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The prime spectrum of the algebra K,[X, Y] x U, (s!>)
and a classification of simple weight modules
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Abstract. For the algebra A in the title, it is shown that its centre is generated by an explicit
quartic element. Explicit descriptions are given of the prime, primitive and maximal spectra
of the algebra A. A classification of simple weight A-modules is obtained. The classification
is based on a classification of (all) simple modules of the centralizer C 4(K) of the quantum
Cartan element K which is given in the paper. Explicit generators and defining relations are
found for the algebra C 4 (K) (it is generated by 5 elements subject to the defining relations two
of which are quadratic and one is cubic).
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1. Introduction

In this paper, module means a left module, K is a field, K* = K \ {0}, an element
q € K* is not a root of unity, algebra means a unital K-algebra, N = {0, 1, ...} and
Ny ={1,2,...}.

For a Hopf algebra and its module one can form a smash product algebra
(see [22, 4.1.3] for detail). The algebras obtained have rich structure. However,
little is known about smash product algebras; in particular, about their prime,
primitive and maximal spectra and simple modules. One of the classical objects
in this area is the smash product algebra A := K,[X,Y] x U,(sl2), where
Kq[X, Y] :=K(X,Y | XY = qYX) is the quantum plane and g € K* is not a root
of unity. As an abstract algebra, the algebra A is generated over K by elements E, F,
K,K7 ', X,and Y subject to the defining relations (where K ~1 s the inverse of K):

K—K!

q-q '

EX =gXE, EY=X+q 'YE, FX=YK '4XF, FY =YF,
KXK'=¢X, KYK!'=g47ly, ¢YX =XY.

KEK™' =¢*E, KFK'=¢™%F, [E F]=
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The algebra A admits a PBW basis and the ordering of the generators can be arbitrary.
The study of semidirect product algebras has recently gained momentum: An
important class of algebras — the symplectic reflection algebras — was introduced
by Etingof and Ginzburg, [13]. This led to study of infinitesimal and continuous
Hecke algebras by Etingof, Gan and Ginzburg, [14] (see also papers of Ding, Khare,
Losev, Tikaradze and Tsymbaliuk and others in this direction).

The centre of the algebra A. A PBW deformation of this algebra, the quantized
symplectic oscillator algebra of rank one, was studied by Gan and Khare [15] and
some representations were considered. They showed that the centre of the deformed
algebra is K. In this paper, we show that the centre of A is a polynomial algebra K[C]
(Theorem 2.10) and the generator C has degree 4:

C=(1-¢g*)FYXE + FX?>-Y?K'E — ; lq
The method we use in finding the central element C of A can be summarized as
follows. The algebra A is “covered” by a chain of large subalgebras. They turn out
to be generalized Weyl algebras. Their central/normal elements can be determined
by applying Proposition 2.4. At each step generators of the covering subalgebras are
getting more complicated but their relations become simpler. At the final step, we
find a central element of a large subalgebra A of A which turns out to be the central
element C of the algebra A.

The prime, primitive and maximal spectra of A. In Section 3, we classify the
prime, primitive and maximal ideals of the algebra A (Theorem 3.7, Theorem 3.11
and Corollary 3.9, respectively). It is shown that every nonzero ideal has nonzero
intersection with the centre of the algebra A (Corollary 3.8). In classifying prime
ideals certain localizations of the algebra A are used. The set of completely prime
ideals is also described (Corollary 3.12).

A classification of simple weight 4-modules. An A-module M is called a weight
module if M = @ ex+ My where My, = {m € M | Km = pumj}. In Section 6,
a classification of simple weight A-modules is given. It is too technical to describe
the result in the Introduction but we give a flavour and explain main ideas. The
set of isomorphism classes of simple weight A-modules are partitioned into several
subclasses, and each of them requires different techniques to deal with. The key
point is that each weight component of a simple weight A-module is a simple
module over the centralizer C4(K) of the quantum Cartan element K and this
simple C4(K)-module can be an arbitrary simple C4(K)-module. Therefore,
first we study the algebra C4(K), classify its simple modules and using this
classification we classify simple weight A-modules. There are plenty of them and a
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“generic/typical” simple weight A-module depends on arbitrary many independent
parameters (the number of which is finite but can be arbitrary large).

The centralizer C 4 (K) and a classification of its simple modules. The algebra
C 4(K) is generated by (explicit) elements K *1 C,0,t,and u subject to the defining
relations, Theorem 4.6 (K*! and C are central elements):

O-t=q¢*-0+@+qg Hu+ (1 -¢*>C,

O u=q¢gu-0—ql+¢>t+0-¢>K'C,
7
2
- T g
It is proved that the centre of the algebra C4(K) is K[C, K*!]. The problem
of classification of simple C4(K)-modules is reduced to the one for the factor
algebras €4#* 1= C4(K)/C4(K)(C — A, K — p) where A € K and u € K*.
The algebra ©4H is a domain (Theorem 4.11.(2)). The algebra el s simple
iff A # 0 (Theorem 4.11.(1)). A classification of simple €*-*-modules is given
in Section 5. One of the key observations is that the localization ‘6& H of the
algebra €4 * at the powers of the element ¢ = YX is a central, simple, generalized
Weyl algebra (Proposition 4.9). The other one is that, for any A € K and u € K*,
we can embed the algebra €4* into a generalized Weyl algebra 4 (which is also
a central simple algebra), see Proposition 5.3. These two facts enable us to give
a complete classification of simple C4(K)-modules. The problem of classifying
simple €*-*-modules splits into two distinct cases, namely the case when A = 0
and the case when A # 0. In the case A = 0, we embed the algebra €%* into a
skew polynomial algebra R = K[h*!][t; 0] where o (h) = ¢2h (it is a subalgebra of
the algebra +) for which the classification of simple modules is known. In the case

t2—g*K71C -1

tu=q*u-t, O-t-u—

A # 0, we use a close relation of €4+ with the localization ‘Iftl #*_and the arguments
are more complicated.

The algebra A can be seen as a quantum analogue of another classical algebra,
the enveloping algebra U(V; % sl,) of the semidirect product Lie algebra 1, x sl
(where V5 is the 2-dimensional simple sl;-module) which was studied in [9]. These
two algebras are similar in many ways. For example, the prime spectra of these two
algebras have similar structures; the representation theory of A has many parallels
with that of U(V> xs(5); the quartic Casimir element C of A degenerates to the cubic
Casimir element of U(V, x sl,) as “q — 1. The centre of U(V, x sl,) is generated
by the cubic Casimir element, [24]. The study of quantum algebras usually requires
more computations and the methods of this paper and [9] are quite different. Much
work has been done on quantized enveloping algebras of semisimple Lie algebras
(see, e.g., [17,18]). In the contrast, only few examples can be found in the literature
on the quantized algebras of enveloping algebras of non-semisimple Lie algebras.
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2. The centre of the algebra A

In this section, it is proved that the centre Z(A) of the algebra A is a polynomial
algebra K[C] (Theorem 2.10) and the element C is given explicitly, (2.14)—(2.17).
Several important subalgebras and localizations of the algebra A are introduced,
they are instrumental in finding the centre of A. We also show that the quantum
Gelfand—Kirillov conjecture holds for the algebra A.

The algebra A. In this paper, K is a field and an element ¢ € K* = K \ {0} is not
a root of unity. Recall that the quantized enveloping algebra of s, is the K-algebra
U, (sl») with generators E, F, K, K ~1 subject to the defining relations (see [17]):

KK '=K'K=1 KEK'=¢*E, KFK™'=¢4?F,
K—-K!

q—q7" "

The centre of Uy(sl,) is a polynomial algebra Z(U,(sl,)) = K[Q] where Q :=

FE + (9K + ¢ 'K~ 1)/(g —q1)?. A Hopf algebra structure on U, (sl,) is defined
as follows:

A(K)=KQ®K, eK)=1 S(K)=K",
AEY=EQ1+K®E, ¢E)=0, S(E)=-K'E,
AF)=FQK'+1®F, &F)=0, S(F)=-FK,

EF — FE =

where A is the comultiplication on Uy(sl>), € is the counit and S is the antipode
of U(sly). Note that the Hopf algebra U, (sl,) is neither cocommutative nor
commutative. The quantum plane K,[X,Y] := K(X,Y | XY = gYX) is a
Uy (s2)-module algebra where

K-X =gqgX, E-X=0, F-X=Y,

K-Y=q'Y, E.Y=X, F-Y=0.
Then one can form the smash product algebra A := K,[X, Y] x Uy (sl,). For details

about smash product algebras, see [22]. The generators and defining relations for
this algebra are given in the Introduction.

Generalized Weyl algebras.

Definition 2.1 ([1-3]). Let D be a ring, o be an automorphism of D and a is
an element of the centre of D. The generalized Weyl algebra A := D(o,a) =
D[X,Y;0,a] is aring generated by D, X and Y subject to the defining relations:

Xoa =o(@)X and Yo =0 (@)Y foralla € D, YX =a and XY = o(a).

The algebra A = @,z A, is Z-graded where A, = Dv,, v, = X" forn > 0, and
v, = Y " forn <0and vy = 1.
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Definition 2.2 ([6]). Let D be a ring and o be its automorphism. Suppose that
elements b and p belong to the centre of the ring D, p is invertible and o (p) = p.
Then E := D[X,Y;0,b, p]isaring generated by D, X and Y subject to the defining
relations:

Xo =o(@)X and Yo =o Ya)Y forallae € D, and XY —pYX = b.

An element d of aring D is normal if dD = Dd. The next proposition shows
that the rings £ are GWAs and under a (mild) condition they have a “canonical”
normal element.

Proposition 2.3. Let E = D[X,Y;0,b, p|. Then

(1) [6, Lemma 1.3] The following statements are equivalent:

(a) [6, Corollary 1.4] C = p(YX + @) = XY + o(®) is a normal element in
E for some central element o € D,

(b) pa —o(x) = b for some central element o € D.

(2) [6, Corollary 1.4] If one of the equivalent conditions of statement 1 holds then
the ring E = D[C][X,Y;0,a = p~'C — o] is a GWA where o(C) = pC.

The next proposition is a corollary of Proposition 2.3 when p = 1. The rings E
with p = 1 admit a “canonical” central element (under a mild condition).

Proposition 2.4. Let E = D[X,Y;0,b,p = 1]. Then

(1) [6, Lemma 1.5] The following statements are equivalent:

(@) C =YX +o = XY + o(w) is a central element in E for some central
elementa € D,

(b) @ —o(a) = b for some central element a € D.

(2) [6, Corollary 1.6] If one of the equivalent conditions of statement 1 holds then
the ring E = D[C][X,Y;0,a = C —«] isa GWA where 6 (C) = C.

An involution 7 of A. The algebra A admits the following involution t (see [15,

p. 693]):

t1(E)=-FK, ©(F)=-K'E, ©(K)=K, t©(KH)=K",

2.1)
(X)=Y, (Y)=X.

For an algebra B, we denote by Z(B) its centre.
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The algebra E is a GWA. Let E be the subalgebra of A which is generated by the
elements £, X, and Y. The elements E, X, and Y satisfying the defining relations

EX =gXE, YX =q'XY, and EY —¢ 'YE =X.

Therefore, E = K[X][E,Y;0.b = X,p = ¢q~!] where 0(X) = gX. The
polynomial & = (¢/(1 — ¢?))X is a solution to the equation ¢ 'a — o () = X.
Hence, by Proposition 2.3, the element

q2

1—q?

q

X
1—¢q?

5=q—1(YE+ X):EY—i—

is a normal element of E and the algebra E is a GWA

E:K[G,X] E,Y;a,a::qé— 4 X |,
1 —g2

where 0(5) = q_lff, o(X) =¢gX.

Let 5
p:=(1-¢g>C. (2.2)
Thengp = X + (¢! —q)YE = (1 —¢?)EY + ¢*>X. Hence,
- X
E = K[@,X][E, Yioa =~ } 2.3)
q ' —q

where 0 (¢) = g !¢ and 6(X) = ¢X. Using the defining relations of the GWA E,
we see that the set {Y? | i € N} is a left and right Ore set in E. The localization
of the algebra IE at this set, Ey := K[¢p, X][Y *!; 0] is the skew Laurent polynomial
ring. Similarly, the set {X? | i € N} is a left and right Ore set in Ey and the algebra

Eyx = Klp, XE[Y ! 0] = K[®] ® K[XE!][Y £; 0] (2.4)

is the tensor product of the polynomial algebra K[®] where ® = X¢ and the Laurent
polynomial algebra K[X *!][Y *!; ] which is a central simple algebra. In particular,
Z(Ey x) = K[®]. So, we have the inclusion of algebras E C Ey C Ey x.
The next lemma describes the centre of the algebras E, Ey and Ey x.

Lemma 2.5. Z(E) = Z(Ey) = Z(Ey,x) = K[®] is a polynomial algebra where
P = Xo.

Proof. By (2.4), K[®] € Z(E) € Z(Ey) € Z(Ey,x) = K[®], and the result
follows. o

We have the following commutation relations:

Xo =pX, Yp=qopY, E¢= q_ltpE, K¢ = qpK. (2.5)
X =dX, YO =&Y, ED=>E, KCI>=q2<I>K. (2.6)
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Lemma 2.6. (1) [F,¢] = YK.

(2) The powers of ¢ form a left and right Ore set in A.
(3) The powers of X form a left and right Ore set in A.
(4) The powers of Y form a left and right Ore set in A.

Proof. (1) [F,¢] = [F.X +(¢~' —@)YE]
K—K!
=YK '+ (¢! —q)Y(— —_1) = YK.
q9—4
(2) Statement 2 follows at once from the equalities (2.5) and statement 1.
(3) The statement follows at once from the defining relations of the algebra A where X
is involved.

(4) The statement follows at once from the defining relations of the algebra A where Y
is involved. 0

The algebra F is a GWA. Let IF be the subalgebra of A which is generated by the
elements F, X, and Y’ := YK~!. The elements F, X and Y’ satisfy the defining
relations

FY' =q¢2Y'F, XY'=¢Y'X, and FX-XF=Y'

Therefore, the algebra F = K[Y'|[F, X;0,b = Y',p = 1] where 0(Y') = ¢~2Y".
The polynomial @ = (1/(1—¢~2))Y’eK[Y]is asolution to the equationx —o (o) = Y.
By Proposition 2.4, the element

C':=XF Y' =FX Y’
+ 1—qg2 + g2 -1
belongs to the centre of the GWA
1
F:K[C’,Y’][F,X;o,a=C’— Y’:|.
1—g~2
Let
V= (1-¢>C". 2.7)
Theny = (1 —¢?)FX —Y' = (1—¢*)XF —q?Y’' € Z(F) and
2Y/
F = K[y, Y/][F,X;o,a = ‘”f—qz} 2.8)
—9q

where o(¥) = ¥ and o(Y’) = ¢~2Y’. Similar to the algebra [, the localization of
the algebra I at the powers of the element X is equal to

Fx := K[y, Y][X* 07" = K[y] @ K[Y'][X*';071],

where o is defined in (2.8). The centre of the algebra K[Y'][X*'; o] is K. Hence,
Z(Fx) = Ky].
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Lemma 2.7. Z(F) = Z(Fx) = K[y].
Proof. The result follows from the inclusions K[y] € Z(F) € Z(Fx) = K[y]. O
The GWA A. Let T be the subalgebra of A generated by the elements K*!, X

and Y. Cleatly,
T := A[K*; 1], (2.9)

where A ;= K(X,Y | XY =¢gYX),and 1(X) = ¢gX and 7(Y) = ¢~ 'Y. Itis easy
to determine the centre of the algebra 7.
Lemma 2.8. Z(T) = K[z] where z := KYX.

