with respect to a point p on Y as in Theorem 4.1, then
the inverse ıWA ,! A0 is constructed with respect to p0; q0 where p C �q0 � ŒL0�

and p C p0 � ŒL1� in the Picard group of Y .

Acknowledgements. The author wishes to thank Michel Van den Bergh for provid-
ing many interesting ideas and for reading through the results multiple times. The
author is also very grateful to Susan J. Sierra for inviting him to the University of
Edinburgh and for posing the question about the nature of the inverses to the birational
transformations considered in [11]. This question directly lead to the current paper.

2. Z-algebras

In this section we recall some definitions and facts on Z-algebras. We refer the reader
to [13] or Sections 3 and 4 of [18] for a more thorough introduction. Recall that a
Z-algebra is defined as an algebra R (without unit) with a decomposition

R D
M

.m;n/2Z2

Rm;n

such that addition is degree-wise and multiplication satisfies Rm;nRn;j � Rm;j and
Rm;nRi;j D 0 if n ¤ i . Moreover, there are local units en 2 Rn;n such that for each
x 2 Rm;n W emx D x D xen.
Notation. If A is a graded algebra, then it gives rise to a Z-algebra LA via

LAm;n D An�m:

In particular the notion of a Z-algebra is a generalization of a (Z-)graded algebra.
Based on this, most graded notions have a naturalZ-algebra counterpart. For example
we say that a Z-algebra R is positively graded if Rm;n D 0 for m > n.

A graded R-module is an R-module M together with a decomposition
M D ˚nMn such that theR-action onM satisfiesMmRm;n �Mn andMmRi;n D 0

if i ¤ m. The category of graded R-modules is denoted Gr.R/ and similar to the
graded case we use the notation QGr.R/ WD Gr.R/=Tors.R/.
Remark 2.1. IfA is a graded algebra, then obviously Gr.A/ D Gr. LA/ by identifying
A.n/ 2 Gr.A/ with e�n LA 2 Gr. LA/. Similarly, QGr.A/ D QGr. LA/.
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Definition 2.2. LetR be a Z-algebra. Then for each n 2 Z we defineR.n/ by setting
.R.n//i;j D RiCn;jCn with obvious multiplication. We say R is n-periodic if there
is a Z-algebra-isomorphism R Š R.n/.

Lemma 2.3. Let R be a Z-algebra. Then there exists a graded algebra A such that
R D LA if and only if R is 1-periodic.

Proof. The “only if” part is obvious from the definition of LA. The “if” part is proven
in [18, Lemma 3.4].

Remark 2.4. From a categorical point of view a Z-algebra R is nothing but a
k-linear category R whose objects are given by the integers. The homogeneous
elements of the algebra then correspond to morphisms between two such integers
via HomR.�j;�i/ D Ri;j and multiplication in R corresponds to composition of
morphisms in R.

We would like to point out that this categorical notation is slightly different from
the notation used in [18, §3] where aZ-algebra is said to be a pre-additive categoryR0

by identifying HomR0.i; j /withRi;j and using concatenation of morphisms inR0 to
define a multiplication onR. Obviously for a Z-algebraR with associated categories
R and R0 (using these 2 different interpretations), we have an isomorphism of
categories R0 Š Rop by sending object i in R0 to �i in R.

In the light of (4.3) however, our notation makes more sense for this paper than
the one used in [18, §3].

2.1. AS-regular Z-algebras.
Definition 2.5. Let R be a Z-algebra, then R is said to be connected, if it is
positively graded, dimk.Rm;n/ < 1 for each m; n and Rm;m Š k for all m.
We say R is generated in degree 1 if Rm;mC1RmC1;n D Rm;n holds for all
m < n. If R is a connected Z-algebra, generated in degree 1, then we denote
Sn;R D enR=.enR/�nC1. i.e. Sn;R is the uniqueR-module concentrated in degree n
where it is equal to the base field k.

We can now give the definition of an AS-regular Z-algebra as in [18]

Definition 2.6. A Z-algebra R over k is said to be AS-regular if the following
conditions are satisfied:

(1) R is connected and generated in degree 1;

(2) dimk.Rm;n/ is bounded by a polynomial in n �m;

(3) The projective dimension of Sn;R is finite and bounded by a number independent
of n;

(4) 8n 2 N W
X
i;j

dimk
�
ExtiGr.R/.Sj;R; enR/

�
D 1 (the “Gorenstein condition”).
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It is immediate that if a graded algebra A is AS-regular, then LA is AS-regular in
the above sense.

Z-algebra analogues of three dimensional quadratic and cubicAS-regular algebras
were classified in [18], it is shown in loc.cit. that every quadratic AS-regular
Z-algebra is of the form LA for some quadratic AS-regular algebra A. However, most
cubic AS-regular Z-algebras are not 1-periodic. To distinguish cubic AS-regular
algebras from the more general cubic AS-regular Z-algebras, one often refers to the
latter as quadrics.

Similar to the graded case, the classification of three-dimensional quadratic and
cubic AS-regular Z-algebras in terms of geometric data .Y; .Li /i2Z/ where Y is a
k-scheme and .Li /i2Z is an elliptic helix of line bundles on Y (see [6] for more
information on helices). Starting from the geometric data one first constructs a
Z-algebra analogue B D B.Y; .Li /i / of the twisted homogeneous coordinate ring:

Bi;j WD

(
�.Y;Li ˝LiC1 ˝ : : :Lj�1/; if i � j ;
0; if i > j :

Again there is an equivalence of categories:

Qcoh.Y / Š QGr.B/WF 7!
M
i�0

�
�
Y;F ˝L0 ˝L1 ˝ � � � ˝Li�1

�
(2.1)

(see [18, Corollary 5.5.9]). r D dimk.Bi;iC1/ does not depend on i and equals 3
(in the quadratic case) or 2 (in the cubic case). A.Y; .Li /i / is then obtained from B

by only preserving the relations in degree .i; i C s/ for s D 5 � r . It is shown
that dimk.Ai;iCn/ does not depend on i ; it hence makes sense to write h.n/ WD
dimk.Ai;iCn/ and one checks that h.n/ coincides with the Hilbert series in the
graded case (even though AS-regular Z-algebras need not be 1-periodic).

2.2. Z-domains and Z-fields of fractions. In this section we give the natural
generalizations of “domain” and “field of fractions” for Z-algebras. Among other
generalizations, these notions can also be found in [7, §2].
Definition 2.7. Let R be a Z-algebra. Then we say that R is a Z-domain if the
following condition is satisfied:

8i; j; k 2 Z; 8x 2 Ri;j ; 8y 2 Rj;k W xy D 0) x D 0 _ y D 0

It is known that three dimensional AS-regular algebras are domains ([3, Theo-
rem 3.9] and [3, Theorem 8.1]). We extend this result to the level of quadrics and
show:
Theorem 2.8. Let A D A.Y; .Li /i / be a quadric. Then A is a Z-domain.

Proof. The proof of this theorem is postponed to Appendix A.
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Let R be a Z-algebra and R the associated category as in Remark 2.4. Let W
be a collection of homogeneous elements and let W be the corresponding collection
of morphisms. We then say that R is localizable at W if .R;W/ admits a calculus
of fractions (see for example [8]). In this case we define RŒW �1� as the Z-algebra
associated to RŒW�1�.

Using the theory of (right) fractions for a category one easily checks that the
following definition makes sense.
Definition 2.9. Let R be a Z-domain, then R admits a Z-field of (right) fractions if
the following condition is satisfied:

8r 2 Rl;i ; s 2 Rl;j n f0g W 9n 2 Z W 9r 0 2 Rj;n; s
0
2 Ri;n n f0g W rs

0
D sr 0:

The elements of Frac.R/i;j are equivalence classes of couples .r; s/ where r 2 Ri;l ,
s 2 Rj;l n f0g for some l 2 Z. The equivalence relation is given by

8l1; l2 2 Z; 8r1 2 Ri;l1 ; r2 2 Ri;l2 ; s1 2 Rj;l1 n f0g; s2 2 Rj;l2 n f0g W

.r1; s1/ � .r2; s2/

m

9l3 2 Z; 9x 2 Rl1;l3 n f0g; 9y 2 Rl2;l3 n f0g W r1x D r2y and s1x D s2y:

The following is obvious from the definition:
Proposition 2.10. Let A be a graded domain. Then:

A admits a (graded) field of (right) fractions

, LA admits a Z-field of (right) fractions:

Moreover in this case RFrac.A/ D Frac. LA/
Recall that graded domains admit fields of (right-)fractions when they are graded

(right-)noetherian or when they have subexponential growth. A similar result can be
found in [7]:
Proposition 2.11. Let R be a Z-domain such that each eiR is a uniform module
(i.e. for all nonzeroM;N � eiR WM \N ¤ 0). Then R admits a Z-field of (right)
fractions.

Proof. We need to show that for all r 2 Rl;i ; s 2 Rl;j nf0g there exists an n 2 Z and
elements r 0 2 Rj;n; s0 2 Ri;n n f0g such that rs0 D sr 0. If r D 0 then it suffices to
take r 0 D 0. If r ¤ 0 the existence of r 0 and s0 follows from the fact that rR and sR
are nonzero submodules of the uniform module elR.

Similarly the following will be shown in Appendix A:
Theorem 2.12. Let A be a quadric. Then A admits a Z-field of fractions.
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Remark 2.13. As three dimensional, quadraticAS-regularZ-algebras are 1-periodic,
the existence of their Z-field of fractions is automatic from Proposition 2.10.
Remark 2.14. When Q D Frac.A/ it is customary to refer to Q0;0 as the function
field of QGr.A/. We will do so throughout this paper.

