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Abstract. We investigate the homological ideal JH
G
, the kernel of the restriction functors

in compact Lie group equivariant Kasparov categories. Applying the relative homological
algebra developed by Meyer and Nest, we relate the Atiyah–Segal completion theorem with the
comparison of JH

G
with the augmentation ideal of the representation ring.

In relation to it, we study on the Atiyah–Segal completion theorem for groupoid equivariant
KK-theory, McClure’s restriction map theorem and permanence property of the Baum–Connes
conjecture under extensions of groups.
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1. Introduction

Equivariant KK-theory is one of the main subjects in the noncommutative topology,
which deals with topological properties of C�-algebras. The main subject of this
paper is the homological ideal

JHG .A;B/ WD Ker
�
ResHG WKK

G.A;B/! KKH .A;B/
�

of the Kasparov category KKG , whose objects are separable G-C�-algebras,
morphisms are equivariant KK-groups and composition is given by the Kasparov
product.

In [31], Meyer and Nest introduced a new approach to study the homological
algebra of the Kasparov category. They observed that the Kasparov category
has a canonical structure of the triangulated category. Moreover, they applied
the Verdier localization for KKG in order to give a categorical formulation of the
Baum–Connes assembly map. Actually they prove that an analogue of the simplicial
approximation in the Kasparov category is naturally isomorphic to the assembly
map. Their argument is refined in [29] in terms of relative homological algebra
of the projective class developed by Christensen [11]. Moreover it is proved that
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the ABC spectral sequence (a generalization of Adams spectral sequence in relative
homological algebra) for the functor K�.G Ë ␣/ and an object A converges to the
domain of the assembly map.

These results are essentially based on the fact that the induction functor IndGH is
the left adjoint of the restriction functor ResHG whenH � G is an open subgroup. On
the other hand, it is also known that whenH � G is a cocompact subgroup, IndGH is
the right adjoint of ResHG . This relation enables us to apply the homological algebra
of the injective class for KK-theory. It should be noted that the category of separable
G-C�-algebras is not closed under countable direct product although the fact that
KKG have countable direct sums plays an essential role in [29, 31, 32]. Therefore,
we replace the category G-C�sep of separable G-C�-algebras with its (countable)
pro-category. Actually, the category ProZ>0

G-C�sep is naturally equivalent to
the category �G-C�sep of � -G-C�-algebras, which is dealt with by Phillips in
his study of the Atiyah–Segal completion theorem. Fortunately, KK-theory for
(non-equivariant) � -C�-algebras are investigated by Bonkat [7]. We check that his
definition is generalized for equivariant KK-theory and obtain the following theorem.

TheoremA.16 andTheorem 3.4. For a compact groupG, the equivariant Kasparov
category �KKG of � -G-C�-algebras has a structure of the triangulated category.
Moreover, for a family F of G, the pair of thick subcategories .F C ; hF Iiloc/ is
complementary. Here F C is the full subcategory of F -contractible objects and F I

is the class of F -induced objects (see Definition 3.3).

Next, we observe that this semi-orthogonal decomposition is related to a classical
idea in equivariant K-theory called the Atiyah–Segal completion. In the theory
of equivariant cohomology, there is a canonical way to construct an equivariant
general cohomology theory from a non-equivariant cohomology theory. Actually,
for a compact Lie group G and a G-CW -complex X , the general cohomology
group of the new space given by the Borel construction X �G EG is regarded as
the equivariant version of the given cohomology group of X . On the other hand,
equivariant K-theory is defined in terms of equivariant vector bundles by Atiyah
and Segal in [3, 47]. This group has a structure of modules over the representation
ring R.G/ and hence is related to the representation theory of compact Lie groups.
In 1969, Atiyah and Segal discovered a beautiful relation between them [4]. When
the equivariant K-group K�G.X/ of a compact G-space is finitely generated as an
R.G/-module, then the completion of the equivariant K-group by the augmentation
ideal is actually isomorphic to the (representable) K-group of the Borel construction
of X .

This theorem is generalized in [1] for families of subgroups. The completion
of K�G.X/ by the family of ideals IHG (H 2 F ) is isomorphic to the equivariant
K-group KG.X �EFG/ whereEFG is the universal F -freeG-space. On the other
hand, Phillips [41] generalizes it for K-theory of C�-algebras. In order to formulate
the statement, he generalizes operator K-theory for � -C�-algebras in [42]. Actually,
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this contains the Atiyah–Segal completion theorem for twisted K-theory because
the twisted equivariant K-group is isomorphic to the K-group of certain C�-algebra
bundles with (twisted) group actions.

The Atiyah–Segal completion theorem is generalized for equivariant KK-theory
by Uuye [56]. Here he assumes that KKH� .A;B/ are finitely generated for all sub-
groupsH ofG in order to regard the correspondenceX 7! KKG.A;B˝C.X// as an
equivariant cohomology theory of finite type. We prove the categorical counterpart
of the Atiyah–Segal completion theorem under weaker assumptions.
Theorem 3.15. Let G be a compact Lie group and let A, B be � -C�-algebras such
thatKKG� .A;B/ are finitely generated for � D 0; 1. Then the filtrations .JF

G /
�.A;B/

and .IF
G /
�KKG.A;B/ are equivalent.

Applying Theorem 3.15 for the relative homological algebra of the injective class,
we obtain the following generalization of the Atiyah–Segal completion theorem.
Theorem 3.21. WhenKKG.A;B/ are finitely generatedR.G/-modules for � D 0; 1,
the following R.G/-modules are canonically isomorphic,

KKG.A;B/
ÎF

G

Š KKG.A; zB/ Š RKKG.EFGIA;B/ Š �KK
G=F C.A;B/:

Note that in some special cases we need not to assume that KKG� .A;B/ are finitely
generated. In particular, we obtain the following.
Corollary 3.13. Let Z be the family generated by all cyclic subgroups of G. Then,
there is n > 0 such that .JZ

G/
n D 0.

It immediately follows from Corollary 3.13 that if ResHG A is KKH -contractible
for any cyclic subgroup H of G, then A is KKG-contractible. This is a variation
of McClure’s restriction map theorem [27] which is generalized by Uuye [56] for
equivariant KK-theory. Since we improve the Atiyah–Segal completion theorem, the
assumption in Theorem 0.1 of [56] is also weakened (Corollary 3.23).

Moreover, the Atiyah–Segal completion theorem for proper actions and groupoids
are studied in [8, 23]. We generalize Theorem 3.21 for groupoid equivariant
KK-theory (Theorem 4.7) and equivariant KK-theory for proper G-C�-algebras
(Theorem 4.8) under certain assumptions.

Next we apply Corollary 3.13 for the study of the complementary pair
.hCIiloc ;CC/ of the Kasparov category �KKG and the Baum–Connes conjec-
ture (BCC). Our main interest here is permanence property of the BCC under group
extensions, which is studied by Chabert, Echterhoff and Oyono-Oyono in [9, 10, 35]
with the use of the partial assembly map. Let 1 ! N ! G

�
�! G=N ! 1 be

an extension of groups. It is proved in Corollary 3.4 of [9] and Theorem 10.5
of [31] that if G=N and ��1.F / for any compact subgroup F of G=N satisfy the
(resp., strong) BCC, then so does G. Here, the assumption that ��1.F / satisfy
the BCC is related to the fact that the assembly map is defined in terms of the
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complementary pair .hCIiloc ;CC/ (this assumption is refined by Schick [45]whenG
is discrete, H is cohomologically complete and has enough torsion-free amenable
quotients by group-theoretic arguments). On the other hand, Corollary 3.13 implies
that the subcategories CC and CZC coincide in �KKG . As a consequence we refine
their results as following.
Theorem 5.4. Let 1! N ! G ! G=N ! 1 be an extension of second countable
groups such that all compact subgroups of G=N are Lie groups and let A be a
G-C�-algebra. Then the following holds:
(1) If ��1.H/ satisfies the (resp., strong) BCC for A for any compact cyclic

subgroup H of G=N , then G satisfies the (resp., strong) BCC for A if and
only if G=N satisfies the (resp., strong) BCC for N ËPRr A.

(2) If ��1.H/ and G=N have the 
 -element for any compact cyclic subgroup H
of G=N , then so does G. Moreover, in that case 
��1.H/ D 1 and 
G=N D 1 if
and only if 
G D 1.
This paper is organized as follows. In Section 2, we briefly summarize

terminologies and basic facts on the relative homological algebra of triangulated
categories. In Section 3, we study the relative homological algebra of the injective
class in the Kasparov category and prove the Atiyah–Segal completion theorem in
KK-theory. In Section 4 we generalize the Atiyah–Segal completion theorem for
groupoid equivariant case. In Section 5, we discuss on permanence property of the
Baum–Connes conjecture under extensions of groups. In Appendix A, we survey
definitions and some basic properties of equivariant KK-theory for � -C�-algebras.

2. Preliminaries in the relative homological algebra

In this sectionwe briefly summarize some terminologies and basic facts on the relative
homological algebra of triangulated categories. The readers can find more details
in [32] and [29]. We modify a part of the theory in order to deal with the relative
homological algebra of the injective class for countable families of homological
ideals.

A triangulated category is an additive category together with the category
automorphism † called the suspension and the class of triangles (a sequence

A
f
�! B

g
�! C

h
�! †A

such that g ı f D h ı g D †f ı h D 0) which satisfies axioms [TR0]–[TR4] (see
[34, Chapter 1]). We often write an exact triangle A! B ! C ! †A as

A // B

��
C:

ı

\\

Here the symbol A ı // B represents a morphism from A to †B .
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LetT be a triangulated category. An ideal J ofT is a family of subgroups J.A;B/
of T.A;B/ such that

T.A;B/ ı J.B; C / ı T.C;D/ � J.A;D/:

A typical example is the kernel of an additive functorF WT! A. We say that an ideal
is a homological ideal if it is the kernel of a stable homological functor from T to an
abelian category A with the suspension automorphism. Here a covariant functor F
is homological if F.A/! F.B/! F.C/ is exact for any exact triangle

A! B ! C ! †A

and stable if F ı † D † ı F . Note that the kernel of an exact functor between
triangulated categories is a homological ideal by Proposition 20 of [32].

For a homological ideal J of T, an object A is J-contractible if idA is in J and is
J-injective if f �WT.D;A/! T.B;A/ is zero for any f 2 J.B;D/. The triangulated
category T has enough J-injectives if for any object A 2 ObjT there is a J-injective
object I and a J-monic morphism A! I i.e. the morphism � in the exact triangle

N
�
�! A! I ! †N

is in J. Note that the morphism � is J-coversal, that is, an arbitrary morphism
f WB ! A in J factors through � (see [29, Lemma 3.5]).

More generally, we consider the above homological algebra for a countable family
J D fJkgk2Z>0

of homological ideals of T. For example, we say an object A is
J-contractible if A is Jk-contractible for any k 2 Z>0.

Definition 2.1. A filtration associated to J is a filtration of the morphism sets of T
coming from the composition of ideals fJi1 ıJi2 ı � � � ıJir gr2Z>0

where fi1; i2; : : : g
is a sequence of positive integers such that each k 2 Z>0 arises infinitely many times.

Note that two filtrations associated to J are equivalent (here, we say that two
filtrations A� and A0� of an abelian group A are equivalent if for any n 2 Z>0 there
is m 2 Z>0 such that Am � A0n and A0m � An). For simplicity of notation, we use
the notation Jr for the r-th component of a (fixed) filtration associated to J unless
otherwise noted.

