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On reduced twisted group C*-algebras that are simple
and/or have a unique trace
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Abstract. We study the problem of determining when the reduced twisted group C*-algebra
associated with a discrete group G is simple and/or has a unique tracial state, and present
new sufficient conditions for this to hold. One of our main tools is a combinatorial property,
that we call the relative Kleppner condition, which ensures that a quotient group G/H acts
by freely acting automorphisms on the twisted group von Neumann algebra associated to a
normal subgroup H . We apply our results to different types of groups, e.g. wreath products and
Baumslag—Solitar groups.
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1. Introduction

The theory of twisted group C*-algebras is closely related to projective unitary
representations of groups, and we refer to [49] for a survey describing its importance
in various fields of mathematics and physics. In this article, we will only consider
discrete groups. Simplicity and/or uniqueness of the trace for reduced twisted group
C*-algebras have been investigated in several papers, e.g. [2-4,6,7,45,48,51, 58],
and our aim with the present work is to provide better insight on this topic. Finding
new examples of simple C*-algebras is always a valuable task, due to the role they
play as building blocks and test objects. From the point of view of representation
theory, simplicity of the reduced twisted group C*-algebra C* (G, o) gives interesting
information as it amounts to the fact that any o-projective unitary representation of G
which is weakly contained in the (left) regular o-projective representation A, of G
is weakly equivalent to A,. The reasoning behind this is essentially the same as the
one given in [27] in the untwisted case, i.e., when o is trivial. On the other hand,
knowing that C;* (G, o) has a unique tracial state 7 is also very useful. This property
is a C*-algebraic invariant in itself, which may be refined by taking into account the
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range of the restriction of t to all projections in C;*(G, o). When G is countable,
this range is a countable subset of the interval [0, 1] (see [55]), giving a way to label
the gaps of the spectrum of self-adjoint elements in C*(G, o).

We will let G denote a group and 6: G x G — T a normalized 2-cocycle on G
with values in the circle group T, thatis, 0 € Z 2(G,T). We will often use the
terminolgy introduced in [7] and say that the pair (G, o) is C*-simple (resp. has
the unique trace property) when the reduced twisted group C*-algebra C*(G,0)
is simple (resp. has a unique tracial state). If this holds when o is trivial, we
will just say that G is C*-simple (resp. has the unique trace property), as in for
example [2-4,13,15,25,27,28,33,35,43,61]. We recall that if (G, o) is C*-simple
(resp. has the unique trace property), then (G, o) satisfies Kleppner’s condition,
that is, every nontrivial o-regular conjugacy class in G is infinite (cf. [37] and
Subsection 2.3). In other words, setting

C*S(G) = {0 € Z*(G,T) | (G,0) is C*-simple},
UT(G) = {0 € Z*(G,T) | (G, o) has the unique trace property},
K(G) = {o € Z*(G,T) | o satisfies Kleppner’s condition},

we always have C*S(G) C K(G) and UT(G) C K(G). Following [7], we will
let Kc+s (resp. Kyr) denote the class of groups G satisfying C*S(G) = K(G)
(resp. UT(G) = K(G)). Moreover, K will denote the intersection of Kcx*g
and Ky7. Thus, if G belongs to X, then for any o € Z2?(G, T), we have that (G, o)
is C*-simple if and only if (G, o) has the unique trace property, if and only if (G, o)
satisfies Kleppner’s condition.

It is noteworthy that the class X contains many amenable groups. Finite groups,
abelian groups, FC-groups and nilpotent groups all lie in KX, and more generally,
as shown in [7], every FC-hypercentral group belongs to K (cf. Subsection 2.5).
On the other hand, it is known [51] that some semidirect products of Z" by actions
of Z do not belong to Kc=*s (and neither to Kyr). In a somewhat opposite
direction, Bryder and Kennedy have recently shown [17] that C*S(G) = Z?(G, T)
(resp. UT(G) = Z?(G, T)) whenever G is C*-simple (resp. has the unique trace
property). Since the class of C*-simple groups is (strictly) contained in the class of
groups with the unique trace property [13, 15], we get that every C*-simple group
belongs to K, while every group with the unique trace property belongs to Ky 7.
Combining results from [7] and [17], we show in the present paper that a group G
belongs to Ky whenever the FC-hypercenter of G coincides with its amenable
radical (cf. Theorem 3.7). An interesting question is whether this property in fact
characterizes Ky 7.

When some 0 € Z2(G, T) is given and it is unclear whether G lies in Kc+g, or
in Ky, one would like to be able to decide whether o lies in C*S(G), orin U T (G).
Our main contribution is to provide several new conditions that are sufficient to handle
many cases. As the first step in our approach, we consider a normal subgroup H
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of G and study when certain naturally arising x-automorphisms of the twisted group
von Neumann algebra M associated to H are freely acting (or properly outer)
in the sense of [34]. This leads us to introduce a combinatorial property for a
triple (G, H, o), that we call the relative Kleppner condition, which ensures that the
canonical twisted action of the quotient group G/H on the von Neumann algebra M is
freely acting. Combining this property with some results from [2,4] and building on
previous works of Kishimoto in [36] and Olesen and Pedersen in [42], we obtain some
conditions that are sufficient for ¢ to belong to UT (G), orto C*S(G)NUT(G). We
illustrate the usefulness of these conditions by applying them to a variety of groups
(e.g. semidirect products, wreath products, and Baumslag—Solitar groups).

The paper is organized as follows. Section 2 contains a review of the definitions
and of the results that are relevant for this article. In Section 3 we look at the
behavior of C*-simplicity and the unique trace property for pairs (G, o) in a few
basic group constructions, in particular in connection with subgroups. Section 4
is devoted to freely acting automorphisms and the relative Kleppner condition for
triples (G, H, o). Our main result is Theorem 4.9, which relies on some technically
involved arguments, in particular in the proof of Proposition 4.7. Theorem 4.9 has
several consequences; especially, it implies that C *-simplicity and the unique trace
property pass from (H,0|gxq) to (G, o) whenever (G, H, o) satisfies the relative
Kleppner condition. Section 5 contains a detailed study of several new examples.
First we discuss semidirect products of abelian groups by aperiodic automorphisms.
Next we look at wreath products, with special focus on Z ¢ Z and Z, ? Z, where the
former requires investigation of the noncommutative infinite-dimensional torus, and
the latter gives rise to a noncommutative version of the lamplighter group. Then we
discuss a semidirect product arising from the Sanov action of I, on Z?2. Finally, we
consider the Baumslag—Solitar groups.

We will often refer to the fact that if G is amenable, or if G is exact and
C}(G,0) has stable rank one, then (G, 0) is C *-simple whenever it has the unique
trace property (cf. Theorem 2.1). For completeness, adapting some previous work
of Dykema and de la Harpe [20] for reduced group C*-algebras, we discuss in
Appendix A some conditions ensuring that C(G,o0) has stable rank one. In
Appendix B we prove a twisted version of Tucker-Drob’s unpublished result in [61]
saying that a group has the unique trace property whenever it has the so-called
property (BP). Finally, in Appendix C, we generalize Gong’s recent result in [23]
by showing how decay properties of (G, o) can be combined with superpolynomial
growth of nontrivial o-regular classes to deduce uniqueness of the trace.

2. Preliminaries and known results

2.1. 2-cocycles. Throughout this paper, G will denote a (discrete) group with ident-
ity e, while o will denote a normalized 2-cocycle (sometimes called a multiplier)
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on G with values in the circle group T, as in [65]. This means that we have
o(g,e) =o(e,g) = 1forevery g € G and that the cocycle identity

o(g,h)a(gh,k) =0(h,k)o(g, hk) 2.1

holds for every g, h,k € G.

The set Z2(G, T) of all normalized 2-cocycles becomes an abelian group under
pointwise product, the inverse operation corresponding to conjugation, i.e., o !
where o (g, h) = o(g, h), and the identity element being the trivial 2-cocycle 1 on G.

An element 8 € Z%(G, T) is called a coboundary whenever we have

B(g.h) = b(g)b(h)b(gh)

for all g,h € G, for some b:G — T such that h(e) = 1 (such a function b
is uniquely determined up to multiplication by a character of G). The set of all
coboundaries B%(G, T) is a subgroup of Z2(G,T), and elements in the quotient
group H?(G,T) = Z%(G,T)/B?(G, T) will be denoted by [o].