Proof. Clearly, the element z = K YX belongs to the centre of the algebra T'. The
centralizer C7(K) is equal to K[K*!, YX]. Then the centralizer C7 (K, X) is equal
to K[z], hence Z(T') = K|z]. O

Let A be the subalgebra of A generated by the algebra T and the elements ¢
and ¥. The generators K*!, X, Y, ¢, and ¥ satisfy the following relations:

oX =Xo. @Y =q Yo, ¢K =q 'Ko,
VX =Xy, yY =qYy, YK =qKy, oY — Vo =—q(1 —g°)z.

These relations together with the defining relations of the algebra T are defining
relations of the algebra A. In more detail, let, for a moment, A’ be the algebra
generated by the defining relations as above. We will see A" = A. Indeed,

A'=Tlp.y:0.b=—q(1—¢*)z,p = 1].

Hence, the set of elements {K' X/ Y*o!y™ | i € Z, j,k,I,m € N} is a basis of the
algebra A’. This set is also a basis for the algebra A. This follows from the explicit
expressions for the elements ¢ = (¢~ ! —¢)YE+ X and ¢y = (1—¢*)XF —¢?YK™!.
In particular, the leading terms of ¢ and ¥ are equal to (¢! —¢)YE and (1 —¢?)XF,
respectively (deg(K*1) = 0). So, A = A/, i.e.,

A=Tlp.y:0.b=—q(1—¢*)z,p=1],

where 6(X) = X, 0(Y) = ¢7'Y, and 0(K) = ¢~ ' K. Recall that the element b
belongs to the centre of the algebra T (Lemma 2.8). The element o = g3z is a
solution to the equation @ — o (@) = b. Then, by Proposition 2.4, the element

C"=v9+q¢’z =9y +qz
is a central element of the algebra A (since o (z) = g~2z) which is the GWA
A=T[C"lp.¥:0.a =C"—q’z],
where 0 (C") = C",0(X) = X,0(Y) =q"'Y,0(K) = ¢ K.
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Let C := C”/(1 — g?). Then
q

C=0-¢)"We+q’2)=10-¢)"" eV +9q2), (2.10)
is a central element of the GWA
A =T[Cllp.y:0.a = (1—¢*)C —q°z], (2.11)

where 0(C) = C, 0(X) = X, o(Y) = ¢7'Y, and 0(K) = ¢ 'K. Using
expressions of the elements ¢ = X + (¢ ' —1)YE and ¢ = (1—¢*)XF —q*YK™!,
we see that

Axy = Axy. (2.12)
Hence, C € Z(A). We now show our first main result: Z(A) = K[C] (Theo-
rem 2.10). In order to show this fact we need to consider the localization Ay y,,. Let
T:=Txy =Axy [Kil; 7] where 7 is defined in (2.9) and A xy is the localization
of the algebra A at the powers of the elements X and Y. By (2.12) and (2.11),

Axyvo =Axyy = Txy[Cllp*';0] = K[C]® T[p*'; 0] = K[C]® A/, (2.13)

where A’ = T[p*!;0] and o is as in (2.11).
Lemma 2.9. (1) Z(A’) = K. (2) The algebra A’ is a simple algebra.

Proof. (1) Let u = Zkijj,kleinYk(pl € Z(A), where A; jx; € K. Since

[K,u] = 0, we have j — k + [ = 0. Similarly, since [X,u] = [Y,u] = [¢,u] =0,

we have the following equations: —i +k = 0,i—j +/ = 0, —i —k = 0, respectively.

These equations imply thati = j =k =1 = 0. Thus Z(A) = K.

(2) Since the algebra A’ is central, it is a simple algebra, by [16, Corollary 1.5.(a)].
O

Theorem 2.10. The centre Z(A) of the algebra A is the polynomial algebra in one
variable K[C].

Proof. By (2.13) and Lemma 2.9.(1), Z(Ax,y,,) = K[C]. Hence, Z(A) = K[C].
O

Using the defining relations of the algebra A, we can rewrite the central element C
as follows:
2

1
C=(1—q¢*FYXE + FX>—Y2K'E - YK~'x + 4 _ykx.
1—g2 1—g2

(2.14)

C = (FE —¢?EF)YX +q¢*FX?> - K 'EY?. (2.15)
3

C =FX(EY —qYE)— K 'EY? + ; el S(K—K™HYX. (2.16)
—q

q3

1—g?

C=(1-¢>FEYX + (K- K YWYX +¢*>FX?>-K'EY?  (217)



898 V. V. Bavulaand T. Lu

The subalgebra A of A. Let A be the subalgebra of A generated by the elements
K*', E, X,and Y. The properties of this algebra were studied in [8] where the
prime, maximal and primitive spectrum of 4 were found. In particular, the algebra

A =E[K*!; 1] (2.18)

is a skew Laurent polynomial algebra where 7(E) = ¢?E, 1(X) = ¢X, and
7(Y) = ¢~ 'Y. The elements X, ¢ € s are normal elements of the algebra .
The set 8x, := {X'¢/ | i,j € N} is a left and right denominator set of the
algebras A and +. Clearly Ay , 1= 8;}(/,94) CAx,, = 8;}¢A.

Lemma 2.11 ([8]). The algebra Ay , is a central simple algebra.
Using the defining relations of the algebra A, the algebra A is a skew polynomial

algebra
A = A[F;0,6] (2.19)

where o is an automorphism of +4 such that 0(K) = ¢?K,0(E) = E,0(X) = X,
o(Y) = Y; and § is a o-derivation of the algebra 4 such that §(K) = 0, §(E) =
(K=K YH/(g—q™",8X) =YK, and §(Y) = 0. For an element a € A, let
degr (a) be its F-degree. Since the algebra A4 is a domain,

degp (ab) = degp(a) + degp (b)

for all elements a, b € A.

Lemma 2.12. The algebra Ax,, = K[C] ® Ax, is a tensor product of algebras.

Proof. Recall that ¢ = EY — gqYE. Then the equality (2.16) can be written as
C=FXp—K'EY?+(¢®/(1—q*)(K— K 1)YX. The element X¢ is invertible
in Ax,,. Now, using (2.19), we see that

AX’(D==>40X’¢[F;0,8]=AX,¢[C]=K[C]®J\>X’¢. O

Quantum Gelfand-Kirillov conjecture for A. If we view A as the quantum ana-
logue of the enveloping algebra U (V5 x sl,), a natural question is whether A satisfies
the quantum Gelfand—Kirillov conjecture. Recall that a quantum Weyl field over K is
the field of fractions of a quantum affine space. We say that a K-algebra A admitting
a skew field of fractions Frac(A) satisfies the quantum Gelfand—Kirillov conjecture
if Frac(A) is isomorphic to a quantum Weyl field over a purely transcendental field
extension of K; see [11, I1.10, p. 230].

Theorem 2.13. The quantum Gelfand—Kirillov conjecture holds for the algebra A.

Proof. This follows immediately from (2.13). 0
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3. Prime, primitive and maximal spectra of A

The aim of this section is to give classifications of prime, primitive and maximal
ideals of the algebra A (Theorem 3.7, Theorem 3.11 and Corollary 3.9). It is proved
that every nonzero ideal of the algebra A has nonzero intersection with the centre
of A (Corollary 3.8). The set of completely prime ideals of the algebra A is described
in Corollary 3.12. Our goal is a description of the prime spectrum of the algebra A
together with their inclusions. Next several results are steps in this direction, they are
interesting in their own right.

Lemma 3.1. The following identities hold in the algebra A.
(1) FX' =X'F+((1—-¢*)/1—=¢?)) YK 1Xx7L,
(@) XF' = F'X —((1=¢*)/(1 —¢?)YF71K~1,

Proof. By induction on i and using the defining relations of A. 0

Let R be a ring. For an element r € R, we denote by () the (two-sided) ideal
of R generated by the element r.
Lemma 3.2. (1) Inthe algebra A, (X) = (Y) = (p) = AX + AY.
(2) A/(X) = Uy(sla).
Proof. (1) The equality (X) = (Y) follows from the equalities FX = YK~ ! + XF
and EY = X + ¢ 'YE. The inclusion (¢) € (Y) follows from the equality
¢ = EY — gYE. The reverse inclusion (¢) 2 (Y) follows from Y = [F,¢]K~!

(Lemma 2.6). Let us show that XA € AX + AY. Recall that X is a normal element
of 4. Then by (2.19),

XA =) AXFF=AX+ )Y AXFFCAX + AY
k=0 k=1

(the inclusion follows from Lemma 3.1.(2)). Then
(X) = AXA C AX + AY C (X.Y) = (X),
ie., (X)=AX + AY.
(2) By statement 1, A/(X) = A/(X,Y) =~ Uy(sl»). O
The next result shows that the elements X and ¢ are rather special.
Lemma 3.3. (1) Foralli > 1, (X') = (X)'.
(2) Foralli =1, (¢")x = ((p)‘X = Ay.
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Proof. (1) To prove the statement we use induction on i. The case i = 1 is obvious.
Suppose that i > 1 and the equality (X’/) = (X)/ holds forall 1 < j <i — 1. By
Lemma 3.1.(1), the element YX'~! € (X*). Now,

X)) =X)X) ™= (X)X = AXAXTTT A C (X)) + AYX'TT A C (X).

Therefore, (X)' = (X').

(2) It suffices to show that (¢’)y = Ay forall i > 1. The case i = 1 follows
from the equality of ideals (¢) = (X) in the algebra A (Lemma 3.2). We use
induction on i. Suppose that the equality is true for all i/ < i. By Lemma 2.6.(1),
[F.¢'] = (1—q%)/(1—¢72))YK¢p'~!, hence Yo' ~! € (¢"). Using the equalities
EY —q7'YE = X and E¢ = ¢~ '¢E, we see that

EYp'™' —q7 Yo' 'E = (EY —q7'YE)p' ' = X¢'™.
Now, (¢')x 2 (¢'~!)x = Ay, by induction. Therefore, (¢')x = Ax foralli. [

One of the most difficult steps in classification of the prime ideals of the algebra A
is to show that each maximal ideal q of the centre Z(A) = K[C] generates the prime
ideal Aq of the algebra A. There are two distinct cases: q # (C) and q = (C). The
next theorem deals with the first case.

Theorem 3.4. Let q € Max(K[C]) \ {(C)}. Then
(1) The ideal (q) := Aq of A is a maximal, completely prime ideal.
(2) The factor algebra A/(q) is a simple algebra.

Proof. Notice that q = K[C]q’ where ¢’ = ¢’(C) is an irreducible monic polynomial
such that ¢’(0) € K*.

(i) The factor algebra A/(q) is a simple algebra, i.e., (q) is a maximal ideal of A:
Consider the chain of localizations

A/(q) — Ax — Ax .

(Wx (@)x.0

By Lemma 2.12, Ax,o /(@) x,p = Lq ® sx,, where Ly := K[C]/q is a finite field
extension of K. By Lemma 2.11, the algebra Ay, is a central simple algebra. Hence,
the algebra Ax /(q)x is simple iff (¢*, q)x = Ax foralli > 1. By Lemma 3.3.(2),
(¢')x = Ax forall i > 1. Therefore, the algebra Ax/(q)x is simple. Hence, the
algebra A/(q) is simple iff (X7, q) = A foralli > 1.

By Lemma 3.3.(1), (X?) = (X)’ forall i > 1. Therefore, (X', q) = (X)' + (q)
foralli > 1. It remains to show that (X )’ +(q) = Aforalli > 1. By Lemma3.2.(1),
(X)=(X,Y). Ifi =1then(X)+ (q9) = (X,Y,q) = (X,Y,4'(0)) = A4, by (2.14)
and ¢’(0) € K*. Now,

A=4"=(X)+ @) €X' + (@) C A
ie., (X)' + (q) = A, as required.
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(i) (q) is a completely prime ideal of A: The set 8 = {X'¢/ | i,j € N}isa
denominator set of the algebra A. Since Ax,,/(q)x,o =~ 8 1(4/(q)) is a (nonzero)
algebra and (q) is a maximal ideal of the algebra A, we have that torg(A4/(q)) is an
ideal of the algebra A/(q) distinct from A/(q), hence torg(A/(q)) = 0. This means
that the algebra A/(q) is a subalgebra of the algebra Ay /(q)x,¢y =~ Lq ® Ax,e,
which is a domain. Therefore, the ideal (q) of A4 is a completely prime ideal.

(iii) Z(A/(q)) = Lq: By Lemma 2.11, Z(Ax,y) = K, and A/(q) € Ax,o/(@)x,¢
~ Lg ® Ax,p, hence Z(A/(q)) = L. O

The case where ¢ = (C) is dealt with in the next proposition.

Proposition 3.5. A N (C)x,, = (C) and the ideal (C) of A is a completely prime
ideal.

Proof. Recall that A = A[F; 0, 8] (see (2.19)), ® = X¢ € A is a product of normal
elements X and ¢ in 4 and, by (2.16), the central element C can be written as
C = OF + s where

4
Loyl vk and s=—?KEY?— X5
1—g2 1—g2

1) If Xf € (C) for some f € A then f € (C): Notice that Xf = Cg for some
g € A. To prove the statement (i), we use induction on the degree m = degg (f) of
the element f € A. Notice that A4 is adomain and deg ( fg) = degr (f)+degr(g)
for all f,g € A. The case when m < 0 i.e., f € 4, is obvious since the equality
Xf = Cgholdsiff f = g = 0(sincedegr(Xf) < 0Oanddegr(Cg) = 1 providing
g # 0). So, we may assume that m > 1. We can write the element f as a
sum f = fo+ fiF +---+ fuF™ where f; € A and f, # 0. The equality
Xf = Cg implies that degr(g) = degp(Xf) — degp(C) = m — 1. Therefore,
g=go+g1F+-+gu1 F™ ! forsome g; € # and g,,—; # 0. Then (where §
is defined in (2.19))

y:

Xfo+ XAiF+- 4 XfnF"
= (PF +5)(g0+ g1F + -+ gm1 F"")
= @(0(80)F +8(80)) + (0(g1)F +8(g1)) F + -+ (0 (gm-1) F
+8(gm—1))F" ' +sgo + sg1F + -+ + sgm_1 F™ "
= ®8(go) + sgo + (Po(go) + P8(g1) + s81)F + -+ + Po(gm—1) F™.