The relative homological algebra is related to the complementary pairs (or semi-
orthogonal decompositions) of the triangulated categories. For a thick triangulated
subcategoryC ofT ([34, Definitions 1.5.1 and 2.1.6]), there is a natural way to obtain a
new triangulated category T=C called the Verdier localization (see [34, Section 2.1]).
A pair .N; I/ is a complementary pair if T.N; I / D 0 for anyN 2 ObjN, I 2 Obj I
and for any A 2 ObjT there is an exact triangle

NA ! A! IA ! †NA
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such that NA 2 ObjN and IA 2 Obj I. Actually, such an exact triangle is unique
up to isomorphism for each A and there are functors N WT! N and I WT! I that
maps A to NA and IA respectively. We say that N (resp., I ) the left (resp., right)
approximation functorwith respect to the complementary pair .N; I/. These functors
induces the category equivalence IWT=N! I and NWT=I! N.

Moreover we assume that a triangulated category T admits countable direct
sums and direct products. A thick triangulated subcategory of T is colocalizing
(resp., localizing) if it is closed under countable direct products (resp., direct sums).
For a class C of objects inT, let hCiloc (resp., hCiloc) denote the smallest colocalizing
(resp., localizing) thick triangulated subcategory which includes all objects in C . We
say that an ideal J is compatible with countable direct products if the canonical
isomorphism T.A;

Q
Bn/ Š

Q
T.A;Bn/ restricts to J.A;

Q
Bn/ Š

Q
J.A;Bn/.

We write NJ for the thick subcategory of objects which is Jk-contractible for
any k. If each Jk is compatible with countable direct products, NJ is colocalizing.
We write IJ for the class of Jk-injective objects for some k.

Theorem 2.2 ([29, Theorem 3.21]). Let T be a triangulated category with countable
direct product and let J D fJig be a family of homological ideals with enough
Ji -injective objects which are compatible with countable direct products. Then, the
pair .NJ; hIJi

loc/ is complementary.

We review the explicit construction of the left and right approximation in
Theorem 3.21 of [29]. We start with the following diagram called the phantom
tower for B:

B D N0

�0 ��

N1
�1
0oo

�1 ��

N2
�2
1oo

�2 ��

N3
�3
2oo

�3 ��

N4
�4
3oo

�4
��

� � �oo

I0

ı
"0

BB

ı
ı1

// I1

ı
"1

BB

ı
ı2

// I2

ı
"2

BB

ı
ı2

// I3

ı
"3

BB

ı
ı3

// � � �

where �kC1
k

are in Jik and Ik are Jik -injective (here fikgk2Z>0
is the same as in

Definition 2.1). There exists such a diagram for anyB sinceT has enoughJ-injectives.
We write �l

k
for the composition

�ll�1 ı �
l�1
l�2 ı � � � ı �

kC1
k

:

Since each �kC1
k

is Jik -coversal, we obtain Jp.A;B/ D Im.�p0 /� for any A.
Next we extend this diagram to the phantom castle. Due to the axiom [TR1],

there is a (unique) object zBp in T and an exact triangle

Np ! B ! zBp ! †Np

for each p. By the axiom [TR4], we can complete the following diagram by dotted
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morphisms

B

��

Np�1oo

��

Npoo

zBp�1

ı

==

ı // Ip

BB

��
zBp

``

and hence zBp is Jp-injective. Moreover, we obtain a projective system

N1
}}

N2
}}

oo N3
}}

oo N4
}}

oo N5
}}

oo � � �oo

B

  
B

  

oo B

  

oo B

  

oo B

  

oo � � �oo

zB1

ı

OO

zB2

ı

OO

oo zB3

ı

OO

oo zB4

ı

OO

oo zB5

ı

OO

oo � � �oo

of exact triangles. Now we take the homotopy projective limit

IB WD ho- lim
 �
p

zBp

(we also use the symbol zB for this object) and

NB WD ho- lim
 �

Np:

Here the homotopy projective limit of a projective system .Bp; '
pC1
p / is the second

part of the exact triangle

†�1
Y

Bp ! ho- lim
 �

Bp !
Y

Bp
id�S
���!

Y
Bp;

where S WD
Q
'mC1m . Then, the axiom [TR4] implies that the homotopy projective

limit

NB ! B ! IB ! †NB

of the projective system of exact triangles is also exact. In fact, it can be checked
that IB is in hIJiloc and NB is in NJ and hence NB and IB gives the left and right
approximation of B .

At the end of this section, we review the ABC spectral sequence, introduced
in [29] and named after Adams, Brinkmann, and Christensen. Let B be an object
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in T, let J be a countable family of homological ideals with a fixed filtration and
let F WT! Ab be a homological functor. Set(

D D
L
Dp;q; Dp;q WD FpCqC1.NpC1/;

E D
L
Ep;q; Ep;q WD FpCqC1.IpC1/;�

ip;q WD .�
pC2
pC1/

� WDp;q ! DpC1;q�1;

jp;q WD ."pC1/
� WDp;q ! Ep�1;qC1;

kp;q WD .�p/
� WEp;q ! Dp;qC1;

where Np D A and Ip D 0 for p < 0. Then the diagram

D
i // D

j��
E

k

\\

forms an exact couple. We call the associated spectral sequence is the ABC spectral
sequence for B and F .
Proposition 2.3 ([29, Proposition 4.3]). Let B be an object in T and let F be a
homological functor. Set

Dpq
r D D

pq
r .B/ WD i r�1.Dp�rC1;pCr�1/

and Epqr D E
pq
r .B/ WD k�1.Dp;q

r /=j.Ker i r/:

Then the following hold:
(1)

Dp�1;q
r D

�
Jr�1FpCqC1.Np/; if p � 0;
JpCr�1FpCqC1.B/; if �r C 1 � p � 0;
FpCqC1.B/; if p � �r C 1;

where JpF.B/ denotes the subgroup˚
f�� j � 2 F.A/; f 2 Jp.A;B/

	
of F.B/.

(2) The E2-page Epq2 is isomorphic to the right derived functor

RpF q.B/ WD Hp
�
Fq.I�/; .ıi /�

�
:

(3) There is an exact sequence

0!
JpFpCqC1.B/

JpC1FpCqC1.B/
! Ep;q1 ! BadpC1;pCqC1

i
�! Badp;pCqC1;

where Badp;q.B/ D Badp;q WD J1Fq.Np/.



The Atiyah–Segal completion theorem in KK-theory 787

Lemma 2.4. Assume that

i WBadpC1;pCqC1.B/! Badp;pCqC1.B/

is injective. Then, the ABC spectral sequence Erpq converges to F.B/ with the
filtration J�F.B/. Moreover, ˛�WF.B/! F. zB/ induces an isomorphism of graded
quotients with respect to the filtration J�F .

Proof. The convergence of the ABC spectral sequence follows from Proposi-
tion 2.3(3). By (the dual of) Proposition 3.27 of [29], we have the morphism
between exact couples and hence the commutative diagram

0 // JpFpCqC1.B/

JpC1FpCqC1.B/
//

˛�

��

E
pq
1 .B/

� //

˛�

��

BadpCqC1;p.B/ i //

˛�

��

Badp;q.B/

˛�

��
0 // JpFpCqC1. zB/

JpC1FpCqC1. zB/
// Epq1 . zB/

z� // BadpCqC1;p. zB/ i // Badp;q. zB/:

Now, by Proposition 2.3(2), the map ˛�WEpq2 .B/! E
pq
2 . zB/ is an isomorphism and

hence so is ˛�WEpq1 .B/! E
pq
1 . zB/. Therefore, injectivity of

i WBadpC1;pCqC1.B/! Badp;pCqC1.B/

implies � D 0. Consequently we get z� D 0, which gives the conclusion.

3. The Atiyah–Segal completion theorem

In this section we apply the relative homological algebra of the injective class
introduced in Section 2 for equivariant KK-theory and relate it with the Atiyah–
Segal completion theorem. We deal with the Kasparov category �KKG of � -G-C�-
algebras, which is closed under countably infinite direct products. The definition and
the basic properties of equivariant KK-theory for � -G-C�-algebras are summarized
in Appendix A. In most part of this section we assume thatG is a compact Lie group.
We need not to assume that G is either connected or simply connected.

For a subgroup H � G, consider the homological ideal JHG WD Ker ResHG
of �KKG . There are only countably many homological ideals of the form JHG since
JH1

G D JH2

G when H1 and H2 are conjugate and the set of conjugacy classes of
subgroups of a compact Lie group G is countable ([36, Corollary 1.7.27]).
Definition 3.1. Let F be a family, that is, a set of closed subgroups of a compact
group G that is closed under subconjugacy. We write JF

G for the countable family of
homological ideals fJHG j H 2 F g.
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In particular, we say that the family T consisting of the trivial subgroup feg is the
trivial family.

Let us recall that the induction functor

IndGH W �H -C�sep! �G-C�sep

is given by
IndGH A WD

˚
f 2 C.G;A/ j ˛h.f .g � h// D f .g/

	
with the left regular G-action �g.f /.g0/ D f .g�1g0/ when H is a cocompact
subgroup ofG. By the universal property of the Kasparov category (Theorem A.15),
it induces the functor between Kasparov categories. An important property of this
functor is the following Frobenius reciprocity.
Proposition 3.2 ([31, Section 3.2]). Let G be a locally compact group and H � G
be a cocompact subgroup. Then the induction functor IndGH is the right adjoint of the
restriction functorResHG . That is, for any � -G-C�-algebraA and � -H -C�-algebraB
we have

KKG
�
A; IndGH B

�
Š KKH

�
ResHG A;B

�
:

Proof. The equivariant KK-cycles induced from the �-homomorphisms

"AWResHG IndGH A Š C.G;A/
H
! A; f 7! f .e/;

�B WB ! IndGH ResHG B Š C.G=H/˝ B; a 7! a˝ 1G=H ;

form a counit and a unit of an adjunction between IndGH and ResHG . Actually, it
directly follows from the definition that the compositions

ResHG A
ResH

G
�A

�����! ResHG IndGH ResHG A
"ResH

G
A

�����! ResHG A;

IndGH B
�IndG

H
B

�����! IndGH ResHG IndGH B
IndG

H
"B

�����! IndGH B

are identities in �KKG .

Definition 3.3. Let G be a compact group and let F be a family of G.
(1) A separable � -G-C�-algebraA isF -induced ifA is isomorphic to the inductions

IndGH A0 where A0 is a separable � -H -C�-algebra and H 2 F . We write F I

for the class of F -induced objects.
(2) A separable � -G-C�-algebraA isF -contractible if ResHG A is KKH -contractible

for anyH 2 F . We write F C for the class of F -contractible objects.
In particular, whenF D T we say thatA is trivially induced and trivially contractible,
respectively.
Theorem 3.4. Let G be a compact group and let F be a family G. The pair
.F C ; hF Iiloc/ is complementary in �KKG .
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Proof. This is proved in the same way as Proposition 3.21 of [29].
Note that

F C D NJF
G

and F I � IJF
G
:

By Theorem 2.2, it suffices to show that �KKG has enough JF
G -injectives and all

JF
G -injective objects are in hF Iiloc. The first assertion follows from the existence of

the right adjoint functor of ResHG . Actually, for anyH 2 F , the morphism

A! I1 WD IndGH ResHG A

is JHG -monic and I1 is JHG -injective. Moreover, the morphismA is a direct summand
of I1 when A is JHG -injective. This implies the second assertion.

In particular, applying Theorem 3.4 for the case of F D T , we immediately get
the following simple but non-trivial application.
Corollary 3.5. Let A be a separable � -C�-algebra and let f˛tgt2Œ0;1� be a homotopy
of G-actions on A. We write At for the � -G-C�-algebra .A; ˛t /. Then, A0 and A1
are equivalent in �KKG=T C . In particular, if A0 and A1 are in hT Iiloc, then they
are KKG-equivalent.

