The prime spectrum of the algebra $\mathbb{K}_q[X, Y] \rtimes U_q(\mathfrak{sl}_2)$ **and a classification of simple weight modules**

Vladimir V. Bavula and Tao Lu

Abstract. For the algebra A in the title, it is shown that its centre is generated by an explicit quartic element. Explicit descriptions are given of the prime, primitive and maximal spectra of the algebra A. A classification of simple weight A-modules is obtained. The classification is based on a classification of (all) simple modules of the centralizer $C_A(K)$ of the quantum Cartan element K which is given in the paper. Explicit generators and defining relations are found for the algebra $C_A(K)$ (it is generated by 5 elements subject to the defining relations two of which are quadratic and one is cubic).

Mathematics Subject Classification (2010). 17B10, 16D25, 16D60, 16D70, 16P50. *Keywords.* Prime ideal, primitive ideal, weight module, simple module, centralizer.

1. Introduction

In this paper, module means a left module, K is a field, $K^* = K \setminus \{0\}$, an element $q \in \mathbb{K}^*$ is not a root of unity, algebra means a unital K-algebra, $\mathbb{N} = \{0, 1, \ldots\}$ and $\mathbb{N}_+ = \{1, 2, \ldots\}.$

For a Hopf algebra and its module one can form a *smash product algebra* (see [\[22,](#page-57-0) 4.1.3] for detail). The algebras obtained have rich structure. However, little is known about smash product algebras; in particular, about their prime, primitive and maximal spectra and simple modules. One of the classical objects in this area is the smash product algebra $A := \mathbb{K}_q[X, Y] \rtimes U_q(\mathfrak{sl}_2)$, where $\mathbb{K}_q[X, Y] := \mathbb{K}\langle X, Y | XY = qYX \rangle$ is the *quantum plane* and $q \in \mathbb{K}^*$ is not a root of unity. As an abstract algebra, the algebra A is generated over K by elements E, F , K, K^{-1} , X, and Y subject to the defining relations (where K^{-1} is the inverse of K):

$$
KEK^{-1} = q^2E, \quad KFK^{-1} = q^{-2}F, \quad [E, F] = \frac{K - K^{-1}}{q - q^{-1}},
$$

\n
$$
EX = qXE, \quad EY = X + q^{-1}YE, \quad FX = YK^{-1} + XF, \quad FY = YF,
$$

\n
$$
KXK^{-1} = qX, \quad KYK^{-1} = q^{-1}Y, \quad qYX = XY.
$$

Tao Lu was partially supported by the Natural Science Foundation of China (NSFC) Grant 11701190.

890 V. V. Bavula and T. Lu

The algebra A admits a PBW basis and the ordering of the generators can be arbitrary. The study of semidirect product algebras has recently gained momentum: An important class of algebras — the *symplectic reflection algebras* — was introduced by Etingof and Ginzburg, [\[13\]](#page-57-1). This led to study of infinitesimal and continuous Hecke algebras by Etingof, Gan and Ginzburg, [\[14\]](#page-57-2) (see also papers of Ding, Khare, Losev, Tikaradze and Tsymbaliuk and others in this direction).

The centre of the algebra A**.** A PBW deformation of this algebra, the *quantized symplectic oscillator algebra of rank one*, was studied by Gan and Khare [\[15\]](#page-57-3) and some representations were considered. They showed that the centre of the deformed algebra is K. In this paper, we show that the centre of A is a polynomial algebra $K[C]$ (Theorem 2.10) and the generator C has degree 4:

$$
C = (1 - q^2) FYXE + FX^2 - Y^2K^{-1}E - \frac{1}{1 - q^2}YK^{-1}X + \frac{q^2}{1 - q^2}YKX.
$$

The method we use in finding the central element C of A can be summarized as follows. The algebra A is "covered" by a chain of large subalgebras. They turn out to be generalized Weyl algebras. Their central/normal elements can be determined by applying Proposition [2.4.](#page-4-0) At each step generators of the covering subalgebras are getting more complicated but their relations become simpler. At the final step, we find a central element of a large subalgebra A of A which turns out to be the central element C of the algebra A.

The prime, primitive and maximal spectra of A**.** In Section [3,](#page-10-0) we classify the prime, primitive and maximal ideals of the algebra A (Theorem [3.7,](#page-14-0) Theorem [3.11](#page-16-0) and Corollary [3.9,](#page-15-0) respectively). It is shown that every nonzero ideal has nonzero intersection with the centre of the algebra A (Corollary [3.8\)](#page-15-1). In classifying prime ideals certain localizations of the algebra A are used. The set of completely prime ideals is also described (Corollary [3.12\)](#page-16-1).

A classification of simple weight A**-modules.** An A-module M is called a *weight module* if $M = \bigoplus_{\mu \in \mathbb{K}^*} M_{\mu}$ where $M_{\mu} = \{m \in M \mid Km = \mu m\}$. In Section [6,](#page-39-0) a classification of simple weight A-modules is given. It is too technical to describe the result in the Introduction but we give a flavour and explain main ideas. The set of isomorphism classes of simple weight A-modules are partitioned into several subclasses, and each of them requires different techniques to deal with. The key point is that each weight component of a simple weight A-module is a *simple* module over the centralizer $C_A(K)$ of the quantum Cartan element K and this simple $C_A(K)$ -module can be an arbitrary simple $C_A(K)$ -module. Therefore, first we study the algebra $C_A(K)$, classify its simple modules and using this classification we classify simple weight A-modules. There are plenty of them and a

"generic/typical" simple weight A-module depends on arbitrary many independent parameters (the number of which is finite but can be arbitrary large).

The centralizer $C_A(K)$ and a classification of its simple modules. The algebra $C_A(K)$ is generated by (explicit) elements $K^{\pm 1}$, C, Θ , t, and u subject to the defining relations, Theorem [4.6](#page-21-0) ($K^{\pm 1}$ and C are central elements):

$$
\Theta \cdot t = q^2 t \cdot \Theta + (q + q^{-1})u + (1 - q^2)C,
$$

$$
\Theta \cdot u = q^{-2}u \cdot \Theta - q(1 + q^2)t + (1 - q^2)K^{-1}C,
$$

$$
t \cdot u = q^2u \cdot t, \quad \Theta \cdot t \cdot u - \frac{1}{q(1 - q^2)}u^2 - C \cdot u = \frac{q^7}{1 - q^2}t^2 - q^4K^{-1}C \cdot t.
$$

It is proved that the centre of the algebra $C_A(K)$ is $\mathbb{K}[C, K^{\pm 1}]$. The problem of classification of simple $C_A(K)$ -modules is reduced to the one for the factor algebras $\mathcal{C}^{\lambda,\mu} := C_A(K)/C_A(K)(C - \lambda, K - \mu)$ where $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$. The algebra $\mathcal{C}^{\lambda,\mu}$ is a domain (Theorem [4.11.](#page-27-0)(2)). The algebra $\mathcal{C}^{\lambda,\mu}$ is simple iff $\lambda \neq 0$ (Theorem [4.11.](#page-27-0)(1)). A classification of simple $\mathcal{C}^{\lambda,\mu}$ -modules is given in Section [5.](#page-29-0) One of the key observations is that the localization $\mathcal{C}_t^{\lambda,\mu}$ of the algebra $\mathcal{C}^{\lambda,\mu}$ at the powers of the element $t = YX$ is a central, simple, generalized Weyl algebra (Proposition [4.9\)](#page-25-0). The other one is that, for any $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, we can embed the algebra $\mathcal{C}^{\lambda,\mu}$ into a generalized Weyl algebra A (which is also a central simple algebra), see Proposition [5.3.](#page-32-0) These two facts enable us to give a complete classification of simple $C_A(K)$ -modules. The problem of classifying simple $\mathcal{C}^{\lambda,\mu}$ -modules splits into two distinct cases, namely the case when $\lambda = 0$ and the case when $\lambda \neq 0$. In the case $\lambda = 0$, we embed the algebra $\mathcal{C}^{0,\mu}$ into a skew polynomial algebra $\mathcal{R} = \mathbb{K}[h^{\pm 1}][t; \sigma]$ where $\sigma(h) = q^2 h$ (it is a subalgebra of the algebra A) for which the classification of simple modules is known. In the case $\lambda \neq 0$, we use a close relation of $\mathcal{C}^{\lambda,\mu}$ with the localization $\mathcal{C}^{\lambda,\mu}_t$, and the arguments are more complicated.

The algebra A can be seen as a quantum analogue of another classical algebra, the enveloping algebra $U(V_2 \rtimes \mathfrak{sl}_2)$ of the semidirect product Lie algebra $V_2 \rtimes \mathfrak{sl}_2$ (where V_2 is the 2-dimensional simple \mathfrak{sl}_2 -module) which was studied in [\[9\]](#page-56-0). These two algebras are similar in many ways. For example, the prime spectra of these two algebras have similar structures; the representation theory of A has many parallels with that of $U(V_2 \rtimes \mathfrak{sl}_2)$; the *quartic* Casimir element C of A degenerates to the *cubic* Casimir element of $U(V_2 \rtimes \mathfrak{sl}_2)$ as " $q \to 1$ ". The centre of $U(V_2 \rtimes \mathfrak{sl}_2)$ is generated by the cubic Casimir element, [\[24\]](#page-57-4). The study of quantum algebras usually requires more computations and the methods of this paper and [\[9\]](#page-56-0) are quite different. Much work has been done on quantized enveloping algebras of semisimple Lie algebras (see, e.g., [\[17,](#page-57-5) [18\]](#page-57-6)). In the contrast, only few examples can be found in the literature on the quantized algebras of enveloping algebras of non-semisimple Lie algebras.

2. The centre of the algebra A

In this section, it is proved that the centre $Z(A)$ of the algebra A is a polynomial algebra $\mathbb{K}[C]$ (Theorem [2.10\)](#page-8-0) and the element C is given explicitly, [\(2.14\)](#page-8-1)–[\(2.17\)](#page-8-2). Several important subalgebras and localizations of the algebra A are introduced, they are instrumental in finding the centre of A. We also show that the quantum Gelfand–Kirillov conjecture holds for the algebra A.

The algebra A. In this paper, K is a field and an element $q \in K^* = K \setminus \{0\}$ is not a root of unity. Recall that the *quantized enveloping algebra* of $s1_2$ is the K-algebra $U_q(\mathfrak{sl}_2)$ with generators E, F, K, K⁻¹ subject to the defining relations (see [\[17\]](#page-57-5)):

$$
KK^{-1} = K^{-1}K = 1, \quad KEK^{-1} = q^2E, \quad KFK^{-1} = q^{-2}F,
$$

$$
EF - FE = \frac{K - K^{-1}}{q - q^{-1}}.
$$

The centre of $U_q(\mathfrak{sl}_2)$ is a polynomial algebra $Z(U_q(\mathfrak{sl}_2)) = \mathbb{K}[\Omega]$ where $\Omega :=$ $FE + (qK + q^{-1}K^{-1})/(q - q^{-1})^2$. A Hopf algebra structure on $U_q(\mathfrak{sl}_2)$ is defined as follows:

$$
\Delta(K) = K \otimes K, \qquad \varepsilon(K) = 1, \quad S(K) = K^{-1},
$$

\n
$$
\Delta(E) = E \otimes 1 + K \otimes E, \qquad \varepsilon(E) = 0, \quad S(E) = -K^{-1}E,
$$

\n
$$
\Delta(F) = F \otimes K^{-1} + 1 \otimes F, \quad \varepsilon(F) = 0, \quad S(F) = -FK,
$$

where Δ is the comultiplication on $U_q(\mathfrak{sl}_2)$, ε is the counit and S is the antipode of $U_q(\mathfrak{sl}_2)$. Note that the Hopf algebra $U_q(\mathfrak{sl}_2)$ is neither cocommutative nor commutative. The *quantum plane* $\mathbb{K}_q[X, Y] := \mathbb{K}\langle X, Y | XY = qYX \rangle$ is a $U_q(\mathfrak{sl}_2)$ -module algebra where

$$
K \cdot X = qX, \qquad E \cdot X = 0, \qquad F \cdot X = Y,
$$

$$
K \cdot Y = q^{-1}Y, \qquad E \cdot Y = X, \qquad F \cdot Y = 0.
$$

Then one can form the smash product algebra $A := \mathbb{K}_q[X, Y] \rtimes U_q(\mathfrak{sl}_2)$. For details about smash product algebras, see [\[22\]](#page-57-0). The generators and defining relations for this algebra are given in the Introduction.

Generalized Weyl algebras.

Definition 2.1 ($[1-3]$ $[1-3]$). Let D be a ring, σ be an automorphism of D and a is an element of the centre of D. *The generalized Weyl algebra* $A := D(\sigma, a) :=$ $D[X, Y; \sigma, a]$ is a ring generated by D, X and Y subject to the defining relations:

 $X\alpha = \sigma(\alpha)X$ and $Y\alpha = \sigma^{-1}(\alpha)Y$ for all $\alpha \in D$, $YX = a$ and $XY = \sigma(a)$.

The algebra $A = \bigoplus_{n \in \mathbb{Z}} A_n$ is Z-graded where $A_n = D v_n$, $v_n = X^n$ for $n > 0$, and $v_n = Y^{-n}$ for $n < 0$ and $v_0 = 1$.

Definition 2.2 ([\[6\]](#page-56-3)). Let D be a ring and σ be its automorphism. Suppose that elements b and ρ belong to the centre of the ring D, ρ is invertible and $\sigma(\rho) = \rho$. Then $E := D[X, Y; \sigma, b, \rho]$ is a ring generated by D, X and Y subject to the defining relations:

 $X\alpha = \sigma(\alpha)X$ and $Y\alpha = \sigma^{-1}(\alpha)Y$ for all $\alpha \in D$, and $XY - \rho YX = b$.

An element d of a ring D is *normal* if $dD = Dd$. The next proposition shows that the rings E are GWAs and under a (mild) condition they have a "canonical" normal element.

Proposition 2.3. *Let* $E = D[X, Y; \sigma, b, \rho]$ *. Then*

- (1) [\[6,](#page-56-3) Lemma 1.3] *The following statements are equivalent:*
	- (a) [\[6,](#page-56-3) Corollary 1.4] $C = \rho(YX + \alpha) = XY + \sigma(\alpha)$ is a normal element in E for some central element $\alpha \in D$,
	- (b) $\rho \alpha \sigma(\alpha) = b$ *for some central element* $\alpha \in D$ *.*
- (2) [\[6,](#page-56-3) Corollary 1.4] *If one of the equivalent conditions of statement 1 holds then the ring* $E = D[C][X, Y; \sigma, a = \rho^{-1}C - \alpha]$ *is a GWA where* $\sigma(C) = \rho C$ *.*

The next proposition is a corollary of Proposition [2.3](#page-4-1) when $\rho = 1$. The rings E with $\rho = 1$ admit a "canonical" central element (under a mild condition).

Proposition 2.4. *Let* $E = D[X, Y; \sigma, b, \rho = 1]$ *. Then*

- (1) [\[6,](#page-56-3) Lemma 1.5] *The following statements are equivalent:*
	- (a) $C = YX + \alpha = XY + \sigma(\alpha)$ is a central element in E for some central *element* $\alpha \in D$ *,*
	- (b) $\alpha \sigma(\alpha) = b$ *for some central element* $\alpha \in D$ *.*
- (2) [\[6,](#page-56-3) Corollary 1.6] *If one of the equivalent conditions of statement 1 holds then the ring* $E = D[C][X, Y; \sigma, a = C - \alpha]$ *is a GWA where* $\sigma(C) = C$ *.*

An involution τ **of A.** The algebra A admits the following involution τ (see [\[15,](#page-57-3) p. 693]):

$$
\tau(E) = -FK, \quad \tau(F) = -K^{-1}E, \quad \tau(K) = K, \quad \tau(K^{-1}) = K^{-1},
$$

$$
\tau(X) = Y, \quad \tau(Y) = X.
$$
 (2.1)

For an algebra B , we denote by $Z(B)$ its centre.

The algebra $\mathbb E$ **is a GWA.** Let $\mathbb E$ be the subalgebra of A which is generated by the elements E, X , and Y. The elements E, X , and Y satisfying the defining relations

$$
EX = qXE, \quad YX = q^{-1}XY, \quad \text{and} \quad EY - q^{-1}YE = X.
$$

Therefore, $\mathbb{E} = \mathbb{K}[X][E, Y; \sigma, b = X, \rho = q^{-1}]$ where $\sigma(X) = qX$. The polynomial $\alpha = (q/(1 - q^2))X$ is a solution to the equation $q^{-1}\alpha - \sigma(\alpha) = X$. Hence, by Proposition [2.3,](#page-4-1) the element

$$
\tilde{C} = q^{-1} \left(YE + \frac{q}{1 - q^2} X \right) = EY + \frac{q^2}{1 - q^2} X
$$

is a normal element of E and the algebra E is a GWA

$$
\mathbb{E} = \mathbb{K}[\widetilde{C}, X] \bigg[E, Y; \sigma, a := q \widetilde{C} - \frac{q}{1 - q^2} X \bigg],
$$

where $\sigma(\tilde{C}) = q^{-1}\tilde{C}, \sigma(X) = qX$. Let

$$
\varphi := (1 - q^2)\tilde{C}.
$$
\n(2.2)

Then $\varphi = X + (q^{-1} - q)YE = (1 - q^2)EY + q^2X$. Hence,

$$
\mathbb{E} = \mathbb{K}[\varphi, X] \bigg[E, Y; \sigma, a = \frac{\varphi - X}{q^{-1} - q} \bigg], \tag{2.3}
$$

where $\sigma(\varphi) = q^{-1}\varphi$ and $\sigma(X) = qX$. Using the defining relations of the GWA E, we see that the set $\{Y^i \mid i \in \mathbb{N}\}$ is a left and right Ore set in E. The localization of the algebra $\mathbb E$ at this set, $\mathbb E_Y := \mathbb K[\varphi, X][Y^{\pm 1}; \sigma]$ is the skew Laurent polynomial ring. Similarly, the set $\{X^i \mid i \in \mathbb{N}\}$ is a left and right Ore set in \mathbb{E}_Y and the algebra

$$
\mathbb{E}_{Y,X} = \mathbb{K}[\varphi, X^{\pm 1}][Y^{\pm 1}; \sigma] = \mathbb{K}[\Phi] \otimes \mathbb{K}[X^{\pm 1}][Y^{\pm 1}; \sigma] \tag{2.4}
$$

is the tensor product of the polynomial algebra $\mathbb{K}[\Phi]$ where $\Phi = X\varphi$ and the Laurent polynomial algebra $\mathbb{K}[X^{\pm 1}][Y^{\pm 1}; \sigma]$ which is a central simple algebra. In particular, $Z(\mathbb{E}_{Y,X}) = \mathbb{K}[\Phi]$. So, we have the inclusion of algebras $\mathbb{E} \subseteq \mathbb{E}_Y \subseteq \mathbb{E}_{Y,X}$.

The next lemma describes the centre of the algebras \mathbb{E} , \mathbb{E}_Y and $\mathbb{E}_{Y,X}$.

Lemma 2.5. $Z(\mathbb{E}) = Z(\mathbb{E}_Y) = Z(\mathbb{E}_{Y,X}) = \mathbb{K}[\Phi]$ is a polynomial algebra where $\Phi := X\varphi.$

Proof. By [\(2.4\)](#page-5-0), $\mathbb{K}[\Phi] \subseteq Z(\mathbb{E}) \subseteq Z(\mathbb{E}_Y) \subseteq Z(\mathbb{E}_{Y,X}) = \mathbb{K}[\Phi]$, and the result follows. \Box

We have the following commutation relations:

$$
X\varphi = \varphi X, \quad Y\varphi = q\varphi Y, \quad E\varphi = q^{-1}\varphi E, \quad K\varphi = q\varphi K. \tag{2.5}
$$

$$
X\Phi = \Phi X, \quad Y\Phi = \Phi Y, \quad E\Phi = \Phi E, \qquad K\Phi = q^2 \Phi K. \tag{2.6}
$$

Lemma 2.6. (1) $[F, \varphi] = YK$.

- (2) *The powers of* φ *form a left and right Ore set in A.*
- (3) *The powers of* X *form a left and right Ore set in* A*.*
- (4) *The powers of* Y *form a left and right Ore set in* A*.*

Proof. (1) $[F, \varphi] = [F, X + (q^{-1} - q)YE]$

$$
= YK^{-1} + (q^{-1} - q)Y\left(-\frac{K - K^{-1}}{q - q^{-1}}\right) = YK.
$$

(2) Statement 2 follows at once from the equalities [\(2.5\)](#page-5-1) and statement 1.

(3) The statement follows at once from the defining relations of the algebra A where X is involved.

(4) The statement follows at once from the defining relations of the algebra A where Y is involved. \Box

The algebra $\mathbb F$ is a GWA. Let $\mathbb F$ be the subalgebra of A which is generated by the elements F, X, and $Y' := YK^{-1}$. The elements F, X and Y' satisfy the defining relations

$$
FY'=q^{-2}Y'F, \quad XY'=q^2Y'X, \text{ and } FX-XF=Y'.
$$

Therefore, the algebra $\mathbb{F} = \mathbb{K}[Y'] [F, X; \sigma, b = Y', \rho = 1]$ where $\sigma(Y') = q^{-2} Y'$. The polynomial $\alpha = (1/(1-q^{-2}))Y' \in \mathbb{K}[Y']$ is a solution to the equation $\alpha - \sigma(\alpha) = Y'$. By Proposition [2.4,](#page-4-0) the element

$$
C' := XF + \frac{1}{1 - q^{-2}}Y' = FX + \frac{1}{q^2 - 1}Y'
$$

belongs to the centre of the GWA

$$
\mathbb{F} = \mathbb{K}[C', Y'] \bigg[F, X; \sigma, a = C' - \frac{1}{1 - q^{-2}} Y' \bigg].
$$

Let

$$
\psi := (1 - q^2)C'.
$$
 (2.7)

Then $\psi = (1 - q^2)FX - Y' = (1 - q^2)XF - q^2Y' \in Z(\mathbb{F})$ and

$$
\mathbb{F} = \mathbb{K}[\psi, Y'] \bigg[F, X; \sigma, a = \frac{\psi + q^2 Y'}{1 - q^2} \bigg],
$$
\n(2.8)

where $\sigma(\psi) = \psi$ and $\sigma(Y') = q^{-2}Y'$. Similar to the algebra E, the localization of the algebra $\mathbb F$ at the powers of the element X is equal to

$$
\mathbb{F}_X := \mathbb{K}[\psi, Y'][X^{\pm 1}; \sigma^{-1}] = \mathbb{K}[\psi] \otimes \mathbb{K}[Y'][X^{\pm 1}; \sigma^{-1}],
$$

where σ is defined in [\(2.8\)](#page-6-0). The centre of the algebra $\mathbb{K}[Y'] [X^{\pm 1}; \sigma^{-1}]$ is \mathbb{K} . Hence, $Z(\mathbb{F}_X) = \mathbb{K}[\psi].$

896 V. V. Bavula and T. Lu

Lemma 2.7. $Z(\mathbb{F}) = Z(\mathbb{F}_X) = \mathbb{K}[\psi].$

Proof. The result follows from the inclusions $\mathbb{K}[\psi] \subseteq Z(\mathbb{F}) \subseteq Z(\mathbb{F}_X) = \mathbb{K}[\psi]$. \Box

The GWA A. Let T be the subalgebra of A generated by the elements $K^{\pm 1}$, X, and Y. Clearly,

$$
T := \Lambda[K^{\pm 1}; \tau],\tag{2.9}
$$

where $\Lambda := \mathbb{K} \langle X, Y | XY = qYX \rangle$, and $\tau(X) = qX$ and $\tau(Y) = q^{-1}Y$. It is easy to determine the centre of the algebra T .

Lemma 2.8. $Z(T) = \mathbb{K}[z]$ where $z := KYX$.

Proof. Clearly, the element $z = K Y X$ belongs to the centre of the algebra T. The centralizer $C_T(K)$ is equal to $\mathbb{K}[K^{\pm 1}, YX]$. Then the centralizer $C_T(K, X)$ is equal to $\mathbb{K}[z]$, hence $Z(T) = \mathbb{K}[z]$. \Box

Let A be the subalgebra of A generated by the algebra T and the elements φ and ψ . The generators $K^{\pm 1}$, X, Y, φ , and ψ satisfy the following relations:

$$
\varphi X = X\varphi, \quad \varphi Y = q^{-1}Y\varphi, \quad \varphi K = q^{-1}K\varphi,
$$

$$
\psi X = X\psi, \quad \psi Y = qY\psi, \quad \psi K = qK\psi, \quad \varphi\psi - \psi\varphi = -q(1 - q^2)z.
$$

These relations together with the defining relations of the algebra T are defining relations of the algebra A . In more detail, let, for a moment, A' be the algebra generated by the defining relations as above. We will see $A' = A$. Indeed,

$$
\mathbb{A}' = T[\varphi, \psi; \sigma, b = -q(1 - q^2)z, \rho = 1].
$$

Hence, the set of elements $\{K^i X^j Y^k \varphi^l \psi^m \mid i \in \mathbb{Z}, j, k, l, m \in \mathbb{N}\}$ is a basis of the algebra A' . This set is also a basis for the algebra A . This follows from the explicit expressions for the elements $\varphi = (q^{-1} - q)YE + X$ and $\psi = (1 - q^2)XF - q^2YK^{-1}$. In particular, the leading terms of φ and ψ are equal to $(q^{-1} - q)YE$ and $(1 - q^2)XF$, respectively $(\deg(K^{\pm 1}) = 0)$. So, $\mathbb{A} = \mathbb{A}'$, i.e.,

$$
\mathbb{A} = T[\varphi, \psi; \sigma, b = -q(1 - q^2)z, \rho = 1],
$$

where $\sigma(X) = X$, $\sigma(Y) = q^{-1}Y$, and $\sigma(K) = q^{-1}K$. Recall that the element b belongs to the centre of the algebra T (Lemma [2.8\)](#page-7-0). The element $\alpha = q^3 z$ is a solution to the equation $\alpha - \sigma(\alpha) = b$. Then, by Proposition [2.4,](#page-4-0) the element

$$
C'' = \psi \varphi + q^3 z = \varphi \psi + qz
$$

is a central element of the algebra A (since $\sigma(z) = q^{-2}z$) which is the GWA

$$
\mathbb{A} = T[C''][\varphi, \psi; \sigma, a = C'' - q^3 z],
$$

where $\sigma(C'') = C''$, $\sigma(X) = X$, $\sigma(Y) = q^{-1}Y$, $\sigma(K) = q^{-1}K$.

The prime spectrum of the algebra $\mathbb{K}_q[X, Y] \rtimes U_q(\mathfrak{sl}_2)$

Let
$$
C := C''/(1 - q^2)
$$
. Then
\n
$$
C = (1 - q^2)^{-1}(\psi \varphi + q^3 z) = (1 - q^2)^{-1}(\varphi \psi + qz), \qquad (2.10)
$$

is a central element of the GWA

$$
\mathbb{A} = T[C][\varphi, \psi; \sigma, a = (1 - q^2)C - q^3 z], \tag{2.11}
$$

where $\sigma(C) = C$, $\sigma(X) = X$, $\sigma(Y) = q^{-1}Y$, and $\sigma(K) = q^{-1}K$. Using expressions of the elements $\varphi = X + (q^{-1} - 1)YE$ and $\psi = (1 - q^2)XF - q^2YK^{-1}$, we see that

$$
\mathbb{A}_{X,Y} = A_{X,Y}.\tag{2.12}
$$

Hence, $C \in Z(A)$. We now show our first main result: $Z(A) = K[C]$ (Theorem 2.10). In order to show this fact we need to consider the localization $A_{X,Y,\varphi}$. Let $\mathbb{T} := T_{X,Y} = \Lambda_{X,Y}[K^{\pm 1}; \tau]$ where τ is defined in (2.9) and $\Lambda_{X,Y}$ is the localization of the algebra Λ at the powers of the elements X and Y. By (2.12) and (2.11),

$$
A_{X,Y,\varphi} = \mathbb{A}_{X,Y,\varphi} = T_{X,Y}[C][\varphi^{\pm 1}; \sigma] = \mathbb{K}[C] \otimes \mathbb{T}[\varphi^{\pm 1}; \sigma] = \mathbb{K}[C] \otimes \Lambda', \tag{2.13}
$$

where $\Lambda' = \mathbb{T}[\varphi^{\pm 1}; \sigma]$ and σ is as in (2.11).