Foro,w € Z?(G, T), we write 0 ~ o and say that o is similar (or cohomologous)
to w when [0] = [w] in H?(G, T).

=0,

2.2. Twisted group algebras. The left regular o-projective unitary representation A
of G on B(£*(G)) is given by

(Ao ()E)(h) = 0 (g. g7 ') E("h)
for g,h € G and £ € £?(G). Note that we have

Ao (g)8p = 0(g.h)Sgp .
Ao (g) Ag(h) = o (g, h) As(gh)

for all g,h € G, where 6;,(g) = 1 if g = h and 6;,(g) = 0 otherwise. It follows that
for all g,h € G we have

Ao (@)Ao(M)Ae(8)* =0 (g.h)o(ghg™".g) Ao(ghg™").

We will use the notation g - & := ghg™! to denote the action of G on itself by
conjugation. Letting 6: G x G — C denote the anti-symmetrized form of o defined
by
o(g.h)=o0(g.h)o(g-h.g), 2.2)
we get
Ao (8)Aa(M)Ao(8)* =5 (g.h) Ao (g - h) (2.3)

forall g,h € G.
The reduced twisted group C*-algebra C(G, o) and the twisted group von Neu-
mann algebra W*(G, o) are, respectively, the C*-algebra and the von Neumann
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algebra generated by A,(G). We will use the convention that when ¢ is the trivial
cocycle, we just drop o from all our notation. It is well known and easy to check
that C*(G,0) ~ C}(G,w) (resp. W*(G,0) ~ W*(G,w)) whenever 0 ~ w
in Z2(G, T).

We will denote by A, the map from ¢! (G) into B(£2(G)) given by

Ao(f) =) f(&) ()

geG

for f € £'(G). Note thatfor f € £1(G)and § € £2(G),wehave A;(f) € = f *o&,
where
(f %o )W) = D f(9) & Wo(g.g™"h)
geG
foreach i € G.

The canonical tracial state on W*(G, o) will be denoted by  (or by 7, if confusion
may arise); it is given as the restriction to W*(G, o) of the vector state associated
with 8.. As is well known, 7 is faithful and satisfies 7(14(g)) = O for every g # e.
The restriction of t to C;*(G, o) will also be denoted by t (or by 75).

Note that one can also consider the right regular o-projective unitary representa-
tion p, of G on B(£?(G)) given by

(ps (8)§)(h) = o (h, g) £ (hg)

for all £ € £2(G) and g, h € G. One easily checks (see e.g. [44, Section 2]) that for
every g, h € G we have

Ao (g) p5(h) = pz(h) As(g) -

We will say that (G, 0) is C *-simple (resp. has the unique trace property) whenever
CX(G,o0) is simple (resp.  is the only tracial state of C;*(G, 0)).

2.3. Kleppner’s condition. We recall [37,44,48] that g € G is called o-regular if
o(h,g) = o(g, h) whenever h € G commutes with g .

If g is o-regular, then k gk ! is o-regular for all k in G, so the notion of o-regularity
makes sense for conjugacy classes in G.

Following [44], we will say that the pair (G, o) satisfies Kleppner’s condition
(or condition K) if every nontrivial o-regular conjugacy class of G is infinite. It is
known [37,44,48] that (G, o) satisfies Kleppner’s condition if and only if W*(G, o)
is a factor, if and only if C*(G, o) has trivial center, if and only if C* (G, o) is prime.

It follows easily from the above equivalences that Kleppner’s condition is
necessary for (G,o) to be C*-simple (resp. to have a unique trace). However,
in general, Kleppner’s condition is not sufficient for any of these two properties
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to hold. For instance, if G is a nontrivial amenable group which is ICC (i.e., every

nontrivial conjugacy class in G is infinite), then (G, 1) satisfies Kleppner’s condition,

but (G, 1) is neither C*-simple, nor has a unique tracial state (since there exists a

nontrivial homomorphism €: C;*(G) — C whenever G is amenable, cf. [16]).
Recall from the introduction that

C*S(G) ={o € Z*(G,T) | (G,0) is C*-simple},
UT(G) = {0 € Z*(G,T) | (G, o) has the unique trace property} ,
K(G) = {0 € Z*(G,T) | o satisfies Kleppner’s condition} .

We then have
C*S(G) Cc K(G) and UT(G)C K(G).

It is straightforward to see that if o lies in C*S(G) (resp. UT(G)) and w € Z2(G, T)
is similar to o, then w also lies in C*S(G) (resp. U T (G)). Hence, it follows from [15]
that if 0 ~ 1 and 0 € C*S(G), then 0 € UT(G). We do not know whether this
implication holds when o ¢ 1. Note that it may happen that K(G) is empty, in which
case C*S(G) and U T(G) are also empty. For example, suppose that G is finite and
that there exists some ¢ € K(G). Then W*(G, o) is a finite-dimensional factor
having a basis indexed by G. So |G|, the cardinality of G, has to be a square number.
Thus, K(G) = @ whenever G is finite and |G| is not a square number. We also note
that K(Z) = 9, as readily follows from the fact that H2(Z, T) is trivial. Another
fact which is almost immediate is that G is ICC if and only if K(G) = Z%(G, T).

We will say that G belongs to the class Kcxs if C*S(G) = K(G), and that G
belongs to the class Ky if UT(G) = K(G). Moreover, K will denote the
intersection of Kc+g and Kyr.

Finally, we mention that it follows from [26] that 0 € C*S(G) N UT(G) if and
only if C)*(G, o) has the Dixmier property relative to C - 1, if and only if 0 € K(G)
and C;* (G, o) has the Dixmier property relative to its center (as defined for example
in [10, II1.2.5.16]).

2.4. Murphy’s theorem. A useful consequence of a result due to Murphy [40] is
the following theorem (cf. Corollaries 2.3 and 2.4 in [7]):

Theorem 2.1. Assume that G is amenable, or that G is exact and A = C(G,0)
has stable rank one (i.e., the invertible elements of A are dense in A). Then (G, o)
is C*-simple whenever it has the unique trace property.

This result implies that if G is amenable, then UT(G) C C*S(G). Hence, an
amenable group belongs to X if and only it belongs to Ky 7. When G is a countable
and amenable, and (G, o) has the unique trace property, one can conclude from
Theorem 2.1 that C;* (G, o) is a separable, simple, nuclear C*-algebra with a unique
tracial state, hence belongs to a class of C*-algebras being currently under intensive
study.



Simplicity and/or uniqueness of the trace for C;* (G, o) 953

Concerning exactness of groups, the reader may consult [16] and references
therein. When o £ 1, there are few known examples of pairs (G, o) such that
CX(G,0) has stable rank one. Putnam’s result [54] for irrational rotation algebras
deals with the case where G = Z? (after rewriting rotation algebras as a twisted
group C*-algebras associated to Z?). His result was generalized to G = Z" for
any n > 2 by Blackadar, Kumjian and Rgrdam [11], but one should note that they
effectively use simplicity to deduce stable rank one.

Question 2.2. Suppose G is exact, 0 € Z?(G,T) and consider the following
statements:

(1) (G, o) is C*-simple.
(ii) C}(G, o) has stable rank one and (G, o) has the unique trace property.
Theorem 2.1 gives that (ii) = (i). Does (i) = (ii) always hold?

If 0 ~ 1, thanks to [15], this question reduces to asking whether C*(G) has
stable rank one whenever G is C*-simple (and G is exact). More generally, one may
wonder if C;* (G, o) has stable rank one whenever (G, o) is C *-simple.

Adapting the approach used in [20], where several groups whose reduced group
C*-algebras have stable rank one are presented, we discuss in Appendix A of this
paper some conditions ensuring that C* (G, o) has stable rank one.

2.5. FC-hypercentral groups. It is known that a group G has a smallest normal
subgroup that produces an ICC quotient group (cf. [31, Remark 4.1] and [7,
Proposition 2.5]). This subgroup coincides with the so-called FC-hypercenter [56]
of G and is denoted by FCH(G). Clearly, FCH(G) = {e} if and only if G is ICC.
Letting Z(G) denote the center of G and F C(G) the FC-center of G (that is, the
(normal) subgroup of G consisting of all elements of G having a finite conjugacy
class in G), we have

Z(G) C FC(G) C FCH(G).