Corollary 3.5 is applied for the study of C�-dynamical systems in [2]. Actually,
it follows from Thomsen’s description of KK-groups using completely positive
asymptotic morphisms [52] that a unital G-C�-algebra with the continuous Rokhlin
property (or more generally finite continuous Rokhlin dimension with commuting
towers) is contained in the subcategory hT Iiloc.

Proof. Consider the � -G-C�-algebra

zA WD
�
A˝ C Œ0; 1�; z̨

�
;

where z̨.a/.t/ D ˛t .a.t//. Since the evaluation maps evt W zA ! At are non-
equivariantly homotopy equivalent, they induce equivalences in �KKG=T C .
Consequently,

ev1 ı .ev0/�1WA0 ! A1

is an equivalence in �KKG=T C . The second assertion is obvious.

Next we study a canonical model of phantom towers and phantom castles.
Actually, we observe that the cellular approximation tower obtained in the proof
of Theorem 3.4 is nothing but the Milnor construction of the universal F -free
(i.e. every stabilizer subgroups are in F ) proper (in the sense of [37]) G-space
(see [25]). Hereafter, for a compact G-space X , we write CX for the mapping cone˚

f 2 C0
�
Œ0;1/; C.X/

�
j f .0/ D C � 1X

	
of the �-homomorphism C ! C.X/ induced from the collapsing map X ! pt.
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Definition 3.6. Let fHpgp2Z>0
be a countable family of subgroups in F such that

any L 2 F are contained infinitely many Hp’s. We call the phantom tower and the
phantom castle determined inductively by

Ip.B/ WD IndGHp
ResHp

G Np.B/ Š Np.B/˝ C.G=Hp/

is the Milnor phantom tower and the Milnor phantom castle (associated to fHpg),
respectively.

By definition, Ik and Nk in the Milnor phantom tower are explicitly of the form

Nk Š A˝ CG=H1
˝ � � � ˝ CG=Hk

;

Ik Š A˝ CG=H1
˝ � � � ˝ CG=Hk�1

˝ C.G=Hk/;

and �kC1
k

is induced from the restriction (evaluation)�-homomorphismev0WCG=Hk
!C

given by f 7! f .0/.
For G-spaces X1; : : : ; Xn, the join

¨n
kD1Xk is defined to be the quotient of

�n � .
Q
Xk/, where

�n WD
n
.t1; : : : ; tn/ 2 Œ0; 1�

n
j

X
ti D 1

o
;

with the relation

.t1; : : : ; tn; x1; : : : ; xn/ � .t1; : : : ; tn; y1; : : : ; yn/

if xk D yk for any k such that tk ¤ 0. It is equipped with theG-action induced from
the diagonal action on �n �

Q
Xk (where G acts on �n trivially). For n 2 Z>0,

EF ;nG denotes the n-th step of the Milnor construction
¨n
kD1G=Hk .

Lemma 3.7. The nth step of the cellular approximation zCn of C is isomorphic
to C.EF ;nG/.

Proof. More generally, letX be a F -free finiteG-CW-complex containing a point x
whose stabilizer subgroup is H . By Proposition 2.2 of [29], there is n > 0 such
that C.X/ is .JF

G /
n-injective. Moreover, the morphism ev0WCX ! C is in JHG

since the path of H -equivariant �-homomorphisms ev.t;x/WCX ! C connects ev0
and zero. Let fXig be a family of F -free compact G-CW-complexes such that for
any H 2 F there are infinitely many Xi ’s such that XHi ¤ ;. Then, in the same
way as Theorem 2.2, the exact triangle

SC
� 1©
iD1

Xi
�
! lim
 �
n!1

nO
iD1

CXi
! C ! C

� 1©
iD1

Xi
�

gives the approximations ofC with respect to the complementary pair .F C ; hF Iiloc/.
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Now we compare the filtration .JF
G /
�.A;B/ with another one:

.IF
G /

nKKG.A;B/ WD
nX

i


1i � � � 

n
i �i j 


k
i 2 I

Hk

G ; �i 2 KKG.A;B/
o
;

where IHG are the augmentation ideals Ker ResHG of R.G/ and fHig is the same
as Definition 3.6. Obviously its equivalence class is independent of the choice of
such fHig. We also remark that

.IF
G /

nKKG.A;B/ � .JF
G /

n.A;B/:

Example 3.8. We consider the case that G D T1 and F D T . The first triangle in
the Milnor phantom tower is

C

��

C0.R2/
�1
0oo

C.T1/

ı

;;

whereT1 D U.1/ acts onR2 D C canonically. By theBott periodicity, KKG.N1;C/
is freely generated by the Bott generator ˇ 2 KKG.N1;C/ and JG.N1;C/ D IG � ˇ.
Consequently, �10 is in IGKKG.A;B/. More explicitly, �10 D � � ˇ where � WD
Œƒ0C� � Œƒ1C�. Since �10 is JG-coversal, JG.A;B/ D IGKKG.A;B/ holds for
any A and B .
Example 3.9. Let G be a compact connected Lie group such that �1.G/ has no
2-torsion element and let T be a maximal torus of G. In this case the following
lemma shows that �10 D 0 and hence JTG D I

T
GKKG D 0.

Lemma 3.10. The morphism �0 2 KKG.C; C.G=T // in the Milnor phantom tower
has a left inverse.

Proof. Let us fix a choice of positive roots P � � and � WD
P
˛2P ˛=2. By the

assumption about 2-torsion elements of �1.G/, the weight i� is analytically integral,
that is, hX; i�i 2 2�Z for any X 2 i t such that eX D 1 2 T (in terms of bundles,
this means that the flag manifold G=T has a homogeneous Spinc-structure).

Let � 2 i t� be an analytically integral weight such that � C � is regular
i.e. h˛; �C �i ¤ 0 for all ˛ 2 P . The Borel–Weil–Bott theorem (see, for example,
[5, Theorem 8.7]) says that the equivariant index of the twisted Dirac operator D�
onG=T twisted by � is the highest weight module ŒV�� 2 R.G/. In particular, when
� D 0, the index of the (untwisted) Dirac operator is 1 2 R.G/. Therefore, the
corresponding K-homology cycle ŒD� 2 KKG.C.G=T /;C/ satisfies

Œ�0�˝C.G=T / ŒD� D ŒIndD� D 1 2 R.G/ Š KKG.C;C/

since �0 is induced from the �-homomorphism mapping 1 2 C to the identity
element in C.G=T /.
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For a group homomorphism L ! G and a family F of G, define the pull-back
to be

'�F WD
˚
'�1.H/ j H 2 F

	
:

Then, the functor '�W �KKG ! �KKL maps hF Ii and F C to h'�F Ii and '�F C ,
respectively. For a subgroupH � G, set

FH WD
˚
gHg�1 j g 2 G

	
:

Theorem 3.11. LetH � G be compact connected Lie groups without any 2-torsion
in their fundamental groups and rankG � rankH � 1. For a group homomorphism
'WL! G, let F WD '�FH . Then, for any r 2 Z>0 there is k 2 Z>0 such that

.JF
L /

k.A;B/ � .IF
L /

rKKL.A;B/

for any A;B 2 �C�sepL.

Proof. It suffices to find a compact F -free proper L-space X such that the exact
triangle

CX
�
�! C

�
�! C.X/! †CX

in �KKL satisfies � 2 .IF
L /

rKKL.CX ;C/ because

Im.�˝ idB/� D Ker.� ˝ idB/� � .JF
G /

k.A;B/;

for any A;B 2 �C�sepL and k 2 Z>0 such that X � EF ;kL. Since

'�IHG � I
M
L

for anyM 2 F , we can reduce the problem for the case that ' D id.
When rankG D rankH , it immediately follows from Example 3.9 (note that in

this case .JF
G /

k D 0 for some k > 0). To see the case that rankG � rankH D 1,
choose an inclusion of maximal tori TH � TG . Consider the exact triangle

SC.TG=TH /! CTG=TH
! C ! C.TG=TH /:

By Example 3.8, ResTG

G �10 is in I
TH

TG
KKTG .N1;C/. Since .ITH

TG
/n � I

TH

G R.TG/ for
sufficiently large n > 0 ([1, Lemma 3.4]), for any l > 0 there is k > 0 such that

�k0 D �
1
0 ˝ � � � ˝ �

1
0 2 .I

H
G /

lKKTG .Nk;C/

(note that ITH

G D IHG ). Moreover, �k0 is actually in .IHG /
lKKG.Nk;C/ since

KKG.Nk;C/ is a direct summand of KKTG .Nk;C/ by Example 3.9. Now EF ;kG is
the desired X (recall that C.EF ;kG/ Š zCk).
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As a corollary, we obtain a generalization of Corollary 1.3 of [1]. For a family F

ofG, we writeFcyc for the family generated by (topologically) cyclic subgroups inF .
In particular, let Z denote the family generated by all cyclic subgroups. Here, we
say that T � G is a cyclic subgroup of G if there is an element g 2 T such that
fgng D T . Note that T is cyclic if and only if T Š Tm � Z=lZ.
Lemma 3.12. Let F � F 0 be families of G. If for any H 2 F 0 there is k 2 Z>0
such that .JF jH

H /k D 0, then two filtrations JF
G and JF 0

G are equivalent uniformly,
that is, for any k > 0 there is n > 0 (independent of A and B) such that

.JF
G /

n.A;B/ � .JF 0

G /
k.A;B/

for any A;B 2 �C�sepG .

Proof. Pick
H1; : : : ;Hk 2 F 0:

By assumption, we can choose Li;1; : : : ; Li;ji
.i D 1; : : : ; k/ such that

J
Li;1

Hi
ı � � � ı J

Li;ji

Hi
D 0:

Then, by definition�
J
L1;1

G ı � � � ı J
L1;j1

G

�
ı � � � ı

�
J
Li;1

G ı � � � ı J
Lk;jk

G

�
� JH1

G ı � � � ı J
Hk

G ;

which is the conclusion.

Corollary 3.13. For a compact Lie group G, the following hold:
(1) There is n > 0 such that .JZ

G/
n D 0. In particular, the subcategory ZC is zero

in �KKG .
(2) For any family F of G, the filtrations .JF

G /
� and .JFcyc

G /� are equivalent.
Moreover, F C D FcycC in �KKG .
Note that the second assertion means that for any n > 0 we obtain k > 0 (which

does not depend on A and B) such that�
JF
G

�k
.A;B/ �

�
J

Fcyc
G

�n
.A;B/:

Proof. First, we prove when G is abelian by induction with respect to the order
of G=G0, where G0 is the identity component of G. When G=G0 is cyclic, then
the assertion holds because G is also cyclic. Now we assume that G=G0 is not
cyclic (and hence any element in G=G0 is contained in a proper subgroup). Let P

be the family of G generated by pull-backs of proper subgroups of G=G0. By the
induction hypothesis and Lemma 3.12, it suffices to show that there is a large n > 0
such that .JP

G /
n D 0. Because G is covered by finitely many subgroups in P , we
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obtain a large m > 0 such that .IP
G /

m D 0. Since G=G0 is a direct product of
finite cyclic groups, there is a nontrivial group homomorphism f WG=G0 ! T1.
Applying Theorem 3.11 for compositions of the quotient G ! G=G0 and f , we get
n > 0 such that .JP

G /
n � .IP

G /
mKKG D 0.