3. Summary of the results in [11]

In [11] we construct noncommutative versions of the birational transformation
P1 � P1Ü P2 and the Cremona transform P2Ü P2 using the following recipe:
Step 1. Let A be a 3-dimensional Sklyanin algebra. Let .Y;L; �/ be the associated
geometric data, B be the associated twisted homogeneous coordinate ring and
Qcoh.X/ D QGr.A/. Denote Bimod.Y � Y / ,! Bimod.X �X/ for the categories
of bimodules (recall: Bimod.X1 � X2/ is the category of right exact functors
Qcoh.X1/ ! Qcoh.X2/ commuting with direct limits) with oY ; oX corresponding
to the identity functors. Let oX .�Y / D ker .oX � oY /1.
Step 2. Choose a divisor d on Y in the following way:
� d D p C q C r for p; q; r distinct points, non-collinear with respect to the
embedding in P2 given by L, in case A is quadratic;

� d D p in case A is cubic.
Let Od be it’s structure sheaf and denote od 2 Bimod.Y �Y / � Bimod.X �X/ for
the bimodule

od WD .�˝Y Od /

and
md WD ker.oX � od /;

md;Y WD ker.oY � od /:
(3.1)

Step 3. Define Z-algebrasDY andD as follows:

.DY /m;n D

�
Hom

�
OY .�2n/;OY .�2m/˝oY m��md;Y : : : m��nC1d;Y

�
;

if n � m;
0; if n < m;

Dm;n D

(
Hom

�
OX .�2n/;OX .�2m/˝oX m��md : : : m��nC1d

�
; if n � m;

0; if n < m;
(3.2)

1Unfortunately Bimod.X1 � X2/ appears not to be an abelian category.This technical difficulty is
solved in [17] by embedding Bimod.X�Y / into a larger abelian category BIMOD.X1�X2/ consisting
of “weak bimodules”. In particular we will always construct kernels and cokernels as elements in
BIMOD.X1 �X2/. This being said, these technical complication will be invisible in this paper as all
bimodules we construct will be elements of the (smaller) category Bimod.X1 �X2/.
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where � D � sC1,

OX .i/ D �.A.i//; OY .i/ D �.B.i//; (3.3)

� is the quotient functor Gr.A/ ! QGr.A/ and m��md : : : m��nC1d � oX is the
image of the morphism of bimodules

m��md ˝m��m�1d ˝ � � � ˝m��nC1d ! oX ˝ oX ˝ � � � ˝ oX ! oX :

By [17, Lemma 8.2.1] the inclusionsm��id ,!oX give rise to an inclusionD,! LA.2/.
Step 4. One shows thatDY is a twisted homogeneous coordinate ring, i.e. there is a
sequence of line bundles .Gi /i2Z such that

.DY /m;n D �.Y;Gm ˝ � � � ˝ Gn�1/: (3.4)

Moreover, the Gi must form an “elliptic helix” (for a quadratic AS regular Z-algebra),
i.e.

� degGi D 3 for all i ;
� G0 6Š G1;
� Gi ˝ G˝�2iC1 ˝ GiC2 � OY .

Step 5. One shows that D is generated in degree 1. For this we need some natural
vanishing results on OX .a/˝m��md : : : m��nC1d (We will recapitulate and slightly
extend these vanishing results in Lemmas 4.8 and 4.10.)
Step 6. One shows that the canonical map D ! DY is surjective and that D has
the correct Hilbert series. It then follows that D is the AS-regular Z-algebra
corresponding to the elliptic helix .Gi /i2Z on Y . As D is quadratic, there is an
AS-regular quadratic algebra A0 such thatD D }A0 (see [18, Theorem 4.2.2]).
Step 7. Check that the induced morphism

Frac0.A0/ D Frac0;0.D/! Frac0;0. LA/ D Frac0.A/

is an isomorphism. This check is immediate as injectivity comes for free and
surjectivity follows by a Hilbert series argument.

4. Addendum to [11]

As explained in the previous section, in [11]we construct noncommutative versions of
the birational transformation P1 � P1Ü P2. In this section we slightly generalize
this (Theorem 4.1) and in addition we discuss a noncommutative version of the
inverse birational transformation P2Ü P1 � P1 (Theorem 4.4).
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Theorem 4.1. Let A D A.Y; .Li /i2Z/ be a quadric such that:
� Y is a smooth elliptic curve;
� L2 Š ˛�L0 for some ˛ 2 Aut.Y / which is given by translation by a point of
order at least 3 (i.e. ˛2 ¤ Id),

then there exists a quadratic Sklanin algebraA0 and an inclusion }A0 ,! A.2/ inducing
an isomorphism of function fields.

Remark 4.2. We refer to a quadric as in Theorem 4.1 as a cubic Sklyanin Z-algebra.

Remark 4.3. Theorem 4.1 extends [11] in the sense that it does not require A to be
1-periodic.

Theorem4.4. LetA D A.Y; ;L/ be a quadratic Sklyanin algebra. Then there exists
a cubic Sklyanin Z-algebra D and an inclusion D ,! LA inducing an isomorphism
of function fields. The construction of D depends on two points, p; q 2 Y and D
is 1-periodic, i.e. of the form D D }A0, if q D �p for � a translation such that
�2 D  �3.

As both Theorem 4.1 and 4.4 contain statements on AS-regular Z-algebras which
need not be 1-periodic we introduce some notation for an AS-regular Z-algebra A:
Inspired by .3:3/ and Remark 2.1 we define

OX .i/ D �.e�iA/; OY .i/ D �.e�iB/: (4.1)

Under the equivalence of categories QGr.B/ Š Qcoh.Y / (see (2.1)) OY .i/ can be
identified with �

L0L1 : : :Li�1; if i > 0;
OY ; if i D 0;
.L0L1 : : :L�i�1/

�1; if i < 0:
(4.2)

Similar to the graded case [11, §4] we have

Hom
�
OX .�j /;OX .�i/

�
D HomQGr.A/

�
�.ejA/; �.eiA/

�
D lim
n!1

HomGr.A/
�
ejA�n; eiA

�
D HomGr.A/

�
ejA; eiA

�
D Ai;j ; (4.3)

where the second equality follows from the fact that ejA and eiA are finitely generated
A-modules (see [5, Proposition 7.2] for the graded case). The third equality follows
from the Gorenstein condition as this implies

HomGr.A/
�
ejA=ejA�n; eiA

�
D Ext1Gr.A/

�
ejA=ejA�n; eiA

�
D 0:
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We also have the following standard vanishing result:
Lemma4.5. LetA be anAS-regularZ-algebra of dimension 3withHilbert functionh
and let X D QGr.A/ and OX .i/ be as above, then we have

Extn
�
OX .i/;OX .j /

�
D 0 for n ¤ 0; 2;

dimk
�
Ext2.OX .i/;OX .j //

�
D

(
0; if j � i � s;
h.i � s � 1 � j /; if j � i � s � 1:

Proof. Similar to [5, Theorem 8.1].

Remark 4.6. Throughout the rest of the paper X and OX .i/ will be defined as in
Lemma 4.5.

We now give an overview of both proofs separately. The recipe is as in §3 and
we only highlight the steps that need to be adapted.

4.1. Noncommutative P 1 � P 1 Ü P 2. (Proof of Theorem 4.1).
Step 1. Let A D A.Y; .Li /i2Z/ be a cubic Sklyanin Z-algebra as in the statement of
Theorem 4.1.
Steps 2 and 3. Let p be a point on Y and set � D ˛2 ¤ Id and d D p in the
definition ofD andDY as in (3.2).
Step 4. Computations similar to the ones in [11, §5] show that DY is a twisted
homogeneous coordinate ring, i.e.

DY;m;n D �
�
Y;Gm ˝ � � � ˝ Gn�1

�
for some new collection of line bundles on Y :

Gi D OY .��
�ip/˝L2i ˝L2iC1: (4.4)

It follows easily that these line bundles satisfy:

(a) degGi D 3;
(b) G0 6Š G1;
(c) Gi ˝ G˝�2iC1 ˝ GiC2 Š OY ;
(d)  �.Gi / Š GiC1, where  is an arbitrary translation satisfying  3 D � .

Steps 5, 6, and 7. We need the following generalizations of [11, Lemmas 6.2, 6.4,
and 6.5]:
Lemma 4.7. Let A be as above and let p be a point in Y . Let i 2 Z and let Pi be
the point module generated in degree i corresponding to the point p (i.e. the point
module truncated at degree i ).
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Then there is a complex of the following form:

0! eiC5A
.�;0/
���! eiC4A

˚2
˚ eiC3A! eiC2A

˚3
! eiA! Pi ! 0; (4.5)

where � is part of the minimal resolution of SiC1 as given in [17, Definition 4.1.1.]

0! eiC5A
�
�! eiC4A

˚2 "
�! eiC2A

˚2 ı0
�! eiC1A



�! SiC1 ! 0:

Moreover, the complex (4.5) is exact everywhere except at eiA where it has one-
dimensional cohomology, concentrated in degree i C 1.

Proof. Similar to the proof of [11, Lemma 6.2] this is based on the fact that the
minimal projective resolution for Pi is given by

0! eiC3A! eiC1A˚ eiC2A! eiA! Pi ! 0: (4.6)

The latter is a Z-algebra analogue of the projective resolution of a point module as
in [3, Proposition 6.7.i]. The proof in loc. cit. can be adapted to a Z-algebra version
as follows:
– First we note that by [17, §5] there is a 1-1-correspondence between point modules
(truncated in degree i ) and points on Y , so the correspondence betweenp 2 Y andPi
is well defined.
– Next we generalize line modules to modules of the form ejA=aA, where
a 2 Aj;jC1. As A is a Z-domain (Theorem 2.8) we know that line modules have the
desired Hilbert series and have projective dimension 1. The characterization of line
modules as in [3, Corollary 2.43] generalizes to this new definition of line modules
if we replace the modules A.�i/ in the graded case by eiA.
– Finally we find .4:6/ by generalizing the proof of [3, Proposition 6.7.i]. This proof
uses the fact that point modules in the graded case have projective dimension 2. A
careful observation however shows that projective dimension � 2 suffices for the
proof. This in turn can be shown by a variation of [3, Proposition 2.46.i].

In particular [11, Lemma 6.4, Lemma 6.5] generalize to the following
Lemma 4.8. With the notations as above we have for i � j � 3:

Ext2
�
OX .i/;OX .j /˝m��md : : : m��nC1d

�
D 0;

and for i � j � 2m � 2nC 2:

Ext1
�
OX .i/;OX .j /˝m��md : : : m��nC1d

�
D 0:

Proof. Similar to [11, Lemma 6.4, Lemma 6.5] by using Lemmas 4.7 and 4.5.

