
J. Noncommut. Geom. 12 (2018), 823–863
DOI 10.4171/JNCG/292

Journal of Noncommutative Geometry
© European Mathematical Society

The K -theory of twisted multipullback quantum odd spheres
and complex projective spaces

Piotr M. Hajac, Ryszard Nest, David Pask, Aidan Sims and Bartosz Zieliński

Abstract. We find multipullback quantum odd-dimensional spheres equipped with natural
U.1/-actions that yield the multipullback quantum complex projective spaces constructed from
Toeplitz cubes as noncommutative quotients. We prove that the noncommutative line bundles
associated to multipullback quantum odd spheres are pairwise stably non-isomorphic, and that
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1. Introduction

Complex projective space is a fundamental object in topology and algebraic
geometry. It also makes its mark in lattice theory as its affine covering provides
a natural model of a free distributive lattice [3]. In [15], a noncommutative
deformation of complex projective spaces preserving this lattice-theoretic property
was introduced and studied. The new quantum complex projective spaceC �-algebras
C.PN .T //were defined as multipullbackC �-algebras [25] rather than as fixed-point
subalgebras [24, 31].

In this paper, we solve the problem of constructing multipullback quantum-odd-
sphere C �-algebras C.S2NC1H / from which the C �-algebras C.PN .T // emerge as
fixed-point subalgebras for a natural circle action. Then we develop and utilise
a presentation of C.S2NC1H / as the universal C �-algebra generated by N C 1

commuting isometries satisfying a sphere equation (see Theorem 3.3). We exploit
this presentation to show that theK-groups ofC.S2NC1H / and ofC.PN .T // coincide
with their classical counterparts.

The constructions and results described above admit the following generalisation.
For each antisymmetric matrix � 2 MNC1.R/, we construct � -twisted versions
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C.S2NC1
H;�

/ andC.PN
�
.T // of our quantum-odd-sphereC �-algebra and our quantum-

complex-projective-space C �-algebra. The twisted-sphere algebra is universal for
N C 1 isometries commuting up to phases specified by the matrix � and satisfying
a sphere equation. The twisted-projective-space C �-algebra is the fixed-point
subalgebra ofC.S2NC1

H;�
/ for a natural diagonalU.1/-action. We prove thatK-theory

of these algebras is independent of � .
To state our main result, we recall some background. Given a C �-algebra A, we

write C.U.1/; A/ for the C �-algebra of norm-continuous functions from U.1/ to A.
Each action ˛ of U.1/ on A determines a homomorphism

ıWA �! C.U.1/; A/ by ı.a/.�/ WD ˛�.a/; a 2 A; � 2 U.1/: (1.1)

We say that ˛ is free if and only if

span
˚
a ı.b/ j a; b 2 A

	
D C.U.1/; A/;

where span stands for the closed linear span. The general definition of freeness of a
quantum-group action on aC �-algebra is due to Ellwood [11], and the special case of
any compact Hausdorff topological group acting on a unitalC �-algebra looks exactly
as above.

Given ˛WU.1/ Õ A as above, for each character m 2 bU.1/ Š Z, the spectral
subspace Am is

Am WD
˚
a 2 A j ˛�.a/ D �

ma for all � 2 U.1/
	
:

The subspaceA0 is the fixed-point subalgebraA˛ (also denotedAU.1/) ofA, and since
AmAn � AmCn for allm; n, the spectral subspaces are alwaysA˛-bimodules. When
˛ is free, they are finitely generated projective left A˛-modules [10, Theorem 1.2]
encoding associated noncommutative line bundles.

By constructing a strong connection [13], we prove that the action of U.1/
on C.S2NC1H / is free, so its spectral subspaces C.S2NC1H /n are finitely generated
projective left C.PN .T //-modules. To prove that the characters of U.1/ defining
these noncommutative line bundles are K0-invariants, we derive a general method
of pulling back noncommutative associated line bundles over equivariant maps
(Theorem 6.1).

The key results of this paper can be summarized as follows:
Theorem 1.1. Fix an integer N � 1 and a matrix � 2 MNC1.R/ that is anti-
symmetric in the sense that �ij D ��j i for all i; j . Then:
(1) K0.C.S2NC1H;�

// D ZŒ1� and K1.C.S2NC1H;�
// D Z.

(2) K0.C.PN� .T /// D ZNC1 and K1.C.PN� .T /// D 0.

(3) The spectral subspaces C.S2NC1H /m, regarded as left C.PN .T //-modules, are
pairwise stably nonisomorphic. In particular, the module C.S2NC1H /�1 of
sections of the tautological line bundle is not stably free.
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Our multipullback approach to quantum odd spheres is based on the Heegaard-
type splitting of a .2N C 1/-dimensional sphere intoN -dimensional solid tori. Each
odd-dimensional sphere decomposes into a union of solid tori, along the lines of the
Heegaard splitting of the 3-sphere [21]. Under this decomposition, the embedding
of each component torus in the sphere is equivariant for the diagonal U.1/-action.
Taking quotients by the U.1/-actions yields a covering of the complex projective
space by quotients of solid tori, which is a closed restriction of the usual affine
covering.

To obtain the untwisted (� D 0) sphere algebras C.S2NC1H /, we study a
noncommutative deformation of this decomposition, using the point of view from [22]
that the Toeplitz algebra T can be regarded as the C �-algebra of a noncommutative
disc. In [5], the authors constructed a decomposition of a 3-dimensional quantum
sphere along these lines by taking a pullback of two copies of the tensor product of
the circle algebra and the Toeplitz algebra. The index pairing of noncommutative
line bundles over the resulting pullback quantum complex projective line (mirror
quantum sphere) was computed in [18]. Subsequently, in his Ph.D. thesis, Jan
Rudnik extended the construction in [5] to five dimensions using multipullback
C �-algebras. One of his main results was establishing the stable nontriviality of
the dual tautological line bundle over the multipullback complex quantum projective
plane [19, Theorem 2.4]. In this paper, we carry this idea further to all odd integers
bigger than one. Very recently, Albert Jeu-Liang Sheu showed in [27] that, for all
dimensions, the multipullback quantum-complex-projective-space C �-algebras can
be realized as groupoid C �-algebras.

The paper is organized as follows. In Section 2, we recall definitions and claims
crucial for the formulation and proofs of new results. In Section 3, we construct our
multipullback quantum-odd-sphere C �-algebras and their twisted analogues. With
the help of the theory of twisted higher-rank graph C �-algebras [28], we establish
that the twisted multipullback quantum-odd-sphere C �-algebras can be presented
in terms of a universal property (see Theorem 3.3). In Section 4, we construct
quantum-complex-projective-spaceC �-algebras and their twisted analogues as fixed-
point algebras for U.1/-actions on the corresponding sphere algebras. We identify
the untwisted quantum-projective-space algebras obtained in this way with the ones
constructed in [15] as multipullbacks. In Section 5, we prove parts (1) and (2)
of Theorem 1.1. In Section 6, we use the Chern–Galois theory of [4] to prove
Theorem 6.1, which then we use to show Theorem 1.1(3).

2. Background

2.1. Multipushouts, multipullbacks and the cocycle condition. As the notion of a
multipullbackC �-algebra (called amultirestricted direct sum in [25]) is a cornerstone
of this paper, we begin by recalling its definition.
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Definition 2.1 ([25, p. 264]). Let .� ij WAi ! Aij /i;j2J;i¤j be a family ofC �-algebra
homomorphisms, with Aij D Aj i . Then the multipullback C �-algebra of Ai ’s
along � ij ’s is the C*-algebra˚

.ai /i2J 2
L
i2J Ai j �

i
j .ai / D �

j
i .aj /; for all distinct i; j 2 J

	
:

In what follows, we will construct algebras of functions on quantum spaces as
multipullbacks of finitely many C �-algebras. To make sure that this construction
corresponds via duality to the presentation of a quantum space as a union of closed
subspaces (see [20]), we assume the cocycle condition (see Definition 2.2). First we
need some auxiliary definitions.

Let .� ij WAi ! Aij /i;j2J; i¤j be a finite family of surjective C �-algebra homo-
morphisms, with Aij D Aj i for i ¤ j . For all distinct i; j; k 2 J , we define

Aijk WD Ai=
�
ker� ij C ker� ik

�
and denote by

Œ��ijk WAi �! Aijk

the canonical surjections. For distinct i; j; k 2 J , define

�
ij

k
WAijk �! Aij =�

i
j

�
ker� ik

�
; by Œbi �

i
jk 7�! � ij .bi /C �

i
j

�
ker� ik

�
:

These � ij
k

are isomorphisms when the � ij are all surjective, as assumed herein.

Definition 2.2 ([5, Proposition 9]). We say that a finite family�
� ij WAi �! Aij

�
i;j2J; i¤j

of surjective C �-homomorphisms satisfies the cocycle condition if and only if, for
all distinct i; j; k 2 J ,

(1) � ij .ker�
i
k
/ D �

j
i .ker�

j

k
/, and

(2) the isomorphisms �ij
k
WD .�

ij

k
/�1 ı �

j i

k
WA

j

ik
! Ai

jk
satisfy �ikj D �

ij

k
ı �

jk
i .

Theorem 1 of [20] implies that a finite family .� ij WAi ! Aij /i;j2J; i¤j of
C �-algebra surjections satisfies the cocycle condition if and only if, for all K ¨ J ,
all k 2 J nK, and all .bi /i2K 2

L
i2K Ai such that � ij .bi / D �

j
i .bj / for all distinct

i; j 2 K, there exists bk 2 Ak such that also � i
k
.bi / D �ki .bk/ for all i 2 K. This

corresponds in the classical setting to the idea that all partial pushouts of a collection
of topological spaces embed in the total pushout.
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2.2. Heegaard-type splittings of odd spheres. We recall the Heegaard-type splitt-
ings of odd-dimensional spheres into solid tori. We write

T WD
˚
c 2 C j jcj D 1

	
for the unit circle,

D WD
˚
c 2 C j jcj � 1

	
for the unit disc, and

S2NC1 WD
˚
.zi /i 2 CNC1

ˇ̌PN
iD0 jzi j

2 D 1
	

for the unit .2N C 1/-dimensional sphere. For 0 � i � N , let

Vi WD
˚
.z0; : : : ; zN / 2 S

2NC1
j jzi j D maxfjz0j; : : : ; jzN jg

	
:

Also, let z WD .z0; : : : ; zN / and d WD .d0; : : : ; dN /. Then �i .z/ WD jzi j�1z
determines a homeomorphism

�i WVi ! Di
� T �DN�i

� CNC1;

with inverse given by

��1i .d/ D
�
1C

X
j¤i

jdj j
2
�� 1

2

d:

These homeomorphisms allow us to present S2NC1 as a multipushout of closed
solid tori. Indeed, for each i , let

Xi WD D
i
� T �DN�i ;

and for i < j , let

Xi;j WD D
i
� T �Dj�i�1

� T �DN�j
D Xi \Xj :

Then S2NC1 is the multipushout of the solid tori X0; : : : ; XN given by the
diagrams (2.1):

S2NC1

Xi

66

Vi
�i

oo
. �

==

Vj
�j

//
1 Q

bb

Xj

hh

Xi;j
?�

OO

Vi \ Vj
0 P

aa

. �

==

�ijoo �ji // Xi;j :
� ?

