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The prime spectrum of the algebra KqŒX; Y � Ì Uq.sl2/
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Abstract. For the algebra A in the title, it is shown that its centre is generated by an explicit
quartic element. Explicit descriptions are given of the prime, primitive and maximal spectra
of the algebra A. A classification of simple weight A-modules is obtained. The classification
is based on a classification of (all) simple modules of the centralizer CA.K/ of the quantum
Cartan element K which is given in the paper. Explicit generators and defining relations are
found for the algebra CA.K/ (it is generated by 5 elements subject to the defining relations two
of which are quadratic and one is cubic).

Mathematics Subject Classification (2010). 17B10, 16D25, 16D60, 16D70, 16P50.
Keywords. Prime ideal, primitive ideal, weight module, simple module, centralizer.

1. Introduction

In this paper, module means a left module, K is a field, K� D K n f0g, an element
q 2 K� is not a root of unity, algebra means a unital K-algebra, N D f0; 1; : : :g and
NC D f1; 2; : : :g.

For a Hopf algebra and its module one can form a smash product algebra
(see [22, 4.1.3] for detail). The algebras obtained have rich structure. However,
little is known about smash product algebras; in particular, about their prime,
primitive and maximal spectra and simple modules. One of the classical objects
in this area is the smash product algebra A WD KqŒX; Y � Ì Uq.sl2/, where
KqŒX; Y � WD KhX; Y j XY D qYXi is the quantum plane and q 2 K� is not a root
of unity. As an abstract algebra, the algebra A is generated over K by elementsE, F ,
K,K�1, X , and Y subject to the defining relations (whereK�1 is the inverse ofK):

KEK�1 D q2E; KFK�1 D q�2F; ŒE; F � D
K �K�1

q � q�1
;

EX D qXE; EY D X C q�1YE; FX D YK�1 CXF; FY D YF;

KXK�1 D qX; KYK�1 D q�1Y; qYX D XY:
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The algebraA admits a PBW basis and the ordering of the generators can be arbitrary.
The study of semidirect product algebras has recently gained momentum: An
important class of algebras — the symplectic reflection algebras — was introduced
by Etingof and Ginzburg, [13]. This led to study of infinitesimal and continuous
Hecke algebras by Etingof, Gan and Ginzburg, [14] (see also papers of Ding, Khare,
Losev, Tikaradze and Tsymbaliuk and others in this direction).

The centre of the algebra A. A PBW deformation of this algebra, the quantized
symplectic oscillator algebra of rank one, was studied by Gan and Khare [15] and
some representations were considered. They showed that the centre of the deformed
algebra is K. In this paper, we show that the centre ofA is a polynomial algebra KŒC �
(Theorem 2.10) and the generator C has degree 4:

C D .1 � q2/F YXE C FX2 � Y 2K�1E �
1

1 � q2
YK�1X C

q2

1 � q2
YKX:

The method we use in finding the central element C of A can be summarized as
follows. The algebra A is “covered” by a chain of large subalgebras. They turn out
to be generalized Weyl algebras. Their central/normal elements can be determined
by applying Proposition 2.4. At each step generators of the covering subalgebras are
getting more complicated but their relations become simpler. At the final step, we
find a central element of a large subalgebra A of A which turns out to be the central
element C of the algebra A.

The prime, primitive and maximal spectra of A. In Section 3, we classify the
prime, primitive and maximal ideals of the algebra A (Theorem 3.7, Theorem 3.11
and Corollary 3.9, respectively). It is shown that every nonzero ideal has nonzero
intersection with the centre of the algebra A (Corollary 3.8). In classifying prime
ideals certain localizations of the algebra A are used. The set of completely prime
ideals is also described (Corollary 3.12).

A classification of simple weight A-modules. An A-moduleM is called a weight
module if M D

L
�2K�M� where M� D fm 2 M j Km D �mg. In Section 6,

a classification of simple weight A-modules is given. It is too technical to describe
the result in the Introduction but we give a flavour and explain main ideas. The
set of isomorphism classes of simple weight A-modules are partitioned into several
subclasses, and each of them requires different techniques to deal with. The key
point is that each weight component of a simple weight A-module is a simple
module over the centralizer CA.K/ of the quantum Cartan element K and this
simple CA.K/-module can be an arbitrary simple CA.K/-module. Therefore,
first we study the algebra CA.K/, classify its simple modules and using this
classification we classify simple weight A-modules. There are plenty of them and a
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“generic/typical” simple weight A-module depends on arbitrary many independent
parameters (the number of which is finite but can be arbitrary large).

The centralizer CA.K/ and a classification of its simple modules. The algebra
CA.K/ is generated by (explicit) elementsK˙1,C ,‚, t , and u subject to the defining
relations, Theorem 4.6 (K˙1 and C are central elements):

‚ � t D q2t �‚C .q C q�1/uC .1 � q2/C;

‚ � u D q�2u �‚ � q.1C q2/t C .1 � q2/K�1C;

t � u D q2u � t; ‚ � t � u �
1

q.1 � q2/
u2 � C � u D

q7

1 � q2
t2 � q4K�1C � t:

It is proved that the centre of the algebra CA.K/ is KŒC;K˙1�. The problem
of classification of simple CA.K/-modules is reduced to the one for the factor
algebras C�;� WD CA.K/=CA.K/.C � �;K � �/ where � 2 K and � 2 K�.
The algebra C�;� is a domain (Theorem 4.11.(2)). The algebra C�;� is simple
iff � ¤ 0 (Theorem 4.11.(1)). A classification of simple C�;�-modules is given
in Section 5. One of the key observations is that the localization C

�;�
t of the

algebra C�;� at the powers of the element t D YX is a central, simple, generalized
Weyl algebra (Proposition 4.9). The other one is that, for any � 2 K and � 2 K�,
we can embed the algebra C�;� into a generalized Weyl algebra A (which is also
a central simple algebra), see Proposition 5.3. These two facts enable us to give
a complete classification of simple CA.K/-modules. The problem of classifying
simple C�;�-modules splits into two distinct cases, namely the case when � D 0

and the case when � ¤ 0. In the case � D 0, we embed the algebra C0;� into a
skew polynomial algebra R D KŒh˙1�Œt I �� where �.h/ D q2h (it is a subalgebra of
the algebra A) for which the classification of simple modules is known. In the case
� ¤ 0, we use a close relation of C�;� with the localization C

�;�
t , and the arguments

are more complicated.
The algebra A can be seen as a quantum analogue of another classical algebra,

the enveloping algebra U.V2 Ì sl2/ of the semidirect product Lie algebra V2 Ì sl2
(where V2 is the 2-dimensional simple sl2-module) which was studied in [9]. These
two algebras are similar in many ways. For example, the prime spectra of these two
algebras have similar structures; the representation theory of A has many parallels
with that ofU.V2Ìsl2/; the quartic Casimir elementC ofA degenerates to the cubic
Casimir element of U.V2 Ì sl2/ as “q ! 1”. The centre of U.V2 Ì sl2/ is generated
by the cubic Casimir element, [24]. The study of quantum algebras usually requires
more computations and the methods of this paper and [9] are quite different. Much
work has been done on quantized enveloping algebras of semisimple Lie algebras
(see, e.g., [17, 18]). In the contrast, only few examples can be found in the literature
on the quantized algebras of enveloping algebras of non-semisimple Lie algebras.
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2. The centre of the algebra A

In this section, it is proved that the centre Z.A/ of the algebra A is a polynomial
algebra KŒC � (Theorem 2.10) and the element C is given explicitly, (2.14)–(2.17).
Several important subalgebras and localizations of the algebra A are introduced,
they are instrumental in finding the centre of A. We also show that the quantum
Gelfand–Kirillov conjecture holds for the algebra A.

The algebra A. In this paper, K is a field and an element q 2 K� D K n f0g is not
a root of unity. Recall that the quantized enveloping algebra of sl2 is the K-algebra
Uq.sl2/ with generators E;F;K;K�1 subject to the defining relations (see [17]):

KK�1 D K�1K D 1; KEK�1 D q2E; KFK�1 D q�2F;

EF � FE D
K �K�1

q � q�1
:

The centre of Uq.sl2/ is a polynomial algebra Z.Uq.sl2// D KŒ�� where � WD
FE C .qK C q�1K�1/=.q � q�1/2. A Hopf algebra structure on Uq.sl2/ is defined
as follows:

�.K/ D K ˝K; ".K/ D 1; S.K/ D K�1;

�.E/ D E ˝ 1CK ˝E; ".E/ D 0; S.E/ D �K�1E;

�.F / D F ˝K�1 C 1˝ F; ".F / D 0; S.F / D �FK;

where � is the comultiplication on Uq.sl2/, " is the counit and S is the antipode
of Uq.sl2/. Note that the Hopf algebra Uq.sl2/ is neither cocommutative nor
commutative. The quantum plane KqŒX; Y � WD KhX; Y j XY D qYXi is a
Uq.sl2/-module algebra where

K �X D qX; E �X D 0; F �X D Y;

K � Y D q�1Y; E � Y D X; F � Y D 0:

Then one can form the smash product algebra A WD KqŒX; Y �ÌUq.sl2/. For details
about smash product algebras, see [22]. The generators and defining relations for
this algebra are given in the Introduction.

Generalized Weyl algebras.
Definition 2.1 ([1–3]). Let D be a ring, � be an automorphism of D and a is
an element of the centre of D. The generalized Weyl algebra A WD D.�; a/ WD

DŒX; Y I �; a� is a ring generated byD, X and Y subject to the defining relations:

X˛ D �.˛/X and Y˛ D ��1.˛/Y for all ˛ 2 D; YX D a and XY D �.a/:

The algebra A D ˚n2ZAn is Z-graded where An D Dvn, vn D Xn for n > 0, and
vn D Y

�n for n < 0 and v0 D 1.
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Definition 2.2 ([6]). Let D be a ring and � be its automorphism. Suppose that
elements b and � belong to the centre of the ring D, � is invertible and �.�/ D �.
ThenE WD DŒX; Y I �; b; �� is a ring generated byD,X and Y subject to the defining
relations:

X˛ D �.˛/X and Y˛ D ��1.˛/Y for all ˛ 2 D; and XY � �YX D b:

An element d of a ring D is normal if dD D Dd . The next proposition shows
that the rings E are GWAs and under a (mild) condition they have a “canonical”
normal element.

Proposition 2.3. Let E D DŒX; Y I �; b; ��. Then

(1) [6, Lemma 1.3] The following statements are equivalent:

(a) [6, Corollary 1.4] C D �.YX C ˛/ D XY C �.˛/ is a normal element in
E for some central element ˛ 2 D,

(b) �˛ � �.˛/ D b for some central element ˛ 2 D.

(2) [6, Corollary 1.4] If one of the equivalent conditions of statement 1 holds then
the ring E D DŒC �ŒX; Y I �; a D ��1C � ˛� is a GWA where �.C / D �C .

The next proposition is a corollary of Proposition 2.3 when � D 1. The rings E
with � D 1 admit a “canonical” central element (under a mild condition).

Proposition 2.4. Let E D DŒX; Y I �; b; � D 1�. Then

(1) [6, Lemma 1.5] The following statements are equivalent:

(a) C D YX C ˛ D XY C �.˛/ is a central element in E for some central
element ˛ 2 D,

(b) ˛ � �.˛/ D b for some central element ˛ 2 D.

(2) [6, Corollary 1.6] If one of the equivalent conditions of statement 1 holds then
the ring E D DŒC �ŒX; Y I �; a D C � ˛� is a GWA where �.C / D C .

An involution � of A. The algebra A admits the following involution � (see [15,
p. 693]):

�.E/ D �FK; �.F / D �K�1E; �.K/ D K; �.K�1/ D K�1;

�.X/ D Y; �.Y / D X:
(2.1)

For an algebra B , we denote by Z.B/ its centre.
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The algebra E is a GWA. Let E be the subalgebra of A which is generated by the
elements E, X , and Y . The elements E, X , and Y satisfying the defining relations

EX D qXE; YX D q�1XY; and EY � q�1YE D X:

Therefore, E D KŒX�ŒE; Y I �; b D X; � D q�1� where �.X/ D qX . The
polynomial ˛ D .q=.1 � q2//X is a solution to the equation q�1˛ � �.˛/ D X .
Hence, by Proposition 2.3, the element

zC D q�1
�
YE C

q

1 � q2
X
�
D EY C

q2

1 � q2
X

is a normal element of E and the algebra E is a GWA

E D KŒ zC ;X�

�
E; Y I �; a WD q zC �

q

1 � q2
X

�
;

where �. zC/ D q�1 zC , �.X/ D qX .
Let

' WD .1 � q2/ zC : (2.2)

Then ' D X C .q�1 � q/YE D .1 � q2/EY C q2X . Hence,

E D KŒ'; X�

�
E; Y I �; a D

' �X

q�1 � q

�
; (2.3)

where �.'/ D q�1' and �.X/ D qX . Using the defining relations of the GWA E,
we see that the set fY i j i 2 Ng is a left and right Ore set in E. The localization
of the algebra E at this set, EY WD KŒ'; X�ŒY ˙1I �� is the skew Laurent polynomial
ring. Similarly, the set fX i j i 2 Ng is a left and right Ore set in EY and the algebra

EY;X D KŒ'; X˙1�ŒY ˙1I �� D KŒˆ�˝KŒX˙1�ŒY ˙1I �� (2.4)

is the tensor product of the polynomial algebra KŒˆ�whereˆ D X' and the Laurent
polynomial algebra KŒX˙1�ŒY ˙1I ��which is a central simple algebra. In particular,
Z.EY;X / D KŒˆ�. So, we have the inclusion of algebras E � EY � EY;X .

The next lemma describes the centre of the algebras E; EY and EY;X .
Lemma 2.5. Z.E/ D Z.EY / D Z.EY;X / D KŒˆ� is a polynomial algebra where
ˆ WD X'.

Proof. By (2.4), KŒˆ� � Z.E/ � Z.EY / � Z.EY;X / D KŒˆ�, and the result
follows.

We have the following commutation relations:

X' D 'X; Y' D q'Y; E' D q�1'E; K' D q'K: (2.5)
Xˆ D ˆX; Yˆ D ˆY; Eˆ D ˆE; Kˆ D q2ˆK: (2.6)



The prime spectrum of the algebra Kq ŒX; Y � Ì Uq.sl2/ 895

Lemma 2.6. (1) ŒF; '� D YK.
(2) The powers of ' form a left and right Ore set in A.
(3) The powers of X form a left and right Ore set in A.
(4) The powers of Y form a left and right Ore set in A.

Proof. (1) ŒF; '� D ŒF;X C .q�1 � q/YE�

D YK�1 C .q�1 � q/Y

�
�
K �K�1

q � q�1

�
D YK:

(2) Statement 2 follows at once from the equalities (2.5) and statement 1.
(3) The statement follows at once from the defining relations of the algebraAwhereX
is involved.
(4) The statement follows at once from the defining relations of the algebraAwhereY
is involved.

The algebra F is a GWA. Let F be the subalgebra of A which is generated by the
elements F , X , and Y 0 WD YK�1. The elements F;X and Y 0 satisfy the defining
relations

FY 0 D q�2Y 0F; XY 0 D q2Y 0X; and FX �XF D Y 0:

Therefore, the algebra F D KŒY 0�ŒF;X I �; b D Y 0; � D 1� where �.Y 0/ D q�2Y 0.
The polynomial˛D.1=.1�q�2//Y 02KŒY 0� is a solution to the equation˛��.˛/DY 0.
By Proposition 2.4, the element

C 0 WD XF C
1

1 � q�2
Y 0 D FX C

1

q2 � 1
Y 0

belongs to the centre of the GWA

F D KŒC 0; Y 0�

�
F;X I �; a D C 0 �

1

1 � q�2
Y 0
�
:

Let
 WD .1 � q2/C 0: (2.7)

Then  D .1 � q2/FX � Y 0 D .1 � q2/XF � q2Y 0 2 Z.F/ and

F D KŒ ; Y 0�

�
F;X I �; a D

 C q2Y 0

1 � q2

�
; (2.8)

where �. / D  and �.Y 0/ D q�2Y 0. Similar to the algebra E, the localization of
the algebra F at the powers of the element X is equal to

FX WD KŒ ; Y 0�ŒX˙1I ��1� D KŒ �˝KŒY 0�ŒX˙1I ��1�;

where � is defined in (2.8). The centre of the algebra KŒY 0�ŒX˙1I ��1� is K. Hence,
Z.FX / D KŒ �.
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Lemma 2.7. Z.F/ D Z.FX / D KŒ �.

Proof. The result follows from the inclusions KŒ � � Z.F/ � Z.FX / D KŒ �.