One can now copy the proofs in [11, §6] to find thatD andDY are generated in de-
gree 1, that the canonical mapD ! DY is surjective and an isomorphism in degree 0,
1, and 2, that D has the correct Hilbert series and hence D Š A.Y; .Gi /i2Z/ D }A0
for the graded algebra A0 D A0.Y;G0;  /. Similarly, the results in [11, §7] extend to
an isomorphism of function fields Frac0;0.A/ Š Frac0.A0/.
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4.2. Noncommutative P 2 Ü P 1 � P 1 (Proof of Theorem 4.4).
Step 1. Throughout this section A D A.Y;L;  / is a quadratic Sklyanin algebra,
hence Y is a smooth elliptic curve, L is a degree 3 line bundle on Y and  2 Aut.Y /
is given by translation by a point with � D  3 ¤ Id.
Steps 2 and 3. The construction ofD is slightly different from the one in (3.2):
Let p; q be points on Y and denote

di D

(
��jp; if i D 2j ;
��j q; if i D 2j C 1;

(4.7)

where � D  3. We define mdi ;Y and mdi as in .3:1/ and introduce Z-algebra DY
andD via

.DY /m;n D

�
Hom.OY .�n/;OY .�m/˝oY mdm;Y : : : mdn�1;Y /;

if n � m;
0; if n < m;

(4.8)

Dm;n D

(
Hom.OX .�n/;OX .�m/˝oX mdm : : : mdn�1/; if n � m;
0; if n < m:

(4.9)

Again using [17, Lemma 8.2.1], there is an inclusionD ,! LA.
Step 4. Computations similar to the ones in [11, §5] show

DY;m;n D �
�
Y;Gm ˝ � � � ˝ Gn�1

�
for some collection of line bundles on Y given by:

Gi D OY .�di /˝  
i�L (4.10)

and these line bundles satisfy:

(a) degGi D 2;
(b) G0 6Š G2;
(c) Gi ˝ G�1iC1 ˝ G�1iC2 ˝ GiC3 Š OY ;
(d) ˛�.Gi / Š GiC2, where ˛ is an arbitrary translation satisfying ˛2 D � .

Moreover, if q D ˛�1p then GiC1 Š ��Gi for an arbitrary translation � WY ! Y

such that �2 D ˛.
Steps 5 and 6. This is completely analogous to [11, §6]. The only difference lies in
the resolution of O.�i/˝mdn : this time it is of the form:

0! O.�i � 3/! O.�i � 2/˚2 ! O.�i/˝mdn ! 0:
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This is based on the following:
Lemma 4.9. LetA D A.Y;L;  / be a quadratic AS-regular algebra of dimension 3,
let p 2 Y be a point and let P be the corresponding point module. Then the minimal
resolution of P has the following form:

0! A.�2/! A.�1/˚2 ! A! P ! 0:

Proof. This follows immediately from [3, Proposition 6.7].

From this we find the following standard vanishing results:
Lemma 4.10. With the notations as above we have for i � j � 2:

Ext2
�
OX .i/;OX .j /˝mmd : : : mdn�1

�
D 0;

and for i � j � m � nC 1:

Ext1
�
OX .i/;OX .j /˝mdm : : : mdn�1

�
D 0:

Proof. Similar to [11, Lemma 6.4, Lemma 6.5] by using Lemmas 4.9 and 4.5.

For checking thatD has the correct Hilbert series we see that (using computation
similar to [17, Corollary 5.2.4]) the colength of mdm : : : mdmCi�1 inside oX is

‚
2 �
a.aC 1/

2
D a.aC 1/; if i D 2a;

.aC 2/.aC 1/

2
C
a.aC 1/

2
D .aC 1/2; if i D 2aC 1:

(4.11)

Using Lemma 4.10 this implies

dimDm;mCi D

‚
.2aC 1/.2aC 2/

2
� a.aC 1/ D .aC 1/2; if i D 2a;

.2aC 2/.2aC 3/

2
� .aC 1/2 D .aC 1/.aC 2/; if i D 2aC 1:

i.e. D has the Hilbert series of a cubic AS-regular Z-algebra and hence we can
conclude thatD is AS-regular.
Step 7. Injectivity of Frac0;0.D/ ! Frac0.A/ is again immediate. For surjectivity
we need to prove that for any fixed n 2 N there is some N 2 N such that

Hom
�
OX .�i � n �N/;OX .�i � n/˝mdi : : : mdiCnCN�1

�
¤ 0

holds for all i 2 Z. Now note that the colength of mdi : : : mdiCnCN�1 inside oX is
given by a2 or a.a C 1/ if nC N D 2a or 2a C 1, respectively. In particular, this
colength grows like N2

4
for N large. Hence the codimension of

Hom
�
OX .�i � n �N/;OX .�i � n/˝mdi : : : mdiCnCN�1

�
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inside AiCn;iCnCN grows at most like N2

4
. As dimk AiCn;iCnCN grows like N2

2
it

hence follows that

�
�
OX .�i � n �N/;OX .�i � n/˝mdi : : : mdiCnCN�1

�
¤ 0

for large N .

5. Cremona transformations and quadratic transforms

Convention 5.1. In the following sections we will always identify graded algebras
with their associated Z-algebras. The Z-algebra D which was introduced in
Sections 3 and 4 will now be denoted by A0. Moreover we will use the terminology
“(three dimensional) Sklyanin Z-algebras” for both quadratic and cubic Sklyanin
Z-algebras.

The goal of this section is to link the noncommutative version of the Cremona
transform P2 Ü P2 as constructed in [11] (see also §3 for a reminder of this
construction) to the noncommutative versions ofP1�P1Ü P2 andP2Ü P1�P1

as in Theorems 4.1, 4.4. This is inspired by the following commutative picture:

Figure 1. The commutative Cremona transform.
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i.e. the (commutative) Cremona transform 
 WP2Ü P2 (given by blowing up three
non-collinear points p1; q1; r1, see for example [9, Example V.4.2.3.]) factors as

 D 
1 ı 
2 where 
1WP1 � P1Ü P2 and 
2WP2Ü P1 � P1 are the standard
birational transformations obtained by blowing up one point in P1 � P1 and two
points in P2.

We prove that (modulo some technical assumptions) the same holds in the
noncommutative setting:
Theorem 5.2. Let A D A.Y;L;  / and A0 be quadratic Sklyanin algebras and let

 WA0 ,! A.2/ be a noncommutative Cremona transformation as in [11]. Denote
d D p C q C r as in loc. cit. and assume p; q and r are non-collinear points lying
in different � -orbits where � D  3. Then there exists a cubic Sklyanin Z-algebra A00
and inclusions 
1WA0 ,! A00.2/, 
2WA00 ,! A such that 
1 is as in Theorem 4.1, 
2 is
as in Theorem 4.4 and 
 D 
2 ı 
1.

Before we can prove this we need the following technical result:
Lemma 5.3. Let p and q be points such that p ¤ � iq for i 2 f�1; 0; 1g. Then
mpCq D mpmq .

Proof. Consider the following diagram:

mp ˝ oq oq

mp oX op

mp ˝mq mq op ˝mq

a1

a2

g1

a3

f1

b2

g2

b3

f2 f3

The middle row and column are the exact sequences as in (3.1). The last row is
obtained by applying �˝mq to the middle row, it hence is automatically right exact.
Similarly the first column is right exact.

We can identify mpmq both with the image of f1 and a3 (and hence the kernel
of g1 and b3). To see this recall that mpmq is defined as the image of

f Wmp ˝mq ! oX ˝ oX ! oX

The identification then follows as f D f2 ı a3 D a2 ı f1 and as a2 and f2 are
monomorphisms.
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Next we claim that a1 and f3 are in fact isomorphisms. The proof follows from
this claim as it implies mpmq serves both as a kernel for b2 ı f2 and g2 ı a2. As
such it is the pullback of

mp oX

mq

a2

f2

On the other hand
opCq D op ˚ oq

such thatmpCq , being the kernel of oX
b2˚g2
����! opCq , is also a pullback of the above

diagram. In particular, mpCq Š mpmq .
It hence remains to prove the above claim. As the argument is the same for both

morphisms we only explain this for a1. Note that this map is obtained by tensoring
mp ,! oX with oq . As such the cokernel of a1 is given by op˝oq whereas the kernel
is a subobject of T or1.op; oq/ (see [17, §3] for the definition of T ori ). In particular
it suffices to show op ˝ oq D 0 D T or1.op; oq/. By [17, Lemma 5.5.1] we need to
show HomX .Op;Oq/ D 0 D Ext1X .Op;Oq/. For HomX this follows from the fact
that Op and Oq are simple. For Ext1, we can use [17, Proposition 5.1.2 and (5.3)]
to reduce the computations to showing Ext1Y .Op;Oq/ D 0 D HomY .Op;O�q/. The
latter follows p, q and �q are different points by assumption.

We can now finish the main result of this section:

Proof of Theorem 5.2. Recall from §3 that 
 WA0 ,! A.2/ was constructed as follows:

.A0/m;n D HomX
�
OX .�2n/;OX .�2m/˝oX m��md : : : m��nC1d

�

,!

A2m;2n D HomX
�
OX .�2n/;OX .�2m/

� (5.1)

We construct 
2WA00 ,! A with respect to the points p; q as in Theorem 4.4. i.e.

.A00/m;n D HomX
�
OX .�n/;OX .�m/˝oX mdm : : : mdn�1

�
;

where

di D

(
��jp; if i D 2j ;
��j q; if i D 2j C 1:
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By Lemma 5.3 for each i we can write md2imd2iC1 D m��i .pCq/. In particular,
the inclusions m��i .pCqCr/ ,! m��i .pCq/ give rise to an inclusion 
1WA0 ,! A00.2/

such that 
 D 
2 ı 
1. It hence remains to show that 
1 is in fact an inclusion as in
Theorem 4.1. For this we need to prove the existence of a point p0 such that


1
�
.A0/m;n

�
D HomX 0

�
OX 0.�2n/;OX 0.�2m/˝oX0 m

0
��mp0 : : : m

0

��nC1p0

�
(5.2)

where m0p0 D ker.oX 0 ! op0/. As A0 is generated in degree 1, it suffices to
check (5.2) for n D mC 1 in which case the left hand side of (5.2) equals

�
�
Y; 2m�L˝  2mC1�L˝OY .��

�mp � ��mq � ��mr/
�

and the right hand side equals

�
�
Y; 2m�L˝OY .�

�mp/˝  2mC1�L˝OY .��
�mq/˝OY .�

�mp0/
�
:

Hence the theorem is proven by choosing p0 D r .

Inspired by Theorem 5.2 we make the following definition:

Definition 5.4. Let A;A0 be three dimensional Sklyanin algebras. An inclusion
A0 ,! A.v/ is called a quadratic transform if it can be written as a composition of
inclusions as in Theorems 4.1 and 4.4.

Remark 5.5. By construction a quadratic transform always induces an isomorphism
of function fields.

It immediately follows from the definition that if A0 ,! A.v/ is a quadratic
transform, then v D 2n for some nonnegative integer n. By construction our
noncommutative versions ofP1�P1Ü P2 andP2Ü P1�P1 as in Theorems 4.1
and 4.4 are quadratic transforms. Theorem 5.2 implies the noncommutative
Cremona transform as in §3 is a quadratic transform as well. Similar to the
construction in Figure 1 one can introduce a (commutative) cubic Cremona transform
P1 � P1Ü P1 � P1 by blowing up two points in each copy of P1 � P1, provided
that these points do not lie on one ruling; see, for example, Figure 2. As this
cubic Cremona factors through P2 using the classical birational transformation,
there is an obvious noncommutative generalization A0 ,! A.2/ where A and A0
are cubic Sklyanin Z-algebras. By definition this noncommutative cubic Cremona
transformation is a quadratic transform as well.