(3.1)

Comparing the terms of degree zero we have the equality
Xfo = ®8(g0) + 580 = Xp8(g0) + (~¢*K'EY? — X §)go,

ie., X(fo—¢8(g0) +Vgo) = —q>?K~1EY?g,. All the terms in this equality belong
to the algebra #. Recall that X is a normal element in +# such that 4 /4 X is a domain
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(see [8]) and the element K~ EY 2 does not belong to the ideal AX . Hence we have
go € AX,i.e., go = Xho for some hy € 4. Now the element g can be written as
g = Xho+ g'F,where g’ =0if m = 1,and degp(g’) = m —2 = degp(g) — 1
ifm = 2. Now, Xf = C(Xho + g'F) and so X(f — Chy) = Cg’'F. Notice
that Cg’'F has zero constant term as a noncommutative polynomial in F (where
the coeflicients are written on the left). Therefore, the element f — Chg has zero
constant term, and hence can be written as f — Chg = f’F for some f’' € A with

degp (f') + degp(F) = degp(f'F) = degp(f') + 1
= degp(f — Cho) < max (degp(f).degp(Cho)) = m.

Notice that, degp (f') < degp(f). Now, Cg’'F = X(f — Cho) = Xf'F, hence
Xf' = Cg’' € (C) (by deleting F). By induction, " € (C), and then

f=Cho+ f'F €(C),

as required.

(i) If of € (C) for some f € Athen f € (C): Notice that ¢f = Cg for some
g € A. To prove the statement (ii) we use similar arguments to the ones given in
the proof of the statement (i). We use induction on m = degg (f). The case where
m <0, i.e., f € 4 is obvious since the equality ¢f = Cg holds iff f = g =0
(since degr (¢f) < 0 and degr(Cg) = 1 providing g # 0). So we may assume
that m = 1. We can write the element f asasum f = fo + fiF +--+ fuF™
where f; € 4 and f;, # 0. Then the equality ¢ f = Cg implies that degr(g) =
degp(pf) —degp(C) = m — 1. Therefore, g = go + g1F + -+ + gm—1 F™!
where g; € 4 and g,,—1 # 0. Then replacing X by ¢ in (3.1), we have the equality

ofo +@fiF + -+ @fi F™ = ®8(g0) + 580 + -+ + Po(gm—1)F™. (3.2)

The element s canbe writtenasasums = ((—¢/(1—¢?))pK ' +(1/(1—¢?))KX)Y .
Then equating the constant terms of the equality (3.2) and then collecting terms that
are multiple of ¢ we obtain the equality in the algebra #A:

o(fo— X8(0) + L3 K~ ¥go) = -2 KXo,

—q l—gq
The element ¢ € +4 is a normal element such that the factor algebra A/Agp is a
domain (see [8]) and the element K XY does not belong to the ideal A¢. Therefore,
go € Ap, i.e., go = phg for some element /1y € 4. Recall that degg(g) = m — 1.
Now, g = ¢ho+ g’ F,where g’ € Aand g’ = 0ifm = 1,anddegp(g') =m—2 =
degp(g) — 1ifm = 2. So, ¢f = Cg = C(pho + g'F). Hence,

@o(f —Cho) = Cg'F,
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andso f — Cho = f'F forsome f' € A with

degp (f') + deg (F) = degp (f'F) = degp(f') + 1
= degy(f — Cho) < max (degy (/). degp(Cho)) = m.

Notice that, degz (f') < degp(f). Now, Cg'F = ¢(f — Cho) = ¢f'F, hence
of’" = Cg’ € (C) (by deleting F). Now, by induction, f’ € (C), and then

f=Cho+ f'F € (C),
as required.

(ii)) AN (C)xy = (C): Letu € AN (C)x,. Then X'¢/u € (C) for some
i,j € N. It remains to show that u € (C). By the statement (i), ¢/ u € (C), and
then by the statement (ii), u € (C).

(iv) Theideal (C) of A is acompletely prime ideal: By Lemma?2.12, Ax ,/(C)x,p =~
Ax,p, in particular, Ax,/(C)x,, is a domain. By the statement (iii), the
algebra A/(C) is a subalgebra of Ay ,,/(C)x,p, 50 A/(C) is a domain. This means
that the ideal (C) is a completely prime ideal of A. O

Let R be a ring. Then each element r € R determines two maps from R to R,
r:x +— rx and -r: x — xr where x € R. The next proposition is used in the proof
of one of the main results of the paper, Theorem 3.7. It explains why the elements
(like X and @) that satisfy the property of Lemma 3.3 are important in description of
prime ideals.

Proposition 3.6 ([8]). Let R be a Noetherian ring and s be an element of R ;uch
that 85 := {s' | i € N} is a left denominator set of the ring R and (s*) = (s)* for
alli = 1 (e.g., s is a normal element such that ker(-s) C ker(s-)). Then,

Spec (R) = Spec (R, s) L Spec,(R),
where Spec(R, s) := {p € Spec (R) | s € p}, Specy,(R) := {q € Spec(R) | s ¢ q}
and

(a) the map Spec(R,s) + Spec (R/(s)), p — p/(s), is a bijection with the inverse
q+> 77 1(q) where m: R — R/(s),r +— r + (s),

(b) the map Spec,(R) — Spec(Rs), p = 87 'p, is a bijection with the inverse
q+> o~ 1(q), wherea: R — Ry :== 8, 'R, r > r/L.

(c) Forallp € Spec (R, s) and q € Specy(R), p £ q.

The next theorem gives an explicit description of the poset (Spec (A), ©).
Theorem 3.7. Let U := U,(sly). The prime spectrum of the algebra A is a disjoint
union

Spec(A) = Spec(U) U Spec(Ax,y)

3.3
= {(X.p) | p € Spec(U)} U {Aq | q € Spec (K[C])}. (3-3)
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Furthermore,

N
(X)
AN
(&) {4q | g € Max (K[C]) \ {(C)}}.
N S
0 (3.4)

Proof. By Lemma 3.2.(2), A/(X) ~ U. By Lemma 3.3.(1) and Proposition 3.6,
Spec (A) = Spec (A4, X) U Spec (Ax). By Lemma 3.3.(2) and Proposition 3.6,
Spec (Ax) = Spec (Ax,y). Therefore,

Spec (A) = {(X,p) | p € Spec (U)} U {A N Ax,0q | q € Spec (K[C])}.

Finally, by Theorem 3.4.(1), A N Ax,,q = (q) for all ¢ € Max (K[C]) \ {(C)}.
By Proposition 3.5, A N Ax,C = (C). Therefore, (3.3) holds. For all q €
Max (K[C]) \ {(C)}, the ideals Aq of A are maximal. By (2.14), AC C (X).
Therefore, (3.4) holds. O

The next corollary shows that every nonzero ideal of the algebra A meets the
centre of A.

Corollary 3.8. If I is a nonzero ideal of the algebra A then I N K[C] # 0.

Proof. Suppose that the result is not true, let us choose an ideal J # 0 maximal such
that J N K[C] = 0. We claim that J is a prime ideal. Otherwise, suppose that J is
not prime, then there exist ideals p and q such that J & p, J & g and pq € J. By
the maximality of J, p N K[C] # 0 and g N K[C] # 0. Then

J NKIC] 2 pg NK[C] # 0,

a contradiction. So, J is a prime ideal, but by Theorem 3.7 for all nonzero primes P,
P NK[C] # 0, a contradiction. Therefore, for any nonzero ideal 7, I N K[C] # 0.
O

The nextresult is an explicit description of the set of maximal ideals of the algebra A.
Corollary 3.9. Max (A) = Max (U) U {Aq | g € Max (K[C]) \ {(C)}}.

Proof. ltis clear by (3.4). O

In the following lemma, we define a family of left A-modules that has bearing
of Whittaker modules. It shows that these modules are simple A-modules and their
annihilators are equal to (C).
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Lemma 3.10. For A € K*, we define the left A-module W(A) .= AJA(X —A,Y, F).
Then:
(1) The module W(A) is a simple A-module.
(2) anng(W(4)) = (C).
Proof. (1) Let1 =1+ A(X — /\ Y, F) be the canonical generator of the A-module
W(X). Then, W(X) = 3", E'K[KE!] 1. Suppose that V' is a nonzero submodule

of W(L), we have to show that V = W(L). Letv = Y I_, E! fi1 be a nonzero
element of the module V where f; € K[K*!] and f, # 0. Then,

i i i q(l _qzi) i—1 - u q(1 _q2i) i-1,7
Yv=Z(qEY—WXE )ﬁl:Z—WXE £
i=1 i=1

By induction, we see that Y v =_Pi € V where P is a nonzero Laurent polynomial
in K[K*']. Then it follows that 1 € V, andso V = W(}).
(2) Itis clear that anng (W(A)) 2 (C) and X ¢ anng(W(1)). By (3.4),

anng (W(A)) = (C). O
The next theorem is a description of the set of primitive ideals of the algebra A.
Theorem 3.11. Prim (A) = Prim (U) U {Aq | q € Spec(K[C]) \ {0}}.
Proof. Clearly, Prim (U) € Prim (A) and
{Aq | ¢ € Max (K[C]) \ {C]K[C]}} C Prim (A)

since Aq is a maximal ideal (Corollary 3.9). By Corollary 3.8, 0 is not a primitive
ideal. In view of (3.4) it suffices to show that (C) € Prim (A). But this follows from
Lemma 3.10. O

The next corollary is a description of the set Spec,.(A) of completely prime ideals
of the algebra A.
Corollary 3.12. The set Spec,.(A) of completely prime ideals of A is equal to

Spec,(A4) = Spec,(U) U {Aq | g € Spec (K[C])}
= {(X.p) | p € Spec (U), p # anny (M)

for some simple finite dimensional U -module M
of dimg (M) = 2} U {Aq | q € Spec (K[C])}.

Proof. The result follows from Theorem 3.4.(1) and Proposition 3.5. ]
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4. The centralizer C 4 (K) of the element K in the algebra A

In this section, we find the explicit generators and defining relations of the centralizer
C4(K) of the element K in the algebra A.

Proposition 4.1. The algebra C4(K) = K(K*', FE, YX, EY?, FX?) is a
Noetherian domain.

Proof. Since A is a domain, then so is its subalgebra C 4(K). Notice that the algebra
A=@,cy AiisaZ-graded Noetherian algebra, where A; ={a € A | KaK~'=¢g'a}.
Then the algebra A9 = C4(K) is a Noetherian algebra.

The algebra Uy (sl,) is a GWA:

K -1g-1
Uy(sl) ~ K[K*, Q][E, Fio,a:=Q— L},

(¢—q7')?

where @ = FE + (¢K + ¢ 'K YY) /(g — ¢ 1%, 0(K) = ¢ ?K, and 0(Q) = Q.
In particular, Uy, (sl) is a Z-graded algebra U, (sl,) = @,y Dvi, where D :=
K[K*!, Q] = K[K*!,FE],v; = E'ifi > 1,v; = Flilifi < —1 and vy = 1.
The quantum plane K,[X, Y] is also a GWA:

Kq[X,Y] ~K[f][X,Y;0,t], wheret:=YX ando(?) = qt.

Therefore, the quantum plane is a Z-graded algebra K,[X,Y] = ;o7 K[t]w;,
where w; = X7 if j = 1, w; = YVIif j < —1 and wog = 1. Since 4 =
U, (sl2) ® K4 [ X, Y] (tensor product of vector spaces), and notice that Et = tE+ X 2,
Ft =tF + ¢ 2K~'Y?, we have

A=Uu(sh) @ Kg[X. Y] = P Dvi @ PBK[tlw; = € Dlelviw,. 4.1
i€Z JEZ i,j€Z
By (4.1), foreach k € Z,
A = @ D[t]v,-wj = @D[l]viwk_Zi.
i,j€Z,2i+j=k i€Z

Then,
Ca(K) = Ay = P DIE'Y* & @ D[1]F/ X*.
i=0 j=1
Notice that EY? -t = ¢~ 2t - EY? + gqt?> and FX? -t = ¢*t - FX?> + ¢ 'K~ 142,
By induction, one sees that for all i, j = 0,

E'Y? e DKINEY?" and F/X* e HKIK* 1](FX?)".
neN neN
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Hence, . '
Ca(K) = Ao = P DIIEY? & P DI(FX?).
i=0 j=1
In particular, the centralizer C4(K) = K(K*!, FE, YX, EY?, FX?). O

Lemmad.2. (1) Cay, ,(K) = K[C, KF'] @ K 2[(YX)E, (Yo)*!] is a tensor
product of algebras, where K 2[(YX VEL (Yo)*1] is a central, simple, quantum
torus with YX - Yo = q*Y¢ - YX.

(2) GK(Cuyy,(K)) =4
(3) GK(C4(K)) = 4.
C)) AX,YJP = EBieZ CAX.(p.Y(K)Yi'

Proof. (1) By (2.13), Ax,y,, = K[C] ® A’ where A’ is a quantum torus. Then,
Cayy,(K) =K[C] ® Ca(K). Since A’ is a quantum torus, it is easy to see that

Ca(K) = P K (YX) (Yo)F,
i,j,k€Z
ie., Car(K) = K[KF'| @ K 2[(YX)*!, (Y@)®!]. Then statement 1 follows.
(2) Statement 2 follows from statement 1.

(3) Let R be the subalgebra of C4(K) generated by the elements C, K =1 yx,
and Y¢. Then, R = K[C,K*!| ® Kg2[YX, Yg] is a tensor product of algebras.
Clearly R is a Noetherian algebra of Gelfand—Kirillov dimension 4. So,

GK(C4(K)) = GK(R) = 4.
By statement 2,
GK(Ca(K)) < GK(Cuy y,(K)) = 4.
Hence, GK(C4(K)) = 4.
(4) Statement 4 follows from statement 1 and (2.13). ]

Proposition 4.3. Leth := X', e := EX 2, andt := YX. Then:
(1) Cay ,(K) =K][C, K*1 ® s is a tensor product of algebras, where

2h—1
A= K[hil] t,e;0,a = 4 "=
1—g¢?
is a central simple GWA (where o(h) = q2h).
(2) GK(Cay, (K)) = 4.

(3) Ax,p = Biez Cay, (KX
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Proof. (1) Let o be the subalgebra of C4, ,(K) generated by the elements h*l e,
and 7.

(i) A is a central simple GWA: The elements h!, e and ¢ satisfy the following
relations

W' =h'h =1, th=q?ht, eh=q 2he,

g 2h—1 h—1 (4.2)
et = ——, te= .
1—qg? 1—q?
Hence, # is an epimorphic image of the GWA
2h—1
A =K[hT|t,e;0,a = " ,
1 —g2

where o (h) = g?h. Now, we prove that -’ is a central simple algebra. Let A/, be
the localization of A’ at the powers of the element e. Then A/, = K[h*!][e*!; 0],
where o/ (h) = g2h. Clearly, Z(#4/,) = K and 4, is a simple algebra. So, Z(A') =
Z(AL) N A’ = K. To show that A’ is simple, it suffices to prove that A’e’ A’ = A’
for any i € N. The case i = 1 is obvious, since 1 = g%et —te € A'eA’. By
induction, for i > 1, it suffices to show that e!~! € A’e?A’. This follows from the
equality

te' = q*e't —

So, A’ is a simple algebra. Now, the epimorphism of algebras 4’ —» A is an
isomorphism. Hence, A ~ 4’ is a central simple GWA.