Lemma 2.9. (1) $Z(\Lambda') = K$. (2) The algebra Λ' is a simple algebra.

Proof. (1) Let $u = \sum \lambda_{i,j,k,l} K^i X^j Y^k \varphi^l \in Z(\Lambda)$, where $\lambda_{i,j,k,l} \in \mathbb{K}$. Since $[K, u] = 0$, we have $j - k + l = 0$. Similarly, since $[X, u] = [Y, u] = [\varphi, u] = 0$, we have the following equations: $-i + k = 0$, $i - j + l = 0$, $-i - k = 0$, respectively. These equations imply that $i = j = k = l = 0$. Thus $Z(\Lambda) = \mathbb{K}$.

(2) Since the algebra Λ' is central, it is a simple algebra, by [16, Corollary 1.5.(a)]. \Box

Theorem 2.10. The centre $Z(A)$ of the algebra A is the polynomial algebra in one variable $K[C]$.

Proof. By (2.13) and Lemma 2.9. (1),
$$
Z(A_{X,Y,\varphi}) = \mathbb{K}[C]
$$
. Hence, $Z(A) = \mathbb{K}[C]$.

Using the defining relations of the algebra A , we can rewrite the central element C as follows:

$$
C = (1 - q^2) FYXE + FX^2 - Y^2 K^{-1} E - \frac{1}{1 - q^2} Y K^{-1} X + \frac{q^2}{1 - q^2} Y K X.
$$
\n(2.14)

$$
C = (FE - q2 EF)YX + q2 FX2 - K-1 EY2.
$$
\n(2.15)

$$
C = FX(EY - qYE) - K^{-1}EY^{2} + \frac{q^{3}}{1 - q^{2}}(K - K^{-1})YX.
$$
 (2.16)

$$
C = (1 - q^2)FEYX + \frac{q^3}{1 - q^2}(K - K^{-1})YX + q^2FX^2 - K^{-1}EY^2.
$$
 (2.17)

897

The subalgebra A of A. Let A be the subalgebra of A generated by the elements $K^{\pm 1}$, E, X, and Y. The properties of this algebra were studied in [\[8\]](#page-56-5) where the prime, maximal and primitive spectrum of A were found. In particular, the algebra

$$
\mathcal{A} = \mathbb{E}[K^{\pm 1}; \tau] \tag{2.18}
$$

is a skew Laurent polynomial algebra where $\tau(E) = q^2 E$, $\tau(X) = qX$, and $\tau(Y) = q^{-1}Y$. The elements $X, \varphi \in A$ are normal elements of the algebra A. The set $\mathcal{S}_{X,\varphi} := \{X^i\varphi^j \mid i,j \in \mathbb{N}\}\$ is a left and right denominator set of the algebras A and A. Clearly $A_{X,\varphi} := \mathcal{S}_{X,\varphi}^{-1} A \subseteq A_{X,\varphi} := \mathcal{S}_{X,\varphi}^{-1} A$.

Lemma 2.11 ([\[8\]](#page-56-5)). *The algebra* $A_{X,\varphi}$ *is a central simple algebra.*

Using the defining relations of the algebra A , the algebra A is a skew polynomial algebra

$$
A = \mathcal{A}[F; \sigma, \delta] \tag{2.19}
$$

where σ is an automorphism of A such that $\sigma(K) = q^2 K$, $\sigma(E) = E$, $\sigma(X) = X$, $\sigma(Y) = Y$; and δ is a σ -derivation of the algebra A such that $\delta(K) = 0$, $\delta(E) =$ $(K - K^{-1})/(q - q^{-1}), \delta(X) = YK^{-1}$, and $\delta(Y) = 0$. For an element $a \in A$, let $\deg_F(a)$ be its F-degree. Since the algebra A is a domain,

$$
\deg_F(ab) = \deg_F(a) + \deg_F(b)
$$

for all elements $a, b \in A$.

Lemma 2.12. *The algebra* $A_{X,\varphi} = \mathbb{K}[C] \otimes A_{X,\varphi}$ *is a tensor product of algebras.*

Proof. Recall that $\varphi = EY - qYE$. Then the equality [\(2.16\)](#page-8-7) can be written as $C = FX\varphi - K^{-1}EY^2 + (q^3/(1-q^2))(K - K^{-1})YX$. The element $X\varphi$ is invertible in $A_{X,\varphi}$. Now, using [\(2.19\)](#page-9-0), we see that

$$
A_{X,\varphi} = \mathcal{A}_{X,\varphi}[F;\sigma,\delta] = \mathcal{A}_{X,\varphi}[C] = \mathbb{K}[C] \otimes \mathcal{A}_{X,\varphi}.
$$

Quantum Gelfand–Kirillov conjecture for A**.** If we view A as the quantum analogue of the enveloping algebra $U(V_2 \rtimes \mathfrak{sl}_2)$, a natural question is whether A satisfies the quantum Gelfand–Kirillov conjecture. Recall that a *quantum Weyl field* over \mathbb{K} is the field of fractions of a quantum affine space. We say that a K -algebra A admitting a skew field of fractions $Frac(A)$ satisfies the *quantum Gelfand–Kirillov conjecture* if $Frac(A)$ is isomorphic to a quantum Weyl field over a purely transcendental field extension of \mathbb{K} ; see [\[11,](#page-57-8) II.10, p. 230].

Theorem 2.13. *The quantum Gelfand–Kirillov conjecture holds for the algebra* A*.*

Proof. This follows immediately from (2.13) .

The prime spectrum of the algebra $\mathbb{K}_q[X, Y] \rtimes U_q(\mathfrak{sl}_2)$ 899

3. Prime, primitive and maximal spectra of A

The aim of this section is to give classifications of prime, primitive and maximal ideals of the algebra A (Theorem [3.7,](#page-14-0) Theorem [3.11](#page-16-0) and Corollary [3.9\)](#page-15-0). It is proved that every nonzero ideal of the algebra A has nonzero intersection with the centre of A (Corollary [3.8\)](#page-15-1). The set of completely prime ideals of the algebra A is described in Corollary [3.12.](#page-16-1) Our goal is a description of the prime spectrum of the algebra A together with their inclusions. Next several results are steps in this direction, they are interesting in their own right.

Lemma 3.1. *The following identities hold in the algebra* A*.*

(1)
$$
FX^i = X^iF + ((1 - q^{2i})/(1 - q^2))YK^{-1}X^{i-1}
$$
.
\n(2) $XF^i = F^iX - ((1 - q^{2i})/(1 - q^2))YF^{i-1}K^{-1}$.

Proof. By induction on i and using the defining relations of A.

Let R be a ring. For an element $r \in R$, we denote by (r) the (two-sided) ideal of R generated by the element r .

Lemma 3.2. (1) *In the algebra A,* $(X) = (Y) = (\varphi) = AX +AY$.

(2)
$$
A/(X) \simeq U_q(\mathfrak{sl}_2)
$$
.

Proof. (1) The equality $(X) = (Y)$ follows from the equalities $FX = YK^{-1} + XF$ and $EY = X + q^{-1}YE$. The inclusion $(\varphi) \subseteq (Y)$ follows from the equality $\varphi = EY - qYE$. The reverse inclusion $(\varphi) \supseteq (Y)$ follows from $Y = [F, \varphi]K^{-1}$ (Lemma [2.6\)](#page-5-2). Let us show that $XA \subseteq AX + AY$. Recall that X is a normal element of A . Then by (2.19) ,

$$
XA = \sum_{k \ge 0} AXF^{k} = AX + \sum_{k \ge 1} AXF^{k} \subseteq AX + AY
$$

(the inclusion follows from Lemma $3.1(2)$). Then

$$
(X) = AXA \subseteq AX + AY \subseteq (X, Y) = (X),
$$

i.e., $(X) = AX +AY$.

(2) By statement 1, $A/(X) = A/(X, Y) \simeq U_q(\mathfrak{sl}_2)$.

The next result shows that the elements X and φ are rather special.

Lemma 3.3. (1) *For all* $i \ge 1$, $(X^{i}) = (X)^{i}$.

(2) *For all* $i \ge 1$, $(\varphi^{i})_X = (\varphi)^{i}_X = A_X$.

 \Box

Proof. (1) To prove the statement we use induction on i. The case $i = 1$ is obvious. Suppose that $i > 1$ and the equality $(X^{j}) = (X)^{j}$ holds for all $1 \le j \le i - 1$. By Lemma [3.1.](#page-10-1)(1), the element $YX^{i-1} \in (X^i)$. Now,

$$
(X)^{i} = (X)(X)^{i-1} = (X)(X^{i-1}) = AXAX^{i-1}A \subseteq (X^{i}) + AYX^{i-1}A \subseteq (X^{i}).
$$

Therefore, $(X)^i = (X^i)$.

(2) It suffices to show that $(\varphi^i)_X = A_X$ for all $i \ge 1$. The case $i = 1$ follows from the equality of ideals $(\varphi) = (X)$ in the algebra A (Lemma [3.2\)](#page-10-2). We use induction on *i*. Suppose that the equality is true for all $i' < i$. By Lemma [2.6.](#page-5-2)(1), $[F, \varphi^i] = ((1 - q^{-2i})/(1 - q^{-2})) Y \overline{K} \varphi^{i-1}$, hence $Y \varphi^{i-1} \in (\varphi^i)$. Using the equalities $EY - q^{-1}YE = X$ and $E\varphi = q^{-1}\varphi E$, we see that

$$
EY\varphi^{i-1} - q^{-i}Y\varphi^{i-1}E = (EY - q^{-1}YE)\varphi^{i-1} = X\varphi^{i-1}.
$$

Now, $(\varphi^i)_X \supseteq (\varphi^{i-1})_X = A_X$, by induction. Therefore, $(\varphi^i)_X = A_X$ for all *i*.

One of the most difficult steps in classification of the prime ideals of the algebra A is to show that each maximal ideal q of the centre $Z(A) = \mathbb{K}[C]$ generates the prime ideal Aq of the algebra A. There are two distinct cases: $q \neq (C)$ and $q = (C)$. The next theorem deals with the first case.

Theorem 3.4. *Let* $q \in Max(\mathbb{K}[C]) \setminus \{(C)\}$ *. Then*

(1) *The ideal* $(q) := Aq$ *of* A *is a maximal, completely prime ideal.*

(2) *The factor algebra* $A/(\mathfrak{q})$ *is a simple algebra.*

Proof. Notice that $q = \mathbb{K}[C]q'$ where $q' = q'(C)$ is an irreducible monic polynomial such that $q'(0) \in \mathbb{K}^*$.

(i) *The factor algebra* $A/(\mathfrak{q})$ *is a simple algebra, i.e.,* (q) *is a maximal ideal of* A: Consider the chain of localizations

$$
A/(\mathfrak{q}) \longrightarrow \frac{A_X}{(\mathfrak{q})_X} \longrightarrow \frac{A_{X,\varphi}}{(\mathfrak{q})_{X,\varphi}}.
$$

By Lemma [2.12,](#page-9-1) $A_{X,\varphi}/(\mathfrak{q})_{X,\varphi} \simeq L_{\mathfrak{q}} \otimes A_{X,\varphi}$ where $L_{\mathfrak{q}} := \mathbb{K}[C]/\mathfrak{q}$ is a finite field extension of K. By Lemma [2.11,](#page-9-2) the algebra $A_{X,\varphi}$ is a central simple algebra. Hence, the algebra $A_X/(\mathfrak{q})_X$ is simple iff $(\varphi^i, \mathfrak{q})_X = A_X$ for all $i \ge 1$. By Lemma [3.3.](#page-10-3)(2), $(\varphi^i)_X = A_X$ for all $i \ge 1$. Therefore, the algebra $A_X / (q)_X$ is simple. Hence, the algebra $A/(\mathfrak{q})$ is simple iff $(X^i, \mathfrak{q}) = A$ for all $i \geq 1$.

By Lemma [3.3.](#page-10-3)(1), $(X^i) = (X)^i$ for all $i \ge 1$. Therefore, $(X^i, \mathfrak{q}) = (X)^i + (\mathfrak{q})$ for all $i \ge 1$. It remains to show that $(X)^{i} + (q) = A$ for all $i \ge 1$. By Lemma [3.2.](#page-10-2)(1), $(X) = (X, Y)$. If $i = 1$ then $(X) + (q) = (X, Y, q) = (X, Y, q'(0)) = A$, by [\(2.14\)](#page-8-1) and $q'(0) \in \mathbb{K}^*$. Now,

$$
A = A^{i} = ((X) + (\mathfrak{q}))^{i} \subseteq (X)^{i} + (\mathfrak{q}) \subseteq A,
$$

i.e., $(X)^i + (q) = A$, as required.

(ii) (q) *is a completely prime ideal of A*: The set $S = \{X^i\varphi^j \mid i, j \in \mathbb{N}\}\)$ is a denominator set of the algebra A. Since $A_{X,\varphi}/(\mathfrak{q})_{X,\varphi} \simeq \delta^{-1}(A/(\mathfrak{q}))$ is a (nonzero) algebra and (q) is a maximal ideal of the algebra A, we have that tor $s(A/(\mathfrak{q}))$ is an ideal of the algebra $A/(\mathfrak{q})$ distinct from $A/(\mathfrak{q})$, hence tor $\mathfrak{g}(A/(\mathfrak{q})) = 0$. This means that the algebra $A/(\mathfrak{q})$ is a subalgebra of the algebra $A_{X,\varphi}/(\mathfrak{q})_{X,\varphi} \simeq L_{\mathfrak{q}} \otimes A_{X,\varphi}$, which is a domain. Therefore, the ideal (q) of A is a completely prime ideal.

(iii) $Z(A/(\mathfrak{q})) = L_{\mathfrak{q}}$: By Lemma [2.11,](#page-9-2) $Z(A_{X,\varphi}) = \mathbb{K}$, and $A/(\mathfrak{q}) \subseteq A_{X,\varphi}/(\mathfrak{q})_{X,\varphi}$ $\simeq L_{\mathfrak{q}} \otimes A_{X,\varphi}$, hence $Z(A/(\mathfrak{q})) = L_{\mathfrak{q}}$. \Box

The case where $q = (C)$ is dealt with in the next proposition.

Proposition 3.5. $A \cap (C)_{X,\varphi} = (C)$ and the ideal (C) of A is a completely prime *ideal.*

Proof. Recall that $A = A[F; \sigma, \delta]$ (see [\(2.19\)](#page-9-0)), $\Phi = X\varphi \in A$ is a product of normal elements X and φ in A and, by [\(2.16\)](#page-8-7), the central element C can be written as $C = \Phi F + s$ where

$$
\widetilde{y} := \frac{q^4}{1 - q^2} Y K^{-1} - \frac{1}{1 - q^2} Y K
$$
 and $s = -q^2 K^{-1} E Y^2 - X \widetilde{y}.$

(i) If $Xf \in (C)$ *for some* $f \in A$ *then* $f \in (C)$: Notice that $Xf = Cg$ for some $g \in A$. To prove the statement (i), we use induction on the degree $m = \deg_F(f)$ of the element $f \in A$. Notice that A is a domain and $\deg_F (fg) = \deg_F (f) + \deg_F (g)$ for all $f, g \in A$. The case when $m \leq 0$ i.e., $f \in A$, is obvious since the equality $Xf = Cg$ holds iff $f = g = 0$ (since $\deg_F (Xf) \leq 0$ and $\deg_F (Cg) \geq 1$ providing $g \neq 0$). So, we may assume that $m \geq 1$. We can write the element f as a sum $f = f_0 + f_1F + \cdots + f_mF^m$ where $f_i \in A$ and $f_m \neq 0$. The equality $Xf = Cg$ implies that $\deg_F(g) = \deg_F(Xf) - \deg_F(C) = m - 1$. Therefore, $g = g_0 + g_1 F + \cdots + g_{m-1} F^{m-1}$ for some $g_i \in A$ and $g_{m-1} \neq 0$. Then (where δ is defined in (2.19))

$$
Xf_0 + Xf_1F + \dots + Xf_mF^m
$$

= $(\Phi F + s)(g_0 + g_1F + \dots + g_{m-1}F^{m-1})$
= $\Phi(\sigma(g_0)F + \delta(g_0)) + \Phi(\sigma(g_1)F + \delta(g_1))F + \dots + \Phi(\sigma(g_{m-1})F + \delta(g_{m-1}))F^{m-1} + sg_0 + sg_1F + \dots + sg_{m-1}F^{m-1}$
= $\Phi\delta(g_0) + sg_0 + (\Phi\sigma(g_0) + \Phi\delta(g_1) + sg_1)F + \dots + \Phi\sigma(g_{m-1})F^m$. (3.1)

Comparing the terms of degree zero we have the equality

$$
Xf_0 = \Phi \delta(g_0) + sg_0 = X\varphi \delta(g_0) + (-q^2K^{-1}EY^2 - X\tilde{y})g_0,
$$

i.e., $X(f_0 - \varphi \delta(g_0) + \tilde{y}g_0) = -q^2 K^{-1} E Y^2 g_0$. All the terms in this equality belong to the algebra A. Recall that X is a normal element in A such that A/AX is a domain (see [\[8\]](#page-56-5)) and the element $K^{-1}EY^2$ does not belong to the ideal AX. Hence we have $g_0 \in AX$, i.e., $g_0 = Xh_0$ for some $h_0 \in A$. Now the element g can be written as $g = Xh_0 + g'F$, where $g' = 0$ if $m = 1$, and $\deg_F(g') = m - 2 = \deg_F(g) - 1$ if $m \ge 2$. Now, $Xf = C(Xh_0 + g'F)$ and so $X(f - Ch_0) = Cg'F$. Notice that Cg/F has zero constant term as a noncommutative polynomial in F (where the coefficients are written on the left). Therefore, the element $f - Ch_0$ has zero constant term, and hence can be written as $f - Ch_0 = f'F$ for some $f' \in A$ with

$$
\deg_F(f') + \deg_F(F) = \deg_F(f'F) = \deg_F(f') + 1
$$

=
$$
\deg_F(f - Ch_0) \le \max\left(\deg_F(f), \deg_F(Ch_0)\right) = m.
$$

Notice that, $\deg_F(f') < \deg_F(f)$. Now, $Cg'F = X(f - Ch_0) = Xf'F$, hence $Xf' = Cg' \in (C)$ (by deleting F). By induction, $f' \in (C)$, and then

$$
f = Ch_0 + f'F \in (C),
$$

as required.

(ii) If $\varphi f \in (C)$ *for some* $f \in A$ *then* $f \in (C)$: Notice that $\varphi f = Cg$ for some $g \in A$. To prove the statement (ii) we use similar arguments to the ones given in the proof of the statement (i). We use induction on $m = \deg_F(f)$. The case where $m \le 0$, i.e., $f \in A$ is obvious since the equality $\varphi f = Cg$ holds iff $f = g = 0$ (since $\deg_F(\varphi f) \leq 0$ and $\deg_F(Cg) \geq 1$ providing $g \neq 0$). So we may assume that $m \ge 1$. We can write the element f as a sum $f = f_0 + f_1F + \cdots + f_mF^m$ where $f_i \in A$ and $f_m \neq 0$. Then the equality $\varphi f = Cg$ implies that $\deg_F(g) =$ $\deg_F(\varphi f) - \deg_F(C) = m - 1$. Therefore, $g = g_0 + g_1F + \cdots + g_{m-1}F^{m-1}$ where $g_i \in \mathcal{A}$ and $g_{m-1} \neq 0$. Then replacing X by φ in [\(3.1\)](#page-12-0), we have the equality

$$
\varphi f_0 + \varphi f_1 F + \dots + \varphi f_m F^m = \Phi \delta(g_0) + s g_0 + \dots + \Phi \sigma(g_{m-1}) F^m. \tag{3.2}
$$

The element s can be written as a sum $s = ((-q/(1-q^2))\varphi K^{-1} + (1/(1-q^2))K X)Y$. Then equating the constant terms of the equality (3.2) and then collecting terms that are multiple of φ we obtain the equality in the algebra \mathcal{A} :

$$
\varphi\Big(f_0 - X\delta(g_0) + \frac{q}{1-q^2}K^{-1}Yg_0\Big) = \frac{1}{1-q^2}KXYg_0.
$$

The element $\varphi \in A$ is a normal element such that the factor algebra $A/A\varphi$ is a domain (see [\[8\]](#page-56-5)) and the element KXY does not belong to the ideal $A\varphi$. Therefore, $g_0 \in A\varphi$, i.e., $g_0 = \varphi h_0$ for some element $h_0 \in A$. Recall that $\deg_F(g) = m - 1$. Now, $g = \varphi h_0 + g' F$, where $g' \in A$ and $g' = 0$ if $m = 1$, and $\deg_F(g') = m - 2 =$ $\deg_F(g) - 1$ if $m \ge 2$. So, $\varphi f = Cg = C(\varphi h_0 + g'F)$. Hence,

$$
\varphi(f - Ch_0) = Cg'F,
$$

and so $f - Ch_0 = f'F$ for some $f' \in A$ with

$$
\deg_F(f') + \deg_F(F) = \deg_F(f'F) = \deg_F(f') + 1
$$

=
$$
\deg_F(f - Ch_0) \le \max\left(\deg_F(f), \deg_F(Ch_0)\right) = m.
$$

Notice that, $\deg_F(f') < \deg_F(f)$. Now, $Cg'F = \varphi(f - Ch_0) = \varphi f'F$, hence $\varphi f' = Cg' \in (C)$ (by deleting F). Now, by induction, $f' \in (C)$, and then

$$
f = Ch_0 + f'F \in (C),
$$

as required.

(iii) $A \cap (C)_{X,\varphi} = (C)$: Let $u \in A \cap (C)_{X,\varphi}$. Then $X^i \varphi^j u \in (C)$ for some $i, j \in \mathbb{N}$. It remains to show that $u \in (C)$. By the statement (i), $\varphi^{j}u \in (C)$, and then by the statement (ii), $u \in (C)$.

(iv) *The ideal* (C) *of A is a completely prime ideal*: By Lemma [2.12,](#page-9-1) $A_{X,\varphi}/(C)_{X,\varphi} \simeq$ $\mathcal{A}_{X,\varphi}$, in particular, $A_{X,\varphi}/(C)_{X,\varphi}$ is a domain. By the statement (iii), the algebra $A/(C)$ is a subalgebra of $A_{X,\varphi}/(C)_{X,\varphi}$, so $A/(C)$ is a domain. This means that the ideal (C) is a completely prime ideal of A. \Box

Let R be a ring. Then each element $r \in R$ determines two maps from R to R, $r: x \mapsto rx$ and $r: x \mapsto xr$ where $x \in R$. The next proposition is used in the proof of one of the main results of the paper, Theorem [3.7.](#page-14-0) It explains why the elements (like X and φ) that satisfy the property of Lemma [3.3](#page-10-3) are important in description of prime ideals.

Proposition 3.6 ([\[8\]](#page-56-5)). *Let* R *be a Noetherian ring and* s *be an element of* R *such* that $\mathcal{S}_s := \{ s^i \mid i \in \mathbb{N} \}$ is a left denominator set of the ring R and $(s^i) = (s)^i$ for *all* $i \geq 1$ (e.g., s is a normal element such that $\text{ker}(\cdot s) \subseteq \text{ker}(s)$). Then,

$$
Spec (R) = Spec (R, s) \sqcup Specs (R),
$$

where $Spec(R, s) := \{ \mathfrak{p} \in Spec(R) \mid s \in \mathfrak{p} \}, Spec_{s}(R) := \{ \mathfrak{q} \in Spec(R) \mid s \notin \mathfrak{q} \}$ *and*

- (a) *the map* $Spec(R, s) \mapsto Spec(R/(s)), p \mapsto p/(s),$ *is a bijection with the inverse* $q \mapsto \pi^{-1}(q)$ where $\pi: R \to R/(s), r \mapsto r + (s)$,
- (b) the map $Spec_s(R) \rightarrow Spec(R_s)$, $\mathfrak{p} \mapsto \mathfrak{F}_s^{-1}\mathfrak{p}$, is a bijection with the inverse $\mathfrak{q} \mapsto \sigma^{-1}(\mathfrak{q})$, where $\sigma \colon R \to R_s := \mathcal{S}_s^{-1} R, r \mapsto r/1.$
- (c) *For all* $\mathfrak{p} \in \text{Spec}(R, s)$ *and* $\mathfrak{q} \in \text{Spec}_s(R)$, $\mathfrak{p} \not\subseteq \mathfrak{q}$.

The next theorem gives an explicit description of the poset (Spec $(A), \subseteq$).

Theorem 3.7. Let $U := U_q(\mathfrak{sl}_2)$. The prime spectrum of the algebra A is a disjoint *union*

$$
Spec(A) = Spec(U) \sqcup Spec(A_{X,\varphi})
$$

= { $(X, \mathfrak{p}) | \mathfrak{p} \in Spec(U) \} \sqcup \{A\mathfrak{q} | \mathfrak{q} \in Spec(\mathbb{K}[C])\}.$ (3.3)

Furthermore,

Proof. By Lemma [3.2.](#page-10-2)(2), $A/(X) \simeq U$. By Lemma [3.3.](#page-10-3)(1) and Proposition [3.6,](#page-14-1) Spec (A) = Spec $(A, X) \sqcup$ Spec (A_X) . By Lemma [3.3.](#page-10-3)(2) and Proposition [3.6,](#page-14-1) Spec (A_X) = Spec $(A_{X,\varphi})$. Therefore,

$$
Spec (A) = \{(X, \mathfrak{p}) \mid \mathfrak{p} \in Spec (U)\} \sqcup \{A \cap A_{X, \varphi} \mathfrak{q} \mid \mathfrak{q} \in Spec (\mathbb{K}[C])\}.
$$

Finally, by Theorem [3.4.](#page-11-0)(1), $A \cap A_{X,\varphi} \mathfrak{q} = (\mathfrak{q})$ for all $\mathfrak{q} \in \text{Max}(\mathbb{K}[C]) \setminus \{(C)\}.$ By Proposition [3.5,](#page-12-1) $A \cap A_{X,\varphi}C = (C)$. Therefore, [\(3.3\)](#page-14-2) holds. For all $q \in$ Max ($\mathbb{K}[C]$) $\setminus \{(C)\}\)$, the ideals Aq of A are maximal. By [\(2.14\)](#page-8-1), AC \subseteq (X). Therefore, [\(3.4\)](#page-15-2) holds.

The next corollary shows that every nonzero ideal of the algebra A meets the centre of A.

Corollary 3.8. *If I is a nonzero ideal of the algebra A then* $I \cap \mathbb{K}[C] \neq 0$.

Proof. Suppose that the result is not true, let us choose an ideal $J \neq 0$ maximal such that $J \cap \mathbb{K}[C] = 0$. We claim that J is a prime ideal. Otherwise, suppose that J is not prime, then there exist ideals $\mathfrak p$ and $\mathfrak q$ such that $J \subsetneq \mathfrak p$, $J \subsetneq \mathfrak q$ and $\mathfrak p \subsetneq J$. By the maximality of J , $\mathfrak{p} \cap \mathbb{K}[C] \neq 0$ and $\mathfrak{q} \cap \mathbb{K}[C] \neq 0$. Then

$$
J \cap \mathbb{K}[C] \supseteq \mathfrak{p} \mathfrak{q} \cap \mathbb{K}[C] \neq 0,
$$

a contradiction. So, J is a prime ideal, but by Theorem [3.7](#page-14-0) for all nonzero primes P , $P \cap \mathbb{K}[C] \neq 0$, a contradiction. Therefore, for any nonzero ideal $I, I \cap \mathbb{K}[C] \neq 0$. \Box

The next result is an explicit description of the set of maximal ideals of the algebra A. **Corollary 3.9.** Max $(A) = \text{Max}(U) \sqcup \{Aq \mid q \in \text{Max}(\mathbb{K}[C]) \setminus \{(C)\}\}.$

 \Box

Proof. It is clear by (3.4) .