6. Inner morphisms

The main goal of the following sections is to prove that in a suitable sense quadratic
transforms are invertible:
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Figure 2. The commutative cubic Cremona transform.

Definition 6.1. Let A be a Z-algebra such that Q WD Frac.A/ exists. We say
that an injective morphism of Z-algebras �WA ,! A.v/ is inner if there exist
zm 2 Qvm;m � f0g such that for a 2 Am;n we have �.a/ D zmaz

�1
n . Moreover,

we require:
zm 2 Avm;m; if m < 0;

z0 D 1;

z�1m 2 Am;vm; if m > 0:

(6.1)

The following is clear:

Proposition 6.2. If A! A.v/ is inner then the induced map

Q0;0 ! .Q.v//0;0 D Q0;0

is the identity.

Definition 6.3. Let A and A0 be Z-algebras such that Frac.A/ and Frac.A0/ exist.
An inclusion 
 WA0 ,! A.w/ is said to be invertible if there exists an inclusion
ıWA ,! A0.v/ such that ı ı 
 WA0 ,! A0.vw/ and 
 ı ıWA ,! A.vw/ are inner.



752 D. Presotto

We can now state the main result of this paper:

Theorem 6.4. Assume that 
 WA0 ,! A.2
m/ is a quadratic transform between (three

dimensional) Sklyanin Z-algebras. Write 
 D 
1 ı � � � ı 
t with the 
j as in
Theorems 4.1 and 4.4. Moreover, we assume that for each factor 
i WAi ,! A

.2/
iC1

(with AiC1 necessarily cubic) the points pi ; qi used in the construction of 
i lie
in different � -orbits. Then 
 is invertible and the “inverse” ı can be chosen as a
quadratic transform ıWA! A0.2

n/ with jn �mj � 1.

We will call ı as in the previous theorem an inverse quadratic transform to 
 .
The following reduces the amount of work for proving Theorem 6.4 dramatically.

Lemma 6.5. Let 
1WA0 ,! A.w1/ and 
2WA
00 ,! A0.w2/ be invertible as in

Definition 6.3. Then 
1 ı 
2 is invertible as well.

Proof. By assumption there exist inclusion ı1WA ,! A0.v1/ and ı2WA0 ,! A00.v2/ such
that ı1 ı 
1, ı2 ı 
2, 
1 ı ı1 and 
2 ı ı2 are inner. We now claim .ı2 ı ı1/ ı .
1 ı 
2/

and .
1 ı 
2/ ı .ı2 ı ı1/ are inner as well. As both proofs are analogous, we only
prove the latter. Let z1;m 2 FracAw1v1m;m � f0g and z2;m 2 FracA0w2v2m;m � f0g
be as in Definition 6.1. Then for each a 2 Am;n:�

.
1 ı 
2/ ı .ı2 ı ı1/
�
.a/ D 
1

�
.
2 ı ı2/.ı1.a//

�
D 
1

�
z2;v1mı1.a/z

�1
2;v1n

�
D 
1.z2;v1m/.
1 ı ı1/.a/
1.z2;v1n/

�1

D 
1.z2;v1m/.z1;maz
�1
1;n/
1.z2;v1n/

�1

D
�

1.z2;v1m/z1;m

�
a
�

1.z2;v1n/z1;n

��1
:

Moreover, obviously


1.z2;v1m/z1;m 2 Frac.A/w1v1w2v2m;m n f0g;

1.z2;v1m/z1;m 2 A; if m < 0;


1.z2;0/z1;0 D 1;�

1.z2;v1m/z1;m

��1
2 A; if m > 0:

The proof of Theorem 6.4 then follows from the following 2 theorems which are
proven in the next section:

Theorem 6.6. Let 
 WA0 ,! A be a quadratic transform as in Theorem 4.4. Then 

is invertible and the inverse can be chosen as ıWA ,! A0.2/ as in Theorem 4.1.

Theorem 6.7. Let 
 WA0 ,! A.2/ be a quadratic transform as in Theorem 4.1 and
assume that the points p; q used in the construction of 
 lie in different � -orbits.
Then 
 is invertible and the inverse can be chosen as ıWA ,! A0 as in Theorem 4.4.
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Remark 6.8. Our approach to proving Theorems 6.6 and 6.7 is as follows: we
first construct an inclusion of Z-algebras ıWA ,! A

0.v/ such that the composition

 ı ıWA ! A.wv/ is inner. Afterwards we will show that ı is in fact a quadratic
transform and that ı ı 
 is inner as well.

7. Inverting quadratic transforms between quadratic Sklyanin algebras
and cubic Sklyanin Z-algebras

In this section we finish the proof of Theorem 6.4 by proving Theorem 6.6 and
Theorem 6.7. The proofs of these theorems are intertwined:

In §7.1 we prove that if 
 WA0 ,! A is as in Theorem 4.4, then there is a quadratic
transform ıWA ,! A0.2/ such that 
 ıı is inner. In §7.2 we prove that if 
 0WA0 ,! A.2/

is as in Theorem 4.1, then there is a quadratic transform ı0WA ,! A0 such that 
 0 ı ı0
is inner. Finally in §7.3 we prove that these constructions are each others inverses.
i.e. if we were to construct ı out of 
 as in §7.1, set 
 0 D ı and compute ı0 as in §7.2,
then ı0 D 
 . This allows us to conclude that not only 
 ı ı, but also ı ı 
 is inner
(as it is equal to 
 0 ı ı0). The analogous results are true if we were to start from 
 0.

7.1. TheZ2-algebra associated to a noncommutativeP 2 Ü P 1�P 1. Through-
out this subsection 
 WA0 ,! A will be a quadratic transform between a quadratic
Sklyanin algebra A D A.Y;L;  / and a cubic Sklyanin Z-algebra A0. Recall from
§4.2 that the construction of 
 is based on the choice of two points p; q 2 Y . We will
use the notation from this section, in particular di is defined as in .4:7/. Moreover
we define � D  3, Li D  

�iL and assume p and q lie different � -orbits.
We “glue” the algebras A and A0 into a single Z2-algebra:

zA.i;j /;.m;n/ WD

�
HomX

�
OX .�m � n/;OX .�i � j /˝oX mdj : : : mdn�1

�
;

if n > j ;
HomX

�
OX .�m � n/;OX .�i � j /

�
; if n � j ;

with X and OX .i/ as in Lemma 4.5.
Note that

zA.i;0/;.m;0/ D Ai;m

and

zA.0;j /;.0;n/ D

(
HomX

�
OX .�n/;OX .�j /mdj : : : mdn�1

�
; if n � j ;

0; if n < j ;

such that
zA.0;j /;.0;n/ D A

0
j;n

In other words zA “contains” both A and A0.
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Remark 7.1. By construction zA.i;j /;.m;n/ � AiCj;mCn and as such zA contains no
nontrivial zero divisors.

We now give some results on the dimensions of certain zA.i;j /;.m;n/. For this
let h.n/ be the Hilbert function of A and h0.n/ be the Hilbert function of A0. i.e.

8i 2 Z W dimk.Ai;iCn/ D h.n/ and dimk.A0i;iCn/ D h
0.n/: (7.1)

The following easy properties of zA are immediate from the definition:
Proposition 7.2. Let zA be as above then
(1) dimk zA.i;j /;.i;jCb/ D h0.b/ holds for all b; i; j 2 Z with b � 0;

(2) dimk zA.i;j /;.iCa;jCb/ D h.aC b/ holds for all a; b; i; j 2 Z with a � 0; b � 0.
More interesting is the following:

Lemma 7.3. Let a � 0, then:

dimk zA.i;j /;.iCa;jCb/ D dimk zA.i;j /;.i;jCbC2�a/ D h0.b C 2 � a/: (7.2)

Proof. The case a D �1 can be done analogously to §4.2 Steps (5) and (6). For
a � �2 we can no longer use Lemma 4.10 and the proof is based on the existence
of an “I -basis” (see [16] for the definition and construction of an I -basis). As we
will only use the case a D �1, we refer the interested reader to Appendix B for the
details of the proof for a � �2.

As a result of Lemma 7.3 both zA.i;j /;.i�1;jC2/ and zA.i;j /;.iC1;j�1/ are one
dimensional. Let ıi;j and 
i;j be nonzero elements in these spaces. We can then
visualise zA on a 2-dimensional square grid.

.3; 0/ .3; 1/ .3; 2/ .3; 3/

.2; 0/ .2; 1/ .2; 2/ .2; 3/

.1; 0/ .1; 1/ .1; 2/ .1; 3/

.0; 0/ .0; 1/ .0; 2/ .0; 3/

ı3;0 ı3;1

ı2;0 ı2;1


2;1


2;2 
2;3

ı1;0 ı1;1


1;1 
1;2


1;3


0;1 
0;2


0;3
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The vertical arrows represent three dimensional vector spaces, whereas the
horizontal arrows represent two dimensional vector spaces and the dotted arrows
represent one dimensional vector spaces (labeled by 
i;j and ıi;j ).

Now consider the following diagram

.i; j / .i; j C b/

.i � 1; j C 2/ .i � 1; j C b C 2/

ıi;j ıi;jCb

From Lemma 7.3 we conclude that the vector spaces on the solid arrows all have
the same dimension. Hence since A is a domain we have an isomorphism of vector
spaces:

ı�1i;j � ıi;jCbW
zA.i;j /;.i;jCb/ ! zA.i�1;jC2/;.i�1;jCbC2/: (7.3)

Whenever 2i C j D 2mC n and i � m we write:

ı.i;j /;.m;n/ D ıi;j ıi�1;jC2 : : : ımC1;n�2 2 zA.i;j /;.m;n/: (7.4)

When i < m we define:

ı.i;j /;.m;n/ WD ı
�1
.m;n/;.i;j / 2 Frac.A/iC2j;mC2n (7.5)

In particular, we always have

ı.i;j /;.k;l/ı.k;l/;.m;n/ D ı.i;j /;.m;n/:

From (7.3) we obtain an isomorphism

ı.0;2iCj /;.i;j / � ı.i;jCb/;.0;2iCjCb/W zA.i;j /;.i;jCb/ ! zA.0;2iCj /;.0;2iCjCb/:

Now note that there is always an inclusion

� ı.m;n/;.i;nC2m�2i/W zA.i;j /;.m;n/ ! zA.i;j /;.i;nC2m�2i/: (7.6)

Ifm � i this follows from the fact that A is a domain. Lemma 7.3 tells us the map is
also well defined if m < i , in which case case (7.6) even is an isomorphism.