(i) Cay,(K)=K][C, K*1l ® A: By Lemma2.12, Ax, = K[C] ® sx 4. So,
Cax,(K) =K[C] ® Cuy ,(K).

By (2.18), Ax., = Ex ,[K*!; 7], where t(E) = ¢?E, t(X) = ¢X,t(Y) = ¢ 'Y,
and t(¢) = q¢. Then,

Cax, (K) = K[K*'] @ B,

To finish the proof of statement (ii), it suffices to show that E% 0= A. By (2.3),

-X
Ex,, = K[Xil,q)il][E,Y;a,a = (/il i|
q9  —49

is a GWA. Then,
EX,(p — @K[X:tl,(pil]Ei ® @K[Xil’¢il]yj

i=0 jz1
= P KFEX o P K[p*Fy/ Xk
i=0,keZ j=1,keZ

Now, it is clear that B}, | = PBiso KhEe' & P KhE N = A.
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(2) Notice that GK(+A) = 2, statement 2 follows from statement 1.

(3) Notice that Ax,, = D,y Cax, (K)X', statement 3 then follows from Lem-
ma 2.12. [

Defining relations of the algebra C 4 (K). We have to select appropriate generators
of the algebra C4(K) to make the corresponding defining relations simpler.

Lemma 4.4. We have the following relations:

(1) YX -Yp = q*Ygp - YX.

4+4" o1y, CUK+qKTH

1—q2 ¢ 1—¢2

gK +q7 'K~} yp_ 40+ %)
1 —g¢? 1—g¢g?

(2) FE-YX =q¢?YX - FE + YX +C.

(3) FE-Y¢ =q %Y¢ - FE + KYX +C.

Proof. (1) Obvious.

(2) Using the defining relations of A, the expression (2.14) of C,and Yo = ¢4Y X +
q(1—g*)EY?,

FE -YX = F(X +q"'YE)X
= FX?4+YFXE = FX?4+Y(YK™ ' + XF)E
= FX?>+ ¢ 2K 'Y?E + YXFE
K+ (q—q>—¢)K™!

=q¢>(YX)(FE) + (1 4+ ¢»)K 'EY? - — YX +C
—q
q+q" @K +q 'K
=q?YX - FE + K™Yo — 5 YX +C.
l—¢q l—¢q

(3) FE-Yp=F(X +q 'YE)p
=FX¢ +q 2YFgE = FX¢ + ¢ 2Y(¢F + YK)E

3 K_K—l
= ¢ 2YQFE + (¢*K + K" )EY? - (% +q(l + qz)K)YX +C
—q
K+q 'K 1+ g2
—¢2Yp-FE + 1214 o U pyy e 0
1—g2 1—g2

Let® := (1-¢*)Q = (1-¢*)FE+q*(qK+q7'K™")/(1-¢%) € Z(U,(s1)).
By (2.15), we have

-1

C = (@ - )YX +g?FX? — “lyg. 4.3)

- K
1 —gq? q(1—-q?)
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By Lemma 4.4.(2), (3), we have
O©-YX =¢’YX-0+(q+q HK Yo+ (1-¢>C, (4.4)
O-Yop=qYp-0—q(14+¢)KYX + (1-4*C. (4.5)

Lemma 4.5. In the algebra C 4(K), the following relation holds

q7

1 —gqg2

®-YX - -Yp— K ' Yp)>—C-Yp = K(YX)? —¢*C - YX.

L
q(1—q?)
Proof. By (4.3),

1

q
- K
q(1—¢g?)

K7'YX —¢*FX? +
l—¢

©.-YX=C+ “Yg.

2

So,

q
1—g2

O-YX-Yo=C-Yo+ K'YX-Yo—q?>FX? Yo+ K 1 (Yp)2.
q

1
(1-4?
Then,

K\ (Yg)2—C-vp = 1

S K 'YX -Yo—q?FX?-Yop.
q(1 —q?) 1—gq? v v

®-YX -Yp—
Wehavethat YX - Yo = g*(YX)? +q(1—q¢>)YX -EY?, FX?>- Yo = ¢*?FX¢-YX,

and EY?-YX = q(YX)? 4+ ¢ 2YX - EY?2. Then by (2.16), we obtain the identity
as desired. 0

Theorem 4.6. Let u := K'Y and recall thatt = YX, ® = (1 — q*>)FE +
%K + g 'K~ /(1 — q?). Then the algebra C 4(K) is generated by the elements
K*1, C, ©, t, and u subject to the following defining relations:

tou=q*u-t, (4.6)
O-t=¢*-0+(@q+q Hu+(1-4¢>C, (4.7)
O u=qgu-0—qg+q¢>t+0-¢>»K'C, (4.8)
7
q _
Ot u———u>—C-u= > —q¢*K'C -1, (4.9)
q(1—g?) 1—g?
[K£1,]1=0, and [C.]=0, (4.10)

where (4.10) means that the elements K*' and C are central in C4(K). Furthermore,
Z(Ca(K)) = K[C, K*'].
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Proof. (i) Generators of C4(K): Notice that Yo = g*YX + q(1 —g?)EY 2. Then
by Proposition 4.1 and (4.3), the algebra C4(K) is generated by the elements C,
K*1!, ®,t,and u. By (4.4), (4.5) and Lemma 4.5, the elements C, K*', ©, ¢, and u
satisfy the relations (4.6)—(4.10). It remains to show that these relations are defining
relations.

Let € be the K-algebra generated by the symbols C, K*!, @, ¢ and u subject to
the defining relations (4.6)—(4.10). Then there is a natural epimorphism of algebras
f:€ —> C4(K). Our aim is to prove that f is an algebra isomorphism.

(ii) GK(€) = 4 and Z(€) = K[C, K*!]: Let R be the subalgebra of € generated
by the elements C, K*!, t and u. Then R = K[C, KT ® K,2[t, u] is a tensor
product of algebra where K 2[t,u] := K(t,u | tu = q?ut) is a quantum plane.
Clearly, R is a Noetherian algebra of Gelfand—Kirillov dimension 4. Let €;,, be the
localization of € at the powers of the elements ¢ and u. Then,

Cru=K[C,KF' @ K2 [t uF] = Ry
So, GK(& ) = 4. Now, the inclusions R € € C €; ,, yield that
4 = GK(R) < GK(€) < GK(& ) = 4,
i.e., GK(€) = 4. Moreover, since qu[til,uil] is a central simple algebra,
Z(€ ) = K[C, K*1].

Hence, Z(€) = K[C, K*1].

By Lemma 4.2.(3), GK(€) = GK(C4(K)) = 4. In view of [20, Proposi-
tion 3.15], to show that the epimorphism f:€ —» C4(K) is an isomorphism it
suffices to prove that € is a domain.

Let D be the algebra generated by the symbols C, K*!, ©, ¢, and u subject to
the defining relations (4.6)—(4.8) and (4.10). Then D is an Ore extension

D = R[©;0,8],

where R = K[C, K*!| ® K ,2[t. u] is a Noetherian domain; o(C) = C, o(K*) =
K*' 0(t) = ¢*t,0(u) = g %u; 8 is a o-derivation of R given by the rule

§(C) =8(K*) =0,
8t)=@+q Hu+(1-¢>)C, and Su)=—q(1+¢>)+1—-g>)K'C.

In particular, O is a Noetherian domain. Let

1 5 q7
Z:=0m—-———u"—Cu-— 5
q(1—q?) l—¢q
=tu® —qu? +1*)—q¢’Cu—K't) e D,

> +q*K'Ct
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where § = ¢3/(1 — ¢?). Then Z is a central element of D and € ~ D/(Z). To
prove that € is a domain, it suffices to show that (Z) is a completely prime ideal
of D. Notice that Dy, = K[C, K¥!, Z] ® K 2[r*", u®!] is a tensor product of
algebras. Then,

Cru = Dia/ (2w 2 K[C. KF @Ko [t u™!] = Ry .
In particular, €; , is a domain and (Z);,,, is a completely prime ideal of Dy y,.

(iii) Iftx € (Z)forsomeelementx € D thenx € (Z): Since Z iscentral in D, tx =
Zd for some element d € £. We prove statement (iii) by induction on the degree
degg (x) of the element x. Since D is a domain, degg(dd’) = degg(d) + degg(d’)
for all elements d, d’ € D. Notice that degg(Z) = 1, the case x € R is trivial. So
we may assume that m = degg(x) = 1 and then the element x can be written as
xX=a9+a10 +--- 4+ a,,®™ where a; € R and a,, # 0. The equality tx = Zd
yields that degg(d) = m — 1 since degg(Z) = 1. Hence,

d=dy+d1®+--+dp,_,0m!

for some d; € R and d,,—1 # 0. Now, the equality tx = Zd can be written as
follows:

t(ap+a®+---+a,O")
= (1u® —Gu? +1*) — ¢*Cu — K7'1))(do + d1© + -+ + dpp_1 O™ ).
Comparing the terms of degree zero in the equality we have
tag = tud(do) — (G(u* + 1) + ¢*C(u — K~'1))do.

ie., t(ap —ud(dy) + qtdy — ¢*>CK'dy) = —u(qu + q*>C)dy. All terms in this
equality are in the algebra R. Notice that ¢ is a normal element of R, the elements
u ¢ tR and qu + q>C ¢ tR, we have dy € tR. So dy = tr for some element
re€R. Thend =tr+w®,wherew =d; 4+ 4+ dp_10™2ifm>2andw = 0
ifm = 1. If m = 1 then d = tr and the equality tx = Zd yields thattx = tZr,
i.e.,x = Zr € (Z) (bydeleting ¢), we are done. So we may assume thatm > 2. Now,
the equality tx = Zd canbe writtenas tx = Z(tr + w®),ie.,t(x —Zr) = ZwO.
This implies that x — Zr = x’® for some x’ € D, where degg(x’) < degg(x).
Now, 1x’® = Zw® and hence, tx’ = Zw (by deleting ®). By induction x’ € (Z).
Then x = x' + Zr € (Z).

(iv) Ifux € (Z) for some element x € D then x € (Z): Notice that the elements u
and ¢ are “symmetric” in the algebra £, statement (iv) can be proved similarly as
that of statement (iii).

(v) DN(Z)s,u=(Z): The inclusion (Z) S DN(Z);,y is obvious.Let x € DN (Z); .
Then, t'u’x € (Z)forsomei, j € N. By statement (iii) and statement (iv), x € (Z).
Hence, © N (Z);u = (Z).
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By statement (v), the algebra £D/(Z) is a subalgebra of 9, /(Z);,. Hence,
D/(Z) is a domain. This completes the proof. O

The next proposition gives a K-basis for the algebra € := C4(K).

Proposition 4.7.

€ =K[C, k| ek ( P ko't & PKo‘ & P Ko'u" & ) Kut?).

i,j=1 k=1 I,m=1 a,b=0

Proof. The relations (4.6)—(4.9) can be written in the following equivalent form,

7
2 q 2 4 —1

— W4+ Cu+———12—g*K'C 1,

q(1—g?) 1—gq?

u-0=¢’0-u+q>(1+4*1—q*(1—¢*>K'C,

1-0=¢20-1—q *q+q9 Hu—q*(1—q¢*C.

u-t=q_21-u, O-t-u=

On the free monoid W generated by C, K, K', ©, ¢, and u (where K’ plays the role
of K~1), we introduce the length-lexicographic ordering such that K’ < K < C <
® <t < u. With respect to this ordering the Diamond lemma (see [10], [11, I.11])
can be applied to € as there is only one ambiguity which is the overlap ambiguity uz ®
and it is resolvable as the following computations show:

ut)® — ¢ %tu®
— q7?t(*Ou +¢>(1 + ¢*)t —q>(1 —¢*)K'C)
—1Ou +q(1 +¢>Ht> — (1 —¢>»K'Ct
—(¢7*0r—q*(q+q Hu—q*(1—q*)C)u
+q(1 +g)Ht> — (1 —g*>)K'Ct
—q 0t —q (g +q Hu*—g*(1—¢*Cu
+q(1+¢*)*—(1—¢»)K'Ct
2 - K'Ct,

7 _qqzu2 + Cu + ] _qqz
u(t®) > u(g 20t —q (g +q Hu—q (1 —¢*)C)
— ¢ uOt —q (g +q "’ —q>(1—¢*)Cu
= ¢ (¢*Ou +¢*(1 +¢*)t —¢*(1 —¢*)K'C)t —q~*(q + ¢~ Hu?
—¢?(1=¢*)Cu
— Out +q(1 +¢)t> — (1 —q¢>)K'Ct —q (g + g~ Hu?
—¢?(1-¢*)Cu

—
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= ¢720m + g1+ ¢2)2 — (1 —gHK'Ct —q72(q + ¢ >
—¢?(1-¢*)Cu

T _p2icu+ L _r2_kocr

_>1—q2 1—g?

So, by the Diamond lemma, the result is proved. O

The algebra €4#*, For A € K and u € K*, let €*# := €/(C — A, K — i1). By
Theorem 4.6, the algebra €*+* is generated by the images of the elements ©, ¢, and u
in €4#. For simplicity, we denote by the same letters their images.

Corollary 4.8. Let A € K and i € K*. Then:

(1) The algebra €*" is generated by the elements ©, t and u subject to the following
defining relations

tou=q*u-t, (4.11)
Ot=¢*-O0+(@+qg Hu+U—-g>A, (4.12)
O-u=qgu-0—ql+¢>t+ 0 —-g>u'A, (4.13)
7
q 2 4 —1
Ot u=——u*+ru+ 12 —q*uAr. (4.14)
q(1—g?) 1—g?
@ e** = P K'Y o PKOF & P Ko'u" e P Kur’.
i,j=1 k=1 I,m=1 a,b=0

Proof. (1) Statement 1 follows from Theorem 4.6.

(2) Statement 2 follows from Proposition 4.7. O

Let €; (resp., ‘C’,)L ) be the localization of the algebra € (resp., €**) at the powers
of the element t = Y X. The next proposition shows that €; and ‘6;1 " are GWAs.

Proposition 4.9. (1) Let v := 0t — (1/qg(1 — g?))u — C. The algebra
€ =K[C, K, t*[u, v; 0, 4]

is a GWA of Gelfand—Kirillov dimension 4, wherea = (q" /(1—q*))t?—q*K~'Ct
and o is the automorphism of the algebra K[C, KT, t*] defined by the rule:

o(C)=C, o(K*¥Y)Y=K*', and o(t) =q 2.
() Let A €K, u € K* and v := Ot — (1/q(1 — g*))u — A. Then the algebra
t’f’“ = K[t*"[u, v;0,4d]

is a GWA of Gelfand-Kirillov dimension 2 wherea = (q” /(1—q?))t>*—q*u=1' 7t
and o is the automorphism of the algebra K[t*'] defined by o' (t) = q~2t.
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(3) Forany A € K and u € K*, the algebra l?tk’” is a central simple algebra.
(4) Z(e*1) = K and GK(E€*H) = 2.