In the following lemma, we define a family of left A-modules that has bearing of Whittaker modules. It shows that these modules are simple A-modules and their annihilators are equal to (C) .

Lemma 3.10. *For* $\lambda \in \mathbb{K}^*$ *, we define the left A-module* $W(\lambda) := A/A(X - \lambda, Y, F)$ *. Then:*

- (1) *The module* $W(\lambda)$ *is a simple A-module.*
- (2) $\text{ann}_A(W(\lambda)) = (C)$ *.*

Proof. (1) Let $\overline{1} = 1 + A(X - \lambda, Y, F)$ be the canonical generator of the A-module $W(\lambda)$. Then, $W(\lambda) = \sum_{i \in \mathbb{N}} E^i \mathbb{K}[K^{\pm 1}]$ 1. Suppose that V is a nonzero submodule of $W(\lambda)$, we have to show that $V = W(\lambda)$. Let $v = \sum_{i=0}^{n} E^{i} f_{i} \overline{1}$ be a nonzero element of the module V where $f_i \in \mathbb{K}[K^{\pm 1}]$ and $f_n \neq 0$. Then,

$$
Yv = \sum_{i=1}^{n} \left(q^{i} E^{i} Y - \frac{q(1-q^{2i})}{1-q^{2}} X E^{i-1} \right) f_{i} \overline{1} = \sum_{i=1}^{n} \frac{q(1-q^{2i})}{1-q^{2}} X E^{i-1} f_{i} \overline{1}.
$$

By induction, we see that $Y^n v = P\overline{1} \in V$ where P is a nonzero Laurent polynomial in $\mathbb{K}[K^{\pm 1}]$. Then it follows that $\overline{1} \in V$, and so $V = W(\lambda)$.

(2) It is clear that ann $_A(W(\lambda)) \supseteq (C)$ and $X \notin \text{ann}_A(W(\lambda))$. By [\(3.4\)](#page-15-2),

$$
ann_A(W(\lambda)) = (C).
$$

The next theorem is a description of the set of primitive ideals of the algebra A. **Theorem 3.11.** Prim (A) = Prim (U) \sqcup $\{A\mathfrak{q} \mid \mathfrak{q} \in \text{Spec}(\mathbb{K}[C]) \setminus \{0\}\}.$

Proof. Clearly, Prim $(U) \subseteq$ Prim (A) and

$$
\{A\mathfrak{q} \mid \mathfrak{q} \in \text{Max} \ (\mathbb{K}[C]) \setminus \{C\mathbb{K}[C]\} \} \subseteq \text{Prim} (A)
$$

since Aq is a maximal ideal (Corollary [3.9\)](#page-15-0). By Corollary [3.8,](#page-15-1) 0 is not a primitive ideal. In view of [\(3.4\)](#page-15-2) it suffices to show that $(C) \in \text{Prim}(A)$. But this follows from Lemma [3.10.](#page-15-3) \Box

The next corollary is a description of the set $Spec_c(A)$ of completely prime ideals of the algebra A.

Corollary 3.12. *The set* $Spec_c(A)$ *of completely prime ideals of A is equal to*

$$
Spec_c(A) = Spec_c(U) \sqcup \{Aq \mid q \in Spec (\mathbb{K}[C])\}
$$

= $\{(X, \mathfrak{p}) \mid \mathfrak{p} \in Spec(U), \mathfrak{p} \neq ann_U(M)$
for some simple finite dimensional U-module M
of dim $\mathbb{K}(M) \ge 2\} \sqcup \{Aq \mid q \in Spec (\mathbb{K}[C])\}.$

Proof. The result follows from Theorem [3.4.](#page-11-0)(1) and Proposition [3.5.](#page-12-1)

4. The centralizer $C_A(K)$ of the element K in the algebra A

In this section, we find the explicit generators and defining relations of the centralizer $C_A(K)$ of the element K in the algebra A.

Proposition 4.1. The algebra $C_A(K) = \mathbb{K} \langle K^{\pm 1}, FE, YX, EY^2, FX^2 \rangle$ is a *Noetherian domain.*

Proof. Since A is a domain, then so is its subalgebra $C_A(K)$. Notice that the algebra $A = \bigoplus_{i \in \mathbb{Z}} A_i$ is a \mathbb{Z} -graded Noetherian algebra, where $A_i = \{a \in A \mid KaK^{-1} = q^i a\}.$ Then the algebra $A_0 = C_A(K)$ is a Noetherian algebra.

The algebra $U_q(\mathfrak{sl}_2)$ is a GWA:

$$
U_q(\mathfrak{sl}_2) \simeq \mathbb{K}[K^{\pm 1}, \Omega] \bigg[E, F; \sigma, a := \Omega - \frac{qK + q^{-1}K^{-1}}{(q - q^{-1})^2} \bigg],
$$

where $\Omega = FE + (qK + q^{-1}K^{-1})/(q - q^{-1})^2$, $\sigma(K) = q^{-2}K$, and $\sigma(\Omega) = \Omega$. In particular, $U_q(\mathfrak{sl}_2)$ is a Z-graded algebra $U_q(\mathfrak{sl}_2) = \bigoplus_{i \in \mathbb{Z}} Dv_i$, where $D :=$ $\mathbb{K}[K^{\pm 1}, \Omega] = \mathbb{K}[K^{\pm 1}, FE], v_i = E^i$ if $i \ge 1, v_i = F^{|i|}$ if $i \le -1$ and $v_0 = 1$. The quantum plane $\mathbb{K}_q[X, Y]$ is also a GWA:

$$
\mathbb{K}_q[X,Y] \simeq \mathbb{K}[t][X,Y;\sigma,t], \quad \text{where } t := YX \text{ and } \sigma(t) = qt.
$$

Therefore, the quantum plane is a Z-graded algebra $\mathbb{K}_q[X, Y] = \bigoplus_{j \in \mathbb{Z}} \mathbb{K}[t] w_j$, where $w_j = X^j$ if $j \ge 1$, $w_j = Y^{|j|}$ if $j \le -1$ and $w_0 = 1$. Since $A =$ $U_q(\mathfrak{sl}_2) \otimes \mathbb{K}_q[X, Y]$ (tensor product of vector spaces), and notice that $Et = tE + X^2$, $F_t = tF + q^{-2}K^{-1}Y^2$, we have

$$
A = U_q(\mathfrak{sl}_2) \otimes \mathbb{K}_q[X, Y] = \bigoplus_{i \in \mathbb{Z}} D v_i \otimes \bigoplus_{j \in \mathbb{Z}} \mathbb{K}[t] w_j = \bigoplus_{i, j \in \mathbb{Z}} D[t] v_i w_j. \tag{4.1}
$$

By [\(4.1\)](#page-17-0), for each $k \in \mathbb{Z}$,

$$
A_k = \bigoplus_{i,j \in \mathbb{Z}, 2i+j=k} D[t]v_i w_j = \bigoplus_{i \in \mathbb{Z}} D[t]v_i w_{k-2i}.
$$

Then,

$$
C_A(K) = A_0 = \bigoplus_{i \geq 0} D[t] E^i Y^{2i} \oplus \bigoplus_{j \geq 1} D[t] F^j X^{2j}.
$$

Notice that $EY^2 \cdot t = q^{-2}t \cdot EY^2 + qt^2$ and $FX^2 \cdot t = q^2t \cdot FX^2 + q^{-1}K^{-1}t^2$. By induction, one sees that for all $i, j \ge 0$,

$$
E^i Y^{2i} \in \bigoplus_{n \in \mathbb{N}} \mathbb{K}[t] (EY^2)^n \quad \text{and} \quad F^j X^{2j} \in \bigoplus_{n \in \mathbb{N}} \mathbb{K}[K^{\pm 1}, t] (FX^2)^n.
$$

The prime spectrum of the algebra $\mathbb{K}_q[X, Y] \rtimes U_q(\mathfrak{sl}_2)$

Hence,

$$
C_A(K) = A_0 = \bigoplus_{i \ge 0} D[t](EY^2)^i \oplus \bigoplus_{j \ge 1} D[t](FX^2)^j.
$$

In particular, the centralizer $C_A(K) = \mathbb{K} (K^{\pm 1}, FE, YX, EY^2, FX^2)$.

- **Lemma 4.2.** (1) $C_{A_{X,Y,\omega}}(K) = \mathbb{K}[C, K^{\pm 1}] \otimes \mathbb{K}_{q^2}[(YX)^{\pm 1}, (Y\varphi)^{\pm 1}]$ is a tensor product of algebras, where $\mathbb{K}_{q^2}[(YX)^{\pm 1}, (Y\varphi)^{\pm 1}]$ is a central, simple, quantum torus with $YX \cdot Y\varphi = q^2 Y \varphi \cdot YX$.
- (2) GK($C_{A_{Y,Y,a}}(K)$) = 4.
- (3) $GK(C_A(K)) = 4$.
- (4) $A_{X,Y,\varphi} = \bigoplus_{i \in \mathbb{Z}} C_{A_{X,\varphi}Y}(K)Y^i$.

Proof. (1) By (2.13), $A_{X,Y,\omega} = \mathbb{K}[C] \otimes \Lambda'$ where Λ' is a quantum torus. Then, $C_{A_{X,Y,\omega}}(K) = \mathbb{K}[C] \otimes C_{\Lambda'}(K)$. Since Λ' is a quantum torus, it is easy to see that

$$
C_{\Lambda'}(K) = \bigoplus_{i,j,k \in \mathbb{Z}} K^i (YX)^j (Y\varphi)^k,
$$

i.e., $C_{\Lambda'}(K) = \mathbb{K}[K^{\pm 1}] \otimes \mathbb{K}_{q^2}[(YX)^{\pm 1}, (Y\varphi)^{\pm 1}]$. Then statement 1 follows.

(2) Statement 2 follows from statement 1.

(3) Let R be the subalgebra of $C_A(K)$ generated by the elements C, $K^{\pm 1}$, YX, and $Y\varphi$. Then, $R = \mathbb{K}[C, K^{\pm 1}] \otimes \mathbb{K}_{q^2}[YX, Y\varphi]$ is a tensor product of algebras. Clearly R is a Noetherian algebra of Gelfand–Kirillov dimension 4. So,

$$
GK(C_A(K)) \geq GK(R) = 4.
$$

By statement 2,

$$
GK(C_A(K)) \leq GK(C_{A_{X,Y,\varphi}}(K)) = 4.
$$

Hence, $GK(C_A(K)) = 4$.

(4) Statement 4 follows from statement 1 and (2.13) .

 \Box

Proposition 4.3. Let $h := \varphi X^{-1}$, $e := EX^{-2}$, and $t := YX$. Then: (1) $C_{A_{X,\omega}}(K) = \mathbb{K}[C, K^{\pm 1}] \otimes A$ is a tensor product of algebras, where

$$
\mathcal{A} := \mathbb{K}[h^{\pm 1}]\bigg[t, e; \sigma, a = \frac{q^{-2}h - 1}{1 - q^2}\bigg]
$$

is a central simple GWA (where $\sigma(h) = q^2 h$).

- (2) GK($C_{A_{X,\omega}}(K)$) = 4.
- (3) $A_{X,\varphi} = \bigoplus_{i \in \mathbb{Z}} C_{A_{X,\varphi}}(K) X^i$.

907

Proof. (1) Let A be the subalgebra of $C_{A_{X,\omega}}(K)$ generated by the elements $h^{\pm 1}$, e, and t .

(i) A is a central simple GWA: The elements $h^{\pm 1}$, e and t satisfy the following relations $\frac{1}{2}$ and $\frac{1}{2}$ \boldsymbol{h}

$$
nh^{-1} = h^{-1}h = 1, \quad th = q^2ht, \quad eh = q^{-2}he,
$$

$$
et = \frac{q^{-2}h - 1}{1 - q^2}, \quad te = \frac{h - 1}{1 - q^2}.
$$
 (4.2)

Hence, A is an epimorphic image of the GWA

$$
\mathcal{A}' = \mathbb{K}[h^{\pm 1}]\bigg[t, e; \sigma, a = \frac{q^{-2}h - 1}{1 - q^2}\bigg],
$$

where $\sigma(h) = q^2 h$. Now, we prove that A' is a central simple algebra. Let A'_e be the localization of A' at the powers of the element e. Then $A'_e = \mathbb{K}[h^{\pm 1}][e^{\pm 1}; \sigma']$, where $\sigma'(h) = q^{-2}h$. Clearly, $Z(\mathcal{A}'_e) = \mathbb{K}$ and \mathcal{A}'_e is a simple algebra. So, $Z(\mathcal{A}') =$ $Z(\mathcal{A}'_e) \cap \mathcal{A}' = \mathbb{K}$. To show that \mathcal{A}' is simple, it suffices to prove that $\mathcal{A}'e^{i} \mathcal{A}' = \mathcal{A}'$ for any $i \in \mathbb{N}$. The case $i = 1$ is obvious, since $1 = q^2 e t - t e \in \mathcal{A}' e \mathcal{A}'$. By induction, for $i > 1$, it suffices to show that $e^{i-1} \in A'e^{i}A'$. This follows from the equality

$$
te^{i} = q^{2i}e^{i}t - \frac{1 - q^{2i}}{1 - q^{2}}e^{i-1}.
$$

So, A' is a simple algebra. Now, the epimorphism of algebras $A' \rightarrow A$ is an isomorphism. Hence, $A \simeq A'$ is a central simple GWA.

(ii)
$$
C_{A_{X,\varphi}}(K) = \mathbb{K}[C, K^{\pm 1}] \otimes A
$$
: By Lemma 2.12, $A_{X,\varphi} = \mathbb{K}[C] \otimes A_{X,\varphi}$. So,
 $C_{A_{X,\varphi}}(K) = \mathbb{K}[C] \otimes C_{A_{X,\varphi}}(K)$.

By (2.18), $A_{X,\varphi} = \mathbb{E}_{X,\varphi}[K^{\pm 1}; \tau]$, where $\tau(E) = q^2 E$, $\tau(X) = qX$, $\tau(Y) = q^{-1}Y$, and $\tau(\varphi) = q\varphi$. Then,

$$
C_{\mathcal{A}_{X,\varphi}}(K)=\mathbb{K}[K^{\pm 1}]\otimes \mathbb{E}_{X,\varphi}^{\tau}.
$$

To finish the proof of statement (ii), it suffices to show that $\mathbb{E}^{\tau}_{X,\omega} = A$. By (2.3),

$$
\mathbb{E}_{X,\varphi} = \mathbb{K}[X^{\pm 1}, \varphi^{\pm 1}]\bigg[E, Y; \sigma, a = \frac{\varphi - X}{q^{-1} - q}\bigg]
$$

is a GWA. Then,

$$
\mathbb{E}_{X,\varphi} = \bigoplus_{i \geq 0} \mathbb{K}[X^{\pm 1}, \varphi^{\pm 1}] E^i \oplus \bigoplus_{j \geq 1} \mathbb{K}[X^{\pm 1}, \varphi^{\pm 1}] Y^j
$$

=
$$
\bigoplus_{i \geq 0, k \in \mathbb{Z}} \mathbb{K}[h^{\pm 1}] E^i X^k \oplus \bigoplus_{j \geq 1, k \in \mathbb{Z}} \mathbb{K}[h^{\pm 1}] Y^j X^k.
$$

Now, it is clear that $\mathbb{E}^{\tau}_{X,\omega} = \bigoplus_{i \geq 0} \mathbb{K}[h^{\pm 1}]e^i \oplus \bigoplus_{i \geq 1} \mathbb{K}[h^{\pm 1}]t^i = A$.

908

(2) Notice that $GK(\mathcal{A}) = 2$, statement 2 follows from statement 1.

(3) Notice that $A_{X,\varphi} = \bigoplus_{i \in \mathbb{Z}} C_{A_{X,\varphi}}(K) X^i$, statement 3 then follows from Lemma 2.12. \Box

Defining relations of the algebra $C_A(K)$ **.** We have to select appropriate generators of the algebra $C_A(K)$ to make the corresponding defining relations simpler.

Lemma 4.4. We have the following relations:

(1) $YX \cdot Y\varphi = q^2 Y \varphi \cdot YX$.

(2)
$$
FE \cdot YX = q^2 YX \cdot FE + \frac{q+q^{-1}}{1-q^2} K^{-1}Y\varphi - \frac{q^2(qK+q^{-1}K^{-1})}{1-q^2}YX + C.
$$

(3)
$$
FE \cdot Y\varphi = q^{-2}Y\varphi \cdot FE + \frac{qK + q^{-1}K^{-1}}{1 - q^2}Y\varphi - \frac{q(1 + q^2)}{1 - q^2}KYX + C.
$$

Proof. (1) Obvious.

(2) Using the defining relations of A, the expression (2.14) of C, and $Y\varphi = q^4 Y X +$ $q(1-q^2)EY^2$,

$$
FE \cdot YX = F(X + q^{-1}YE)X
$$

= $FX^2 + YFXE = FX^2 + Y(YK^{-1} + XF)E$
= $FX^2 + q^{-2}K^{-1}Y^2E + YXFE$
= $q^2(YX)(FE) + (1 + q^2)K^{-1}EY^2 - \frac{q^3K + (q - q^3 - q^5)K^{-1}}{1 - q^2}YX + C$
= $q^2YX \cdot FE + \frac{q + q^{-1}}{1 - q^2}K^{-1}Y\varphi - \frac{q^2(qK + q^{-1}K^{-1})}{1 - q^2}YX + C.$

(3)
$$
FE \cdot Y\varphi = F(X + q^{-1}YE)\varphi
$$

\n
$$
= FX\varphi + q^{-2}YF\varphi E = FX\varphi + q^{-2}Y(\varphi F + YK)E
$$
\n
$$
= q^{-2}Y\varphi FE + (q^{2}K + K^{-1})EY^{2} - \left(\frac{q^{3}(K - K^{-1})}{1 - q^{2}} + q(1 + q^{2})K\right)YX + C
$$
\n
$$
= q^{-2}Y\varphi \cdot FE + \frac{qK + q^{-1}K^{-1}}{1 - q^{2}}Y\varphi - \frac{q(1 + q^{2})}{1 - q^{2}}KYX + C.
$$

Let $\Theta := (1 - q^2)\Omega = (1 - q^2)FE + q^2(qK + q^{-1}K^{-1})/(1 - q^2) \in Z(U_q(\mathfrak{sl}_2)).$ By (2.15) , we have

$$
C = \left(\Theta - \frac{qK^{-1}}{1-q^2}\right)YX + q^2FX^2 - \frac{1}{q(1-q^2)}K^{-1}Y\varphi.
$$
 (4.3)

By Lemma $4.4(2)$, (3) , we have

$$
\Theta \cdot YX = q^2 YX \cdot \Theta + (q + q^{-1})K^{-1}Y\varphi + (1 - q^2)C,\tag{4.4}
$$

$$
\Theta \cdot Y \varphi = q^{-2} Y \varphi \cdot \Theta - q(1+q^2)KYX + (1-q^2)C. \tag{4.5}
$$

Lemma 4.5. *In the algebra* $C_A(K)$ *, the following relation holds*

$$
\Theta \cdot YX \cdot Y\varphi - \frac{1}{q(1-q^2)} K^{-1} (Y\varphi)^2 - C \cdot Y\varphi = \frac{q^7}{1-q^2} K(YX)^2 - q^4 C \cdot YX.
$$

Proof. By [\(4.3\)](#page-20-1),

$$
\Theta \cdot YX = C + \frac{q}{1-q^2} K^{-1} YX - q^2 FX^2 + \frac{1}{q(1-q^2)} K^{-1} Y\varphi.
$$

So,

$$
\Theta \cdot YX \cdot Y\varphi = C \cdot Y\varphi + \frac{q}{1-q^2} K^{-1}YX \cdot Y\varphi - q^2FX^2 \cdot Y\varphi + \frac{1}{q(1-q^2)} K^{-1}(Y\varphi)^2.
$$

Then,

$$
\Theta \cdot YX \cdot Y\varphi - \frac{1}{q(1-q^2)} K^{-1} (Y\varphi)^2 - C \cdot Y\varphi = \frac{q}{1-q^2} K^{-1} YX \cdot Y\varphi - q^2 F X^2 \cdot Y\varphi.
$$

We have that $YX \cdot Y\varphi = q^4 (YX)^2 + q(1-q^2)YX \cdot EY^2$, $FX^2 \cdot Y\varphi = q^2 FX\varphi \cdot YX$, and $EY^2 \cdot YX = q(YX)^2 + q^{-2}YX \cdot EY^2$. Then by [\(2.16\)](#page-8-7), we obtain the identity as desired. \Box

Theorem 4.6. Let $u := K^{-1}Y\varphi$ and recall that $t = YX$, $\Theta = (1 - q^2)FE +$ $q^2(qK+q^{-1}K^{-1})/(1-q^2)$. Then the algebra $C_A(K)$ is generated by the elements $K^{\pm 1}$, C, Θ , t, and u subject to the following defining relations:

$$
t \cdot u = q^2 u \cdot t,\tag{4.6}
$$

$$
\Theta \cdot t = q^2 t \cdot \Theta + (q + q^{-1})u + (1 - q^2)C,\tag{4.7}
$$

$$
\Theta \cdot u = q^{-2}u \cdot \Theta - q(1+q^2)t + (1-q^2)K^{-1}C,\tag{4.8}
$$

$$
\Theta \cdot t \cdot u - \frac{1}{q(1-q^2)}u^2 - C \cdot u = \frac{q^7}{1-q^2}t^2 - q^4 K^{-1}C \cdot t,\tag{4.9}
$$

$$
[K^{\pm 1}, \cdot] = 0, \quad \text{and} \quad [C, \cdot] = 0,\tag{4.10}
$$

where [\(4.10\)](#page-21-1) means that the elements $K^{\pm 1}$ and C are central in $C_A(K)$. Furthermore, $Z(C_A(K)) = \mathbb{K}[C, K^{\pm 1}].$

Proof. (i) *Generators of* $C_A(K)$: Notice that $Y\varphi = q^4 YX + q(1 - q^2)EY^2$. Then by Proposition [4.1](#page-17-1) and [\(4.3\)](#page-20-1), the algebra $C_A(K)$ is generated by the elements C, $K^{\pm 1}$, Θ , t, and u. By [\(4.4\)](#page-21-2), [\(4.5\)](#page-21-3) and Lemma [4.5,](#page-21-4) the elements C, $K^{\pm 1}$, Θ , t, and u satisfy the relations (4.6) – (4.10) . It remains to show that these relations are defining relations.

Let $\mathcal C$ be the K-algebra generated by the symbols C, $K^{\pm 1}$, Θ , t and u subject to the defining relations (4.6) – (4.10) . Then there is a natural epimorphism of algebras $f: \mathcal{C} \to C_A(K)$. Our aim is to prove that f is an algebra isomorphism.

(ii) $GK(\mathcal{C}) = 4$ *and* $Z(\mathcal{C}) = \mathbb{K}[C, K^{\pm 1}]$: Let R be the subalgebra of $\mathcal C$ generated by the elements C, $K^{\pm 1}$, t and u. Then $R = \mathbb{K}[C, K^{\pm 1}] \otimes \mathbb{K}_{q^2}[t, u]$ is a tensor product of algebra where $\mathbb{K}_{q^2}[t, u] := \mathbb{K}\langle t, u \mid tu = q^2ut \rangle$ is a quantum plane. Clearly, R is a Noetherian algebra of Gelfand–Kirillov dimension 4. Let $\mathcal{C}_{t,u}$ be the localization of $\mathcal C$ at the powers of the elements t and u. Then,

$$
\mathcal{C}_{t,u} = \mathbb{K}[C, K^{\pm 1}] \otimes \mathbb{K}_{q^2}[t^{\pm 1}, u^{\pm 1}] = R_{t,u}.
$$

So, $GK(\mathcal{C}_{t,u}) = 4$. Now, the inclusions $R \subseteq \mathcal{C} \subseteq \mathcal{C}_{t,u}$ yield that

$$
4 = \mathrm{GK}(R) \leq \mathrm{GK}(\mathcal{C}) \leq \mathrm{GK}(\mathcal{C}_{t,u}) = 4,
$$

i.e., $GK(\mathcal{C}) = 4$. Moreover, since $\mathbb{K}_{q^2}[t^{\pm 1}, u^{\pm 1}]$ is a central simple algebra,

$$
Z(\mathcal{C}_{t,u})=\mathbb{K}[C,K^{\pm 1}].
$$

Hence, $Z(\mathcal{C}) = \mathbb{K}[C, K^{\pm 1}].$

By Lemma [4.2.](#page-18-0)(3), $GK(\mathcal{C}) = GK(C_A(K)) = 4$. In view of [\[20,](#page-57-9) Proposition 3.15], to show that the epimorphism $f: \mathcal{C} \rightarrow C_A(K)$ is an isomorphism it suffices to prove that $\mathcal C$ is a domain.

Let $\overline{\mathcal{D}}$ be the algebra generated by the symbols C, $K^{\pm 1}$, Θ , t, and u subject to the defining relations (4.6) – (4.8) and (4.10) . Then $\mathcal D$ is an Ore extension

$$
\mathcal{D}=R[\Theta;\sigma,\delta],
$$

where $R = \mathbb{K}[C, K^{\pm 1}] \otimes \mathbb{K}_{q^2}[t, u]$ is a Noetherian domain; $\sigma(C) = C$, $\sigma(K^{\pm 1}) =$ $K^{\pm 1}$, $\sigma(t) = q^2t$, $\sigma(u) = q^{-2}u$; δ is a σ -derivation of R given by the rule

$$
\delta(C) = \delta(K^{\pm 1}) = 0,
$$

$$
\delta(t) = (q + q^{-1})u + (1 - q^2)C
$$
, and $\delta(u) = -q(1 + q^2)t + (1 - q^2)K^{-1}C$.

In particular, D is a Noetherian domain. Let

$$
Z := \Theta t u - \frac{1}{q(1-q^2)} u^2 - Cu - \frac{q^7}{1-q^2} t^2 + q^4 K^{-1} Cu
$$

= tu $\Theta - \hat{q}(u^2 + t^2) - q^2 C(u - K^{-1}t) \in \mathcal{D},$

where $\hat{q} = q^3/(1-q^2)$. Then Z is a central element of D and $\mathcal{C} \simeq \mathcal{D}/(Z)$. To prove that $\mathfrak C$ is a domain, it suffices to show that (Z) is a completely prime ideal of D. Notice that $\mathcal{D}_{t,u} = \mathbb{K}[C, K^{\pm 1}, Z] \otimes \mathbb{K}_{a^2}[t^{\pm 1}, u^{\pm 1}]$ is a tensor product of algebras. Then,

$$
\mathcal{C}_{t,u} \simeq \mathfrak{D}_{t,u}/(Z)_{t,u} \simeq \mathbb{K}[C, K^{\pm 1}] \otimes \mathbb{K}_{q^2}[t^{\pm 1}, u^{\pm 1}] \simeq R_{t,u}.
$$

In particular, $\mathcal{C}_{t,u}$ is a domain and $(Z)_{t,u}$ is a completely prime ideal of $\mathcal{D}_{t,u}$.