Summarizing we obtain an inclusion

ı.0;2iCj /;.i;j / � ı.m;n/;.0;2mCn/W zA.i;j /;.m;n/ ! zA.0;2iCj /;.0;2mCn/:

And hence an inclusion

ı.0;2i/;.i;0/ � ı.m;0/;.0;2m/WAi;m D zA.i;0/;.m;0/ ! zA.0;2i/;.0;2m/ D A
0
2i;2m:
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One easily checks that these inclusions are compatible with multiplication on A
and A0 such that we get an inclusion of algebras

ıWA ,! A0.2/:

Our goal is to show that ı is in fact a quadratic transform as in Definition 5.4.
Moreover, we want 
 ı ı to be inner (as stated in the introduction of this section, the
proof to show that ı ı 
 is inner is postponed to §7.3). We first prove the latter:

Let 
.i;j /;.m;n/ be defined like ı.i;j /;.m;n/ but using 
i;j instead of ıi;j (and
i C j D mC n in stead of 2i C j D 2mC n; recall 
i;j lies in the 1-dimensional
space

zA.i;j /;.iC1;j�1/ D Hom
�
OX .�i � j /;OX .�i � j /

�
:

One then sees that the transform 
 WA0 ! A we started with is given by


.j;0/;.0;j / � 
.0;n/;.n;0/WA
0
j;n D

zA.0;j /;.0;n/ ! zA.j;0/;.n;0/ D Aj;n:

One way to see this is to note that the above map factors as


.j;0/;.0;j / � 
.0;n/;.n;0/ D
�

.j;0/;.0;j / � 
.n�j;j /;.n;0/

�
ı
�
� 
.0;n/;.n�j;j /

�
;

where

� 
.0;n/;.n�j;j /WHom
�
OX .�n/;OX .�j /˝oX m�j : : : m�n�1

�
,! Hom

�
OX .�n/;OX .�j /

�
is the actual inclusion A0j;n ,! Aj;n and


.j;0/;.0;j / � 
.n�j;j /;.n;0/WHom
�
OX .�n/;OX .�j /

�
! Hom

�
OX .�n/;OX .�j /

�
are identity morphisms (potentially up to scalars, which can simultaneously be set
to 1).

In particular, 
 ı ı is given by


.2i;0/;.0;2i/ı.0;2i/;.i;0/ � ı.m;0/;.0;2m/
.0;2m/;.2m;0/WAi;m ! A2i;2m; (7.7)

which is inner with

zi D 
.2i;0/;.0;2i/ı.0;2i/;.i;0/ 2 Frac.A/2i;i :

One easily checks that the elements zi indeed satisfy the conditions in (6.1).
We now prove that ı is a quadratic transform. For this we need to show the

existence of a point p0 2 Y such that

ı.Ai;iC1/ D �
�
Y;G2iG2iC1.��

�ip0/
�

D �
�
Y;L2iL2iC1.�d2i � d2iC1 � �

�ip0/
�
:

(7.8)
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Wefirst define zB like zA but starting fromB instead of fromA. We find (using (4.1)
and (4.2))

zB.i;j /;.m;n/ WD

(
�
�
Y;LiCjLiCjC1 : : :LmCn�1.�dj � � � � � dn�1/

�
; if n > j ;

�
�
Y;LiCjLiCjC1 : : :LmCn�1

�
; if n � j :

Similar to [11, Lemma 6.7] one can show:
Lemma 7.4. The canonical map

zA.i;j /;.m;n/ ! zB.i;j /;.m;n/

is an epimorphism in the first quadrant (i.e. m � i , n � j ).
Recall that by the definition of ı we have for each x 2 Ai;iC1

ıi;0ıi�1;2 : : : ı1;2i�2ı.x/ D xıiC1;0ıi;2 : : : ı1;2i (7.9)

when i � 0, and

ı.x/ı0;2iC2ı�1;2iC4 : : : ıiC2;�2 D ı0;2iı�1;2iC2 : : : ıiC1;�2x (7.10)

when i < 0. Hence in order to prove the existence ofp0 in (7.8) we have to understand
(the product of) the image(s) ıi;j of ıi;j in

zB.i;j /;.i�1;jC2/ D �
�
Y;LiCj .�dj � djC1/

�
: (7.11)

As LiCj .�dj � djC1/ has degree 1 on Y we can choose a point p0i;j defined by

dj C djC1 C p
0
i;j � ŒLiCj �; (7.12)

such that
zB.i;j /;.i�1;jC2/ D �

�
Y;LiCj .�dj � djC1/

�
D �

�
Y;LiCj .�dj � djC1 � p

0
i;j /
�
:

(7.13)

Lemma 7.5. Define p0 by the following identitiy

p C q C �p0 � ŒL0�:

Then p0i;j D �
�iC1p0.

Proof. As  is a translation such that LiC1 Š  
�Li , there is an invertible sheaf N

of degree zero (see for example [18, Theorem 4.2.3]) such that

ŒLn� D ŒL0�C 3nŒN �

and
��ip � p C 3iŒN �:

As p0i;j is uniquely defined by .7:12/ this proves the lemma.
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In particular, if p0 is as in the above lemma, then (7.13) gives rise to

zB.i;j /;.i�1;jC2/ D �
�
Y;LiCj .�dj � djC1/

�
D �

�
Y;LiCj .�dj � djC1 � �

�iC1p0/
�
:

(7.14)

In particular, ıi;j is a non-zero section of LiCj .�dj � djC1 � �
�iC1p0/. As the

latter has degree zero on Y ıi;j is everywhere non-zero on Y .
In particular, going back to (7.9) (and hence assuming i � 0, the case i < 0 being

completely similar) we see that

xıi;0xıi�1;2 : : : xı1;2i�2

is an everywhere non-zero section of

Li : : :L2i�1

�
�d0�d1��

�iC1p0�d2�d3��
�iC2p0�� � ��d2i�2�d2i�1�p

0
�
:

Likewise
xx xıiC1;0xıi;2 : : : xı1;2i

is a section of

Li : : :L2iC1

�
� d0 � d1 � �

�ip0 � d2 � d3 � �
�iC1p0 � : : : � d2i � d2iC1 � p

0
�

so that ı.x/ is a section of L2iL2iC1.�d2i �d2iC1� �
�ip0/. This is precisely what

we had to show according to (7.8).

7.2. TheZ2 algebra associated to a noncommutativeP 1�P 1 ÜP 2. Throughout
this subsection 
 WA0 ,! A.2/ will be a quadratic transform between a cubic Sklyanin
Z-algebraA D A.Y; .Li /i2Z/ and a quadratic Sklyanin algebraA0. Recall from §4.1
that the construction of 
 is based on the choice of a points p 2 Y . We will use the
notation from this section, in particular � D ˛2.

We define the Z2-algebra zA as follows:

zA.i;j /;.m;n/ WD

�
HomX

�
OX .�m � 2n/;OX .�i � 2j /m��jp : : : m��nC1p

�
;

if n > j ;
HomX

�
OX .�m � 2n/;OX .�i � 2j /

�
; if n � j :

As in the previous section the following easy properties of zA are immediate from
the definition:
Proposition 7.6. Let zA be as above then:
(1) zA.i;0/;.m;0/ D Ai;m;

(2) zA.0;j /;.0;n/ D A0j;n;
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(3) zA contains no nontrivial zero divisors;
(4) dimk zA.i;j /;.i;jCb/ D h0.b/ holds for all b; i; j 2 Zwith b � 0 and h0 the Hilbert

series of A0;
(5) dimk zA.i;j /;.iCa;jCb/ D h.aC 2b/ holds for all a; b; i; j 2 Z with a � 0; b � 0

and h the Hilbert series of A.

Proof. .1/, .2/, and .5/ are immediate from the construction.

For .3/ we used the fact that A is a Z-domain as in Theorem 2.8.

For .4/ we use can use computations as in §4.1 because

zA.i;j /;.i;jCb/

D Hom
�
OX .�i � j � b/;OX .�i � j /˝m��jp : : : m��j�bC1p

�
D Hom

�
OX .�i � j � b/;OX .�i � j /˝m��i�j .� ip/ : : : m��i�j�bC1.� ip/

�
:

Hence after replacing p by ��ip this equalsDiCj;iCjCb as in (3.2), which is known
to have the correct Hilbert series.

We also have the following partial analogue of Lemma 7.3:
Lemma 7.7. dimk zA.i;j /;.i�1;jCb/ D dimk zA.i;j /;.i;jCb�1/ D h0.b � 1/:

Proof. The computation is completely similar to the a D �1 case of Lemma 7.3
using Lemma 4.10 and [11, Lemma 6.5].

Remark 7.8. Although one cannot use an I-basis in the classical sense we expect
dimk zA.i;j /;.iCa;jCb/ D h0.b C a/ to hold for all a � 0.

As a corollary of Lemma 7.7 and Proposition 7.6(3) we know zA.i;j /;.i�1;jC1/ and
zA.i;j /;.iC2;j�1/ are one dimensional. Let ıi;j and 
i;j be nonzero elements in these
spaces. We can then visualise zA on a 2-dimensional square grid.

.3; 0/ .3; 1/ .3; 2/ .3; 3/

.2; 0/ .2; 1/ .2; 2/ .2; 3/

.1; 0/ .1; 1/ .1; 2/ .1; 3/

.0; 0/ .0; 1/ .0; 2/ .0; 3/

ı3;0 ı3;1 ı3;2

ı2;0 ı2;1 ı2;2

ı1;0 ı1;1


1;1 
1;2

ı1;2


1;3


0;1 
0;2 
0;3
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All horizontal arrows represent three dimensional vector spaces whereas the vertical
arrows represent two dimensional vector spaces and dotted arrows represent one
dimensional vector spaces (labeled by 
i;j and ıi;j ).

Completely identical to previous sections there is an inclusion

ı.0;i/;.i;0/ � ı.m;0/;.0;m/WAi;m D zA.i;0/;.m;0/ ! zA.0;i/;.0;m/ D A
0
i;m

(where the elements ı.i;j /;.m;n/ are defined as in .7:4/ and .7:5/. The only thing
which essentially changed is that ı.i;j /;.m;n/ is now only defined when iCj D mCn
in stead of i C 2j D mC 2n.)