When G = FCH(G), G is said to be FC-hypercentral. Every FC-hypercentral
group is amenable [21]. It follows that the FC-hypercenter of a group G is amenable,
so we have

FCH(G) C AR(G),

where A R(G) denotes the amenable radical of G, that is, the largest normal amenable
subgroup of G. Alternatively, one may deduce this inclusion by observing that
G/AR(G) has no normal amenable subgroup other than the trivial one, hence is ICC.

Theorem 2.3 ([7]). Assume that G is FC-hypercentral. Then G belongs to K.

We do not know of any amenable group that belongs to KX without being FC-
hypercentral.
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2.6. C*-simple groups and groups with the unique trace property.  We refer
to [27] for a thorough introduction to C*-simple groups and groups with the unique
trace property. Among the many recent articles dealing with such groups, we
mention [6, 13-15,17,23-25, 28,30, 33, 35,43,61]. As already pointed out in the
introduction, it is now known from [13, 15] that the class of C*-simple groups is
strictly contained in the class of groups with the unique trace property. Another
interesting result from [15] is that a group has the unique trace property if and only
if its amenable radical is trivial. Moreover, if G is C*-simple (resp. has the unique
trace property), then (G, o) is C*-simple (resp. has the unique trace property) for
every o € Z2(G, T), as shown in [17]. It follows that the class of C *-simple groups
is (strictly) contained in K and that the class of groups with the unique trace property
is (strictly) contained in Ky .

A very large family of groups with the unique trace property is the class of groups
having the property (BP) introduced in [61]. As the proof of this fact, which relies
on some arguments from [8], is only very briefly sketched in [61, Remark 5.9], we
prove in Appendix B that (G, o) has the unique trace property whenever G has
property (BP).

In [30], the authors consider (nondegenerate) free products of groups with
amalgamation. They give (in [30, Section 4]) an example of such a group
I' = Go *g G which is not C*-simple, but is a so-called weak™ Powers group,
hence has property (BP) (cf. [61, Theorem 5.4]). In particular, I" has the unique trace
property. Moreover, as Gy and G are easily seen to be amenable, hence exact, I is
also exact (cf. [18]). It therefore follows from Theorem 2.1 that C*(I") does not have
stable rank one.

In another direction, Gong has recently shown in [23, Theorem 3.11] that if a
group G has property RD [32] with respect to some length function L, and every
nontrivial conjugacy class of G has superpolynomial growth (w.r.t. L), then G has
the unique trace property. This result applies for example when G is a torsion-free,
non-elementary, Gromov hyperbolic group, see [23,24]. Such groups are in fact well
known to be C *-simple, cf. [27]. We show in Appendix C how Gong’s result may be
generalized by considering suitable decay properties for a pair (G, o) in combination
with superpolynomial growth of o-regular classes.

3. Looking at subgroups

3.1. Subgroups and normal subgroups. Let H be a subgroup of G and let o’
denote the restriction of o0 to H x H. We will denote the canonical tracial state
on W*(H,d') (resp. C}(H,o’)) by /. Tt follows from [65, Subsection 4.26]
that there is a natural embedding of W*(H,o’) (resp. C;*(H,o')) into W*(G,0)
(resp. C,* (G, 0)), sending A5/ (h) to Ay (h) foreach h € H.

We will usually identify W*(H,o’) (resp. C;*(H,0’)) with its canonical copy
inside W*(G, o) (resp. C;*(G,0)). We note that there exists a normal conditional
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expectation & from W*(G,o) onto W*(H,o'), satisfying &(As(g)) = Ac(g)
if g e H, and (As(g)) = 0 otherwise. Indeed, since the characteristic function
of H in G is positive definite, the existence of a normal completely positive map &
with this property follows for example from [5] (see Proposition 4.2 and Corollary 4.4
therein). It is then straightforward to check that this map is a conditional expectation.
We will also use that the restriction of & to C,* (G, o) gives a conditional expectation £
from C*(G, o) onto C*(H, d’).

When H is a normal subgroup of G, the relationship between W*(G, o)
and W*(H,o') (resp. between C;*(G,0) and C}(H,0c')), may be described as
follows, cf. [1] (resp. [2]). First we note that equation (2.3) implies that for
each g € G, the inner automorphism of W*(G, o) (resp. C;* (G, o)) implemented by
the unitary A, (g) restricts to a x-automorphism y, of W*(H, ¢”) (resp. C}(H,c"))
satisfying

ve(Ao(h)) =G(g,h) Ao (g-h) foreachh e H .

Let ¢ denote the canonical homomorphism from G onto K := G/H,lets: K — G
be a section for ¢ satisfying s(e) = e, and define m: K x K — H by

m(k,l) = s(k)s()s(kl)~".

Moreover, define f: K — Aut(W*(H,0")) (resp. Aut(C,*(H,0"))) by
Bk = Vs@k) foreachk € K,

and w: K x K — U(C}(H,0")) C U(W*(H,0')) by

ok, 1) = o(stk), s(0)) o (m(k, 1), s(kl)) Ao (m(k, 1))

for each k,I € K. Then (8,w) is a twisted action (sometimes called a cocycle
crossed action) of K on W*(H, ") (resp. C;*(H,0")) such that

W*(G,O’) ~ W*(H,O’/) X(,B,a)) K,
(resp. C)(G,0) ~ CX(C}(H,0"). K, B.w)),

cf. [1, Theorem 1] (resp. [2, Theorem 2.1]). It should be noted that a similar
decomposition result was first established for full twisted group C*-algebras and full
twisted crossed products by Packer and Raeburn in [51, Theorem 4.1].

When there is danger of confusion, we will denote each B by f; when we
consider it as a x-automorphism of C,*(H,o’), and denote the associated twisted
action of K by (8", w). We note that the canonical tracial state 7’ of C*(H,0') is
invariant under B, that is, we have v’ o B = ¢’ for each k € K. This may be
verified by direct computation on the generators of C;*(H,c’). Alternatively, we
may use that ¢’ is the restriction of 7 to C;*(H, 0’) and observe that the restriction
to C;(H, 0') of any tracial state of C;*(G, 0) is invariant under 8", since each f; is
implemented by a unitary in C;*(G, 0), namely A, (s(k)).
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For simplicity, we will just say that a tracial state of C;*(H,o’) is K-invariant
when it is invariant under 7. We will also say that K acts on C;*(H, ¢”) in a minimal
way when the zero ideal is the only proper (two-sided, closed) ideal of C*(H,o”)
which is invariant under B, for each k € K.

Using the decomposition C*(G,0) ~ C} (Cr* (H,0"), K, BT, a)) the following
proposition is an immediate consequence of Bryder and Kennedy’s recent results
[17, Corollaries 1.2 and 1.4].

Proposition 3.1. Assume H is normal and K = G/H.
(i) If K is C*-simple, then (G, 0) is C*-simple if and only if K acts on C}(H, o)
in a minimal way.
(ii) If K has the unique trace property, then (G, o) has the unique trace property if
and only if ©' is the only K-invariant tracial state of C}¥ (H, c”).
Remark 3.2. When C*(H,0’) is abelian, one may investigate if K acts minimally
by computing first the Gelfand spectrum of C,*(H, ¢”), as we will do in Example 3.10
and Proposition 5.17. More generally, one may try to determine Prim(C,* (H, 0”)), the
primitive ideal space of C,*(H, ¢”) equipped with the hull-kernel topology, and use
the fact that there is a one-to-one correspondence between the ideals of a C*-algebra A
and the closed subsets of Prim(A) (see e.g. [10, Section 11.6.5]). If A is unital, then
Prim(A) is compact and the Dauns-Hofmann theorem provides an isomorphism
between the center Z(A) of A and C(Prim(A)). Thus, in the special case where A is
unital and Prim(A) is Hausdorff, Prim(A4) is homeomorphic to the Gelfand spectrum
of Z(A). We will illustrate how this may used in combination with Proposition 3.1
in Subsection 5.3.

3.2. Subgroups of finite index. It is known [9,52] that if G is an ICC group and H
is a subgroup of G with finite index, then we have

G is C*-simple <= H is C*-simple 3.1
and
G has the unique trace property <= H has the unique trace property.  (3.2)

Note that H is ICC whenever G is ICC and [G : H] < oo. In the twisted case,
Kleppner’s condition is not necessarily inherited by a subgroup of finite index. A
twisted version of (3.1) and (3.2) is therefore as follows.