Proof. (1) By Theorem 4.6, the algebra €; is generated by the elements C, K+, v,

til, and u. Note that the element v can be written as
2
q _ 9
_1 _qsz - 1 _qzr(u)v

where 7 is the involution (2.1). It is straightforward to verify that the following
relations hold in the algebra €,

ut = q_ztu, vt = qztv,

7 3

q > —q¢*K1Cct, wv = a

12— g?K~'Ct.
1—g¢? 1—g¢? 1

vu =

Then €, is an epimorphic image of the GWA T := K[C, K*', t*][u, v; 0, a]. Notice
that T is a Noetherian domain of Gelfand—Kirillov dimension 4. The inclusions
€ C € C €,y yield that 4 = GK(€) < GK(&) < €, = 4 (see Lemma 4.2.(3)),
ie., GK(€,) = 4. So, GK(T) = GK(€). By [20, Proposition 3.15], the
epimorphism of algebras T — €; is an isomorphism.

(2) Statement 2 follows from statement 1.

(3) Let ‘6,% : be the localization of ‘C’,)t "/ at the powers of the element u. Then, by

statement 2, ‘Ct): M= K42 [t*!, u*1] is a central, simple quantum torus. So,
A, A, A,
zee" =z net =K.

For any nonzero ideal a of the algebra ‘(f’,)1 # u' € afor somei € N since ‘6,% s
a simple Noetherian algebra. Therefore, to prove that 2‘?{1 " is a simple algebra, it
suffices to show that ‘C’t’l Hylt ‘6} = ‘6,’1 " for any i € N. The case i = 1 follows
from the equality vu = qzuv — q5t2. By induction, for i > 1, it suffices to show
thatu'~! € ‘6? ” ui‘é’,)L . This follows from the equality

. o 7 1— —2i .
vul — q21ulv + q ( q )t2u1—1'
1—g?

Hence, ‘6;1 "* is a simple algebra.

) Since K € Z(e*H) € Z(eM") n'err = K, we have Z(€*H) = K. It is
clear that GK(€4#) = 2. O

Lemma 4.10. In the algebra €4 where A € K and . € K*, the following equality

holds
—2i+1 _ 2041

1 —g¢?

q

@ti — q2iti® + ti_lu + (1 —q2i)kli_1.



916 V. V. Bavulaand T. Lu

Proof. By induction on i and using the equality (4.12). O

Theorem 4.11. Let A € K and u € K*.
(1) The algebra €** is a simple algebra iff A # 0.
(2) The algebra €M is a domain.

Proof. (1) If A = 0 then the ideal () is a proper ideal of the algebra €%*. Hence,
€% is not a simple algebra. Now, suppose that A # 0, we have to prove that €©4+# is
a simple algebra. By Proposition 4.9.(3), ‘6;1 " is a simple algebra. Hence, it suffices
to show that €441 €A1 = €A1 for all i € N. We prove this by induction on ;.

Firstly, we prove the case fori = 1, i.e., a := ehuperi = ern, By (4.12),
the element (¢ + ¢~ Du + (1 —g*>)A € a,s0, u = ((¢> —1)/(qg + ¢~ ')A mod a.
By (4.14), (1/g(1 — g®))u?® + Au € a. Hence,

2 2
! (q_lk)z—k)t(q_lA)EOmoda,
q(1—g*)\q +47! q+q7"

ie., ¢%2(q> — 1)A%/(q*> + 1) = Omod a. Since A # 0, this implies that 1 € a,
thus, a = €44,

Let us now prove that b := €*# €41 = €4 for any i € N. By induction,
fori > 1, it suffices to show that ! € b. By Lemma 4.10, the element

q—2i+1 _q2i+1 _ o
u:= —21’_1u + (1 —q2’))tt’_1 € b.
l—¢q
Then vu € b, where
1
V=0t— ——u— A,
q(1—g?)

see Proposition 4.9.(2). This implies that (1 — g?*)Avt*~! € b and so, vt'~! € b.
But then the inclusion v¢'~! = (©f — (1/g(1 — ¢?))u — A)t'~! € b yields that the
element )
q—21+1 ) .
vi=———1t""lu4 A e,
1 —qg?
By the expressions of the elements u and v we see that #/~! € b, as required.

(2) By Proposition 4.9.(2), the GWA ‘C’,’l’“ ~ € /€ (C — A, K — p) is a domain.
Let
a=C€C—-A,K—u) and o =€NEC —A,K—p).

To prove that A1 s a domain, it suffices to show that @ = «’. The inclusion a C o
is obvious. If A # 0 then, by statement 1, the algebra €4* is a simple algebra, so
the ideal a is a maximal ideal of €. Then we must have a = a’. Suppose that A = 0
and a < o', we seek a contradiction. Notice that the ideal a’ is a prime ideal of €.
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Hence, a’/a is a nonzero prime ideal of the algebra €%*. By Proposition 4.9.(3), the
algebra ‘6,0’“ is a simple algebra, so, t* € a’/aforsomei € N. Then (a//a); = ‘6,)”’“.
But (¢'/a); = a;/a; = 0, a contradiction. O

Proposition 4.12. (1) In the algebra €%, (t) = (u) = (t,u) = C€O¥t 4 €%y,
(2) €% /(1) ~ K[O].

(3) In the algebra €%*, (t') = (t)! foralli > 1.

(4) Spec (€%*) = {0, (1), (t,p) | p € Max (K[®)])}.

Proof. (1) The equality (¢) = (u) follows from (4.12) and (4.13). The second
equality then is obvious. To prove the third equality let us first show that

1EeOH Cehy 4 e0hy,

In view of Corollary 4.8.(2), it suffices to prove that @' € €%t 4 €%y for
all i = 1. This can be proved by induction on i. The case i = 1 follows from (4.12).
Suppose that the inclusion holds for all i” < i. Then

10" =10'7'0 € (€1 + €*u)O
=€ (¢720t —q2(q +q Yu) + " (¢*Ou + ¢>(1 + ¢*)t)
C €%ty 4 ety

Hence, we proved that
1% C €Okt 4 €0ty

Now, the inclusions (t) € €%t + €%*u C (t,u) = (t) yield that
(1) = €%kt ey,
(2) By statement 1, €%#/(t) = €%*/(t,u) ~ K[O].

(3) The inclusion (t*) C ()’ is obvious. We prove the reverse inclusion (z)’ < (t%)
by induction on i. The case i = 1 is trivial. Suppose that the inclusion holds for
all i’ < i. Then,

() = O = ()" = €M ITIEN € (1) + (1)

since t€%* C €1t 4 €01y (see statement 1). By Lemma 4.10, the element 1~ u
belongs to the ideal (t*) of €%#. Hence, (¢)' C (t'), as required.

(4) By Proposition 3.6 and statement 3,
Spec (€%*) = Spec (€%*,t) L Spec, (€%").

Notice that ‘6,0 " is a simple algebra (see Proposition 4.9.(3)) and €%#/(t) ~ K[O]
(see statement 2). Then,

Spec (€%#) = {0} U Spec (K[®]) = {0, (2). (z,p) | p € Max (K[O])}. O
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5. Classification of simple C 4 (K)-modules

In this section, K is an algebraically closed field. A classification of simple C4(K)-
modules is given in Theorem 5.2, Theorem 5.6 and Theorem 5.11. For an algebra B,
we denote by B the set of isomorphism classes of simple B-modules. If & is
an isomorphism invariant property on simple B-modules then B () is the set of
isomorphism classes of B-modules that satisfy the property . The set m
of isomorphism classes of simple C4(K)-modules is partitioned (according to the
central character) as follows:

Ca(K) = | | e (5.1)
A€eK, uek*

Given A € K and u € K*, the set €4 can be partitioned further into disjoint
union of two subsets consisting of 7-torsion modules and ¢-torsionfree modules,
respectively,

et = ek (z-torsion) LI erk (z-torsionfree). (5.2)

The set €4+# (¢-torsion). An explicit description of the set €4# (¢-torsion) is given
in Theorem 5.2. For A, u € K*, we define the left €A1 _modules

thll = el jerl () and TR = MK SEME (L y — 1)),
where A := ¢(¢2 — 1)A. By Corollary 4.8.(2),
= K[O] 1 ~ k[e]K[O]
is a free K[®]-module, where 1 = 1 + €4#(z, 1), and
TH* = K[O] T =~ k[eK[O]

is a free K[®]-module, where 1=1+ ‘C’“‘(t, u— )AL). Clearly, the modules thor
and T** are of Gelfand—Kirillov dimension 1. The concept of degg of the elements
of t+# and T is well-defined (degg (® 1) = i and degg (@' 1) =i foralli = 0).

Lemma 5.1. Ler A, u € K*. Then:
(1) The €**-module t** is a simple module.
(2) The € H*-module TV is a simple module.

(3) The modules t** and T** are not isomorphic.
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Proof. (1) Letus show that foralli > 1,
10 1=>01-¢g2)-0 1 1+..., (5.3)
u-01=—-g>0-¢*) 1011+, (5.4)

where the three dots means terms of degg < i — 1. We prove the equalities by
induction on i. By (4.12), _ .
01 =(1—-g2)Arl,
and by (4.13), ) .
u®1l =—g?>(1 —g*>p A 1.
So, the equalities (5.3) and (5.4) hold for i = 1. Suppose that the equalities hold for
all integers i’ < i. Then,

1-0'1=(q70t—q *(q+q Hu—q>(1—¢g*A)0" "1
— ¢ 2(1 — g2 D)@ T — ¢2(1 — ¢?)A0 ' T + ...
=(1—g2H 0 T+,
u-0'1=(g*0u+q¢*(1 +¢>)t —¢*(1 —gHpr '2)e' 1
= —g* (1= g2 D) A0 T — g 2(1 — P~ A0 T £ -
= (=P A0 T 4
The simplicity of the module t*# follows from the equality (5.3) (or the
equality (5.4)).
(2) Let us show that for alli > 1,
1O T=>1-¢*>)M-0"1T+..., (5.5)
u-01= qz"i O T—q?A—¢*Hyp A0 1T 4., (5.6)

where the three dots means terms of smaller degrees. We prove the equalities by
induction on i. The case i = 1 follows from (4.12) and (4.13). Suppose that the
equalities (5.5) and (5.6) hold for all integers i’ < i. Then,

10 1= (¢20t—q2q+q Hu—qg2(1—gHA)O" 1
— q_2(1 _q2(i—l))k®i—l i _q—Z(q + q—l)qZ(i—l)XGi—l i
—q 21 —gHAO" T + -
=(1=¢*)N-0""T+-,
u-0'1= (q2®u + 4¢3 + ¢*)t — 4% —qz)u_lk)(ai_l 1
_ q2(q2(i—1)i®i i _ qz(l _ qz(i—l))u—l/\(ai—l I)
—* (1= 20 T+ .
— q2i1_®i i _q2(1 —q2i)lL—1/\'®i_1 i 4.

The simplicity of the module T** follows from the equality (5.5).
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(3) By (5.4), the element u acts locally nilpotently on the module t&4 . But, by (5.6),
the action of the element u on the module T»# is not locally nilpotent. Hence, the
modules t*# and T*** are not isomorphic. O

Theorem 5.2.
(1) €% (t-torsion) = {[€O%* /€41 (1, u,® —a) ~ K[O]/(© — )] | @ € K}.

(2) Let A, ;u € K*. Then €** (t-torsion) = {[t’\’“], [T’l’“]}.

Proof. (1) We claim that anngo.. (M) D () for all M € €% (¢-torsion): In view
of Proposition 4.12.(1), it suffices to show that there exists a nonzero elementm € M
such that rm = 0 and um = 0. Since M is ¢-torsion, there exists a nonzero element
m’ € M such that tm’ = 0. Then, by the equality (4.14) (where A = 0), we
have u2m’ = 0. If um’ = 0, we are done. Otherwise, the element m := um’ is a
nonzero element of M such that tm = um = 0 (since tu = g?ut). Now, statement
1 follows from the claim immediately.

(2) Let M € €} (t-torsion). Then there exists a nonzero element m € M such
that tm = 0. By (4.14), we have (u — X)um = 0. Therefore, either um = 0 or
otherwise the element m’ := um € M is nonzero and (u — A)m’ = 0. ifum = 0
then the module M is an epimorphic image of the module t*#. By Lemma 5.1.(1),
t* s a simple ©*1-module. Hence, M ~ t** If m’ = um # 0, then tm’ = 0
and (u — A)m’ = 0. So, the €**-module M is an epimorphic image of the
module TA#. By Lemma 5.1.(2), T** is a simple €***-module. Then M ~ T4,
By Lemma 5.1.(3), the two modules +*># and TA* are not isomorphic, this completes
the proof. 0

Recall that the algebra
Cay,(K) =K[C,K*'| ® 4,

where A is a central simple GWA, see Proposition 4.3. The algebra C4(K) is a
subalgebra of the algebra C4 ,(K), where

u=K'Yo=K"'.YX X' =K th, (5.7)
K1 3K

O=1-g)Ceh '+ 15 _j4 L2 -1, (5.8)
1 — qz 1 — qz

In more detail: by (2.16),

3
F= (C L K'EY? - lq—z(K - K_I)YX)X_lgo_l.
—q
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Then the element FE can be written as

2
FE =CEX ' '+ K 'EY?EXx 197! - . zqz (K- K HYEg™!
=C-EX %2 X'+ K V.EX?2.43(YX)2- EX 2. Xo!
3 K — K—l
KK vy px xe
1 —g2
3 K — K—l
=Ceh™ ' +¢3K tet?eh™ — %teh_1
—q
_Cenl 4 KT PK o @K+ KT
(I1-¢2)?"  (1-¢?)? (1-¢>?

where the last equality follows from (4.2). Then the equality (5.8) follows immediately
since

g*(gK + ¢ 'K

® =(1-¢*FE + 5
l—g¢

For A € K and u € K*, let
€L = Cay o (K)/(C = A K = o).

Then by Proposition 4.3.(1), t’j’;w ~ 4 is a central simple GWA. So, there is a
natural algebra homomorphism

R
X.o

The next proposition shows that this homomorphism is a monomorphism.

Proposition 5.3. Let A € K and u € K*. The following map is an algebra homo-
morphism

AL A
p: €M — €Ax.w ~ A,

-1 3
qu gH 5
h h=".

1 —q¢2 +1—q2

t—1t, ur~ /,L_llh, O+ (1 —qz))ueh_1 +

Moreover, the homomorphism p is a monomorphism.

Proof. The fact that the map p is an algebra homomorphism follows from (5.7)
and (5.8). Now, we prove that p is an injection. If A # 0 then by Theorem 4.11.(1),
the algebra €4+* is a simple algebra. Hence, the kernel ker p of the homomorphism p
must be zero, i.e., p is an injection. If A = 0 and suppose that ker p is nonzero,
we seek a contradiction. Then ! € ker p for some i € N. But p(t) = t! # 0,
a contradiction. O
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Let 4; be the localization of the algebra 4 at the powers of the element . Then
A; = K[hT][t*'; 0] is a central simple quantum torus, where o (k) = g2h. It is
clear that ‘C’i 4~ A,. Let B be the localization of » at the set S = K[2%!]\ {0}.
Then B = S~1A = K(h)[t*'; o] is a skew Laurent polynomial algebra where K (/)
is the field of rational functions in 4 and o(h) = g?h. The algebra B is a Euclidean
ring with left and right division algorithms. In particular, B is a principle left and
right ideal domain. For all A € K and i € K*, we have the following inclusions of
algebras

erit A

| J

et —— el = A —— 8.