The GWA A. Let T be the subalgebra of A generated by the elements K˙1, X ,
and Y . Clearly,

T WD ƒŒK˙1I ��; (2.9)

where ƒ WD KhX; Y j XY D qYXi, and �.X/ D qX and �.Y / D q�1Y . It is easy
to determine the centre of the algebra T .
Lemma 2.8. Z.T / D KŒz� where z WD KYX .

Proof. Clearly, the element z D KYX belongs to the centre of the algebra T . The
centralizer CT .K/ is equal to KŒK˙1; YX�. Then the centralizer CT .K;X/ is equal
to KŒz�, hence Z.T / D KŒz�.

Let A be the subalgebra of A generated by the algebra T and the elements '
and  . The generators K˙1, X , Y , ', and  satisfy the following relations:

'X D X'; 'Y D q�1Y'; 'K D q�1K';

 X D X ;  Y D qY ;  K D qK ; ' �  ' D �q.1 � q2/z:

These relations together with the defining relations of the algebra T are defining
relations of the algebra A. In more detail, let, for a moment, A0 be the algebra
generated by the defining relations as above. We will see A0 D A. Indeed,

A0 D T Œ';  I �; b D �q.1 � q2/z; � D 1�:

Hence, the set of elements fKiXjY k'l m j i 2 Z; j; k; l;m 2 Ng is a basis of the
algebra A0. This set is also a basis for the algebra A. This follows from the explicit
expressions for the elements ' D .q�1�q/YECX and D .1�q2/XF �q2YK�1.
In particular, the leading terms of ' and are equal to .q�1�q/YE and .1�q2/XF ,
respectively (deg.K˙1/ D 0). So, A D A0, i.e.,

A D T Œ';  I �; b D �q.1 � q2/z; � D 1�;

where �.X/ D X , �.Y / D q�1Y , and �.K/ D q�1K. Recall that the element b
belongs to the centre of the algebra T (Lemma 2.8). The element ˛ D q3z is a
solution to the equation ˛ � �.˛/ D b. Then, by Proposition 2.4, the element

C 00 D  ' C q3z D ' C qz

is a central element of the algebra A (since �.z/ D q�2z) which is the GWA

A D T ŒC 00�Œ';  I �; a D C 00 � q3z�;

where �.C 00/ D C 00, �.X/ D X , �.Y / D q�1Y , �.K/ D q�1K.
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Let C WD C 00=.1 � q2/. Then

C D .1 � q2/�1. ' C q3z/ D .1 � q2/�1.' C qz/; (2.10)

is a central element of the GWA

A D T ŒC �Œ';  I �; a D .1 � q2/C � q3z�; (2.11)

where �.C / D C , �.X/ D X , �.Y / D q�1Y , and �.K/ D q�1K. Using
expressions of the elements ' D XC.q�1�1/YE and D .1�q2/XF �q2YK�1,
we see that

AX;Y D AX;Y : (2.12)
Hence, C 2 Z.A/. We now show our first main result: Z.A/ D KŒC � (Theo-
rem 2.10). In order to show this fact we need to consider the localizationAX;Y;' . Let
T WD TX;Y D ƒX;Y ŒK˙1I ��where � is defined in (2.9) andƒX;Y is the localization
of the algebra ƒ at the powers of the elements X and Y . By (2.12) and (2.11),

AX;Y;' D AX;Y;' D TX;Y ŒC �Œ'
˙1
I �� D KŒC �˝T Œ'˙1I �� D KŒC �˝ƒ0; (2.13)

where ƒ0 D T Œ'˙1I �� and � is as in (2.11).
Lemma 2.9. (1) Z.ƒ0/ D K. (2) The algebra ƒ0 is a simple algebra.

Proof. (1) Let u D
P
�i;j;k;lK

iXjY k'l 2 Z.ƒ/, where �i;j;k;l 2 K. Since
ŒK; u� D 0, we have j � k C l D 0. Similarly, since ŒX; u� D ŒY; u� D Œ'; u� D 0,
we have the following equations: �iCk D 0, i�jCl D 0,�i�k D 0, respectively.
These equations imply that i D j D k D l D 0. Thus Z.ƒ/ D K.
(2) Since the algebra ƒ0 is central, it is a simple algebra, by [16, Corollary 1.5.(a)].

Theorem 2.10. The centre Z.A/ of the algebra A is the polynomial algebra in one
variable KŒC �.

Proof. By (2.13) and Lemma 2.9.(1), Z.AX;Y;'/ D KŒC �. Hence, Z.A/ D KŒC �.

Using the defining relations of the algebraA, we can rewrite the central elementC
as follows:

C D .1 � q2/F YXE C FX2 � Y 2K�1E �
1

1 � q2
YK�1X C

q2

1 � q2
YKX:

(2.14)
C D .FE � q2EF /YX C q2FX2 �K�1EY 2: (2.15)

C D FX.EY � qYE/ �K�1EY 2 C
q3

1 � q2
.K �K�1/YX: (2.16)

C D .1 � q2/FEYX C
q3

1 � q2
.K �K�1/YX C q2FX2 �K�1EY 2: (2.17)
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The subalgebra A of A. Let A be the subalgebra of A generated by the elements
K˙1, E, X , and Y . The properties of this algebra were studied in [8] where the
prime, maximal and primitive spectrum of A were found. In particular, the algebra

A D EŒK˙1I �� (2.18)

is a skew Laurent polynomial algebra where �.E/ D q2E, �.X/ D qX , and
�.Y / D q�1Y . The elements X , ' 2 A are normal elements of the algebra A.
The set SX;' WD fX

i'j j i; j 2 Ng is a left and right denominator set of the
algebras A and A. Clearly AX;' WD S�1X;'A � AX;' WD S�1X;'A.

Lemma 2.11 ([8]). The algebra AX;' is a central simple algebra.

Using the defining relations of the algebra A, the algebra A is a skew polynomial
algebra

A D AŒF I �; ı� (2.19)

where � is an automorphism of A such that �.K/ D q2K; �.E/ D E, �.X/ D X ,
�.Y / D Y ; and ı is a � -derivation of the algebra A such that ı.K/ D 0, ı.E/ D
.K � K�1/=.q � q�1/, ı.X/ D YK�1, and ı.Y / D 0. For an element a 2 A, let
degF .a/ be its F -degree. Since the algebra A is a domain,

degF .ab/ D degF .a/C degF .b/

for all elements a; b 2 A.

Lemma 2.12. The algebra AX;' D KŒC �˝AX;' is a tensor product of algebras.

Proof. Recall that ' D EY � qYE. Then the equality (2.16) can be written as
C D FX'�K�1EY 2C.q3=.1�q2//.K�K�1/YX . The elementX' is invertible
in AX;' . Now, using (2.19), we see that

AX;' D AX;' ŒF I �; ı� D AX;' ŒC � D KŒC �˝AX;' :

Quantum Gelfand–Kirillov conjecture for A. If we view A as the quantum ana-
logue of the enveloping algebra U.V2 Ì sl2/, a natural question is whether A satisfies
the quantum Gelfand–Kirillov conjecture. Recall that a quantum Weyl field over K is
the field of fractions of a quantum affine space. We say that a K-algebra A admitting
a skew field of fractions Frac.A/ satisfies the quantum Gelfand–Kirillov conjecture
if Frac.A/ is isomorphic to a quantum Weyl field over a purely transcendental field
extension of K; see [11, II.10, p. 230].

Theorem 2.13. The quantum Gelfand–Kirillov conjecture holds for the algebra A.

Proof. This follows immediately from (2.13).
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3. Prime, primitive and maximal spectra of A

The aim of this section is to give classifications of prime, primitive and maximal
ideals of the algebra A (Theorem 3.7, Theorem 3.11 and Corollary 3.9). It is proved
that every nonzero ideal of the algebra A has nonzero intersection with the centre
ofA (Corollary 3.8). The set of completely prime ideals of the algebraA is described
in Corollary 3.12. Our goal is a description of the prime spectrum of the algebra A
together with their inclusions. Next several results are steps in this direction, they are
interesting in their own right.

Lemma 3.1. The following identities hold in the algebra A.

(1) FX i D X iF C ..1 � q2i /=.1 � q2//YK�1X i�1.

(2) XF i D F iX � ..1 � q2i /=.1 � q2//YF i�1K�1.

Proof. By induction on i and using the defining relations of A.

Let R be a ring. For an element r 2 R, we denote by .r/ the (two-sided) ideal
of R generated by the element r .

Lemma 3.2. (1) In the algebra A, .X/ D .Y / D .'/ D AX C AY .

(2) A=.X/ ' Uq.sl2/.

Proof. (1) The equality .X/ D .Y / follows from the equalities FX D YK�1CXF
and EY D X C q�1YE. The inclusion .'/ � .Y / follows from the equality
' D EY � qYE. The reverse inclusion .'/ � .Y / follows from Y D ŒF; '�K�1

(Lemma 2.6). Let us show that XA � AX CAY . Recall that X is a normal element
of A. Then by (2.19),

XA D
X
k>0

AXF k D AX C
X
k>1

AXF k � AX C AY

(the inclusion follows from Lemma 3.1.(2)). Then

.X/ D AXA � AX C AY � .X; Y / D .X/;

i.e., .X/ D AX C AY .

(2) By statement 1, A=.X/ D A=.X; Y / ' Uq.sl2/.

The next result shows that the elements X and ' are rather special.

Lemma 3.3. (1) For all i > 1, .X i / D .X/i .

(2) For all i > 1, .'i /X D .'/iX D AX .



900 V. V. Bavula and T. Lu

Proof. (1) To prove the statement we use induction on i . The case i D 1 is obvious.
Suppose that i > 1 and the equality .Xj / D .X/j holds for all 1 6 j 6 i � 1. By
Lemma 3.1.(1), the element YX i�1 2 .X i /. Now,

.X/i D .X/.X/i�1 D .X/.X i�1/ D AXAX i�1A � .X i /C AYX i�1A � .X i /:

Therefore, .X/i D .X i /.
(2) It suffices to show that .'i /X D AX for all i > 1. The case i D 1 follows
from the equality of ideals .'/ D .X/ in the algebra A (Lemma 3.2). We use
induction on i . Suppose that the equality is true for all i 0 < i . By Lemma 2.6.(1),
ŒF; 'i � D ..1�q�2i /=.1�q�2//YK'i�1, hence Y'i�1 2 .'i /. Using the equalities
EY � q�1YE D X and E' D q�1'E, we see that

EY'i�1 � q�iY'i�1E D .EY � q�1YE/'i�1 D X'i�1:

Now, .'i /X � .'i�1/X D AX , by induction. Therefore, .'i /X D AX for all i .

One of the most difficult steps in classification of the prime ideals of the algebraA
is to show that each maximal ideal q of the centreZ.A/ D KŒC � generates the prime
ideal Aq of the algebra A. There are two distinct cases: q ¤ .C / and q D .C /. The
next theorem deals with the first case.
Theorem 3.4. Let q 2 Max.KŒC �/ n f.C /g. Then
(1) The ideal .q/ WD Aq of A is a maximal, completely prime ideal.
(2) The factor algebra A=.q/ is a simple algebra.

Proof. Notice that q D KŒC �q0where q0 D q0.C / is an irreduciblemonic polynomial
such that q0.0/ 2 K�.
(i) The factor algebra A=.q/ is a simple algebra, i.e., .q/ is a maximal ideal of A:
Consider the chain of localizations

A=.q/ �!
AX

.q/X
�!

AX;'

.q/X;'
:

By Lemma 2.12, AX;'=.q/X;' ' Lq ˝AX;' where Lq WD KŒC �=q is a finite field
extension ofK. By Lemma 2.11, the algebraAX;' is a central simple algebra. Hence,
the algebra AX=.q/X is simple iff .'i ; q/X D AX for all i > 1. By Lemma 3.3.(2),
.'i /X D AX for all i > 1. Therefore, the algebra AX=.q/X is simple. Hence, the
algebra A=.q/ is simple iff .X i ; q/ D A for all i > 1.

By Lemma 3.3.(1), .X i / D .X/i for all i > 1. Therefore, .X i ; q/ D .X/i C .q/
for all i > 1. It remains to show that .X/iC.q/ D A for all i > 1. By Lemma 3.2.(1),
.X/ D .X; Y /. If i D 1 then .X/C .q/ D .X; Y; q/ D .X; Y; q0.0// D A, by (2.14)
and q0.0/ 2 K�. Now,

A D Ai D ..X/C .q//i � .X/i C .q/ � A;

i.e., .X/i C .q/ D A, as required.
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(ii) .q/ is a completely prime ideal of A: The set S D fX i'j j i; j 2 Ng is a
denominator set of the algebra A. Since AX;'=.q/X;' ' S�1.A=.q// is a (nonzero)
algebra and .q/ is a maximal ideal of the algebra A, we have that torS .A=.q// is an
ideal of the algebra A=.q/ distinct from A=.q/, hence torS .A=.q// D 0. This means
that the algebra A=.q/ is a subalgebra of the algebra AX;'=.q/X;' ' Lq ˝ AX;' ,
which is a domain. Therefore, the ideal .q/ of A is a completely prime ideal.

(iii) Z.A=.q// D Lq: By Lemma 2.11, Z.AX;'/ D K, and A=.q/ � AX;'=.q/X;'
' Lq ˝AX;' , hence Z.A=.q// D Lq.

The case where q D .C / is dealt with in the next proposition.
Proposition 3.5. A \ .C /X;' D .C / and the ideal .C / of A is a completely prime
ideal.

Proof. Recall that A D AŒF I �; ı� (see (2.19)),ˆ D X' 2 A is a product of normal
elements X and ' in A and, by (2.16), the central element C can be written as
C D ˆF C s where

zy WD
q4

1 � q2
YK�1 �

1

1 � q2
YK and s D �q2K�1EY 2 �X zy:

(i) If Xf 2 .C / for some f 2 A then f 2 .C /: Notice that Xf D Cg for some
g 2 A. To prove the statement (i), we use induction on the degree m D degF .f / of
the element f 2 A. Notice thatA is a domain and degF .fg/ D degF .f /CdegF .g/
for all f; g 2 A. The case when m 6 0 i.e., f 2 A, is obvious since the equality
Xf D Cg holds iff f D g D 0 (since degF .Xf / 6 0 and degF .Cg/ > 1 providing
g ¤ 0). So, we may assume that m > 1. We can write the element f as a
sum f D f0 C f1F C � � � C fmF

m where fi 2 A and fm ¤ 0. The equality
Xf D Cg implies that degF .g/ D degF .Xf / � degF .C / D m � 1. Therefore,
g D g0C g1F C � � � C gm�1F

m�1 for some gi 2 A and gm�1 ¤ 0. Then (where ı
is defined in (2.19))

Xf0 CXf1F C � � � CXfmF
m

D .ˆF C s/
�
g0 C g1F C � � � C gm�1F

m�1
�

D ˆ
�
�.g0/F C ı.g0/

�
Cˆ

�
�.g1/F C ı.g1/

�
F C � � � Cˆ

�
�.gm�1/F

C ı.gm�1/
�
Fm�1 C sg0 C sg1F C � � � C sgm�1F

m�1

D ˆı.g0/C sg0 C
�
ˆ�.g0/Cˆı.g1/C sg1

�
F C � � � Cˆ�.gm�1/F

m:

(3.1)

Comparing the terms of degree zero we have the equality

Xf0 D ˆı.g0/C sg0 D X'ı.g0/C .�q
2K�1EY 2 �X zy /g0;

i.e.,X.f0�'ı.g0/C zyg0/ D �q2K�1EY 2g0. All the terms in this equality belong
to the algebraA. Recall thatX is a normal element inA such thatA=AX is a domain



902 V. V. Bavula and T. Lu

(see [8]) and the elementK�1EY 2 does not belong to the ideal AX . Hence we have
g0 2 AX , i.e., g0 D Xh0 for some h0 2 A. Now the element g can be written as
g D Xh0 C g

0F , where g0 D 0 if m D 1, and degF .g0/ D m � 2 D degF .g/ � 1
if m > 2. Now, Xf D C.Xh0 C g

0F / and so X.f � Ch0/ D Cg0F . Notice
that Cg0F has zero constant term as a noncommutative polynomial in F (where
the coefficients are written on the left). Therefore, the element f � Ch0 has zero
constant term, and hence can be written as f � Ch0 D f 0F for some f 0 2 A with

degF .f 0/C degF .F / D degF .f 0F / D degF .f 0/C 1
D degF .f � Ch0/ 6 max

�
degF .f /; degF .Ch0/

�
D m:

Notice that, degF .f 0/ < degF .f /. Now, Cg0F D X.f � Ch0/ D Xf 0F , hence
Xf 0 D Cg0 2 .C / (by deleting F ). By induction, f 0 2 .C /, and then

f D Ch0 C f
0F 2 .C /;

as required.