OO
(2.1)

So if � is the equivalence relation on the disjoint union
`
i Xi generated by

�i .d/ � �j .d/ for all d 2 Vi \ Vj and all i < j , then

S2NC1 Š
�a

i

Xi

�
=�:

(Note that �j i ı ��1ij D idXi;j
.)
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To motivate our definition of Heegaard quantum spheres later on, we dualize this
multipushout picture of S2NC1 (with � dualized to ˝) to obtain a multipullback
presentation of C.S2NC1/. Let resWC.D/ ! C.T / be the restriction map.
For i < j , we write

� ij WC.D/
˝i
˝ C.T /˝ C.D/˝N�i

�! C.D/˝i ˝ C.T /˝ C.D/˝j�i�1 ˝ C.T /˝ C.D/˝N�j

for the surjection id˝j ˝ res˝ id˝N�j . Then C.S2NC1/ is naturally isomorphic to˚
.f0; : : : ; fN / 2

LN
iD0C.D/

˝i
˝ C.T /˝ C.D/˝N�i

j � ij .fi / D �
j
i .fj / for all i < j

	
:

2.3. Gauging diagonal actions and coactions. Throughout this paper, we denote
a right action of a group G on a space X by juxtaposition, that is .x; g/ 7! xg. The
general idea for converting between diagonal and rightmost actions of a group G is
as follows. We regard X � G as a right G-space in two different ways, which we
distinguish notationally as follows.
� We write .X �G/R for the product X �G with G-action .x; g/ � h WD .x; gh/.
� We write X �G for the same space with diagonal G-action .x; g/h WD .xh; gh/.
There is a G-equivariant homeomorphism �W .X � G/R ! X � G determined by
�.x; g/ WD .xg; g/, with inverse given by ��1.x; g/ D .xg�1; g/. In general, given
any cartesian product of G-spaces, we will regard it as a G-space with the diagonal
action, except for those of the form .X �G/R just described.

In what follows, the unadorned tensor product between C*-algebras means the
minimal completed tensor product, the unadorned tensor product between Hilbert
spaces denotes the Hilbert-space tensor product, and ˝alg stands for the purely
algebraic tensor product. We use the Heynemann–Sweedler notation (with the
summation sign suppressed) for this completed product. We often identify the unit
circle T with the unitary group U.1/, and take advantage of the induced quantum-
group structure (coproduct, counit, antipode) on C.U.1//. Even though we only use
the classical compact Hausdorff group U.1/, we are forced to use the quantum-group
language of coactions, etc., to write explicit formulas, and carry out computations.

Let G be a compact Hausdorff group, and let H WD C.G/. Then S WH ! H ,
given by S.h/.g/ WD h.g�1/, is the antipode map, ".h/ WD h.e/ defines the counit
(e is the neutral element of G), and

�WH �! H ˝H Š C.G �G/;

�.h/.g1; g2/ WD h.g1g2/ DW .h.1/ ˝ h.2//.g1; g2/ D h.1/.g1/h.2/.g2/;

is a coproduct. If ˛WG ! Aut.A/ is a G-action on a unital C �-algebra A, then there
is a coaction ıWA! A˝H Š C.G;A/ given by

ı.a/.g/ WD ˛g.a/ DW .a.0/ ˝ a.1//.g/ D a.0/a.1/.g/:
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Consider A˝H as a C �-algebra with the diagonal coaction

p ˝ h 7�! p.0/ ˝ h.1/ ˝ p.1/h.2/;

and denote by .A ˝ H/R the same C �-algebra with the coaction on the rightmost
factor: p ˝ h 7! p ˝ h.1/ ˝ h.2/. Then the following map is a G-equivariant
(i.e. intertwining the coactions) isomorphism of C �-algebras:

y�W .A˝H/ �! .A˝H/R; a˝ h 7�! a.0/ ˝ a.1/h: (2.2)

Its inverse is explicitly given by

y��1W .A˝H/R �! .A˝H/; a˝ h 7�! a.0/ ˝ S.a.1//h: (2.3)

2.4. Affine closed coverings of complex projective spaces. The odd sphere S2NC1
is a U.1/-principal bundle. The diagonal action of U.1/ on S2NC1 is given by

.z0; : : : ; zN /� WD .z0�; : : : ; zN�/:

Since T � D is rotation invariant, this action restricts to a U.1/-action on each
D1�T�DN�1, so the multipushout given by (2.1) is U.1/-equivariant.

To obtain a multipushout presentation of PN .C/ D S2NC1=U.1/, we need to
gauge the diagonal actions to actions on the rightmost components. This will yield an
alternative multipushout presentation of S2NC1. Using the notation of Section 2.3,
we write

�W
�
DN
� U.1/

�R
�!DN

� U.1/

for the gauging homeomorphism. Identify U.1/ with T , and write

Fi;N WD
N
� U.1/�!Di

� T �DN�i

for the map given by

Fi;N .d0; : : : ; di�1; di ; diC1 : : : ; dN�1; dN /

WD .d0; : : : ; di�1; dN ; diC1 : : : ; dN�1; di /:

Combining the above two maps, we obtain a U.1/-equivariant

hi WD Fi;N ı �W
�
DN
� U.1/

�R
�! Di

� T �DN�i :

Next, let
XRi WD

�
DN
� U.1/

�R
for all i . For i < j < N , let

XRi;j WD
�
Di
� T �DN�i�1

� U.1/
�R
; XRj;i WD

�
Dj�1

� T �DN�j
� U.1/

�R
;

and Xi;j WD D
i
� T �Dj�i�1

� T �DN�j
DW Xj;i :
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For i ¤ j , we define

hij WD hi jXR
j;i
WXRj;i �! Xi;j D Xj;i :

We use the hi and hij to transform the multipushout structure of S2NC1 described
by (2.1). Explicitly, for 0 � i < j � N , we obtain the commutative diagram (2.4):

XRi
hi // Xi Xj XRj

hjoo

XRj;i
hij

((

� ?

OO

XRi;j :
hji

vv

� ?

OO

Xi;j

+ K

YY

3�

EE

(2.4)

For i < j , we define �ij WD h�1ji ı hij WX
R
j;i ! XRi;j : (Note that, unlike in the

previous multipushout presentation of S2NC1, these maps are not identities.) With
this notation, S2NC1 is homeomorphic to the quotient of the disjoint uniona

0�i�N

�
DN
� U.1/

�R
D

a
0�i�N

XRi

by the smallest equivalence relation such that d � �ij .d/ for all d 2 XRj;i . The
equivalence relation � respects the U.1/-actions, so we obtain a multipushout
presentation of S2NC1=U.1/ Š PN .C/ by everywhere collapsing U.1/ to a point.
This multipushout presentation of the complex projective space agrees with the
multipushout presentation used in [15, Section 1.2] to obtain the multipullback
noncommutative deformation of PN .C/.

3. Twisted multipullback quantum odd spheres

3.1. Twisted quantum even balls. Recall that we regard the Toeplitz algebra T as
the quantum-disc C �-algebra [22]. Let s be the generating isometry in T [6,7] and u
the generating unitary in C.T /. Let � W T ! C.T /, s 7! u, denote the symbol map.
We use the exact sequence

0 �!K �! T
�
�! C.T / �! 0

to regard the circle T as the boundary of the quantum disc, or two-dimensional
quantum ball. Thus the one-dimensional quantum sphere then corresponds to
the quotient T =K . From this perspective, T ˝N can be regarded as the algebra
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of the Cartesian product of N two-dimensional balls, and therefore as a copy of a
2N -dimensional (non-round) quantum ball. The quotient T ˝NC1=K˝NC1 is then
viewed as the algebra of the boundary of the quantum ball, that is, a quantum sphere of
dimension 2N C1. In the same spirit, T ˝N ˝C.T / is regarded as the algebra of the
Cartesian product of a 2N -ball and a circle, which is to say a .2N C 1/-dimensional
noncommutative solid torus.

By analogy with the Heegaard splitting of S2NC1 in the preceding section, we
define the algebra C.S2NC1H / of continuous functions on the Heegaard quantum
sphere as the multipullback of the C �-algebras T ˝i ˝C.T /˝ T ˝N�i with respect
to the maps

� ij W T
˝i
˝C.T /˝T ˝N�i �! T ˝i˝C.T /˝T ˝j�i�1˝C.T /˝T ˝N�j ; i < j;

given by � ij WD idT ˝i˝C.T/˝T j�i�1 ˝� ˝ idT ˝N�j . For j < i , the formula for � ij
is the same as above but with the roles of i and j interchanged.

In Section 5.2, we will realize C.S2NC1H / as the special case where � D 0 of a
multipullback of twisted tensor products of the same sort. To construct such � -twisted
spheres, we begin by defining the twisted Toeplitz algebras T NC1

�
, which we view

as twisted-quantum-ball C �-algebras.

Definition 3.1. Fix N > 0, and suppose that � D .�ij /
N
i;jD0 2 MNC1.R/ is

antisymmetric in the sense that �ij D ��j i . We define the twisted Toeplitz algebra
T NC1
�

to be the universal C �-algebra generated by isometries fw�0 ; : : : ; w�N g such
that

w�jw
�
k D e

2�i�jkw�kw
�
j and w��j w

�
k D e

�2�i�jkw�kw
��
j for all j ¤ k.

With this in hand, we are ready to present our definition of the twisted Heegaard
quantum sphere S2NC1

H;�
, which we view as the boundary of a twisted quantum ball.

Thus we generalize the 3-dimensional case S3
H;�

introduced and analyzed in [2].

Definition 3.2. For 0 � i � N , let I �i denote the ideal of T NC1
�

generated by
1 � w�i w

��
i , and for i ¤ j , let I �ij WD I �i C I �j . Let B�i WD T NC1

�
=I �i and

B�ij WD T NC1
�

=I �ij . Also, let

�i W T
NC1
�

�! B�i and � ij WB
�
i �! B�ij (3.1)

be the natural quotient maps. We define the twisted-Heegaard-quantum-sphere
C �-algebra as the multipullback of the algebras B�i over the homomorphisms � ij ,
that is

C.S2NC1
H;�

/ WD
n
.b0; : : : ; bN / 2

NM
iD0

B�i
ˇ̌
� ij .bi / D �

j
i .bj / for all 0 � i < j � N

o
:
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To ease notation, we define w� Ii
k
WD �i .w

�
k
/ and w� Iij

k
WD w�

k
C I �i C I

�
j for all k

and distinct i; j . We define si 2 C.S2NC1H;�
/ by

si WD
�
w
� I0
i ; : : : ; w

� IN
i

�
:

For i; j 2 f0; : : : ; N g, we have

si sj D e2�i�ij sj si ; si s�j D e�2�i�ij s�j si ; when i ¤ j;
s�i si D 1;

and
NY
kD0

.1 � sks�k/ D 0: (3.2)

The universal property ofT NC1
�

yields aU.1/NC1-action satisfying .�0; : : : ; �N /�
w�j D �jw

�
j . We call this the gauge action on T NC1

�
. This action descends to eachBi

and each Bij , and hence induces a U.1/NC1-action on C.S2NC1
H;�

/, also called the
gauge action. Restricting to the diagonal in U.1/NC1 gives a U.1/-action ˛ on
C.S2NC1

H;�
/ such that

˛�.b0; : : : ; bN / D .� � b0; : : : ; � � bN /: (3.3)

3.2. Auniversal presentation. Weprove, usingWhitehead’s twisted relativeCuntz–
Krieger algebras of higher-rank graphs [33] (see also [28]), that the twisted-Heegaard-
quantum-sphere C �-algebra of Definition 3.2 enjoys a universal property.