—_

The set €%-# (¢-torsionfree). An explicit description of the set €% (¢-torsionfree)
is given in Theorem 5.6. The idea is to embed the algebra €% in a skew polynomial
algebra R for which the simple modules are classified. The simple modules over
these two algebras are closely related. It will be shown that

€K (t-torsionfree) = R (z-torsionfree).

Let R be the subalgebra of A generated by the elements #*! and . Then R =
K[h%1][t; 0] is a skew polynomial algebra where o' (k) = g2h. By Proposition 5.3,
the algebra €%* is a subalgebra of R. Hence, we have the inclusions of algebras

COrCcRCACR = A CB.

We identify the algebra €%# with its image in the algebra R.

Lemma 5.4. Ler u € K*. Then:

(1) €% = P,., K[h*] & K[O].

(2) R =€% o K|[O]h.

(3) () = P, K[htt! = Rt, where (t) is the ideal of €%* generated by the

elementt.

Proof. (1) and (2) Notice that K[®] ¢ K[s*!] and K[h*'] = K[O] & K[O]A.
Multiplying this equality on the right by the element ¢ yields that

K[h*')t = K[O)t & K[O]u < €%
Then foralli > 1,

KAt = K[ -7 e~ e,
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Notice that

R = PKEE) = PKEE) @ K[h*]
i=0 i=1
= @K[hil]zf & K[O] ® K[O]h. (5.9)

i=1

Then,
et =e% n R = PHKEF' @ K[6]
i=1
since €%# NK[@®]h = 0. The statement 2 then follows from (5.9).

(3) By Proposition 4.12.(1), (1) = €%t 4+ €%*y. Then the first equality follows
from statement 1. The second equality is obvious. O

The set K[#*1] \ {0} is an Ore set of the ring R. Abusing the language,
we say K[h*!]-torsion meaning K[h*!] \ {O}-torsion. In particular, we denote
by ﬁ(K[h]-torsion) the set of isomorphism classes of K[h]-torsion simple
R-modules.

Proposition 5.5. Let Irr(B) be the set of irreducible elements of the algebra B.
(1) R (K[h*']-torsion) = R (z-torsion)
= R/(@®) = {[R/R(h—a. ] | & € K*}.
2) R (K[h*"]-torsionfree) = R (z-torsionfree)
= {[Mp] | b € Irr(B), R = Rt + R N Bb},

where My := R/R N Bb; My >~ My iff the elements b and b’ are similar
(iff B/Bb ~ B/Bb' as B-modules).

Proof. (1) The last two equalities are obvious, since ¢ is a normal element of the
algebra R. Then it is clear that R (K[h*"]-torsion) D R (t-torsion). Now, we
show the reverse inclusion holds. Let M € R (K [h*1]-torsion). Then M is an
epimorphic image of the R-module R/R(h — a) = K][t]I for some a € K*,
where 1 = 1 + R(h — «). Notice that tK[¢]1 is the only maximal JR-submodule
of R/R(h—«a). Then M ~ R/R(h —«, t) € R (t-torsion), as required.

(2) The first equality follows from the first equality in statement 1. By [7, Theo-
rem 1.3]

R (K[h*!]-torsionfree) = {[Mp] | b € Irr(B), R = Rt + RN Bb}

(the condition (LO) of [7, Theorem 1.3] is equivalent to the condition R =
Rt + R N Bb). O
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Theorem 5.6.

‘6/07’“ (z-torsionfree) = R (z-torsionfree)
=R (K[h*]-torsionfree)
={[Mp =R/RNBb] | b €lrr(B), R =Rt + RN Bb}

(see Proposition 5.5).

Proof. In view of Proposition 5.5.(2), it remains to show that the first equality holds.
Let [M] € €% (t-torsionfree). Then M = (t)M = RtM € ﬁ(l—torsionfree).
Given [N] € R (z-torsionfree). To finish the proof of statement 2, it suffices to
show that N is a simple €%#-module. If L is a nonzero €%#-submodule of N then
N 2 L D (t)L # 0,since N is t-torsionfree. Then (1)L = RtL = N, since N is a
simple R-module. Hence, L = N, i.e., N is a simple €%#-module, as required. [

The set €** (¢-torsionfree) where A € K*. An explicit description of the set

€41 (t-torsionfree), where A € K* is given in Theorem 5.11. Recall that the
algebra
‘(?f’“ = K[t*"[u, v;0,4d]

isa GWA where a = (¢7 /(1 — ¢?))t?> — g*u~1' At and o is the automorphism of the
algebra K[¢t*!] defined by o' () = g2t (Proposition 4.9.(2)). Clearly,

—

©*H (¢-torsionfree)

—

= €4 (¢-torsionfree, K [f]-torsion) LI €4* (K[t]-torsionfree). (5.10)

Lemma5.7. Let A, € K* and v := q3(1 — ¢®>)pu~'A. Then

(1) The module §*# = €*1 )€ 1 (t — v, u) is a simple €**-module.

(2) The module F** := €41 J€M(t — g2, v) is a simple €**-module.

(3) Let y,y' € K*\ {¢*v | i € Z}. The module 37)}"‘ = ChH e It — y) s
a simple €**-module. The simple modules ?yk’u ~ ?yk/,u ify = q*y for
some i € 7.

Proof. (1) Notethata = (¢ /(1—¢?))(t—v)tando(a) = (¢>/(1—¢?))(t —q>v)t.

By Corollary 4.8.(2) and the expression of the element v,

A = K[O]l = K[v]l,

where 1 = 1 + €4#(t — v, u). The simplicity of the module §*-* follows from the
equality: N ‘ o o
uv'l = v ol (@)1 e K*v' 11

foralli > 1.
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(2) Notice that F** = K[u]1, where 1 = 1 + €*# (¢ — ¢%v, v). The simplicity of
the module F*+* follows from the equality:

vull = u"_ld_ﬂrl(a)T e K*u'~'1
foralli > 1.
(3) Notice that
Ft =) Ku'@/l= ) Ku'v/T =K@l + Kp]L,
i,j=0 i,j=0

where T = 1 + €4#(r — y). Since y € K* \ {¢%v | i € Z}, 0% (a)] € K*1 for all
i € Z. Then the simplicity of the module 5‘7),)&’“ follows from the equalities in the

proof of statements 1 and 2. The set of eigenvalues of the element 71 . is
v

Evgan(t) ={q*y | i € Z}.
v

If ?yk,u ~ ?y)&,l’«, then Evﬁyx,u @) = EV%A/!M (1), so

for some i € Z. Conversely, suppose that y = ¢2iy’ for some i € Z. Let 1 and 1’
be the canonical generators of the modules 3771,'1’“ and Ty)&’” , respectively. The map

Frr— g Tl
defines an isomorphism of ©*#-modules if i = 0, and the map
371,”‘ — ?yx,’”, 101
defines an isomorphism of €**-modules if i < 0. O

Definition 5.8 ([4], /-normal elements of the algebra ‘6? ). (1) Let « and B be
nonzero elements of the Laurent polynomial algebra K[r*!]. We say that « < B
if there are no roots A and u of the polynomials @ and f, respectively, such that,
A = g% u for some i > 0.

(2) An element b = V"B, + V" 1By + -+ Bo € t’,’l’“, where m > 0,
Bi € K[t*1], and Bo, Bm # O is called [-normal if

q
t
1—g¢?

Bo <PBm and PBo < 2 _g*u e
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Theorem 5.9 ([2,3]). Let A, u € K*. Then

€} " (K[r]-torsionfree) = {[Np := €} /€ "N Bb] | b is I-normal, b € Irr(B)}.

Simple ‘63 *_modules Ny and Ny are isomorphic iff the elements b and b’ are
similar.

Recall that, the algebra €4+ is generated by the canonical generators ¢, u, and ©.
Let F = {¥F,}n=0 be the standard filtration associated with the canonical generators.
By Corollary 4.8, forn = 0,

Fy = @ KOt/ @ @ KO* @ EB KOu" & @ Kut?.

i,j=1, 1<k<n I,m=1, a,b>0,
i+j<n I+m<n a+b<n

Foralln > 1,

3 3
dim %, = En2 +on+1= f(n),

where f(s) = %sz + %s +1 € Q[s]. For each nonzero element a € €4*, the unique
natural number 7 such that a € ¥, \ ¥,,_1 is called the tofal degree of the element a,
denoted by deg(a). Set deg(0) := —oo. Then

deg(ab) < deg(a) + deg(b)

for all elements a, b € €4,

For an R-module M, we denote by [g(M) the length of the R-module M.
The next proposition shows that lea.. (€*# /1) < oo for all left ideals I of the
algebra €A1,

Proposition 5.10. Let A, u € K*. For each element nonzero element a € Ml the
length of the €4 -module €11 |€}1q is finite, more precisely,

leau (E*H [ E€4Ha) < 3deg(a).
Proof. Let M = €M1 )erhg = €M1 = Uizofii be the standard filtration
on M where 1 = 1 4 €**q. Then
Fi +€Mhla Fi
Chig T FNEIMRg

xR
12
2

Let d := deg(a). Since, foralli = 0, ;_za € F; N ©*lg, we see that
= 3 3
dim (F1) < f(i)— f(i —d) =3di + Ed - Edz.

Recall that the algebra €4* is a simple, infinite dimensional algebra since A # 0
(Theorem 4.11.(1)). So, if N = €**n is a nonzero cyclic €41 _module (where 0 #
n € N)and {F;n};>o is the standard filtration on N then dim (F;n) =i + 1 for all
i = 0. This implies that lex.. (M) < 3d. O
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The group ¢?2 = {¢*' | i € Z} acts on K* by multiplication. For each y € K*,
let O(y) = {q*y | i € Z} be the orbit of the element y € K* under the action of
the group ¢%Z. For each orbit @ € K*/¢?%, we fix an element yo € O(y).

Theorem 5.11. Let A, i € K*. Then

(1) et (t—torsionfree, K[t]—torsion)
= {11, [F9). [F7"1 1 0 € K*/q*2 \{O)}}.
(2) The map

€* (K[]-torsionfree) — et (K[r]-torsionfree),  [M] > [M;]

is a bijection with the inverse [N] + socea.u(N).

(3) €M (K[t]-torsionfree)
= {[Mp := €1 et 0 Bbt™ ] | b is I-normal, b € Tre(B), i = 3deg(b))}.

Proof. (1) Let M e €1 (t-torsionfree, K[t]-torsion). There exists a nonzero
element m € M such that tm = ym for some y € K*. Then M is an epimorphic
image of the module €4# /€41 (t —y). If y ¢ O(v), then

M = €M eIt — y) = F K

by Lemma 5.7.(3). It remains to consider the case when y € O(v), i.e., y = ¢*'v
for some i € Z.

() Ify = g% v, wherei > 1, then o’ (a)m = 0. Notice that
Wi im =o' a) -0 (a)m # 0,
i—1

the element m’ := v'~'m is a nonzero element of M. If vm’ = 0, notice that

tm' = v 'm = ¢Pom’,

then M is an epimorphic image of the simple module FA#. Hence, M ~ FMH. If
m” := vm’ # 0, notice that

tm" =tvim =vm” and um” =uvim = v'"'o'(a)m =0,
then M is an epimorphic image of the simple module §*+*. Hence, M ~ §*+*.

(ii) If y = g %'v where i > 0 then 0~/(a)m = 0. The element e := u'm is a
nonzero element of M. (The case i = O is trivial, for i = 1, it follows from the
equality viu'm = o7 l(a)---0 " (a)am # 0). If ue = 0, notice that

te = tu'm = ve,
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then M is an epimorphic image of the simple module f*#. Hence, M ~ §*#,
If ¢/ := ue # 0, notice that

te' =tu'm =q%ve’ and ve' = vi't'm =u'oc" (a)m =0,

then M is an epimorphic image of the simple module FAH. Hence, M ~ F**. This
proves statement 1.

(2) The result follows from Proposition 5.10.

(3) Let [M] € €}* (K[t]-torsionfree). Then [M;] € ‘C’,)t " (K[t]-torsionfree), and
so M; ~ ‘6}’“/‘6&’“ N Bb, where

bh=0"Bm4+ 0" B +-+Po €M (B €K[t], m > 0and B, Bo # 0)
is /-normal and irreducible in 8. Clearly,

0 # M, = €M /et nBbc M,
and
M = socern(M;) = socer.u(Mp),

by statement 2. Let [ := el Bb, J, = €*H" 4 [ for all n = 0 and
d = deg(a). By Proposition 5.10, the following descending chain of left ideals of
the algebra €4# stabilizes:

Cr=Jg 2122y =Jpp1 =+, n=3d.

Hence, socer.u(Mp) = Jn/1p =~ ‘6)"“/‘6’1’”“ nBbt™™". O

6. Simple weight A -modules

The aim of this section is to give a classification of simple weight A-modules. The
set A (weight) of isomorphism classes of simple weight A-modules is partitioned
into the disjoint union of four subsets, see (6.1). We will describe each of them
separately.

An A-module M is called a weight module provided that M = P, cx+ My,
where M, = {m € M | Km = pum}. We denote by Wt(M) the set of all weights
of M,i.e., theset {u € K* | M, # 0}.

Verma modules and simple highest weight A-modules. For each A € K*, we
define the Verma module

M) := AJAK — A, E, X).
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Then M(1) = K[Y, F]i, where 1 = 1 + A(K — A, E, X). If M is an A-module, a
highest weight vector is any 0 # m € M such that m is an eigenvector of K and K !
and Em = Xm = 0.

Lemma 6.1. The set of highest weight vectors of the Verma module M (M) is
H:={kY"l |k eK*, neN}.

Proof. Tt is clear that any element of H is a highest weight vector. Suppose that
m =Y a;;Y'F/1 € M(}) is a highest weight vector of weight ;& where o;; € K.
Then S
Km = Zaijkq_’_ZJ Y'F/1 = um.
This implies that i + 2 is a constant, say i + 2j = n. Then m can be written as
m = Zan”_ZijI

for some «; € K. By Lemma 3.1.(2),
2
Xm =Y —q"" a,A lyn=2i+1pi-17 =,

Thus, o; = 0forall j = 1and hence, m € H. L]

By Lemma 6.1, there are infinitely many linear independent highest weight
vectors. Let N, := K[Y, F]Y"1 where n € N. Then N, is a Verma A-module
with highest weight ¢ ™" A, i.e., N, >~ M(¢~"A). Furthermore, M (1) is a submodule
of M(¢q"A) for all n € N. Thus, for any A € K*, there exists an infinite sequence of
Verma modules

D M(g*A) D M(gA) D M(A) D M(q~'A) D M(g721) D ---

The following result of Verma Uy (sl>)-modules is well-known; see [17, p. 20].
Lemma 6.2 ([17]). Suppose that q is not a root of unity. Let V(A) be a Verma
Uy (slp)-module. Then V(L) is simple if and only if A # £q" for all integer n = 0.
When A = q" (resp., —q" ) there is a unique simple quotient L (n, +) (resp., L(n,—))
of V(X). Each simple Uy (sl)-module of dimension n + 1 is isomorphic to L(n, +)
or L(n,—).