(ii) If 'f 2 .C / for some f 2 A then f 2 .C /: Notice that 'f D Cg for some
g 2 A. To prove the statement (ii) we use similar arguments to the ones given in
the proof of the statement (i). We use induction on m D degF .f /. The case where
m 6 0, i.e., f 2 A is obvious since the equality 'f D Cg holds iff f D g D 0

(since degF .'f / 6 0 and degF .Cg/ > 1 providing g ¤ 0). So we may assume
that m > 1. We can write the element f as a sum f D f0 C f1F C � � � C fmF

m

where fi 2 A and fm ¤ 0. Then the equality 'f D Cg implies that degF .g/ D
degF .'f / � degF .C / D m � 1. Therefore, g D g0 C g1F C � � � C gm�1F

m�1

where gi 2 A and gm�1 ¤ 0. Then replacing X by ' in (3.1), we have the equality

'f0 C 'f1F C � � � C 'fmF
m
D ˆı.g0/C sg0 C � � � Cˆ�.gm�1/F

m: (3.2)

The element s can bewritten as a sum s D ..�q=.1�q2//'K�1C.1=.1�q2//KX/Y .
Then equating the constant terms of the equality (3.2) and then collecting terms that
are multiple of ' we obtain the equality in the algebra A:

'
�
f0 �Xı.g0/C

q

1 � q2
K�1Yg0

�
D

1

1 � q2
KXYg0:

The element ' 2 A is a normal element such that the factor algebra A=A' is a
domain (see [8]) and the elementKXY does not belong to the ideal A'. Therefore,
g0 2 A', i.e., g0 D 'h0 for some element h0 2 A. Recall that degF .g/ D m � 1.
Now, g D 'h0Cg0F , where g0 2 A and g0 D 0 ifm D 1, and degF .g0/ D m�2 D
degF .g/ � 1 if m > 2. So, 'f D Cg D C.'h0 C g0F /. Hence,

'.f � Ch0/ D Cg
0F;
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and so f � Ch0 D f 0F for some f 0 2 A with

degF .f 0/C degF .F / D degF .f 0F / D degF .f 0/C 1
D degF .f � Ch0/ 6 max

�
degF .f /; degF .Ch0/

�
D m:

Notice that, degF .f 0/ < degF .f /. Now, Cg0F D '.f � Ch0/ D 'f 0F , hence
'f 0 D Cg0 2 .C / (by deleting F ). Now, by induction, f 0 2 .C /, and then

f D Ch0 C f
0F 2 .C /;

as required.

(iii) A \ .C /X;' D .C /: Let u 2 A \ .C /X;' . Then X i'ju 2 .C / for some
i; j 2 N. It remains to show that u 2 .C /. By the statement (i), 'ju 2 .C /, and
then by the statement (ii), u 2 .C /.

(iv) The ideal .C / ofA is a completely prime ideal: ByLemma2.12,AX;'=.C /X;' '
AX;' , in particular, AX;'=.C /X;' is a domain. By the statement (iii), the
algebra A=.C / is a subalgebra of AX;'=.C /X;' , so A=.C / is a domain. This means
that the ideal .C / is a completely prime ideal of A.

Let R be a ring. Then each element r 2 R determines two maps from R to R,
r �W x 7! rx and �r W x 7! xr where x 2 R. The next proposition is used in the proof
of one of the main results of the paper, Theorem 3.7. It explains why the elements
(like X and ') that satisfy the property of Lemma 3.3 are important in description of
prime ideals.
Proposition 3.6 ([8]). Let R be a Noetherian ring and s be an element of R such
that Ss WD fs

i j i 2 Ng is a left denominator set of the ring R and .si / D .s/i for
all i > 1 (e.g., s is a normal element such that ker.�s/ � ker.s�/). Then,

Spec .R/ D Spec .R; s/ t Specs.R/;

where Spec.R; s/ WD fp 2 Spec .R/ j s 2 pg, Specs.R/ WD fq 2 Spec .R/ j s … qg
and
(a) the map Spec.R; s/ 7! Spec .R=.s//, p 7! p=.s/, is a bijection with the inverse

q 7! ��1.q/ where � WR! R=.s/; r 7! r C .s/,
(b) the map Specs.R/ ! Spec .Rs/, p 7! S�1s p, is a bijection with the inverse

q 7! ��1.q/, where � WR! Rs WD S�1s R, r 7! r=1.
(c) For all p 2 Spec .R; s/ and q 2 Specs.R/, p 6� q.

The next theorem gives an explicit description of the poset (Spec .A/;�).
Theorem 3.7. Let U WD Uq.sl2/. The prime spectrum of the algebra A is a disjoint
union

Spec.A/ D Spec.U / t Spec.AX;'/
D
˚
.X; p/ j p 2 Spec.U /

	
t
˚
Aq j q 2 Spec

�
KŒC �

�	
:

(3.3)
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Furthermore,

Spec .U / n f0g

.X/

.C /

0

˚
Aq j q 2 Max .KŒC �/ n f.C /g

	
.

(3.4)

Proof. By Lemma 3.2.(2), A=.X/ ' U . By Lemma 3.3.(1) and Proposition 3.6,
Spec .A/ D Spec .A;X/ t Spec .AX /: By Lemma 3.3.(2) and Proposition 3.6,
Spec .AX / D Spec .AX;'/: Therefore,

Spec .A/ D
˚
.X; p/ j p 2 Spec .U /

	
t
˚
A \ AX;'q j q 2 Spec

�
KŒC �

�	
:

Finally, by Theorem 3.4.(1), A \ AX;'q D .q/ for all q 2 Max .KŒC �/ n f.C /g.
By Proposition 3.5, A \ AX;'C D .C /. Therefore, (3.3) holds. For all q 2
Max .KŒC �/ n f.C /g, the ideals Aq of A are maximal. By (2.14), AC � .X/.
Therefore, (3.4) holds.

The next corollary shows that every nonzero ideal of the algebra A meets the
centre of A.
Corollary 3.8. If I is a nonzero ideal of the algebra A then I \KŒC � ¤ 0.

Proof. Suppose that the result is not true, let us choose an ideal J ¤ 0maximal such
that J \KŒC � D 0. We claim that J is a prime ideal. Otherwise, suppose that J is
not prime, then there exist ideals p and q such that J ¤ p, J ¤ q and pq � J . By
the maximality of J , p \KŒC � ¤ 0 and q \KŒC � ¤ 0. Then

J \KŒC � � pq \KŒC � ¤ 0;

a contradiction. So, J is a prime ideal, but by Theorem 3.7 for all nonzero primes P ,
P \KŒC � ¤ 0, a contradiction. Therefore, for any nonzero ideal I , I \KŒC � ¤ 0.

The next result is an explicit description of the set ofmaximal ideals of the algebraA.
Corollary 3.9. Max .A/ D Max .U / t fAq j q 2 Max .KŒC �/ n f.C /gg.

Proof. It is clear by (3.4).

In the following lemma, we define a family of left A-modules that has bearing
of Whittaker modules. It shows that these modules are simple A-modules and their
annihilators are equal to .C /.
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Lemma 3.10. For � 2 K�, we define the leftA-moduleW.�/ WD A=A.X��; Y; F /.
Then:

(1) The module W.�/ is a simple A-module.

(2) annA.W.�// D .C /.

Proof. (1) Let N1 D 1CA.X ��; Y; F / be the canonical generator of the A-module
W.�/. Then, W.�/ D

P
i2N E

iKŒK˙1� N1. Suppose that V is a nonzero submodule
of W.�/, we have to show that V D W.�/. Let v D

Pn
iD0E

ifi N1 be a nonzero
element of the module V where fi 2 KŒK˙1� and fn ¤ 0. Then,

Yv D

nX
iD1

�
qiEiY �

q.1 � q2i /

1 � q2
XEi�1

�
fi N1 D

nX
iD1

�
q.1 � q2i /

1 � q2
XEi�1fi N1:

By induction, we see that Y nv D P N1 2 V where P is a nonzero Laurent polynomial
in KŒK˙1�. Then it follows that N1 2 V , and so V D W.�/.

(2) It is clear that annA.W.�// � .C / and X … annA.W.�//. By (3.4),

annA.W.�// D .C /:

The next theorem is a description of the set of primitive ideals of the algebra A.

Theorem 3.11. Prim .A/ D Prim .U / t fAq j q 2 Spec.KŒC �/ n f0gg.

Proof. Clearly, Prim .U / � Prim .A/ and˚
Aq j q 2 Max

�
KŒC �

�
n fCKŒC �g

	
� Prim .A/

since Aq is a maximal ideal (Corollary 3.9). By Corollary 3.8, 0 is not a primitive
ideal. In view of (3.4) it suffices to show that .C / 2 Prim .A/. But this follows from
Lemma 3.10.

The next corollary is a description of the set Specc.A/ of completely prime ideals
of the algebra A.

Corollary 3.12. The set Specc.A/ of completely prime ideals of A is equal to

Specc.A/ D Specc.U / t
˚
Aq j q 2 Spec

�
KŒC �

�	
D
˚
.X; p/ j p 2 Spec .U /, p ¤ annU .M/

for some simple finite dimensional U -moduleM
of dimK.M/ > 2

	
t
˚
Aq j q 2 Spec

�
KŒC �

�	
:

Proof. The result follows from Theorem 3.4.(1) and Proposition 3.5.
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4. The centralizer CA.K/ of the element K in the algebra A

In this section, we find the explicit generators and defining relations of the centralizer
CA.K/ of the element K in the algebra A.

Proposition 4.1. The algebra CA.K/ D KhK˙1; FE; YX; EY 2; FX2 i is a
Noetherian domain.

Proof. Since A is a domain, then so is its subalgebra CA.K/. Notice that the algebra
AD

L
i2ZAi is aZ-gradedNoetherian algebra, whereAiDfa 2 A j KaK�1Dqiag.

Then the algebra A0 D CA.K/ is a Noetherian algebra.
The algebra Uq.sl2/ is a GWA:

Uq.sl2/ ' KŒK˙1; ��

�
E;F I �; a WD � �

qK C q�1K�1

.q � q�1/2

�
;

where � D FE C .qK C q�1K�1/=.q � q�1/2, �.K/ D q�2K, and �.�/ D �.
In particular, Uq.sl2/ is a Z-graded algebra Uq.sl2/ D

L
i2ZDvi , where D WD

KŒK˙1; �� D KŒK˙1; FE�, vi D Ei if i > 1, vi D F ji j if i 6 �1 and v0 D 1.
The quantum plane KqŒX; Y � is also a GWA:

KqŒX; Y � ' KŒt �ŒX; Y I �; t �; where t WD YX and �.t/ D qt:

Therefore, the quantum plane is a Z-graded algebra KqŒX; Y � D
L
j2Z KŒt �wj ,

where wj D Xj if j > 1, wj D Y jj j if j 6 �1 and w0 D 1. Since A D
Uq.sl2/˝KqŒX; Y � (tensor product of vector spaces), and notice thatEt D tECX2,
F t D tF C q�2K�1Y 2, we have

A D Uq.sl2/˝KqŒX; Y � D
M
i2Z

Dvi ˝
M
j2Z

KŒt �wj D
M
i;j2Z

DŒt�viwj : (4.1)

By (4.1), for each k 2 Z,

Ak D
M

i;j2Z; 2iCjDk

DŒt�viwj D
M
i2Z

DŒt�viwk�2i :

Then,
CA.K/ D A0 D

M
i>0

DŒt�EiY 2i ˚
M
j>1

DŒt�F jX2j :

Notice that EY 2 � t D q�2t � EY 2 C qt2 and FX2 � t D q2t � FX2 C q�1K�1t2.
By induction, one sees that for all i; j > 0,

EiY 2i 2
M
n2N

KŒt �.EY 2/n and F jX2j 2
M
n2N

KŒK˙1; t �.FX2/n:
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Hence,
CA.K/ D A0 D

M
i>0

DŒt�.EY 2/i ˚
M
j>1

DŒt�.FX2/j :

In particular, the centralizer CA.K/ D KhK˙1; FE; YX; EY 2; FX2 i.

Lemma 4.2. (1) CAX;Y;' .K/ D KŒC;K˙1� ˝ Kq2 Œ.YX/
˙1; .Y'/˙1� is a tensor

product of algebras, where Kq2 Œ.YX/
˙1; .Y'/˙1� is a central, simple, quantum

torus with YX � Y' D q2Y' � YX .
(2) GK.CAX;Y;' .K// D 4.
(3) GK.CA.K// D 4.
(4) AX;Y;' D

L
i2Z CAX;';Y .K/Y

i .

Proof. (1) By (2.13), AX;Y;' D KŒC � ˝ ƒ0 where ƒ0 is a quantum torus. Then,
CAX;Y;' .K/ D KŒC �˝ Cƒ0.K/. Since ƒ0 is a quantum torus, it is easy to see that

Cƒ0.K/ D
M
i;j;k2Z

Ki .YX/j .Y'/k;

i.e., Cƒ0.K/ D KŒK˙1�˝Kq2 Œ.YX/
˙1; .Y'/˙1�. Then statement 1 follows.

(2) Statement 2 follows from statement 1.

(3) Let R be the subalgebra of CA.K/ generated by the elements C , K˙1, YX ,
and Y'. Then, R D KŒC;K˙1� ˝ Kq2 ŒYX; Y'� is a tensor product of algebras.
Clearly R is a Noetherian algebra of Gelfand–Kirillov dimension 4. So,

GK.CA.K// > GK.R/ D 4:

By statement 2,
GK.CA.K// 6 GK.CAX;Y;' .K// D 4:

Hence, GK.CA.K// D 4.

(4) Statement 4 follows from statement 1 and (2.13).

Proposition 4.3. Let h WD 'X�1, e WD EX�2, and t WD YX . Then:
(1) CAX;' .K/ D KŒC;K˙1�˝A is a tensor product of algebras, where

A WD KŒh˙1�

�
t; eI �; a D

q�2h � 1

1 � q2

�
is a central simple GWA (where �.h/ D q2h).

(2) GK.CAX;' .K// D 4.
(3) AX;' D

L
i2Z CAX;' .K/X

i .
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Proof. (1) Let A be the subalgebra of CAX;' .K/ generated by the elements h˙1, e,
and t .
(i) A is a central simple GWA: The elements h˙1; e and t satisfy the following
relations

hh�1 D h�1h D 1; th D q2ht; eh D q�2he;

et D
q�2h � 1

1 � q2
; te D

h � 1

1 � q2
:

(4.2)

Hence, A is an epimorphic image of the GWA

A0 D KŒh˙1�

�
t; eI �; a D

q�2h � 1

1 � q2

�
;

where �.h/ D q2h. Now, we prove that A0 is a central simple algebra. Let A0e be
the localization of A0 at the powers of the element e. Then A0e D KŒh˙1�Œe˙1I � 0�,
where � 0.h/ D q�2h. Clearly,Z.A0e/ D K andA0e is a simple algebra. So,Z.A0/ D
Z.A0e/ \A0 D K. To show that A0 is simple, it suffices to prove that A0eiA0 D A0

for any i 2 N. The case i D 1 is obvious, since 1 D q2et � te 2 A0eA0. By
induction, for i > 1, it suffices to show that ei�1 2 A0eiA0. This follows from the
equality

tei D q2iei t �
1 � q2i

1 � q2
ei�1:

So, A0 is a simple algebra. Now, the epimorphism of algebras A0�� A is an
isomorphism. Hence, A ' A0 is a central simple GWA.

(ii) CAX;' .K/ D KŒC;K˙1�˝A: By Lemma 2.12, AX;' D KŒC �˝AX;' . So,

CAX;' .K/ D KŒC �˝ CAX;' .K/:

By (2.18),AX;' D EX;' ŒK˙1I ��, where �.E/ D q2E, �.X/ D qX , �.Y / D q�1Y ,
and �.'/ D q'. Then,

CAX;' .K/ D KŒK˙1�˝ E�X;' :

To finish the proof of statement (ii), it suffices to show that E�X;' D A. By (2.3),

EX;' D KŒX˙1; '˙1�

�
E; Y I �; a D

' �X

q�1 � q

�
is a GWA. Then,

EX;' D
M
i>0

KŒX˙1; '˙1�Ei ˚
M
j>1

KŒX˙1; '˙1�Y j

D

M
i>0; k2Z

KŒh˙1�EiXk ˚
M

j>1; k2Z

KŒh˙1�Y jXk :

Now, it is clear that E�X;' D
L
i>0 KŒh˙1�ei ˚

L
j>1 KŒh˙1�tj D A.
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(2) Notice that GK.A/ D 2, statement 2 follows from statement 1.

(3) Notice that AX;' D
L
i2Z CAX;' .K/X

i , statement 3 then follows from Lem-
ma 2.12.

Defining relations of the algebraCA.K/. We have to select appropriate generators
of the algebra CA.K/ to make the corresponding defining relations simpler.