Proposition 3.3. Let H be a subgroup of G with finite index. Let 0 € Z*(G,T)
and let 6’ denote the restriction of o to H x H. Assume that both (G, o) and (H, ¢")
satisfy Kleppner’s condition. Then we have

(G,0) is C*-simple <= (H,o") is C*-simple (3.3)
and

(G, 0) has the unique trace property <= (H,c') has the unique trace property.
(3.4)
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Proof. We will deduce both equivalences from [52, Corollary 4.6], so we have
to check that all the assumptions in this corollary are satisfied. We first recall
that the GNS-representation of A := C;(G, o) corresponding to t is the identity
representation of A on £?(G). The canonical conditional expectation E from A
onto B := C}(H,o’) (identified as a unital C*-subalgebra of A) clearly satisfies
that T = t o E. Since (G, o) satisfies Kleppner’s condition (by assumption), we
know that W*(G, o) is a factor, hence that t is factorial. Moreover, since 7|
coincides with the canonical tracial state T/ of B, and (H, ¢’) is assumed to satisfy
Kleppner’s condition, we also know that 7| is factorial. As explained in 3.1, there
exists a conditional expectation & from W*(G, o) onto W*(H, ¢’) that extends E.
Now, let {g1,...,gn} be a set of left coset representatives of H in G. Then
{Ao(gi). Ao (gi)*}—, is a quasi-basis for E in the sense of [62, Definition 1.2.2],
that is, we have
n n

Y Ae(@) E(Ao(g)* x) = x = ) E(xAe(gi) Ao(g)*

i=1 i=1
forall x € A. Indeed, by a density argument, it suffices to show that this holds when x
is of the form x = des Xg As(g), where § is a finite subset of G and x, € C for
all g € S. We then have

Z Ao (gi) E(Ao(gi)* x)

i=1

= Z Ao (gi) Z Xg E(la(gi)*ko(g))

i=1 ges

=D dolg) o veo(gi g olgt 8) E(dolgi 9)

i=1 ges

=Y Ao(8i) Y xgero(gtgNo(g . gig) E(Ae(g)

i=1 g/egi—ls

=Y Ao(8i) Y xgno(g ' gi)o(g " gih) Ag(h)

i=1 heHng!'s

= Z Zxo(gi_l,g,-)a(gi_l,gi h)o(gi,h) As(gih)

i=1 heHﬂgi_lS
n n

=2 ohela =2 ) xedo(e) =) xeho(s) =,
i=1 heHﬁgi_lS i=1gegiHNS ges

where we have used that 0 (g;!, gi) = o(g;"'.gi)o(e.h) =o(g; ', gih)o(gi.h).
The proof that ) ;_, E(x Ao (gi)) Ao (gi)* = x is similar.
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It follows from [62, Proposition 2.1.5] that E is of finite index in the sense
of Pimsner—Popa, and, moreover, that the extra assumption in Part 1 of [52,
Corollary 4.6] is also satisfied. Hence, we may apply Part 1 and Part 2 of [52,
Corollary 4.6] to conclude that the desired equivalences (3.3) and (3.4) hold. ]

3.3. Direct limits of groups. The following result is useful when considering direct
limit of groups.
Proposition 3.4. Assume that G is an inductive limit of a directed family of
subgroups {G;ilic;. Let 0 € Z*(G,T) and let o; denote the restriction of o to
G; x Gj foreach i € I. Then the following assertions hold:
() If(Gj, a;) satisfies Kleppner’s condition for alli, then (G, o) satisfies Kleppner’s
condition.

(i) If (G;, 0;) is C*-simple for all i, then (G, o) is C*-simple.

(iii) If (G, 0;) has the unique trace property for all i, then (G, o) has the unique
trace property.

Proof. If g is a nontrivial o-regular element in G with finite conjugacy class, then
thereis somei € [ suchthatg € G;. Itis easy to check that g is then o;-regularin G;,
and that its conjugacy class in G; is finite. Hence, (i) holds. Assertion (ii) and (iii)
are consequences of general facts valid for C*-algebras, for example mentioned
in [9, Proposition 10]. ]

3.4. Direct products of groups. We consider a couple of examples involving direct
product of groups. The first one just says that it is easy to handle product cocycles.
The second one illustrates that other types of cocycles require more work.
Proposition 3.5. Fori = 1,2, let G; be a group and o; € Z*(G;, T). Set G =
G1 X Gy and 0 = 01 X 0. Then it is well known that

Cr(G,0) ~ C}(G1,01) ®min C;(G2,02)

and the following statements are easily checked:

(1) (G, o) satisfies Kleppner’s condition if and only if both (G1,01) and (G, 02)
satisfy Kleppner’s condition.
(ii) (G, o) is C*-simple if and only if both (G1, 01) and (G2, 02) are C*-simple.
(iii) (G, o) has the unique trace property if and only if both (G, 01) and (G, 02)
have the unique trace property.
Note that, in general, if G = G| x G, 0 € Z2(G,T), and o; denotes the
restriction of o to G; x G; for i = 1,2, then none of the above equivalences need

to hold, as one can verify by considering various cocycles on Z* = Z2 x Z2.
(Statement (i) is discussed in [44, Section 3]).
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Example 3.6. Consider the group G = [F, x Z, where [, denotes the free group on
two generators, say a and b. Clearly, G is non-amenable, hence not FC-hypercentral,
and non-ICC. Nevertheless, G belongs to K.

Indeed, as explained in [44, Example 3.11], every 0 € Z 2(G, T) is, up
to similarity, given by o((x,m), (y,n)) = ¢(y,m) for some bihomomorphism
¢:F, xZ — T. Letting y:F, — T denote the homomorphism (character) given
by y(x) = ¢(x,1), we have ¢(x,m) = y™(x). Moreover, ¢ is completely
determinedby i = y(a)andv = y(b). The following conditions are then equivalent:

(i) atleast one of u and v is nontorsion,
(i) (G, o) satisfies Kleppner’s condition,
(iii) (G, o) is C*-simple,
(iv) (G, o) has the unique trace property.

The equivalence of (i) and (ii) is shown in [44, Example 3.11]. Next, consider
H = T, x {0} and let s:Z = G/H — G be the section given by s(k) = (e, k).
From Subsection 3.1 we obtain the crossed product decomposition

C}(G.0) = C}(C}(F2), Z,B).

where the action f of Z on C(IF») is untwisted and determined by B (A(x)) =
YR(x) A(x) forx € F, and k € Z.

Assume now that (i) holds. Then the map m +— B, gives an embedding of Z into
Aut(Cr(F3)). AsIF, is C*-simple and has the unique trace property, we can then
use [3, Theorem 7] to conclude that both (iii) and (iv) hold. Alternatively, we could
have used [64] here. Finally, as pointed out before, the implications (iii) = (ii) and
(iv) = (ii) always hold.

3.5. More on FC-hypercentral groups. Set /CC(G) := G/FCH(G). We first
remark that / C C(G) has the unique trace property, i.e., I C C(G) has trivial amenable
radical, if and only if FCH(G) = AR(G).

Indeed, if FCH(G) = AR(G), then ICC(G) = G/AR(G), which has trivial
amenable radical. The converse implication follows from the fact that if N is a normal
subgroup of G such that G/N has the unique trace property, then AR(G) C N
(see [30, Lemma 6.11], and the comment before it).

In the same way, it can be shown that /CC(G) is C*-simple if and only if
FCH(G) = AH(G), where AH(G) denote the amenablish radical of G, as
introduced in [30].

Theorem 3.7. Assume that FCH(G) = AR(G), or equivalently, that ICC(G)
has the unique trace property. Then (G, o) has the unique trace property whenever
(G, 0) satisfies Kleppner’s condition. Hence, G belongs to Kyr.
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Proof. Suppose that (G, o) satisfies Kleppner’s condition. Set H = FCH(G) and
K = ICC(G). Applying [7, Proposition 4.3], we get that the canonical tracial
state on C*(H,0’) is the only K-invariant tracial state on C;*(H,o0’). Since K
has the unique trace property, it follows from Proposition 3.1 (ii) (i.e., from [17,
Corollary 5.3]) that (G, o) has the unique trace property. O

Remark 3.8. Let us consider the case where /CC(G) is C*-simple. Then /C C(G)
has the unique trace property, so Theorem 3.7 gives that G lies in Ky 7, and one may
wonder whether it will always lie in K. Set H = FCH(G). The problem is then to
decide if K = ICC(G) acts on C;¥(H, ¢’) in a minimal way when o € K(G), since
Proposition 3.1 (i) will then imply that (G, o) is C*-simple.