(iii) If $tx \in (Z)$ for some element $x \in \mathcal{D}$ then $x \in (Z)$: Since Z is central in $\mathcal{D}, tx =$ Zd for some element $d \in \mathcal{D}$. We prove statement (iii) by induction on the degree $deg_{\Theta}(x)$ of the element x. Since $\mathcal D$ is a domain, $deg_{\Theta}(dd') = deg_{\Theta}(d) + deg_{\Theta}(d')$ for all elements d, $d' \in \mathcal{D}$. Notice that $deg_{\Theta}(Z) = 1$, the case $x \in R$ is trivial. So we may assume that $m = \deg_{\Theta}(x) \ge 1$ and then the element x can be written as $x = a_0 + a_1 \Theta + \cdots + a_m \Theta^m$ where $a_i \in R$ and $a_m \neq 0$. The equality $tx = Zd$ yields that $deg_{\Theta}(d) = m - 1$ since $deg_{\Theta}(Z) = 1$. Hence,

$$
d = d_0 + d_1 \Theta + \dots + d_{m-1} \Theta^{m-1}
$$

for some $d_i \in R$ and $d_{m-1} \neq 0$. Now, the equality $tx = Zd$ can be written as follows:

$$
t(a_0 + a_1 \Theta + \dots + a_m \Theta^m)
$$

= $(tu \Theta - \hat{q}(u^2 + t^2) - q^2 C(u - K^{-1}t))(d_0 + d_1 \Theta + \dots + d_{m-1} \Theta^{m-1}).$

Comparing the terms of degree zero in the equality we have

$$
ta_0 = tu\delta(d_0) - (\hat{q}(u^2 + t^2) + q^2C(u - K^{-1}t))d_0,
$$

i.e., $t(a_0 - u\delta(d_0) + \hat{q}td_0 - q^2CK^{-1}d_0) = -u(\hat{q}u + q^2C)d_0$. All terms in this equality are in the algebra R . Notice that t is a normal element of R , the elements $u \notin tR$ and $\hat{q}u + q^2C \notin tR$, we have $d_0 \in tR$. So $d_0 = tr$ for some element $r \in R$. Then $d = tr + w\Theta$, where $w = d_1 + \cdots + d_{m-1}\Theta^{m-2}$ if $m \ge 2$ and $w = 0$ if $m = 1$. If $m = 1$ then $d = tr$ and the equality $tx = Zd$ yields that $tx = tZr$, i.e., $x = Zr \in (Z)$ (by deleting t), we are done. So we may assume that $m \ge 2$. Now, the equality $tx = Zd$ can be written as $tx = Z(tr + w\Theta)$, i.e., $t(x - Zr) = Zw\Theta$. This implies that $x - Zr = x' \Theta$ for some $x' \in \mathcal{D}$, where $deg_{\Theta}(x') < deg_{\Theta}(x)$. Now, $tx' \Theta = Zw \Theta$ and hence, $tx' = Zw$ (by deleting Θ). By induction $x' \in (Z)$. Then $x = x' + Zr \in (Z)$.

(iv) If $ux \in (Z)$ for some element $x \in D$ then $x \in (Z)$: Notice that the elements u and t are "symmetric" in the algebra D , statement (iv) can be proved similarly as that of statement (iii).

(v) $\mathfrak{D} \cap (Z)_{t,u} = (Z)$: The inclusion $(Z) \subseteq \mathfrak{D} \cap (Z)_{t,u}$ is obvious. Let $x \in \mathfrak{D} \cap (Z)_{t,u}$. Then, $t^i u^j x \in (Z)$ for some $i, j \in \mathbb{N}$. By statement (iii) and statement (iv), $x \in (Z)$. Hence, $\mathcal{D} \cap (Z)_{t,u} = (Z)$.

By statement (v), the algebra $\mathcal{D}/(Z)$ is a subalgebra of $\mathcal{D}_{t,u}/(Z)_{t,u}$. Hence, $D/(Z)$ is a domain. This completes the proof. \Box

The next proposition gives a K-basis for the algebra $\mathcal{C} := C_A(K)$.

Proposition 4.7.

$$
\mathcal{C} = \mathbb{K}[C, K^{\pm 1}] \otimes_{\mathbb{K}} \Big(\bigoplus_{i,j \geq 1} \mathbb{K} \Theta^i t^j \oplus \bigoplus_{k \geq 1} \mathbb{K} \Theta^k \oplus \bigoplus_{l,m \geq 1} \mathbb{K} \Theta^l u^m \oplus \bigoplus_{a,b \geq 0} \mathbb{K} u^a t^b \Big).
$$

Proof. The relations (4.6) – (4.9) can be written in the following equivalent form,

$$
u \cdot t = q^{-2}t \cdot u, \quad \Theta \cdot t \cdot u = \frac{1}{q(1-q^2)}u^2 + C \cdot u + \frac{q^7}{1-q^2}t^2 - q^4 K^{-1}C \cdot t,
$$

$$
u \cdot \Theta = q^2 \Theta \cdot u + q^3(1+q^2)t - q^2(1-q^2)K^{-1}C,
$$

$$
t \cdot \Theta = q^{-2} \Theta \cdot t - q^{-2}(q+q^{-1})u - q^{-2}(1-q^2)C.
$$

On the free monoid W generated by C, K, K', Θ , t, and u (where K' plays the role of K^{-1}), we introduce the length-lexicographic ordering such that $K' < K < C$ $\Theta < t < u$. With respect to this ordering the Diamond lemma (see [\[10\]](#page-56-6), [\[11,](#page-57-8) I.11]) can be applied to $\mathcal C$ as there is only one ambiguity which is the overlap ambiguity $ut\Theta$ and it is resolvable as the following computations show:

$$
(ut)\Theta \rightarrow q^{-2}tu\Theta
$$

\n
$$
\rightarrow q^{-2}t(q^{2}\Theta u + q^{3}(1+q^{2})t - q^{2}(1-q^{2})K'C)
$$

\n
$$
\rightarrow t\Theta u + q(1+q^{2})t^{2} - (1-q^{2})K'Ct
$$

\n
$$
\rightarrow (q^{-2}\Theta t - q^{-2}(q+q^{-1})u - q^{-2}(1-q^{2})C)u
$$

\n
$$
+ q(1+q^{2})t^{2} - (1-q^{2})K'Ct
$$

\n
$$
\rightarrow q^{-2}\Theta tu - q^{-2}(q+q^{-1})u^{2} - q^{-2}(1-q^{2})Cu
$$

\n
$$
+ q(1+q^{2})t^{2} - (1-q^{2})K'Ct
$$

\n
$$
\rightarrow \frac{q}{1-q^{2}}u^{2} + Cu + \frac{q}{1-q^{2}}t^{2} - K'Ct,
$$

\n
$$
u(t\Theta) \rightarrow u(q^{-2}\Theta t - q^{-2}(q+q^{-1})u - q^{-2}(1-q^{2})C)
$$

\n
$$
\rightarrow q^{-2}u\Theta t - q^{-2}(q+q^{-1})u^{2} - q^{-2}(1-q^{2})Cu
$$

\n
$$
\rightarrow q^{-2}(q^{2}\Theta u + q^{3}(1+q^{2})t - q^{2}(1-q^{2})K'C)t - q^{-2}(q+q^{-1})u^{2}
$$

\n
$$
-q^{-2}(1-q^{2})Cu
$$

\n
$$
\rightarrow \Theta ut + q(1+q^{2})t^{2} - (1-q^{2})K'Ct - q^{-2}(q+q^{-1})u^{2}
$$

\n
$$
-q^{-2}(1-q^{2})Cu
$$

\n
$$
\rightarrow \Theta ut + q(1+q^{2})t^{2} - (1-q^{2})K'Ct - q^{-2}(q+q^{-1})u^{2}
$$

\n
$$
-q^{-2}(1-q^{2})Cu
$$

914 V. V. Bavula and T. Lu

$$
\rightarrow q^{-2}\Theta tu + q(1+q^{2})t^{2} - (1-q^{2})K'Ct - q^{-2}(q+q^{-1})u^{2}
$$

$$
\rightarrow \frac{q}{1-q^{2}}u^{2} + Cu + \frac{q}{1-q^{2}}t^{2} - K'Ct.
$$

So, by the Diamond lemma, the result is proved.

The algebra $\mathcal{C}^{\lambda,\mu}$ **.** For $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, let $\mathcal{C}^{\lambda,\mu} := \mathcal{C}/(C - \lambda, K - \mu)$. By Theorem [4.6,](#page-21-0) the algebra $\mathcal{C}^{\lambda,\mu}$ is generated by the images of the elements Θ, t , and u in $\mathcal{C}^{\lambda,\mu}$. For simplicity, we denote by the same letters their images.

Corollary 4.8. *Let* $\lambda \in \mathbb{K}$ *and* $\mu \in \mathbb{K}^*$ *. Then:*

(1) The algebra $\mathcal{C}^{\lambda,\mu}$ is generated by the elements Θ , t and u subject to the following *defining relations*

$$
t \cdot u = q^2 u \cdot t,\tag{4.11}
$$

$$
\Theta \cdot t = q^2 t \cdot \Theta + (q + q^{-1})u + (1 - q^2)\lambda, \tag{4.12}
$$

$$
\Theta \cdot u = q^{-2}u \cdot \Theta - q(1+q^2)t + (1-q^2)\mu^{-1}\lambda, \tag{4.13}
$$

$$
\Theta \cdot t \cdot u = \frac{1}{q(1-q^2)}u^2 + \lambda u + \frac{q^7}{1-q^2}t^2 - q^4\mu^{-1}\lambda t. \tag{4.14}
$$

$$
(2) \ \mathcal{C}^{\lambda,\mu} = \bigoplus_{i,j \geq 1} \mathbb{K} \Theta^i t^j \oplus \bigoplus_{k \geq 1} \mathbb{K} \Theta^k \oplus \bigoplus_{l,m \geq 1} \mathbb{K} \Theta^l u^m \oplus \bigoplus_{a,b \geq 0} \mathbb{K} u^a t^b.
$$

Proof. (1) Statement 1 follows from Theorem [4.6.](#page-21-0)

(2) Statement 2 follows from Proposition [4.7.](#page-24-0)

Let \mathcal{C}_t (resp., $\mathcal{C}_t^{\lambda,\mu}$) be the localization of the algebra \mathcal{C} (resp., $\mathcal{C}_t^{\lambda,\mu}$) at the powers of the element $t = YX$. The next proposition shows that \mathcal{C}_t and $\mathcal{C}_t^{\lambda,\mu}$ are GWAs. **Proposition 4.9.** (1) Let $v := \Theta t - (1/q(1 - q^2))u - C$. The algebra

$$
\mathcal{C}_t = \mathbb{K}[C, K^{\pm 1}, t^{\pm 1}][u, v; \sigma, a]
$$

is a GWA of Gelfand–Kirillov dimension 4, where $a = (q^7/(1-q^2))t^2 - q^4 K^{-1}Ct$ and σ is the automorphism of the algebra $\mathbb{K}[C, K^{\pm 1}, t^{\pm 1}]$ defined by the rule:

$$
\sigma(C) = C
$$
, $\sigma(K^{\pm 1}) = K^{\pm 1}$, and $\sigma(t) = q^{-2}t$.

(2) Let $\lambda \in \mathbb{K}$, $\mu \in \mathbb{K}^*$, and $v := \Theta t - (1/q(1-q^2))u - \lambda$. Then the algebra

$$
\mathcal{C}_t^{\lambda,\mu} = \mathbb{K}[t^{\pm 1}][u,v;\sigma,a]
$$

is a GWA of Gelfand–Kirillov dimension 2 where $a = (q^7/(1-q^2))t^2 - q^4\mu^{-1}\lambda t$ and σ *is the automorphism of the algebra* $\mathbb{K}[t^{\pm 1}]$ *defined by* $\sigma(t) = q^{-2}t$ *.*

$$
\Box
$$

- (3) For any $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, the algebra $\mathcal{C}_t^{\lambda,\mu}$ is a central simple algebra.
- (4) $Z(\mathcal{C}^{\lambda,\mu}) = \mathbb{K}$ and $GK(\mathcal{C}^{\lambda,\mu}) = 2$.

Proof. (1) By Theorem [4.6,](#page-21-0) the algebra \mathcal{C}_t is generated by the elements C, $K^{\pm 1}$, v, $t^{\pm 1}$, and u. Note that the element v can be written as

$$
v = -\frac{q^2}{1 - q^2} \psi X = \frac{q}{1 - q^2} \tau(u),
$$

where τ is the involution [\(2.1\)](#page-4-2). It is straightforward to verify that the following relations hold in the algebra \mathcal{C}_t

$$
ut = q^{-2}tu, \quad vt = q^{2}tv,
$$

$$
vu = \frac{q^{7}}{1 - q^{2}}t^{2} - q^{4}K^{-1}Ct, \quad uv = \frac{q^{3}}{1 - q^{2}}t^{2} - q^{2}K^{-1}Ct.
$$

Then \mathcal{C}_t is an epimorphic image of the GWA $T := \mathbb{K}[C, K^{\pm 1}, t^{\pm 1}][u, v; \sigma, a]$. Notice that T is a Noetherian domain of Gelfand–Kirillov dimension 4. The inclusions $\mathcal{C} \subseteq \mathcal{C}_{t} \subseteq \mathcal{C}_{t,u}$ yield that $4 = \text{GK}(\mathcal{C}) \leq \text{GK}(\mathcal{C}_{t}) \leq \mathcal{C}_{t,u} = 4$ (see Lemma [4.2.](#page-18-0)(3)), i.e., $GK(\mathcal{C}_t) = 4$. So, $GK(T) = GK(\mathcal{C}_t)$. By [\[20,](#page-57-9) Proposition 3.15], the epimorphism of algebras $T \rightarrow C_t$ is an isomorphism.

(2) Statement 2 follows from statement 1.

(3) Let $\mathcal{C}_{t,u}^{\lambda,\mu}$ be the localization of $\mathcal{C}_t^{\lambda,\mu}$ at the powers of the element u. Then, by statement 2, $\mathcal{C}_{t,u}^{\lambda,\mu} = \mathbb{K}_{q^2}[t^{\pm 1}, u^{\pm 1}]$ is a central, simple quantum torus. So,

$$
Z(\mathcal{C}_t^{\lambda,\mu})=Z(\mathcal{C}_{t,u}^{\lambda,\mu})\cap \mathcal{C}_t^{\lambda,\mu}=\mathbb{K}.
$$

For any nonzero ideal α of the algebra $\mathcal{C}_t^{\lambda,\mu}$, $u^i \in \alpha$ for some $i \in \mathbb{N}$ since $\mathcal{C}_{t,u}^{\lambda,\mu}$ is a simple Noetherian algebra. Therefore, to prove that $\mathcal{C}_t^{\lambda,\mu}$ is a simple algebra, it suffices to show that $\mathcal{C}_t^{\lambda,\mu}u^i\mathcal{C}_t^{\lambda,\mu}=\mathcal{C}_t^{\lambda,\mu}$ for any $i \in \mathbb{N}$. The case $i=1$ follows from the equality $vu = q^2uv - q^5t^2$. By induction, for $i > 1$, it suffices to show that $u^{i-1} \in \mathcal{C}_t^{\lambda,\mu} u^i \mathcal{C}_t^{\lambda,\mu}$. This follows from the equality

$$
vu^{i} = q^{2i}u^{i}v + \frac{q^{7}(1-q^{-2i})}{1-q^{2}}t^{2}u^{i-1}.
$$

Hence, $\mathcal{C}_t^{\lambda,\mu}$ is a simple algebra.

(4) Since $\mathbb{K} \subseteq Z(\mathcal{C}^{\lambda,\mu}) \subseteq Z(\mathcal{C}^{\lambda,\mu}) \cap \mathcal{C}^{\lambda,\mu} = \mathbb{K}$, we have $Z(\mathcal{C}^{\lambda,\mu}) = \mathbb{K}$. It is clear that $GK(\mathcal{C}^{\lambda,\mu})=2$. \Box

Lemma 4.10. In the algebra $\mathcal{C}^{\lambda,\mu}$ where $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, the following equality *holds* $2i$

$$
\Theta t^{i} = q^{2i} t^{i} \Theta + \frac{q^{-2i+1} - q^{2i+1}}{1 - q^{2}} t^{i-1} u + (1 - q^{2i}) \lambda t^{i-1}.
$$

Proof. By induction on i and using the equality (4.12) .

Theorem 4.11. Let $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$.

(1) The algebra $\mathcal{C}^{\lambda,\mu}$ is a simple algebra iff $\lambda \neq 0$.

(2) The algebra $\mathcal{C}^{\lambda,\mu}$ is a domain.

Proof. (1) If $\lambda = 0$ then the ideal (*t*) is a proper ideal of the algebra $\mathcal{C}^{0,\mu}$. Hence, $\mathcal{C}^{0,\mu}$ is not a simple algebra. Now, suppose that $\lambda \neq 0$, we have to prove that $\mathcal{C}^{\lambda,\mu}$ is a simple algebra. By Proposition [4.9.](#page-25-0)(3), $\mathcal{C}_t^{\lambda,\mu}$ is a simple algebra. Hence, it suffices to show that $\mathcal{C}^{\lambda,\mu}i^{\nu}\mathcal{C}^{\lambda,\mu} = \mathcal{C}^{\lambda,\mu}$ for all $i \in \mathbb{N}$. We prove this by induction on i.

Firstly, we prove the case for $i = 1$, i.e., $\mathfrak{a} := \mathcal{C}^{\lambda,\mu} \mathfrak{t} \mathcal{C}^{\lambda,\mu} = \mathcal{C}^{\lambda,\mu}$. By [\(4.12\)](#page-25-1), the element $(q + q^{-1})u + (1 - q^2)\lambda \in \mathfrak{a}$, so, $u \equiv ((q^2 - 1)/(q + q^{-1}))\lambda$ mod a. By [\(4.14\)](#page-25-2), $(1/q(1-q^2))u^2 + \lambda u \in \mathfrak{a}$. Hence,

$$
\frac{1}{q(1-q^2)} \Big(\frac{q^2-1}{q+q^{-1}}\lambda\Big)^2 + \lambda \Big(\frac{q^2-1}{q+q^{-1}}\lambda\Big) \equiv 0 \mod \mathfrak{a},
$$

i.e., $q^2(q^2-1)\lambda^2/(q^2+1) \equiv 0 \mod \mathfrak{a}$. Since $\lambda \neq 0$, this implies that $1 \in \mathfrak{a}$, thus, $a = \mathcal{C}^{\lambda,\mu}$.

Let us now prove that $\mathfrak{b} := \mathfrak{C}^{\lambda,\mu} i^i \mathfrak{C}^{\lambda,\mu} = \mathfrak{C}^{\lambda,\mu}$ for any $i \in \mathbb{N}$. By induction, for $i > 1$, it suffices to show that $t^{i-1} \in \mathfrak{b}$. By Lemma [4.10,](#page-26-0) the element

$$
\mathbf{u} := \frac{q^{-2i+1} - q^{2i+1}}{1 - q^2} t^{i-1} u + (1 - q^{2i}) \lambda t^{i-1} \in \mathfrak{b}.
$$

Then $vu \in \mathfrak{b}$, where

$$
v = \Theta t - \frac{1}{q(1-q^2)}u - \lambda,
$$

see Proposition [4.9.](#page-25-0)(2). This implies that $(1 - q^{2i})\lambda v t^{i-1} \in \mathfrak{b}$ and so, $v t^{i-1} \in \mathfrak{b}$. But then the inclusion $vt^{i-1} = (\Theta t - (1/q(1-q^2))u - \lambda)t^{i-1} \in \mathfrak{b}$ yields that the element 2iC1

$$
\mathbf{v} := \frac{q^{-2i+1}}{1-q^2} t^{i-1} u + \lambda t^{i-1} \in \mathfrak{b}.
$$

By the expressions of the elements **u** and **v** we see that $t^{i-1} \in \mathfrak{b}$, as required.

(2) By Proposition [4.9.](#page-25-0)(2), the GWA $\mathcal{C}_t^{\lambda,\mu} \simeq \mathcal{C}_t/\mathcal{C}_t(C-\lambda, K-\mu)$ is a domain. Let

$$
\mathfrak{a} = \mathcal{C}(C - \lambda, K - \mu)
$$
 and $\mathfrak{a}' = \mathcal{C} \cap \mathcal{C}_t(C - \lambda, K - \mu)$.

To prove that $\mathcal{C}^{\lambda,\mu}$ is a domain, it suffices to show that $\mathfrak{a} = \mathfrak{a}'$. The inclusion $\mathfrak{a} \subseteq \mathfrak{a}'$ is obvious. If $\lambda \neq 0$ then, by statement 1, the algebra $\mathcal{C}^{\lambda,\mu}$ is a simple algebra, so the ideal α is a maximal ideal of \mathcal{C} . Then we must have $\alpha = \alpha'$. Suppose that $\lambda = 0$ and $\alpha \subsetneq \alpha'$, we seek a contradiction. Notice that the ideal α' is a prime ideal of \mathcal{C} .

Hence, $\mathfrak{a}'/\mathfrak{a}$ is a nonzero prime ideal of the algebra $\mathcal{C}^{0,\mu}$. By Proposition [4.9.](#page-25-0)(3), the algebra $\mathcal{C}_t^{0,\mu}$ is a simple algebra, so, $t^i \in \mathfrak{a}'/\mathfrak{a}$ for some $i \in \mathbb{N}$. Then $(\mathfrak{a}'/\mathfrak{a})_t = \mathcal{C}_t^{\lambda,\mu}$. But $(\alpha'/\alpha)_t = \alpha'_t$ $t'_t / \mathfrak{a}_t = 0$, a contradiction.

Proposition 4.12. (1) *In the algebra* $\mathcal{C}^{0,\mu}$, $(t) = (u) = (t, u) = \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u$. $(2) \mathcal{C}^{0,\mu}/(t) \simeq \mathbb{K}[\Theta].$

- (3) In the algebra $\mathcal{C}^{0,\mu}$, $(t^i) = (t)^i$ for all $i \geq 1$.
- (4) Spec $(\mathcal{C}^{0,\mu}) = \{0, (t), (t, \mathfrak{p}) \mid \mathfrak{p} \in \text{Max} (\mathbb{K}[\Theta])\}.$

Proof. (1) The equality $(t) = (u)$ follows from [\(4.12\)](#page-25-1) and [\(4.13\)](#page-25-3). The second equality then is obvious. To prove the third equality let us first show that

$$
t\mathcal{C}^{0,\mu} \subseteq \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u.
$$

In view of Corollary [4.8.](#page-25-4)(2), it suffices to prove that $t\Theta^i \in \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u$ for all $i \ge 1$. This can be proved by induction on i. The case $i = 1$ follows from [\(4.12\)](#page-25-1). Suppose that the inclusion holds for all $i' < i$. Then

$$
t\Theta^{i} = t\Theta^{i-1}\Theta \in (\mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u)\Theta
$$

= $\mathcal{C}^{0,\mu}(q^{-2}\Theta t - q^{-2}(q+q^{-1})u) + \mathcal{C}^{0,\mu}(q^{2}\Theta u + q^{3}(1+q^{2})t)$
 $\subseteq \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u.$

Hence, we proved that

$$
t\mathcal{C}^{0,\mu} \subseteq \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u.
$$

Now, the inclusions $(t) \subseteq \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u \subseteq (t, u) = (t)$ yield that

$$
(t) = \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u.
$$

(2) By statement 1, $\mathcal{C}^{0,\mu}/(t) = \mathcal{C}^{0,\mu}/(t,u) \simeq \mathbb{K}[\Theta].$

(3) The inclusion $(t^i) \subseteq (t)^i$ is obvious. We prove the reverse inclusion $(t)^i \subseteq (t^i)$ by induction on i. The case $i = 1$ is trivial. Suppose that the inclusion holds for all $i' < i$. Then,

$$
(t)^i = (t)(t)^{i-1} = (t)(t^{i-1}) = \mathcal{C}^{0,\mu}t\mathcal{C}^{0,\mu}t^{i-1}\mathcal{C}^{0,\mu} \subseteq (t^i) + (t^{i-1}u)
$$

since $t\mathcal{C}^{0,\mu} \subseteq \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u$ (see statement 1). By Lemma [4.10,](#page-26-0) the element $t^{i-1}u$ belongs to the ideal (t^i) of $\mathcal{C}^{0,\mu}$. Hence, $(t)^i \subseteq (t^i)$, as required.

(4) By Proposition [3.6](#page-14-1) and statement 3,

$$
Spec(\mathcal{C}^{0,\mu}) = Spec(\mathcal{C}^{0,\mu}, t) \sqcup Spec_t(\mathcal{C}^{0,\mu}).
$$

Notice that $\mathcal{C}_t^{0,\mu}$ is a simple algebra (see Proposition [4.9.](#page-25-0)(3)) and $\mathcal{C}^{0,\mu}/(t) \simeq \mathbb{K}[\Theta]$ (see statement 2). Then,

$$
Spec\,(\mathcal{C}^{0,\mu})=\{0\}\sqcup Spec\big(\mathbb{K}[\Theta]\big)=\{0,\,(t),\,(t,\mathfrak{p})\mid\mathfrak{p}\in Max\,\big(\mathbb{K}[\Theta]\big)\}.
$$

5. Classification of simple $C_A(K)$ -modules

In this section, K is an algebraically closed field. A classification of simple $C_A(K)$ -modules is given in Theorem [5.2,](#page-31-0) Theorem [5.6](#page-34-0) and Theorem [5.11.](#page-38-0) For an algebra B, we denote by \hat{B} the set of isomorphism classes of simple B-modules. If $\mathcal P$ is an isomorphism invariant property on simple B-modules then $\hat{B}(\mathcal{P})$ is the set of isomorphism classes of B-modules that satisfy the property \mathcal{P} . The set $\overline{C_A(K)}$ isomorphism classes of *B*-modules that satisfy the property P . The set $C_A(K)$ of isomorphism classes of simple $C_A(K)$ -modules is partitioned (according to the central character) as follows:

$$
\widehat{C_A(K)} = \bigsqcup_{\lambda \in \mathbb{K}, \, \mu \in \mathbb{K}^*} \widehat{e^{\lambda,\mu}}.
$$
\n(5.1)

Given $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, the set $\widehat{\mathcal{C}}^{\lambda,\mu}$ can be partitioned further into disjoint union of two subsets consisting of *t*-torsion modules and *t*-torsionfree modules. union of two subsets consisting of t -torsion modules and t -torsionfree modules, respectively,

$$
\widehat{e^{\lambda,\mu}} = \widehat{e^{\lambda,\mu}} \text{ (t-torsion)} \sqcup \widehat{e^{\lambda,\mu}} \text{ (t-torsionfree)}.
$$
 (5.2)

The set $\widehat{e^{\lambda,\mu}}$ **(***t***-torsion**). An explicit description of the set $\widehat{e^{\lambda,\mu}}$ (*t*-torsion) is given in Theorem [5.2.](#page-31-0) For $\lambda, \mu \in \mathbb{K}^*$, we define the left $\mathcal{C}^{\lambda,\mu}$ -modules

$$
t^{\lambda,\mu} := \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}(t,u)
$$
 and $T^{\lambda,\mu} := \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}(t,u-\hat{\lambda}),$

where $\hat{\lambda} := q(q^2 - 1)\lambda$. By Corollary [4.8.](#page-25-4)(2),

$$
\mathfrak{t}^{\lambda,\mu}=\mathbb{K}[\Theta]\,\overline{1}\simeq{}_{\mathbb{K}[\Theta]}\mathbb{K}[\Theta]
$$

is a free $\mathbb{K}[\Theta]$ -module, where $\overline{1} = 1 + \mathcal{C}^{\lambda,\mu}(t, u)$, and

$$
T^{\lambda,\mu} = \mathbb{K}[\Theta] \tilde{1} \simeq \mathbb{K}[\Theta] \mathbb{K}[\Theta]
$$

is a free $\mathbb{K}[\Theta]$ -module, where $\tilde{1} = 1 + \mathcal{C}^{\lambda,\mu}(t, u - \hat{\lambda})$. Clearly, the modules $t^{\lambda,\mu}$ and $T^{\lambda,\mu}$ are of Gelfand–Kirillov dimension 1. The concept of deg_{Θ} of the elements of $t^{\lambda,\mu}$ and $T^{\lambda,\mu}$ is well-defined $(\deg_{\Theta}(\Theta^i \bar{1}) = i$ and $\deg_{\Theta}(\Theta^i \bar{1}) = i$ for all $i \ge 0$.

Lemma 5.1. *Let* λ , $\mu \in \mathbb{K}^*$. *Then:*

- (1) The $\mathcal{C}^{\lambda,\mu}$ -module $\mathfrak{t}^{\lambda,\mu}$ is a simple module.
- (2) The $\mathcal{C}^{\lambda,\mu}$ -module $T^{\lambda,\mu}$ is a simple module.
- (3) The modules $\mathfrak{t}^{\lambda,\mu}$ and $\mathsf{T}^{\lambda,\mu}$ are not isomorphic.