The induced inclusion of algebras

ıWA ,! A0

is such that the composition 
 ı ı is inner with

zi D 
.i;0/;.0;2i/ı.0;i/;.i;0/:

Our next aim is to show that ı is a quadratic transform. For this we need to show
the existence of two points p0; q0 2 Y such that if we define d 0i as

d 0i D

(
��lp0; if i D 2l;
��lq0; if i D 2l C 1;

(7.15)

then we have

ı.Ai;iC1/ D �
�
Y;Gi .�d

0
i /
�
D �

�
Y;L2iL2iC1.��

�ip � d 0i /
�
: (7.16)

We again start by defining a Z2-algebra zB . This time it takes the following form:

zB.i;j /;.m;n/ WD

�
�
�
Y;LiC2jLiC2jC1 : : :LmC2n�1.��

�jp � � � � � ��nC1p/
�
;

if n > j :
�
�
Y;LiC2jLiC2jC1 : : :LmC2n�1

�
; if n � j :

Similar to [11, Lemma 6.7] one can show:

Lemma 7.9. The canonical map

zA.i;j /;.m;n/ ! zB.i;j /;.m;n/

is an epimorphism in the first quadrant (i.e. m � i , n � j ).
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Recall that for each x 2 Ai;iC1, ı.x/ is related to x and elements ı.i;j /;.m;n/ via

ıi;0ıi�1;1 : : : ı1;i�1ı.x/ D xıiC1;0ıi;1 : : : ı1;i (7.17)

when i � 0, and

ı.x/ı0;iC1ı�1;iC2 : : : ıiC2;�1 D ı0;iı�1;iC1 : : : ıiC1;�1x (7.18)

when i < 0. Hence in order to understand ı.x/ in A02i;2iC2 D B 02i;2iC2 we need to
understand (the product of) the image(s) ıi;j of ıi;j in zB . First remark that if we
choose p0; q0 2 Y such that

p C �q0 � ŒL0�;

p C p0 � ŒL1�;
(7.19)

then similar to Lemma 7.5 we then have for all i; j :

��jp C d 0i�1 � ŒLiC2j �

with d 0i as in (7.15).
ıi;j is a nonzero element of

�
�
Y;LiC2j .��

�jp � d 0i�1/
�
:

As LiC2j .��
�jp � d 0i�1/ has degree zero on Y , ıi;j is everywhere non-zero on Y .

In particular, going back to (7.9) (and hence assuming i � 0, the case i < 0 being
completely similar) we see that

xıi;0xıi�1;1 : : : xı1;i�1

is an everywhere non-zero section of

Li : : :L2i�1

�
� p � d 0i�1 � �

�1p � d 0i�2 � � � � � �
�iC1p � d 00

�
:

Likewise
xx xıiC1;0xıi;1 : : : xı1;i

is a section of

Li : : :L2iC1

�
� p � d 0i � �

�1p � d 0i�1 � � � � � �
�ip � d 00

�
;

so that ı.x/ is a section of L2iL2iC1.��
�ip � d 0i /. This is precisely what we had

to show according to (7.8).



762 D. Presotto

7.3. Invertability of the quadratic transforms. We now show that if 
 and ı are as
in §7.1 or §7.2, then ı ı
 is inner. This boils down to computations on the geometric
data associated to 
 and ı. First assumeA D A.Y;L;  / is quadratic and 
 WA0 ,! A

is constructed with respect to p; q 2 Y . Then according to Lemma 7.5 the quadratic
transform ıWA ,! A0.2/ is constructed with respect to a point p0 2 Y satisfying

p C q C �p0 � ŒL0�:

Using the techniques in §7.2 we find a quadratic transform z
 WA0 ! A such that z
 ı ı
is inner. By (7.19) we know z
 is constructed with respect to points p00; q00 2 Y
satisfying

p0 C �q00 � ŒG0�;

p0 C p00 � ŒG1�;

with Gi as in (4.10). Moreover §7.1 constructs A out of an elliptic helix .L00i /i2Z

given by
L00i D G2i ˝ G2iC1 ˝OY .��

�ip/:

We need to check that p00 D p, q00 D q, and L00i Š Li . For this recall from
[18, Theorem 4.2.3] that there exists a linebundle N of degree zero on Y such that
for each linebundle M we have Œ �M� D ŒM�C deg.M/ � ŒN �. Using this we find:

p0 C �q00 � ŒG0� D ŒL0 ˝OY .�p/�

+

p0 C q00 � 3ŒN �C p � ŒL0�

+

p C q00 C �p0 � p C q C �p0

+

q00 D q:

Similarly, p00 D p. Next we show that the elliptic helix .L00i /i2Z coincides with
.Li /i2Z:

ŒL00i � D ŒG2i �C ŒG2iC1�C
�
OY .��

�ip0/
�

D ŒL2i �C ŒL2iC1�C
�
OY .�d2i � d2iC1/

�
C
�
OY .��

�ip0/
�

D ŒL2i �C ŒL2iC1�C
�
OY .�di � diC1/

�
� 3i � ŒN �C

�
OY .��

�ip0/
�

D
�
ŒL2i � � 3i � ŒN �

�
C
��

L2iC1�C
�
OY .�di � diC1 � �

�ip0/
��

D Œ i�L2i � D ŒLi �:
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Next we do similar computations in case A D A .Y; .Li /i2Z/ is a quadric and

 WA0 ,! A.2/ is constructed with respect to a point p 2 Y as in §7.1. Similar to the
above it suffices to prove p00 D p and L00i D Li where

p0 C q0 C �p00 � ŒG0�;

L00i D Gi ˝OY .�d
0
i /;

where Gi is as in (4.4) and p0; q0; d 0i are as in (7.19) and (7.15). First we prove
p00 D p, for this we take N a degree zero line bundle on Y such that Œ˛�M� D

ŒM�C deg.M/ � ŒN � with ˛ as in Theorem 4.1

p0 C q0 C �p00 � ŒG0� D ŒL0 ˝L1 ˝OY .�p/�

+

p0 C q0 C p00 � 2ŒN �C p � ŒL0�C ŒL1�

+

p0 C �q0 C p00 C p � p C �q0 C p C p0

+

p00 D p:

We now show that the elliptic helix .L00i /i2Z coincides with .Li /i2Z:

ŒL00i � D ŒGi �C
�
OY .�di /

�
D ŒL2i �C ŒL2iC1�C

�
OY .�di /

�
C
�
OY .��

�ip0/
�

D ŒLi �C ŒL3iC1�C
�
OY .�di /

�
C
�
OY .��

�ip0/
�

D ŒLi �:

Finishing the proof of Theorem 6.4.

A. Quadrics admit Z-fields of fractions

In this appendix we prove the following:

Theorem (Theorem 2.8 and 2.12). Let A be a quadric, then A is a Z-domain and A
admits a Z-field of fractions.

The proof of this theorem is based on several preliminary results.

Notation. Throughout this appendix A will always be a quadric. Moreover, for any
A-module M we let pd.M/ and GKdim.M/ denote the projective and Gelfand–
Kirillov dimension respectively.



764 D. Presotto

A.1. Preliminary results.

A.1.1. Some lemmas.
Lemma A.1. Let M be a finitely generated left- or right-A-module and assume
pd.M/ � 1, then GKdim.M/ � 2.

Proof. Upon replacing the projective modules A.�i/ by eiA or Aei one can copy
the proof of [3, Proposition 2.41].

Lemma A.2. Let M be a finitely generated right-A-module and let Si denote the
simple module eiA=eiA>i , then

pd.M/ � 2 ) 8i 2 Z W HomA.Si ;M/ D 0:

Proof. Upon replacing the projective modules A.�i/ by eiA one can copy the proof
of [3, Proposition 2.46 (i)]

Lemma A.3. Let i 2 Z be any integer and M be some graded submodule of eiA
then GKdim.M/ D 3, GKdim.eiA=M/ < 3.

Proof. GKdim.eiA=M/ < 3) GKdim.M/ D 3 is trivial. Let us prove the other
direction.

Assume by way of contradiction that GKdim.M/ D GKdim.eiA=M/ D 3.
As both M and eiA=M are nonzero we have e.M/ > 0 and e.eiA=M/ > 0.
However as they have equal GKdim, we have e.eiA/ D e.M/ C e.eiA=M/. A
direct computation shows that e.ejA/ D 1

2
holds for all j . Similar to the proof

of [3, Proposition 2.21 (iii)] we then know that e.M/ and e.eiA=M/ must be a
nonnegative multiple of 1

2
. Contradiction!

We now introduce a homogeneous ideal N of A in a similar fashion as was done
in [3]:

(1) eiA is a Noetherian object in Gr.A/. In particular any ascending chain of
submodules of eiAmust stabilize. This allows us to setNi to be the largest submodule
of eiA of GKdim � 2.
(2) Define N as

L
i2ZNi . Then N is a homogeneous two-sided ideal of A. To

see why N also has the structure of a left ideal, note that if a 2 Ai;j then aNj is
a submodule of eiA of GKdim � 2. This implies that aNj � Ni for otherwise
aNj CNi would be a strictly larger submodule than Ni but it still has GKdim � 2.

Remark A.4. Recall that A, being a quadric, is 2-periodic [18, Proposition 5.6.1].
i.e. there is an isomorphism A Š A.2/. This isomorphism induces an isomorphism
N Š N.2/.

To see this, fix any i 2 Z and let fi W eiA ! eiC2A.2/ be the induced
isomorphism. Then fi .eiN/ hasGKdim D 2 in particular, being anA.2/-submodule
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of eiC2A.2/ we must have fi .eiN/ � eiC2N.2/. By considering f �1i we see that
this must in fact be an equality.

Lemma A.5. Let N be as above, then xA WD A=N is a Z-domain.

Proof. Let b 2 Ai;j nNi;j , we then need to show that the induced morphism

ej xA
xb�
�! ei xA

is injective. For this consider the commutative diagram

0 ker.b�/ ejA bA 0

0 ker.xb�/ ej xA xb xA 0

Now suppose by way of contradiction that ker.xb�/ ¤ 0. By construction ej xA D
ejA=Nj does not contain submodules of GKdim � 2, hence GKdim

�
ker.xb�/

�
D 3.

This implies that GKdim .ker.b�// D 3 as well. By Lemma A.3 we must have
GKdim .bA/ < 3, hence also GKdim

�
xb xA
�
< 3. As xb xA � ei xA and ei xA does not

contain submodules of GKdim � 2 we must have xb xA D 0, contradicting the fact
that xb ¤ 0.

A.1.2. Dual modules. Next we introduce the notion of dualization of (right-)
A-modules. Throughout this section we will use Aop to denote the opposite algebra
of A. Aop is a Z-algebra by setting .Aop/i;j D .A�j;�i /

op. With this Z-algebra
structure graded right-Aop-modules can be identified with graded left-A-modules; for
example eiAop naturally corresponds to Ae�i . It hence makes sense to let Gr.Aop/

denote the categories of graded left A-modules.
LetM be a graded right-A-module, then

L
i2Z HomGr.A/.M; eiA/ naturally has the

structure of a graded left-A-module via:

Aij ˝ HomGr.A/.M; ejA/! HomGr.A/.M; eiA/W x ˝ f 7! x � f;

where
.x � f /.m/ WD x � f .m/:

We denote this graded left-A-module byM � or HomGr.A/.M;A/ and it is called the
dual ofM . One easily checks that this induces a left-exact functor

HomGr.A/.�; A/ D .�/
�
WGr.A/! Gr.Aop/:
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Note that as HomGr.A/.eiA; ejA/ Š Aj i we naturally have HomGr.A/.eiA;A/ D

.eiA/
� D Aei . This allows us to define the right derived functors

RHomGr.A/.�; A/WD
b
f

�
Gr.A/

�
! Db

f

�
Gr.Aop/

�
:

IfC � is some object inDb
f
.Gr.A//which is represented by a bounded exact complex

of finitely generated projectives, say

0!
M
i2Z

eiA
˚li;n

�Mn
��!