Theorem3.3. Consider an integerN � 1andanantisymmetricmatrix � 2MNC1.R/.
Let A� .N C 1/ be the universal C �-algebra generated by isometries s0; : : : ; sN
satisfying

sisj D e
2�i�ij sj si and sis

�
j D e

�2�i�ij s�j si ; (3.4)

and the sphere equation
NY
iD0

.1 � sis
�
i / D 0: (3.5)

Then there is a U.1/-action on A� .N C 1/ such that � � si D �si for all i , and there
is a U.1/-equivariant isomorphism

�� WA� .N C 1/�!C.S2NC1
H;�

/

such that
�� .si / D si D

�
w
� I0
i ; : : : ; w

� IN
i

�
for all i .

Furthermore, the maps � ij WBi ! Bij satisfy the cocycle condition of Definition 2.2.
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The existence of the U.1/-action on A� .N C 1/ and of the homomorphism ��
follows from the universal property of A� .N C 1/. We use the technology of twisted
relative higher-rank graphC �-algebras [28] to see that�� is injective. For surjectivity,
and to see that the cocycle condition is satisfied, we will need the following technical
lemma.
Lemma 3.4. Let A be a C �-algebra and suppose that I0; : : : ; In are ideals of A.
Suppose that a0; : : : ; an 2 A satisfy

ai C .Ii C Ij / D aj C .Ii C Ij /

for all i; j . Then there exists a 2 A such that aC Ii D ai C Ii for all i .

Proof. We proceed by induction on n. The base case n D 0 is trivial. Suppose as an
inductive hypothesis that there exists a0 2 A such that a0CIi D aiCIi for all i < n.
Then

a0 C .Ii C In/ D an C .Ii C In/

for all i < n, whence
a0 � an 2

\
i<n

.Ii C In/: (3.6)

Since the ideals of the C �-algebra A form a distributive lattice with meet given by
intersection and join given by sum, we have\

i<n

.Ii C In/ D
�\
i<n

Ii

�
C

X
;¤F�f0;:::;n�1g

�
In \

\
i 62F

Ii

�
�

�\
i<n

Ii

�
C In:

Combining this with (3.6), we obtain a0 � an D b0 � bn, where b0 2
Tn�1
iD0 Ii and

bn 2 In. Put a WD a0 � b0. Since b0 2 Ii for all i � n � 1, we have

aC Ii D a
0
C Ii D ai C Ii

for i � n � 1. Furthermore,

a D a0 � b0 D an � bn and bn 2 In;

so aC In D an C In too.

The general theory of twisted higher-rank graph C �-algebras requires significant
background, but fortunately the only higher-rank graphs we need to consider are the
following elementary examples. Let ƒ denote a copy of the monoid NNC1 under
addition. This becomes an .N C 1/-graph in the sense of [23, Definition 1.1] under
the degree map

d Wƒ�!NNC1

given by the identitymap onNNC1. Wewrite e0; : : : ; eN for the canonical generators
of NNC1. Since we can view ƒ as a category, we write �� for the composition of
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elements �; �. This is really just � C � when the two are regarded as elements
of NNC1. The unique vertex of ƒ is 0 2 NNC1. For � D .�0; : : : ; �N / 2 ƒ, we
write

j�j WD

NX
iD0

�i :

A cocycle on ƒ is a map
cWƒ �ƒ �! T

satisfying the cocycle identity

c.�; �/c.�; ��/ D c.�; �/c.��; �/

for all �;�; � 2 ƒ. Since NNC1 is directed, every finite F � ƒ n f0g is exhaustive
as in [28, Section 2]. So given any collection E of finite subsets of ƒ n f0g, we
can form the twisted relative Cuntz–Krieger algebra C �.ƒ; cIE/, which is generated
by isometries fsc

E
.�/ W � 2 ƒg satisfying relations (TCK1)–(TCK4) and (CK) of

[28, Section 3].
Lemma 3.5. Let ƒ denote NNC1 regarded as an .N C 1/-graph as above. Fix
an antisymmetric matrix � 2MNC1.R/. There is a cocycle c on ƒ given by

c.�; �/ WD e�i.d.�/
T�d.�//: (3.7)

Let E WD ffe0; : : : ; eN gg. Then there is an isomorphism

A� .N C 1/�!C �.ƒ; cIE/

that carries wi 2 A� .N C 1/ to scE.ei / 2 C
�.ƒ; cIE/ for 0 � i � N .

Proof. One checks thatA� .NC1/ andC �.ƒ; cIE/ have the same universal property.

Proof of Theorem 3.3. The relations (3.4) and (3.5) are invariant undermultiplication
of the si by any fixed � 2 U.1/. Thus the universal property of A� .N C 1/ yields
the desired U.1/-action.

The universal property of T NC1
�

yields a homomorphism

 � W T
NC1
�

�! C.S2NC1
H;�

/ given by  � .a/ D
�
�0.a/; �1.a/; : : : ; �N .a/

�
:

Applying Lemma 3.4 to A D T NC1
�

and the ideals Ii D ker.�i / shows that

C.S2NC1
H;�

/ D
˚�
�0.a/; �1.a/; : : : ; �N .a/

�
j a 2 T NC1

�

	
;

so  � is surjective. Since
QN
jD0.1�wjw

�
j / 2 ker �i for each i , it belongs to ker � ,

so  � descends to a surjective homomorphism

�� WA� .N C 1/�!C.S2NC1
H;�

/

such that �� .si / D si for all i .
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By Lemma 3.5, to prove the injectivity of �� it suffices

�WC �.ƒ; cIE/ �! C.SNC1
H;�

/

satisfying �.sc
E
.ei // D �� .si / is injective. For this, we aim to apply the gauge-

invariant uniqueness theorem [28, Theorem 3.15] for C �.ƒ; cIE/.
The homomorphism � is equivariant for the gauge actions on C.S2NC1

H;�
/ and

C �.ƒ; cIE/. Since sc
E
.0/ is the identity element of C �.ƒ; cIE/, we have

�.scE.0// D .1; 1; : : : ; 1/ ¤ 0:

Hence, by [28, Theorem 3.15], it suffices to show that for each finite F in the
complement of the satiation xE of E (see [28, p. 837]),

�
� Y
�2F

�
scE.0/ � s

c
E.�/s

c
E.�/

�
��
¤ 0:

The set

E 0 WD
˚
F � ƒ n f0g j

there exists i > 0 such that jpj > i implies p � q for some q 2 F
	

satisfies conditions (S1)–(S4) on page 87 of [28] and contains E . An induction shows
that any set containing E and satisfying conditions (S1)–(S4) contains E 0. Hence
E 0 D E . So for a finite set F 62 xE , there is a sequence .pi / in ƒ with jpi j ! 1
such that pi 6� q for all q 2 F and all i 2 N. By passing to a subsequence, we
may assume that pij ! 1 for some j � N . Since pi 6� q for all q 2 F and all i ,
it follows that q 2 F implies ql > 0 for some l ¤ j . Therefore there exists l ¤ j

such that q � el , which forces

scE.q/s
c
E.q/

�
D scE.el/s

c
E.q � el/s

c
E.q � el/

�scEe.el/
�
� scE.el/s

c
E.el/

�:

Thus
�
�
1 � scE.q/s

c
E.q/

�
�
� �

�
1 � scE.el/s

c
E.el/

�
�
D 1 � sls�l :

Applying this reasoning to each q 2 F , we obtain

�
� Y
q2F

�
1 � scE.q/s

c
E.q/

�
��
�

Y
l¤j

.1 � sls�l /:

Since each sl 2 C.S2NC1H;�
/ �

LN
iD0Bi (where Bi D T NC1

�
=Ii ), the j th coord-

inate of
Q
l¤j .1 � sls�l / is�Y

l¤j

.1 � sls�l /
�
j
D �j

�Y
l¤j

.1 � wlw
�
l /
�
: (3.8)
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So it suffices to show that the right-hand side of (3.8) is nonzero. Since �j .T NC1
�

/

is universal for the same relations as the twisted relative Cuntz–Krieger algebra
C �.ƒ; cI fej g/, there is an isomorphism

�j .T
NC1
�

/�!C �
�
ƒ; cI fej g

�
that carries �j .wl/ to scfej g

.el/ for each l . The satiation fej g of fej g does not contain
the set fel j l ¤ j g, so [28, Proposition 3.9] implies thatY

l¤j

�
1 � sc

fej g
.el/s

c
fej g

.el/
�
�
¤ 0;

giving �j .
Q
l¤j .1 � wlw

�
l
// ¤ 0 as required. This completes the proof that �� is

an isomorphism.
Since each Bi D T NC1

�
=Ii and Bij D T NC1

�
=.Ii C Ij / by definition, the

homomorphisms � ij are distributive in the sense of [20, Definition 2]. Lemma 3.4
shows in particular that given distinct i; j; k and elements bi 2 Bi and bj 2 Bj
such that � ij .bi / D �

j
i .bj /, there exists bk 2 Bk such that �ki .bk/ D � i

k
.bi / and

�kj .bk/ D �
j

k
.bj /. Hence Theorem 1 of [20] implies that the � ij satisfy the cocycle

condition of Definition 2.2.

3.3. Strong connections. Since we focus on free U.1/-actions on unital C �-alge-
bras, we avoid the general coalgebraic formalism of strong connections of [4], and
formulate the concept of a strong connection from [13] solely for U.1/-actions on
unital C �-algebras.

Let A be a unital C �-algebra carrying a U.1/-action. For m 2 Z, recall that Am
denotes the spectral subspace˚

a 2 A j � � a D �ma for all � 2 U.1/
	
:

We write CŒu; u�� for the �-algebra of Laurent polynomials. Let ` be a unital linear
map

`WCŒu; u�� �!
�M
m2Z

Am

�
˝
alg

�M
m2Z

Am

�
� A˝

alg
A;

where
L
m2ZAm denotes the algebraic direct sum of the spectral subspaces. We say

that ` is a strong connection for the U.1/-action on A if, writing

mAWA ˝
alg
A �! A

for the multiplication map, we have

.mA ı `/.h/ D h.1/1A for all h 2 CŒu; u��; (3.9)

and
`.un/ 2 A�n ˝ An for all n 2 Z. (3.10)
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By [30], the existence of a strong connection is equivalent to the strongness
(equalities instead of inclusions) of the grading:

AmAn D AmCn for all m; n 2 Z:

Moreover, by [1, Theorem 0.4] combined with [4, Theorem 2.5(1)], the existence of
a strong connection is equivalent to freeness.