Proof. (1) Let us show that for all $i \geq 1$,

$$
t \cdot \Theta^i \overline{1} = (1 - q^{-2i})\lambda \cdot \Theta^{i-1} \overline{1} + \cdots, \qquad (5.3)
$$

$$
u \cdot \Theta^i \bar{1} = -q^2 (1 - q^{2i}) \mu^{-1} \lambda \cdot \Theta^{i-1} \bar{1} + \cdots, \qquad (5.4)
$$

where the three dots means terms of deg_{Θ} < i - 1. We prove the equalities by induction on i . By (4.12) ,

$$
t \Theta \bar{1} = (1 - q^{-2})\lambda \bar{1},
$$

and by [\(4.13\)](#page-25-3),

$$
u\Theta\bar{1} = -q^2(1-q^2)\mu^{-1}\lambda\bar{1}.
$$

So, the equalities [\(5.3\)](#page-30-0) and [\(5.4\)](#page-30-1) hold for $i = 1$. Suppose that the equalities hold for all integers $i' < i$. Then,

$$
t \cdot \Theta^{i} \bar{1} = (q^{-2} \Theta t - q^{-2} (q + q^{-1}) u - q^{-2} (1 - q^{2}) \lambda) \Theta^{i-1} \bar{1}
$$

\n
$$
= q^{-2} (1 - q^{-2(i-1)}) \lambda \Theta^{i-1} \bar{1} - q^{-2} (1 - q^{2}) \lambda \Theta^{i-1} \bar{1} + \cdots
$$

\n
$$
= (1 - q^{-2i}) \lambda \cdot \Theta^{i-1} \bar{1} + \cdots,
$$

\n
$$
u \cdot \Theta^{i} \bar{1} = (q^{2} \Theta u + q^{3} (1 + q^{2}) t - q^{2} (1 - q^{2}) \mu^{-1} \lambda) \Theta^{i-1} \bar{1}
$$

\n
$$
= -q^{4} (1 - q^{2(i-1)}) \mu^{-1} \lambda \Theta^{i-1} \bar{1} - q^{2} (1 - q^{2}) \mu^{-1} \lambda \Theta^{i-1} \bar{1} + \cdots
$$

\n
$$
= -q^{2} (1 - q^{2i}) \mu^{-1} \lambda \cdot \Theta^{i-1} \bar{1} + \cdots.
$$

The simplicity of the module $t^{\lambda,\mu}$ follows from the equality [\(5.3\)](#page-30-0) (or the equality (5.4)).

(2) Let us show that for all $i \geq 1$,

$$
t \cdot \Theta^i \tilde{1} = (1 - q^{2i})\lambda \cdot \Theta^{i-1} \tilde{1} + \cdots,
$$
 (5.5)

$$
u \cdot \Theta^i \tilde{1} = q^{2i} \hat{\lambda} \cdot \Theta^i \tilde{1} - q^2 (1 - q^{2i}) \mu^{-1} \lambda \cdot \Theta^{i-1} \tilde{1} + \cdots, \qquad (5.6)
$$

where the three dots means terms of smaller degrees. We prove the equalities by induction on *i*. The case $i = 1$ follows from [\(4.12\)](#page-25-1) and [\(4.13\)](#page-25-3). Suppose that the equalities [\(5.5\)](#page-30-2) and [\(5.6\)](#page-30-3) hold for all integers $i' < i$. Then,

$$
t \cdot \Theta^{i} \tilde{1} = (q^{-2} \Theta t - q^{-2} (q + q^{-1}) u - q^{-2} (1 - q^{2}) \lambda) \Theta^{i-1} \tilde{1}
$$

\n
$$
= q^{-2} (1 - q^{2(i-1)}) \lambda \Theta^{i-1} \tilde{1} - q^{-2} (q + q^{-1}) q^{2(i-1)} \hat{\lambda} \Theta^{i-1} \tilde{1}
$$

\n
$$
- q^{-2} (1 - q^{2}) \lambda \Theta^{i-1} \tilde{1} + \cdots
$$

\n
$$
u \cdot \Theta^{i} \tilde{1} = (q^{2} \Theta u + q^{3} (1 + q^{2}) t - q^{2} (1 - q^{2}) \mu^{-1} \lambda) \Theta^{i-1} \tilde{1}
$$

\n
$$
= q^{2} (q^{2(i-1)} \hat{\lambda} \Theta^{i} \tilde{1} - q^{2} (1 - q^{2(i-1)}) \mu^{-1} \lambda \Theta^{i-1} \tilde{1})
$$

\n
$$
- q^{2} (1 - q^{2}) \mu^{-1} \lambda \Theta^{i-1} \tilde{1} + \cdots
$$

\n
$$
= q^{2i} \hat{\lambda} \cdot \Theta^{i} \tilde{1} - q^{2} (1 - q^{2i}) \mu^{-1} \lambda \cdot \Theta^{i-1} \tilde{1} + \cdots
$$

The simplicity of the module $T^{\lambda,\mu}$ follows from the equality [\(5.5\)](#page-30-2).

(3) By [\(5.4\)](#page-30-1), the element u acts locally nilpotently on the module $t^{\lambda,\mu}$. But, by [\(5.6\)](#page-30-3), the action of the element u on the module $T^{\lambda,\mu}$ is not locally nilpotent. Hence, the modules $\mathfrak{t}^{\lambda,\mu}$ and $T^{\lambda,\mu}$ are not isomorphic. \Box

Theorem 5.2.

$$
(1) \ \widehat{\mathcal{C}}^{0,\mu} \left(t \text{-torsion} \right) = \left\{ \left[\mathcal{C}^{0,\mu} / \mathcal{C}^{0,\mu} (t, u, \Theta - \alpha) \simeq \mathbb{K}[\Theta] / (\Theta - \alpha) \right] \mid \alpha \in \mathbb{K} \right\}.
$$
\n
$$
(2) \ \text{Let } \lambda, \ \mu \in \mathbb{K}^*. \ \text{Then } \widehat{\mathcal{C}^{\lambda,\mu}} \left(t \text{-torsion} \right) = \left\{ \left[t^{\lambda,\mu} \right], \left[T^{\lambda,\mu} \right] \right\}.
$$

Proof. (1) We claim that ann_{φ 0, μ} $(M) \supseteq (t)$ for all $M \in \widehat{\mathcal{C}^{0,\mu}}$ (*t*-torsion): In view of Proposition [4.12.](#page-28-0)(1), it suffices to show that there exists a nonzero element $m \in M$ such that $tm = 0$ and $um = 0$. Since M is t-torsion, there exists a nonzero element $m' \in M$ such that $tm' = 0$. Then, by the equality [\(4.14\)](#page-25-2) (where $\lambda = 0$), we have $u^2m' = 0$. If $um' = 0$, we are done. Otherwise, the element $m := um'$ is a nonzero element of M such that $tm = um = 0$ (since $tu = q^2ut$). Now, statement 1 follows from the claim immediately.

(2) Let $M \in \widehat{C^{\lambda,\mu}}$ (*t*-torsion). Then there exists a nonzero element $m \in M$ such that $tm = 0$. By [\(4.14\)](#page-25-2), we have $(u - \hat{\lambda})u m = 0$. Therefore, either $um = 0$ or otherwise the element $m' := u \in M$ is nonzero and $(u - \hat{\lambda})m' = 0$. If $um = 0$ then the module M is an epimorphic image of the module $t^{\lambda,\mu}$. By Lemma [5.1.](#page-29-1)(1), $\mathfrak{t}^{\lambda,\mu}$ is a simple $\mathfrak{C}^{\lambda,\mu}$ -module. Hence, $M \simeq \mathfrak{t}^{\lambda,\mu}$. If $m' = u m \neq 0$, then $t m' = 0$ and $(u - \hat{\lambda})m' = 0$. So, the $\mathcal{C}^{\lambda,\mu}$ -module *M* is an epimorphic image of the module $T^{\lambda,\mu}$. By Lemma [5.1.](#page-29-1)(2), $T^{\lambda,\mu}$ is a simple $\mathcal{C}^{\lambda,\mu}$ -module. Then $M \simeq T^{\lambda,\mu}$. By Lemma [5.1.](#page-29-1)(3), the two modules $t^{\lambda,\mu}$ and $T^{\lambda,\mu}$ are not isomorphic, this completes the proof. \Box

Recall that the algebra

$$
C_{A_{X,\varphi}}(K) = \mathbb{K}[C, K^{\pm 1}] \otimes \mathcal{A},
$$

where A is a central simple GWA, see Proposition [4.3.](#page-18-1) The algebra $C_A(K)$ is a subalgebra of the algebra $C_{A_{X,g}}(K)$, where

$$
u = K^{-1}Y\varphi = K^{-1} \cdot YX \cdot \varphi X^{-1} = K^{-1}th,\tag{5.7}
$$

$$
\Theta = (1 - q^2)Ceh^{-1} + \frac{qK^{-1}}{1 - q^2}h + \frac{q^3K}{1 - q^2}h^{-1}.
$$
 (5.8)

In more detail: by (2.16) ,

$$
F = \left(C + K^{-1} EY^{2} - \frac{q^{3}}{1 - q^{2}} (K - K^{-1}) YX\right) X^{-1} \varphi^{-1}.
$$

Then the element FE can be written as

$$
FE = CEX^{-1}\varphi^{-1} + K^{-1}EY^2EX^{-1}\varphi^{-1} - \frac{q^2}{1-q^2}(K - K^{-1})YE\varphi^{-1}
$$

= $C \cdot EX^{-2} \cdot X\varphi^{-1} + K^{-1} \cdot EX^{-2} \cdot q^3(YX)^2 \cdot EX^{-2} \cdot X\varphi^{-1}$
 $- \frac{q^3(K - K^{-1})}{1-q^2} \cdot YX \cdot EX^{-2} \cdot X\varphi^{-1}$
= $Ceh^{-1} + q^3K^{-1}et^2eh^{-1} - \frac{q^3(K - K^{-1})}{1-q^2}teh^{-1}$
= $Ceh^{-1} + \frac{qK^{-1}}{(1-q^2)^2}h + \frac{q^3K}{(1-q^2)^2}h^{-1} - \frac{q^2(qK + q^{-1}K^{-1})}{(1-q^2)^2},$

where the last equality follows from (4.2) . Then the equality (5.8) follows immediately since \overline{a}

$$
\Theta = (1 - q^2)FE + \frac{q^2(qK + q^{-1}K^{-1})}{1 - q^2}.
$$

For $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, let

$$
\mathcal{C}_{A_{X,\varphi}}^{\lambda,\mu}:=C_{A_{X,\varphi}}(K)/(C-\lambda,K-\mu).
$$

Then by Proposition 4.3.(1), $\mathcal{C}_{A_{X,\varphi}}^{\lambda,\mu} \simeq A$ is a central simple GWA. So, there is a natural algebra homomorphism

$$
\mathcal{C}^{\lambda,\mu} \to \mathcal{C}^{\lambda,\mu}_{A_{X,\varphi}} \simeq \mathcal{A}.
$$

The next proposition shows that this homomorphism is a monomorphism.

Proposition 5.3. Let $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$. The following map is an algebra homomorphism

$$
\rho: \mathcal{C}^{\lambda,\mu} \longrightarrow \mathcal{C}^{\lambda,\mu}_{A_{X,\varphi}} \simeq \mathcal{A},
$$

$$
t \mapsto t, \quad u \mapsto \mu^{-1}th, \quad \Theta \mapsto (1-q^2)\lambda e h^{-1} + \frac{q\mu^{-1}}{1-q^2}h + \frac{q^3\mu}{1-q^2}h^{-1}.
$$

Moreover, the homomorphism ρ is a monomorphism.

Proof. The fact that the map ρ is an algebra homomorphism follows from (5.7) and (5.8). Now, we prove that ρ is an injection. If $\lambda \neq 0$ then by Theorem 4.11.(1), the algebra $\mathcal{C}^{\lambda,\mu}$ is a simple algebra. Hence, the kernel ker ρ of the homomorphism ρ must be zero, i.e., ρ is an injection. If $\lambda = 0$ and suppose that ker ρ is nonzero, we seek a contradiction. Then $t^i \in \text{ker } \rho$ for some $i \in \mathbb{N}$. But $\rho(t^i) = t^i \neq 0$, \Box a contradiction.

Let A_t be the localization of the algebra A at the powers of the element t. Then $A_t = \mathbb{K}[h^{\pm 1}][t^{\pm 1}; \sigma]$ is a central simple quantum torus, where $\sigma(h) = q^2h$. It is clear that $\mathcal{C}^{\lambda,\mu}_{t,u} \simeq \mathcal{A}_t$. Let $\mathcal B$ be the localization of $\mathcal A$ at the set $S = \mathbb K[h^{\pm 1}] \setminus \{0\}$. Then $\mathcal{B} = \mathcal{S}^{-1} \mathcal{A} = \mathbb{K}(h)[t^{\pm 1}; \sigma]$ is a skew Laurent polynomial algebra where $\mathbb{K}(h)$ is the field of rational functions in h and $\sigma(h) = q^2h$. The algebra $\mathcal B$ is a Euclidean ring with left and right division algorithms. In particular, \mathcal{B} is a principle left and right ideal domain. For all $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, we have the following inclusions of algebras

$$
\begin{array}{ccc}\n\mathcal{C}^{\lambda,\mu} & \xrightarrow{\rho} & \mathcal{A} \\
\downarrow & & \downarrow \\
\mathcal{C}^{\lambda,\mu}_{t} & \longrightarrow \mathcal{C}^{\lambda,\mu}_{t,u} = \mathcal{A}_{t} & \longrightarrow \mathcal{B}.\n\end{array}
$$

The set $\mathcal{C}^{0,\mu}$ **(***t***-torsionfree**). An explicit description of the set $\mathcal{C}^{0,\mu}$ (*t*-torsionfree) is given in Theorem [5.6.](#page-34-0) The idea is to embed the algebra $\mathcal{C}^{0,\mu}$ in a skew polynomial algebra $\mathcal R$ for which the simple modules are classified. The simple modules over these two algebras are closely related. It will be shown that

$$
\widehat{e^{0,\mu}}(t\text{-torsionfree}) = \widehat{\mathcal{R}}(t\text{-torsionfree}).
$$

Let R be the subalgebra of A generated by the elements $h^{\pm 1}$ and t. Then $\mathcal{R} =$ $\mathbb{K}[h^{\pm1}][t;\sigma]$ is a skew polynomial algebra where $\sigma(h) = q^2h$. By Proposition [5.3,](#page-32-0) the algebra $\mathcal{C}^{0,\mu}$ is a subalgebra of \mathcal{R} . Hence, we have the inclusions of algebras

$$
\mathcal{C}^{0,\mu} \subset \mathcal{R} \subset \mathcal{A} \subset \mathcal{R}_t = \mathcal{A}_t \subset \mathcal{B}.
$$

We identify the algebra $\mathcal{C}^{0,\mu}$ with its image in the algebra \mathcal{R} .

Lemma 5.4. *Let* $\mu \in \mathbb{K}^*$ *. Then:*

- (1) $\mathcal{C}^{0,\mu} = \bigoplus_{i \geq 1} \mathbb{K}[h^{\pm 1}]t^i \oplus \mathbb{K}[\Theta].$
- (2) $\mathcal{R} = \mathcal{C}^{0,\mu} \oplus \mathbb{K}[\Theta]h.$
- (3) $(t) = \bigoplus_{i \geq 1} \mathbb{K}[h^{\pm 1}]t^i = \mathcal{R}t$, where (t) is the ideal of $\mathcal{C}^{0,\mu}$ generated by the *element* t*.*

Proof. (1) and (2) Notice that $\mathbb{K}[\Theta] \subset \mathbb{K}[h^{\pm 1}]$ and $\mathbb{K}[h^{\pm 1}] = \mathbb{K}[\Theta] \oplus \mathbb{K}[\Theta]h$. Multiplying this equality on the right by the element t yields that

$$
\mathbb{K}[h^{\pm 1}]t = \mathbb{K}[\Theta]t \oplus \mathbb{K}[\Theta]u \subseteq \mathcal{C}^{0,\mu}.
$$

Then for all $i \geq 1$,

$$
\mathbb{K}[h^{\pm 1}]t^i = \mathbb{K}[h^{\pm 1}]t \cdot t^{i-1} \subseteq \mathcal{C}^{0,\mu}t^{i-1} \subseteq \mathcal{C}^{0,\mu}.
$$

Notice that

$$
\mathcal{R} = \bigoplus_{i \geq 0} \mathbb{K}[h^{\pm 1}]t^i = \bigoplus_{i \geq 1} \mathbb{K}[h^{\pm 1}]t^i \oplus \mathbb{K}[h^{\pm 1}]
$$

$$
= \bigoplus_{i \geq 1} \mathbb{K}[h^{\pm 1}]t^i \oplus \mathbb{K}[\Theta] \oplus \mathbb{K}[\Theta]h. \tag{5.9}
$$

Then,

$$
\mathcal{C}^{0,\mu}=\mathcal{C}^{0,\mu}\cap\mathcal{R}=\bigoplus_{i\geq 1}\mathbb{K}[h^{\pm 1}]t^i\oplus\mathbb{K}[\Theta]
$$

since $\mathcal{C}^{0,\mu} \cap \mathbb{K}[\Theta]h = 0$. The statement 2 then follows from [\(5.9\)](#page-34-1).

(3) By Proposition [4.12.](#page-28-0)(1), $(t) = \mathcal{C}^{0,\mu}t + \mathcal{C}^{0,\mu}u$. Then the first equality follows from statement 1. The second equality is obvious. \Box

The set $\mathbb{K}[h^{\pm 1}] \setminus \{0\}$ is an Ore set of the ring \mathcal{R} . Abusing the language, we say $\mathbb{K}[h^{\pm 1}]$ -torsion meaning $\mathbb{K}[h^{\pm 1}] \setminus \{0\}$ -torsion. In particular, we denote by $\hat{\mathcal{R}}(\mathbb{K}[h]$ -torsion) the set of isomorphism classes of $\mathbb{K}[h]$ -torsion simple R-modules.

Proposition 5.5. *Let* $\text{Irr}(\mathcal{B})$ *be the set of irreducible elements of the algebra* \mathcal{B} *.*

- (1) $\hat{\mathcal{R}}(\mathbb{K}[h^{\pm 1}]$ -torsion) = $\hat{\mathcal{R}}(t$ -torsion) = $\widehat{\mathcal{R}/(t)}$ = { $[\mathcal{R}/\mathcal{R}(h-\alpha, t)] | \alpha \in \mathbb{K}^*$ }.
- (2) $\hat{\mathcal{R}}(\mathbb{K}[h^{\pm 1}]$ -torsionfree) = $\hat{\mathcal{R}}(t$ -torsionfree)

 $=\{[M_b] \mid b \in \text{Irr}(\mathcal{B}), \mathcal{R} = \mathcal{R}t + \mathcal{R} \cap \mathcal{B}b\},\$

where $M_b := \mathcal{R}/\mathcal{R} \cap \mathcal{B}b$; $M_b \simeq M_{b'}$ iff the elements b and b' are similar $(i$ ff $\mathcal{B}/\mathcal{B}b \simeq \mathcal{B}/\mathcal{B}b'$ as \mathcal{B} *-modules*).

Proof. (1) The last two equalities are obvious, since t is a normal element of the algebra R. Then it is clear that $\hat{\mathcal{R}}(\mathbb{K}[h^{\pm 1}]$ -torsion) $\supseteq \hat{\mathcal{R}}(t$ -torsion). Now, we show the reverse inclusion holds. Let $M \in \widehat{\mathcal{R}}(\mathbb{K}[h^{\pm 1}]$ -torsion). Then M is an epimorphic image of the R-module $\mathcal{R}/\mathcal{R}(h - \alpha) = \mathbb{K}[t]$ for some $\alpha \in \mathbb{K}^*$, where $\overline{1} = 1 + \mathcal{R}(h - \alpha)$. Notice that $t \mathbb{K}[t]$ is the only maximal \mathcal{R} -submodule of $\mathcal{R}/\mathcal{R}(h - \alpha)$. Then $M \simeq \mathcal{R}/\mathcal{R}(h - \alpha, t) \in \hat{\mathcal{R}}$ (*t*-torsion), as required.

(2) The first equality follows from the first equality in statement 1. By [\[7,](#page-56-7) Theorem 1.3]

$$
\widehat{\mathcal{R}}\left(\mathbb{K}[h^{\pm 1}]\text{-torsionfree}\right) = \{[M_b] \mid b \in \text{Irr}(\mathcal{B}), \mathcal{R} = \mathcal{R}t + \mathcal{R} \cap \mathcal{B}b\}
$$

(the condition (LO) of [\[7,](#page-56-7) Theorem 1.3] is equivalent to the condition $\mathcal{R} =$ $\mathcal{R}t + \mathcal{R} \cap \mathcal{B}b$). \Box

924 V. V. Bavula and T. Lu

Theorem 5.6.

$$
\widehat{e^{0,\mu}}(t\text{-torsionfree}) = \widehat{\mathcal{R}}(t\text{-torsionfree})
$$

= $\widehat{\mathcal{R}}(\mathbb{K}[h^{\pm 1}]\text{-torsionfree})$
= { $[M_b = \mathcal{R}/\mathcal{R} \cap \mathcal{B}b] | b \in \text{Irr}(\mathcal{B}), \mathcal{R} = \mathcal{R}t + \mathcal{R} \cap \mathcal{B}b]$

(see Proposition [5.5\)](#page-34-2).

Proof. In view of Proposition [5.5.](#page-34-2)(2), it remains to show that the first equality holds. Let $[M] \in \widehat{\mathcal{C}^{0,\mu}}$ (*t*-torsionfree). Then $M = (t)M = \mathcal{R}tM \in \widehat{\mathcal{R}}$ (*t*-torsionfree). Given $[N] \in \hat{\mathcal{R}}$ (*t*-torsionfree). To finish the proof of statement 2, it suffices to show that N is a simple $\mathcal{C}^{0,\mu}$ -module. If L is a nonzero $\mathcal{C}^{0,\mu}$ -submodule of N then $N \supseteq L \supseteq (t)L \neq 0$, since N is t-torsionfree. Then $(t)L = \mathcal{R}tL = N$, since N is a simple R-module. Hence, $L = N$, i.e., N is a simple $\mathcal{C}^{0,\mu}$ -module, as required.

The set $\mathbb{C}^{\lambda,\mu}$ **(***t***-torsionfree) where** $\lambda \in \mathbb{K}^*$. An explicit description of the set $\mathbb{C}^{\lambda,\mu}$ (*t* torsionfree), where $\lambda \in \mathbb{K}^*$ is given in Theorem 5.11. Becall that the $\mathcal{C}^{\lambda,\mu}$ (*t*-torsionfree), where $\lambda \in \mathbb{K}^*$ is given in Theorem [5.11.](#page-38-0) Recall that the algebra algebra

$$
\mathcal{C}_t^{\lambda,\mu} = \mathbb{K}[t^{\pm 1}][u,v;\sigma,a]
$$

is a GWA where $a = (q^7/(1 - q^2))t^2 - q^4\mu^{-1}\lambda t$ and σ is the automorphism of the algebra $\mathbb{K}[t^{\pm 1}]$ defined by $\sigma(t) = q^{-2}t$ (Proposition [4.9.](#page-25-0)(2)). Clearly,

 $\widehat{e^{\lambda,\mu}}$ (*t*-torsionfree)

$$
= \mathcal{C}^{\lambda,\mu} \text{ (t-torsionfree, } \mathbb{K}[t]\text{-torsion} \sqcup \mathcal{C}^{\lambda,\mu} \text{ (K}[t]\text{-torsionfree).} \quad (5.10)
$$

Lemma 5.7. Let $\lambda, \mu \in \mathbb{K}^*$ and $\nu := q^{-3}(1 - q^2)\mu^{-1}\lambda$. Then

- (1) The module $\mathfrak{f}^{\lambda,\mu} := \mathfrak{C}^{\lambda,\mu}/\mathfrak{C}^{\lambda,\mu}(t-\nu,u)$ is a simple $\mathfrak{C}^{\lambda,\mu}$ -module.
- (2) The module $F^{\lambda,\mu} := \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}(t-q^2\nu,\nu)$ is a simple $\mathcal{C}^{\lambda,\mu}$ -module.
- (3) Let $\gamma, \gamma' \in \mathbb{K}^* \setminus \{q^{2i}\nu \mid i \in \mathbb{Z}\}\$. The module $\mathcal{F}_{\gamma}^{\lambda,\mu} := \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}(t-\gamma)$ is *a* simple $\mathcal{C}^{\lambda,\mu}$ -module. The simple modules $\mathcal{F}^{\lambda,\mu}_{\gamma} \simeq \mathcal{F}^{\lambda,\mu}_{\gamma'}$ $\int_{\gamma'}^{\lambda,\mu}$ iff $\gamma = q^{2i}\gamma'$ for *some* $i \in \mathbb{Z}$.

Proof. (1) Note that $a = (q^7/(1-q^2))(t-v)t$ and $\sigma(a) = (q^3/(1-q^2))(t-q^2)v$ t. By Corollary $4.8(2)$ and the expression of the element v ,

$$
\mathfrak{f}^{\lambda,\mu} = \mathbb{K}[\Theta]\overline{1} = \mathbb{K}[v]\overline{1},
$$

where $\bar{1} = 1 + \mathcal{C}^{\lambda,\mu}(t - \nu, u)$. The simplicity of the module $f^{\lambda,\mu}$ follows from the equality:

$$
uv^i\overline{1} = v^{i-1}\sigma^i(a)\overline{1} \in \mathbb{K}^*v^{i-1}\overline{1}
$$

for all $i \geq 1$.

(2) Notice that $F^{\lambda,\mu} = \mathbb{K}[u]\overline{1}$, where $\overline{1} = 1 + \mathcal{C}^{\lambda,\mu}(t - q^2v, v)$. The simplicity of the module $F^{\lambda,\mu}$ follows from the equality:

$$
vu^i\overline{1} = u^{i-1}\sigma^{-i+1}(a)\overline{1} \in \mathbb{K}^*u^{i-1}\overline{1}
$$

for all $i \geq 1$.

(3) Notice that

$$
\mathcal{F}_{\gamma}^{\lambda,\mu} = \sum_{i,j \geq 0} \mathbb{K} u^i \Theta^j \tilde{1} = \sum_{i,j \geq 0} \mathbb{K} u^i v^j \tilde{1} = \mathbb{K}[u] \tilde{1} + \mathbb{K}[v] \tilde{1},
$$

where $\tilde{1} = 1 + \mathcal{C}^{\lambda,\mu}(t - \gamma)$. Since $\gamma \in \mathbb{K}^* \setminus \{q^{2i}v \mid i \in \mathbb{Z}\}, \sigma^i(a)\overline{1} \in \mathbb{K}^*\overline{1}$ for all $i \in \mathbb{Z}$. Then the simplicity of the module $\mathcal{F}_{\gamma}^{\lambda,\mu}$ follows from the equalities in the proof of statements 1 and 2. The set of eigenvalues of the element $t_{\mathcal{F}_{\gamma}^{\lambda,\mu}}$ is

$$
\mathrm{Ev}_{\mathcal{F}^{\lambda,\mu}_{\gamma}}(t) = \{q^{2i}\gamma \mid i \in \mathbb{Z}\}.
$$

If $\mathcal{F}_{\gamma}^{\lambda,\mu} \simeq \mathcal{F}_{\gamma'}^{\lambda,\mu}$ $\sum_{\gamma'} \lambda, \mu$, then $\text{Ev}_{\mathcal{F}^{\lambda, \mu}_{\gamma}}(t) = \text{Ev}_{\mathcal{F}^{\lambda, \mu}_{\gamma'}}(t)$, so $\gamma = q^{2i} \gamma'$

for some $i \in \mathbb{Z}$. Conversely, suppose that $\gamma = q^{2i}\gamma'$ for some $i \in \mathbb{Z}$. Let $\tilde{1}$ and $\tilde{1}'$ be the canonical generators of the modules $\mathcal{F}_{\gamma}^{\lambda,\mu}$ and $\mathcal{F}_{\gamma'}^{\lambda,\mu}$ $\zeta^{\lambda,\mu}_{\gamma'}$, respectively. The map

$$
\mathcal{F}_{\gamma}^{\lambda,\mu} \to \mathcal{F}_{\gamma'}^{\lambda,\mu}, \quad \tilde{1} \mapsto u^{i} \tilde{1}'
$$

defines an isomorphism of $\mathcal{C}^{\lambda,\mu}$ -modules if $i \geq 0$, and the map

$$
\mathcal{F}_{\gamma}^{\lambda,\mu} \to \mathcal{F}_{\gamma'}^{\lambda,\mu}, \quad \tilde{1} \mapsto v^{i} \tilde{1}'
$$

defines an isomorphism of $\mathcal{C}^{\lambda,\mu}$ -modules if $i < 0$.