Fot general G, let � WG ! U.n/ be a faithful representation of G. As is pointed
out in the proof of Theorem 3.11 for TU.n/ � U.n/ and � (in this case F is equal
to the family of all abelian subgroups AB of G), Example 3.9 implies that there
is k 2 Z>0 such that .JAB

G /k D 0. Now, we get the conclusion by Lemma 3.12
for Z � AB.

Now, the assertion (2) immediately follows from (1) and Lemma 3.12.

Remark 3.14. Unfortunately, in contrast to Theorem 3.11, �k0 2 IF
G KKG.Nk;C/

does not hold for general compact Lie groups and families. For example, consider
the case that G D T2 and F D T . Computing the six-term exact sequence of the
equivariant K-homology groups associated to the exact triangle

SC
�
S2n�1 � S2n�1

�
! CS2n�1�S2n�1 ! C ! C

�
S2n�1 � S2n�1

�
;

we obtain
KKG.CS2n�1�S2n�1 ;C/ Š R.G/ � �k0

(Note that

KKG1
�
C.S2n�1 � S2n�1/;C

�
Š K1

�
CP n �CP n

�
D 0

by Poincaré duality.) By Theorem A.12(3), we obtain

KKG.NC;C/ Š R.G/ � �
1
0

and hence �10 is not in IGKKG.NC;C/.
Instead of Theorem 3.11, the following theorem holds for general compact Lie

groups and families.
Theorem 3.15. Let G be a compact Lie group and let A, B be � -C�-algebras such
that KKG� .A;B/ is finitely generated for � D 0; 1. Then the filtrations .JF

G /
�.A;B/

and .IF
G /
�KKG.A;B/ are equivalent.

Note that this is a direct consequence of Lemma 3.7 and Corollary 2.5 of [56]
when KKH� .A;B/ are finitely generated for anyH � G and � D 0; 1.

In order to show Theorem 3.15, we prepare some lemmas.
Lemma 3.16. Let G be a compact Lie group, let X be a compact G-space and
let A, B be � -G Ë X -C�-algebras. We assume that KKGËX

� .A;B/ are finitely
generated for � D 0; 1. Then, the following holds:
(1) Assume that G satisfies Hodgkin condition and let T be a maximal torus of G.

Then KKTËX
� .A;B/ are finitely generated for � D 0; 1.
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(2) When G D Tn, KKHËX
� .A;B/ are finitely generated for anyH � Tn.

(3) For any cyclic subgroup H of G, there is a G-space Y such that C.Y / is
.JHG /

k-injective for some k > 0 andKKGËX
� .A;B˝C.Y // are finitely generated

for � D 0; 1.

Proof. First, (1) follows from the fact that C.G=T / is KKG-equivalent to CjWG j

(which is essentially proved in [44, p. 31]). To see (2), first we consider the case
that Tn=H is isomorphic to T . Then, the assertion follows from the six-term exact
sequence of the functor KKTnËX .A;B ˝ ␣/ associated to the exact triangle

SC.T1/! C0.R
2/! C ! C.T1/:

In general Tn=H is isomorphic to Tm. By iterating this argument m times, we
immediately obtain the conclusion.

Finally we show (3). Since the space of conjugacy classes ofG is homeomorphic
to the quotient of a finite copies of the maximal torus T ofG0 by a finite group, there
is a finite family of class functions separating conjugacy classes of G. A moment
of thought will give you a finite faithful family of representations f�i WG ! U.ni /g

such that f�.�i /g separates the conjugacy classes of G. Then, two elements g1 , g2
in G are conjugate in G if and only if so are in U WD

Q
U.ni / (here G is regarded

as a subgroup of U by
Q
�i ). Set

F WD
˚
L � G \ gHg�1 j g 2 U

	
:

ThenG acts onU=H F -freely and every subgroup inFcyc is contained in a conjugate
ofH . By Corollary 3.13(2), C.U=H/ is .JHG /

k-injective for some k > 0. Moreover,
KKG� .A;B ˝ C.U=H// are finitely generated R.G/-modules. To see this, choose
a maximal torus T of U containing H . Then U=H is a principal T=H -bundle
over U=T and we can apply the same argument as (2).

Lemma 3.17. Let X be a compact G-space and let X1; : : : ; Xn be closed G-subsets
of X such that

X1 [ � � � [Xn D X:

Then, in the category �KKGËX , the filtration associated to the family of ideals

JX1;:::;Xn
WD
˚
Ker ResGËXi

GËX

	
is trivial (i.e. there is k > 0 such that .JX1;:::;Xn

/k D 0).

Proof. It suffices to show the following: LetX be a compactG-space andX1,X2 be
a closed G-subspaces such that X D X1 [X2. For separable � -G ËX -C�-algebras
A, B ,D and �1 2 KKGËX .A;B/, �2 2 KKGËX .B;D/ such that

ResGËX1

GËX �1 D 0 and ResGËX2

GËX �2 D 0

holds, we have �2 ı �1 D 0.
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To see this, we use the Cuntz picture. Let KG WD K.L2.G/1/ and let qs;XA be
the kernel of the canonical �-homomorphism�

.A˝KG/ �X .A˝KG/
�
˝KG ! .A˝KG/˝KG

for aGËX -C�-algebraA. Then, KKGËX .A;B/ is isomorphic to the set of homotopy
classes of G Ë X -equivariant �-homomorphisms from qs;XA to qs;XB and the
Kasparov product is given by the composition.

Let X 0 be the G-space

X1 � f0g [ .X1 \X2/ � Œ0; 1� [X2 � f1g � X � Œ0; 1�

and let pWX 0 ! X be the projection. Note that p is a homotopy equivalence.
Let '1W qs;XA ! qs;XB be a G Ë X -equivariant �-homomorphism such that
Œ'1� D �1. By using a homotopy trivializing '1jX1

, we obtain a G ËX 0-equivariant
�-homomorphism

'01W qs;X 0p
�A! qs;X 0p

�B

such that Œ'01� D �1 under the isomorphism

KKGËX .A;B/ Š KKGËX 0.p�A;p�B/

and '01 D 0 on X 0 \X � Œ0; 1=2�. Similarly, we get

'02Wp
�qsB ! p�qsD

such that Œ'02� D �2 and '02 D 0 on X 0 \X � Œ1=2; 1�. Then,

�2 ı �1 D Œ'
0
2 ı '

0
1� D 0:

Proof of Theorem 3.15. By Corollary 3.13, it suffices to show the theorem for Fcyc.
Hence we may assume that F D Fcyc without loss of generality. WhenG D Tn, the
conclusion follows from Lemma 3.16(2) and Corollary 2.5 of [56].

For generalG, let U be the Lie group as in the proof of Lemma 3.16(3) and let T
be a maximal torus of U . Consider the inclusion

KKG.A;B/ Š KKUËU=G
�
IndUG A; Ind

U
G B

�
� KKTËU=G

�
IndUG A; Ind

U
G B

�
:

Set zF and F 0 the family of G and T respectively given by

zF WD
˚
L � G \ gHg�1 j H 2 F ; g 2 U

	
;

F 0 WD
˚
L � T \ gHg�1 j H 2 F ; g 2 U

	
:

Note that Corollary 3.13 implies that the filtration .J zFG /
� is equivalent to .JF

G /
�

since Fcyc D zFcyc.
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Consider the family of homological ideals

JF 0

TËU=G WD
˚
Ker ResHËU=G

TËU=G
j H 2 F 0

	
:

We claim that the restriction of the filtration�
JF 0

TËU=G

��� IndUG A; IndUG B�
on KKG.A;B/ is equivalent to .JF

G /
�.A;B/.

PickL 2 F 0. The slice theorem ([58, Theorem 2.4]) implies that there is a family
of closedL-subspacesX1; : : : ; Xn of U=G and xi 2 Xi such that

S
Xi D U=G and

the inclusions Lxi ! Xi are L-equivariant homotopy equivalences. Now we have
canonical isomorphisms

KKLËXi
�
IndUG AjXi

; IndUG BjXi

� ResLxi
Xi

����! KKLËLxi
�
IndUG AjLxi

; IndUG BjLxi

�
! KKgLg�1\G.A;B/

such that
ResgLg

�1\G
G D ResLËXi

UËU=G

under these identifications (here g 2 U such that gL D xi 2 U=L). Now, we have
gLg�1\G 2 zF . Therefore, by Lemma 3.17, we obtain .J zFG /

k � JF 0

TËU=G
for some

k > 0. Conversely, since F D Fcyc, for any L 2 zF , we can take g 2 U such that
gLg�1 2 F 0. Hence,

KKG.A;B/ \ JF 0

TÌU=G.A;B/ � J
zF
G .A;B/:

Similarly, the filtration .IF
G /
�KKG.A;B/ is equivalent to the restriction of

.IF 0

T /�KKTËU=G.IndUG A; Ind
U
G B/: Actually, by Lemma 3.4 of [1], the IF

G -adic
and IF 00

U -adic topologies on KKG.A;B/ (here F 00 is the smallest family of U
containing F 0) coincide and so do the IF 0

U -adic and IF 0

T -adic topologies on

KKTËU=G
�
IndUG A; Ind

U
G B

�
:

Finally, the assertion is reduced to the case of G D Tn.

Theorem 3.15 can be regarded as a categorical counterpart of the Atiyah–Segal
completion theorem. Since Theorem 3.15 holds without assuming that KKH� .A;B/
are finitely generated for every H � G, we also obtain a refinement of the Atiyah–
Segal theorem ([56, Corollary 2.5]).
Lemma 3.18. Let A;B be separable � -G-C�-algebras such that KKG� .A;B/ are
finitely generated for � D 0; 1. Then there is a pro-isomorphism˚

KKG.A;B/=.JF
G /

p.A;B/
	
p2Z>0

!
˚
KKG.A; zBp/

	
p2Z>0

:
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Proof. By Lemma 3.16(3), there are compact G-spaces fXkgk2Z>0
such that

KKG�
�
A;B ˝ C.Xk/

�
are finitely generated for � D 0; 1, each C.Xi / is .JF

G /
r -injective for some r > 0

and for anyH 2 F there are infinitely many Xk’s such that XH
k
¤ ;. Set

N0p WD B ˝
pO
iD1

CXi
; I0p WD N0p�1 ˝ C.Xp/; zB 0p WD B ˝ C

� p©
iD1

Xi
�

and
N0B WD ho- lim

 �
N0p; zB 0 WD ho- lim

 �
zB 0p:

By the same argument as Theorem 2.2, we obtain that

S zB 0 ! N0B ! B ! zB 0

is the approximation of B with respect to .F C ; hF Iiloc/. Moreover, by the six-term
exact sequence, we obtain that KKG� .A; zB 0p/ are finitely generated R.G/-modules.

Consider the long exact sequence of projective systems

˚
KKG� .A; S zB

0
p/
	
p

@p

�!
˚
KKG� .A;N

0
p/
	
p

.�
p
0
/�

���!
˚
KKG� .A;B/

	 .˛
p
0
/�

����!
˚
KKG� .A; zB

0
p/
	
p
:

Then, fIm.�p0 /�gp D fKer.˛
p
0 /�gp is pro-isomorphic to .JF

G /
�.A;B/. Actually, for

any p > 0 there is r > 0 such that�
JF
G

�r
.A;B/ � Ker.˛p0 /� D Im.�p0 /� �

�
JF
G

�p
.A;B/

since zB 0p is .JF
G /

r -injective for some r > 0.
Therefore, it suffices to show that the boundary map f@pg is pro-zero. Apply

Theorem 3.15 and the Artin–Rees lemma for finitely generated R.G/-modules

M WD KKG
�
A;N0p

�
and L WD Im @p:

Since zB 0p is .JF
G /

r -injective for some r > 0, there is k > 0 and l > 0 such that

Im
�
�pClp

�
�
\ L D

�
JF
G

�l�
A;N0p

�
\ L �

�
IF
G

�k
M \ L �

�
IF
G

�r
L D 0:

Consequently, for any p > 0 there is l > 0 such that Im �pClp ı @pCl D 0.