3.3.1. A strong connection on S 2NC1
H;�

. In what follows, we will need the following
family of U.1/-fixed elements of C.S2NC1

H;�
/:

HN WD 1; Hi WD

NY
jDiC1

.1 � sj s�j /; i 2 f0; : : : ; N � 1g:

Consider the linear map

`WCŒu; u�� �!
�M
m2Z

C.S2NC1
H;�

/m

�
˝
alg

�M
m2Z

C.S2NC1
H;�

/m

�
defined inductively as follows:

`.1/ WD 1˝ 1; `.un/ WD s�n0 ˝ sn0 for n > 0;

and `.un�1/ WD
X

0�k�N

�
.sk ˝ 1/`.un/.1˝ s�kHk/

�
for n � 0. (3.11)

Then ` is a strong connection for the U.1/-action on C.S2NC1
H;�

/: Equation (3.10)
for n � 0 is trivial, and for n < 0 follows from an elementary induction argument.
Equation (3.9) for n � 0 is trivial because s0 is an isometry. To check it for n < 0,
we first use the sphere equation (3.2) to see that

NX
kD0

sks�kHk D 1;

and then employ a straightforward induction argument (see the proof of [17,
Lemma 4.2]) using the recursive formula (3.11).

4. Twisted multipullback quantum complex projective spaces

Our twisted-multipullback-quantum-odd-sphere C �-algebras (see Definition 3.2)
yield a natural construction of a family of � -twisted-quantum-complex-projective-
space C �-algebras as fixed-point algebras. Using the U.1/-action ˛ on C.S2NC1

H;�
/

from equation (3.3), we define

C.PN� .T // WD C.S
2NC1
H;�

/˛:
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To study C.S2NC1
H;�

/˛ , we gauge the diagonal action ˛ on C.S2NC1
H;�

/ to an action
on a single twisted component, where it is easy to determine the U.1/-invariant
subalgebra. As in Section 3, restricting to the diagonal subgroup of U.1/NC1 yields
a diagonal action on T NC1

�
given by

� � w�j WD .�; : : : ; �/ � w
�
j D �w

�
j :

We can also compose with the coordinate inclusions U.1/ ,! U.1/NC1 to obtain
actions �i of U.1/ given by

� �i wj D

(
wj ; if i ¤ j ,
�wi ; if i D j .

Since that gauge action descends to the quotients by the I �
k
and I �

kj
, so do these

U.1/-actions. We will consider B�i and B�ij to be endowed with the diagonal U.1/-
action and we denote by B� IRk

i and B� IRk

ij the same C �-algebras endowed with the
U.1/-action on the kth twisted component. Accordingly, we will write the generators
of B� IRk

i and B� IRk

ij as w� Ii IRk

l
and w� Iij IRk

l
, respectively.

Lemma 4.1. For any .NC1/�.NC1/ antisymmetric real matrix � and 0 � i � N ,
define antisymmetric real matrices �i .�/ and ��1i .�/ of the same size by

�i .�/jk WD �ij C �jk C �ki ; if j; k ¤ i ; �i .�/ij WD �ij ;

��1i .�/jk WD ��ij C �jk � �ki ; if jk ¤ i ; ��1i .�/ik WD �ik : (4.1)

Then
��1i .�i .�// D � D �i .�

�1
i .�//;

and there exists a U.1/-equivariant C �-isomorphism �i WB�i ! B
�i .�/IRi

i such that

�i .w
� Ii
k
/ WD w

�i .�/Ii IRi

k
w
�i .�/Ii IRi

i if i ¤ k; �i .w
� Ii
i / WD w

�i .�/Ii IRi

i ;

��1i .w
�i .�/Ii IRi

k
/ WD w

� Ii
k
.w

� Ii
i /� if i ¤ k; ��1i .w

�i .�/Ii IRi

i / WD w
� Ii
i :

(4.2)

Proof. The equalities

��1i .�i .�// D � D �i .�
�1
i .�//

follow from elementary calculations using (4.1). To see that (4.2) defines
�-homomorphisms, note that, by the universal property of T � and the definition
of I �i , it suffices to check that the elements �i .w� Iik / and ��1i .w

�i .�/Ii IRi

k
/ satisfy

respectively the relations that determine B�i and B�i .�/IRi

i . Let i; j; k be all distinct
(the cases where k D i or j D i are trivial).
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(1) Since .w� Ii
k
/�w

� Ii
k
D 1, we must have �i ..w� Iik /�w

� Ii
k
/ D 1. Furthermore,

�i
�
.w

� Ii
k
/�w

� Ii
k

�
D �i .w

� Ii
k
/��i .w

� Ii
k
/

D .w
�i .�/Ii IRi

i /�.w
�i .�/Ii IRi

k
/�w

�i .�/Ii IRi

k
w
�i .�/Ii IRi

i D 1:

(2) Since .w�i .�/Ii IRi

k
/�w

�i .�/Ii IRi

k
D 1, we must have

��1i
�
.w

�i .�/Ii IRi

k
/�w

�i .�/Ii IRi

k

�
D 1:

Furthermore,

��1i
�
.w

�i .�/Ii IRi

k
/�w

�i .�/Ii IRi

k

�
D ��1i .w

�i .�/Ii IRi

k
/���1i .w

�i .�/Ii IRi

k
/

D w
� Ii
i .w

� Ii
k
/�w

� Ii
k
.w

� Ii
i /� D 1:

(3) Since w� Iij w
� Ii
k
D e2�i�jkw

� Ii
k
w
� Ii
j , we must have

�i .w
� Ii
j w

� Ii
k
/ D e2�i�jk�i .w

� Ii
k
w
� Ii
j /:

Furthermore,

�i .w
� Ii
j w

� Ii
k
/

D �i .w
� Ii
j /�i .w

� Ii
k
/

D w
�i .�/Ii IRi

j w
�i .�/Ii IRi

i w
�i .�/Ii IRi

k
w
�i .�/Ii IRi

i

D e2�i�i .�/ikw
�i .�/Ii IRi

j w
�i .�/Ii IRi

k
w
�i .�/Ii IRi

i w
�i .�/Ii IRi

i

D e2�i
�
�i .�/ikC�i .�/jk

�
w
�i .�/Ii IRi

k
w
�i .�/Ii IRi

j w
�i .�/Ii IRi

i w
�i .�/Ii IRi

i

D e2�i
�
�i .�/ikC�i .�/jkC�i .�/ji

�
w
�i .�/Ii IRi

k
w
�i .�/Ii IRi

i w
�i .�/Ii IRi

j w
�i .�/Ii IRi

i

D e2�i
�
�i .�/ikC�i .�/jkC�i .�/ji

�
�i .w

� Ii
k
/�i .w

� Ii
j /

D e2�i
�
�i .�/ikC�i .�/jkC�i .�/ji

�
�i .w

� Ii
k
w
� Ii
j /:

It remains to show that

�jk D �i .�/ik C �i .�/jk C �i .�/j i :

Since �i .�/ik D �ik and �i .�/ij D �ij , we have �jk D �ik C �i .�/jk C �j i , so

�i .�/jk D �ij C �jk C �ki

by the antisymmetry of � .
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(4) Since .w� Iij /�w
� Ii
k
D e�2�i�jkw

� Ii
k
.w

� Ii
j /�, we must have

�i
�
.w

� Ii
j /�w

� Ii
k

�
D e�2�i�jk�i

�
w
� Ii
k
.w

� Ii
j /�

�
:

Furthermore,

�i
�
.w

� Ii
j /�w

� Ii
k

�
D �i .w

� Ii
j /��i .w

� Ii
k
/

D .w
�i .�/Ii IRi

i /�.w
�i .�/Ii IRi

j /�w
�i .�/Ii IRi

k
w
�i .�/Ii IRi

i

D e2�i
�
��i .�/jk��i .�/ji��i .�/ik

�
w
�i .�/Ii IRi

k
.w

�i .�/Ii IRi

i /�w
�i .�/Ii IRi

i .w
�i .�/Ii IRi

j /�

D e2�i
�
��i .�/jk��i .�/ji��i .�/ik

�
w
�i .�/Ii IRi

k
w
�i .�/Ii IRi

i .w
�i .�/Ii IRi

i /�.w
�i .�/Ii IRi

j /�

D e2�i
�
��i .�/jk��i .�/ji��i .�/ik

�
�i .w

� Ii
k
/�i .w

� Ii
j /�

D e2�i
�
��i .�/jk��i .�/ji��i .�/ik

�
�i
�
w
� Ii
k
.w

� Ii
j /�

�
D e�2�i�jk�i

�
w
� Ii
k
.w

� Ii
j /�

�
:

(5) Since w�i .�/Ii IRi

j w
�i .�/Ii IRi

k
D e2�i�i .�/jkw

�i .�/Ii IRi

k
w
�i .�/Ii IRi

j , we must have

��1i .w
�i .�/Ii IRi

j w
�i .�/Ii IRi

k
/ D e2�i�i .�/jk��1i .w

�i .�/Ii IRi

k
w
�i .�/Ii IRi

j /:

Furthermore,

��1i .w
�i .�/Ii IRi

j w
�i .�/Ii IRi

k
/

D ��1i .w
�i .�/Ii IRi

j /��1i .w
�i .�/Ii IRi

k
/

D w
� Ii
j .w

� Ii
i /�w

� Ii
k
.w

� Ii
i /�

D e2�i.��ikC�jkC�ij /w
� Ii
k
.w

� Ii
i /�w

� Ii
j .w

� Ii
i /�

D e2�i.�ijC�jkC�ki /��1i .w
�i .�/Ii IRi

k
/��1i .w

�i .�/Ii IRi

j /

D e2�i�i .�/jk��1i .w
�i .�/Ii IRi

k
w
�i .�/Ii IRi

j /:
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(6) Since .w�i .�/Ii IRi

j /�w
�i .�/Ii IRi

k
D e�2�i�i .�/jkw

�i .�/Ii IRi

k
.w

�i .�/Ii IRi

j /�, we see
that

��1i
�
.w

�i .�/Ii IRi

j /�w
�i .�/Ii IRi

k

�
D e�2�i�i .�/jk��1i

�
w
�i .�/Ii IRi

k
.w

�i .�/Ii IRi

j /�
�
:

Furthermore,

��1i
�
.w

�i .�/Ii IRi

j /�w
�i .�/Ii IRi

k

�
D ��1i .w

�i .�/Ii IRi

j /���1i .w
�i .�/Ii IRi

k
/

D w
� Ii
i .w

� Ii
j /�w

� Ii
k
.w

� Ii
i /�

D e2�i.��jkC�ikC�ji /w
� Ii
k
.w

� Ii
i /�w

� Ii
i .w

� Ii
j /�

D e2�i.��ij��jk��ki /��1i .w
�i .�/Ii IRi

k
/��1i .w

�i .�/Ii IRi

j /�

D e�2�i�i .�/jk��1i
�
w
�i .�/Ii IRi

k
.w

�i .�/Ii IRi

j /�
�
:

Thus we have shown that �i and ��1i are well defined �-homomorphisms. They are
evidently U.1/-equivariant. Since w� Iii and w�i .�/Ii IRi

i are unitaries, �i and ��1i are
mutually inverse.