Lemma 4.4. We have the following relations:

(1) YX � Y' D q2Y' � YX .

(2) FE � YX D q2YX � FE C
q C q�1

1 � q2
K�1Y' �

q2.qK C q�1K�1/

1 � q2
YX C C .

(3) FE � Y' D q�2Y' � FE C
qK C q�1K�1

1 � q2
Y' �

q.1C q2/

1 � q2
KYX C C .

Proof. (1) Obvious.

(2) Using the defining relations ofA, the expression (2.14) ofC , and Y' D q4YXC
q.1 � q2/EY 2,

FE � YX D F.X C q�1YE/X

D FX2 C YFXE D FX2 C Y.YK�1 CXF /E

D FX2 C q�2K�1Y 2E C YXFE

D q2.YX/.FE/C .1C q2/K�1EY 2 �
q3K C .q � q3 � q5/K�1

1 � q2
YX C C

D q2YX � FE C
q C q�1

1 � q2
K�1Y' �

q2.qK C q�1K�1/

1 � q2
YX C C:

(3) FE � Y' D F.X C q�1YE/'

D FX' C q�2YF'E D FX' C q�2Y.'F C YK/E

D q�2Y'FE C .q2K CK�1/EY 2 �
�q3.K �K�1/

1 � q2
C q.1C q2/K

�
YX C C

D q�2Y' � FE C
qK C q�1K�1

1 � q2
Y' �

q.1C q2/

1 � q2
KYX C C: �

Let‚ WD .1�q2/� D .1�q2/FECq2.qKCq�1K�1/=.1�q2/ 2 Z.Uq.sl2//.
By (2.15), we have

C D
�
‚ �

qK�1

1 � q2

�
YX C q2FX2 �

1

q.1 � q2/
K�1Y': (4.3)
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By Lemma 4.4.(2), (3), we have

‚ � YX D q2YX �‚C .q C q�1/K�1Y' C .1 � q2/C; (4.4)
‚ � Y' D q�2Y' �‚ � q.1C q2/KYX C .1 � q2/C: (4.5)

Lemma 4.5. In the algebra CA.K/, the following relation holds

‚ � YX � Y' �
1

q.1 � q2/
K�1.Y'/2 � C � Y' D

q7

1 � q2
K.YX/2 � q4C � YX:

Proof. By (4.3),

‚ � YX D C C
q

1 � q2
K�1YX � q2FX2 C

1

q.1 � q2/
K�1Y':

So,

‚ �YX �Y' D C �Y'C
q

1 � q2
K�1YX �Y'�q2FX2 �Y'C

1

q.1 � q2/
K�1.Y'/2:

Then,

‚ �YX �Y'�
1

q.1 � q2/
K�1.Y'/2�C �Y' D

q

1 � q2
K�1YX �Y'�q2FX2 �Y':

We have that YX �Y' D q4.YX/2Cq.1�q2/YX �EY 2, FX2 �Y' D q2FX' �YX ,
and EY 2 � YX D q.YX/2 C q�2YX � EY 2. Then by (2.16), we obtain the identity
as desired.

Theorem 4.6. Let u WD K�1Y' and recall that t D YX , ‚ D .1 � q2/FE C

q2.qK C q�1K�1/=.1� q2/. Then the algebra CA.K/ is generated by the elements
K˙1, C , ‚, t , and u subject to the following defining relations:

t � u D q2u � t; (4.6)
‚ � t D q2t �‚C .q C q�1/uC .1 � q2/C; (4.7)

‚ � u D q�2u �‚ � q.1C q2/t C .1 � q2/K�1C; (4.8)

‚ � t � u �
1

q.1 � q2/
u2 � C � u D

q7

1 � q2
t2 � q4K�1C � t; (4.9)

ŒK˙1; �� D 0; and ŒC; �� D 0; (4.10)

where (4.10)means that the elementsK˙1 andC are central inCA.K/. Furthermore,
Z.CA.K// D KŒC;K˙1�.
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Proof. (i) Generators of CA.K/: Notice that Y' D q4YX C q.1� q2/EY 2. Then
by Proposition 4.1 and (4.3), the algebra CA.K/ is generated by the elements C ,
K˙1,‚, t , and u. By (4.4), (4.5) and Lemma 4.5, the elements C ,K˙1,‚, t , and u
satisfy the relations (4.6)–(4.10). It remains to show that these relations are defining
relations.

Let C be the K-algebra generated by the symbols C , K˙1, ‚, t and u subject to
the defining relations (4.6)–(4.10). Then there is a natural epimorphism of algebras
f WC � CA.K/. Our aim is to prove that f is an algebra isomorphism.

(ii) GK.C/ D 4 and Z.C/ D KŒC;K˙1�: Let R be the subalgebra of C generated
by the elements C , K˙1, t and u. Then R D KŒC;K˙1� ˝ Kq2 Œt; u� is a tensor
product of algebra where Kq2 Œt; u� WD Kht; u j tu D q2uti is a quantum plane.
Clearly, R is a Noetherian algebra of Gelfand–Kirillov dimension 4. Let Ct;u be the
localization of C at the powers of the elements t and u. Then,

Ct;u D KŒC;K˙1�˝Kq2 Œt
˙1; u˙1� D Rt;u:

So, GK.Ct;u/ D 4. Now, the inclusions R � C � Ct;u yield that

4 D GK.R/ 6 GK.C/ 6 GK.Ct;u/ D 4;

i.e., GK.C/ D 4. Moreover, since Kq2 Œt
˙1; u˙1� is a central simple algebra,

Z.Ct;u/ D KŒC;K˙1�:

Hence, Z.C/ D KŒC;K˙1�.
By Lemma 4.2.(3), GK.C/ D GK.CA.K// D 4. In view of [20, Proposi-

tion 3.15], to show that the epimorphism f WC � CA.K/ is an isomorphism it
suffices to prove that C is a domain.

Let D be the algebra generated by the symbols C , K˙1, ‚, t , and u subject to
the defining relations (4.6)–(4.8) and (4.10). Then D is an Ore extension

D D RŒ‚I �; ı�;

where R D KŒC;K˙1�˝Kq2 Œt; u� is a Noetherian domain; �.C / D C , �.K˙1/ D
K˙1, �.t/ D q2t , �.u/ D q�2u; ı is a � -derivation of R given by the rule

ı.C / D ı.K˙1/ D 0;

ı.t/ D .q C q�1/uC .1 � q2/C; and ı.u/ D �q.1C q2/t C .1 � q2/K�1C:

In particular, D is a Noetherian domain. Let

Z WD ‚tu �
1

q.1 � q2/
u2 � Cu �

q7

1 � q2
t2 C q4K�1Ct

D tu‚ � yq.u2 C t2/ � q2C.u �K�1t / 2 D ;
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where yq D q3=.1 � q2/. Then Z is a central element of D and C ' D=.Z/. To
prove that C is a domain, it suffices to show that .Z/ is a completely prime ideal
of D . Notice that Dt;u D KŒC;K˙1; Z� ˝ Kq2 Œt

˙1; u˙1� is a tensor product of
algebras. Then,

Ct;u ' Dt;u=.Z/t;u ' KŒC;K˙1�˝Kq2 Œt
˙1; u˙1� ' Rt;u:

In particular, Ct;u is a domain and .Z/t;u is a completely prime ideal of Dt;u.

(iii) If tx 2 .Z/ for some elementx 2 D thenx 2 .Z/: SinceZ is central inD , tx D
Zd for some element d 2 D . We prove statement (iii) by induction on the degree
deg‚.x/ of the element x. Since D is a domain, deg‚.dd 0/ D deg‚.d/Cdeg‚.d 0/
for all elements d; d 0 2 D . Notice that deg‚.Z/ D 1, the case x 2 R is trivial. So
we may assume that m D deg‚.x/ > 1 and then the element x can be written as
x D a0 C a1‚C � � � C am‚

m where ai 2 R and am ¤ 0. The equality tx D Zd

yields that deg‚.d/ D m � 1 since deg‚.Z/ D 1. Hence,

d D d0 C d1‚C � � � C dm�1‚
m�1

for some di 2 R and dm�1 ¤ 0. Now, the equality tx D Zd can be written as
follows:

t .a0 C a1‚C � � � C am‚
m/

D
�
tu‚ � yq.u2 C t2/ � q2C.u �K�1t /

��
d0 C d1‚C � � � C dm�1‚

m�1
�
:

Comparing the terms of degree zero in the equality we have

ta0 D tuı.d0/ �
�
yq.u2 C t2/C q2C.u �K�1t /

�
d0;

i.e., t .a0 � uı.d0/ C yqtd0 � q2CK�1d0/ D �u.yqu C q2C/d0. All terms in this
equality are in the algebra R. Notice that t is a normal element of R, the elements
u … tR and yqu C q2C … tR, we have d0 2 tR. So d0 D t r for some element
r 2 R. Then d D t r Cw‚, where w D d1C � � �Cdm�1‚m�2 ifm > 2 and w D 0
if m D 1. If m D 1 then d D t r and the equality tx D Zd yields that tx D tZr ,
i.e., x D Zr 2 .Z/ (by deleting t ), we are done. Sowemay assume thatm > 2. Now,
the equality tx D Zd can be written as tx D Z.trCw‚/, i.e., t .x�Zr/ D Zw‚.
This implies that x � Zr D x0‚ for some x0 2 D , where deg‚.x0/ < deg‚.x/.
Now, tx0‚ D Zw‚ and hence, tx0 D Zw (by deleting ‚). By induction x0 2 .Z/.
Then x D x0 CZr 2 .Z/.

(iv) If ux 2 .Z/ for some element x 2 D then x 2 .Z/: Notice that the elements u
and t are “symmetric” in the algebra D , statement (iv) can be proved similarly as
that of statement (iii).

(v) D\.Z/t;uD.Z/: The inclusion .Z/�D\.Z/t;u is obvious. Letx2D\.Z/t;u.
Then, t iujx 2 .Z/ for some i; j 2 N. By statement (iii) and statement (iv), x 2 .Z/.
Hence, D \ .Z/t;u D .Z/.
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By statement (v), the algebra D=.Z/ is a subalgebra of Dt;u=.Z/t;u. Hence,
D=.Z/ is a domain. This completes the proof.

The next proposition gives a K-basis for the algebra C WD CA.K/.

Proposition 4.7.

C D KŒC;K˙1�˝K

� M
i;j>1

K‚i tj ˚
M
k>1

K‚k ˚
M
l;m>1

K‚lum ˚
M
a;b>0

Kuatb
�
:

Proof. The relations (4.6)–(4.9) can be written in the following equivalent form,

u � t D q�2t � u; ‚ � t � u D
1

q.1 � q2/
u2 C C � uC

q7

1 � q2
t2 � q4K�1C � t;

u �‚ D q2‚ � uC q3.1C q2/t � q2.1 � q2/K�1C;

t �‚ D q�2‚ � t � q�2.q C q�1/u � q�2.1 � q2/C:

On the free monoid W generated by C , K, K 0, ‚, t , and u (where K 0 plays the role
of K�1), we introduce the length-lexicographic ordering such that K 0 < K < C <

‚ < t < u. With respect to this ordering the Diamond lemma (see [10], [11, I.11])
can be applied toC as there is only one ambiguity which is the overlap ambiguity ut‚
and it is resolvable as the following computations show:

.ut/‚! q�2tu‚

! q�2t
�
q2‚uC q3.1C q2/t � q2.1 � q2/K 0C

�
! t‚uC q.1C q2/t2 � .1 � q2/K 0Ct

!
�
q�2‚t � q�2.q C q�1/u � q�2.1 � q2/C

�
u

C q.1C q2/t2 � .1 � q2/K 0Ct

! q�2‚tu � q�2.q C q�1/u2 � q�2.1 � q2/Cu

C q.1C q2/t2 � .1 � q2/K 0Ct

!
q

1 � q2
u2 C CuC

q

1 � q2
t2 �K 0Ct;

u.t‚/! u
�
q�2‚t � q�2.q C q�1/u � q�2.1 � q2/C

�
! q�2u‚t � q�2.q C q�1/u2 � q�2.1 � q2/Cu

! q�2
�
q2‚uC q3.1C q2/t � q2.1 � q2/K 0C

�
t � q�2.q C q�1/u2

� q�2.1 � q2/Cu

! ‚ut C q.1C q2/t2 � .1 � q2/K 0Ct � q�2.q C q�1/u2

� q�2.1 � q2/Cu
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! q�2‚tuC q.1C q2/t2 � .1 � q2/K 0Ct � q�2.q C q�1/u2

� q�2.1 � q2/Cu

!
q

1 � q2
u2 C CuC

q

1 � q2
t2 �K 0Ct:

So, by the Diamond lemma, the result is proved.

The algebra C�;�. For � 2 K and � 2 K�, let C�;� WD C=.C � �;K � �/. By
Theorem 4.6, the algebra C�;� is generated by the images of the elements‚, t , and u
in C�;�. For simplicity, we denote by the same letters their images.
Corollary 4.8. Let � 2 K and � 2 K�. Then:
(1) The algebra C�;� is generated by the elements‚, t and u subject to the following

defining relations

t � u D q2u � t; (4.11)
‚ � t D q2t �‚C .q C q�1/uC .1 � q2/�; (4.12)
‚ � u D q�2u �‚ � q.1C q2/t C .1 � q2/��1�; (4.13)

‚ � t � u D
1

q.1 � q2/
u2 C �uC

q7

1 � q2
t2 � q4��1�t: (4.14)

(2) C�;� D
M
i;j>1

K‚i tj ˚
M
k>1

K‚k ˚
M
l;m>1

K‚lum ˚
M
a;b>0

Kuatb .

Proof. (1) Statement 1 follows from Theorem 4.6.

(2) Statement 2 follows from Proposition 4.7.

LetCt (resp.,C�;�t ) be the localization of the algebraC (resp.,C�;�) at the powers
of the element t D YX . The next proposition shows that Ct and C

�;�
t are GWAs.

Proposition 4.9. (1) Let v WD ‚t � .1=q.1 � q2//u � C . The algebra

Ct D KŒC;K˙1; t˙1�Œu; vI �; a�

is aGWAofGelfand–Kirillov dimension 4, whereaD.q7=.1�q2//t2�q4K�1Ct
and � is the automorphism of the algebra KŒC;K˙1; t˙1� defined by the rule:

�.C / D C; �.K˙1/ D K˙1; and �.t/ D q�2t:

(2) Let � 2 K, � 2 K�, and v WD ‚t � .1=q.1 � q2//u � �. Then the algebra

C
�;�
t D KŒt˙1�Œu; vI �; a�

is aGWAofGelfand–Kirillov dimension 2where a D .q7=.1�q2//t2�q4��1�t
and � is the automorphism of the algebra KŒt˙1� defined by �.t/ D q�2t .
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(3) For any � 2 K and � 2 K�, the algebra C
�;�
t is a central simple algebra.

(4) Z.C�;�/ D K and GK.C�;�/ D 2.

Proof. (1) By Theorem 4.6, the algebra Ct is generated by the elements C ,K˙1, v,
t˙1, and u. Note that the element v can be written as

v D �
q2

1 � q2
 X D

q

1 � q2
�.u/;

where � is the involution (2.1). It is straightforward to verify that the following
relations hold in the algebra Ct

ut D q�2tu; vt D q2tv;

vu D
q7

1 � q2
t2 � q4K�1Ct; uv D

q3

1 � q2
t2 � q2K�1Ct:

ThenCt is an epimorphic image of theGWAT WD KŒC;K˙1; t˙1�Œu; vI �; a�. Notice
that T is a Noetherian domain of Gelfand–Kirillov dimension 4. The inclusions
C � Ct � Ct;u yield that 4 D GK.C/ 6 GK.Ct / 6 Ct;u D 4 (see Lemma 4.2.(3)),
i.e., GK.Ct / D 4. So, GK.T / D GK.Ct /. By [20, Proposition 3.15], the
epimorphism of algebras T � Ct is an isomorphism.

(2) Statement 2 follows from statement 1.

(3) Let C
�;�
t;u be the localization of C

�;�
t at the powers of the element u. Then, by

statement 2, C
�;�
t;u D Kq2 Œt

˙1; u˙1� is a central, simple quantum torus. So,

Z.C
�;�
t / D Z.C

�;�
t;u / \ C

�;�
t D K:

For any nonzero ideal a of the algebra C
�;�
t , ui 2 a for some i 2 N since C

�;�
t;u is

a simple Noetherian algebra. Therefore, to prove that C
�;�
t is a simple algebra, it

suffices to show that C
�;�
t uiC

�;�
t D C

�;�
t for any i 2 N. The case i D 1 follows

from the equality vu D q2uv � q5t2. By induction, for i > 1, it suffices to show
that ui�1 2 C

�;�
t uiC

�;�
t . This follows from the equality

vui D q2iuiv C
q7.1 � q�2i /

1 � q2
t2ui�1:

Hence, C
�;�
t is a simple algebra.