Remark 3.19. It is also essential for Lemma 3.18 to assume that KKG� .A;B/ are
finitely generated. Actually, by Theorem 3.11, the pro-isomorphism in Lemma 3.18
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implies the completion theorem when G D T1 and F D T . On the other hand,
since the completion functor is not exact in general, there is a � -C�-algebra A such
that the completion theorem fails for KG� .A/. For example, let A be the mapping
cone of M1

nD0
�nW

M1

C !
M1

C:

Then, the completion functor for the exact sequence

0! R.G/1 ! R.G/1 ! KG0 .A/! 0

is not exact in the middle (cf. Example 8 of [50, Chapter 86]).
Lemma 3.20. Let A;B be separable � -G-C�-algebras such that KKG� .A;B/ are
finitely generated for � D 0; 1. Then, the ABC spectral sequence for KKG.A; ␣/
and B converges toward KKG.A;B/ with the filtration .JF

G /
�.A;B/.

Proof. According to Lemma 2.4, it suffices to show that

i WBadpC1;pCqC1 ! Badp;pCqC1

is injective. As is proved in Lemma 3.18, the boundary map @p is pro-zero
homomorphism and hence the projective system fKer �p0 g D fIm @pg is pro-zero.
Therefore, for any p > 0 there is a large q > 0 such that

Ker �10 \
�
JF
G

�1�
A;Np

�
� Ker �p0 \

�
JF
G

�q�
A;Np

�
D Ker �p0 \ Im �pCqp D 0:

Theorem 3.21. Let A and B be separable � -G-C�-algebras such that KKG� .A;B/
are finitely generated R.G/-modules (� D 0; 1). Then, the morphisms
� KKG.A;B/! KKG.A; zB/,
� KKG.A;B/! RKKG.EFGIA;B/,
� KKG.A;B/! �KKG=F C.A;B/,
induce the isomorphismof graded quotients with respect to the filtration .JF

G /
�.A;B/.

In particular, we obtain isomorphisms

KKG.A;B/
ÎF

G

Š KKG.A; zB/ Š RKKG
�
EFGIA;B

�
Š �KKG=F C.A;B/:

Proof. This is a direct consequence of Lemma 3.18 and Lemma 3.20. Note that
Lemma 3.18 implies that the projective system fKKG.A; zBp/g satisfies the Mittag-
Leffler condition and hence the lim

 �

1-term vanishes.

Corollary 3.22. Let A be a separable � -C�-algebra and let ˇt be a homotopy of
continuous actions of a compact Lie group G on a � -C�-algebra B . We write Bt for
� -G-C�-algebras .B; ˇt /. If KKG� .A;B0/ and KKG� .A;B1/ are finitely generated
for � D 0; 1, there is an isomorphism

KKG.A;B0/ÎT
G

! KKG.A;B1/ÎT
G

:
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We also weaken the assumption of Theorem 0.1 of Uuye [56], a generalization of
McClure’s restrictionmap theorem ([27, TheoremAandCorollaryC]) forKK-theory.
Corollary 3.23. Let G be a compact Lie group and let A and B separable G-C�-
algebras. We assume that KKG� .A;B/ are finitely generated for � D 0; 1. Then the
following hold:
(1) If KKH .A;B/ D 0 holds for any finite cyclic subgroup H of G, then

KKG.A;B/ D 0.
(2) If � 2 KKG.A;B/ satisfies ResHG � D 0 for any elementary finite subgroup H

of G, then � D 0.

Proof. It is proved in Theorem 0.1 of [56] under a stronger assumption that
KKH .A;B/ are finitely generated R.G/-modules for any closed subgroup H � G.
Applying Theorem 3.21, the same proof shows the conclusion.

4. Generalization for groupoids and proper actions

In this section, we generalize the Atiyah–Segal completion theorem for equivariant
KK-theory of certain proper topological groupoids. Groupoid equivariant K-theory
and KK-theory are studied, for example, in [22] and [54].

First, we recall some conventions on topological groupoids. LetG D.G 1;G 0; s; r/
be a second countable locally compact Hausdorff topological groupoid with a haar
system. We assume that G is proper, that is, the combination of the source and the
range maps .s; r/WG 1 ! G 0 � G 0 is proper. We write ŒG � for the orbit space G 0=G

of G and � WG 0 ! ŒG � for the canonical projection. For a closed subset S � G 0,
let GS denote the full subgroupoid given by

G 1S WD
˚
g 2 G 1 j s.g/; r.g/ 2 S

	
and G 0S WD S:

Hereafter we deal with proper groupoids satisfying the following two conditions:

For any x 2 G 0, there is an open neighborhood U of x, a compact
G xx -space Sx with a G xx -fixed base point x0 and a groupoid homomorphism
'x WG

x
x Ë Sx ! G xU such that

ı the inclusion fx0g ! Sx is a G xx -homotopy equivalence,
ı the homomorphism 'x is injective and a local equivalence ([17, Defini-

tion A.4]) such that 'x.x0/ D x and 'xjG x
x Ëfx0g

D idG x
x
,

(4.1)

The groupoid G admits a finite dimensional unitary representation whose
restriction on G xx is faithful for each x 2 G 0. (4.2)

We say that a triple . xU ; Sx; 'x/ as in (4.1) is a slice of G at x.
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Example 4.1. The slice theorem for G-CW-complexes ([24, Theorem 7.1; see also
Lemma 4.4(ii)]) implies that (4.1) holds for G such that for any x 2 G there is a
saturated neighborhood U of x and a local equivalence G Ë X ! GU where G are
Lie groups and X are G-CW-complexes.
Example 4.2. All proper Lie groupoid satisfies (4.1). Actually, the slice theorem for
proper Lie groupoids ([58, Theorem 4.1]) implies that for any orbit O of G there isa
tubular neighborhoodU ofO and a local equivalence G xx ËNxO ! GU where x 2 O

andNO is the normal bundle ofO. On the other hand, a proper Lie groupoid does not
satisfies (4.2) in general even if it is an action groupoid. Actually, let G be the group
as Section 5 of [23]. Then, the groupoid G WD G Ë R is actually a counterexample.
To see this, compare Lemma 4.4(2) below with the fact that

Im
�
R.G /! R.G xx / Š R.T /

�
D R.T=K/

(see [23, p. 615]).
Example 4.3. By Lemma 4.4 below and Theorem 6.15 of [16], an action groupoid
G ËX satisfies (4.2) if
� G is a closed subgroup of an almost connected groupH ; or
� G is discrete, X=G has finite covering dimension and all finite subgroups of G
have order at most k for some k 2 Z>0.

Lemma 4.4. Let G be a proper groupoid whose orbit space is compact.
(1) If the Hilbert G -bundle L2G is AFGP ([55, Definition 5.14]), then G

satisfies (4.2).
(2) If G satisfies (4.2), the representation ring R.G xx / is a noetherian module over

R.G / WD KKG .C;C/ for any x 2 G 0.
(3) If G satisfies (4.1) and (4.2), then R.G / is a noetherian ring.

Proof. First we check (1). Let .Hn; �n/ be an increasing sequence of finite
dimensional subrepresentations of L2G whose union is dense. For any x 2 G 0,
there is n > 0 such that �njG x

x
is faithful. By continuity, there is a saturated

neighborhood U of x such that �njG y
y

is faithful for any y 2 U . We obtain the
conclusion since ŒG � is compact.

To see (2), take an n-dimensional unitary representation H of G and let U.H / be
the corresponding principal U.n/-bundle. Then we have the ring homomorphism

R
�
U.n/

�
! R.G /I ŒV � 7!

�
U.H / �U.n/ V

�
:

Now, the compositionR.U.n//! R.G /! R.G xx / is actually induced from a group
homomorphism G xx ! U.n/ which is injective by assumption. By Proposition 3.2
of [48], R.G xx / is a finitely generated (and hence noetherian) module over R.U.n//.
Consequently, we obtain that R.G xx / is noetherian as an R.G /-module.
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IfG satisfies (4.1) in addition, there is an open covering fUig and xi 2 Ui such that
R.G xUi

/ is isomorphic to R.G xi
xi
/ and in particular is a noetherian R.G /-module. By

a Mayer–Vietoris argument, we obtain thatR.G / itself is a noetherianR.G /-module.

The induction for groupoid C�-algebras is given in Definition 4.18 of [38]. Let G

be a second countable locally compact groupoid and H be a subgroupoid. Let
.�; �; �/ be a Hilsum–Skandalis morphism [19] from G to H given by

� WD
˚
g 2 G 1 j s.g/ 2 H0

	
; � WD sW�! H0; � WD r W�! G 0

together with the left G -action and the right H -action given by the composition. The
induction functor �H -C�sep! �G -C�sep is given by

IndG
H A D ��A WD

�
Cb.�/˝H0 A

�H
:

In the same way as the case of groups, it induces the functor between Kasparov
categories.
Proposition 4.5. Let G be a proper groupoid and let H be a closed subgroupoid.
Then, the induction functor IndG

H is the right adjoint of the restriction functor ResH
G ,

that is,
KKG

�
A; IndG

H B
�
Š KKH

�
ResH

G A;B
�
:

Proof. We have the isomorphism

IndG
H ResH

G A D
�
Cb.�/˝H0 A

�H Š
�! Cb.�=H /˝G 0 AI a.
/ 7! ˛
�1

�
a.
/

�
:

Let � be the subspace of � consisting of all identity morphisms in H . The same
argument as Proposition 3.2 we can observe that the following �-homomorphisms

"AWResH
G IndG

H A Š .C.�/˝X A/
H
! AI f 7! f j�;

�B WB ! IndG
H ResH

G B Š C.�=H /˝X BI a 7! a˝ 1�=H

gives the unit and counit of the adjunctions.

Now we introduce two generalizations of Theorem 3.21. First we consider a
proper groupoid G satisfying (4.1) and (4.2). For simplicity, we assume that ŒG � is
connected. Thenwe have a ring homomorphismdimWR.G /! Z. Set IG WD Ker dim
be the augmentation ideal. We regard a closed subspace S � G 0 as a subgroupoid
consisting of all identity morphisms on x 2 S . Wewrite JS

G
for the homological ideal

Ker ResSG of �KKG and in particular set JG WD JG 0

G
. We say that � -G -C�-algebras of

the form A D IndG
G 0 A0 is trivially induced and we write T I for the class of trivially

induced objects. Similarly, we say that � -G -C�-algebras B such that ResG 0

G B is
KKG 0-contractible is trivially contractible and we write T C for the class of trivially
contractible objects.



The Atiyah–Segal completion theorem in KK-theory 803

Lemma 4.6. Let . xU ; S; '/ be a slice of G at x 2 G 0 and let V be the smallest
saturated closed subspace of G 0 containing '.S/.

(1) Let A be a � -G -C�-algebra. If ResSG A is KKS -contractible, then ResVG A is
KKV -contractible.

(2) If V is compact, the filtrations J�
GS

and J�
GV

are equivalent under the isomorph-
ism �KKGS Š �KKGV .