An example of a situation where /CC(G) actson C*(FCH(G), ¢’) in a minimal
way is when (FCH (G), ¢”) satisfies Kleppner’s condition, because F CH(G) is FC-
hypercentral, so it follows from Theorem 2.3 that C,* (FCH(G), ¢”) is simple in this
case. Hence Proposition 3.1 (i) and Theorem 3.7 give:

Corollary 3.9. If ICC(G) is C*-simple and (FCH(G),d’) satisfies Kleppner’s
condition, then (G, o) is C*-simple with the unique trace property.

Example 3.10. The procedure described in Remark 3.8 works well when G = F, X Z,
as in Example 3.6. It is not difficult to check that H = FCH(G) = {e} X Z ~ Z,
so K = ICC(G) ~ F, = {a,b), which is C*-simple. Let o0 € Z?(G,T) be
determined by  and v in T as in Example 3.6. Theno’ = 1,50 C*(H,0’) = CX(Z).
Moreover, choosing the section s: K — G given by s(x) = (x,0), we get from
Subsection 3.1 that

C(G.0) = CF(C}(Z), Fa, B).

where the action 8 of F, on C;*(Z) is untwisted and determined by
Br(A(m)) = "0« "0 A (m)

for x € F, and m € 7Z, where o, (resp. 0p): F; — 7 denotes the homomorphism
sending a to 1 and b to O (resp. sending a to 0 and b to 1). Identitying C,*(Z) with
C(T) via the Gelfand transform, we get that each B is the *-automorphism of C(T)
associated to the homeomorphism ¢, of T given by

0x(z) = ’ut)a(x) p2o(x) 5

for z € T. Hence, if at least one of w and v is nontorsion, we see that every orbit
{¢x(z) : x € Fa} is dense in T, so the action of Fy on C*(H,0') = C}(Z) is
minimal. We can therefore conclude that (G, o) is C*-simple and has the unique
trace property in this case, in accordance with what we found in Example 3.6.

The next example shows that the class of solvable groups is not contained in X,
and that the class of groups with exponential growth is neither contained in Kc*g
nor in Kyr. It also gives an example of an amenable ICC group G satisfying

g+ C*S(G) = UT(G) # K(G).
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Example 3.11. C*-simplicity of (G, o) when G is a semidirect product of the form
7" x4 7 for some A € GL(n,Z) is thoroughly discussed by Packer and Raeburn
in [51, Theorem 3.2] (see also Subsection 5.1 below, in particular Example 5.3).
To make our point, it will suffice to consider a matrix

a b
A= [C d] € GL(2,7),

and the action of Z on Z? associated with A, that is,
k-x = A*x

fork € Z and x € Z%. Let G = Z? x4 Z denote the corresponding semidirect
product, which is clearly a solvable group. Computations show that G is ICC (and has
exponential growth) if and only if |a + d| > 1 + det A. This holds for example when
a=2and b = ¢ = d = 1. Assuming this, and making use of [51, Example 3.4],
we have that any o € Z2(G, T) is similar to &g for some 6 € [0, 1/2), where

5o ((x,k). (y,1)) = exp2mi (xt |:_09 g:| Aky)

forx,y € Z? and k,[ € Z. Moreover,
C}(G.0) ~ C}(Z* x4 Z,59) ~ C}(C}(Z?,04).Z.B) . (3.5)

where
. 0o 0
i) =enni (¢ 0]5)

the action B: Z — Aut(C;*(Z?, gg)) being determined by Bk (Lo, (X)) = Ag, (A¥x)
forx,y € Z?> and k € Z.
Consider now the statements

(i) @ is irrational,
(i) (G, ayg) is C*-simple,
(iii) (G, &g) has the unique trace property.

Then these three statements are equivalent. Indeed, (ii) = (i) follows by applying [51,
Theorem 3.2]. Using the decomposition (3.5), one sees that the implication (i) = (iii)
is a special case of [3, Theorem 8] (and its proof). Finally, the implication (iii) = (ii)
follows from Theorem 2.1 since G is amenable.

However, as G is ICC, (G, 6g) always satisfies Kleppner’s condition, also when 6
is rational. So we see that G does not belong to K¢=s, nor to Ky 7.
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To deal with similar situations, the following somewhat curious notion may turn
out to be useful. Let us say that (G, o) satisfies condition X if there exists a normal
subgroup N of G such that

(i) FC(G) C N,

(i) G/N is FC-hypercentral,
(iii) forallh € N \{e}, thereexists g € G suchthathg = ghando(h, g) # o(g, h).
Note that FC(G) C FC(N) if and only if FC(G) C N.

In general, condition X implies Kleppner’s condition, as can be seen by
combining (i) and (iii). Moreover, if G is FC-hypercentral, then (G, o) satisfies
condition X if and only (G, o) satisfies Kleppner’s condition. Indeed, if Kleppner’s
condition hold, then we may take N = FC(G) to see that condition X holds.

Proposition 3.12. Let G be an amenable group and assume that (G, o) satisfies
condition X. Then (G, 0) is C*-simple and has the unique trace property.

Proof. The result is a generalization of [7, Theorem 3.1]. Instead of using FC(G)
as the “base case” in the inductive proof of this theorem, we replace it by the (larger)
normal subgroup N. Then the same proof as in [7] will work, provided that G/ N
is FC-hypercentral and N (and thus G) is amenable. We leave the details to the
reader. O

This proposition seems potentially applicable when dealing with solvable groups
and “FC-hypercentral-by-FC-hypercentral” groups. For example, it may used it to
show that (i) implies (ii) and (iii) in Example 3.11: choosing N = Z2, one readily
checks that (Z2? x4 Z,Gg) satisfies condition X whenever @ is irrational.

4. On normal subgroups and freely acting automorphisms

Throughout this section, we assume that H is a normal subgroup of G and set
K = G/H. As before, the restriction of 0 € Z2(G, T) to H x H will be denoted
by ¢/, and v’ will denote the canonical tracial state on W*(H, ¢”) (resp. C*(H, 0")).
We recall from Subsection 3.1 that for each g € G there exists y, € Aut(W*(H,c"))
satisfying

Ve (Ao (h)) =G (g.h) Aor(g-h) forallh e H.

We fix a section s: K — G for the canonical homomorphism ¢ from G onto K
satisfying s(e) = e, and let (8, w) denote the associated twisted action of K on
W*(H,o')). We otherwise freely use the notation introduced in Subsection 3.1.
Our main goal in this section is to provide a set of conditions on G, H and o
guaranteeing that (G, o) has the unique trace property, or is C*-simple with the
unique trace property (see Theorem 4.9). For the unique trace property, our plan is
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to invoke [4, Proposition 9], and our first task will therefore be to find a condition
ensuring that v, € Aut(W*(H,o’)) is freely acting in the sense of Kallman [34]
(see also [59]) for each k € G \ H. We will next show that C*-simplicity may
then be deduced in certain cases from various results, e.g. (the twisted version of)
Kishimoto’s theorem [36, Theorem 3.1].

For the convenience of the reader, we recall that if M is a von Neumann algebra
and @ € Aut(M), then « is called freely acting (or properly outer) if the only element
T € M satistying «(S)T = TS forall S € M is T = 0. Equivalently, « is freely
acting if the restriction oy, is outer for every nonzero central projection p in M
satisfying a(p) = p. We also recall that a twisted action (8, @) of a group K on M
is called freely acting (or properly outer) if By is freely acting for every k € K \ {e}.

Lemma d.1. Let T € W*(H,o0') and k € G. Define fr € {>(H) by fr = T§,.
Then the following conditions are equivalent:

(i) ye(S)T =TS forall S € W*(H, o).
(i) a(k.s)o(t,s)o(k s, (k-s)""ts) fr((k-s)"'ts) = fr(t) foralls,t € H.