(4) Since K � Z.C�;�/ � Z.C
�;�
t / \ C�;� D K, we have Z.C�;�/ D K. It is

clear that GK.C�;�/ D 2.

Lemma 4.10. In the algebra C�;� where � 2 K and � 2 K�, the following equality
holds

‚t i D q2i t i‚C
q�2iC1 � q2iC1

1 � q2
t i�1uC .1 � q2i /�t i�1:
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Proof. By induction on i and using the equality (4.12).

Theorem 4.11. Let � 2 K and � 2 K�.
(1) The algebra C�;� is a simple algebra iff � ¤ 0.
(2) The algebra C�;� is a domain.

Proof. (1) If � D 0 then the ideal .t/ is a proper ideal of the algebra C0;�. Hence,
C0;� is not a simple algebra. Now, suppose that � ¤ 0, we have to prove that C�;� is
a simple algebra. By Proposition 4.9.(3), C

�;�
t is a simple algebra. Hence, it suffices

to show that C�;�t iC�;� D C�;� for all i 2 N. We prove this by induction on i .
Firstly, we prove the case for i D 1, i.e., a WD C�;�tC�;� D C�;�. By (4.12),

the element .q C q�1/uC .1 � q2/� 2 a, so, u � ..q2 � 1/=.q C q�1//� mod a.
By (4.14), .1=q.1 � q2//u2 C �u 2 a. Hence,

1

q.1 � q2/

� q2 � 1
q C q�1

�
�2
C �

� q2 � 1
q C q�1

�
�
� 0 mod a;

i.e., q2.q2 � 1/�2=.q2 C 1/ � 0 mod a. Since � ¤ 0, this implies that 1 2 a,
thus, a D C�;�.

Let us now prove that b WD C�;�t iC�;� D C�;� for any i 2 N. By induction,
for i > 1, it suffices to show that t i�1 2 b. By Lemma 4.10, the element

u WD
q�2iC1 � q2iC1

1 � q2
t i�1uC .1 � q2i /�t i�1 2 b:

Then vu 2 b, where
v D ‚t �

1

q.1 � q2/
u � �;

see Proposition 4.9.(2). This implies that .1 � q2i /�vt i�1 2 b and so, vt i�1 2 b.
But then the inclusion vt i�1 D .‚t � .1=q.1 � q2//u � �/t i�1 2 b yields that the
element

v WD
q�2iC1

1 � q2
t i�1uC �t i�1 2 b:

By the expressions of the elements u and v we see that t i�1 2 b, as required.

(2) By Proposition 4.9.(2), the GWA C
�;�
t ' Ct=Ct .C � �;K � �/ is a domain.

Let
a D C.C � �;K � �/ and a0 D C \ Ct .C � �;K � �/:

To prove that C�;� is a domain, it suffices to show that a D a0. The inclusion a � a0

is obvious. If � ¤ 0 then, by statement 1, the algebra C�;� is a simple algebra, so
the ideal a is a maximal ideal of C . Then we must have a D a0. Suppose that � D 0
and a ¨ a0, we seek a contradiction. Notice that the ideal a0 is a prime ideal of C .
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Hence, a0=a is a nonzero prime ideal of the algebra C0;�. By Proposition 4.9.(3), the
algebraC

0;�
t is a simple algebra, so, t i 2 a0=a for some i 2 N. Then .a0=a/t D C

�;�
t .

But .a0=a/t D a0t=at D 0, a contradiction.

Proposition 4.12. (1) In the algebra C0;�, .t/ D .u/ D .t; u/ D C0;�t C C0;�u.
(2) C0;�=.t/ ' KŒ‚�.
(3) In the algebra C0;�, .t i / D .t/i for all i > 1.
(4) Spec .C0;�/ D f0; .t/; .t; p/ j p 2 Max .KŒ‚�/g.

Proof. (1) The equality .t/ D .u/ follows from (4.12) and (4.13). The second
equality then is obvious. To prove the third equality let us first show that

tC0;� � C0;�t C C0;�u:

In view of Corollary 4.8.(2), it suffices to prove that t‚i 2 C0;�t C C0;�u for
all i > 1. This can be proved by induction on i . The case i D 1 follows from (4.12).
Suppose that the inclusion holds for all i 0 < i . Then

t‚i D t‚i�1‚ 2 .C0;�t C C0;�u/‚

D C0;�
�
q�2‚t � q�2.q C q�1/u

�
C C0;�

�
q2‚uC q3.1C q2/t

�
� C0;�t C C0;�u:

Hence, we proved that
tC0;� � C0;�t C C0;�u:

Now, the inclusions .t/ � C0;�t C C0;�u � .t; u/ D .t/ yield that

.t/ D C0;�t C C0;�u:

(2) By statement 1, C0;�=.t/ D C0;�=.t; u/ ' KŒ‚�.

(3) The inclusion .t i / � .t/i is obvious. We prove the reverse inclusion .t/i � .t i /
by induction on i . The case i D 1 is trivial. Suppose that the inclusion holds for
all i 0 < i . Then,

.t/i D .t/.t/i�1 D .t/.t i�1/ D C0;�tC0;�t i�1C0;� � .t i /C .t i�1u/

since tC0;� � C0;�tCC0;�u (see statement 1). By Lemma 4.10, the element t i�1u
belongs to the ideal .t i / of C0;�. Hence, .t/i � .t i /, as required.

(4) By Proposition 3.6 and statement 3,

Spec .C0;�/ D Spec .C0;�; t / t Spect .C0;�/:

Notice that C
0;�
t is a simple algebra (see Proposition 4.9.(3)) and C0;�=.t/ ' KŒ‚�

(see statement 2). Then,

Spec .C0;�/ D f0g t Spec
�
KŒ‚�

�
D
˚
0; .t/; .t; p/ j p 2 Max

�
KŒ‚�

�	
:
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5. Classification of simple CA.K/-modules

In this section, K is an algebraically closed field. A classification of simple CA.K/-
modules is given in Theorem 5.2, Theorem 5.6 and Theorem 5.11. For an algebra B ,
we denote by yB the set of isomorphism classes of simple B-modules. If P is
an isomorphism invariant property on simple B-modules then yB .P / is the set of
isomorphism classes of B-modules that satisfy the property P . The set 2CA.K/
of isomorphism classes of simple CA.K/-modules is partitioned (according to the
central character) as follows:

2CA.K/ D
G

�2K; �2K�

1
C�;�: (5.1)

Given � 2 K and � 2 K�, the set 1C�;� can be partitioned further into disjoint
union of two subsets consisting of t -torsion modules and t -torsionfree modules,
respectively,

1
C�;� D

1
C�;� .t -torsion/ t1C�;� .t -torsionfree/: (5.2)

The set1C�;� .t-torsion/. An explicit description of the set1C�;� .t -torsion/ is given
in Theorem 5.2. For �, � 2 K�, we define the left C�;�-modules

t�;� WD C�;�=C�;�.t; u/ and T�;� WD C�;�=C�;�.t; u � y�/;

where y� WD q.q2 � 1/�. By Corollary 4.8.(2),

t�;� D KŒ‚� N1 ' KŒ‚�KŒ‚�

is a free KŒ‚�-module, where N1 D 1C C�;�.t; u/, and

T�;� D KŒ‚� Q1 ' KŒ‚�KŒ‚�

is a free KŒ‚�-module, where Q1 D 1 C C�;�.t; u � y�/. Clearly, the modules t�;�
and T�;� are of Gelfand–Kirillov dimension 1. The concept of deg‚ of the elements
of t�;� and T�;� is well-defined (deg‚.‚i N1/ D i and deg‚.‚i Q1/ D i for all i > 0).

Lemma 5.1. Let �, � 2 K�. Then:

(1) The C�;�-module t�;� is a simple module.

(2) The C�;�-module T�;� is a simple module.

(3) The modules t�;� and T�;� are not isomorphic.
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Proof. (1) Let us show that for all i > 1,

t �‚i N1 D .1 � q�2i /� �‚i�1 N1C � � � ; (5.3)
u �‚i N1 D �q2.1 � q2i /��1� �‚i�1 N1C � � � ; (5.4)

where the three dots means terms of deg‚ < i � 1. We prove the equalities by
induction on i . By (4.12),

t‚ N1 D .1 � q�2/� N1;

and by (4.13),
u‚ N1 D �q2.1 � q2/��1� N1:

So, the equalities (5.3) and (5.4) hold for i D 1. Suppose that the equalities hold for
all integers i 0 < i . Then,

t �‚i N1 D
�
q�2‚t � q�2.q C q�1/u � q�2.1 � q2/�

�
‚i�1 N1

D q�2.1 � q�2.i�1//�‚i�1 N1 � q�2.1 � q2/�‚i�1 N1C � � �

D .1 � q�2i /� �‚i�1 N1C � � � ;

u �‚i N1 D
�
q2‚uC q3.1C q2/t � q2.1 � q2/��1�

�
‚i�1 N1

D �q4.1 � q2.i�1//��1�‚i�1 N1 � q2.1 � q2/��1�‚i�1 N1C � � �

D �q2.1 � q2i /��1� �‚i�1 N1C � � � :

The simplicity of the module t�;� follows from the equality (5.3) (or the
equality (5.4)).

(2) Let us show that for all i > 1,

t �‚i Q1 D .1 � q2i /� �‚i�1 Q1C � � � ; (5.5)

u �‚i Q1 D q2iy� �‚i Q1 � q2.1 � q2i /��1� �‚i�1 Q1C � � � ; (5.6)

where the three dots means terms of smaller degrees. We prove the equalities by
induction on i . The case i D 1 follows from (4.12) and (4.13). Suppose that the
equalities (5.5) and (5.6) hold for all integers i 0 < i . Then,

t �‚i Q1 D
�
q�2‚t � q�2.q C q�1/u � q�2.1 � q2/�

�
‚i�1 Q1

D q�2.1 � q2.i�1//�‚i�1 Q1 � q�2.q C q�1/q2.i�1/y�‚i�1 Q1

� q�2.1 � q2/�‚i�1 Q1C � � �

D .1 � q2i /� �‚i�1 Q1C � � � ;

u �‚i Q1 D
�
q2‚uC q3.1C q2/t � q2.1 � q2/��1�

�
‚i�1 Q1

D q2
�
q2.i�1/y�‚i Q1 � q2.1 � q2.i�1//��1�‚i�1 Q1

�
� q2.1 � q2/��1�‚i�1 Q1C � � �

D q2iy� �‚i Q1 � q2.1 � q2i /��1� �‚i�1 Q1C � � � :

The simplicity of the module T�;� follows from the equality (5.5).
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(3) By (5.4), the element u acts locally nilpotently on the module t�;� . But, by (5.6),
the action of the element u on the module T�;� is not locally nilpotent. Hence, the
modules t�;� and T�;� are not isomorphic.

Theorem 5.2.

(1) bC0;� .t -torsion/ D ˚ŒC0;�=C0;�.t; u;‚ � ˛/ ' KŒ‚�=.‚ � ˛/� j ˛ 2 K
	
.

(2) Let �, � 2 K�. Then1C�;� .t -torsion/ D ˚Œt�;��; ŒT�;��	.
Proof. (1) We claim that annC0;�.M/ � .t/ for allM 2 bC0;� .t -torsion/: In view
of Proposition 4.12.(1), it suffices to show that there exists a nonzero elementm 2M
such that tm D 0 and um D 0. SinceM is t -torsion, there exists a nonzero element
m0 2 M such that tm0 D 0. Then, by the equality (4.14) (where � D 0), we
have u2m0 D 0. If um0 D 0, we are done. Otherwise, the element m WD um0 is a
nonzero element ofM such that tm D um D 0 (since tu D q2ut ). Now, statement
1 follows from the claim immediately.

(2) Let M 21C�;� .t -torsion/. Then there exists a nonzero element m 2 M such
that tm D 0. By (4.14), we have .u � y�/um D 0. Therefore, either um D 0 or
otherwise the element m0 WD um 2 M is nonzero and .u � y�/m0 D 0. If um D 0

then the moduleM is an epimorphic image of the module t�;�. By Lemma 5.1.(1),
t�;� is a simple C�;�-module. Hence, M ' t�;�. If m0 D um ¤ 0, then tm0 D 0

and .u � y�/m0 D 0. So, the C�;�-module M is an epimorphic image of the
module T�;�. By Lemma 5.1.(2), T�;� is a simple C�;�-module. ThenM ' T�;�.
By Lemma 5.1.(3), the two modules t�;� and T�;� are not isomorphic, this completes
the proof.

Recall that the algebra

CAX;' .K/ D KŒC;K˙1�˝A;

where A is a central simple GWA, see Proposition 4.3. The algebra CA.K/ is a
subalgebra of the algebra CAX;' .K/, where

u D K�1Y' D K�1 � YX � 'X�1 D K�1th; (5.7)

‚ D .1 � q2/Ceh�1 C
qK�1

1 � q2
hC

q3K

1 � q2
h�1: (5.8)

In more detail: by (2.16),

F D
�
C CK�1EY 2 �

q3

1 � q2
.K �K�1/YX

�
X�1'�1:
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Then the element FE can be written as

FE D CEX�1'�1 CK�1EY 2EX�1'�1 �
q2

1 � q2
.K �K�1/YE'�1

D C �EX�2 �X'�1 CK�1 �EX�2 � q3.YX/2 �EX�2 �X'�1

�
q3.K �K�1/

1 � q2
� YX �EX�2 �X'�1

D Ceh�1 C q3K�1et2eh�1 �
q3.K �K�1/

1 � q2
teh�1

D Ceh�1 C
qK�1

.1 � q2/2
hC

q3K

.1 � q2/2
h�1 �

q2.qK C q�1K�1/

.1 � q2/2
;

where the last equality follows from (4.2). Then the equality (5.8) follows immediately
since

‚ D .1 � q2/FE C
q2.qK C q�1K�1/

1 � q2
:

For � 2 K and � 2 K�, let

C
�;�
AX;'

WD CAX;' .K/=.C � �;K � �/:

Then by Proposition 4.3.(1), C
�;�
AX;'

' A is a central simple GWA. So, there is a
natural algebra homomorphism

C�;� ! C
�;�
AX;'

' A:

The next proposition shows that this homomorphism is a monomorphism.

Proposition 5.3. Let � 2 K and � 2 K�. The following map is an algebra homo-
morphism

�WC�;� �! C
�;�
AX;'

' A;

t 7! t; u 7! ��1th; ‚ 7! .1 � q2/�eh�1 C
q��1

1 � q2
hC

q3�

1 � q2
h�1:

Moreover, the homomorphism � is a monomorphism.

Proof. The fact that the map � is an algebra homomorphism follows from (5.7)
and (5.8). Now, we prove that � is an injection. If � ¤ 0 then by Theorem 4.11.(1),
the algebraC�;� is a simple algebra. Hence, the kernel ker � of the homomorphism �
must be zero, i.e., � is an injection. If � D 0 and suppose that ker � is nonzero,
we seek a contradiction. Then t i 2 ker � for some i 2 N. But �.t i / D t i ¤ 0,
a contradiction.
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Let At be the localization of the algebra A at the powers of the element t . Then
At D KŒh˙1�Œt˙1I �� is a central simple quantum torus, where �.h/ D q2h. It is
clear that C

�;�
t;u ' At . Let B be the localization of A at the set S D KŒh˙1� n f0g.

Then B D S�1A D K.h/Œt˙1I �� is a skew Laurent polynomial algebra where K.h/
is the field of rational functions in h and �.h/ D q2h. The algebra B is a Euclidean
ring with left and right division algorithms. In particular, B is a principle left and
right ideal domain. For all � 2 K and � 2 K�, we have the following inclusions of
algebras

C�;�

C
�;�
t

A

C
�;�
t;u D At B.

�

The set1C0;� (t-torsionfree). An explicit description of the set bC0;� .t -torsionfree/
is given in Theorem 5.6. The idea is to embed the algebra C0;� in a skew polynomial
algebra R for which the simple modules are classified. The simple modules over
these two algebras are closely related. It will be shown that

bC0;� .t -torsionfree/ D yR .t -torsionfree/:

Let R be the subalgebra of A generated by the elements h˙1 and t . Then R D

KŒh˙1�Œt I �� is a skew polynomial algebra where �.h/ D q2h. By Proposition 5.3,
the algebra C0;� is a subalgebra of R. Hence, we have the inclusions of algebras

C0;� � R � A � Rt D At � B:

We identify the algebra C0;� with its image in the algebra R.
Lemma 5.4. Let � 2 K�. Then:
(1) C0;� D

L
i>1 KŒh˙1�t i ˚KŒ‚�.

(2) R D C0;� ˚KŒ‚�h.