The maps �i ; ��1i descend to the B�ij because they fix the generator

�i
�
1 � w�j .w

�
j /
�
�

of �i .I �j /. It follows that �i induces an invertible U.1/-equivariant C
�-isomorphism

�i Ij WB
�
ij ! B

�i .�/IRi

ij such that

�i Ij .w
� Iij

k
/ D w

�i .�/Iij IRi

k
w
�i .�/Iij IRi

i if i ¤ k; �i Ij .w
� Iij
i / D w

�i .�/Iij IRi

i ;

��1i Ij .w
�i .�/Iij IRi

k
/ D w

� Iij

k
.w

� Iij
i /� if i ¤ k; ��1i Ij .w

�i .�/Iij IRi

i / D w
� Iij
i :

Thus we obtain composedmaps y� ij WB
�i .�/IRi

i ! B
�i .�/IRi

ij given by the commutative
diagrams

B
�i .�/IRi

i

��1
i //

y� i
j

55
B�i

�i
j // B�ij

�iIj // B�i .�/IRi

ij :

For any 0 � k � N , we have y� ij .w
�i .�/Ii IRi

k
/ D w

�i .�/Iij IRi

k
.
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4.1. Themultipullback structure ofC.S 2NC1
H;�

/R . Wedefine the twisted-Heegaard-
sphere C �-algebra C.S2NC1

H;�
/R to be the image of C.S2NC1

H;�
/ under

QN
iD0 �i . We

computemorphisms y� ij that assemble theB�i .�/IRi

i into themultipullbackC �-algebra
C.S2NC1

H;�
/R. Fix any i < j . We determine y� ij and y�ji through the commutative

diagram

B
�i .�/IRi

i

��1
i

��

y�i
j

))

B
�j .�/IRj

j

��1
j

��

y�
j

i

uu
B�i

�i
j

// B�ij �iIj

// B�i .�/IRi

ij B�ij�iIj

oo B�i :
�

j

i

oo

Then C.S2NC1
H;�

/R is equivariantly isomorphic to the multipullback C �-algebra over
the y� ij . Note that the above diagram can be rewritten as follows:

B
�i .�/IRi

i

y� i
j

��

y�i
j

��

B
�j .�/IRj

j

y�
j

i

��

y�
j

i

yy

B
�i .�/IRi

ij B�ij
�iIjoo B

�j .�/IRj

ij :
��1

j Iioo

y ij

kk

(4.3)

Thus, for i < j , we have y� ij WD y�
i
j and y�ji WD y ij ı y�

i
j , where y ij WD �i Ij ı �

�1
j Ii .

We compute the images of the generators of B�j .�/IRj

ij under the y ij : for i < j and
k ¤ i; j ,

y ij .w
�j .�/Iij IRj

k
/ WD �i Ij

�
��1j Ii .w

�j .�/Iij IRj

k
/
�

D �i Ij
�
w
� Iij

k
.w

� Iij
j /�

�
D �i Ij .w

� Iij

k
/�i Ij .w

� Iij
j /�

D w
�i .�/Iij IRi

k
w
�i .�/Iij IRi

i .w
�i .�/Iij IRi

i /�.w
�i .�/Iij IRi

j /�

D w
�i .�/Iij IRi

k
.w

�i .�/Iij IRi

j /�;

y ij .w
�j .�/Iij IRj

i / WD �i Ij
�
��1j Ii .w

�j .�/Iij IRj

i /
�

D �i Ij
�
w
� Iij
i .w

� Iij
j /�

�
D w

�i .�/Iij IRi

i .w
�i .�/Iij IRi

i /�.w
�i .�/Iij IRi

j /�

D .w
�i .�/Iij IRi

j /�;



Quantum odd spheres and complex projective spaces 843

y ij .w
�j .�/Iij IRj

j / WD �i Ij
�
��1j Ii .w

�j .�/Iij IRj

j /
�

D �i Ij .w
� Iij
j /

D w
�i .�/Iij IRi

j w
�i .�/Iij IRi

i : (4.4)

4.2. The U.1/-fixed-point subalgebra of C.S 2NC1
H;�

/R as a multipullback. For
any antisymmetric .N C1/� .N C1/ real matrix � , let us denote by L�i .�/ the matrix
obtained from �i .�/ by removing the i th row and column. Re-index the remaining
elements so that both row and column indices run from 1 to N .

For any 0 � i � N , let Ai WD T N
L�i .�/

. The isometries vi1; : : : ; viN generating Ai
satisfy

vij v
i
k D e

2�i L�i .�/jkvikv
i
j ; .vij /

�vik D e
�2�i L�i .�/jkvik.v

i
j /
�;

for all 1 � j; k � N , j ¤ k.
We claim thatAi is isomorphic as aC �-algebrawith theU.1/-invariant subalgebra

of B�i .�/IRi

i . To see this, observe that the universal property of Ai yields a
C �-homomorphism �i WAi ! .B

�i .�/IRi

i /U.1/ such that

�i .v
i
k/ D

(
w
�i .�/Ii IRi

k�1
; if k � i ;

w
�i .�/Ii IRi

k
; if k > i:

An argument using the gauge-invariant uniqueness theorem as in the proof of
Theorem 3.3 shows that �i is injective. To see that it is surjective, first observe
that B�i .�/IRi

i is densely spanned by elements of the form�
w
�i .�/Ii IRi

1

�n1
� � �
�
w
�i .�/Ii IRi

N

�nN
�
w
�i .�/Ii IRi

N

��mN
� � �
�
w
�i .�/Ii IRi

1

��m1 :

Since w�i .�/Ii IRi

i is unitary in B�i .�/IRi , the expectation onto the U.1/-invariant
subalgebra of B�i .�/IRi

i , obtained by averaging over the U.1/-action, takes such a
spanning element to

ıni ;mi

NY
jD0
j¤i

�
w
�i .�/Ii IRi

j

�nj

0Y
kDN
k¤i

�
w
�i .�/Ii IRi

k

��nk :

Therefore, the U.1/-invariant subalgebra of B�i .�/IRi

i is spanned by elements of
this form, and such elements are in the range of �i . Hence �i is surjective. For
any i ¤ j , we will denote the generators of Ai Ij (which are the images under the
canonical quotient maps of the generators of Ai ) by vi Ij1 ; : : : ; v

i Ij
N . For i < j , the

elements vi Ijj 2 Ai Ij and v
j Ii
iC1 2 Aj Ii are unitary. The inverse of �i satisfies

��1i
�
w
�i .�/Ii IRi

k

�
D

(
vi
kC1

; if k < i;
vi
k
; if i < k:
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Let Jj be the ideal of Ai generated by .1 � vij .v
i
j /
�/. For 0 � i < j � N , let

Ai Ij WD Ai=Jj and Aj Ii WD Aj =JiC1:

The isomorphisms ��1i descend to isomorphisms

��1ij W
�
B
�i .�/IRi

ij

�U.1/
! Ai Ij ; w

�i .�/Iij IRi

k
7!

(
v
i Ij

kC1
; if k < i;

v
i Ij

k
; if i < k:

Using the isomorphisms �i and �ij we can transport the multipullback structure
of the U.1/-fixed-point subalgebra of C.S2NC1

H;�
/R as follows (0 � i < j � N ):

Ai

�i
j

##

�i //
�
B
�i .�/IRi

i

�U.1/
y� i

j
��

�
B
�j .�/IRj

j

�U.1/
y�

j

i
��

Aj
�joo

�
j

i

{{

�
B
�i .�/IRi

ij

�U.1/
��1

ij

��

�
B
�j .�/IRj

ij

�U.1/
��1

ji

��

y ijoo

Ai Ij Aj Ii :
 ij

oo

(4.5)

In the diagram (4.5), we have used the same symbols to denote the (co)-restrictions
of the maps y� ij , y�

j
i and y ij to the respective U.1/-invariant subalgebras. Since all

these maps are U.1/-equivariant, the restrictions corestrict as expected.
We will now explicitly write the values of maps �ij , �

j
i ,  ij , 0 � i < j � N ,

defined by the commutative diagram above, on generators of respective domains. It
is straightforward to verify that �ij and �

j
i are the canonical quotient maps given by

�ij .v
i
k/ D v

i Ij

k
and �

j
i .v

j

k
/ D v

j Ii

k
; 1 � k � N:

In case of the isomorphisms  ij WD ��1ij ı
y ij ı �j i , 0 � i < j � N , we will

perform a careful case-by-case analysis. The first splitting into cases follows from
the definition of y ij (see (4.4)): either k D i C 1 or k ¤ i C 1.
(1) For k D i C 1:

 ij .v
j Ii
iC1/ D �

�1
ij

�
y ij
�
�j i .v

j Ii
iC1/

��
D ��1ij

�
y ij
�
w
�j .�/Iij IRj

i

��
D ��1ij

��
w
�i .�/Iij IRi

j

���
D .v

i Ij
j /�:
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(2) For k ¤ i C 1:

 ij .v
j Ii

k
/ D ��1ij

�
y ij
�
�j i .v

j Ii

k
/
��
DW .�/:

Here the definition of �j i forces a split into cases k > j or k � j .

(a) For k > j :

.�/ D ��1ij
�
y ij
�
w
�j .�/Iij IRj

k

��
D ��1ij

�
w
�i .�/Iij IRi

k

�
w
�i .�/Iij IRi

j

���
D v

i Ij

k
.v
i Ij
j /�:

(b) For k � j :

.�/ D ��1ij
�
y ij
�
w
�j .�/Iij IRj

k�1

��
D ��1ij

�
w
�i .�/Iij IRi

k�1

�
w
�i .�/Iij IRi

j

���
DW .��/:

Now we arrive at another split into cases: k � 1 > i or k � 1 < i . (The case
k � 1 D i was taken care of previously.)

(i) If k � 1 > i :
.��/ D v

i Ij

k�1
.v
i Ij
j /�:

(ii) If k � 1 < i :
.��/ D v

i Ij

k
.v
i Ij
j /�:

Summarizing, when 0 � i < j � N and 1 � k � N , we obtain

 ij .v
j Ii

k
/ D

�
v
i Ij
j ; if k D i C 1;
v
i Ij

k
.v
i Ij
j /�; if k > j or k < i C 1;

v
i Ij

k�1
.v
i Ij
j /�; if i C 1 < k � j :

Consequently, the U.1/-fixed-point subalgebra of C.S2NC1
H;�

/R is isomorphic to
the multipullback of the algebras Ai with respect to the natural maps Ai ! Ai Ij ,
Aj ! Ai Ij , i < j , determined by the diagrams

Ai

�i
j

��

Aj

�
j

i

��
Ai Ij Aj Ii :

 ij

oo
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5. The K -groups of twisted multipullback quantum odd spheres
and complex projective spaces

We begin by deriving a short exact sequence of commutative C �-algebras whose
noncommutative counterpart provides a basis for computing the K-groups of the
twisted multipullback quantum complex projective spaces.