Proof. Since W*(H,o') = Ay (H)", it is clear that (i) holds if and only if
Vi (Ag/(s)) T=TAy(s) foralls e H.
Hence, since §, is a separating vector for W*(H, ¢’) and
Ao/ (8)p51($)8e = pgi(8)Ag/(5)0e = 8, foralls € H,

(i) is equivalent with

Yk(Aor(5)) pgi(s) TS, = TS, foralls € H. 4.1)
Let t € H. Evaluating the left hand side of equation (4.1) at ¢ gives

(vk (Ao (5)) p5r(5) Sfr)(2)

= (G(k,5) Ao (k - 5) pg(s) fr)(2)

=a(k,s) U(k -5, (k -s)_lt) (pg,(s) fT)((k )71 t)

=Gk, s)o(k-s,(k-)"t)o((k-5)"t,s) fr(k-5)7"ts),
and (i) is now seen to be equivalent to (ii) by making use of (2.1). L]

Let g € G. We let Cy (g) denote the H -conjugacy class of g in G, that is,
Cru(g) ={sgs™':se H}.

Moreover, if k € G, we define the (k, H)-conjugacy class of g in G by

Ch(e) ={(k-s)gs" :s e H}.
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This class is nothing but the equivalence class of g w.r.t. the equivalence relation
on G defined by g’ ~; g whenever g’ = (k - 5) g s~! for some s € H. Clearly, we
have C};(g) C H ifandonlyif g € H.

We note that CF’} (g) = k Cy(k~'g). This gives

ICh(9) = [Cu(k~ g)| < |Ca(k'g)|.

We will also need the following definitions:

Definition 4.2. Let g € G. We say that g is o-regular w.r.t. H if

o(g.s) = 0(s,g)

whenever s € H commutes with g.

Definition 4.3. Let¢ € H and k € G. We say that ¢ is o-regular w.r.t. (k, H) if
ok, 5) = o(s, k1)

whenever s € H and k™ 'ts = sk~ !¢ (thatis, (k - s)t = ts).
Clearly, for k € G and ¢t € H, we have

k is o-regular wrt. G = k is o-regular w.r.t. H
and

k™'t is o-regular w.rt. H <= tis o-regular w.r.t. (k, H).

Lemma 4.4. The following hold:
(i) Letx € Gand y € Cg(x).

If x is o-regular w.r.t. H, then y is o-regular w.r.t. H.

(ii) Letk € G,t € Handt' € CE().
Ift is o-regular w.r.t. (k, H), thent’ is o-regular w.r.t. (k, H).

Proof. (i) Assume that x is o-regular w.r.t. H. Write y = rxr~! for some r € H,
and assume ys = sy for some s € H. We have to show that o (y,s) = o (s, y).

Using the cocycle identity (2.1) twice, one readily checks that

o(s,y)o(y,s) =o(y,r)a(s,rx)o(y,sr)o(s,r).

1 1

Now, as xr ~'sr = rlsrx andr~'sr € H, the o-regularity of x w.r.t. H gives that
o(x, rlsr) = a(r_lsr, x). Using this, some further cocycle computations give
that

o(y,sr)y=o(rx,r-VYo(rx)o(r,r tsr)o(sr,x)o(r L, sr).
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Thus, we get

o(s,y)a(y.s)

=o(y,r)o(s,rx)o(rx,r Ho(r,x)o(r,r-sr)o(sr,x)o(r~1,sr)o(s,r)

=o(s,r)o(sr,x)a(s, rx)o(r,x) o(rx, r_l)a(y, r)-o(r,r=isr)o(r=1L,sr)
=1 -a(r_l,r)-m: 1.

(ii) Assume ¢ is o-regular w.r.t. (k, H). Then x := k™!t is o-regular w.r.t. H and
t" = ky for some y € Cg(x). So (i) gives that y is o-regular w.r.t. H. Hence
t’ = ky is o-regular w.r.t. (k, H), as desired. O

Lemma 4.4 shows that if some H -conjugacy class contains an element which is
o-regular w.r.t. H, then all its elements are also o-regular w.r.t. H; we will therefore
call such a H-conjugacy class for o-regular.

This lemma also shows that if some (k, H)-conjugacy class in H contains an
element which is o-regular w.r.t. (k, H), then all its elements are also o-regular w.r.t.
(k, H); we will therefore say that such a (k, H)-conjugacy class in H is o-regular.

Definition 4.5. The triple (G, H, 0) is said to satisfy the relative Kleppner condition
if, for every k € G \ H, all o-regular (k, H)-conjugacy classes in H are infinite,
that is, we have:

(1) |CI’§(I)| = oo wheneverk € G\ H,t € H and C};(l) is o-regular.
As is easily checked, this is equivalent to:
(2) |Cr(g)| = oo whenever g € G \ H and Cg(g) is o-regular.

Remark 4.6. (a) If H = G, then the relative Kleppner condition holds trivially. In
the opposite direction, if H = {e}, then the relative Kleppner condition never holds,
as immediately follows from (2).

(b) (G, H, 1) satisfies the relative Kleppner condition if and only if |C I’; )] = o0
wheneverk € G\ H andt € H,ifandonlyif |Cy(g)| = cowheneverg € G\ H. In
particular, it follows that (G, H, o) satisfies the relative Kleppner condition whenever
(G, H, 1) satisfies the relative Kleppner condition.

(c) Assume that Cg(g) is finite for all g € G \ H. For instance, this holds when H
is central or finite. Then (G, H, o) satisfies the relative Kleppner condition if and
only if there does not exist any o-regular element in G \ H.

(d) Suppose that (G, H, o) satisfies the relative Kleppner condition and that H' is a
normal subgroup of G containing H. Then (G, H', o) satisfies the relative Kleppner
condition.

Indeed, let g € G\ H' C G \ H and suppose o(g,h) = o(h, g) whenever
gh = hgand h € H'. Then o(g,h) = o(h,g) whenever gh = hg and h € H,
s0 [CH (g)| = oo. Hence, |Ch/(g)| = |CH(g)] = oo.
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(e) We have that (G, o) satisfies Kleppner’s condition and, at the same time,
(G, H,0) satisfies the relative Kleppner condition if (and only if) the following
two conditions hold:

(i) |Cg(h)| = oo whenever h € H \ {e} and C¢ (h) is o-regular,

(ii) |Cr(g)| = oo whenever g € G \ H and Cy(g) is o-regular.

Indeed, assume that (i) and (ii) hold. In particular, (G, H, o) satisfies the relative
Kleppner condition. Consider g € G \ H such that C(g) is o-regular. Then Cg (g)
is o-regular. Thus, using (ii), we get |Cg(g)| > |Cr(g)| = oo. Together with (i),
this shows that (G, o) satisfies Kleppner’s condition. (The converse assertion is
trivial).

Proposition 4.7. Assume that (G, H, o) satisfies the relative Kleppner condition.
Then vy is freely acting for every k € G \ H. Moreover, the twisted action (8, w)
of K on W*(H, ¢") is freely acting.

Proof. Letk € G\ H and suppose T € W*(H, ¢’) satisfies y;(T)S = ST for all
S € W*(H,o'). Using (ii) from Lemma 4.1, we get that

|frl((k-9)es™h) = | fr1()

for all s, € H. This means that | fr| is constant on each (k, H)-conjugacy
class C 1]51 ().

Lett € H. Assume first that C 111(1 (t) is o-regular. Since (G, H, o) satisfies
the relative Kleppner condition, we have |C 1]51 (1) = oco. As fr € {>(H), we get
that | fr| is constantly equal to zero on C Z (t). Hence, fr =0on C 1]51 ().

Assume now that C Iki () is not o-regular. So there exists s € H such that

(k-s)t =ts 4.2)
and
o(k=1t,8)o(s, k1) # 1. (4.3)

Using equation (4.2) and (ii) in Lemma 4.1, we get
G(k.s)o.s) ok s.1) fr(t) = fr(t). (4.4)
Some detailed but routine cocycle computations give that
G(k,s)o(t,s)o(k-s,t) = a(k1t,5)0(s,k~'1).
Thus, using (4.3), we get
G(k,s)o(t,s)o(k-s,t) #1,

so we conclude from (4.4) that fr(¢) = 0. As | fr| is constant on C Iki (1), we get that
fr =0o0nCk(t).