(3) .t/ D
L
i>1 KŒh˙1�t i D Rt , where .t/ is the ideal of C0;� generated by the

element t .

Proof. (1) and (2) Notice that KŒ‚� � KŒh˙1� and KŒh˙1� D KŒ‚� ˚ KŒ‚�h.
Multiplying this equality on the right by the element t yields that

KŒh˙1�t D KŒ‚�t ˚KŒ‚�u � C0;�:

Then for all i > 1,

KŒh˙1�t i D KŒh˙1�t � t i�1 � C0;�t i�1 � C0;�:
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Notice that

R D
M
i>0

KŒh˙1�t i D
M
i>1

KŒh˙1�t i ˚KŒh˙1�

D

M
i>1

KŒh˙1�t i ˚KŒ‚�˚KŒ‚�h: (5.9)

Then,
C0;� D C0;� \R D

M
i>1

KŒh˙1�t i ˚KŒ‚�

since C0;� \KŒ‚�h D 0. The statement 2 then follows from (5.9).

(3) By Proposition 4.12.(1), .t/ D C0;�t C C0;�u. Then the first equality follows
from statement 1. The second equality is obvious.

The set KŒh˙1� n f0g is an Ore set of the ring R. Abusing the language,
we say KŒh˙1�-torsion meaning KŒh˙1� n f0g-torsion. In particular, we denote
by yR .KŒh�-torsion/ the set of isomorphism classes of KŒh�-torsion simple
R-modules.

Proposition 5.5. Let Irr.B/ be the set of irreducible elements of the algebra B.

(1) yR .KŒh˙1�-torsion/ D yR .t -torsion/

D 1R=.t/ D fŒR=R.h � ˛; t/� j ˛ 2 K�g:

(2) yR .KŒh˙1�-torsionfree/ D yR .t -torsionfree/
D fŒMb� j b 2 Irr.B/; R D Rt CR \Bbg;

where Mb WD R=R \ Bb; Mb ' Mb0 iff the elements b and b0 are similar
(iff B=Bb ' B=Bb0 as B-modules).

Proof. (1) The last two equalities are obvious, since t is a normal element of the
algebra R. Then it is clear that yR .KŒh˙1�-torsion/ � yR .t -torsion/. Now, we
show the reverse inclusion holds. Let M 2 yR .KŒh˙1�-torsion/. Then M is an
epimorphic image of the R-module R=R.h � ˛/ D KŒt �N1 for some ˛ 2 K�,
where N1 D 1 C R.h � ˛/. Notice that tKŒt �N1 is the only maximal R-submodule
of R=R.h � ˛/. ThenM ' R=R.h � ˛; t/ 2 yR .t -torsion/, as required.

(2) The first equality follows from the first equality in statement 1. By [7, Theo-
rem 1.3]

yR
�
KŒh˙1�-torsionfree

�
D
˚
ŒMb� j b 2 Irr.B/; R D Rt CR \Bb

	
(the condition (LO) of [7, Theorem 1.3] is equivalent to the condition R D

Rt CR \Bb).
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Theorem 5.6.
bC0;� .t -torsionfree/ D yR .t -torsionfree/

D yR .KŒh˙1�-torsionfree/
D fŒMb D R=R \Bb� j b 2 Irr.B/; R D Rt CR \Bbg

(see Proposition 5.5).

Proof. In view of Proposition 5.5.(2), it remains to show that the first equality holds.
Let ŒM � 2 bC0;� .t -torsionfree/. Then M D .t/M D RtM 2 yR .t -torsionfree/.
Given ŒN � 2 yR .t -torsionfree/. To finish the proof of statement 2, it suffices to
show that N is a simple C0;�-module. If L is a nonzero C0;�-submodule of N then
N � L � .t/L ¤ 0, sinceN is t -torsionfree. Then .t/L D RtL D N , sinceN is a
simple R-module. Hence,L D N , i.e.,N is a simple C0;�-module, as required.

The set 1C�;� (t-torsionfree) where � 2 K�. An explicit description of the set
1C�;� .t -torsionfree/, where � 2 K� is given in Theorem 5.11. Recall that the
algebra

C
�;�
t D KŒt˙1�Œu; vI �; a�

is a GWA where a D .q7=.1� q2//t2 � q4��1�t and � is the automorphism of the
algebra KŒt˙1� defined by �.t/ D q�2t (Proposition 4.9.(2)). Clearly,

1
C�;� .t -torsionfree/

D
1
C�;� .t -torsionfree; KŒt �-torsion/ t1C�;� .KŒt �-torsionfree/: (5.10)

Lemma 5.7. Let �;� 2 K� and � WD q�3.1 � q2/��1�. Then
(1) The module f�;� WD C�;�=C�;�.t � �; u/ is a simple C�;�-module.
(2) The module F�;� WD C�;�=C�;�.t � q2�; v/ is a simple C�;�-module.
(3) Let 
; 
 0 2 K� n fq2i� j i 2 Zg. The module F

�;�

 WD C�;�=C�;�.t � 
/ is

a simple C�;�-module. The simple modules F
�;�

 ' F

�;�

 0 iff 
 D q2i
 0 for

some i 2 Z.

Proof. (1) Note that a D .q7=.1�q2//.t��/t and �.a/ D .q3=.1�q2//.t�q2�/t .
By Corollary 4.8.(2) and the expression of the element v,

f�;� D KŒ‚�N1 D KŒv�N1;

where N1 D 1C C�;�.t � �; u/. The simplicity of the module f�;� follows from the
equality:

uvi N1 D vi�1� i .a/N1 2 K�vi�1 N1

for all i > 1.
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(2) Notice that F�;� D KŒu�N1, where N1 D 1C C�;�.t � q2�; v/. The simplicity of
the module F�;� follows from the equality:

vui N1 D ui�1��iC1.a/N1 2 K�ui�1 N1

for all i > 1.

(3) Notice that

F �;�

 D

X
i;j>0

Kui‚j Q1 D
X
i;j>0

Kuivj Q1 D KŒu�Q1CKŒv�Q1;

where Q1 D 1C C�;�.t � 
/. Since 
 2 K� n fq2i� j i 2 Zg, � i .a/N1 2 K� N1 for all
i 2 Z. Then the simplicity of the module F

�;�

 follows from the equalities in the

proof of statements 1 and 2. The set of eigenvalues of the element t
F
�;�



is

Ev
F
�;�



.t/ D fq2i
 j i 2 Zg:

If F
�;�

 ' F

�;�

 0 , then Ev

F
�;�



.t/ D Ev
F
�;�


0
.t/, so


 D q2i
 0

for some i 2 Z. Conversely, suppose that 
 D q2i
 0 for some i 2 Z. Let Q1 and Q10

be the canonical generators of the modules F
�;�

 and F

�;�

 0 , respectively. The map

F �;�

 ! F

�;�

 0 ; Q1 7! ui Q10

defines an isomorphism of C�;�-modules if i > 0, and the map

F �;�

 ! F

�;�

 0 ; Q1 7! vi Q10

defines an isomorphism of C�;�-modules if i < 0.

Definition 5.8 ([4], l-normal elements of the algebra C
�;�
t ). (1) Let ˛ and ˇ be

nonzero elements of the Laurent polynomial algebra KŒt˙1�. We say that ˛ < ˇ

if there are no roots � and � of the polynomials ˛ and ˇ, respectively, such that,
� D q2i� for some i > 0.

(2) An element b D vmˇm C vm�1ˇm�1 C � � � C ˇ0 2 C
�;�
t , where m > 0,

ˇi 2 KŒt˙1�, and ˇ0; ˇm ¤ 0 is called l-normal if

ˇ0 < ˇm and ˇ0 <
q7

1 � q2
t2 � q4��1�t:
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Theorem 5.9 ([2, 3]). Let �;� 2 K�. Then

1
C
�;�
t

�
KŒt �-torsionfree

�
D
˚�
Nb WD C

�;�
t =C

�;�
t \Bb

�
j b is l-normal, b 2 Irr.B/

	
:

Simple C
�;�
t -modules Nb and Nb0 are isomorphic iff the elements b and b0 are

similar.
Recall that, the algebra C�;� is generated by the canonical generators t , u, and‚.

Let F D fFngn>0 be the standard filtration associated with the canonical generators.
By Corollary 4.8, for n > 0,

Fn D
M
i;j>1;
iCj6n

K‚i tj ˚
M
16k6n

K‚k ˚
M
l;m>1;
lCm6n

K‚lum ˚
M
a;b>0;
aCb6n

Kuatb:

For all n > 1,
dim Fn D

3

2
n2 C

3

2
nC 1 D f .n/;

where f .s/ D 3
2
s2C 3

2
sC1 2 QŒs�. For each nonzero element a 2 C�;�, the unique

natural number n such that a 2 Fn nFn�1 is called the total degree of the element a,
denoted by deg.a/. Set deg.0/ WD �1. Then

deg.ab/ 6 deg.a/C deg.b/

for all elements a; b 2 C�;�.
For an R-module M , we denote by lR.M/ the length of the R-module M .

The next proposition shows that lC�;�.C�;�=I / < 1 for all left ideals I of the
algebra C�;�.
Proposition 5.10. Let �;� 2 K�. For each element nonzero element a 2 C�;�, the
length of the C�;�-module C�;�=C�;�a is finite, more precisely,

lC�;�
�
C�;�=C�;�a

�
6 3 deg.a/:

Proof. Let M WD C�;�=C�;�a D C�;� N1 D
S
i>0 Fi N1 be the standard filtration

onM where N1 D 1C C�;�a. Then

Fi N1 '
Fi C C�;�a

C�;�a
'

Fi

Fi \ C�;�a
:

Let d WD deg.a/. Since, for all i > 0, Fi�da � Fi \ C�;�a, we see that

dim .Fi N1/ 6 f .i/ � f .i � d/ D 3di C
3

2
d �

3

2
d2:

Recall that the algebra C�;� is a simple, infinite dimensional algebra since � ¤ 0

(Theorem 4.11.(1)). So, ifN D C�;�n is a nonzero cyclic C�;�-module (where 0 ¤
n 2 N ) and fFingi>0 is the standard filtration on N then dim .Fin/ > i C 1 for all
i > 0. This implies that lC�;�.M/ 6 3d .



The prime spectrum of the algebra Kq ŒX; Y � Ì Uq.sl2/ 927

The group q2Z D fq2i j i 2 Zg acts on K� by multiplication. For each 
 2 K�,
let O.
/ D fq2i
 j i 2 Zg be the orbit of the element 
 2 K� under the action of
the group q2Z. For each orbit O 2 K�=q2Z, we fix an element 
O 2 O.
/.
Theorem 5.11. Let �;� 2 K�. Then

(1) 1
C�;�

�
t -torsionfree; KŒt �-torsion

�
D
˚
Œf�;��; ŒF�;��; ŒF �;�


O
� j O 2 K�=q2Z

n fO.�/g
	
:

(2) The map

1
C�;�

�
KŒt �-torsionfree

�
!

1
C
�;�
t

�
KŒt �-torsionfree

�
; ŒM � 7! ŒMt �

is a bijection with the inverse ŒN � 7! socC�;�.N /.

(3) 1
C�;� .KŒt �-torsionfree/
D
˚�
Mb WD C�;�=C�;� \Bbt�i

�
j b is l-normal, b 2 Irr.B/, i > 3 deg.b/

	
:

Proof. (1) Let M 2
1C�;� .t -torsionfree; KŒt �-torsion/. There exists a nonzero

element m 2 M such that tm D 
m for some 
 2 K�. Then M is an epimorphic
image of the module C�;�=C�;�.t � 
/. If 
 … O.�/, then

M ' C�;�=C�;�.t � 
/ D F �;�



by Lemma 5.7.(3). It remains to consider the case when 
 2 O.�/, i.e., 
 D q2i�

for some i 2 Z.
(i) If 
 D q2i�, where i > 1, then � i .a/m D 0. Notice that

ui�1vi�1m D � i�1.a/ � � � �.a/m ¤ 0;

the element m0 WD vi�1m is a nonzero element ofM . If vm0 D 0, notice that

tm0 D tvi�1m D q2�m0;

then M is an epimorphic image of the simple module F�;�. Hence, M ' F�;�. If
m00 WD vm0 ¤ 0, notice that

tm00 D tvim D �m00 and um00 D uvim D vi�1� i .a/m D 0;

thenM is an epimorphic image of the simple module f�;�. Hence,M ' f�;�.

(ii) If 
 D q�2i� where i > 0 then ��i .a/m D 0. The element e WD uim is a
nonzero element of M . (The case i D 0 is trivial, for i > 1, it follows from the
equality viuim D ��iC1.a/ � � � ��1.a/am ¤ 0). If ue D 0, notice that

te D tuim D �e;
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then M is an epimorphic image of the simple module f�;�. Hence, M ' f�;�.
If e0 WD ue ¤ 0, notice that

te0 D tuiC1m D q2�e0 and ve0 D vuiC1m D ui��i .a/m D 0;

thenM is an epimorphic image of the simple module F�;�. Hence,M ' F�;�. This
proves statement 1.

(2) The result follows from Proposition 5.10.

(3) Let ŒM � 21C�;� .KŒt �-torsionfree/. Then ŒMt � 2
1
C
�;�
t .KŒt �-torsionfree/, and

soMt ' C
�;�
t =C

�;�
t \Bb, where

b D vmˇmC v
m�1ˇm�1C � � �Cˇ0 2 C�;� .ˇi 2 KŒt �; m > 0 and ˇm; ˇ0 ¤ 0/

is l-normal and irreducible in B. Clearly,

0 ¤Mb WD C�;�=C�;� \Bb �Mt

and
M D socC�;�.Mt / D socC�;�.Mb/;

by statement 2. Let Ib WD C�;� \ Bb, Jn D C�;�tn C Ib for all n > 0 and
d D deg.a/. By Proposition 5.10, the following descending chain of left ideals of
the algebra C�;� stabilizes:

C�;� D J0 � J1 � � � � � Jn D JnC1 D � � � ; n > 3d:

Hence, socC�;�.Mb/ D Jn=Ib ' C�;�=C�;� \Bbt�n.

6. Simple weight A-modules

The aim of this section is to give a classification of simple weight A-modules. The
set yA .weight/ of isomorphism classes of simple weight A-modules is partitioned
into the disjoint union of four subsets, see (6.1). We will describe each of them
separately.

An A-module M is called a weight module provided that M D
L
�2K�M�,

whereM� D fm 2 M j Km D �mg. We denote by Wt.M/ the set of all weights
ofM , i.e., the set f� 2 K� jM� ¤ 0g.

Verma modules and simple highest weight A-modules. For each � 2 K�, we
define the Verma module

M.�/ WD A=A.K � �;E;X/:
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ThenM.�/ D KŒY; F �Q1, where Q1 D 1C A.K � �;E;X/. IfM is an A-module, a
highest weight vector is any 0 ¤ m 2M such thatm is an eigenvector ofK andK�1
and Em D Xm D 0.
Lemma 6.1. The set of highest weight vectors of the Verma moduleM.�/ is

H WD f kY n Q1 j k 2 K�; n 2 N g:

Proof. It is clear that any element of H is a highest weight vector. Suppose that
m D

P
˛ijY

iF j Q1 2 M.�/ is a highest weight vector of weight � where ˛ij 2 K.
Then

Km D
X

˛ij�q
�i�2jY iF j Q1 D �m:

This implies that i C 2j is a constant, say i C 2j D n. Then m can be written as

m D
X

˛jY
n�2jF j Q1

for some ˛j 2 K. By Lemma 3.1.(2),

Xm D
X
�qn�2j

1 � q2j

1 � q2
˛j�

�1Y n�2jC1F j�1 Q1 D 0:

Thus, ˛j D 0 for all j > 1 and hence, m 2 H.

By Lemma 6.1, there are infinitely many linear independent highest weight
vectors. Let Nn WD KŒY; F �Y n Q1 where n 2 N. Then Nn is a Verma A-module
with highest weight q�n�, i.e.,Nn 'M.q�n�/. Furthermore,M.�/ is a submodule
ofM.qn�/ for all n 2 N. Thus, for any � 2 K�, there exists an infinite sequence of
Verma modules

� � � �M.q2�/ �M.q�/ �M.�/ �M.q�1�/ �M.q�2�/ � � � � :

The following result of Verma Uq.sl2/-modules is well-known; see [17, p. 20].
Lemma 6.2 ([17]). Suppose that q is not a root of unity. Let V.�/ be a Verma
Uq.sl2/-module. Then V.�/ is simple if and only if � ¤ ˙qn for all integer n > 0.
When � D qn (resp.,�qn) there is a unique simple quotientL.n;C/ (resp.,L.n;�/)
of V.�/. Each simple Uq.sl2/-module of dimension nC 1 is isomorphic to L.n;C/
or L.n;�/.