M
i2Z

eiA
˚li;n�1 ! � � � !

M
i2Z

eiA
˚li;m ! 0;

where Mn is some matrix whose entries are homogeneous elements in A, then
RHomGr.A/.C

�; A/ is represented by the complex

0 
M
i2Z

Ae
˚li;n
i

Mn�
 ��

M
i2Z

Ae
˚li;n�1
i  � � �  

M
i2Z

Ae
˚li;m
i  0

(where each term in position j in the original complex gives rise to a term in position
�j in the new complex). Similar to the graded case we use the shorthand notation
.C �/D WD RHomGr.A/.C

�; A/. IfM is some graded right-A-module, then we denote

ExtiGr.A/.M;A/ WD R
i HomGr.A/.M;A/ D h

i .MD/:

Remark A.6. If we introduce

RHomGr.Aop/.�; A/WD
b
f

�
Gr.Aop/

�
! Db

f

�
Gr.A/

�
in an analogous way, then ..�/D/D Š Id holds, giving rise to a biduality spectral
sequence as in the graded case.

For a bounded complex C � of (finitely generated, graded right-) A-modules
(or Aop-modules) we define the Hilbert series of C � as

hC�.t/ D
X
i2Z

hi .C
�/t i with hi .C �/ D

X
j2Z

.�1/j dimk
�
.C j /i

�
;

and we denote e.C �/ to be the leading coefficient of the series expension of hC�.t/
in terms of .1 � t /�1 and GKdim.C �/ as the highest power of .1 � t /�1 in this
expansion, i.e. the order of pole of hC�.t/.

We then have the following:

Lemma A.7. Let C � 2 Db
f
.Gr.A//, then we have the following equality of rational

functions:
h.C�/D .t/ D �t

4
� hC�.t

�1/:
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Proof. By linearity of the definition of hC� , it suffices to prove the equality in caseC �
is given by some projective eiA concentrated in position j . In this case .C �/D is
given by Aei (hence e�iAop) concentrated in position .�j / such that

h.C�/D .t/ D .�1/
�j
�

t�i

.1 � t2/.1 � t /2

D .�1/j �
.t�1/i

�t4
�
1 � .t�1/2

�
.1 � t�1/2

D �t�4 �
.t�1/i�

1 � .t�1/2
�
.1 � t�1/2

D �t�4 � hC�.t
�1/:

CorollaryA.8. LetC � be a bounded complex of (finitely generated) rightA-modules.
Let m D GKdim.C �/, then:
(1) GKdim..C �/D/ D m;
(2) e..C �/D/ D .�1/mC1e.C �/.

Proof. Suppose

hC�.t/ D

P1
iD0 ˛i .1 � t /

i

.1 � t /m

with ˛0 D e.C �/ ¤ 0. Then we need to show that

h.C�/D .t/ D

P1
iD0 �̨i .1 � t /i
.1 � t /m

with ę0 D .�1/mC1˛0.
First note that for each n 2 Z we can write:

tn D 1C

1X
jD1

ˇn;j .1 � t /
j

with ˇn;j 2 k�. Then by Lemma A.7 we have

h.C�/D .t/ D

P1
iD0 ˛i .�t

�4/.1 � t�1/i

.1 � t�1/m

D

P1
iD0�˛i .�1/

i t�i�4.1 � t /i

.�1/mt�m.1 � t /m

D

P1
iD0 ˛i .�1/

mCiC1tm�i�4.1 � t /i

.1 � t /m

D

P1
iD0 �̨i .1 � t /i
.1 � t /m

;
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where �̨i D .�1/mCiC1�˛i C iX
jD1

.�1/jˇm�iCj�4;j˛i�j

�
:

Lemma A.9. LetM be a finitely generated right-A-module, then Ext3Gr.A/.M;A/ is
a finite dimensional k-vectorspace.

Proof. This is an immediate generalization of [3, Proposition 2.46(ii)].

We now prove some more results on the homogeneous ideal N as above:
Lemma A.10. For each i 2 Z we have GKdim.Nei / � 2.

Proof. By construction we know that for each i we have GKdim.eiN/ � 2. In
particular there is for each i a degree 2 polynomialPi such that dimk.Ni;iCl/ � Pi .l/
holds for all l sufficiently large. Now fix some i 2 Z, we must show that there is
a degree 2 polynomial Q such that dimk.Ni�l;i / � Q.l/. For this recall that the
2-periodicity of A descends to N (see Remark A.4). In particular we have

dimk.Ni�l;i / D

(
dimk.Ni;iCl/; if l is even;
dimk.NiC1;iClC1/; if l is odd:

Without loss of generality we can now assume that Pi .l/ � PiC1.l/ holds for all l
sufficiently large. We can finish the proof by settingQ D Pi .

Lemma A.11. Fix some i 2 Z and let I � Aei be the left-annihilator of eiN , then
GKdim.I / D 3.

Proof. As eiN is a submodule of the noetherian right A-module eiA, it is finitely
generated. i.e. there are elements xi;i 2 Ai;i ; xi;iC1 2 Ai;iC1; : : : ; xi;n 2 Ai;n such
that

eiN D

nX
jDi

xi;jA D

nX
jDi

xi;j ejA:

Let Ij be the left annihilator of xi;j , i.e.

Ij D fa 2 Aei j axi;j D 0:

Then there is an exact sequence of left A-modules

0! Ij ! Aei
�xi;j
���! Aej

such that Aei=Ij Š Axi;j . Moreover, I D
T
j Ij such that

GKdim.A=I / � max
j

GKdim.Axi;j / � max
j

GKdim.Aej / D 2:

The result now follows from Lemma A.3.
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Lemma A.12. For each i 2 Z we have:
(i) eiN is a second syzygy;
(ii) pd.eiN/ � 1.

Proof. (ii) obviously follows from (i), so we only need to prove eiN is a second
syzygy. By Lemmas A.11 and A.10 we know there exists an element b 2 Aj i such

that bN D 0 while b 62 Nei . Hence, eiN � ker.b�/ while ei xA
b�
�! ej xA is injective

by Lemma A.5. This implies that we have a left exact sequence

0! eiN ! eiA
b�
�! ejA

finishing the proof.

A.2. Proof of Theorem 2.8. LetN be as above. By Lemma A.5 it suffices to prove
thatN D 0. Suppose by way of contradiction that this is not the case. Without loss of
generality we can assume e0N ¤ 0. Then, by LemmaA.12, pd.e0N/ � 1, which by
Lemma A.1 implies GKdim.e0N/ � 2. As by construction GKdim.e0N/ � 2, we
have GKdim.e0N/ D 2. Let .e0N/D D RHom.e0N;A/ denote the dual complex
as above, by the projective dimension of e0N , this complex only has homology at
position 0 and 1. By Lemma A.12 e0N is a second syzygy and hence we have

h1
�
.e0N/

D
�
D Ext1.e0N;A/ Š Ext3.M;A/

for some moduleM .
Lemma A.9 then implies that h1..e0N/D/ is finite dimensional. In particular

the Gelfand–Kirillov dimension and multiplicity of .e0N/D are solely determined
by .e0N/�. Corollary A.8 gives

e
�
.e0N/

�
�
D e

�
.e0N/

D
�
D �e.e0N/:

A contradiction!

A.3. Proof of Theorem 2.12. By Theorem 2.8 and Proposition 2.11 it suffices to
prove that all eiA are uniform modules. For this fix any i and nonzero M � eiA.
Then GKdim.M/ D 3. To see this let x be any nonzero element inMj � Ai;j , then
by Theorem 2.8 we have

3 D GKdim.ejA/ D GKdim.xejA/ � GKdim.M/ � GKdim.eiA/ D 3:

Now letN be any other nonzero submodule of eiA. Then obviously GKdim.N / D 3
as well. Suppose by way of contradiction that M \ N D 0, then the following
composition is a monomorphism:

N ,! eiA! eiA=M
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such that GKdim.eiA=M/ D 3. This gives a contradiction with Lemma A.3. Hence
for any nonzero M;N � eA we must have M \ N ¤ 0, s that eiA is a uniform
module.

B. I-bases for quadratic Sklyanin algebras and Lemma 7.3

Throughout this section we assume A D A.Y;L;  / is a quadratic Sklyanin algebra
with Hilbert series h. p and q are points lying in different � -orbits with � D  3.
Our goal is to prove that for a � �2:

dimk
�
Hom

�
OX .�i � a � j � b/;OX .�i � j /˝mdj : : : mdjCb�1

��
D h0.2aC b/ D

�
.nC 1/2; if 2aC b D 2n � 0;
.nC 1/.nC 2/; if 2aC b D 2nC 1 > 0;
0; if 2aC b < 0;

(B.1)

where di is as in (4.7). Using�
OX .n/˝mp

�
.m/ D

�
OX ˝m �np

�
.nCm/

(see for example [11, §6]) and replacing p and q by  xp,  yq for the appropriate
values of x and y this is equivalent to proving

dimk
�
Hom

�
OX ; .OX ˝md0 : : : mdb�1/.aC b/

��
D h0.2aC b/: (B.2)

We will prove this using I -bases.