The 2N C 1-dimensional sphere S2NC1 is the closed subset of CNC1 defined by

S2NC1 WD
n
.z0; : : : ; zN / 2 CNC1

ˇ̌ NX
iD0

jzi j
2
D 1

o
:

Denote by D WD fc 2 C j jcj � 1g the unit disk, and by D0 WD fc 2 C j jcj < 1g

the interior of the unit disk. Next, we define a non-round odd sphere as follows:

S2NC1D WD

n
.c0; : : : ; cN / 2 D

NC1
ˇ̌ NY
iD0

�
1 � jci j

2
�
D 0

o
:

Since
NY
iD0

�
1 � jci j

2
�
D 0

if and only if jci j D 1 for some i 2 f0; : : : ; N g, it follows that

NX
iD0

jci j
2
� 1

for any .c0; : : : ; cN / 2 S2NC1D . Also,

NX
iD0

jzi j
2
D 1

gives

max
˚
jz0j; : : : ; jzN j

	
�

1
p
N C 1

:

Hence there are well-defined maps

S2NC1D 3 .cj /
N
jD0 7�!

 
cjqPN
iD0 jci j

2

!N
jD0

2 S2NC1;

S2NC1 3 .zj /
N
jD0 7�!

�
zj

maxfjz0j; : : : ; jzN jg

�N
jD0

2 S2NC1D :

These maps are mutually inverse and continuous, so that S2NC1 Š S2NC1D .
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Now consider the following splitting of S2NC1D into a pair of disjoint sets which
are closed and open respectively:

S2NC1D D
˚
.ci /i 2 S

2NC1
D j jcN j D 1

	 ` ˚
.ci /i 2 S

2NC1
D j jcN j < 1

	
:

The condition in the first of these sets forces
QN
iD0.1 � jci j

2/ D 0 regardless of the
values of .c0; : : : ; cN�1/ 2 DN . Hence˚

.ci /i 2 S
2NC1
D j jcN j D 1

	
D DN

� S1:

Furthermore, when .ci /NiD0 is an element of the second set, then
QN�1
iD0 .1�jci j

2/ D 0

because 1 � jcN j2 > 0. Consequently,˚
.ci /i 2 S

2NC1
D j jcN j < 1

	
D S2N�1D �D0:

Summarizing, we obtain the decomposition

S2NC1D D
�
DN
� S1

� ` �
S2N�1D �D0

�
:

For the diagonal actions of U.1/, this decomposition of S2NC1D induces the
U.1/-equivariant short exact sequence

0 // C0.S
2N�1
D �D0/ // C.S2NC1D / // C.DN � S1/ // 0

of C �-algebras. Finally, remembering that S2N�1D and S2N�1 are equivariantly
homeomorphic for the diagonal U.1/-actions, and using standard identifications, we
obtain the following U.1/-equivariant short exact sequence of C �-algebras:

0 // C.S2N�1/˝ C0.D0/ // C.S2NC1/

// C.D/˝N ˝ C.S1/ // 0 : (5.1)

5.1. Quantum odd spheres. Recall that s denotes the isometry generating the
Toeplitz algebra T . The universal properties of the maximal tensor product (equal
to the minimal tensor product when tensoring with T ) and of the untwisted algebra
T NC1
0 show that the map

T NC1
0 3 wj 7�! 1˝j ˝ s ˝ 1˝N�j 2 T ˝NC1 (5.2)

is an isomorphism.
To see where Definition 3.2 comes from, and how it relates to noncommutative

solid tori, recall first that � denotes the symbol map from T to C.T /. When � D 0,
we denote C.S2NC1

H;�
/ by C.S2NC1H /. We have T NC1

0 D T ˝NC1, and each Ii of
Definition 3.2 is precisely the kernel of

id˝i ˝� ˝ id˝N�i W T ˝NC1 �! Bi WD T ˝i ˝ C.T /˝ T ˝N�i ; (5.3)

and so each Bi is the noncommutative solid torus algebra T ˝i ˝ C.T /˝ T ˝N�i .
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The algebras Bi and Bij and the maps � ij of Definition 3.2 are then given by

Bij WD T ˝i ˝ C.T /˝ T ˝j�i�1 ˝ C.T /˝ T ˝N�j ; i < j; i; j 2 f0; 1; : : : ; N g;

Bij WD Bj i ; j < i; i; j 2 f0; 1; : : : ; N g; and
� ij WD idj ˝� ˝ idN�j WBi ! Bij ; i ¤ j; i; j 2 f0; 1; : : : ; N g: (5.4)

Thus our definition of C.S2NC1
H;�

/ as the multipullback along the � ij is a natural
noncommutative dual to the Heegaard-type splitting of S2NC1 described in
Section 2.2.

To compute K�.C.S2NC1H;�
//, we first compute the K-theory of the untwisted

quantum sphere C.S2NC1H / by applying the Künneth theorem and then the six-
term ideal-quotient exact sequence. We then apply results of [28] to see that the
K-theory of C.S2NC1

H;�
/ is identical to that of C.S2NC1H /. Since the cocycle c on ƒ

in Lemma 3.5 is induced by a group cocycle on Zk , the corresponding twisted
multiplication on C �.ƒIE/ can be realised using Rieffel’s framework of twisted
multiplicative structures on C �-algebras arising from actions of Rk applied to the
gauge action of Tk on C �.ƒIE/ and the dense �-subalgebra spanfs�s�� W �; � 2 ƒg.
Sowe could alternatively apply [26,Main Theorem, p. 200] to prove that theK-theory
of C.S2NC1

H;�
/ is identical to that of C.S2NC1H /.

Recall that T NC1
0 is canonically isomorphic to T ˝NC1 via the map that carries

the generator wi of T NC1
0 to the elementary tensor

1˝ � � � ˝ 1˝ s ˝ 1˝ � � � ˝ 1;

where the s appears in the i th (counting from zero) tensor factor. Recall also
that we have K0.T / D Z and K1.T / D 0 with the generator in K0 being the
class of the identity element. It then follows from the Künneth theorem (see
e.g. [32, Remarks 9.3.3]) that K0.T NC1

0 / D ZŒ1� and K1.T NC1
0 / D 0. Given

m D .m0; m1; : : : ; mN / 2 ZNC1, we writeWm for the element
QN
iD0w

mi

i of T NC1
0 .

(By convention, w�ki D .w
�
i /
k for k � 0.)

Lemma 5.1. ForN � 0, there is an isomorphism of K.`2.NNC1// onto the ideal I
of T NC1

0 generated by
QN
jD0.1 � wjw

�
j / that carries the matrix unit Epq to

Wp

� NY
jD0

�
1 � wjw

�
j

��
W �q :

Proof. Let R WD
QN
jD0.1 � wjw

�
j /. As the wi are commuting isometries, we see

that w�i R D 0 D Rwi for all i , and then we deduce that

W �pR D 0 D RWp
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for all p 2 NNC1 n f0g. Similarly, observe that

.WpRW
�
q /.WaRW

�
b / D .WpR/W

�
q WaRW

�
b D ıq;awpRw

�
b :

Since .WpRW �q /� D WqRW
�
p , we see that the WpRW �q form a family of matrix

units indexed by NNC1, and so there is a homomorphism

K
�
`2.NNC1/

�
�! I

carrying each Epq to WpRW �q . Since R is nonzero, and since K.`2.NNC1// is
simple, this homomorphism is injective. Surjectivity follows from

NY
jD0

.1 � wjw
�
j / D .1 � w0w

�
0 /R D R � w0Rw

�
0 :

The following result (Theorem 1.1(1)) generalizes [2, Theorem 4.1] and [19,
Theorem 3.2].

Theorem5.2. Consider an integerN �1andanantisymmetricmatrix � 2MNC1.R/.
Then

K0
�
C.S2NC1

H;�
/
�
D ZŒ1� and K1

�
C.S2NC1

H;�
/
�
D Z:

Proof. We first consider the case where �ij D 0 for all i; j . Theorem 3.3 combined
with Lemma 5.1 and the isomorphism T NC1

0 Š T ˝NC1 given in (5.2) implies that

C.S2NC1H / Š T NC1
0 =I Š T ˝NC1=K

�
`2.NNC1/

�
: (5.5)

We claim that the inclusion

�WK
�
`2.NNC1/

�
�! T NC1

0

of Lemma 5.1 induces the zero map on K-theory. As K0.K.`2.NNC1/// D Z
is generated by ŒR�, we just have to show that ŒR� D 0 in K0.T NC1

0 / D Z. The
isomorphism T NC1

0 Š T ˝NC1 given by (5.2) carries R to

.1 � ss�/˝ .1 � ss�/˝ � � � ˝ .1 � ss�/:

Since s is an isometry, we have

Œ1 � ss�� D Œs�s � ss�� D 0
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in K0.T /. As K1.T / D 0, the Künneth isomorphism implies that

Œ.1 � ss�/˝ .1 � ss�/˝ � � � ˝ .1 � ss�/� D 0

in K0.T ˝NC1/. Therefore ŒR� is zero in K0.T NC1
0 / as claimed.

Since
K1
�
K
�
`2.NNC1/

��
D 0 D K1.T

NC1
0 /;

Theorem 9.3.2 of [32] gives the exact sequence

Z Z K0.C.S
2NC1
H //

0 .0K1.C.S
2NC1
H //

0

Hence K0.C.S2NC1H // D ZŒ1� and K1.C.S2NC1H // D Z.
For general � , we have

C.S2NC1
H;�

/ Š C �.ƒ; cIE/

by Lemma 3.5. By (3.7), the cocycle c on ƒ arises from exponentiation of an
R-valued cocycle. Hence [28, Theorem 6.1] gives

K�
�
C.S2NC1

H;�
/
�
Š K�

�
C �.ƒ; cIE/

�
Š K�

�
C �.ƒ; 1IE/

�
Š K�

�
C.S2NC1H /

�
via isomorphisms that preserve the K0-class of the identity.

Remark 5.3. An alternative proof can be obtained using the exact sequence (5.6).