Definition 5.8 ([\[4\]](#page-56-8), *l*-normal elements of the algebra $\mathcal{C}_t^{\lambda,\mu}$). (1) Let α and β be nonzero elements of the Laurent polynomial algebra $\mathbb{K}[t^{\pm 1}]$. We say that $\alpha < \beta$ if there are no roots λ and μ of the polynomials α and β , respectively, such that, $\lambda = q^{2i} \mu$ for some $i \ge 0$.

(2) An element $b = v^m \beta_m + v^{m-1} \beta_{m-1} + \cdots + \beta_0 \in \mathcal{C}_t^{\lambda,\mu}$, where $m > 0$, $\beta_i \in \mathbb{K}[t^{\pm 1}]$, and $\beta_0, \beta_m \neq 0$ is called *l*-normal if

$$
\beta_0 < \beta_m
$$
 and $\beta_0 < \frac{q^7}{1-q^2}t^2 - q^4\mu^{-1}\lambda t$.

$$
\Box
$$

926 V. V. Bavula and T. Lu

Theorem 5.9 ([\[2,](#page-56-9)[3\]](#page-56-2)). Let $\lambda, \mu \in \mathbb{K}^*$. Then

$$
\mathcal{C}^{\lambda,\mu}_t\left(\mathbb{K}[t]\text{-torsionfree}\right)=\big\{\big[N_b:=\mathcal{C}^{\lambda,\mu}_t/\mathcal{C}^{\lambda,\mu}_t\cap\mathcal{B}b\big]\mid b\text{ is }l\text{-normal},\,b\in\text{Irr}(\mathcal{B})\big\}.
$$

Simple $\mathcal{C}_t^{\lambda,\mu}$ -modules N_b and $N_{b'}$ are isomorphic iff the elements b and b' are *similar.*

Recall that, the algebra $\mathcal{C}^{\lambda,\mu}$ is generated by the canonical generators t, u, and Θ . Let $\mathcal{F} = {\mathcal{F}_n}_{n\geq 0}$ be the standard filtration associated with the canonical generators. By Corollary [4.8,](#page-25-4) for $n \geq 0$,

$$
\mathcal{F}_n = \bigoplus_{\substack{i,j \geq 1, \\ i+j \leq n}} \mathbb{K} \Theta^i t^j \oplus \bigoplus_{1 \leq k \leq n} \mathbb{K} \Theta^k \oplus \bigoplus_{\substack{l,m \geq 1, \\ l+m \leq n}} \mathbb{K} \Theta^l u^m \oplus \bigoplus_{\substack{a,b \geq 0, \\ a+b \leq n}} \mathbb{K} u^a t^b.
$$

For all $n \geq 1$,

dim
$$
\mathcal{F}_n = \frac{3}{2}n^2 + \frac{3}{2}n + 1 = f(n)
$$
,

where $f(s) = \frac{3}{2}s^2 + \frac{3}{2}s + 1 \in \mathbb{Q}[s]$. For each nonzero element $a \in \mathcal{C}^{\lambda,\mu}$, the unique natural number n such that $a \in \mathcal{F}_n \setminus \mathcal{F}_{n-1}$ is called the *total degree* of the element a, denoted by deg(*a*). Set deg(0) $:= -\infty$. Then

$$
\deg(ab) \leq \deg(a) + \deg(b)
$$

for all elements $a, b \in \mathcal{C}^{\lambda,\mu}$.

For an R-module M, we denote by $l_R(M)$ the *length* of the R-module M. The next proposition shows that $l_{\mathcal{C}^{\lambda,\mu}}(\mathcal{C}^{\lambda,\mu}/I) < \infty$ for all left ideals I of the algebra $\mathcal{C}^{\lambda,\mu}$.

Proposition 5.10. Let $\lambda, \mu \in \mathbb{K}^*$. For each element nonzero element $a \in \mathcal{C}^{\lambda,\mu}$, the length of the $\mathcal{C}^{\lambda,\mu}$ -module $\mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}$ a is finite, more precisely,

$$
l_{\mathcal{C}^{\lambda,\mu}}(\mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}a)\leqslant 3\deg(a).
$$

Proof. Let $M := \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}$ $a = \mathcal{C}^{\lambda,\mu}$ $\overline{1} = \bigcup_{i \geq 0} \mathcal{F}_i$ $\overline{1}$ be the standard filtration on M where $\overline{1} = 1 + \mathcal{C}^{\lambda,\mu} a$. Then

$$
\mathcal{F}_i \bar{1} \simeq \frac{\mathcal{F}_i + \mathcal{C}^{\lambda,\mu} a}{\mathcal{C}^{\lambda,\mu} a} \simeq \frac{\mathcal{F}_i}{\mathcal{F}_i \cap \mathcal{C}^{\lambda,\mu} a}.
$$

Let $d := \deg(a)$. Since, for all $i \geq 0$, $\mathcal{F}_{i-d} \subseteq \mathcal{F}_i \cap \mathcal{C}^{\lambda,\mu}$ a, we see that

$$
\dim(\mathcal{F}_i \bar{1}) \leq f(i) - f(i - d) = 3di + \frac{3}{2}d - \frac{3}{2}d^2.
$$

Recall that the algebra $\mathcal{C}^{\lambda,\mu}$ is a simple, infinite dimensional algebra since $\lambda \neq 0$ (Theorem [4.11.](#page-27-0)(1)). So, if $N = \mathcal{C}^{\lambda,\mu} n$ is a nonzero cyclic $\mathcal{C}^{\lambda,\mu}$ -module (where $0 \neq$ $n \in N$) and $\{\mathcal{F}_i n\}_{i \geq 0}$ is the standard filtration on N then dim $(\mathcal{F}_i n) \geq i + 1$ for all $i \geq 0$. This implies that $l_{\mathcal{C}^{\lambda,\mu}}(M) \leq 3d$. \Box

The group $q^{2\mathbb{Z}} = \{q^{2i} \mid i \in \mathbb{Z}\}\$ acts on \mathbb{K}^* by multiplication. For each $\gamma \in \mathbb{K}^*$, let $\mathcal{O}(\gamma) = \{q^{2i}\gamma \mid i \in \mathbb{Z}\}\$ be the orbit of the element $\gamma \in \mathbb{K}^*$ under the action of the group $q^{2\mathbb{Z}}$. For each orbit $\mathcal{O} \in \mathbb{K}^*/q^{2\mathbb{Z}}$, we fix an element $\gamma_{\mathcal{O}} \in \mathcal{O}(\gamma)$.

Theorem 5.11. Let $\lambda, \mu \in \mathbb{K}^*$. Then

- (1) $\mathcal{C}^{\lambda,\mu}$ (*t*-torsionfree, $\mathbb{K}[t]$ -torsion) $=\{[\mathfrak{f}^{\lambda,\mu}],[\mathsf{F}^{\lambda,\mu}],[\mathcal{F}_{\gamma_{\mathcal{O}}}^{\lambda,\mu}] \mid \mathcal{O} \in \mathbb{K}^*/q^{2\mathbb{Z}} \setminus \{\mathcal{O}(\nu)\}\}.$
- (2) *The map*

$$
\widehat{C^{\lambda,\mu}}\left(\mathbb{K}[t]\text{-torsionfree}\right)\to \widehat{C_t^{\lambda,\mu}}\left(\mathbb{K}[t]\text{-torsionfree}\right), \quad [M] \mapsto [M_t]
$$

is a bijection with the inverse $[N] \mapsto \sec_{\mathcal{P}^{\lambda,\mu}}(N)$ *.*

(3) $\widehat{e^{\lambda,\mu}}$ (K[t]-torsionfree) $=\{ \left\lceil M_b := \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu} \cap \mathcal{B}bt^{-i} \right\rceil \mid b \text{ is } l\text{-normal}, b \in \text{Irr}(\mathcal{B}), i \geq 3 \deg(b) \}.$

Proof. (1) Let $M \in \widehat{C^{\lambda,\mu}}$ (*t*-torsionfree, $\mathbb{K}[t]$ -torsion). There exists a nonzero element $m \in M$ such that $tm = \gamma m$ for some $\gamma \in \mathbb{K}^*$. Then M is an epimorphic image of the module $\mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}(t-\gamma)$. If $\gamma \notin \mathcal{O}(\nu)$, then

$$
M \simeq \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}(t-\gamma) = \mathcal{F}_{\gamma}^{\lambda,\mu}
$$

by Lemma [5.7.](#page-35-0)(3). It remains to consider the case when $\gamma \in \mathcal{O}(\nu)$, i.e., $\gamma = q^{2i} \nu$ for some $i \in \mathbb{Z}$.

(i) If $\gamma = q^{2i} \nu$, where $i \ge 1$, then $\sigma^{i}(a) m = 0$. Notice that

$$
u^{i-1}v^{i-1}m = \sigma^{i-1}(a)\cdots\sigma(a)m \neq 0,
$$

the element $m' := v^{i-1}m$ is a nonzero element of M. If $vm' = 0$, notice that

$$
tm' = tv^{i-1}m = q^2vm',
$$

then M is an epimorphic image of the simple module $F^{\lambda,\mu}$. Hence, $M \simeq F^{\lambda,\mu}$. If $m'' := v m' \neq 0$, notice that

$$
tm'' = tv^i m = v m''
$$
 and $um'' = uv^i m = v^{i-1} \sigma^i(a) m = 0$,

then M is an epimorphic image of the simple module $\mathfrak{f}^{\lambda,\mu}$. Hence, $M \simeq \mathfrak{f}^{\lambda,\mu}$.

(ii) If $\gamma = q^{-2i} \nu$ where $i \ge 0$ then $\sigma^{-i}(a)m = 0$. The element $e := u^i m$ is a nonzero element of M. (The case $i = 0$ is trivial, for $i \ge 1$, it follows from the equality $v^i u^i m = \sigma^{-i+1}(a) \cdots \sigma^{-1}(a)$ am $\neq 0$). If $u e = 0$, notice that

$$
te = tu^im = ve,
$$

then M is an epimorphic image of the simple module $\mathfrak{f}^{\lambda,\mu}$. Hence, $M \simeq \mathfrak{f}^{\lambda,\mu}$. If $e' := ue \neq 0$, notice that

$$
te' = tu^{i+1}m = q^2ve'
$$
 and $ve' = vu^{i+1}m = u^i\sigma^{-i}(a)m = 0$,

then M is an epimorphic image of the simple module $F^{\lambda,\mu}$. Hence, $M \simeq F^{\lambda,\mu}$. This proves statement 1.

(2) The result follows from Proposition [5.10.](#page-37-0)

(3) Let $[M] \in \mathbb{C}^{\lambda,\mu}(\mathbb{K}[t]$ -torsionfree). Then $[M_t] \in \mathcal{C}_t^{\lambda,\mu}(\mathbb{K}[t]$ -torsionfree), and so $M \sim \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu} \cap \mathcal{R}b$ where so $M_t \simeq \mathcal{C}_t^{\lambda,\mu}/\mathcal{C}_t^{\lambda,\mu} \cap \mathcal{B}b$, where

$$
b = v^m \beta_m + v^{m-1} \beta_{m-1} + \dots + \beta_0 \in \mathcal{C}^{\lambda, \mu} \quad (\beta_i \in \mathbb{K}[t], m > 0 \text{ and } \beta_m, \beta_0 \neq 0)
$$

is l -normal and irreducible in B . Clearly,

$$
0\neq M_b:=\mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu}\cap\mathcal{B}b\subseteq M_t
$$

and

$$
M = \mathrm{soc}_{\mathcal{C}^{\lambda,\mu}}(M_t) = \mathrm{soc}_{\mathcal{C}^{\lambda,\mu}}(M_b),
$$

by statement 2. Let $I_b := \mathcal{C}^{\lambda,\mu} \cap \mathcal{B}b$, $J_n = \mathcal{C}^{\lambda,\mu}t^n + I_b$ for all $n \geq 0$ and $d = \deg(a)$. By Proposition [5.10,](#page-37-0) the following descending chain of left ideals of the algebra $\mathcal{C}^{\lambda,\mu}$ stabilizes:

$$
\mathcal{C}^{\lambda,\mu}=J_0\supseteq J_1\supseteq\cdots\supseteq J_n=J_{n+1}=\cdots,\quad n\geqslant 3d.
$$

 \Box

Hence, $\operatorname{soc}_{\mathcal{C}^{\lambda,\mu}}(M_b) = J_n/I_b \simeq \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu} \cap \mathcal{B}bt^{-n}$.

6. Simple weight A**-modules**

The aim of this section is to give a classification of simple weight A-modules. The set \hat{A} (weight) of isomorphism classes of simple weight A-modules is partitioned into the disjoint union of four subsets, see (6.1) . We will describe each of them separately.

An A-module M is called a *weight module* provided that $M = \bigoplus_{\mu \in \mathbb{K}^*} M_{\mu}$, where $M_{\mu} = \{m \in M \mid Km = \mu m\}$. We denote by Wt (M) the set of all weights of M, i.e., the set $\{\mu \in \mathbb{K}^* \mid M_{\mu} \neq 0\}.$

Verma modules and simple highest weight A-modules. For each $\lambda \in \mathbb{K}^*$, we define the Verma module

$$
M(\lambda) := A/A(K - \lambda, E, X).
$$

Then $M(\lambda) = \mathbb{K}[Y, F]\tilde{1}$, where $\tilde{1} = 1 + A(K - \lambda, E, X)$. If M is an A-module, a *highest weight vector* is any $0 \neq m \in M$ such that m is an eigenvector of K and K^{-1} and $Em = Xm = 0$.

Lemma 6.1. *The set of highest weight vectors of the Verma module* $M(\lambda)$ *is*

$$
H := \{ kY^n \tilde{1} \mid k \in \mathbb{K}^*, n \in \mathbb{N} \}.
$$

Proof. It is clear that any element of H is a highest weight vector. Suppose that $m = \sum \alpha_{ij} Y^i F^j \tilde{1} \in M(\lambda)$ is a highest weight vector of weight μ where $\alpha_{ij} \in \mathbb{K}$. Then

$$
Km = \sum \alpha_{ij} \lambda q^{-i-2j} Y^i F^j \tilde{1} = \mu m.
$$

This implies that $i + 2j$ is a constant, say $i + 2j = n$. Then m can be written as

$$
m = \sum \alpha_j Y^{n-2j} F^j \tilde{1}
$$

for some $\alpha_j \in \mathbb{K}$. By Lemma [3.1.](#page-10-1)(2),

$$
Xm = \sum -q^{n-2j} \frac{1-q^{2j}}{1-q^2} \alpha_j \lambda^{-1} Y^{n-2j+1} F^{j-1} \tilde{1} = 0.
$$

Thus, $\alpha_j = 0$ for all $j \ge 1$ and hence, $m \in H$.

By Lemma [6.1,](#page-40-0) there are infinitely many linear independent highest weight vectors. Let $N_n := \mathbb{K}[Y, F]Y^n \tilde{1}$ where $n \in \mathbb{N}$. Then N_n is a Verma A-module with highest weight $q^{-n}\lambda$, i.e., $N_n \simeq M(q^{-n}\lambda)$. Furthermore, $M(\lambda)$ is a submodule of $M(q^n\lambda)$ for all $n \in \mathbb{N}$. Thus, for any $\lambda \in \mathbb{K}^*$, there exists an infinite sequence of Verma modules

$$
\cdots \supset M(q^2\lambda) \supset M(q\lambda) \supset M(\lambda) \supset M(q^{-1}\lambda) \supset M(q^{-2}\lambda) \supset \cdots
$$

The following result of Verma U_a (\mathfrak{sl}_2)-modules is well-known; see [\[17,](#page-57-5) p. 20].

Lemma 6.2 ([\[17\]](#page-57-5)). *Suppose that* q *is not a root of unity. Let* $V(\lambda)$ be a Verma $U_q(\mathfrak{sl}_2)$ -module. Then $V(\lambda)$ is simple if and only if $\lambda \neq \pm q^n$ for all integer $n \geq 0$. When $\lambda = q^n$ (resp., $-q^n$) there is a unique simple quotient $L(n, +)$ (resp., $L(n, -)$) *of* $V(\lambda)$ *. Each simple* $U_a(\mathfrak{sl}_2)$ *-module of dimension* $n + 1$ *is isomorphic to* $L(n, +)$ *or* $L(n, -)$ *.*

Let $V(\lambda) := M(\lambda)/N_1$. Then $V(\lambda) \simeq \mathbb{K}[F] \overline{1}$, where $\overline{1} := 1 + A(K - \lambda, E, X, Y)$. **Theorem 6.3.** *Up to isomorphism, the simple A-modules of highest weight* λ *are as follows:*

- (i) $V(\lambda)$, when $\lambda \neq \pm q^n$ for any $n \in \mathbb{N}$.
- (ii) $L(n, +)$, when $\lambda = q^n$ for some $n \in \mathbb{N}$.
- (iii) $L(n, -)$, when $\lambda = -q^n$ for some $n \in \mathbb{N}$.

In each case, the elements X *and* Y *act trivially on the modules, and these modules are in fact simple highest weight* $U_q(\mathfrak{sl}_2)$ *-modules.*

Proof. In view of Lemma [3.2.](#page-10-2)(1), $\text{ann}_A(V(\lambda)) \supseteq (X)$. So, $V(\lambda) \simeq U/U(K - \lambda, E)$ where $U = U_a(\mathfrak{sl}_2)$. Then the theorem follows immediately from Lemma [6.2.](#page-40-1)

Simple weight modules that not highest and lowest weight A **-modules.** Let N be the set of simple weight A-modules M such that $XM \neq 0$ or $YM \neq 0$. Then \widehat{A} (weight) = $\widehat{U}_q(\widehat{\mathfrak{sl}_2})$ (weight) $\sqcup \mathcal{N}$.

Lemma 6.4. Let M be a simple A-module. If $x \in \{X, Y, E, F\}$ annihilates a *non-zero element* $m \in M$ *, then* x *acts locally nilpotently on* M.

Proof. For each element $x \in \{X, Y, E, F\}$, the set $S = \{x^i \mid i \in \mathbb{N}\}$ is an Ore set in the algebra A. Then tors (M) is a nonzero submodule of M. Since M is a simple module, $M = \text{tor}_S(M)$, i.e., the element x acts locally nilpotently on M. \Box

Theorem 6.5. *Let* $M \in \mathcal{N}$ *, then:*

(1) dim $M_{\lambda} = \dim M_{\mu}$ for any $\lambda, \mu \in Wt(M)$.

(2) $Wt(M) = \{q^n \lambda \mid n \in \mathbb{Z}\}$ *for any* $\lambda \in Wt(M)$ *.*

Proof. (1) Suppose that there exists $\lambda \in Wt(M)$ such that dim $M_{\lambda} > \dim M_{q\lambda}$. Then the map $X: M_{\lambda} \to M_{q\lambda}$ is not injective. Hence $Xm = 0$ for some non-zero element $m \in M_{\lambda}$. By Lemma [6.4,](#page-41-0) X acts locally nilpotently on M.

If dim $M_{q-1\lambda}$ > dim $M_{q\lambda}$, then the linear map $E: M_{q-1\lambda} \to M_{q\lambda}$ is not injective. So $Em' = 0$ for some non-zero element $m' \in M_{q^{-1}\lambda}$. By Lemma [6.4,](#page-41-0) E acts on M locally nilpotently. Since $EX = qXE$, there exists a non-zero weight vector m'' such that $Xm'' = Em'' = 0$. Therefore, M is a highest weight module. By Theorem [6.3,](#page-40-2) $XM = YM = 0$, which contradicts to our assumption that $M \in \mathcal{N}$.

If dim $M_{q-1\lambda} \leq \dim M_{q\lambda}$, then dim $M_{q-1\lambda} < \dim M_{\lambda}$. Hence the map $Y: M_{\lambda} \rightarrow M_{q-1_{\lambda}}$ is not injective. It follows that $Ym_1 = 0$ for some nonzero element $m_1 \in M_\lambda$. By Lemma [6.4,](#page-41-0) Y acts on M locally nilpotently. Since $XY = qYX$, there exists some non-zero weight vector $m_2 \in M$ such that $Xm_2 = Ym_2 = 0$. By Lemma [3.2.](#page-10-2)(1),

$$
\operatorname{ann}_A(M) \supseteq (X, Y),
$$

a contradiction. Similarly, one can show that there does not exist $\lambda \in Wt(M)$ such that dim M_{λ} < dim $M_{q\lambda}$.

(2) Clearly, $Wt(M) \subseteq \{q^n \lambda \mid n \in \mathbb{Z}\}$. By the above argument we see that

$$
\text{Wt}(M) \supseteq \{q^n\lambda \mid n \in \mathbb{Z}\}.
$$

Hence $\text{Wt}(M) = \{q^n \lambda \mid n \in \mathbb{Z}\}.$

Let M be an A-module and $x \in A$. We say that M is x-torsion provided that for each element $m \in M$ there exists some $i \in \mathbb{N}$ such that $x^i m = 0$. We denote by x_M the map $M \to M$, $m \mapsto xm$.

Lemma 6.6. *Let* $M \in \mathcal{N}$ *.*

- (1) If M is X-torsion, then M is (φ, Y) -torsionfree.
- (2) If M is Y-torsion, then M is (X, φ) -torsionfree.
- (3) If M is φ -torsion, then M is (X, Y) -torsionfree.

Proof. (1) Since $M \in \mathcal{N}$ is an X-torsion module, by the proof of Theorem [6.5,](#page-41-1) Y_M and E_M are injections. Let us show that φ_M is injective. Otherwise, there exists a nonzero element $m \in M$ such that $\varphi m = 0$, i.e., $Xm = (q - q^{-1})YEm$. Since $X^{i}m = 0$ for some $i \in \mathbb{N}$ and $X(YE) = (YE)X$, we have

$$
X^{i}m = (q - q^{-1})^{i} (YE)^{i}m = 0.
$$

This contradicts the fact that Y and E are injective maps on M .

(2) Clearly, X_M is an injection. Let us show that φ_M is an injective map. Otherwise, there exists a nonzero element $m \in M$ such that $\varphi m = Y m = 0$ (since $Y \varphi = q \varphi Y$). Then $Xm = 0$ (since $\varphi = (1 - q^2) EY + q^2 X$), a contradiction.

(3) Statement 3 follows from statements 1 and 2.

By Lemma [6.6,](#page-41-2)

$$
\hat{A} \text{ (weight)} = \widehat{U_q(\mathfrak{sl}_2)} \text{ (weight)} \sqcup \mathcal{N}
$$
\n
$$
= \widehat{U_q(\mathfrak{sl}_2)} \text{ (weight)} \sqcup \mathcal{N} \text{ (X-torsion)} \sqcup \mathcal{N} \text{ (Y-torsion)} \qquad (6.1)
$$
\n
$$
\sqcup \mathcal{N} \text{ ((X, Y)-torsionfree)}.
$$

It is clear that $\mathcal{N}((X, Y)$ -torsionfree) = \hat{A} (weight, (X, Y) -torsionfree). **Lemma 6.7.** *If* $M \in \mathcal{N}$ (*X*-torsion) $\sqcup \mathcal{N}$ (φ -torsion) $\sqcup \mathcal{N}$ (*Y*-torsion) *then* $C_M \neq 0$.

Proof. Suppose that $M \in \mathcal{N}(X$ -torsion), and let m be a weight vector such that $Xm = 0$. If $C_M = 0$, then by [\(2.15\)](#page-8-8),

$$
Cm = -K^{-1}EY^2m = 0
$$

i.e., $EY^2m = 0$. This implies that E_M or Y_M is not injective. By the proof of Theorem [6.5,](#page-41-1) this is a contradiction. Similarly, one can prove that for $M \in \mathcal{N}$ $(Y$ -torsion), $C_M \neq 0$. Now, suppose that $M \in \mathcal{N}$ (φ -torsion), and let $m \in M_\mu$ be a weight vector such that $\varphi m = 0$. Since $Y\varphi = q(1 - q^2)EY^2 + q^4YX$, we have

$$
Y\varphi m = q(1 - q^2)EY^2m + q^4YXm = 0,
$$
\n(6.2)

If $C_M = 0$, then by [\(2.16\)](#page-8-7),

$$
Cm = -\mu^{-1} EY^2 m + \frac{q^3}{1 - q^2} (\mu - \mu^{-1}) Y X m = 0.
$$
 (6.3)

The equalities [\(6.2\)](#page-42-1) and [\(6.3\)](#page-42-2) yield that $EY^2m = 0$ and $YXm = 0$, a contradiction. \Box

Theorem 6.8. *Let* $M \in \mathcal{N}$ *. Then* dim $M_{\mu} = \infty$ for all $\mu \in Wt(M)$ *.*

Proof. Since M is a simple A-module, the weight space M_u of M is a simple $\mathcal{C}^{\lambda,\mu}$ -module for some $\lambda \in \mathbb{K}$. If $M \in \mathcal{N}$ (*X*-torsion) $\sqcup \mathcal{N}$ (*Y*-torsion) then by Lemma [6.7,](#page-42-3) $\lambda = C_M \neq 0$. By Proposition [4.9.](#page-25-0)(4) and Theorem [4.11.](#page-27-0)(1), $\mathcal{C}^{\lambda,\mu}$ is an infinite dimensional central simple algebra. Hence, dim $M_{\mu} = \infty$. It remains to consider the case where $M \in \mathcal{N}((X, Y)$ -torsionfree). Suppose that there exists a weight space M_{ν} of M such that dim $M_{\nu} = n < \infty$, we seek a contradiction. Then by Theorem [6.5,](#page-41-1) dim $M_{\mu} = n$ for all $\mu \in Wt(M)$ and $Wt(M) = \{q^i v \mid i \in \mathbb{Z}\}.$ Notice that the elements X and Y act injectively on M, then they act bijectively on M (since all the weight spaces are finite dimensional and of the same dimension). In particular, the element $t = YX$ acts bijectively on each weight space M_{μ} , and so, M_{μ} is a simple $\mathcal{C}_t^{\lambda,\mu}$ -module. By Proposition [4.9.](#page-25-0)(2,3), the algebra $\mathcal{C}_t^{\lambda,\mu}$ is an infinite dimensional central simple algebra for any $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$. Then, dim $M_{\mu} = \infty$, a contradiction. \Box

Description of the set $\mathcal{N}(X \text{-torsion})$ **.** An explicit description of the set $\mathcal{N}(X \text{-torsion})$ is given in Theorem [6.10.](#page-47-0) It consists of a family of simple modules constructed below (see Proposition [6.9\)](#page-44-0). For each $\mu \in \mathbb{K}^*$, we define the left A-module $\mathbb{X}^{\mu} := A/A(K - \mu, X)$. Then

$$
\mathbb{X}^{\mu} = \bigoplus_{i,j,k \geq 0} \mathbb{K} F^{i} E^{j} Y^{k} \bar{1},
$$

where $\overline{1} = 1 + A(K - \mu, X)$. Let $\lambda \in \mathbb{K}$. By [\(2.15\)](#page-8-8), we see that the submodule of \mathbb{X}^{μ} ,

$$
(C - \lambda) \mathbb{X}^{\mu} = \bigoplus_{i,j,k \ge 0} \mathbb{K} F^{i} E^{j} Y^{k} (\mu^{-1} E Y^{2} + \lambda) \overline{1}
$$

=
$$
\bigoplus_{i,j,k \ge 0} \mathbb{K} F^{i} (\mu^{-1} q^{k} E^{j+1} Y^{k+2} + \lambda E^{j} Y^{k}) \overline{1},
$$
 (6.4)

is a proper submodule and the map $(C - \lambda)$: $\mathbb{X}^{\mu} \longrightarrow \mathbb{X}^{\mu}$, $v \mapsto (C - \lambda)v$, is an injection, which is not a bijection. It is obvious that $GK(\mathbb{X}^{\mu}) = 3$.