Proof. Since the homomorphism 'WG xx Ë S ! G is a local equivalence, for any
y 2 G 0V we have a closed subspace W of G 0V containing y in its interior and a
continuous map f WW ! G 1 such that s ıf D id and r ıf .W / � S , which induces
a group homomorphism

fAdf .w/gw2W WKKS
�
ResSG A;Res

S
G B

�
! KKW

�
ResWG A;ResWG B

�
:

Since ResWGV
D Adf .u/ ı ResSGV

, we obtain JW
GV
� JS

GV
.

In particular, if ResSG A is KKS -contractible, then ResWG A is KKW -contractible.
We obtain (1) because any locally contractible X -C�-algebra is globally contractible
(which follows from a Mayer–Vietoris argument).

To see (2), let fWig be a finite family of closed subspaces of G 0V obtained as above
such that

S
Wi D G 0V . Then, in the same way as Lemma 3.17, we obtain

.JSGV
/n � JW1

GV
ı � � � ı JWn

GV
� JVGV

:

Consider the following assumption for a pair .A;B/ of � -G -C�-algebras
corresponding to the assumption that KKG� .A;B/ are finitely generated R.G/-
modules in Theorem 3.21:

There is a basis fUig of the topology of G such that R.G /-modules

KK
G xUi
�

�
Res

G xUi

G
;Res

G xUi

G
B
�

are finitely generated.

(4.3)

Theorem 4.7. Let G be a proper groupoid satisfying (4.1) and (4.2) whose orbit
space is compact. Then the following holds:

(1) A pair .T C ; hT Iiloc/ is complementary in �KKG .

(2) For any pair of � -G-C�-algebras .A;B/ satisfying (4.3), there are isomorphisms
of R.G /-modules

KKG .A;B/ÎG
Š KKG .A; zB/ Š RKKG

�
EG IA;B

�
Š �KKG=T C.A;B/:
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Proof. Assertion (1) can be shown in the same way as Theorem 3.4.
To see (2), take slices f.Xi ; Si ; 'i /gi2I such that

KK
GXi
�

�
Res

GXi

G
A;Res

GXi

G
B
�

are finitely generated and
S
�.Xi / D ŒG �. Consider the groupoid

zG 0 WD
G
Si ; zG 1 WD

˚
.g; i; j / 2 G � I � I j s.g/ 2 'i .Si /; r.g/ 2 'j .Sj /

	
with

s.g; i; j / D s.g/ 2 Si ; r.g; i; j / D r.g/ 2 Sj ;

and
.h; j; k/ ı .g; i; j / D .g ı h; i; k/:

Then, zG is Morita equivalent to G and we have the family of closed full subgroupoids˚
Gi WD G j��1.�.Si //

	
i2I

such that zG D
S

Gi and the pair .AjG 0
i
; BjG 0

i
/ of � -Gi -C�-algebras satisfies (2).

Let H be a proper groupoid which admits a local equivalence 'WG Ë X ! H

where G is a compact Lie group and X is a compact G-CW-complex (such as Gi or
Gi \ Gj ). Then, by Lemma 4.6, IH -adic topology and IG-adic topology on

KKH .A;B/ Š KKGËX
�
'�A; '�B

�
coincide. Moreover '� preserves T C and hT Iiloc. Hence, (2) holds for H by
Theorem 3.21.

By Lemma 3.4 of [1] and the proof of Lemma 4.4, IG -adic and IGi
-adic topologies

coincide on KKGi .AjG 0
i
; BjG 0

i
/. Moreover, ResGi

G
preserves T C and hT Iiloc. Finally

we obtain (2) for zG by using the Mayer–Vietoris exact sequence

� � � // KKG .A;B/ÎG

//

��

KKG1.ResG1

G
A;ResG1

G
B/ÎG

˚

KKG2.ResG2

G
A;ResG2

G
B/ÎG

//

��

KKG0.ResG0

G
A;ResG0

G
B/ÎG

//

��

� � �

� � � // KKG .A; zB/ //
KKG1.ResG1

G
A;ResG1

G
zB/

˚

KKG2.ResG2

G
;ResG2

G
zB/

// KKG0.ResG0

G
A;ResG0

G
zB/ // � � �

(for G D G1 [ G2, G0 WD G1 \ G2) and the five lemma recursively. Note that
the first row is exact because the completion functor is exact when modules are
finitely generated. Since the augmentation ideal IG and the complementary pair
.T C ; hT Iiloc/ are preserved under Morita equivalence, we obtain the consequence.
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Second generalization is the Atiyah–Segal completion theorem for proper actions.
Let G be one of:
� a countable discrete group such that and all finite subgroups of G have order at
most k for some k 2 Z>0 and has a model of the universal proper G-space ECG

which is G-compact and finite covering dimension; or
� a cocompact subgroup of an almost connected second countable group,
and let F be a family of G consisting of compact subgroups. Set G WD G Ë ECG.
According to Section 7 of [31], the category �KKG is identified with the subcategory
hCIiloc of �KK

G by the natural isomorphism

p�ECG
WKKG.A;B/

Š
�! KKGËECG

�
A˝ C.ECG/;B ˝ECG

�
since G has a Dirac element coming from a proper � -G-C�-algebra when G is
discrete ([53, Theorem 2.1]) or a closed subgroup of an almost connected second
countable groupH ([21, Theorem 4.8]).
Theorem 4.8. Let G and F be as above. Then, the following holds:
(1) A pair .F C ; hF Iiloc/ is complementary in hCIiloc � �KK

G .
(2) For any pair of proper � -G-C�-algebras A, B such that KKH� .A;B/ are finitely

generated for any compact subgroup H of G, there are isomorphisms of R.G /-
modules

KKG.A;B/
ÎF

G

Š KKG.A; zB/ Š RKKG
�
EF G IA;B

�
Š �KKG=F C.A;B/:

Proof. The proof is given in the same way as Theorem 4.7. Note that JH
G
D JHËX

G

for anyH -subspace X of ECG (even if X is not compact) since the composition

�KKHËECG ! �KKHËX
! �KKH

is identity.

5. The Baum–Connes conjecture for group extensions

In this section we apply Corollary 3.13 for the study of the complementary pair
.hCIiloc ;CC/ of the Kasparov category �KKG when G is a Lie group. As a
consequence, we refine the theory ofChabert, Echterhoff andOyono-Oyono [9,10,35]
on permanence property of the Baum–Connes conjecture under extensions of groups.

Let G be a second countable locally compact group such that any compact
subgroup of G is a Lie group. We bear the case that G is a real Lie group in mind.
We write C and CZ for the family of compact and compact cyclic subgroups of G,
respectively.
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Corollary 5.1. We have CC D CZC and hCIiloc D hCZIiloc.

Proof. Since CZ � C , we have CZI � CI and CC � CZC . Hence it suffices to
show CC D CZC , which immediately follows from Corollary 3.13(2).

Corollary 5.2 (cf. [26, Theorem 1.1]). The canonical map f WECZG ! ECG

induces the KKG-equivalence f �WC.ECZG/! C.ECG/.

Note that the topological K-homology group Ktop
� .GIA/ is isomorphic to the

KK-group KKG.C.ECG/;A/ of � -C�-algebras for any G-C�-algebra A.

Proof. Since f is a T -equivariant homotopy equivalence between ECG and ECZG

for any T 2 CZ, f � is an equivalence in �KKG=CZC . The conclusion follows from
Corollary 5.1 because C.ECZG/ and C.ECG/ are in hCIiloc D hCZIiloc.

Next we review the Baum–Connes conjecture for extensions of groups. Let

1! N ! G ! G=N ! 1

be an extension of second countable locally compact groups. We assume that any
compact subgroup of G=N is a Lie group. As in Subsection 5.2 of [15], we say that
a subgroup H of G is N -compact if �.H/ is compact in G=N . We write CN for
the family of N -compact subgroups of G. Then, we have the complementary pair
.hCNIiloc ;CNC/. It is checked as following. First, in the same way as Lemma 3.3
of [31], for a large compact subgroupH of G=N we have

KKG
�
IndG
zH
A;B

�
Š KK zH

�
Res zH

zUH
Ind zUH

zH
A;Res zHG B

�
;

where zH WD ��1.H/ for any H � G=N and UH is as Section 3 of [31]. Hence,
KKG.Q;M/ D 0 for anyQ 2 CNI andM 2 CNC . Let

SM! Q! C ! M

be the approximation exact triangle of C in �KKG=N with respect to .hCIiloc ;CC/.
Since the functor ��W �KKG=N ! �KKG maps CI to CNI and CC to CNC

respectively,
S��M! ��Q! C ! ��M

gives the approximation of C in �KKG with respect to .hCNIiloc ;CNC/. Hereafter,
for simplicity of notations we omit �� for � -.G=N/-C�-algebras which are regarded
as � -G-C�-algebras.
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Since CI � CNI and CNC � CC , we obtain the diagram of semi-orthogonal
decompositions

hCIiloc

��

hCIiloc
//

��

0

��
hCNIiloc

//

��

KKG //

��

CNC

hCNIiloc \ CC // CC // CNC ;

P

DG=N
G
��

P //

DG

��

0

��
Q

DG=N //

��

C //

��

M

Q˝ N // N // M:

(5.1)

For a � -G-C�-algebra A, the (full or reduced) crossed productN ËA is a twisted
� -G=N -C�-algebra ([43, Definition 2.1]). By the Packer–Raeburn stabilization trick
([14, Theorem 1]), it is Morita equivalent to the untwisted G=N -C�-algebra

N ËPR A WD C0
�
G=N ;N Ë A

�
Ìz̨;z� .G=N/;

where z̨ and z� are induced from the canonical G-action on C0.G=N ;N Ë A/. The
Packer–Raeburn crossed productN ËPR ␣ is a functor fromG-C�sep toG=N -C�sep,
which induces the partial descent functor ([10, Section 4])

j
G=N
G W �KKG ! �KKG=N

by universality of �KKG (Theorem A.15).

Lemma 5.3. The functor jG=NG maps hCNIiloc to hCIiloc and CNC to CC .

Proof. Let H be a N -compact subgroup of G and let A be a � -H -C�-algebra.
Then, N ËPR IndGH A admits a canonical � -G=N Ë ..G=N �HnG/=G/-C�-algebra
structure. Since the G=N -action on .G=N �HnG/=G is proper, N ËPR IndGH A is
in hCIiloc. Consequently we obtain

j
Q
G .hCNIiloc/ � hCIiloc :

Let A be a CN -contractible � -C�-algebra. Then, for any compact subgroupH of
G=N ,

ResHG=N
�
N ËPR A

�
D N Ë Res�

�1.K/
G A

is KKH -contractible. Hence we obtain jG=NG .CNC/ � CC .

Consider the partial assembly map

�
G=N
G;A WK

top
� .GIA/! Ktop

�

�
G=N IN Ë A

�
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constructed in Definition 5.14 of [9]. Then, in the same way as Theorem 5.2 of [30],
we have the commutative diagram

Ktop
� .GIP˝ A/

Š

��

Š // Ktop
� .GIQ˝ A/

Š //

��

Ktop
� .GIA/

�
G=N
G;A
��

Ktop
� .G=N IN ËPR .P˝ A// //

Š

��

Ktop
� .QIN ËPR .Q˝ A//

Š //

Š

��

Ktop
� .G=N IN ËPR A/

�
G=N ;N ËPRA

��
K�.G Ë .P˝ A//

jG.D
G=N
G

/
// K�.G Ë .Q˝ A//

jG.DG=N / // K�.G Ë A/

and hence the composition of partial assembly maps

�G;A D �G=N;NËPRA ı �
G=N
G;A WK

top
� .GIA/! Ktop

�

�
G=N IN ËPR A

�
! K�.G Ë A/

is isomorphic to the canonical map

K�
�
G Ë .P˝ A/

�
! K�

�
G Ë .Q˝ A/

�
! K�.G Ë A/:

In other words, the partial assembly map �G=NG;A is isomorphic to the assembly map
�G;Q˝A for Q˝ A.