Let V(1):=M(A)/N;. Then V(1) ~K[F]1,where 1:=1+ A(K — A, E, X, Y).
Theorem 6.3. Up to isomorphism, the simple A-modules of highest weight A are as
follows:

(i) V(A), when A # +q" for any n € N.
(ii)) L(n,+), when A = q" for some n € N.
(iii) L(n,—), when A = —q" for some n € N.
In each case, the elements X and Y act trivially on the modules, and these modules
are in fact simple highest weight U, (sl)-modules.
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Proof. Inview of Lemma 3.2.(1), ann4(V(1)) 2 (X). So, V(A) ~U/U(K—A, E)
where U = U, (sl>). Then the theorem follows immediately from Lemma 6.2. [

Simple weight modules that not highest and lowest weight A-modules. Let N
be the set of simple weight A-modules M such that XM # 0 or YM # 0. Then
A (weight) = U, (sl,) (weight) Ui V.

Lemma 6.4. Let M be a simple A-module. If x € {X,Y, E, F} annihilates a
non-zero element m € M, then x acts locally nilpotently on M .

Proof. For each element x € {X,Y, E, F}, theset S = {x’ | i € N} is an Ore set
in the algebra A. Then tors (M) is a nonzero submodule of M. Since M is a simple
module, M = torg (M), i.e., the element x acts locally nilpotently on M. O

Theorem 6.5. Let M € N, then:
(1) dim M) = dim M,, forany A, n € Wt(M).
2) Wt(M)={q"A | n € Z} forany A € Wt(M).

Proof. (1) Suppose that there exists A € Wt (M) such that dim M, > dim M.
Then the map X: M, — M,, is not injective. Hence Xm = 0 for some non-zero
elementm € M). By Lemma 6.4, X acts locally nilpotently on M.

If dim M,-1, > dim Mg, then the linear map E: M -1, — My, is not
injective. So Em’ = 0 for some non-zero element m’ € M,—1,. By Lemma 6.4,
E acts on M locally nilpotently. Since EX = gXFE, there exists a non-zero weight
vector m” such that Xm” = Em” = 0. Therefore, M is a highest weight module. By
Theorem 6.3, XM = Y M = 0, which contradicts to our assumption that M € N.

If dim M-, < dim My,, then dim M,—1; < dimM,. Hence the map
Y:M; — M,-, is not injective. It follows that ¥Ym; = 0 for some non-
zero element m; € M,. By Lemma 6.4, Y acts on M locally nilpotently.
Since XY = gqY X, there exists some non-zero weight vector m, € M such that
Xmy = Ymy = 0. By Lemma 3.2.(1),

anny (M) 2 (X.Y),

a contradiction. Similarly, one can show that there does not exist A € Wt(M) such
that dim M) < dim M.

(2) Clearly, Wt(M) C {¢"A | n € Z}. By the above argument we see that
Wt(M) 2 {q" X | n € Z}.
Hence Wt(M) = {q"A | n € Z}. O

Let M be an A-module and x € A. We say that M is x-torsion provided that for
each element m € M there exists some i € N such that x'm = 0. We denote by x s
themap M — M, m +— xm.
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Lemma 6.6. Let M € N.
(1) If M is X -torsion, then M is (¢, Y)-torsionfree.
(2) If M is Y -torsion, then M is (X, @)-torsionfree.
(3) If M is ¢-torsion, then M is (X, Y )-torsionfree.
Proof. (1) Since M € N is an X -torsion module, by the proof of Theorem 6.5, Yjs
and E)s are injections. Let us show that ¢, is injective. Otherwise, there exists
a nonzero element m € M such that om = 0, i.e., Xm = (¢ — ¢~ ')YEm. Since
X'm =0forsomei € N and X(YE) = (YE)X, we have

X'm=(qg—q H'(YE)'m =0.
This contradicts the fact that ¥ and E are injective maps on M .

(2) Clearly, Xy is an injection. Let us show that @7 is an injective map. Otherwise,
there exists a nonzero element m € M such that gm = Ym = 0 (since Yo = q¢Y).
Then Xm = 0 (since ¢ = (1 —¢?)EY + ¢*X), a contradiction.

(3) Statement 3 follows from statements 1 and 2. ]
By Lemma 6.6,
A (weight) = m (weight) LI N
= [Z(}TZ) (weight) U N (X -torsion) LI N (Y -torsion) (6.1)

U N ((X,Y)-torsionfree).

It is clear that & ((X, Y)-torsionfree) = A (weight, (X, Y)-torsionfree).
Lemma 6.7. I[f M € N (X-torsion) LI N (¢-torsion) LI N (Y -torsion) then Cys # 0.

Proof. Suppose that M € N (X-torsion), and let m be a weight vector such that
Xm = 0. If Cpy = 0, then by (2.15),

Cm=-K'EY’m=0

ie., EY?m = 0. This implies that Ejp; or Y is not injective. By the proof
of Theorem 6.5, this is a contradiction. Similarly, one can prove that for M € N
(Y -torsion), Car # 0. Now, suppose that M € N (@-torsion), and let m € M, be a
weight vector such that gm = 0. Since Yo = g(1 —g?)EY? + ¢*Y X, we have

Yom = q(1 —g®)EY?*m 4+ ¢*YXm =0, (6.2)

If Cpr = 0, then by (2.16),

q3

1—g2
The equalities (6.2) and (6.3) yield that EY?m = 0 and YXm = 0, a contradiction.
O

Cm=—u'EY?’m + (u—p HYXm = 0. (6.3)
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Theorem 6.8. Let M € N. Then dim M, = oo for all p € Wt(M).

Proof. Since M is a simple A-module, the weight space M, of M is a simple
©*1-module for some A € K. If M € N (X-torsion) LI N (Y -torsion) then by
Lemma 6.7, A = Cps # 0. By Proposition 4.9.(4) and Theorem 4.11.(1), ehl g
an infinite dimensional central simple algebra. Hence, dim M, = oco. It remains to
consider the case where M € N ((X, Y )-torsionfree). Suppose that there exists a
weight space M,, of M such that dim M, = n < oo, we seek a contradiction. Then
by Theorem 6.5, dim M,, = n for all u € Wt(M) and Wt(M) = {¢'v | i € Z}.
Notice that the elements X and Y act injectively on M, then they act bijectively on M
(since all the weight spaces are finite dimensional and of the same dimension). In
particular, the element f = Y X acts bijectively on each weight space M, and so, M,
is a simple ‘€,A **_module. By Proposition 4.9.(2,3), the algebra ‘(?,’l *# is an infinite
dimensional central simple algebra forany A € K and 4 € K*. Then, dim M,, = oo,
a contradiction. O

Description of the set A (X -torsion). Anexplicit description of the set N (X -torsion)
is given in Theorem 6.10. It consists of a family of simple modules constructed
below (see Proposition 6.9). For each u € K*, we define the left A-module
Xt = A/A(K — u, X). Then

XH = @ KF'ETYkT,
i,7,k=0

where 1 = 1 + A(K — i, X). Let A € K. By (2.15), we see that the submodule
of X#,
(C-VX'= P KFEY*(uEY? +2)1
i,j k=0
= P KF ("¢ E/ YR 4 AETYR) L,
i,7,k=0

(6.4)

is a proper submodule and the map (C — 1) -: X* — X* v + (C — A)v, is an
injection, which is not a bijection. It is obvious that GK(X*) = 3.
For A € K and u € K*, we define the left A-module

XA = AJAC = A, K — i, X).

Then,
XAH ~ XF/(C = VXM £ 0. (6.5)

We have a short exact sequence of A-modules:

(C—2)
—_—

0 — XM XK — XM 0.
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The next proposition shows that the module X*** is a simple module if A is nonzero.
Moreover, the K-basis, the weight space decomposition and the annihilator of the
module X*# are given.

Proposition 6.9. For A, u € K*, consider the left A-module
X*H = 4/A(C = A, K — u, X).
(1) The A-module

XK = @ KF'Y/ 1ae @ KFEF1® @ KYF'EF1

i20,/=2 i,k=0 i,k=0
is a simple A-module where 1 =1+ A(C — A, K — w, X).
@ X = P KFini@( P kriefiePrerie P KE’O"T)

1=0,j=2 i?l,k?() k=0 i=1,k=0
ea( P krrieotie Prretie @ KrEe i).
iZl,k?O k=0 i=1,k=0

(3) The weight subspace X;S”; of XA that corresponds to the weight q° i is

K[®] L s =0,
E"K[O] 1, s=2rr =1,
YE'K[O] 1, s=2r—1,r=>1,
she — | F'KOITe @ KFYYI, s=-2rr>1,
@ it+j=r,
j=1
YK[O]1, s =—1,
YFTIKOle @ KFY/l, s==20-1)—1,r=2.
2i+j=2r—1,
Jj=2

(4) annyg (X*#) = (C — ).
(5) XM H is an X -torsion and Y -torsionfree A-module.

(6) Let (A, ), (A, ') € K x K*. Then X*# ~ XY+ if A = X and n = q' 1/
for some i € 7.

Proof. (1) By (6.5), X** = 0 and 1 # 0. Using the PBW basis for the algebra A,
we have

XA = Z KF'Y/EFT.
i,7,k=0
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Using (2.15), wehave A1 = C 1= —u 'EY?1. Hence EY? 1 = —uA 1, and then
Y2E 1 = —¢?uA 1. By induction on k, we deduce that

EFY?T = (—pd)fq DT and Y*EFT = (—¢*u)* " V1. (6.6)
Therefore, . B B ~ _
> KY/EFT =Y?K[Y]1 +K[E]T + YK[E]1,
J.k=0
and then
XAk — Z KFiy/1+ Z KFEFT + Z KYF'E*1
i=0,j=2 i,k=0 i,k=0

= K[F](K[Y]Y? + K[E] + YK[E]) 1.

So, any element u of X*** can be written as

n
U= (ZF’%)T,
i=0

wherea; € ¥ := K[Y]Y? +K[E]+ YK[E]. Statement 1 follows from the following
claim: if a, # 0, then there is an element @ € A such that au = 1.

(i) X"u = a’ 1 for some nonzero element @’ € X: Using Lemma 3.1, we have
n—1
Xu=) Fibl
i=0

for some b; € ¥ and b,,_; # 0. Repeating this step n — 1 times (or using induction
on 1), we obtain the result as required. So, we may assume that u = a1, where
0 75 ap € X.

(ii) Notice that the element ay € X can be written as

m
ag = pY?>+ ) (ki + uY)E,
i=0

where p € K[Y], A; and u; € K. Then, by (6.6),

m
Y2y = Y2, 1 = <pY2m+2 + Z(’\i n Miy)YZ(m—i)YZiEi)T

i=0

m

= (PY2m+2 +Y i+ MiY)Yz(m_i)Vi) 1= /1

i=0
for some y; € K* where f is a nonzero polynomial in K[Y] (since ag # 0). Hence,
we may assume that u = f 1 where 0 # f € K[Y].
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(iii) Let f = Y/_ 7 Y', where y; € K and y; # 0. Since KY'1 = pug~iyi1
and all eigenvalues {;tg~" | i > 0} are distinct, there is a polynomial g € K[K] such
that gf1 = Y! 1. If | = 0, we are done. We may assume that / > 1. By multiplying
by Y (if necessary) on the equality above we may assume that / = 2k for some
natural number k. Then, by (6.6), w; ' EFY?* T = 1, where wy = (—pd)kg=F&=D),
as required.

(2) Recall that the algebra U (sl,) is a GWA

q*(gK + ¢ 'K
(1—-4g2)?

Uy(slh) = K[, Kil][E, Fioa=(1—-¢*"'0 - ] (6.7)

where 0(®) = ® and 0(K) = ¢ 2K. Then forall i > 1,
F'E' =ac7 Y (a)---07" " (a).
Therefore,
P KrFrEFI= P KFefiePKkeFie P KEOFI.
i,k=0 i=1,k20 k=0 i21,k=0
Then statement 2 follows from statement 1.

(3) Statement 3 follows from statement 2.

(4) Clearly, (C — 1) C anng(X*#). Since A € K*, by Corollary 3.9, the ideal
(C — A) is a maximal ideal of A. Then we must have

(C — A) = annyg (X*H).

(5) Clearly, X** is an X -torsion weight module. Since X** is a simple module,
then by Lemma 6.6, X** is Y -torsionfree.

(6) (=) Suppose that XAH ~ XA By statement 4,
(C —A) = anny (X**) = anng(XAH) = (C = 1)).
Hence, A = 1’. By Theorem 6.5 (or by statement 3),
l'uli e Zy = W) = WiX*") = {g'p' | i € 2.
Hence, = ¢' ju’ for some i € Z.

(<) Suppose that A = A and u = ¢’ for some i € Z. Let 1 and 1’ be the
canonical generators of the modules X*** and XA respectively. If i < 0 then the
map

D D G IS 4
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defines an isomorphism of A-modules. If i > 1 then the map
Xt XYW T (YEY' T
defines an isomorphism of A-modules. 0

We define an equivalence relation ~ on the set K* as follows: for y and v € K*,
w~ viff u = g'v forsomei € Z. Then the set K* is a disjoint union of equivalence
classes O(n) = {qg' i | i € Z}. LetKK*/ ~ be the set of equivalence classes. Clearly,
K*/ ~ can be identified with the factor group K*/(g) where (¢) = {¢' | i € Z}.
For each orbit @ € K*/(gq), we fix an element 1@ in the equivalence class O.

Theorem 6.10. N (X -torsion) = {[X*"0] | A e K*, @ € K*/(¢)}.

Proof. Let M € N (X-torsion). By Lemma 6.7, the central element C acts on M as
anonzero scalar, say A. Then M is an epimorphic image of the module X4+ for some
w € K*. By Proposition 6.9.(1), X** is a simple A-module, hence M ~ X*#,
Then the theorem follows from Proposition 6.9.(6). ]
Lemma 6.11. (1) Forall A € K and i € K*, GK(X*#) = 2.

2) A(C,K —p, X) S A(K—u,X,Y,E) C A

(3) Forall i € K*, the module X%* is not a simple A-module.

Proof. (1) By [20, Proposition 5.1.(e)],
GK(X**) < GK(X*) -1 =2.

If A = 0 then it follows from Proposition 6.9.(1) that GK(X*#) = 2. If A = 0, then
consider the subspace
V= KFEI
i,j=0
of the A-module X*. By (6.4), we see that VN CX* = 0. Hence, the vector space V

can be seen as a subspace of the A-module X%#. In particular, GK(X%#) > 2.
Therefore, GK(X%#) = 2.