For $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, we define the left A-module

$$
\mathbb{X}^{\lambda,\mu} := A/A(C - \lambda, K - \mu, X).
$$

Then,

$$
\mathbb{X}^{\lambda,\mu} \simeq \mathbb{X}^{\mu}/(C-\lambda)\mathbb{X}^{\mu} \neq 0. \tag{6.5}
$$

We have a short exact sequence of A-modules:

$$
0 \longrightarrow \mathbb{X}^{\mu} \xrightarrow{(C-\lambda)^{2}} \mathbb{X}^{\mu} \longrightarrow \mathbb{X}^{\lambda,\mu} \longrightarrow 0.
$$

The next proposition shows that the module $\mathbb{X}^{\lambda,\mu}$ is a simple module if λ is nonzero. Moreover, the K -basis, the weight space decomposition and the annihilator of the module $\mathbb{X}^{\lambda,\mu}$ are given.

Proposition 6.9. For $\lambda, \mu \in \mathbb{K}^*$, consider the left A-module

$$
\mathbb{X}^{\lambda,\mu} = A/A(C - \lambda, K - \mu, X).
$$

 (1) The A-module

$$
\mathbb{X}^{\lambda,\mu} = \bigoplus_{i \geq 0, j \geq 2} \mathbb{K} F^i Y^j \overline{1} \oplus \bigoplus_{i,k \geq 0} \mathbb{K} F^i E^k \overline{1} \oplus \bigoplus_{i,k \geq 0} \mathbb{K} Y F^i E^k \overline{1}
$$

is a simple A-module where $\overline{1} = 1 + A(C - \lambda, K - \mu, X)$.

$$
(2) \quad \mathbb{X}^{\lambda,\mu} = \bigoplus_{i \geq 0, j \geq 2} \mathbb{K} F^i Y^j \mathbf{\overline{1}} \oplus \Big(\bigoplus_{i \geq 1, k \geq 0} \mathbb{K} F^i \Theta^k \mathbf{\overline{1}} \oplus \bigoplus_{k \geq 0} \mathbb{K} \Theta^k \mathbf{\overline{1}} \oplus \bigoplus_{i \geq 1, k \geq 0} \mathbb{K} F^i \Theta^k \mathbf{\overline{1}} \Big)
$$

$$
\oplus \Big(\bigoplus_{i \geq 1, k \geq 0} \mathbb{K} Y F^i \Theta^k \mathbf{\overline{1}} \oplus \bigoplus_{k \geq 0} \mathbb{K} Y \Theta^k \mathbf{\overline{1}} \oplus \bigoplus_{i \geq 1, k \geq 0} \mathbb{K} Y E^i \Theta^k \mathbf{\overline{1}} \Big).
$$

(3) The weight subspace $\mathbb{X}_{q^s\mu}^{\lambda,\mu}$ of $\mathbb{X}^{\lambda,\mu}$ that corresponds to the weight $q^s\mu$ is

$$
\mathbb{X}_{q^{s}\mu}^{\lambda,\mu} = \begin{cases}\n\mathbb{K}[\Theta] \bar{1}, & s = 0, \\
E^r \mathbb{K}[\Theta] \bar{1}, & s = 2r, r \ge 1, \\
\gamma E^r \mathbb{K}[\Theta] \bar{1} \oplus \bigoplus_{\substack{i+j=r, \\ j \ge 1}} \mathbb{K} F^i Y^{2j} \bar{1}, & s = -2r, r \ge 1, \\
Y \mathbb{K}[\Theta] \bar{1}, & s = -1, \\
Y F^{r-1} \mathbb{K}[\Theta] \bar{1} \oplus \bigoplus_{\substack{i+j=2r-1, \\ j \ge 2}} \mathbb{K} F^i Y^j \bar{1}, & s = -2(r-1) - 1, r \ge 2\n\end{cases}
$$

- (4) $\text{ann}_A(\mathbb{X}^{\lambda,\mu}) = (C \lambda).$
- (5) $\mathbb{X}^{\lambda,\mu}$ is an X-torsion and Y-torsion free A-module.
- (6) Let (λ, μ) , $(\lambda', \mu') \in \mathbb{K} \times \mathbb{K}^*$. Then $\mathbb{X}^{\lambda, \mu} \simeq \mathbb{X}^{\lambda', \mu'}$ iff $\lambda = \lambda'$ and $\mu = q^i \mu'$ for some $i \in \mathbb{Z}$.

Proof. (1) By (6.5), $\mathbb{X}^{\lambda,\mu} \neq 0$ and $\overline{1} \neq 0$. Using the PBW basis for the algebra A, we have

$$
\mathbb{X}^{\lambda,\mu} = \sum_{i,j,k \geq 0} \mathbb{K} F^i Y^j E^k \bar{1}.
$$

Using [\(2.15\)](#page-8-8), we have $\lambda \bar{1} = C \bar{1} = -\mu^{-1} E Y^2 \bar{1}$. Hence $E Y^2 \bar{1} = -\mu \lambda \bar{1}$, and then $Y^2 E \overline{\mathbf{i}} = -q^2 \mu \lambda \overline{\mathbf{i}}$. By induction on k, we deduce that

$$
E^{k} Y^{2k} \bar{1} = (-\mu \lambda)^{k} q^{-k(k-1)} \bar{1} \quad \text{and} \quad Y^{2k} E^{k} \bar{1} = (-q^{2} \mu \lambda)^{k} q^{k(k-1)} \bar{1}.
$$
 (6.6)

Therefore,

$$
\sum_{j,k\geq 0} \mathbb{K} Y^j E^k \overline{1} = Y^2 \mathbb{K}[Y] \overline{1} + \mathbb{K}[E] \overline{1} + Y \mathbb{K}[E] \overline{1},
$$

and then

$$
\mathbb{X}^{\lambda,\mu} = \sum_{i \ge 0, j \ge 2} \mathbb{K} F^i Y^j \mathbf{1} + \sum_{i,k \ge 0} \mathbb{K} F^i E^k \mathbf{1} + \sum_{i,k \ge 0} \mathbb{K} Y F^i E^k \mathbf{1}
$$

= $\mathbb{K}[F](\mathbb{K}[Y]Y^2 + \mathbb{K}[E] + Y \mathbb{K}[E]) \mathbf{1}.$

So, any element u of $\mathbb{X}^{\lambda,\mu}$ can be written as

$$
u = \Big(\sum_{i=0}^n F^i a_i\Big)\overline{1},
$$

where $a_i \in \Sigma := \mathbb{K}[Y]Y^2 + \mathbb{K}[E] + Y \mathbb{K}[E]$. Statement 1 follows from the following claim: if $a_n \neq 0$, then there is an element $a \in A$ such that $au = \overline{1}$.

(i) $X^n u = a' \overline{1}$ for some nonzero element $a' \in \Sigma$: Using Lemma [3.1,](#page-10-1) we have

$$
Xu = \sum_{i=0}^{n-1} F^i b_i \overline{1}
$$

for some $b_i \in \Sigma$ and $b_{n-1} \neq 0$. Repeating this step $n-1$ times (or using induction on *n*), we obtain the result as required. So, we may assume that $u = a_0\overline{1}$, where $0 \neq a_0 \in \Sigma$.

(ii) Notice that the element $a_0 \in \Sigma$ can be written as

$$
a_0 = pY^2 + \sum_{i=0}^{m} (\lambda_i + \mu_i Y) E^i,
$$

where $p \in \mathbb{K}[Y], \lambda_i$ and $\mu_i \in \mathbb{K}$. Then, by [\(6.6\)](#page-45-0),

$$
Y^{2m}u = Y^{2m}a_0 \bar{1} = \left(pY^{2m+2} + \sum_{i=0}^{m} (\lambda_i + \mu_i Y)Y^{2(m-i)}Y^{2i}E^i\right)\bar{1}
$$

$$
= \left(pY^{2m+2} + \sum_{i=0}^{m} (\lambda_i + \mu_i Y)Y^{2(m-i)}Y_i\right)\bar{1} = f\bar{1}
$$

for some $\gamma_i \in \mathbb{K}^*$ where f is a nonzero polynomial in $\mathbb{K}[Y]$ (since $a_0 \neq 0$). Hence, we may assume that $u = f \overline{1}$ where $0 \neq f \in \mathbb{K}[Y]$.

(iii) Let $f = \sum_{i=0}^{l} \gamma_i Y^i$, where $\gamma_i \in \mathbb{K}$ and $\gamma_l \neq 0$. Since $KY^i \overline{1} = \mu q^{-i} Y^i \overline{1}$ and all eigenvalues $\{ \mu q^{-i} \mid i \geq 0 \}$ are distinct, there is a polynomial $g \in \mathbb{K}[K]$ such that $gf \overline{1} = Y^l \overline{1}$. If $l = 0$, we are done. We may assume that $l \ge 1$. By multiplying by Y (if necessary) on the equality above we may assume that $l = 2k$ for some natural number k. Then, by [\(6.6\)](#page-45-0), $\omega_k^{-1} E^k Y^{2k} \overline{1} = \overline{1}$, where $\omega_k = (-\mu \lambda)^k q^{-k(k-1)}$, as required.

(2) Recall that the algebra $U_q(\mathfrak{sl}_2)$ is a GWA

$$
U_q(\mathfrak{sl}_2) = \mathbb{K}\big[\Theta, K^{\pm 1}\big] \bigg[E, F; \sigma, a = (1 - q^2)^{-1} \Theta - \frac{q^2 (qK + q^{-1}K^{-1})}{(1 - q^2)^2} \bigg], \tag{6.7}
$$

where $\sigma(\Theta) = \Theta$ and $\sigma(K) = q^{-2}K$. Then for all $i \ge 1$,

$$
F^i E^i = a\sigma^{-1}(a) \cdots \sigma^{-i+1}(a).
$$

Therefore,

$$
\bigoplus_{i,k\geq 0} \mathbb{K} F^i E^k \overline{1} = \bigoplus_{i\geq 1, k\geq 0} \mathbb{K} F^i \Theta^k \overline{1} \oplus \bigoplus_{k\geq 0} \mathbb{K} \Theta^k \overline{1} \oplus \bigoplus_{i\geq 1, k\geq 0} \mathbb{K} E^i \Theta^k \overline{1}.
$$

Then statement 2 follows from statement 1.

(3) Statement 3 follows from statement 2.

(4) Clearly, $(C - \lambda) \subseteq \text{ann}_A(\mathbb{X}^{\lambda,\mu})$. Since $\lambda \in \mathbb{K}^*$, by Corollary [3.9,](#page-15-0) the ideal $(C - \lambda)$ is a maximal ideal of A. Then we must have

$$
(C - \lambda) = \operatorname{ann}_A(\mathbb{X}^{\lambda,\mu}).
$$

(5) Clearly, $\mathbb{X}^{\lambda,\mu}$ is an X-torsion weight module. Since $\mathbb{X}^{\lambda,\mu}$ is a simple module, then by Lemma [6.6,](#page-41-2) $\mathbb{X}^{\lambda,\mu}$ is Y-torsionfree.

(6) (\Rightarrow) Suppose that $\mathbb{X}^{\lambda,\mu} \simeq \mathbb{X}^{\lambda',\mu'}$. By statement 4,

$$
(C - \lambda) = \operatorname{ann}_A(\mathbb{X}^{\lambda,\mu}) = \operatorname{ann}_A(\mathbb{X}^{\lambda',\mu'}) = (C - \lambda').
$$

Hence, $\lambda = \lambda'$. By Theorem [6.5](#page-41-1) (or by statement 3),

$$
\{q^i\mu \mid i \in \mathbb{Z}\} = \text{Wt}(\mathbb{X}^{\lambda,\mu}) = \text{Wt}(\mathbb{X}^{\lambda',\mu'}) = \{q^i\mu' \mid i \in \mathbb{Z}\}.
$$

Hence, $\mu = q^i \mu'$ for some $i \in \mathbb{Z}$.

(\Leftarrow) Suppose that $\lambda = \lambda'$ and $\mu = q^i \mu'$ for some $i \in \mathbb{Z}$. Let $\overline{1}$ and $\overline{1}'$ be the canonical generators of the modules $\mathbb{X}^{\lambda,\mu'}$ and $\mathbb{X}^{\lambda',\mu'}$, respectively. If $i \leq 0$ then the map

$$
\mathbb{X}^{\lambda,\mu} \to \mathbb{X}^{\lambda',\mu'}, \quad \bar{1} \mapsto Y^{|i|} \bar{1}'
$$

defines an isomorphism of A-modules. If $i \geq 1$ then the map

$$
\mathbb{X}^{\lambda,\mu} \to \mathbb{X}^{\lambda',\mu'}, \quad \bar{1} \mapsto (YE)^i \bar{1}'
$$

defines an isomorphism of A-modules.

We define an equivalence relation \sim on the set \mathbb{K}^* as follows: for μ and $\nu \in \mathbb{K}^*$, $\mu \sim \nu$ iff $\mu = q^i \nu$ for some $i \in \mathbb{Z}$. Then the set \mathbb{K}^* is a disjoint union of equivalence classes $\mathcal{O}(\mu) = \{q^i \mu \mid i \in \mathbb{Z}\}\.$ Let \mathbb{K}^*/\sim be the set of equivalence classes. Clearly, \mathbb{K}^*/\sim can be identified with the factor group $\mathbb{K}^*/\langle q \rangle$ where $\langle q \rangle = \{q^i \mid i \in \mathbb{Z}\}.$ For each orbit $\mathcal{O} \in \mathbb{K}^*/\langle q \rangle$, we fix an element $\mu_{\mathcal{O}}$ in the equivalence class \mathcal{O} .

Theorem 6.10. $\mathcal{N}(X\text{-torsion}) = \{[\mathbb{X}^{\lambda,\mu_{\mathcal{O}}}] \mid \lambda \in \mathbb{K}^*, \mathcal{O} \in \mathbb{K}^*/\langle q \rangle\}.$

Proof. Let $M \in \mathcal{N}(X$ -torsion). By Lemma [6.7,](#page-42-3) the central element C acts on M as a nonzero scalar, say λ . Then M is an epimorphic image of the module $\mathbb{X}^{\lambda,\mu}$ for some $\mu \in \mathbb{K}^*$. By Proposition [6.9.](#page-44-0)(1), $\mathbb{X}^{\lambda,\mu}$ is a simple A-module, hence $M \simeq \mathbb{X}^{\lambda,\mu}$. Then the theorem follows from Proposition [6.9.](#page-44-0)(6). \Box

Lemma 6.11. (1) *For all* $\lambda \in \mathbb{K}$ *and* $\mu \in \mathbb{K}^*$, $GK(\mathbb{X}^{\lambda,\mu}) = 2$.

(2) $A(C, K - \mu, X) \subseteq A(K - \mu, X, Y, E) \subseteq A$.

(3) For all $\mu \in \mathbb{K}^*$, the module $\mathbb{X}^{0,\mu}$ is not a simple A-module.

Proof. (1) By [\[20,](#page-57-9) Proposition 5.1.(e)],

$$
GK(\mathbb{X}^{\lambda,\mu}) \leqslant GK(\mathbb{X}^{\mu}) - 1 = 2.
$$

If $\lambda \neq 0$ then it follows from Proposition [6.9.](#page-44-0)(1) that $GK(\mathbb{X}^{\lambda,\mu}) = 2$. If $\lambda = 0$, then consider the subspace

$$
V = \bigoplus_{i,j \ge 0} \mathbb{K} F^i E^j \overline{1}
$$

of the A-module \mathbb{X}^{μ} . By [\(6.4\)](#page-43-1), we see that $V \cap C \mathbb{X}^{\mu} = 0$. Hence, the vector space V can be seen as a subspace of the A-module $\mathbb{X}^{0,\mu}$. In particular, $GK(\mathbb{X}^{0,\mu}) \geq 2$. Therefore, $GK(\mathbb{X}^{0,\mu}) = 2$.

(2) Let $\mathfrak{a} = A(C, K - \mu, X)$ and $\mathfrak{b} = A(K - \mu, X, Y, E)$. Since $C \in \mathfrak{b}$ we have the equality $\mathfrak{b} = A(C, K - \mu, X, Y, E)$. Clearly, $\mathfrak{a} \subseteq \mathfrak{b}$. Notice that

$$
A/\mathfrak{b} \simeq U/U(K-\mu,E),
$$

where $U = U_q(\mathfrak{sl}_2)$. Then $GK(A/\mathfrak{b}) = 1$, in particular, $\mathfrak{b} \subsetneq A$ is a proper left ideal of A. It follows from statement 1 that,

$$
2 = \operatorname{GK}(A/\mathfrak{a}) > \operatorname{GK}(A/\mathfrak{b}),
$$

hence the inclusion $\mathfrak{a} \subseteq \mathfrak{b}$ is strict.

(3) By statement 2, the left ideal $A(C, K - \mu, X)$ is not a maximal left ideal. Thus, the A-module $\mathbb{X}^{0,\mu}$ is not a simple module. \Box

Corollary 6.12. Let $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$. The A-module $\mathbb{X}^{\lambda,\mu}$ is a simple module $if\lambda \neq 0.$

Proof. The result follows from Proposition [6.9.](#page-44-0)(1) and Lemma [6.11.](#page-47-1)(3). \Box

Description of the set $\mathcal{N}(Y$ **-torsion**). An explicit description of the set $\mathcal{N}(Y$ -torsion) is given in Theorem [6.14.](#page-51-0) It consists of a family of simple modules constructed below (see Proposition [6.13\)](#page-48-0). The results and arguments are similar to that of the case for X-torsion modules. But for completeness, we present the results and their proof in detail. For $\mu \in \mathbb{K}^*$, we define the left A-module $\mathbb{Y}^{\mu} := A/A(K - \mu, Y)$. Then,

$$
\mathbb{Y}^{\mu} = \bigoplus_{i,j,k \geq 0} \mathbb{K} E^{i} F^{j} X^{k} \overline{1},
$$

where $\overline{1} = 1 + A(K - \mu, Y)$. It is obvious that $GK(\mathbb{Y}^{\mu}) = 3$. Let $\lambda \in \mathbb{K}$. By [\(2.15\)](#page-8-8), we have $(C - \lambda)$ $\overline{1} = (q^2FX^2 - \lambda)$ $\overline{1}$. Then using Lemma [3.1,](#page-10-1) we see that the submodule of \mathbb{Y}^{μ} ,

$$
(C - \lambda) \mathbb{Y}^{\mu} = \bigoplus_{i,j,k \ge 0} \mathbb{K} E^{i} F^{j} X^{k} (C - \lambda) \bar{1}
$$

=
$$
\bigoplus_{i,j,k \ge 0} \mathbb{K} E^{i} F^{j} X^{k} (q^{2} F X^{2} - \lambda) \bar{1}
$$

=
$$
\bigoplus_{i,j,k \ge 0} \mathbb{K} E^{i} F^{j} (q^{2} F X^{k+2} - \lambda X^{k}) \bar{1}.
$$
 (6.8)

Therefore, the submodule $(C - \lambda) \mathbb{Y}^{\mu}$ of \mathbb{Y}^{μ} is a proper submodule, and the map

$$
(C - \lambda) : \mathbb{Y}^{\mu} \to \mathbb{Y}^{\mu}, \quad v \mapsto (C - \lambda)v,
$$

is an injection, which is not a bijection.

For $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$, we define the left A-module

$$
\mathbb{Y}^{\lambda,\mu} := A/A(C - \lambda, K - \mu, Y).
$$

Then

$$
\mathbb{Y}^{\lambda,\mu} \simeq \mathbb{Y}^{\mu}/(C-\lambda)\mathbb{Y}^{\mu} \neq 0. \tag{6.9}
$$

We have a short exact sequence of A-modules:

$$
0 \longrightarrow \mathbb{Y}^{\mu} \xrightarrow{(C-\lambda)} \mathbb{Y}^{\mu} \longrightarrow \mathbb{Y}^{\lambda,\mu} \longrightarrow 0.
$$

The next proposition shows that the module $\mathbb{Y}^{\lambda,\mu}$ is a simple module if λ is nonzero. Moreover, the K-basis, the weight space decomposition and the annihilator of the module $\mathbb{Y}^{\lambda,\mu}$ are given.

Proposition 6.13. For $\lambda, \mu \in \mathbb{K}^*$, consider the left A-module

$$
\mathbb{Y}^{\lambda,\mu} = A/A(C - \lambda, K - \mu, Y).
$$

 (1) The A-module

$$
\mathbb{Y}^{\lambda,\mu} = \bigoplus_{i \geq 0, j \geq 2} \mathbb{K} E^i X^j \mathop{\bar{1}} \oplus \bigoplus_{i,k \geq 0} \mathbb{K} E^i F^k \mathop{\bar{1}} \oplus \bigoplus_{i,k \geq 0} \mathbb{K} E^i F^k X \mathop{\bar{1}}\nolimits
$$

is a simple A-module, where $\overline{1} = 1 + A(C - \lambda, K - \mu, Y)$.

(2)
$$
\mathbb{Y}^{\lambda,\mu} = \bigoplus_{i \geq 0, j \geq 2} \mathbb{K} E^i X^j \mathbf{1} \oplus \Big(\bigoplus_{i \geq 1, k \geq 0} \mathbb{K} \Theta^k E^i \mathbf{1} \oplus \bigoplus_{k \geq 0} \mathbb{K} \Theta^k \mathbf{1} \oplus \bigoplus_{i \geq 1, k \geq 0} \mathbb{K} \Theta^k F^i \mathbf{1} \Big)
$$

$$
\oplus \Big(\bigoplus_{i \geq 1, k \geq 0} \mathbb{K} \Theta^k E^i X \mathbf{1} \oplus \bigoplus_{k \geq 0} \mathbb{K} \Theta^k X \mathbf{1} \oplus \bigoplus_{i \geq 1, k \geq 0} \mathbb{K} \Theta^k F^i X \mathbf{1} \Big).
$$

(3) The weight subspace $\mathbb{Y}_{q^s\mu}^{\lambda,\mu}$ of $\mathbb{Y}^{\lambda,\mu}$ that corresponds to the weight $q^s\mu$ is

$$
\mathbb{Y}_{q^{s}\mu}^{\lambda,\mu} = \begin{cases}\n\mathbb{K}[\Theta]\bar{1}, & s = 0, \\
\mathbb{K}[\Theta]E^r \bar{1} \oplus \bigoplus_{\substack{i+j=r, \\ j \geq 1}} \mathbb{K}E^i X^{2j} \bar{1}, & s = 2r, r \geq 1, \\
\mathbb{K}[\Theta]X \bar{1}, & s = 1, \\
\mathbb{K}[\Theta]E^{2r} X \bar{1} \oplus \bigoplus_{\substack{2i+j=2r+1, \\ j \geq 2}} \mathbb{K}E^i X^j \bar{1}, & s = 2r+1, r \geq 1, \\
\mathbb{K}[\Theta]F^r \bar{1}, & s = -2r, r \geq 1, \\
\mathbb{K}[\Theta]F^r X \bar{1}, & s = -2r+1, r \geq 1.\n\end{cases}
$$

- (4) $\text{ann}_A(\mathbb{Y}^{\lambda,\mu}) = (C \lambda).$
- (5) $\mathbb{Y}^{\lambda,\mu}$ is a Y-torsion and X-torsion free A-module.
- (6) Let (λ, μ) , $(\lambda', \mu') \in \mathbb{K} \times \mathbb{K}^*$. Then $\mathbb{Y}^{\lambda, \mu} \simeq \mathbb{Y}^{\lambda', \mu'}$, iff $\lambda = \lambda'$ and $\mu = q^i \mu'$ for some $i \in \mathbb{Z}$.

Proof. (1) Notice that $\mathbb{Y}^{\lambda,\mu} = \sum_{i,j,k \geq 0} \mathbb{K} E^i F^j X^k$
 I. By (2.15), we have

$$
\lambda \bar{1} = C \bar{1} = q^2 F X^2 \bar{1}
$$

i.e., $FX^2 \overline{1} = q^{-2} \lambda \overline{1}$. By induction on k and using Lemma 3.1.(1), we deduce that

$$
F^{k} X^{2k} \bar{1} = (FX^{2})^{k} \bar{1} = q^{-2k} \lambda^{k} \bar{1}.
$$
 (6.10)

Therefore,

$$
\sum_{j,k\geqslant 0} \mathbb{K} F^j X^k \bar{1} = \mathbb{K}[X] X^2 \bar{1} + \mathbb{K}[F] \bar{1} + \mathbb{K}[F] X \bar{1},
$$

and so

$$
\mathbb{Y}^{\lambda,\mu} = \sum_{i \geq 0, j \geq 2} \mathbb{K} E^i X^j \overline{1} + \sum_{i,k \geq 0} \mathbb{K} E^i F^k \overline{1} + \sum_{i,k \geq 0} \mathbb{K} E^i F^k X \overline{1}.
$$

So, any element u of $\mathbb{Y}^{\lambda,\mu}$ can be written as

$$
u = \sum_{i=0}^{n} E^i a_i \overline{1},
$$

where $a_i \in \Gamma := \mathbb{K}[X]X^2 + \mathbb{K}[F] + \mathbb{K}[F]X$. Statement 1 follows from the following claim: if $a_n \neq 0$, then there exists an element $a \in A$ such that $au = \overline{1}$.

(i) $Y^n u = a' \overline{1}$ for some nonzero element $a' \in \Gamma$: Notice that

$$
Yu = \sum_{i=0}^{n-1} E^i b_i
$$

for some $b_i \in \Gamma$ and $b_{n-1} \neq 0$. Repeating this step $n-1$ times, we obtain the result as desired. So, we may assume that $u = a'$ I for some nonzero $a' \in \Gamma$.

(ii) Notice that the element a' can be written as

$$
a' = pX^2 + \sum_{i=0}^{m} F^i(\lambda_i + \mu_i X),
$$

where $p \in \mathbb{K}[X]$, λ_i , and $\mu_i \in \mathbb{K}$. By Lemma [3.1,](#page-10-1) we see that $F^i X \overline{1} = X F^i \overline{1}$. Then

$$
X^{2m}u = \left(pX^{2m+2} + \sum_{i=0}^{m} (\lambda_i + \mu_i X)X^{2m} F^i\right) \bar{1}
$$

= $\left(pX^{2m+2} + \sum_{i=0}^{m} (\lambda_i + \mu_i X)X^{2(m-i)} X^{2i} F^i\right) \bar{1}$
= $\left(pX^{2m+2} + \sum_{i=0}^{m} (\lambda_i + \mu_i X)X^{2(m-i)} Y_i\right) \bar{1} = f \bar{1}$

for some $\gamma_i \in \mathbb{K}^*$ (by [\(6.10\)](#page-49-0)) and f is a nonzero element in $\mathbb{K}[Y]$. Hence, we may assume that $u = f \bar{1}$ where $f \in \mathbb{K}[X] \setminus \{0\}.$

(iii) Let $f = \sum_{i=0}^{l} \alpha_i X^i$ where $\alpha_i \in \mathbb{K}$ and $\alpha_l \neq 0$. Since $K X^i \overline{1} = q^i \mu X^i \overline{1}$ and all eigenvalues $\{q^i\mu \mid i \in \mathbb{N}\}$ are distinct, there is a polynomial $g \in \mathbb{K}[K]$ such that $gf \overline{1} = X^l \overline{1}$. If $l = 0$, we are done. We may assume that $l \ge 1$. By multiplying by X (if necessary) on the equality we may assume that $l = 2k$ for some natural number k. Then, by [\(6.10\)](#page-49-0), we have $q^{2k} \lambda^{-k} F^{k} X^{2k} \overline{1} = \overline{1}$, as required.

(2) Recall that $U_q(\mathfrak{sl}_2)$ is a generalized Weyl algebra (see [\(6.7\)](#page-46-0)), then $E^i F^i =$ $\sigma^{i}(a)\sigma^{i-1}(a)\cdots \sigma(a)$ holds for all $i \geq 1$. Hence,

$$
\bigoplus_{i,k\geq 0} \mathbb K F^i E^k \overline{1} = \bigoplus_{i\geq 1, k\geq 0} \mathbb K \Theta^k E^i \overline{1} \oplus \bigoplus_{k\geq 0} \mathbb K \Theta^k \overline{1} \oplus \bigoplus_{i\geq 1, k\geq 0} \mathbb K \Theta^k F^i \overline{1}.
$$

Then statement 2 follows from statement 1.