B.1. I-bases. In this subsection we recall the definition and construction of an
I -basis for a quadratic Sklyanin algebra. For a more thorough introduction to I -bases
we refer the reader to [16].
Definition B.1. Let A D A.Y;L;  / be a quadratic Sklyanin algebra and let G
denote the monoid of monomials in x; y; z. Let Gn denote the subset of all degree n
monomials. An I -basis for A is then given by a map vWG ! A satisfying the
following properties:
(i) v.Gn/ is a k-basis for An;
(ii) for any g 2 G there are elements xg ; yg ; zg 2 A1 such that

v.gx/ D v.g/xg ; v.gy/ D v.g/yg ; and v.gz/ D v.g/zg :

Remark B.2. Note that v.x/ D x1, v.y/ D y1, v.z/ D z1. An I basis can hence
alternatively be given by a collection of fxg ; yg ; zggg2G satisfying xgyxg D ygxyg ,
xgzxg D zgxzg , ygzyg D zgyzg .
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In [16, §4] Tate andVan denBergh give a construction for an I -basis for a Sklyanin
algebra. In the case of a quadratic Sklyanin algebra this construction depends on the
choice of a rational point xo D .o1; o2; o3/ 2 Y 3. For each g 2 G one defines og by
setting

ox D . o1;  
�2o2;  

�2o3/;

oy D . �2o1; �o2;  
�2o3/;

oz D . �2o1;  
�2o2;  o3/;

such that if g D x˛yˇz� then og D . ˛�2ˇ�2�o1;  ˇ�2˛�2�o2;  ��2˛�2ˇo3/.
We then define xg ; yg ; zg 2 A1 D �.Y;L/ (up to a scalar multiple) by setting

xg
�
. og /1

�
¤ 0; xg

�
. og /2

�
D 0; xg

�
. og /3

�
D 0;

yg
�
. og /1

�
D 0; yg

�
. og /2

�
¤ 0; yg

�
. og /3

�
D 0;

zg
�
. og /1

�
D 0; zg

�
. og /2

�
D 0; zg

�
. og /3

�
¤ 0;

(the scalar multiples are then chosen such that the relations in Remark B.2 hold).
In particular,

v.x/ D x1 2 �
�
Y;L.�o2 � o3/

�
D HomX

�
OX ;OX .1/˝mo2Co3

�
D HomX

�
OX ; .OX ˝m��1o2C��1o3/.1/

�
;

and analogously

v.y/ 2 HomX
�
OX ; .OX ˝m �1o1C �1o3/.1/

�
v.z/ 2 HomX

�
OX ; .OX ˝m �1o1C �1o2/.1/

�
:

Similar computations are possible for monomials of higher degree, for example:
v.xy/ D x1 � yx lies in the image of

HomX
�
OX ; .OX ˝m �1o2C �1o3/.1/

�
˝ HomX

�
OX ; .OX ˝m �1ox1C �1ox3/.1/

�
,! A1 ˝ A1 ! A2:

This image is given by

Hom
�
OX ; .OX ˝m �1o2C �1o3m �1o1C �4o3/.2/

�
Š Hom

�
OX ; .OX ˝m �1o1C �1o2C �1o3m��1 �1o3/.2/

�
;

where we used the fact that o1, o2, o3 lie in different � -orbits. Inspired by the above
results we make the following choices for o1; o2; o3:

o1 D �p; o2 D �q; and o3 D �r; (B.3)

where r is some point on Y lying in a different � -orbit than p and q. (Recall that we
required p and q to lie in different � -orbits.)
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We can can inductively show the following: assume ˛; ˇ; � are nonnegative
integers then:

v.x˛yˇz�/ 2 Hom
�
OX ;

�
OX˝mpm��1p : : : m��ˇ�
C1p

mqm��1q : : : m��˛�
C1q

mrm��1r : : : m��˛�ˇC1r
�
.˛ C ˇ C 
/

�
:

(B.4)

B.2. Proof of Lemma 7.3. Using the above language of I-bases the following prop-
osition reduces the proof of (B.2) to a combinatorial problem.
Proposition B.3. Let ˛; ˇ; 
 � 0 then

v.x˛yˇz�/ 2 Hom
�
OX ; .OX ˝md0 : : : mdh�1/.˛ C ˇ C 
/

�
m�

h

2

�
� ˇ C 
 and

�
h

2

�
� ˛ C 
:

(B.5)

Proof. * follows from .B:4/. For + we need some more computations. . .

Fix h 2 N and define the following right submodulesM andM 0 of AA:

Mn D HomX
�
OX ; .OX ˝md0 : : : mdh�1/.n/

�
;

M 0n D Span
˚
v.x˛yˇz�/ j ˛ C ˇ C � D n; dh=2e � ˇ C 
 and bh=2c � ˛ C 


	
:

To see thatM 0 is a right A-module, recall that for each g D x˛yˇz�, the elements
xg ; yg ; zg give a k-basis for A1 hence the image of

k � v.x˛yˇz�/˝ A1 ! An ˝ A1 ! AnC1

lies inside Spanfv.x˛C1yˇz�/; v.x˛yˇC1z�/; v.x˛yˇz�C1/g.
We then have the following lemmas:

Lemma B.4. LetM andM 0 be as above then for all n sufficiently large we have

dimk.Mn/ D dimk.M 0n/:

Proof. We prove this for h even. The case h odd is completely similar. Let h D 2a,
then we have for n � 2a � 1 we have

dimk.Mn/ D
.nC 1/.nC 2/

2
� 2 �

a.aC 1/

2
D dimk.M 0n/

forM this follows from Lemma 4.10 and [17, Corollary 5.2.4]. ForM 0 this follows
from the fact that for n � 2a�1 at most one of the inequalities ˛C� � a; ˇC� � ag
can fail when ˛ C ˇ C � D n.
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Lemma B.5. LetN be a rightA-modules such thatM 0 � N � A and suppose there
is an n0 2 N such thatM 0n0 ¨ Nn0 then we haveM 0n ¨ Nn for all n � n0.

Proof. By induction it suffices to show M 0n0C1 ¨ Nn0C1. For this choose some
nonzero element in Nn0 nM 0n0 . This element can be written asX

˛;ˇ;�
˛CˇC�Dn

t˛;ˇ;�v.x
˛yˇz�/:

Without loss of generality we can assume there is a t˛0;ˇ0;�0 ¤ 0withˇ0C�0 < d
h
2
e.

Choose such a t with ˛0 maximal and let g D x˛0yˇ0z�0 then� X
˛;ˇ;�

˛CˇC�Dn

t˛;ˇ;�v.x
˛yˇz�/

�
xg D t˛0;ˇ0;�0v.x

˛0C1yˇ0z�0/

C

X
˛0;ˇ 0;�0

˛0Cˇ 0C�0DnC1
˛0�˛0

t 0˛0;ˇ 0;�0v.x
˛0yˇ

0

z�
0

/

is a nonzero element in Nn0C1 nM 0n0C1.

Continuation of the proof of Proposition B.3. We have already proven + which is
equivalent toM 0 � M . It then immediately follows from Lemmas B.4 and B.5 that
M DM 0, finishing the proof of the proposition.

We can now prove .B:2/. By Proposition B.3 it suffices to count the number of
triples of natural numbers ˛; ˇ; � satisfying ˛ C ˇ C � D a C b and db

2
e � ˇ C 


and bb
2
c � ˛ C 
 . The latter is equivalent to ˛ � a C b � db

2
e, ˇ � a C b � bb

2
c

such that our problem has turned into a combinatorial problem: we need to show

Lemma B.6.

#
n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b;

˛ � aC b �

�
b

2

�
; ˇ � aC b �

�
b

2

�o
D h0.2aC b/: (B.6)

We first show that the left hand side equals zero when 2a C b < 0. Note that in
this case aC b < b

2
� d

b
2
e, hence the condition ˛ � aC b�db

2
e contradicts ˛ 2 N

such that the left hand side of (B.6) is zero. Hence from now on we can assume
2aC b � 0.



774 D. Presotto

This combinatorial problem has a graphical interpretation: it asks for counting the
number of dots in Figure 3 whose coefficients .˛; ˇ; �/ satisfy the above inequalities.

Figure 3. Combinatorial problem.

In order to compute this number of dots we can rewrite .B:6/ as:

#
n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b; ˛ � aC b �

�
b

2

�
; ˇ � aC b �

�
b

2

� o
D #

n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b
o

� #
n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b; ˛ � aC b C 1 �

�
b

2

� o
� #

n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b; ˇ � aC b C 1 �

�
b

2

� o
C #

n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b; ˛ � aC b C 1 �

�
b

2

�
;

ˇ � aC b C 1 �

�
b

2

� o
:

(B.7)

The green, red and blue numbers can be visualized as in Figure 4.
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Figure 4. Visualizing formula (B.7).

The reason for writing our combinatorial problem as in .B:7/ is the existence of
the following bijection:

f.˛; ˇ; �/ 2 N3
j ˛ C ˇ C � D n1; ˛ � n2g

! f.˛; ˇ; �/ 2 N3
j ˛ C ˇ C � D n1 � n2g W

.˛; ˇ; �/ 7! .˛ � n2; ˇ; �/:

Using similar bijections for the other sets we can write .B:7/ as

#
n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b; ˛ � aC b �

�
b

2

�
; ˇ � aC b �

�
b

2

� o
D #

n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b
o

� #
n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D

�
b

2

�
� 1

o
� #

n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D

�
b

2

�
� 1

o
C #

n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D

�
b

2

�
C

�
b

2

�
� a � b � 2 D �a � 2

o
:

(B.8)
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Now we can use the following: For all n � 0:

#f.˛; ˇ; �/ 2 N3
j ˛ C ˇ C � D ng D

nX
iD0

#f.˛; ˇ/ 2 N2
j ˛ C ˇ D ig

D

nX
iD0

.i C 1/ D
.nC 2/.nC 1/

2
:

(B.9)

(Recall that we assumed a � �2 and aCb � 0 such that�a�2, db
2
e�1, bb

2
c�1 � 0.)

Hence, combining (B.8) and (B.9), we find that

#
n
.˛; ˇ; �/ 2 N3

j ˛ C ˇ C � D aC b; ˛ � aC b �

�
b

2

�
; ˇ � aC b �

�
b

2

�o
equals

.aC b C 2/.aC b C 1/

2
�

˙
b
2

��˙
b
2

�
C 1

�
2

�

�
b
2

˘��
b
2

˘
C 1

�
2

C
.�1 � a/.�a/

2

D
a2 C 2ab C b2 C 3aC 3b C 2 �

˙
b
2

�2
�
�
b
2

˘2
�
˙
b
2

�
�
�
b
2

˘
C a2 C a

2

D
2a2 C 2ab C b2 C 4aC 2b C 2 �

˙
b
2

�2
�
�
b
2

˘2
2

:

(B.10)

We now treat the cases b even and b odd separately. First assume b D 2r for
some r 2 N. Then (B.10) equals

2a2 C 4ar C 4r2 C 4aC 4r C 2 � 2r2

2
D a2 C 2ar C r2 C 2aC 2r C 1

D .aC r C 1/2:

Next assume b D 2r C 1. Then (B.10) equals

2a2 C 4ar C 2aC 4r2 C 4r C 1C 4aC 4r C 2C 2 � .r C 1/2 � r2

2

D
2a2 C 4ar C 2r2 C 6r C 6aC 4

2

D a2 C 2ar C r2 C 3r C 3aC 2

D .aC r C 1/.aC r C 2/:

Finally letting n D aC r we see that this agrees with (B.1).
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