We say that a separable � -G-C�-algebra A satisfies the (resp., strong) Baum–
Connes conjecture (BCC) if jG.DG/ induces the isomorphism of K-groups (resp., the
KK-equivalence).
Theorem 5.4. Let 1! N ! G ! G=N ! 1 be an extension of second countable
groups such that all compact subgroups of G=N are Lie groups and let A be a
separable � -G-C�-algebra. Then the following hold:
(1) If ��1.H/ satisfies the (resp., strong) BCC for A for any H 2 CZ, then G

satisfies the (resp., strong) BCC for A if and only if G=N satisfies the
(resp., strong) BCC for N ËPRr A.

(2) If ��1.H/ for any H 2 CZ and G=N have the 
 -element, then so does G.
Moreover, in that case 
��1.H/ D 1 for anyH 2 CZ and 
G=N D 1 if and only
if 
G D 1.

Proof. To see (1), it suffices to show that G satisfies the (resp., strong) BCC for
Q ˝ A. Consider the full subcategory N of �KKG consisting of objects D such
that G satisfies the (resp., strong) BCC for D ˝ A. Set CZI1 be the family of all
G-C�-algebras of the form C0..G=N/=H/ forH 2 CZ. By assumption,N contains
��CZI1. Since N is localizing and colocalizing, N contains �� hCZI1i

loc
loc, which

is equal to �� hCI1i
loc
loc because C0.G=N/=H/ are KK

G-equivalent to

C0
�
.G=N/=H

�
˝ C

�
ECZH

�
2 �� hCZI1i

loc :

By Proposition 9.2 of [31], we obtain Q 2 N.
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Assertion (2) is proved in the same way as Theorem 33 of [15]. Actually, since
we may assume without loss of generality that G=N is totally disconnected by
Corollary 34 of [15], the homomorphism

D�G WKK
G.A;P/! KKG.P˝ A;P/

is an isomorphism if A 2 �� hCZIiloc and in particular when A D Q (note that
any compact subgroup is contained in an open compact subgroup which is also a Lie
group by assumption). Consequently we obtain a left inverse

�
G=N
G WQ! P

of DG=NG . Now, the composition

�
G=N
G ı ���G=N WC ! P

is a dual Dirac morphism of G. Of course, �G ı DG D idC if �G=NG ı DG=NG D idQ
and �G=N ı DG=N D idC .

A. Equivariant KK-theory for � -C�-algebras

In this appendix we summarize basic properties of equivariant KK-theory for � -C �-
algebras for the convenience of readers. Most of them are obvious generalizations of
equivariant KK-theory for C�-algebras (a basic reference is [6]) and non-equivariant
KK-theory for � -C�-algebras by Bonkat [7]. Throughout this section we assume
that G is a second countable locally compact topological group.

A.1. Generalized operator algebras and Hilbert C�-modules. Topological prop-
erties of inverse limits of C�-algebras was studied by Phillips in [39–42]. He
introduced the notion of representable K-theory for � -C�-algebras in order to
formulate the Atiyah–Segal completion theorem for C�-algebras.
Definition A.1. A pro-G-C�-algebra is a complete locally convex �-algebra with
continuousG-action whose topology is determined by itsG-invariant continuous C�-
seminorms. A pro-G-C�-algebra is a � -G-C�-algebra if its topology is generated by
countably many G-invariant C�-seminorms.

In other words, a pro-G-C�-algebra is a projective limit of G-C�-algebras.
Actually, a pro-G-C�-algebra A is isomorphic to lim

 �p2S.A/
Ap , where S.A/ is

the net of G-invariant continuous seminorms and

Ap WD A=
˚
x 2 A j p.x�x/ D 0

	
is the completion ofA by the seminorm p 2 S.A/. A pro-G-C�-algebra is separable
if Ap are separable for any p 2 S.A/. If A is a separable � -G-C�-algebra, then
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it is separable as a topological space. Basic operations (full and reduced tensor
products, free products and crossed products) are also well-defined for pro-C�-
algebras. When G is compact, any � -C�-algebras with continuous G-action are
actually � -G-C�-algebras.

We write �G-C�sep for the category of separable � -G-C�-algebras and
equivariant �-homomorphisms. Then we have the category equivalence

lim
 �
WProZ>0

G-C�sep! �G-C�sep;

where ProZ>0
G-C�sep is the category of surjective projective systems of separable

G-C�-algebras indexed by Z>0 with the morphism set

Hom
�
fAng; fBmg

�
WD lim
 �
n

lim
�!
m

Hom.An; Bm/:

Actually, a �-homomorphism 'WA ! B induces a morphism between projective
systems since each composition A

'
�! B ! Bp factors through some Aq .

Next we introduce the notion of Hilbert module over pro-C�-algebras.
DefinitionA.2. AG-equivariant pre-HilbertB-module is a locally convexB-module
together with the B-valued inner product h�; �i WE � E ! B and the continuous
G-action such that

he1; e2bi D he1; e2i b; he1; e2i
�
D he2; e1i ;

g.he1; e2i/ D hg.e1/; g.e2/i ; g.eb/ D g.e/g.b/;

and the topology ofE is induced by seminormspE .e/ WD p.he; ei/1=2 forp 2 S.B/.
A G-equivariant pre-Hilbert B-module is a G-equivariant Hilbert B-module if it is
complete with respect to these seminorms.

Basic operations (direct sums, interior and exterior tensor products and crossed
products) are also well-defined (see [46, Section 1]).

As a locally convex space, E is isomorphic to the projective limit lim
 �p2S.B/

Ep

where
Ep WD E=

˚
e 2 E j p.he; ei/ D 0

	
:

A G-equivariant Hilbert B-module E is countably generated if Ep are countably
generated for any p 2 S.B/.

Let L.E/ and K.E/ be the algebra of adjointable bounded and compact operators
onE respectively. They are actually pro-G-C�-algebras since we have isomorphisms

L.E/ Š lim
 �

p2S.B/

L.Ep/; K.E/ Š lim
 �

p2S.B/

K.Ep/:

In particular, L.E/ and K.E/ are � -G-C�-algebra if so is B . Note that L.E/ is not
separable and the canonical G-action on L.E/ is not continuous in norm topology.



The Atiyah–Segal completion theorem in KK-theory 811

Kasparov’s stabilization theorem is originally introduced in [20] and generalized
by Mingo–Phillips [33] and Meyer [28] for equivariant cases. Bonkat [7] also gives a
generalization for � -C �-algebras. Let H be a separable infinite dimensional Hilbert
space andwewriteHB ,HG;B andKG forH˝B ,H˝L2.G/˝B , andK.L2G˝H /,
respectively.
Theorem A.3. Let B be a � -unital � -G-C�-algebra and let E be a countably
generatedG-equivariant Hilbert B-module together with an essentialG-equivariant
�-homomorphism 'WKG ! L.E/. Then there is an isomorphism

E ˚HG;B Š HG;B

as G-equivariant Hilbert B-modules.

Proof. In the non-equivariant case, the proof is given in Section 1.3 of [7]. In fact,
we have a sequence feig in E such that supn keink � 1 and f�.ei /g generates Ep for
any p 2 S.B/ since the projection .Ep/1 ! .Eq/1 between unit balls is surjective
for any p � q. Now we obtain the desired unitary U as the unitary factor in the polar
decomposition of the compact operator

T WHB ! E ˚HB I T .� i / D 2�iei ˚ 4�i� i ;

where f� ig is a basis of HB . Actually the range of jT j is dense because

T �T D diag
�
4�2; 4�4; : : :

�
C
�
2�i�j

˝
ei ; ej

˛ �
ij

is strictly positive.
In the equivariant case, we identify E with L2.G;H / ˝ .L2.G;H /� ˝KG

E/

and set
E0 WD H ˝C

�
L2.G;H /� ˝KG

E
�
:

Let U be the (possibly non-equivariant) unitary from HB to E0 ˚ HB as above.
Then we obtain

zU.g/ WD g.U /WCc.G;HB/! Cc.G;E0 ˚HB/;

which extends to a G-equivariant unitary

zU WHG;B Š L
2
�
G;HB

�
! L2

�
G;E0 ˚HB

�
Š E ˚HG;B :

More detail is found in Section 3 of [28].

A pro-C�-algebra is � -unital if there is a strictly positive element h 2 A. Here,
we say that an element h 2 A is strictly positive if hA D Ah D A. A pro-C�-
algebra A is � -unital if and only if it has a countable approximate unit. A separable
� -C�-algebra is � -unital and moreover has a countable increasing approximate unit
([18, Lemma 5]).
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LemmaA.4. LetB be a � -C�-algebrawithG-action,A � B a � -G-C�-algebra, Y a
� -compact locally compact space, 'WY ! B a function such that y 7! Œ'.y/; a� are
continuous functions which take values in A. Then there is a countable approximate
unit fuig for A that is quasi-central for '.Y / and quasi-invariant, that is, the
sequences Œui ; '.y/� (y 2 Y ) and g.ui / � ui converge to zero.

Proof. Let fpngn2Z>0
be an increasing sequence of invariant C�-seminorms on B

generating the topology ofB and let fvmg be a countable increasing approximate unit
for A and h WD

P
2�kvk . By induction, we can choose an increasing sequence fung

given by convex combinations of vi ’s such that:
(1) pn.unh � h/ � 1=n;
(2) pn

�
Œun; '.y/�

�
� 1=n for any y 2 Yn;

(3) pn.g.un/ � un/ � 1=n for any g 2 Xn.
Each induction step is the same as in Section 1.4 of Kasparov [21].

Theorem A.5. Let J be a � -G-C�-algebra, A1 and A2 � -unital closed subalgebras
ofM.J / where G acts continuously on A1, � a separable subset ofM.J / such that
Œ�;A1� � A1 and 'WG !M.J / a function such that

sup
g2G;p2S.M.J //

p
�
'.g/

�
is bounded. Moreover we assume that A1 � A2, A1 � '.G/ and '.G/ � A1 are in J
and g 7! '.g/a are continuous functions on G for any a 2 A1C J . Then, there are
G-continuous even positive elementsM1;M2 2M.J / such that:
� M1 CM2 D 1,
� Miai , ŒMi ; d �,M2'.g/, '.g/M2, g.Mi / �Mi are in J for any ai 2 Ai , d 2 �,
g 2 G,

� g 7!M2'.g/ and g 7! '.g/M2 are continuous.

Proof. The proof is given by the combination of arguments on p. 151 of [21] and
in Theorem 10 of [18]. Actually, by Lemma A.4 we get an approximate unit fung
for A1 and fvng for J such that:
(1) pn.unh1 � h1/ � 2�n,
(2) pn

�
Œun; y�

�
� 2�n for any y 2 Y ,

(3) pn
�
g.un/ � un

�
� 2�n for any g 2 Xn,

(4) pn.vnw � w/ � 2�2n for any w 2 Wn,
(5) pn

�
Œvn; z�

�
is small enough topn

�
Œbn; z�

�
�2�n for any z2fh1; h2g[Y ['. xXn/,

(6) pn
�
g.bn/ � bn

�
� 2�n for any g 2 xXn,
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where h1, h2, k are strictly positive element in A1, A2 and J respectively such that

pn.h1/; pn.h2/; pn.k/ � 1

for any n, Y � � is a compact subset whose linear span is dense in �, Xn is a
increasing sequence of relatively compact open subsets of G whose union is dense
in G,

Wn WD fk; unh2; unC1h2g[un'. xXn/[unC1'. xXnC1/['. xXn/un['. xXnC1/unC1

and
bn WD .vn � vn�1/

1=2:

Now, it can be checked that the finite sum
P
bnunbn converges in the strict topology

to the desired elementM2 2M.J /.