- (3) Statement 3 follows from statement 2.
- (4) Clearly, $(C \lambda) \subseteq \text{ann}_A(\mathbb{Y}^{\lambda,\mu})$. Then we must have

$$
(C - \lambda) = \operatorname{ann}_A(\mathbb{Y}^{\lambda,\mu})
$$

since $(C - \lambda)$ is a maximal ideal of A.

(5) Clearly, $\mathbb{Y}^{\lambda,\mu}$ is Y-torsion. Since $\mathbb{Y}^{\lambda,\mu}$ is a simple module, then by Lemma [6.6,](#page-41-2) $\mathbb{Y}^{\lambda,\mu}$ is X-torsionfree.

(6) (\Rightarrow) Suppose that $\mathbb{Y}^{\lambda,\mu} \simeq \mathbb{Y}^{\lambda',\mu'}$. By statement 4,

$$
(C - \lambda) = \operatorname{ann}_A(\mathbb{Y}^{\lambda,\mu}) = \operatorname{ann}_A(\mathbb{Y}^{\lambda',\mu'}) = (C - \lambda').
$$

Hence, $\lambda = \lambda'$. By Theorem [6.5](#page-41-1) (or by statement 3),

$$
\{q^i\mu \mid i \in \mathbb{Z}\} = \text{Wt}(\mathbb{Y}^{\lambda,\mu}) = \text{Wt}(\mathbb{Y}^{\lambda',\mu'}) = \{q^i\mu' \mid i \in \mathbb{Z}\}.
$$

Hence, $\mu = q^i \mu'$ for some $i \in \mathbb{Z}$.

(\Leftarrow) Suppose that $\lambda = \lambda'$ and $\mu = q^i \mu'$ for some $i \in \mathbb{Z}$. Let $\overline{1}$ and $\overline{1}'$ be the canonical generators of the modules $\mathbb{Y}^{\lambda,\mu'}$ and $\mathbb{Y}^{\lambda',\mu'}$, respectively. If $i \geq 0$, then the map

$$
\mathbb{Y}^{\lambda,\mu} \to \mathbb{Y}^{\lambda',\mu'}, \quad \bar{1} \mapsto X^i \bar{1}'
$$

defines an isomorphism of A-modules. If $i \le -1$, then the map

$$
\mathbb{Y}^{\lambda,\mu} \to \mathbb{Y}^{\lambda',\mu'}, \quad \bar{1} \mapsto (FX)^i \bar{1}'
$$

defines an isomorphism of A-modules.

Theorem 6.14. $\mathcal{N}(Y\text{-torsion}) = \{[\mathbb{Y}^{\lambda,\mu_{\mathcal{O}}}] \mid \lambda \in \mathbb{K}^*, \mathcal{O} \in \mathbb{K}^*/\langle q \rangle\}.$

Proof. Let $M \in \mathcal{N}(Y$ -torsion). By Lemma [6.7,](#page-42-3) the central element C acts on M as a nonzero scalar, say λ . Then M is an epimorphic image of the module $\mathbb{Y}^{\lambda,\mu}$ for some $\mu \in \mathbb{K}^*$. By Proposition [6.13.](#page-48-0)(1), $\mathbb{Y}^{\lambda,\mu}$ is a simple A-module, hence $M \simeq \mathbb{Y}^{\lambda,\mu}$. Then the theorem follows from Proposition [6.13.](#page-48-0)(6). \Box

The prime spectrum of the algebra $\mathbb{K}_q[X, Y] \rtimes U_q(\mathfrak{sl}_2)$ 941

Lemma 6.15. (1) *For all* $\lambda \in \mathbb{K}$ *and* $\mu \in \mathbb{K}^*$, $GK(\mathbb{Y}^{\lambda,\mu}) = 2$.

- (2) $A(C, K \mu, Y) \subseteq A(K \mu, X, Y, E) \subseteq A$.
- (3) For all $\mu \in \mathbb{K}^*$, the module $\mathbb{Y}^{0,\mu}$ is not a simple A-module.

Proof. (1) By [\[20,](#page-57-9) Proposition 5.1.(e)],

$$
GK(\mathbb{Y}^{\lambda,\mu}) \leqslant GK(\mathbb{Y}^{\mu}) - 1 = 2.
$$

If $\lambda \neq 0$ then it follows from Proposition [6.13.](#page-48-0)(1) that $GK(\mathbb{Y}^{\lambda,\mu}) = 2$. If $\lambda = 0$ then consider the subspace

$$
V = \bigoplus_{i,j \ge 0} \mathbb{K} E^i F^j \bar{1}
$$

of the A-module \mathbb{Y}^{μ} . By [\(6.8\)](#page-48-1), we see that $V \cap C \mathbb{Y}^{\mu} = 0$. Hence, the vector space V can be seen as a subspace of the A-module $\mathbb{Y}^{0,\mu}$. In particular, $GK(\mathbb{Y}^{0,\mu}) \geq 2$. Therefore, $GK(\mathbb{Y}^{0,\mu}) = 2$.

(2) Let $\mathfrak{a}' = A(C, K - \mu, Y)$ and $\mathfrak{b} = A(K - \mu, X, Y, E)$. Since $C \in \mathfrak{b}$, we have the equality $\mathfrak{b} = A(C, K - \mu, X, Y, E)$. Clearly, $\mathfrak{a}' \subseteq \mathfrak{b}$. By Lemma [6.11.](#page-47-1)(2) and its proof, b is a proper left ideal of A and $GK(A/\mathfrak{b})=1$. Then it follows from statement 1 that,

$$
2 = \operatorname{GK}(A/\mathfrak{a}') > \operatorname{GK}(A/\mathfrak{b}),
$$

hence the inclusion $a' \subseteq b$ is strict.

(3) By statement 2, the left ideal $A(C, K - \mu, Y)$ is not a maximal left ideal. Thus, the A-module $\mathbb{Y}^{0,\mu}$ is not a simple module. \Box

Corollary 6.16. Let $\lambda \in \mathbb{K}$ and $\mu \in \mathbb{K}^*$. The A-module $\mathbb{Y}^{\lambda,\mu}$ is a simple module $if\ \lambda \neq 0.$

Proof. The result follows from Proposition [6.13.](#page-48-0)(1) and Lemma [6.15.](#page-52-0)(3). \Box

The set $\mathcal{N}(X, Y)$ **-torsionfree).** Theorem [6.18](#page-53-0) and Theorem [6.19](#page-55-0) give explicit description of the set $\mathcal{N}((X, Y)$ -torsionfree). Recall that

$$
\mathcal{N}((X, Y)
$$
-torsionfree) = \widehat{A} (weight, (X, Y) -torsionfree).

Then clearly,

$$
\mathcal{N}((X, Y)\text{-torsionfree}) = \widehat{A(0)}\text{ (weight, } (X, Y)\text{-torsionfree)}
$$
\n
$$
\sqcup \coprod_{\lambda \in \mathbb{K}^*} \widehat{A(\lambda)}\text{ (weight, } (X, Y)\text{-torsionfree)}.\quad (6.11)
$$

Let A_t be the localization of the algebra at the powers of the element $t = YX$. Recall that the algebra \mathcal{C}_t is a GWA, see Proposition [4.9.](#page-25-0)(1).

Lemma 6.17. $A_t = \mathcal{C}_t[X^{\pm 1}; t]$ is a skew polynomial algebra where *i* is the auto*morphism of the algebra* \mathcal{C}_t *defined by* $\iota(C) = C$, $\iota(K^{\pm 1}) = q^{\mp 1} K^{\pm 1}$, $\iota(t) = qt$, $u(u) = q^2u$, and $u(v) = v$.

Proof. Clearly, the algebra $\mathcal{C}_t[X^{\pm 1}; t]$ is a subalgebra of A_t . Notice that all the generators of the algebra A_t are contained in the algebra $\mathcal{C}_t[X^{\pm 1}; t]$, then

$$
A_t \subseteq \mathcal{C}_t[X^{\pm 1}; \iota].
$$

Hence, $A_t = \mathcal{C}_t[X^{\pm 1}; t]$, as required.

The set $\widehat{A(0)}$ (weight, (X, Y) -torsionfree). Let $[M] \in \widehat{\mathcal{C}^{0,\mu}}$ (*t*-torsionfree). By Theorem 5.6, the element t acts *bijectively* on the module M (since t is a normal element of \mathcal{R}). Therefore, the C-module M is also a C_t-module. Then by Lemma [6.17,](#page-52-1) we have the induced A_t -module

$$
\widetilde{M} := A_t \otimes_{\mathcal{C}_t} M = \bigoplus_{i \in \mathbb{Z}} X^i \otimes M = \bigoplus_{i \geq 1} Y^i \otimes M \oplus \bigoplus_{i \geq 0} X^i \otimes M.
$$

Clearly, \tilde{M} is an (X, Y) -torsionfree, weight A-module and

$$
Wt(\widetilde{M}) = \{q^i \mu \mid i \in \mathbb{Z}\} = \mathcal{O}(\mu).
$$

We claim that \tilde{M} *is a simple A-module*. Suppose that N is a nonzero A-submodule of \widetilde{M} , then $X^i \otimes m \in N$ for some $i \in \mathbb{Z}$ and $m \in M$. If $i = 0$, then $N = Am = \widetilde{M}$. If $i \geq 1$, since $Y^i(X^i \otimes m) \in \mathbb{K}^*(1 \otimes t^m)$, then $1 \otimes tm \in N$ and so $N = \widetilde{M}$. If $i \le -1$, then $X^{|i|} X^i \otimes m = 1 \otimes m \in N$, so $N = \widetilde{M}$. If $M' \in \widehat{\mathcal{C}^{0,\mu'}}$ (*t*-torsionfree), then the *A*-modules \widetilde{M} and \widetilde{M}' are isomorphic iff the $\mathcal{C}^{0,\mu}$ -modules M and $X^i \otimes M'$ then the A-modules \tilde{M} and \tilde{M}' are isomorphic iff the $\mathcal{C}^{0,\mu}$ -modules M and $X^i \otimes M'$ are isomorphic where $\mu = q^i \mu'$ for a unique $i \in \mathbb{Z}$.

Theorem 6.18.

 $\widehat{A(0)}$ (weight, (X, Y) -torsionfree)

$$
= \big\{ [\widetilde{M}] \mid [M] \in \widehat{\mathcal{C}^{0,\mu_{\mathcal{O}}}} \ (t\text{-torsionfree}), \ \mathcal{O} \in \mathbb{K}^*/q^{\mathbb{Z}} \big\}.
$$

Proof. Let $V \in \widehat{A(0)}$ (weight, (X, Y) -torsionfree). Then the elements X and Y act injectively on the module V. For any $\mu \in W_t(V)$, the weight space V_μ is a simple *t*-torsionfree $\mathcal{C}^{0,\mu}$ -module. Then,

$$
V\supseteq \bigoplus_{i\geq 1}Y^i\otimes V_\mu\oplus \bigoplus_{i\geq 0}X^i\otimes V_\mu=\widetilde{V}_\mu.
$$

Hence, $V = \tilde{V}_{\mu}$ since V is a simple module.

 \Box

The set $\widehat{A(\lambda)}$ (weight, (X, Y) **-torsionfree), where** $\lambda \in \mathbb{K}^*$. Below, we use notation and results from I emma 5.7. Let $M \in \widehat{P^{\lambda,\mu}}$ (*t*, torsionfree). Then $M \in \widehat{P^{\lambda,\mu}}$ By and results from Lemma [5.7.](#page-35-0) Let $M \in \mathcal{C}^{\lambda,\mu}$ (*t*-torsionfree). Then $M_t \in \mathcal{C}_t^{\lambda,\mu}$. By Lemma 6.17, we have the induced A_t -module Lemma [6.17,](#page-52-1) we have the induced A_t -module

$$
M^{\blacklozenge} := A_t \otimes_{\mathcal{C}_t} M_t = \bigoplus_{i \in \mathbb{Z}} X^i \otimes M_t. \tag{6.12}
$$

Clearly, M^{\blacklozenge} is a simple weight A_t -module and

$$
Wt(M^{\blacklozenge}) = \{q^i \mu \mid i \in \mathbb{Z}\} = \mathcal{O}(\mu).
$$

For all $i \in \mathbb{Z}$, the weight space

$$
M_i^{\blacklozenge} := X^i \otimes M_t \simeq {M_t^i}^{-i}
$$

as \mathcal{C}_t -modules, where $M_t^{t^{-i}}$ is the \mathcal{C}_t -module twisted by the automorphism t^{-i} of the algebra \mathcal{C}_t (the automorphism ι is defined in Lemma [6.17\)](#page-52-1). The set $\mathcal{C}^{\lambda,\mu}$ (*t*-torsionfree) is described explicitly in Theorem [5.11.](#page-38-0)(1,3). If $M = \int^{\lambda,\mu}$, then then

$$
X^i \otimes \mathfrak{f}_t^{\lambda,\mu} \simeq (\mathfrak{f}_t^{\lambda,\mu})^{t^{-i}} \simeq \mathfrak{f}_t^{\lambda,q^i\mu}
$$

as \mathcal{C}_t -modules. It is clear that soc $\mathcal{C}(\hat{h}^{\lambda,\mu}) = \hat{h}^{\lambda,\mu}$. Hence,

$$
\operatorname{soc}_{\mathcal{C}}(X^i \otimes \mathfrak{f}_t^{\lambda,\mu}) = \operatorname{soc}_{\mathcal{C}}(\mathfrak{f}_t^{\lambda,q^i\mu}) = \mathfrak{f}^{\lambda,q^i\mu}.
$$

Then the A-module

$$
\operatorname{soc}_{A}((\mathfrak{f}^{\lambda,\mu})^{\blacklozenge}) = \bigoplus_{i \in \mathbb{Z}} \operatorname{soc}_{\mathcal{C}}(X^{i} \otimes \mathfrak{f}^{\lambda,\mu}_{t}) \simeq \bigoplus_{i \in \mathbb{Z}} \mathfrak{f}^{\lambda,q^{i}\mu}.
$$
 (6.13)

Similarly, if $M = F^{\lambda,\mu}$, then

$$
X^i \otimes \mathsf{F}_t^{\lambda,\mu} \simeq (\mathsf{F}_t^{\lambda,\mu})^{t^{-i}} \simeq \mathsf{F}_t^{\lambda,q^i\mu}
$$

as \mathcal{C}_t -modules. It is clear that soc $e(\mathsf{F}_t^{\lambda,\mu}) = \mathsf{F}^{\lambda,\mu}$. Hence,

$$
\operatorname{soc}_{\mathcal{C}}(X^i \otimes \mathsf{F}_t^{\lambda,\mu}) = \operatorname{soc}_{\mathcal{C}}(\mathsf{F}_t^{\lambda,q^i\mu}) = \mathsf{F}^{\lambda,q^i\mu}.
$$

Then the A-module

$$
\operatorname{soc}_{A} \left((\mathbf{F}^{\lambda,\mu})^{\blacklozenge} \right) = \bigoplus_{i \in \mathbb{Z}} \operatorname{soc}_{\mathcal{C}} (X^{i} \otimes \mathbf{F}^{\lambda,\mu}_{t}) \simeq \bigoplus_{i \in \mathbb{Z}} \mathbf{F}^{\lambda,q^{i}\mu}.
$$
 (6.14)

If $M = \mathcal{F}_{\gamma}^{\lambda,\mu}$ where $\gamma \in \mathbb{K}^* \setminus \{q^{2i} \nu \mid i \in \mathbb{Z}\}\)$, then

$$
X^i \otimes \mathcal{F}_{\gamma,t}^{\lambda,\mu} \simeq (\mathcal{F}_{\gamma,t}^{\lambda,\mu})^{t^{-i}} \simeq \mathcal{F}_{q^{-i}\gamma,t}^{\lambda,q^i\mu}
$$

944 V. V. Bavula and T. Lu

as \mathcal{C}_t -modules. It is clear that soc $e^{(\mathcal{F}_{\gamma,t}^{\lambda,\mu})} = \mathcal{F}_{\gamma}^{\lambda,\mu}$. Hence,

$$
\operatorname{soc}_{\mathcal{C}}(X^i \otimes \mathcal{F}_{\gamma,t}^{\lambda,\mu}) = \mathcal{F}_{q^{-i}\gamma}^{\lambda,q^i\mu}
$$

is a simple $\mathcal C$ -module. Then the A-module

$$
\operatorname{soc}_{A}\left((\mathcal{F}_{\gamma}^{\lambda,\mu})^{\blacklozenge}\right) = \bigoplus_{i \in \mathbb{Z}} \operatorname{soc}_{\mathcal{C}}(X^{i} \otimes \mathcal{F}_{\gamma,t}^{\lambda,\mu}) \simeq \bigoplus_{i \in \mathbb{Z}} \mathcal{F}_{q^{-i}\gamma}^{\lambda,q^{i}\mu}.\tag{6.15}
$$

If $M \in \widehat{\mathcal{C}^{\lambda,\mu}}(\mathbb{K}[t]-\text{torsionfree})$ then, by Theorem [5.11.](#page-38-0)(3),

$$
M \simeq \mathcal{C}^{\lambda,\mu}/\mathcal{C}^{\lambda,\mu} \cap \mathcal{B}bt^{-n}
$$

for some *l*-normal element $b \in \text{Irr}(\mathcal{B})$ and for all $n \gg 0$. For all $i \in \mathbb{Z}$,

$$
{M_t^{\iota^{-i}}} \supseteq \frac{\mathcal{C}_t^{\lambda,q^i\mu}}{\mathcal{C}_t^{\lambda,q^i\mu} \cap \mathcal{B}_t^i(b)t^{-n}} := \mathcal{M}_{t^i(b)t^{-n}}.
$$

Then,

$$
\operatorname{soc}_{\mathcal{C}}(M_t^{i^{-i}}) = \operatorname{soc}_{\mathcal{C}}(\mathcal{M}_{t^i(b)t^{-n}}) = \mathcal{M}_{t^i(b)t^{-n_i}}
$$

for all $n_i \gg 0$. Then the A-module

$$
\operatorname{soc}_A(M^{\blacklozenge}) = \bigoplus_{i \in \mathbb{Z}} \operatorname{soc}_{\mathcal{C}}(X^i \otimes M_t) \simeq \bigoplus_{i \in \mathbb{Z}} \mathcal{M}_{\iota^i(b)t^{-n_i}}.\tag{6.16}
$$

The next theorem describes the set $\widehat{A(\lambda)}$ (weight, (X, Y) -torsionfree), where $\lambda \in \mathbb{K}^*$.
Theorem 6.19 Let $\lambda \cup \lambda \in \mathbb{K}^*$. Then **Theorem 6.19.** Let $\lambda, \mu \in \mathbb{K}^*$. Then

 $\tilde{A}(\lambda)$ (weight, (X, Y) -torsionfree)

$$
= \{ [\text{soc}_A(M^{\blacklozenge})] \mid [M] \in \widehat{\mathcal{C}^{\lambda,\mu_{\mathcal{O}}}} \ (t\text{-torsionfree}), \ \mathcal{O} \in \mathbb{K}^*/q^{\mathbb{Z}} \}
$$

and soc_A (M^{\blacklozenge}) *is explicitly described in* [\(6.13\)](#page-54-0)*,* [\(6.14\)](#page-54-1)*,* [\(6.15\)](#page-55-1)*, and* [\(6.16\)](#page-55-2)*.*

Proof. Let $M \in \widehat{A(\lambda)}$ (weight, (X, Y) -torsionfree). Then $Wt(M) = \mathcal{O}(\mu) \in \mathbb{K}^*/q^{\mathbb{Z}}$
for any $\mu \in Wt(M)$. Then $M := M \in \widehat{\mathcal{O}^{\lambda,\mu_Q}}$ (t torsionfree) and $M \in \widehat{\mathcal{O}^{\lambda,\mu_Q}}$ for any $\mu \in \text{Wt}(\mathcal{M})$. Then $M := \mathcal{M}_{\mu} \in \widehat{\mathcal{C}}^{\lambda,\mu_{\mathcal{O}}}$ (*t*-torsionfree) and $M_t \in \mathcal{C}_t^{\lambda,\mu_{\mathcal{O}}}$.
Clearly, $M^{\blacklozenge} = \mathcal{M}_t \supset \mathcal{M}$. So, $\mathcal{M} = \text{soc}_{A}(M^{\blacklozenge})$. Clearly, $M^{\blacklozenge} = \mathcal{M}_t \supseteq \mathcal{M}$. So, $\mathcal{M} = \text{soc}_A(M^{\blacklozenge})$.

By (6.1) and (6.11) , Theorem 6.10 , Theorem 6.14 , Theorem 6.18 and Theorem [6.19](#page-55-0) give a complete classification of simple weight A-modules.

Acknowledgements. We would like to thank the referee for valuable comments, interesting questions and for the careful reading of the paper.

List of notations

References

- [1] V. V. Bavula, Finite-dimensionality of $Extⁿ$ and Tor_n of simple modules over a class of algebras, Funct. Anal. Appl., 25 (1991), no. 3, 229-230 (1992). Zbl 0755.17018 MR 1139880
- [2] V. V. Bavula, Simple $D[X, Y; \sigma, a]$ -modules, Ukrainian Math. J., 44 (1992), no. 12, 1500-1511 (1993). Zbl 0810.16003 MR 1215036
- [3] V. V. Bavula, Generalized Weyl algebras and their representations, St. Petersburg Math. J., 4 (1993), no. 1, 71–92. Zbl 0807.16027 MR 1171955
- [4] V. V. Bavula, Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules, in Representations of algebras (Ottawa, ON, 1992), 83-107, CMS Conf. Proc., 14, Amer. Math. Soc., Providence, RI, 1993. Zbl 0806.17023 MR 1265277
- [5] V. V. Bavula, Filter dimension of algebras and modules, a simplicity criterion of generalized Weyl algebras, Comm. Algebra, 24 (1996), no. 6, 1971-1972. Zbl 0855.16005 MR 1386023
- [6] V. V. Bavula, Global dimension of generalized Weyl algebras, in Representation theory of algebras (Cocoyoc, 1994), 81-107, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, 1996. Zbl 0857.16025 MR 1388045
- [7] V. V. Bavula, The simple modules of Ore extensions with coefficients from a Dedekind ring, Comm. Algebra, 27 (1999), no. 6, 2665-2699. Zbl 0944.16001 MR 1687317
- [8] V. V. Bavula and T. Lu, The prime spectrum and simple modules over the quantum spatial ageing algebra, Algebr. Represent. Theory, 19 (2016), no. 5, 1109-1133. Zbl 06658473 MR 3550404
- [9] V. V. Bavula and T. Lu, The universal enveloping algebra $U(\mathfrak{sl}_2 \ltimes V_2)$, its prime spectrum and a classification of its simple weight modules, J. Lie Theory, 28 (2018), no. 2, 525-560. Zbl 06872041 MR 3744013
- [10] G. M. Bergman, The diamond lemma for ring theory, Adv. in Math., 29 (1978), no. 2, 178-218. Zbl 0326.16019 MR 506890

946 V. V. Bavula and T. Lu

- [11] K. A. Brown and K. R. Goodearl, *Lectures on algebraic quantum groups*, Advanced Course in Math. CRM Barcelona, Birkhäuser, Basel 2002. [Zbl 1027.17010](https://zbmath.org/?q=an:1027.17010) [MR 1898492](http://www.ams.org/mathscinet-getitem?mr=1898492)
- [12] F. Ding and A. Tsymbaliuk, Representations of infinitesimal Cherednik algebras, *Represent. Theory*, **17** (2013), 557–583. [Zbl 1302.17012](https://zbmath.org/?q=an:1302.17012) [MR 3123740](http://www.ams.org/mathscinet-getitem?mr=3123740)
- [13] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism, *Invent. Math.*, **147** (2002), no. 2, 243–348. [Zbl 1061.16032](https://zbmath.org/?q=an:1061.16032) [MR 1881922](http://www.ams.org/mathscinet-getitem?mr=1881922)
- [14] P. Etingof, W. Gan, and V. Ginzburg, Continuous Hecke algebras, *Transform. Groups*, **10** (2005), no. 3-4, 423–447. [Zbl 1115.20005](https://zbmath.org/?q=an:1115.20005) [MR 2183119](http://www.ams.org/mathscinet-getitem?mr=2183119)
- [15] W. L. Gan and A. Khare, Quantized symplectic oscillator algebras of rank one, *J. Algebra*, **310** (2007), no. 2, 671–707. [Zbl 1194.17003](https://zbmath.org/?q=an:1194.17003) [MR 2308175](http://www.ams.org/mathscinet-getitem?mr=2308175)
- [16] K. R. Goodearl and E. S. Letzter, Prime and primitive spectra of multiparameter quantum affine spaces, in *Trends in ring theory (Miskolc, 1996)*, 39–58, CMS Conf. Proc., 22, Amer. Math. Soc., Providence, RI, 1998. [Zbl 0904.16001](https://zbmath.org/?q=an:0904.16001) [MR 1491917](http://www.ams.org/mathscinet-getitem?mr=1491917)
- [17] J. C. Jantzen, *Lectures on quantum groups*, Graduate Studies in Mathematics, 6, American Mathematical Society, Providence, RI, 1996. [Zbl 0842.17012](https://zbmath.org/?q=an:0842.17012) [MR 1359532](http://www.ams.org/mathscinet-getitem?mr=1359532)
- [18] C. K. Kassel, *Quantum groups*, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995. [Zbl 0808.17003](https://zbmath.org/?q=an:0808.17003) [MR 1321145](http://www.ams.org/mathscinet-getitem?mr=1321145)
- [19] E. E. Kirkman and L. W. Small, q-analogs of harmonic oscillators and related rings, *Israel J. Math.*, **81** (1993), no. 1-2, 111–127. [Zbl 0783.17006](https://zbmath.org/?q=an:0783.17006) [MR 1231181](http://www.ams.org/mathscinet-getitem?mr=1231181)
- [20] G. R. Krause and T. H. Lenagan, *Growth of algebras and Gelfand-Kirillov dimension*. Revised edition, Graduate Studies in Mathematics, 22, American Mathematical Society, Providence, RI, 2000. [Zbl 0957.16001](https://zbmath.org/?q=an:0957.16001) [MR 1721834](http://www.ams.org/mathscinet-getitem?mr=1721834)
- [21] J. C. McConnell and J. C. Robson,*Noncommutative Noetherian rings*.With the cooperation of L. W. Small. Revised edition, Graduate Studies in Mathematics, 30, American Mathematical Society, Providence, RI, 2001. [Zbl 0980.16019](https://zbmath.org/?q=an:0980.16019) [MR 1811901](http://www.ams.org/mathscinet-getitem?mr=1811901)
- [22] S. Montgomery, *Hopf algebras and their actions on rings*, CBMS Regional Conference Series in Mathematics, 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. [Zbl 0793.16029](https://zbmath.org/?q=an:0793.16029) [MR 1243637](http://www.ams.org/mathscinet-getitem?mr=1243637)
- [23] S. P. Smith, A class of algebras similar to the enveloping algebra of sl.2/, *Trans. Amer. Math. Soc.*, **322** (1990), no. 1, 285–314. [Zbl 0732.16019](https://zbmath.org/?q=an:0732.16019) [MR 972706](http://www.ams.org/mathscinet-getitem?mr=972706)
- [24] A. Tikaradze and A. Khare, Center and representations of infinitesimal Hecke algebras of sl2, *Comm. Algebra*, **38** (2010), no. 2, 405–439. [Zbl 1282.17015](https://zbmath.org/?q=an:1282.17015) [MR 2598890](http://www.ams.org/mathscinet-getitem?mr=2598890)

Received 29 September, 2016; revised 23 April, 2018

V. V. Bavula, Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK E-mail: v.bavula@sheffield.ac.uk

T. Lu, School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian 362021, China E-mail: lutao.sdu@gmail.com