Simplicity and/or uniqueness of the trace for C;* (G, o) 967

Altogether, we have shown that fr = 0 on each (k, H)-conjugacy class in H.
Since H is the union of all such classes, it follows that f7 = 0 on the whole of H.
As 8, is separating for W*(H, o), we get that T = 0. This proves that yy is freely
acting, as desired.

Finally, recall that Bx = ysx) for each k € K, where s: K — G denotes the
chosen section for the quotient map from G onto K. Since s(k) € G \ H for
every k € K \ {e}, it follows that (8, w) is freely acting. O

Remark 4.8. It can be shown that if y; is freely acting for every k € G \ H, then
(G, H, 0) satisfies the relative Kleppner condition. As we will not need this fact, we
leave this as an exercise for the reader.

Theorem 4.9. Assume that (G, H, o) satisfies the relative Kleppner condition and
that ©' is the unique K-invariant tracial state of C(H,o'). Then (G, o) has the
unique trace property.

Assume, in addition, that at least one of the following two conditions is satisfied.:

(a) G is amenable,
(b) G is exact and C}(G, o) has stable rank one.
Then (G, 0) is C*-simple.

Proof. SetA = C}(H,o'). We firsthave to show that C*(G,0) >~ C} (A, K, p", a))
has a unique tracial state. Since 7’ is assumed to be the unique K-invariant tracial
state of A, according to [4, Proposition 9], it suffices to check that the twisted
action (8", ) of K on A is tracially properly outer in the sense of [4]. As the
GNS-representation of C*(H, ¢') associated to t’ is the identity representation of A
on £2(H ), this amounts to checking that (8, w) is freely acting on A” = W*(H, o").
Since (G, H, o) is assumed to satisfy the relative Kleppner condition, this follows
from Proposition 4.7.

If (a) or (b) also holds, then combining the first assertion with Theorem 2.1 gives
that (G, o) is C *-simple. O

Remark 4.10. It follows from [4, Proposition 15 (i)] (see also [9, Proposition 6])
that if
|ICy(g)l =00 forallge G\ H 4.5)

and H has the unique trace property, then G has the unique trace property. Since
condition (4.5) corresponds to the relative Kleppner condition for (G, H, 1), the first
assertion in Theorem 4.9 provides a twisted version of this result.

Proposition 4.7 and Theorem 4.9 have several interesting corollaries.

Corollary 4.11. Assume that (G, H, 0) satisfies the relative Kleppner property. Then
the following assertions hold:

(i) (G,0) has the unique trace property whenever (H,oc’) has the unique trace
property.
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(ii) (G,0) is C*-simple whenever (H,c") is C*-simple.

(iii) (G,0) is C*-simple with the unique trace property whenever (H,o’) is
C*-simple with the unique trace property.

Proof. The first assertion is an immediate consequence of Theorem 4.9. Next,
suppose (H,o0') is C*-simple. Then W*(H,o') is a factor, so it follows from
Proposition 4.7 that the twisted action (8, ®) of K on W*(H,¢’) is outer. This
implies that the twisted action (8", w) of K on C*(H,o’) is also outer. Hence,
[2, Theorem 3.2] (the twisted version of [36, Theorem 3.1]) gives that C*(G,0) ~
Cr¥(A, K, ", w) is simple. This shows that (ii) holds. The third assertion follows
readily from (i) and (ii). O

Corollary 4.12. Assume that H is FC-hypercentral, (H,o') satisfies Kleppner’s
condition and (G, H, o) satisfies the relative Kleppner condition. Then (G, o) is
C*-simple with the unique trace property.

Proof. As the first two assumptions imply that (H, ¢”) is C *-simple with the unique
trace property, cf. Theorem 2.3, this follows from Corollary 4.11 (iii). O

Corollary 4.13. Assume that the following three conditions hold:
(1) (G, o) satisfies Kleppner’s condition;

(ii) H is contained in FCH(G);

(iii) (G, H, 0) satisfies the relative Kleppner condition.

Then (G, o) has the unique trace property. If, in addition, G is amenable, or G is
exact and C}(G, o) has stable rank one, then (G, o) is C*-simple.

Proof. Using Remark 4.6 d), it follows from (ii) and (iii) that (G, FCH(G),0)
satisfies the relative Kleppner condition. If we let o denote the restriction of o to
FCH(G) x FCH(G), then we get from [7, Proposition 4.3] that (i) is equivalent
to C)f (F CH(G), 00) having a unique /C C(G)-invariant tracial state. Hence, the
result follows from Theorem 4.9. O

Remark 4.14. To apply Corollary 4.13, the natural choices for H are Z(G), FC(G),
and FCH(G). Remark 4.6(e) is then useful to check that conditions (i) and (iii) hold,
as will be illustrated in the next section.

Another useful result is:

Corollary 4.15. Assume that (G, H,o) satisfies the relative Kleppner condition
and that v’ is the unique K-invariant tracial state of C}(H,o’). If C}(H,0o') is
commutative and K acts on C¥(H, ') in a minimal way, then (G, o) is C*-simple
with the unique trace property.
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Proof. We know from Theorem 4.9 that the first two assumptions imply that
(G, 0) has the unique trace property. As seen in the proof of this result, (8", w)
is then a tracially properly outer twisted action of K on A := CX(H,o').
Since A is commutative and K acts on A in a minimal way, it follows from [4,
Theorem 10, part (b), case (ii)] that C,*(G,0) ~ C;*(A, K, B”, w) is simple. O

We also include the following result:

Corollary 4.16. Assume that (G, H, o) satisfies the relative Kleppner condition, H
is countable and K is torsion free. If K acts on C;¥(H,0’) in a minimal way, then
(G,0) is C*-simple. Moreover, if, in addition, ©’ is the unique K -invariant tracial
state of C}(H, 0”), then (G, o) is C*-simple and has the unique trace property.

Proof. Assume that K acts on A := C;*(H,0’) in a minimal way. To show that
CX(G,0) ~ CY(A,K,B",w) is simple, it suffices then to show that for each
k € K\ {e}, By is properly outer as a *-automorphism of A, as defined in [42].
Indeed, this follows from [42, Theorem 7.2] by noting that A is separable when H is
countable and that the proof of Olesen and Pedersen’s result is still valid in the case
of a twisted action. Now, we know from Proposition 4.7 that the twisted action (8, w)
of K on W*(H, o) is freely acting. Using that K is torsion free, we may copy the
argument given in the proof of [4, Theorem 10, part (b), case (iii)] to deduce from
this fact that 8 is properly outer for every k € K \ {e}.
The second assertion follows from the first assertion combined with Theorem 4.9.
O

It is known that if the centralizer Zg (H) of H in G is trivial and H is C *-simple
(resp. has the unique trace property), then G is C *-simple (resp. has the unique trace
property), cf. [2,4]. We can generalize this to the twisted case as follows.

Definition 4.17. The o-centralizer of H in G is the subset of G given by
ZZ(H)={geG:gs=sgando(g,s) =o(s,g) foralls € H}.
In other words,
ZG(H)=Zg(H) N {g € G :giso-regularwrt H}.

Proposition 4.18. Assume that H is ICC and Zg(H) is trivial. If (H,o') is
C*-simple (resp. has the unique trace property), then (G, o) is C*-simple (resp. has
the unique trace property).

Proof. Wefirst prove that (G, H, o) satisfies the relative Kleppner condition. Assume
g € G\ H is o-regular w.r.t. H. We must show that |Cg(g)| = 0o. Suppose that
this is not the case. Let g’ € Cy(g), so g’ = sgs~! for some s € H. Then we



970 E. Bédos and T. Omland

have g7lg’ = (g 'sg)s™! € H. Moreover, Cy(g~'g’) C Cy(g) 'Ch(g) =
Cu(g) 'Ch(g),s0

ICu(g™ ') < |Cu(g) 'Cu(g)| < |Cu(g)|* < co.

Since H is ICC, we must have g~ 'g’ = e. Thus, g’ = g, thatis, Cyx(g) = {g},
and it follows that g € ZZ (H). Since ZZ(H) = {e}, we get that g = e, which is
impossible since g € G \ H.