5.2. Multipullback quantum complex projective spaces. In our computation of
the K-theory of C.PN .T //, we will use two auxiliary results. The first result is a
quantum version of the short exact sequence (5.1):
Lemma 5.4. With respect to the diagonal U.1/-action, for any positive integer k,
there exists a U.1/-equivariant short exact sequence of C �-algebras

0 // C.S2k�1H /˝K // C.S2kC1H / // T ˝k ˝ C.S1/ // 0: (5.6)

Proof. The starting point is the Toeplitz extension, i.e. the exact sequence

0 // K // T
� // C.S1/ // 0;

where � is the symbol map. Since the Toeplitz algebra is nuclear, so is T ˝k , whence
the sequence of C �-algebras

0 // T ˝k ˝K // T ˝k ˝ T
id˝� // T ˝k ˝ C.S1/ // 0 (5.7)
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is also exact. Equation (5.5) gives�
T ˝k ˝K

�
=K˝kC1 Š C.S2k�1H /˝K

by the nuclearity of K . So taking quotients by K˝kC1 throughout (5.7) yields
the exact sequence (5.6). The U.1/-equivariance follows from the fact that all the
identifications used are U.1/-equivariant.

The second result is a standard fact about compact-group actions, so we omit its
proof.
Lemma 5.5. Let G be a compact Hausdorff topological group and let A be a
C �-algebra with a pointwise norm continuousG-action ˛WG ! Aut.A/. Let I � A
be a closed two-sidedG-invariant ideal ofA. ThenA=I admits the inducedG-action,
and the sequence of fixed-point algebras

0 // IG // AG // .A=I /G // 0

is exact.
To compute theK-groups of the invariant subalgebraC.PN .T // WDC.S2NC1H /U.1/,

we first construct a family of short exact sequences. Fix N 2 N, N � 1. For all
k 2 f1; : : : ; N g apply the exact functor _˝K˝N�k to the sequence (5.6) to obtain
the short exact sequence

0 // C.S2k�1H /˝K˝N�kC1 // C.S2kC1H /˝K˝N�k

// T ˝k ˝ C.S1/˝K˝N�k // 0:

By Lemma 5.5, the restriction of the above sequence to U.1/-invariant subalgebras
is again exact:

0 //
�
C.S2k�1H /˝K˝N�kC1

�U.1/ //
�
C.S2kC1H /˝K˝N�k

�U.1/
//
�
T ˝k ˝ C.S1/˝K˝N�k

�U.1/ // 0 : (5.8)

Our gauge trick (2.2)–(2.3) shows that

T ˝k ˝ C.S1/˝K˝N�k

with diagonal U.1/-action is U.1/-equivariantly isomorphic with

T ˝k ˝ C.S1/˝K˝N�k

where U.1/ acts only on the C.S1/-component. Hence�
T ˝k ˝ C.S1/˝K˝N�k

�U.1/
Š T ˝k ˝K˝N�k : (5.9)
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Next, let

Sk WD
�
C.S2kC1H /˝K˝N�k

�U.1/
; k 2 f0; : : : ; N g:

Using this notation and (5.9), we can write the family of short exact sequences (5.8)
as

0 // Sk�1 // Sk // T ˝k ˝K˝N�k // 0; (5.10)

where k 2 f1; : : : ; N g.

Theorem 5.6. Let N be a positive integer. Then

K0
�
C.PN .T //

�
D ZNC1 and K1

�
C.PN .T //

�
D 0:

Proof. Since SN D C.PN .T //, it suffices to prove that K0.Sk/ D ZkC1 and
K1.Sk/ D 0 for all k 2 f1; : : : ; N g. We do this by induction on k. For k D 0, the
gauge trick gives

S0 D
�
C.S1/˝K˝N

�U.1/
ŠK˝N :

Consequently,

K0.S0/ Š K0.K/ D Z; K1.S0/ Š K1.K/ D 0:

Now assume thatK0.Sk�1/ D Zk andK1.Sk�1/ D 0. The short exact sequence
(5.10) of C �-algebras induces the six-term exact sequence of Abelian groups:

K0.Sk�1/ // K0.Sk/ // K0.T
˝k/

��
K1.T

˝k/

OO

K1.Sk/oo K1.Sk�1/:oo

(5.11)

The Künneth theorem gives K0.T ˝k/ D Z and K1.T ˝k/ D 0. Combining this
with the inductive hypothesis, the sequence (5.11) becomes

Zk // K0.Sk/ // Z

��
0

OO

K1.Sk/oo 0:oo

Exactness gives K1.Sk/ D 0, and exactness combined with the projectivity of free
Abelian groups gives K0.Sk/ D Z˚ Zk D ZkC1.
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5.3. Twisted multipullback quantum complex projective spaces. We begin by
establishing notation. Fix a positive integer N , and let � 2 MNC1.R/ be
an antisymmetric real matrix. For k; l � N , define ‚kl WD e2�i�kl . For
0 � k � l � N , let Tk;l be the universal C �-algebra generated by the isometries
sk; : : : ; sl satisfying the usual identities:

sisj D ‚ij sj si ; s�i sj D
x‚ij sj s

�
i :

We will identify Tk;l with the corresponding subalgebra of T0;N . Let K.k;l/ be the
ideal of Tk;l generated by the product

Ql
iDk.1�sis

�
i /. For each k � N , the universal

property of T0;N shows that the formula

˛k.si / WD ‚iksi

defines actions ˛k of both N and Z on T0;N , and hence on each Tl1;l2 .
The idea of the computation is the same as in the untwisted case, with small

changes due to the fact that the isometries generating the noncommutative sphere
do not commute. We regard the twisted noncommutative sphere as the quotient
of the twisted semigroup C �-algebra of NNC1 by the ideal of compact operators:
C �.NNC1; ‚/=K . A convenient presentation of C �.N; ‚/ that will be used below
comes from the fact that

C �.NNC1; ‚/ Š
�
: : :
�
.T Ì˛1

N/ Ì N
�
: : :
�

Ì˛N
N;

where the actions ˛k are determined by the cocycle ‚. While there exists a
considerable theory of semigroup C �-algebras, we do not need to use it below.
Instead, we will reduce the computation to the one done in the untwisted case.

Let � D .�k; : : : ; �l/ 2 NlC1�k be a multi-index, and let fe�g� be the standard
orthonormal basis of l2.NlC1�k/. For k� i� l , let ıi WD .0; : : : ; 1; : : : 0/ 2 NlC1�k

with 1 in the slot labeled by i . Define

�.k;l/.si /e� WD
Y

k�i<j�l

‚
�j

ij e�Cıi
:

Lemma 5.7. Let k 2 f1; : : : ; N g. In the decomposition

l2.NNC1/ D l2.Nk/˝ l2.NNC1�k/;

where the second factor corresponds to the lastN C 1�k components in NNC1, the
following equalities hold:

�.0;N/.T0;k�1K.k;N// D �.0;k�1/.T0;k�1/˝K.k;N/;

�0;N .K.0;N// D �.0;k�1/.K.0;k�1//˝K.k;N/:
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Proof. By construction, for i < k,

�.0;N/.si / 2 �.0;k�1/.T0;k�1/˝B
�
l2.NNC1�k/

�
;

�.0;N/.K.k;N// � �.0;k�1/.T0;k�1/˝K
�
l2.NNC1�k/

�
:

Now the claim of the lemma follows.

Corollary 5.8. Let k 2 f1; : : : ; N � 1g. Put C.S2k�1H;‚0j
/ WD T0;j =K.0;j /. There

exists a U(1)-equivariant short exact sequence of C �-algebras:

0 // C.S2k�3H;‚0 .k�1/
/˝K.k;N/

// C.S2k�1H;‚0k
/˝K.kC1;N/

//
�
T0;k�1 Ì˛k

Z
�
˝K.kC1;N/

// 0:

The action of U(1) is the one induced naturally from its diagonal action on T0;N .

Proof. Lemma 5.7 reduces the claim to the identity

�.0;k/.T0;k/=�.0;k/.T0;k�1K.0;k//

D �.0;k/.T0;k�1Tk;k/=�.0;k/.T0;k�1K.k;k// Š T0;k�1 Ì˛k
Z;

which immediately follows from the construction of �.0;k/.

Proof of Theorem 1.1(2). For 0 � k � N , let

Tk WD
�
C.S2kC1‚0k

/˝K.kC1;N/

�U.1/
:

Since the crossed product T0;k�1 Ì˛k
Z contains the regular representation of Z, and

hence a copy of the regular representation of U(1) on C �.Z/ D C.S1/, we get, as in
the untwisted case,��

T0;k�1 Ì˛k
Z
�
˝K.kC1;N/

�U.1/
Š T0;k�1 ˝K.kC1;N/:

Finally, as TN Š C.PN
�
.T // by Theorem 3.3 and a twisted version of Lemma 5.1

(which is straightforward to prove), the rest of the argument is the same as in the
untwisted case, with Tk in place of Sk . Therefore K0.C.PN� .T /// D ZNC1 and
K1.C.PN� .T /// D 0.

6. Noncommutative line bundles over multipullback quantum
complex projective spaces

6.1. Equivariant homomorphisms and spectral subspaces. Take a U.1/-equi-
variant �-homomorphism f WA! A0 of unital U.1/-C �-algebras, and suppose that
the U.1/-action on A is free. Then there exists a strong connection ` on A. It is
straightforward to check that `0 WD .f ˝ f / ı ` is a strong connection on A0, so
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that the U.1/-action on A0 is also free. The U.1/-equivariance of f guarantees that
its restriction to the fixed-point subalgebra B WD AU.1/ corestricts to the fixed-point
subalgebra B 0 WD .A0/U.1/. This f turns B 0 into a .B 0 � B/-bimodule given by the
usual multiplication on the left and the formula b0 � b WD b0f .b/ on the right.

Since f WA! f .A/ is a linear surjection over a field, it splits. So there exists a
linear map gWf .A/! A such that f ıg D idf .A/. We have A D g.f .A//˚ ker f .
Let fa0j gj be an extension of a basis fe0igi of f .A/ to a basis of A0. Also, let fekgk
be a basis of ker f . Then falgl WD fg.e0i /gi [ fekgk is a basis of A, and f .al/ D a

0
l

or f .al/ D 0. For any n 2 Z, we can write

`.un/ D
X
l2L

al ˝ rl.u
n/ and `0.un/ D

X
l2L0

a0l ˝ f .rl.u
n//:

HereL0 andL are respectivelym0 andm element sets, withm0 � m, and f .al/ D a0l
for l � m0 and f .al/ D 0 for l > m0.