A.2. Equivariant KK-groups. A generalization of KK-theory for pro-C�-algebras
was first defined by Weidner [57] and was generalized for equivariant case by
Schochet [46]. Here the notion of coherent A-B bimodule is introduced in order
to avoid Kasparov’s technical theorem for pro-C�-algebras. On the other hand,
Bonkat [7] introduced a new definition of KK-theory for � -C�-algebras applying the
technical theorem A.5 for � -C�-algebras. In this paper we adopt the latter definition.
Definition A.6. Let A and B be � -unital Z=2-graded � -G-C�-algebras. A G-
equivariant Kasparov A-B bimodule is a triplet .E; '; F / where
� E is a Z=2-graded countably generated G-equivariant Hilbert B-module;
� 'WA! L.E/ is a graded G-equivariant �-homomorphism;
� F 2 L.E/odds:a: such that ŒF; '.A/�, '.A/.F 2 � 1/, '.A/.g.F / � F / 2 K.E/, and
'.a/F , F'.a/ are G-continuous.
Two G-equivariant Kasparov A-B bimodules .E1; '1; F1/ and .E2; '2; F2/ are

unitarily equivalent if there is a unitary u 2 L.E1; E2/ such that u'1u� D '2
and uF1u� D F2. Two G-equivariant Kasparov A-B bimodules .E1; '1; F1/
and .E2; '2; F2/ are homotopic if there is a Kasparov G-equivariant A-IB
bimodule .E; '; F / such that .evi /�.E; '; F / are unitarily equivalent to .Ei ; 'i ; Fi /
for i D 0; 1.
Definition A.7. Let A and B be � -unital Z=2-graded � -G-C�-algebras. The
KK-group KKG.A;B/ is the set of homotopy equivalence classes of G-equivariant
Kasparov A-B bimodules.

It immediately follows from the definition that KKG.C; A/ is canonically
isomorphic to the representable equivariant K-group RKG0 .A/ introduced in [42].
Definition A.8. Let .E1; '1; F1/ be a G-equivariant Kasparov A-B bimodule
and .E2; '2; F2/ a G-equivariant Kasparov B-C bimodule. A Kasparov product
of .E1; '1; F1/ and .E2; '2; F2/ is a G-equivariant Kasparov A-C bimodule
.E1 ˝B E2; '; F / that satisfies the following:
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(1) The operator F 2 L.E1 ˝B E2/ is an F2-connection. That is,

Tx ı F2 � .�1/
degx�degF2F ı Tx and F2 ı T

�
x � .�1/

degx�degF2T �x ı F

are compact for any x 2 E1;

(2) '.a/ŒF1 ˝ 1; F �'.a/� � 0 mod K.E/.

Theorem A.9. Let A, B , C and D be � -unital � -G-C�-algebras. Moreover we
assume that A is separable. The Kasparov product gives a well-defined group
homomorphism

KKG.A;B/˝ KKG.B; C /! KKG.A; C /;

which is associative, that is,

.x ˝B y/˝C z D x ˝B .y ˝C z/

for any x 2 KKG.A;B/, y 2 KKG.B; C / and z 2 KKG.C;D/ when B is also
separable.

Proof. What we have to show is existence, uniqueness up to homotopy, well-
definedness of maps between KK-groups and associativity of the Kasparov product.
All of them are proved in the same way as in Theorem 12 and Theorem 21 of [49]
or Theorem 2.11 and Theorem 2.14 of [21]. Note that we can apply the Kasparov
technical theorem A.5 since we may assume that supp2S.L.E// p.F / � 1 by a
functional calculus and a separable � -C�-algebra is separable as a topological algebra
(see also [6, Sections 18.3–18.6]).

Moreover, we obtain the Puppe exact sequence (as [6, Theorem 19.4.3]) for
a �-homomorphism between � -C�-algebras and the six term exact sequences ([6,
Theorem 19.5.7]) for a semisplit exact sequence of � -C�-algebras by the same proofs.

Next we deal with the Cuntz picture [12] (see also [28]) of KK-theory for � -G-
C�-algebras.

Definition A.10 ([12, Definition 2.2]). We say that .'0; '1/WA� D B J ! B is
an equivariant prequasihomomorphism from A to B ifD is a � -unital � -C�-algebra
with G-action, '0 and '1 are equivariant �-homomorphisms from A to D such that
'0.a/ � '1.a/ are in a separable G-invariant ideal J of D such that the restriction
of theG-action on J is continuous, and J ! B is an equivariant �-homomorphism.
Moreover, we say that .'0; '1/ is quasihomomorphism if D is generated by '0.A/
and '1.A/, J is generated by f'0.a/ � '1.a/ j a 2 Ag and J ! B is injective.
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The idea given in [13] is also generalized for � -G-C�-algebras.

Definition A.11. Let A and B be � -G-C�-algebras. The full free product A � B is
the � -G-C�-algebra given by the completion of the algebraic free product A �alg B
by seminorms

p�A;�B
.a1b1 : : : anbn/ D k�A.a1/�B.b1/ : : : �A.an/�B.bn/k ;

where �A and �B are �-representations of A and B on the same Hilbert space. In
other words, when A D lim

 �
An and B D lim

 �
Bm, the free product A � B is the

projective limit
lim
 �
.An � Bm/:

By definition, any �-homomorphisms 'AWA! D and 'B WB ! D are uniquely
extended to 'A � 'B WA � B ! D. We denote by QA the free product A � A and
by qA the kernel of the �-homomorphism idA � idAWQA! A.

Since we have the stabilization Theorem A.3 and the technical Theorem A.5 for
� -G-C�-algebras, the following properties of quasihomomorphisms and KK-theory
is proved in the same way. We only enumerate their statements and references for the
proofs. Here we write qsA for the G-C�-algebra q.A˝KG/.
� The set of homotopy classes ofG-equivariant quasihomomorphisms fromA˝KG

to B ˝KG is isomorphic to KKG.A;B/ ([12, Section 5]).

� The functor KKG WG-C�sep�G-C�sep! R.G/-Mod is stable and split exact in
both variables ([13, Proposition 2.1]).

� For any � -G-C�-algebras A and B , A � B and A ˚ B are KKG-equivalent
([13, Proof of Proposition 3.1]).

� The element �A WD Œ�0� in KKG.qA;A/ where �0 WD .idA � 0/jqAW qA ! A is
the KKG-equivalence ([13, Proposition 3.1]).

� There is a one-to-one correspondence between G-equivariant quasihomomor-
phisms from A ˝ KG to B ˝ KG and G-equivariant �-homomorphisms from
qsA to B ˝KG ([28, Theorem 5.5]).

� There is a canonical isomorphism KKG.A;B/ Š ŒqsA;B ˝ KG �
G (the

stabilization Theorem A.3 and [13, Proposition 1.1]).

� The correspondence�
qsA˝KG ; qsB ˝KG

�G
! KKG.A;B/

' 7! �B ı ' ı .�A/
�1

induces the natural isomorphism ([28, Theorem 6.5]).



816 Y. Arano and Y. Kubota

For a projective system fAn; �ng of � -C�-algebras, the homotopy projective limit
ho- lim
 �

An is actually isomorphic to the mapping telescope

TelAn WD
n
f 2

Y
C
�
Œ0; 1�; An

�
j fn.1/ D �n

�
f .0/

�o
:

The following theorem follows from the fact that the functor KKG.A; ␣/ and
KKG.␣; B/ is compatible with direct products when B is a G-C�-algebra.
Theorem A.12. The following holds:
(1) Let fAngn2Z>0

be a inductive system of � -G-C�-algebras and A WD ho- lim
�!

An.
For a � -G-C�-algebra B , there is an exact sequence

0! lim
 �

1KKG�C1.An; B/! KKG.A;B/! KKG� .An; B/! 0:

(2) Let fBngn2Z>0
be a projective system of � -G-C�-algebras andB WD ho- lim

 �
Bn.

For a � -G-C�-algebra B , there is an exact sequence

0! lim
 �

1KKG�C1.A;Bn/! KKG.A;B/! lim
 �

KKG� .A;Bn/! 0:

(3) Let fAngn2Z>0
be a projective system of � -G-C�-algebras andA WD ho- lim

 �
An.

For a G-C�-algebra B , there is an isomorphism

KKG.A;B/ Š lim
�!

KKG.An; B/:

Corollary A.13. Let A D ho- lim
 �

An and B D ho- lim
 �

Bm be homotopy projective
limits of C�-algebras. There is an exact sequence

0! lim
 �
m

1 lim
�!
n

KKG�C1.An; Bm/! KKG� .A;B/! lim
 �
m

lim
�!
n

KKG.An; Bm/! 0:

In particular, if two homotopy projective limits

A D ho- lim
 �

An and B D ho- lim
 �

Bm

ofG-C�-algebras are KKG-equivalent, then we get a pro-isomorphism of projecctive
systems fAngn ! fBmgm in KKG .

A.3. The Kasparov category.
Definition A.14. We write �KKG for the Kasparov category of � -G-C�-algebras
i.e. the additive category whose objects are separable � -G-C�-algebras, morphisms
from A to B are KKG.A;B/ and composition is given by the Kasparov product.

Note that the inclusion G-C�sep � �G-C�sep induces a full embedding KKG

in �KKG . Additional structures of KKG such as tensor products, crossed products
and countable direct sums are extended on �KKG . Moreover the category KKG has
countably infinite direct products.
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Theorem A.15 ([51, Theorem 2.2]; [7, Satz 3.5.10]). The category �KKG is an
additive category that has the following universal property: there is the canonical
functor

KKG W �C�sep! �KKG

such that for anyC�-stable, split-exact, and homotopy invariant functorF W �C�sep! A
there is a unique functor QF such that the following diagram

�C�sepG //

��

A

�KKG

;;

commutes.
This follows from the Cuntz picture introduced in the previous subsection.
A structure of the triangulated category on KKG is introduced in [31]. Let S be

the suspension functor SA WD C0.R/ ˝ A of C�-algebras. Roughly speaking, the
inverse † WD S�1 and the mapping cone exact sequence

†B ! cone.f /! A
f
�! B

determines a triangulated category structure of KKG . More precisely we need to
replace the category KKG with another one that is equivalent to KKG , whose objects
are pair .A; n/ where A is a separable � -G-C�-algebra and n 2 Z, morphisms from
.A; n/ to .B;m/ areKKn�m.A;B/ and composition is given by theKasparov product.
In this category the functor†W .A; n/ 7! .A; nC 1/ is an category isomorphism (not
only an equivalence) and S ı † D † ı S are natural equivalent with the identity
functor. A triangle

†.B;m/! .C; l/! .A; n/! .B;m/

is exact if there is a �-homomorphism fromA0 toB 0 and the isomorphism ˛, ˇ, and 

such that the following diagram

†B //

†ˇŠ

��

C //


Š

��

A //

˛Š

��

B

ˇŠ

��
†B 0 // cone.f / // A0

f // B 0:

commutes. For simplicity of notation we use the same letter KKG for this category.
Theorem A.16. The category �KKG , with the suspension † and exact triangles as
above, is a triangulated category.

We omit the proof. Actually, the same proof as for KKG given in Appendix 1
of [31] works since we have the Cuntz picture of equivariant KK-theory introduced
in the previous subsection.
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