LetV.�/ WDM.�/=N1. ThenV.�/'KŒF �N1, where N1 WD1C A.K � �;E;X; Y /.
Theorem 6.3. Up to isomorphism, the simple A-modules of highest weight � are as
follows:
(i) V.�/, when � ¤ ˙qn for any n 2 N.
(ii) L.n;C/, when � D qn for some n 2 N.
(iii) L.n;�/, when � D �qn for some n 2 N.
In each case, the elements X and Y act trivially on the modules, and these modules
are in fact simple highest weight Uq.sl2/-modules.
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Proof. In view of Lemma 3.2.(1), annA.V .�// � .X/. So, V.�/ ' U=U.K��;E/
where U D Uq.sl2/. Then the theorem follows immediately from Lemma 6.2.

Simple weight modules that not highest and lowest weight A-modules. Let N

be the set of simple weight A-modules M such that XM ¤ 0 or YM ¤ 0. Then
yA .weight/ D 2Uq.sl2/ .weight/ tN .
Lemma 6.4. Let M be a simple A-module. If x 2 fX; Y;E; F g annihilates a
non-zero element m 2M , then x acts locally nilpotently onM .

Proof. For each element x 2 fX; Y;E; F g, the set S D fxi j i 2 Ng is an Ore set
in the algebra A. Then torS .M/ is a nonzero submodule ofM . SinceM is a simple
module,M D torS .M/, i.e., the element x acts locally nilpotently onM .

Theorem 6.5. LetM 2 N , then:
(1) dim M� D dim M� for any �;� 2Wt .M/.
(2) Wt .M/ = fqn� j n 2 Zg for any � 2Wt .M/.

Proof. (1) Suppose that there exists � 2 Wt .M/ such that dim M� > dim Mq�.
Then the map X WM� ! Mq� is not injective. Hence Xm D 0 for some non-zero
element m 2M�. By Lemma 6.4, X acts locally nilpotently onM .

If dim Mq�1� > dim Mq�, then the linear map EWMq�1� ! Mq� is not
injective. So Em0 D 0 for some non-zero element m0 2 Mq�1�. By Lemma 6.4,
E acts onM locally nilpotently. Since EX D qXE, there exists a non-zero weight
vectorm00 such thatXm00 D Em00 D 0. Therefore,M is a highest weight module. By
Theorem 6.3, XM D YM D 0, which contradicts to our assumption thatM 2 N .

If dim Mq�1� 6 dim Mq�, then dim Mq�1� < dimM�. Hence the map
Y WM� ! Mq�1� is not injective. It follows that Ym1 D 0 for some non-
zero element m1 2 M�. By Lemma 6.4, Y acts on M locally nilpotently.
Since XY D qYX , there exists some non-zero weight vector m2 2 M such that
Xm2 D Ym2 D 0. By Lemma 3.2.(1),

annA.M/ � .X; Y /;

a contradiction. Similarly, one can show that there does not exist � 2 Wt.M/ such
that dim M� < dim Mq�.

(2) Clearly, Wt.M/ � fqn� j n 2 Zg. By the above argument we see that

Wt.M/ � fqn� j n 2 Zg:

Hence Wt.M/ D fqn� j n 2 Zg.

LetM be an A-module and x 2 A. We say thatM is x-torsion provided that for
each elementm 2M there exists some i 2 N such that xim D 0. We denote by xM
the mapM !M; m 7! xm.
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Lemma 6.6. LetM 2 N .
(1) IfM is X -torsion, thenM is .'; Y /-torsionfree.
(2) IfM is Y -torsion, thenM is .X; '/-torsionfree.
(3) IfM is '-torsion, thenM is .X; Y /-torsionfree.

Proof. (1) SinceM 2 N is an X -torsion module, by the proof of Theorem 6.5, YM
and EM are injections. Let us show that 'M is injective. Otherwise, there exists
a nonzero element m 2 M such that 'm D 0, i.e., Xm D .q � q�1/YEm. Since
X im D 0 for some i 2 N and X.YE/ D .YE/X , we have

X im D .q � q�1/i .YE/im D 0:

This contradicts the fact that Y and E are injective maps onM .

(2) Clearly,XM is an injection. Let us show that 'M is an injective map. Otherwise,
there exists a nonzero elementm 2M such that 'm D Ym D 0 (since Y' D q'Y ).
Then Xm D 0 (since ' D .1 � q2/EY C q2X ), a contradiction.

(3) Statement 3 follows from statements 1 and 2.

By Lemma 6.6,
yA .weight/ D 2Uq.sl2/ .weight/ tN

D 2Uq.sl2/ .weight/ tN .X -torsion/ tN .Y -torsion/

tN ..X; Y /-torsionfree/:

(6.1)

It is clear that N ..X; Y /-torsionfree/ D yA .weight; .X; Y /-torsionfree/.
Lemma 6.7. IfM 2 N .X -torsion/tN .'-torsion/tN .Y -torsion/ then CM ¤ 0.

Proof. Suppose that M 2 N .X -torsion/, and let m be a weight vector such that
Xm D 0. If CM D 0, then by (2.15),

Cm D �K�1EY 2m D 0

i.e., EY 2m D 0. This implies that EM or YM is not injective. By the proof
of Theorem 6.5, this is a contradiction. Similarly, one can prove that for M 2 N

.Y -torsion/, CM ¤ 0. Now, suppose thatM 2 N .'-torsion/, and let m 2M� be a
weight vector such that 'm D 0. Since Y' D q.1 � q2/EY 2 C q4YX , we have

Y'm D q.1 � q2/EY 2mC q4YXm D 0; (6.2)

If CM D 0, then by (2.16),

Cm D ���1EY 2mC
q3

1 � q2
.� � ��1/YXm D 0: (6.3)

The equalities (6.2) and (6.3) yield that EY 2m D 0 and YXm D 0, a contradiction.
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Theorem 6.8. LetM 2 N . Then dim M� D1 for all � 2Wt.M/.

Proof. Since M is a simple A-module, the weight space M� of M is a simple
C�;�-module for some � 2 K. If M 2 N .X -torsion/ t N .Y -torsion/ then by
Lemma 6.7, � D CM ¤ 0. By Proposition 4.9.(4) and Theorem 4.11.(1), C�;� is
an infinite dimensional central simple algebra. Hence, dim M� D 1. It remains to
consider the case where M 2 N ..X; Y /-torsionfree/. Suppose that there exists a
weight spaceM� ofM such that dim M� D n <1, we seek a contradiction. Then
by Theorem 6.5, dim M� D n for all � 2 Wt.M/ and Wt.M/ D fqi� j i 2 Zg.
Notice that the elementsX and Y act injectively onM , then they act bijectively onM
(since all the weight spaces are finite dimensional and of the same dimension). In
particular, the element t D YX acts bijectively on each weight spaceM�, and so,M�

is a simple C
�;�
t -module. By Proposition 4.9.(2,3), the algebra C

�;�
t is an infinite

dimensional central simple algebra for any � 2 K and� 2 K�. Then, dim M� D1,
a contradiction.

Description of the setN (X -torsion). Anexplicit description of the setN .X -torsion/
is given in Theorem 6.10. It consists of a family of simple modules constructed
below (see Proposition 6.9). For each � 2 K�, we define the left A-module
X� WD A=A.K � �; X/. Then

X� D
M
i;j;k>0

KF iEjY k N1;

where N1 D 1 C A.K � �; X/. Let � 2 K. By (2.15), we see that the submodule
of X�,

.C � �/X� D
M
i;j;k>0

KF iEjY k
�
��1EY 2 C �

�
N1

D

M
i;j;k>0

KF i
�
��1qkEjC1Y kC2 C �EjY k

�
N1;

(6.4)

is a proper submodule and the map .C � �/ � WX� �! X�, v 7! .C � �/v, is an
injection, which is not a bijection. It is obvious that GK.X�/ D 3.

For � 2 K and � 2 K�, we define the left A-module

X�;� WD A=A.C � �; K � �; X/:

Then,
X�;� ' X�=.C � �/X� ¤ 0: (6.5)

We have a short exact sequence of A-modules:

0 �! X�
.C��/�
�����! X� �! X�;� �! 0:
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The next proposition shows that the module X�;� is a simple module if � is nonzero.
Moreover, the K-basis, the weight space decomposition and the annihilator of the
module X�;� are given.

Proposition 6.9. For �;� 2 K�, consider the left A-module

X�;� D A=A.C � �; K � �; X/:

(1) The A-module

X�;� D
M

i>0;j>2

KF iY j N1˚
M
i;k>0

KF iEk N1˚
M
i;k>0

KYF iEk N1

is a simple A-module where N1 D 1C A.C � �; K � �; X/.

(2) X�;� D
M

i>0;j>2

KF iY j N1˚
� M
i>1;k>0

KF i‚k N1˚
M
k>0

K‚k N1˚
M

i>1;k>0

KEi‚k N1
�

˚

� M
i>1;k>0

KYF i‚k N1˚
M
k>0

KY‚k N1˚
M

i>1;k>0

KYEi‚k N1
�
:

(3) The weight subspace X�;�qs� of X�;� that corresponds to the weight qs� is

X�;�qs� D

†
KŒ‚� N1; s D 0;

ErKŒ‚� N1; s D 2r , r > 1;
YErKŒ‚� N1; s D 2r � 1, r > 1;
F rKŒ‚� N1˚

L
iCjDr;
j>1

KF iY 2j N1; s D �2r , r > 1;

YKŒ‚� N1; s D �1;

YF r�1KŒ‚� N1˚
L

2iCjD2r�1;
j>2

KF iY j N1; s D �2.r � 1/ � 1, r > 2:

(4) annA.X�;�/ D .C � �/.

(5) X�;� is an X -torsion and Y -torsionfree A-module.

(6) Let .�; �/; .�0; �0/ 2 K � K�. Then X�;� ' X�
0;�0 iff � D �0 and � D qi�0

for some i 2 Z.

Proof. (1) By (6.5), X�;� ¤ 0 and N1 ¤ 0. Using the PBW basis for the algebra A,
we have

X�;� D
X

i;j;k>0

KF iY jEk N1:
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Using (2.15), we have � N1 D C N1 D ���1EY 2 N1. HenceEY 2 N1 D ��� N1, and then
Y 2E N1 D �q2�� N1. By induction on k, we deduce that

EkY 2k N1 D .���/kq�k.k�1/ N1 and Y 2kEk N1 D .�q2��/kqk.k�1/ N1: (6.6)

Therefore, X
j;k>0

KY jEk N1 D Y 2KŒY � N1CKŒE� N1C YKŒE� N1;

and then

X�;� D
X

i>0;j>2

KF iY j N1C
X
i;k>0

KF iEk N1C
X
i;k>0

KYF iEk N1

D KŒF �
�
KŒY �Y 2 CKŒE�C YKŒE�

�
N1:

So, any element u of X�;� can be written as

u D
� nX
iD0

F iai

�
N1;

where ai 2 † WD KŒY �Y 2CKŒE�CYKŒE�. Statement 1 follows from the following
claim: if an ¤ 0, then there is an element a 2 A such that au D N1.
(i) Xnu D a0 N1 for some nonzero element a0 2 †: Using Lemma 3.1, we have

Xu D

n�1X
iD0

F ibi N1

for some bi 2 † and bn�1 ¤ 0. Repeating this step n � 1 times (or using induction
on n), we obtain the result as required. So, we may assume that u D a0 N1, where
0 ¤ a0 2 †.

(ii) Notice that the element a0 2 † can be written as

a0 D pY
2
C

mX
iD0

.�i C �iY /E
i ;

where p 2 KŒY �, �i and �i 2 K. Then, by (6.6),

Y 2mu D Y 2ma0 N1 D
�
pY 2mC2 C

mX
iD0

.�i C �iY /Y
2.m�i/Y 2iEi

�
N1

D

�
pY 2mC2 C

mX
iD0

.�i C �iY /Y
2.m�i/
i

�
N1 D f N1

for some 
i 2 K� where f is a nonzero polynomial in KŒY � (since a0 ¤ 0). Hence,
we may assume that u D f N1 where 0 ¤ f 2 KŒY �.
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(iii) Let f D
Pl
iD0 
iY

i , where 
i 2 K and 
l ¤ 0. Since KY i N1 D �q�iY i N1

and all eigenvalues f�q�i j i > 0g are distinct, there is a polynomial g 2 KŒK� such
that gf N1 D Y l N1. If l D 0, we are done. We may assume that l > 1. By multiplying
by Y (if necessary) on the equality above we may assume that l D 2k for some
natural number k. Then, by (6.6), !�1

k
EkY 2k N1 D N1, where !k D .���/kq�k.k�1/,

as required.

(2) Recall that the algebra Uq.sl2/ is a GWA

Uq.sl2/ D K
�
‚;K˙1

��
E;F I �; a D .1 � q2/�1‚ �

q2.qK C q�1K�1/

.1 � q2/2

�
; (6.7)

where �.‚/ D ‚ and �.K/ D q�2K. Then for all i > 1,

F iEi D a��1.a/ � � � ��iC1.a/:

Therefore,M
i;k>0

KF iEk N1 D
M

i>1;k>0

KF i‚k N1˚
M
k>0

K‚k N1˚
M

i>1;k>0

KEi‚k N1:

Then statement 2 follows from statement 1.

(3) Statement 3 follows from statement 2.

(4) Clearly, .C � �/ � annA.X�;�/. Since � 2 K�, by Corollary 3.9, the ideal
.C � �/ is a maximal ideal of A. Then we must have

.C � �/ D annA.X�;�/:

(5) Clearly, X�;� is an X -torsion weight module. Since X�;� is a simple module,
then by Lemma 6.6, X�;� is Y -torsionfree.

(6) ()) Suppose that X�;� ' X�
0;�0 . By statement 4,

.C � �/ D annA.X�;�/ D annA.X�
0;�0/ D .C � �0/:

Hence, � D �0. By Theorem 6.5 (or by statement 3),

fqi� j i 2 Zg DWt.X�;�/ DWt.X�0;�0/ D fqi�0 j i 2 Zg:

Hence, � D qi�0 for some i 2 Z.

(() Suppose that � D �0 and � D qi�0 for some i 2 Z. Let N1 and N10 be the
canonical generators of the modules X�;� and X�

0;�0 , respectively. If i 6 0 then the
map

X�;� ! X�
0;�0 ; N1 7! Y ji j N10
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defines an isomorphism of A-modules. If i > 1 then the map

X�;� ! X�
0;�0 ; N1 7! .YE/i N10

defines an isomorphism of A-modules.

We define an equivalence relation � on the set K� as follows: for � and � 2 K�,
� � � iff� D qi� for some i 2 Z. Then the set K� is a disjoint union of equivalence
classesO.�/ D fqi� j i 2 Zg. LetK�= � be the set of equivalence classes. Clearly,
K�= � can be identified with the factor group K�=hqi where hqi D fqi j i 2 Zg.
For each orbit O 2 K�=hqi, we fix an element �O in the equivalence class O.
Theorem 6.10. N .X -torsion/ D fŒX�;�O � j � 2 K�; O 2 K�=hqig.

Proof. LetM 2 N .X -torsion/. By Lemma 6.7, the central element C acts onM as
a nonzero scalar, say �. ThenM is an epimorphic image of the moduleX�;� for some
� 2 K�. By Proposition 6.9.(1), X�;� is a simple A-module, hence M ' X�;�.
Then the theorem follows from Proposition 6.9.(6).

Lemma 6.11. (1) For all � 2 K and � 2 K�, GK.X�;�/ D 2.
(2) A.C;K � �;X/ ¨ A.K � �;X; Y;E/ ¨ A.
(3) For all � 2 K�, the module X0;� is not a simple A-module.

Proof. (1) By [20, Proposition 5.1.(e)],

GK.X�;�/ 6 GK.X�/ � 1 D 2:

If � ¤ 0 then it follows from Proposition 6.9.(1) that GK.X�;�/ D 2. If � D 0, then
consider the subspace

V D
M
i;j>0

KF iEj N1

of theA-moduleX�. By (6.4), we see that V \CX� D 0. Hence, the vector space V
can be seen as a subspace of the A-module X0;�. In particular, GK.X0;�/ > 2.
Therefore, GK.X0;�/ D 2.

(2) Let a D A.C;K ��;X/ and b D A.K ��;X; Y;E/. Since C 2 b we have the
equality b D A.C;K � �;X; Y;E/. Clearly, a � b. Notice that

A=b ' U=U.K � �;E/;

where U D Uq.sl2/. Then GK.A=b/ D 1, in particular, b ¨ A is a proper left ideal
of A. It follows from statement 1 that,

2 D GK.A=a/ > GK.A=b/;

hence the inclusion a � b is strict.
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(3) By statement 2, the left ideal A.C;K � �;X/ is not a maximal left ideal. Thus,
the A-module X0;� is not a simple module.