(2) Leta= A(C,K—pu,X)andb = A(K—pu, X,Y, E). Since C € b we have the
equality b = A(C, K — u, X, Y, E). Clearly, a C b. Notice that

A/b ~U/UK — i, E),

where U = Uy (sl,). Then GK(A/b) = 1, in particular, b & A is a proper left ideal
of A. It follows from statement 1 that,

2 = GK(A/a) > GK(A/b),

hence the inclusion a C b is strict.
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(3) By statement 2, the left ideal A(C, K — u, X) is not a maximal left ideal. Thus,
the A-module X% is not a simple module. O

Corollary 6.12. Let A € K and i € K*. The A-module X** is a simple module
iff L # 0.
Proof. The result follows from Proposition 6.9.(1) and Lemma 6.11.(3). ]

Description of the set A (Y -torsion). An explicitdescription of the set N (¥ -torsion)
is given in Theorem 6.14. It consists of a family of simple modules constructed below
(see Proposition 6.13). The results and arguments are similar to that of the case for
X -torsion modules. But for completeness, we present the results and their proof in
detail. For u € K*, we define the left A-module Y* := A/A(K — u, Y). Then,

YH = EB KE'F7 x*k1,
i,7,k=0

where 1 = 1+ A(K —p, Y). Itis obvious that GK(Y#) = 3. Let A € K. By (2.15),
we have (C — 1)1 = (¢?FX? — 1) 1. Then using Lemma 3.1, we see that the
submodule of Y#,

(C-NY*= P KE'F/ x*(C -1

i,j,k=0
= P KE'F/ X (g’ FX*> - )1 6.8)
i,j k=0 '
= P KE'F/ (¢ FX*2 - 2x*) 1.
i,j,k=0

Therefore, the submodule (C — A)Y* of Y* is a proper submodule, and the map
(C=1-Y*—>Y* v (C -2,

is an injection, which is not a bijection.
For A € K and u € K*, we define the left A-module

Y4H = AJAC — A, K —p, Y).
Then
YAH ~ YH/(C —A)YH £ 0. (6.9)
We have a short exact sequence of A-modules:

(C-2)
—_—

0— YH* YH —s YAH 0.

The next proposition shows that the module Y*** is a simple module if A is nonzero.
Moreover, the K-basis, the weight space decomposition and the annihilator of the
module Y** are given.
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Proposition 6.13. For A, u € K*, consider the left A-module
Y*H* = AJAC — A, K —pu, Y).
(1) The A-module
v = P KEX 1o P KEFFie @ KE FixI
i20,j>2 i,k=0 i,k=0

is a simple A-module, where 1 =1+ A(C — A, K —pu, Y).
@ Y= @ KEX/T ea( P ko E'Te PKe 1o P KO F i)

i=0,j=2 i=1,k=0 k=0 i=1,k=0
ea( D xe‘E'xioPre‘xTe P K@kF"XI).
i=1,k=0 k=0 i=1,k=0

(3) The weight subspace Y;;ﬁ of YA that corresponds to the weight g is

K[O] 1, s =0,
K[OIE"1® @ KE'X¥1, s=2rr=1,
i+j=r,
j=1
i K[®]X 1, s =1,
H KOIE*X1® @ KEX/1, s=2r+1,r=>1,
2i+j=2r+1,
j=2

K[®]F" 1, s==2rr=1,
K[®]F"X 1, s==2r+1,r>=1.

(4) anng(Y**) = (C — ).

(5) YA is a Y -torsion and X -torsionfree A-module.

(6) Let (A, ), (A, 1) € K x K*. Then Y** ~ YA iff A = X and n = ' /!
for some i € 7.

Proof. (1) Notice that Y*# =", ., (KE'F/X* 1. By (2.15), we have
Al=C1=¢g’FX*1,
i, FX?1 = ¢2) 1. By induction on k and using Lemma 3.1.(1), we deduce that
F¥X?* 1 = (FX?)k1 = ¢ 2k)F 1. (6.10)
Therefore,

> KF/X*T=K[X]Xx*1+K[F]T+K[F]X T,
7,k=0
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and so

YA = Y KE'X/1+ Y KE'FF1+ Y KE'F'XT.

i=0,j=2 i,k=0 i,k=0

So, any element u of Y** can be written as

n
u = ZEiaii,
i=0

wherea; € T := K[X]X24+K[F]+K[F]X. Statement 1 follows from the following
claim: if a,, # 0, then there exists an element @ € A such that au = 1.

(i) Y"u = a’1 for some nonzero element ¢’ € T': Notice that

n—1
Yu = Z E'b;
i=0

for some b; € I' and b,,_; # 0. Repeating this step n — 1 times, we obtain the result
as desired. So, we may assume that u = a’ 1 for some nonzero a’ € T'.

(ii) Notice that the element a’ can be written as

m
a'=pX>+ > F'(hi+ wiX),
i=0
where p € K[X], A;, and ; € K. By Lemma 3.1, we see that F1 X1 = XF1.
Then

m
X2y = (pX2m+2 +> i+ uiX)Xz’"F") 1
i=0

m
— (pX2m+2 + Z(A’l 4 Ml‘X)X2(m_i)X2i Fl) i
i=0

m
= (PX2m+2 +Y (i + MiX)Xz(m_i)Vi) 1=f1
i=0

for some y; € K* (by (6.10)) and f is a nonzero element in K[Y]. Hence, we may
assume that u = f 1 where f € K[X]\ {0}.

(iii) Let f = Zf:o o; X' where o; € K and o # 0. Since KX'1 = ¢’ uX'1 and
all eigenvalues {g’ 11 | i € N} are distinct, there is a polynomial g € K[K] such that
gf 1 =X"'1. If | =0, we are done. We may assume that / > 1. By multiplying
by X (if necessary) on the equality we may assume that / = 2k for some natural
number k. Then, by (6.10), we have qZk/\_kasz 1=1,as required.
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(2) Recall that U,(sl,) is a generalized Weyl algebra (see (6.7)), then E'F! =
o'(a)o'~'(a)---o(a) holds for all i > 1. Hence,

P KFET= P K'ETo PR Ta @ KO F 1.
i,k=0 i21,k=0 k=0 i21,k=0
Then statement 2 follows from statement 1.
(3) Statement 3 follows from statement 2.
(4) Clearly, (C — 1) € annyg(Y***). Then we must have
(C —A) = anny(Y*H)

since (C — 1) is a maximal ideal of A.

(5) Clearly, Y»* is Y -torsion. Since Y*** is a simple module, then by Lemma 6.6,
Y*+# is X -torsionfree.

(6) (=) Suppose that YA# ~ YA By statement 4,
(C = 2) = anng (YM*) = anng (YA ) = (C = )).
Hence, A = A’. By Theorem 6.5 (or by statement 3),
' uli € Zy = WY = WY = {g'p' i € Z).
Hence, = ¢' ju’ for some i € Z.

(<) Suppose that A = A and u = ¢’y for some i € Z. Let 1 and 1’ be the
canonical generators of the modules Y4 and YA, respectively. If i = 0, then the
map

YA YA T X1

defines an isomorphism of A-modules. If i < —1, then the map

YAH > Y T (FX)' T
defines an isomorphism of A-modules. O
Theorem 6.14. N (Y -torsion) = {[Y*#0] | A € K*, @ € K*/(g)}.

Proof. Let M € N (Y-torsion). By Lemma 6.7, the central element C acts
on M as a nonzero scalar, say A. Then M is an epimorphic image of the
module Y*-* for some 1 € K*. By Proposition 6.13.(1), Y*** is a simple A-module,
hence M ~ Y**. Then the theorem follows from Proposition 6.13.(6). ]
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Lemma 6.15. (1) Forall A € K and u € K*, GK(YA#) = 2.
2) A(C,K —p,Y) S A(K—u, X, Y, E) C A
(3) Forall u € K*, the module Y% is not a simple A-module.

Proof. (1) By [20, Proposition 5.1.(e)],
GK(Y**) < GK(Y*) —1 = 2.

If A # 0 then it follows from Proposition 6.13.(1) that GK(Y**#) = 2. If A = 0 then
consider the subspace
V= KEF1
i,j=0
of the A-module Y#. By (6.8), we see that V NCY* = 0. Hence, the vector space V'

can be seen as a subspace of the A-module Y%#. In particular, GK(Y%#) > 2.
Therefore, GK(Y%#) = 2.

(2) Leta’ = A(C,K —pu,Y)and b = A(K — i, X, Y, E). Since C € b, we have
the equality b = A(C,K — u, X, Y, E). Clearly, ¢ C b. By Lemma 6.11.(2) and
its proof, b is a proper left ideal of A and GK(A4/b) = 1. Then it follows from

statement 1 that,
2 = GK(A/d") > GK(4/b),

hence the inclusion @’ C b is strict.

(3) By statement 2, the left ideal A(C, K — u, Y') is not a maximal left ideal. Thus,
the A-module Y% is not a simple module. O

Corollary 6.16. Let A € K and . € K*. The A-module Y** is a simple module
iff A # 0.

Proof. The result follows from Proposition 6.13.(1) and Lemma 6.15.(3). ]

The set N ((X, Y)-torsionfree). Theorem 6.18 and Theorem 6.19 give explicit de-
scription of the set N ((X, Y)-torsionfree). Recall that

N ((X,Y)-torsionfree) = A (weight, (X, Y)-torsionfree).

Then clearly,

N ((X , Y)—torsionfree) = A/(B) (weight, (X, Y)—torsionfree)

u |_| A/(I) (weight, X,y )—torsionfree). (6.11)
AeK*

Let A; be the localization of the algebra at the powers of the element # = Y X. Recall
that the algebra €; is a GWA, see Proposition 4.9.(1).
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Lemma 6.17. A; = C,[X*';] is a skew polynomial algebra where ( is the auto-
morphism of the algebra €; defined by 1(C) = C, «(K*") = qT'K*!, 1(t) = qt,
t(u) = q*u, and 1(v) = v.

Proof. Clearly, the algebra €, [X*';/] is a subalgebra of A,. Notice that all the
generators of the algebra A, are contained in the algebra €,[X*!;/], then

A CE[XEL.

Hence, A, = €,[X*1;4], as required. O

The set ff@) (weight, (X, Y)-torsionfree). Let [M] € €% (t-torsionfree). By
Theorem 5.6, the element ¢ acts bijectively on the module M (since ¢ is a normal
element of R). Therefore, the €-module M is also a €-module. Then by
Lemma 6.17, we have the induced A,-module

M:=48e,M=PxeomM=FProma@dx em

i€Z iz1 i20
Clearly, M is an (X, Y)-torsionfree, weight A-module and

Wt(M) ={q'|i eZ}=0(u).

We claim that M is a simple A-module. Suppose that N is a nonzero A-submodule
of M,then X' ®m € N forsomei € Zandm € M.Ifi = 0,then N = Am = M.
Ifi > 1, since YI(X' ® m) € K*(1 ® t'm), then | ® tm € N and so N = M.
Ifi <—1,then X" X'®@m = 1@m € N,soN = M.IfM' € €O (z-torsionfree),
then the A-modules M and M’ are isomorphic iff the €%*-modules M and X’ ® M’
are isomorphic where . = ¢* ’ for a unique i € Z.

Theorem 6.18.

/T(B) (weight, (X, Y)-torsionfree)
= {[1\2] | [M] € €%#0 (t-torsionfree), O € K*/qz}.

Proof. LetV € A/(-a) (weight, (X, Y)-torsionfree). Then the elements X and Y act
injectively on the module V. For any u € Wt ('), the weight space V), is a simple
t-torsionfree €% *-module. Then,

V:@Y’@V @@X’ =V,

i=1 i=0

Hence, V = I7M since V is a simple module. O



The prime spectrum of the algebra K, [X, Y] x Uy (s2) 943

The set 1T(A\) (weight, (X, Y)-torsionfree), where A € K*. Below, we use notation

and results from Lemma 5.7. Let M € €**# (¢-torsionfree). Then M, € E’,A *. By
Lemma 6.17, we have the induced A;-module

M® =4, &, M, =P X @M, (6.12)
i€Z

Clearly, M * is a simple weight A;-module and
WHM®) ={q'n i eZ}=0w.

For all i € Z, the weight space

—i

MY = X' @ M, ~ M}

as €;-modules, where Mt‘_i is the €;-module twisted by the automorphism (=

of the algebra €; (the automorphism ¢ is defined in Lemma 6.17). The set

€41 (t-torsionfree) is described explicitly in Theorem 5.11.(1,3). If M = f*#,
then

[ A, TN At
X' ®f, M:(ft M)‘ ~ §; q'
as €;-modules. It is clear that soce (ftk’“) = f/hu_ Hence,
soce (X' ® ft)w) = soce(f,k’ql”) — fl,q’ﬂ.
Then the A-module
socy ((F44) %) = @socf(X" ® ) ~ @fk,q’/@ 6.13)

iez i€Z
Similarly, if M = F**, then
X'® FAM (FA oy i A,qiu
as €;-modules. It is clear that soce(Ff’” ) = FM*. Hence,
soce(X' ® F?’“) = soc‘@(F?’qi“) = FhaH,
Then the A-module

socy ( (F’l’“)’ @soce(X’ ® F; ’“) ~ @ FAa’ i, (6.14)
i€Z i€Z

IfM = .77),1’“ where y € K* \ {¢%'v | i € Z}, then

i P-Au L"erkqu
X' ® F, ;" ~(F ) F i
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as €;-modules. It is clear that soce (.ff =% Fro . Hence,

rvk u) _ rv)u,q I

i
soce (X' ® Ziy

is a simple €-module. Then the A-module

socy ( (\‘F’l’“)‘ @soce(X’ ‘”A’“) ~ @.?7 4 (6.15)
i€Z i€Z

If M € €*# (K[t]-torsionfree) then, by Theorem 5.11.(3),
M ~ €Mt et n Bpr
for some /-normal element & € Irr (B) and for all n > 0. For all i € Z,
Eul,q’ﬂ

Mtt_i D) 7 d =M i(byt—n-
€M Bui (byrn ‘

Then, ‘
soce(M; ) = SOC‘@(MLi(b)t—n) = M,i (pyr—i
for all n; > 0. Then the A-module

socs(M*) = P soce (X' & M) ~ @D My, - (6.16)
i€Z i€Z

The next theorem describes the set /1/@) (weight, (X, Y)-torsionfree), where A € K*.
Theorem 6.19. Let A, u € K*. Then

14/@) (Weight, (X, Y)—torsionfree)

= {[socA(M’)] | [M] € €}1© (t-torsionfree), O € K*/qZ}
and Soc 4 (M‘) is explicitly described in (6.13), (6.14), (6.15), and (6.16).

Proof. LetMe A/(I) (weight, (X,Y)-torsionfree). Then Wt (M) = O (u) € K* /g%

for any u € Wt(M). Then M := M, € ©*1o (t-torsionfree) and M; € f’,’l’“@.
Clearly, M* = M, D M. So, M = soc4(M*). O

By (6.1) and (6.11), Theorem 6.10, Theorem 6.14, Theorem 6.18 and
Theorem 6.19 give a complete classification of simple weight 4-modules.
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