It follows from the Chern–Galois theory of [4] that the existence of a strong
connection guarantees that spectral subspaces are finitely generated projective as left
modules over fixed-point C �-algebras. Given a strong connection ` and a spectral
subspaceAn, we have an explicit formula given in [4, Theorem 3.1] for an idempotent
En representing the spectral subspace: En

kl
WD rk.u

n/al . Hence

f .Enkl/ D f .rk.u
n//a0l for l � m0;

f .Enkl/ D 0 for l > m0,

are the matrix coefficients of an idempotent representingB 0˝B An. Using the strong
connection `0 and the linear basis fa0

l
gl , we conclude that the matrix coefficients of

an idempotent representing A0n are also f .rk.un//a0l , but with indices k; l 2 L0.
To continue this reasoning and to take care of the range of indices, it is convenient

to adopt the block-matrix notation. Let

ˇn WD
�
r1.u

n/; : : : ; rm.u
n/
�

and 
 WD .a1; : : : ; am/:

Much in the same way, let

ˇ0n WD
�
f .r1.u

n//; : : : ; f .rm0.u
n//
�

and 
 0 WD .a01; : : : ; a
0
m0/:

Then
En D ˇn

T 
 2Mm.B/

is an idempotent matrix representing An, and

.E 0/n D ˇ0n
T

 0 2Mm0.B

0/

is an idempotent matrix representing A0n. Finally, put

ˇ00n WD .f .r1.u
n//; : : : ; f .rm.u

n// DW .ˇ0n; �
0
n/

and 
 00 WD .
 0; 0; : : : ; 0/ (with m �m0 zeros at the end):

Then .E 00/n D ˇ00n
T

 00 2Mm.B

0/ is an idempotent matrix representing B 0 ˝B An.
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The crux of our argument is that .E 0/n and .E 00/n represent isomorphic left
B 0-modules. After extending .E 0/n by zeros to sizem, we obtain a matrix conjugate1
to .E 00/n:�

1 0

��0n
T

 0 1

� 
ˇ0n
T

�0n
T

! �

 0 0

� �
1 0

�0n
T

 0 1

�
D

�
ˇ0n
T

0

� �

 0 0

�
:

Here we used the fact that 
 0ˇ0n
T
D 1, which is condition (3.9) for the strong

connection `0. Following the reasoning of the previous paragraph, we have arrived at:
Theorem 6.1. Let f WA! A0 be a U.1/-equivariant �-homomorphism of unital
U.1/-C �-algebras, and let B and B 0 be the respective fixed-point C �-subalgebras.
Assume that the U.1/-action on A is free. For each n 2 Z, let An and A0n denote
the nth spectral subspaces of A and A0 respectively. Then, for any n 2 Z, there is an
isomorphism of finitely generated left B 0-modules:

B 0 ˝
B
An Š A

0
n:

In particular, the induced map .f jB/�WK0.B/! K0.B
0/ satisfies

.f jB/�
�
ŒAn�

�
D ŒA0n� for every n 2 Z:

6.2. Pairwise non-isomorphism. The goal of this section is to prove Theorem1.1(3),
i.e. to show that the line bundles over the multipullback quantum complex projective
space PN .T / associated to the Heegaard odd quantum sphere S2NC1H are classified
by their defining winding number. We will do it reducing the problem to the special
case N D 1, which was already solved elsewhere. Here the main problem is that we
do not have any U.1/-equivariant maps from C.S2NC1H / to C.S3H /. We overcome
this difficulty by finding a wrong-way equivariant map that restricted to fixed-point
subalgebras induces an isomorphism on the K-groups.

To begin with, we need to unravel the pullback structure of C.S2NC1H /:
Lemma 6.2. For any N 2 N, N > 0, the U.1/-C �-algebra C.S2NC1H / can be
presented as the following equivariant pullback:

C.S2NC1H /

prN
1

uu

prN
2

))
C.S2N�1H /˝ T

id˝� ))

T ˝N ˝ C.S1/

�˝iduu
C.S2N�1H /˝ C.S1/ :

1We are grateful to Tomasz Maszczyk for pointing this out to us.



Quantum odd spheres and complex projective spaces 857

Here
� W T ˝N 3 w 7�! .�0.w/; : : : ; �N�1.w// 2 C.S

2N�1
H /;

and �i is defined by (5.3), which is the � D 0 case of (3.1). The defining
�-homomorphisms are equivariant with respect to the diagonal action.

Proof. We adopt the definitions from (5.3) and (5.4), but now we have to play with
different N at the same time, whence the need for additional labeling:

BNi WD T ˝i ˝ C.S1/˝ T ˝.N�i/

�
i;N
j WD id˝j ˝ � ˝ id˝.N�j / :

Then, the definition of C.S2NC1H / becomes:

C.S2NC1H / WD
n
.b0; : : : ; bN / 2

NM
iD0

BNiˇ̌
8 0 � i < j � N W �

i;N
j .bi / D �

j;N
i .bj /

o
:

Denoting the logical sentence

8 0 � i < j �M � N W �
i;N
j .bi / D �

j;N
i .bj /

by PNM ..bi /i /, we can rewrite this formula as

C.S2NC1H / D
n�
.bi /i ; bN

�
2

�N�1M
iD0

BNi

�
˚
�
T ˝N ˝ C.S1/

� ˇ̌
PNN�1

�
.bi /i

�
^
�
8 0 � i � N � 1 W �

i;N
N .bi / D .�i ˝ id/.bN /

�o
: (6.1)

Next, using the exactness of the tensor product _ ˝ T (which follows from
nuclearity of T ), we can write

C.S2N�1H /˝ T D
n
.zbi /i 2

N�1M
iD0

BN�1i

ˇ̌
PN�1N�1

�
.zbi /i

�o
˝ T

D

n
.bi /i 2

N�1M
iD0

BNi
ˇ̌
PNN�1

�
.bi /i

�o
: (6.2)
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Combing (6.1) with (6.2), we arrive at:

C.S2NC1H / D
˚�
.bi /i ; bN

�
2
�
C.S2N�1H /˝ T

�
˚
�
T ˝N ˝ C.S1/

� ˇ̌
8 0 � i � N � 1 W �

i;N
N .bi / D .�i ˝ id/.bN /

	
:

Finally, we obtain

C.S2NC1H / D
˚
.x; y/ 2

�
C.S2N�1H /˝ T

�
˚
�
T ˝N ˝ C.S1/

�
j .id˝�/.x/ D .� ˝ id/.y/

	
;

which proves the lemma.

The next step is to establish a wrong-way map with the right-way inverse in
K-theory:

Lemma 6.3. Consider C.S3H /˝ T ˝.N�1/ with the diagonal U.1/-action. Then

�WC.S3H / 3 x 7�! x ˝ 1 2 C.S3H /˝ T ˝.N�1/

is a U.1/-equivariant �-homomorphism whose restriction-corestriction N� to the
U.1/-invariant subalgebras induces an isomorphism of K-groups:

N��WK�
�
C.P1.T //

�
�! K�

��
C.S3H /˝ T ˝.N�1/

�U.1/�
:

Proof. The pullback presentation of C.S3H / together with the exactness of tensoring
with T ˝.N�1/ yields two U.1/-equivariant pullback diagrams. We combine them
in the following commutative diagram of U.1/-equivariant �-homomorphisms (all
considered with the diagonal U.1/-action):

C.S3H /

�� ��

�

,,
C.S3H /˝ T ˝.N�1/

vv ""
T ˝ C.S1/

�˝id ��

id˝1

((
C.S1/˝ T

id˝1

11

id˝���

T ˝ C.S1/˝ T ˝.N�1/

�˝id ((

C.S1/˝ T ˝N

id˝�˝id{{
C.S1/˝ C.S1/

id˝1

22C.S1/˝ C.S1/˝ T ˝.N�1/ :

(6.3)
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Using the gauge isomorphisms (2.2) together with some permutations of tensor
factors, we transform the diagonal action (on the pullback components) to the action
on the rightmost factor thus obtaining the following commutative diagram:

C.S3H /
R

{{ ##

�R

,,
.C.S3H /˝ T ˝.N�1//R

zz $$
T ˝ C.S1/

�˝id ##

id˝1˝id

((
T ˝ C.S1/

id˝1˝id
11

�{{

T ˝N ˝ C.S1/

�˝id $$

T ˝N ˝ C.S1/

 zz
C.S1/˝ C.S1/

id˝1˝id

22C.S1/˝ T ˝.N�1/ ˝ C.S1/ :

(6.4)
Here the top line is U.1/-equivariantly isomorphic to the top line of the previous
diagram, and � and  are given by

�W T ˝ C.S1/ �! C.S1/˝ C.S1/;

�W t ˝ u 7�! u.1/S.�.t//˝ u.2/ ;

 W T ˝ T ˝.N�1/ ˝ C.S1/ �! C.S1/˝ T ˝.N�1/ ˝ C.S1/;

 W t ˝ Nr ˝ u 7�! S.�.t/ Nr .1//u.1/ ˝ Nr .0/ ˝ u.2/ :

Finally, to pass to the restriction-corestriction ofDiagram6.3 to theU.1/-invariant
subalgebras, it suffices to note that it is isomorphic to the restriction-corestriction of
Diagram 6.4, and that the latter is obtained by removing the rightmost factors from
the pullback components:

C.P1.T //

}} !!

N�

,,��
C.S3H /˝ T ˝.N�1/

�R�U.1/
ww ''

T

� !!

id˝1

''
T

id˝1

22

Sı�}}

T ˝N

�˝id ''

T ˝N

z ww
C.S1/

id˝1
11C.S
1/˝ T ˝.N�1/ :

Here
z W T ˝N 3 t ˝ Nr 7�! S.�.t/ Nr .1//˝ Nr .0/ 2 C.S

1/˝ T ˝.N�1/:

Due to the naturality of the Künneth formula, all three maps id˝1T ˝.N�1/ between
the pullback components induce isomorphisms onK-groups. Hence, it follows from
[12, Theorem 3.1] that also N� induces an isomorphism on K-groups.
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Proof of Theorem 1.1(3). Lemma 6.2 implies that

f WD .pr21 ˝ idT ˝.N�2// ı .pr31 ˝ idT ˝.N�3// ı � � � ı prN1

is a surjective U.1/-equivariant �-homomorphism

f WC.S2NC1H / �! C.S3H /˝ T ˝.N�1/:

Furthermore, by Lemma 6.3 we have a U.1/-equivariant �-homomorphism

�WC.S3H / �! C.S3H /˝ T ˝.N�1/;

whose restriction-corestriction N� to fixed-point subalgebras induces an isomorphism
on K-groups.

Next, the freeness of the diagonalU.1/-action on C.S2NC1H /, which follows from
Section 3.3.1 for � D 0, allows us to apply the final statement of Theorem 6.1 to infer
that the equality of K0-classes ŒC.S2NC1H /m� D ŒC.S2NC1H /n� implies the equality
of K0-classes��

C.S3H /˝ T ˝.N�1/
�
m

�
D Nf�

��
.S2NC1H /m

��
D Nf�

��
.S2NC1H /n

��
D
��
C.S3H /˝ T ˝.N�1/

�
n

�
:

(6.5)

Here by Nf wedenoted the restriction-corestriction off toU.1/-invariant subalgebras.
Much in the same way, identifying the isomorphic C �-algebras��

C.S3H /˝ T ˝.N�1/
�R�U.1/

Š
�
C.S3H /˝ T ˝.N�1/

�U.1/
;

we conclude that ��
C.S3H /˝ T ˝.N�1/

�
m

�
D N��

��
C.S3H /m

��
; (6.6)��

C.S3H /˝ T ˝.N�1/
�
n

�
D N��

��
C.S3H /n

��
: (6.7)

Now, it follows from (6.5)–(6.7) and the injectivity of N�� that ŒC.S3H /m� D ŒC.S
3
H /n�.

Finally, by an index-pairing calculation [16, Theorem 3.3], we obtain m D n.
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