Corollary 6.12. Let � 2 K and � 2 K�. The A-module X�;� is a simple module
iff � ¤ 0.

Proof. The result follows from Proposition 6.9.(1) and Lemma 6.11.(3).

Description of the setN (Y -torsion). Anexplicit description of the setN .Y -torsion/
is given in Theorem 6.14. It consists of a family of simple modules constructed below
(see Proposition 6.13). The results and arguments are similar to that of the case for
X -torsion modules. But for completeness, we present the results and their proof in
detail. For � 2 K�, we define the left A-module Y� WD A=A.K � �; Y /. Then,

Y�
D

M
i;j;k>0

KEiF jXk N1;

where N1 D 1CA.K��; Y /. It is obvious that GK.Y�/ D 3. Let � 2 K. By (2.15),
we have .C � �/ N1 D .q2FX2 � �/ N1. Then using Lemma 3.1, we see that the
submodule of Y�,

.C � �/Y�
D

M
i;j;k>0

KEiF jXk.C � �/ N1

D

M
i;j;k>0

KEiF jXk
�
q2FX2 � �

�
N1

D

M
i;j;k>0

KEiF j
�
q2FXkC2 � �Xk

�
N1:

(6.8)

Therefore, the submodule .C � �/Y� of Y� is a proper submodule, and the map

.C � �/ � WY�
! Y�; v 7! .C � �/v;

is an injection, which is not a bijection.
For � 2 K and � 2 K�, we define the left A-module

Y�;�
WD A=A.C � �; K � �; Y /:

Then

Y�;�
' Y�=.C � �/Y�

¤ 0: (6.9)

We have a short exact sequence of A-modules:

0 �! Y� .C��/�
�����! Y�

�! Y�;�
�! 0:

The next proposition shows that the module Y�;� is a simple module if � is nonzero.
Moreover, the K-basis, the weight space decomposition and the annihilator of the
module Y�;� are given.
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Proposition 6.13. For �;� 2 K�, consider the left A-module

Y�;�
D A=A.C � �; K � �; Y /:

(1) The A-module

Y�;�
D

M
i>0;j>2

KEiXj N1˚
M
i;k>0

KEiF k N1˚
M
i;k>0

KEiF kX N1

is a simple A-module, where N1 D 1C A.C � �; K � �; Y /.

(2) Y�;�
D

M
i>0;j>2

KEiXj N1˚
� M
i>1;k>0

K‚kEi N1˚
M
k>0

K‚k N1˚
M

i>1;k>0

K‚kF i N1
�

˚

� M
i>1;k>0

K‚kEiX N1˚
M
k>0

K‚kX N1˚
M

i>1;k>0

K‚kF iX N1
�
:

(3) The weight subspace Y�;�
qs� of Y�;� that corresponds to the weight qs� is

Y�;�
qs� D

†
KŒ‚� N1; s D 0;

KŒ‚�Er N1˚
L

iCjDr;
j>1

KEiX2j N1; s D 2r , r > 1;

KŒ‚�X N1; s D 1;

KŒ‚�E2rX N1˚
L

2iCjD2rC1;
j>2

KEiXj N1; s D 2r C 1, r > 1;

KŒ‚�F r N1; s D �2r , r > 1;
KŒ‚�F rX N1; s D �2r C 1, r > 1:

(4) annA.Y�;�/ D .C � �/.
(5) Y�;� is a Y -torsion and X -torsionfree A-module.
(6) Let .�; �/; .�0; �0/ 2 K � K�. Then Y�;� ' Y�0;�0 , iff � D �0 and � D qi�0

for some i 2 Z.

Proof. (1) Notice that Y�;� D
P
i;j;k>0 KEiF jXk N1. By (2.15), we have

� N1 D C N1 D q2FX2 N1;

i.e., FX2 N1 D q�2� N1. By induction on k and using Lemma 3.1.(1), we deduce that

F kX2k N1 D .FX2/k N1 D q�2k�k N1: (6.10)

Therefore, X
j;k>0

KF jXk N1 D KŒX�X2 N1CKŒF � N1CKŒF �X N1;
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and so

Y�;�
D

X
i>0;j>2

KEiXj N1C
X
i;k>0

KEiF k N1C
X
i;k>0

KEiF kX N1:

So, any element u of Y�;� can be written as

u D

nX
iD0

Eiai N1;

where ai 2 � WD KŒX�X2CKŒF �CKŒF �X . Statement 1 follows from the following
claim: if an ¤ 0, then there exists an element a 2 A such that au D N1.
(i) Y nu D a0 N1 for some nonzero element a0 2 �: Notice that

Yu D

n�1X
iD0

Eibi

for some bi 2 � and bn�1 ¤ 0. Repeating this step n� 1 times, we obtain the result
as desired. So, we may assume that u D a0 N1 for some nonzero a0 2 � .

(ii) Notice that the element a0 can be written as

a0 D pX2 C

mX
iD0

F i .�i C �iX/;

where p 2 KŒX�, �i , and �i 2 K. By Lemma 3.1, we see that F iX N1 D XF i N1.
Then

X2mu D

�
pX2mC2 C

mX
iD0

.�i C �iX/X
2mF i

�
N1

D

�
pX2mC2 C

mX
iD0

.�i C �iX/X
2.m�i/X2iF i

�
N1

D

�
pX2mC2 C

mX
iD0

.�i C �iX/X
2.m�i/
i

�
N1 D f N1

for some 
i 2 K� (by (6.10)) and f is a nonzero element in KŒY �. Hence, we may
assume that u D f N1 where f 2 KŒX� n f0g.

(iii) Let f D
Pl
iD0 ˛iX

i where ˛i 2 K and ˛l ¤ 0. Since KX i N1 D qi�X i N1 and
all eigenvalues fqi� j i 2 Ng are distinct, there is a polynomial g 2 KŒK� such that
gf N1 D X l N1. If l D 0, we are done. We may assume that l > 1. By multiplying
by X (if necessary) on the equality we may assume that l D 2k for some natural
number k. Then, by (6.10), we have q2k��kF kX2k N1 D N1, as required.
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(2) Recall that Uq.sl2/ is a generalized Weyl algebra (see (6.7)), then EiF i D
� i .a/� i�1.a/ � � � �.a/ holds for all i > 1. Hence,M

i;k>0

KF iEk N1 D
M

i>1;k>0

K‚kEi N1˚
M
k>0

K‚k N1˚
M

i>1;k>0

K‚kF i N1:

Then statement 2 follows from statement 1.

(3) Statement 3 follows from statement 2.

(4) Clearly, .C � �/ � annA.Y�;�/. Then we must have

.C � �/ D annA.Y�;�/

since .C � �/ is a maximal ideal of A.

(5) Clearly, Y�;� is Y -torsion. Since Y�;� is a simple module, then by Lemma 6.6,
Y�;� is X -torsionfree.

(6) ()) Suppose that Y�;� ' Y�0;�0 . By statement 4,

.C � �/ D annA.Y�;�/ D annA.Y�0;�0/ D .C � �0/:

Hence, � D �0. By Theorem 6.5 (or by statement 3),

fqi� j i 2 Zg DWt.Y�;�/ DWt.Y�0;�0/ D fqi�0 j i 2 Zg:

Hence, � D qi�0 for some i 2 Z.

(() Suppose that � D �0 and � D qi�0 for some i 2 Z. Let N1 and N10 be the
canonical generators of the modules Y�;� and Y�0;�0 , respectively. If i > 0, then the
map

Y�;�
! Y�0;�0 ; N1 7! X i N10

defines an isomorphism of A-modules. If i 6 �1, then the map

Y�;�
! Y�0;�0 ; N1 7! .FX/i N10

defines an isomorphism of A-modules.

Theorem 6.14. N .Y -torsion/ D fŒY�;�O � j � 2 K�; O 2 K�=hqig.

Proof. Let M 2 N .Y -torsion/. By Lemma 6.7, the central element C acts
on M as a nonzero scalar, say �. Then M is an epimorphic image of the
moduleY�;� for some� 2 K�. By Proposition 6.13.(1), Y�;� is a simpleA-module,
henceM ' Y�;�. Then the theorem follows from Proposition 6.13.(6).
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Lemma 6.15. (1) For all � 2 K and � 2 K�, GK.Y�;�/ D 2.
(2) A.C;K � �; Y / ¨ A.K � �;X; Y;E/ ¨ A.
(3) For all � 2 K�, the module Y0;� is not a simple A-module.

Proof. (1) By [20, Proposition 5.1.(e)],

GK.Y�;�/ 6 GK.Y�/ � 1 D 2:

If � ¤ 0 then it follows from Proposition 6.13.(1) that GK.Y�;�/ D 2. If � D 0 then
consider the subspace

V D
M
i;j>0

KEiF j N1

of theA-moduleY�. By (6.8), we see that V \CY� D 0. Hence, the vector space V
can be seen as a subspace of the A-module Y0;�. In particular, GK.Y0;�/ > 2.
Therefore, GK.Y0;�/ D 2.

(2) Let a0 D A.C;K � �; Y / and b D A.K � �;X; Y;E/. Since C 2 b, we have
the equality b D A.C;K � �;X; Y;E/. Clearly, a0 � b. By Lemma 6.11.(2) and
its proof, b is a proper left ideal of A and GK.A=b/ D 1. Then it follows from
statement 1 that,

2 D GK.A=a0/ > GK.A=b/;

hence the inclusion a0 � b is strict.

(3) By statement 2, the left ideal A.C;K � �; Y / is not a maximal left ideal. Thus,
the A-module Y0;� is not a simple module.

Corollary 6.16. Let � 2 K and � 2 K�. The A-module Y�;� is a simple module
iff � ¤ 0.

Proof. The result follows from Proposition 6.13.(1) and Lemma 6.15.(3).

The set N (.X; Y /-torsionfree). Theorem 6.18 and Theorem 6.19 give explicit de-
scription of the set N ..X; Y /-torsionfree/. Recall that

N
�
.X; Y /-torsionfree

�
D yA

�
weight; .X; Y /-torsionfree

�
:

Then clearly,

N
�
.X; Y /-torsionfree

�
D bA.0/ �weight; .X; Y /-torsionfree�

t

G
�2K�

bA.�/ �weight; .X; Y /-torsionfree�: (6.11)

LetAt be the localization of the algebra at the powers of the element t D YX . Recall
that the algebra Ct is a GWA, see Proposition 4.9.(1).
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Lemma 6.17. At D Ct ŒX
˙1I �� is a skew polynomial algebra where � is the auto-

morphism of the algebra Ct defined by �.C / D C , �.K˙1/ D q�1K˙1, �.t/ D qt ,
�.u/ D q2u, and �.v/ D v.

Proof. Clearly, the algebra Ct ŒX
˙1I �� is a subalgebra of At . Notice that all the

generators of the algebra At are contained in the algebra Ct ŒX
˙1I ��, then

At � Ct ŒX
˙1
I ��:

Hence, At D Ct ŒX
˙1I ��, as required.

The set bA.0/ (weight, .X; Y /-torsionfree). Let ŒM � 2 bC0;� .t -torsionfree/. By
Theorem 5.6, the element t acts bijectively on the module M (since t is a normal
element of R). Therefore, the C -module M is also a Ct -module. Then by
Lemma 6.17, we have the induced At -module

zM WD At ˝Ct M D
M
i2Z

X i ˝M D
M
i>1

Y i ˝M ˚
M
i>0

X i ˝M:

Clearly, zM is an .X; Y /-torsionfree, weight A-module and

Wt . zM/ D fqi� j i 2 Zg D O.�/:

We claim that zM is a simple A-module. Suppose that N is a nonzero A-submodule
of zM , thenX i˝m 2 N for some i 2 Z andm 2M . If i D 0, thenN D Am D zM .
If i > 1, since Y i .X i ˝ m/ 2 K�.1 ˝ t im/, then 1 ˝ tm 2 N and so N D zM .
If i 6 �1, thenX ji jX i˝m D 1˝m 2 N , soN D zM . IfM 0 21C0;�0 .t -torsionfree/,
then theA-modules zM and zM 0 are isomorphic iff the C0;�-modulesM andX i˝M 0
are isomorphic where � D qi�0 for a unique i 2 Z.

Theorem 6.18.

bA.0/ .weight; .X; Y /-torsionfree/
D
˚
Œ zM� j ŒM � 2 1C0;�O .t -torsionfree/; O 2 K�=qZ

	
:

Proof. Let V 2 bA.0/ .weight; .X; Y /-torsionfree/. Then the elements X and Y act
injectively on the module V . For any � 2 Wt .V /, the weight space V� is a simple
t -torsionfree C0;�-module. Then,

V �
M
i>1

Y i ˝ V� ˚
M
i>0

X i ˝ V� D zV�:

Hence, V D zV� since V is a simple module.



The prime spectrum of the algebra Kq ŒX; Y � Ì Uq.sl2/ 943

The set1A.�/ (weight, .X; Y /-torsionfree), where� 2 K�. Below, we use notation
and results from Lemma 5.7. LetM 21C�;� .t -torsionfree/. ThenMt 2

1
C
�;�
t . By

Lemma 6.17, we have the induced At -module

M� WD At ˝Ct Mt D

M
i2Z

X i ˝Mt : (6.12)

Clearly,M� is a simple weight At -module and

Wt .M�/ D fqi� j i 2 Zg D O.�/:

For all i 2 Z, the weight space

M
�

i WD X
i
˝Mt 'M

��i

t

as Ct -modules, where M ��i

t is the Ct -module twisted by the automorphism ��i

of the algebra Ct (the automorphism � is defined in Lemma 6.17). The set
1C�;� .t -torsionfree/ is described explicitly in Theorem 5.11.(1,3). If M D f�;�,
then

X i ˝ f�;�t ' .f�;�t /�
�i

' f�;q
i�

t

as Ct -modules. It is clear that socC .f
�;�
t / D f�;�. Hence,

socC .X
i
˝ f�;�t / D socC .f

�;qi�
t / D f�;q

i�:

Then the A-module

socA
�
.f�;�/�

�
D

M
i2Z

socC .X
i
˝ f�;�t / '

M
i2Z

f�;q
i�: (6.13)

Similarly, ifM D F�;�, then

X i ˝ F�;�t ' .F�;�t /�
�i

' F�;q
i�

t

as Ct -modules. It is clear that socC .F
�;�
t / D F�;�. Hence,

socC .X
i
˝ F�;�t / D socC .F

�;qi�
t / D F�;q

i�:

Then the A-module

socA
�
.F�;�/�

�
D

M
i2Z

socC .X
i
˝ F�;�t / '

M
i2Z

F�;q
i�: (6.14)

IfM D F
�;�

 where 
 2 K� n fq2i� j i 2 Zg, then

X i ˝ F
�;�

;t ' .F

�;�

;t /

��i
' F

�;qi�

q�i
;t



944 V. V. Bavula and T. Lu

as Ct -modules. It is clear that socC .F
�;�

;t / D F

�;�

 . Hence,

socC .X
i
˝ F

�;�

;t / D F

�;qi�

q�i


is a simple C -module. Then the A-module

socA
�
.F �;�

 /�

�
D

M
i2Z

socC .X
i
˝ F

�;�

;t / '

M
i2Z

F
�;qi�

q�i

: (6.15)

IfM 21C�;� .KŒt �-torsionfree/ then, by Theorem 5.11.(3),

M ' C�;�=C�;� \Bbt�n

for some l-normal element b 2 Irr .B/ and for all n� 0. For all i 2 Z,

M ��i

t �
C
�;qi�
t

C
�;qi�
t \B�i .b/t�n

WDM�i .b/t�n :

Then,
socC .M

��i

t / D socC .M�i .b/t�n/ DM�i .b/t�ni

for all ni � 0. Then the A-module

socA.M�/ D
M
i2Z

socC .X
i
˝Mt / '

M
i2Z

M�i .b/t�ni : (6.16)

The next theoremdescribes the set bA.�/ .weight; .X; Y /-torsionfree/, where� 2 K�.
Theorem 6.19. Let �;� 2 K�. Then

bA.�/ �weight; .X; Y /-torsionfree�
D
˚
ŒsocA.M�/� j ŒM � 2

1
C�;�O .t -torsionfree/; O 2 K�=qZ

	
and socA.M�/ is explicitly described in (6.13), (6.14), (6.15), and (6.16).

Proof. LetM2 bA.�/ .weight; .X; Y /-torsionfree/. ThenWt .M/DO.�/ 2 K�=qZ

for any � 2 Wt .M/. Then M WD M� 2
1C�;�O .t -torsionfree/ and Mt 2

1
C
�;�O
t .

Clearly,M� DMt �M. So, M D socA.M�/.

By (6.1) and (6.11), Theorem 6.10, Theorem 6.14, Theorem 6.18 and
Theorem 6.19 give a complete classification of simple weight A-modules.
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