Since (G, H, o) satisfies the relative Kleppner condition, Proposition 4.7 gives
that By is a freely acting automorphism of W*(H, o) for each k € K \ {e}. This
implies that B; is an outer automorphism of C;* (H, o”) for each k € K\ {e}. Hence,
if (H,0') is C*-simple, that is, A := C(H,o’) is simple, then it follows from
the twisted version of Kishimoto’s theorem (see [2, Theorem 3.2]) that C;*(G,0) =~
CrX(A,K,B",w) is simple. On the other hand, if (H,o’) has the unique trace
property, then Theorem 4.9 applies and it follows that (G, o) has the unique trace
property, as desired. O

Remark 4.19. It is possible that the assumption that H is ICC in Proposition 4.18
is redundant. The proof shows that the argument goes through as long as one knows
that |Cg (g)| € {1, 0o} for every g € G \ H, but we do not see how to deduce this
from the assumption that Zg (H) is trivial.

Remark 4.20. Proposition 4.18 is applied in the study of braid related groups in [47].
There is an action « of the braid group B, on n strands on the free group [F,, often
called “Artin’s representation”, and it is shown that the corresponding semidirect
product IF,, X By, belongs to the class K for all n, by computing that the centralizer
of IF}, is trivial.

Moreover, Corollary 4.11 is applied to prove that the braid groups Beo, and Py
on infinitely many strands are both C*-simple. For the latter, one checks the
relative Kleppner condition for (P, Foo, 1), and then for B, one checks the relative
Kleppner condition for (B, Poo, 1).

5. Examples

5.1. Semidirect products of abelian groups by aperiodic automorphisms.

Throughout this subsection, H will be an infinite abelian group and 8 will denote
an automorphism of H. We will use addition to denote the group operation in H.
Moreover, for k € Z and x € H, we will often write k - x instead of 8% (x). The
automorphism B will be called aperiodic when the orbit of any nontrivial element
in A isinfinite (or, equivalently, when k-x # x forallk € Z\{0}andallx € H\{0}).
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We will consider the semidirect product G = H x Z associated with the action
of Z on H induced by §. For further use, we note that for x, y € H and k € Z, we
have

(0, k) (x, 0)(y, k)™ = (v, 0)(k - x,0)(y,0)~" = (k - x,0). (.1

As usual, we will sometimes identify H and Z with their canonical copies in G via
the maps x — (x,0) and k — (0, k), so that we may write (5.1) as

k) x (k) =k-x.

In particular, we then have kxk !=k-xforx e Handk € Z, in agreement with
the notation used in Subsection 3.1.
Next, we remark that the following conditions are equivalent:

(i) B is aperiodic;
(i) G isICC.
Indeed, if B is not aperiodic, so there exists x € H \ {0} with a finite orbit in H, one

easily sees from equation (5.1) that the conjugacy class of x = (x,0) in G is finite.
On the other hand, assume that j is aperiodic. If x € H \ {0}, then

{0,D)(x,k)0,D) il ezy={l-x.k):l €7}
is clearly infinite for each k € Z. Further, if k € Z \ {0}, then

{00, k)(»,0)" 1y e Hy ={(y +k-(=y).k) : y € H} (5.2)

is infinite. Indeed, if y; + k- (—=y1) = y2 +k-(—=y2),. then y; —y, = k- (y1 — y2),
SO y1 = Y2 as B is aperiodic. Since H is infinite, the claim holds. Thus we see
that G is ICC.

When S is aperiodic, we thus get that the amenable group G, being ICC, does
not lie in K. However, as seen previously in Example 3.11 in the case where
G = 7" x4 Z, there can still exist 2-cocycles o on G such that (G, ¢) is C *-simple
and/or has the unique trace property. Our aim is to illustrate this in a more general
context.

Let o' € Z2(H, T). We will assume that ¢’ is Z-invariant, meaning that it
satisfies

o'(k-x.k-y)=0'(x.y)

forall x,y € H and k € Z. As is well known, see e.g. [51, Appendix 2] or [45, 2.1-
2.4] (and [46]), we may then define a 2-cocycle o € Z2(G, T) by

0((ka)v (yv l)) = Gl(ka : y)

for x,y € H and k,l € Z. We then have that 6((0, k), (h,O)) =l1forallk € Z
and h € H, so it follows that C(G, o) decomposes as the reduced crossed product



972 E. Bédos and T. Omland

of A = C}(H,o’) by the action of Z on A associated to the s-automorphism E
of A determined by E(XJ/(x)) = Ao/ (B(x)) for all x € H. We note that saying
that Z = G/H acts on A in a minimal way just means that ,g acts minimally on A4,
i.e., that the zero ideal is the only proper ideal of A which is invariant under §.

To ease our analysis, we set

S :={x € H : x is o’-regular}.

Since H is abelian, we have S = {x € H : ¢/(x,y) =o'(y,x) forall y € H}.
Moreover, S is a subgroup of H such that k - x € S whenever k € Z and x € S
(since o’ is invariant).

We also set 6” := (0')|sxs = Ojsxs € Z*(S,T). Asc” is a symmetric, it
follows from [38] that o is a coboundary, i.e., 0’ € B%(S,T), so Cr(S,0") ~
Cx(S) is commutative.

Theorem 5.1. Let H, 8, G, 0, and ¢’ be as above and suppose that B is aperiodic.
Consider the following conditions:

(i) (H,0’) satisfies Kleppner’s condition.
(i) (G, o) has the unique trace property.
(iii) (G, o) is C*-simple.

Then we have (i) <= (ii) = (iii). Moreover, if H is countable, then (iii) holds if
and only if B acts minimally on C}(H, c").

Proof. Suppose that (x,k) € G\ H,ie.,x € H and k € Z \ {0}. Then

{(0.0)(x. k) (.00 :ye H} ={(y +x+k-(—y).k):y € H}

is infinite, since {y + k - (—y) : y € H} is infinite for every k € Z \ {0} by a
similar argument as the one used after (5.2). Thus it follows that (G, H, 1) satisfies
the relative Kleppner condition. Remark 4.6 (b) then implies that (G, H, o) always
satisfies the relative Kleppner condition. Hence, using Corollary 4.12 we get that
(i) = (ii) (and also (i) = (iii)). Since G = H x Z is amenable, Theorem 2.1 gives
that (ii) = (iii).

To show the implication (ii) = (i), we first observe that S is a normal subgroup
of G. Hence, as in Subsection 3.1, we get that for each (y,n) € G, there exists a
*-automorphism y(y ») of C*(S, 0”) satisfying

Yoy (Ao (X)) = o ((v, 1), (x,0)) o ((1n - x,0), (y,17)) Agr(n - x)
=0o'(y,n-x)a’(n-x,y) Ao (n-x)
= Agr(n - X)

forallx € S.
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Set y = y(0,1)- We then have y" (A5 (x)) = Agr(n-x) foralln € Zand x € S.
Thus n +— p" is the Z-action on C;*(S, 0”’) associated to the Z-action on S induced
by the automorphism fs of S given by Bs(x) = f(x) =1-xforx € S.

Assume now that (i) does not hold. Since H is abelian, this means that S is
non-trivial. Since f is aperiodic, B is also aperiodic. Now, since 0" is symmetric,
we have

o

Z|1 —o"(n-x,y)0"(y.n-x)| =0

n=1
for all x,y € S. Therefore, combining [41, Corollary 11.3.4] with [41, Theo-
rem 11.4.2] we get that there exists a y-invariant state ¢ on C;*(S, 0”) different from
the canonical tracial state 7”. Since C*(S, ") is commutative, ¢ is automatically
tracial. Moreover, we have

(Y (Ro7 (%)) = (Ao (n - X)) = 9(¥" (Aor(x))) = @(Ae7(x))

for all (y,n) € G and all x € S. It follows then by linearity and continuity that ¢ is
invariant under each y(, ,). If we now use Subsection 3.1 to decompose C;* (G, o) as

C}(G,0) ~ CF(C}(S,0"),G/S,8,0),

we can then conclude that ¢ is G/ S-invariant. Hence, letting E's denote the canonical
conditional expectation from C;*(G, o) onto C*(S,c”), we obtain that § := g o Eg
is a tracial state on C(G, o), which is different from the canonical one since the
restriction of ¢ to C*(S, ¢”) is different from t”. Thus (ii) does not hold.

To show the final assertion, assume that H is countable. As (G, H, o) satisfies the
relative Kleppner condition, Corollary 4.16 gives that (G, o) is C *-simple whenever
Z = G/H acts on C;*(H,0’) in a minimal way, i.e., whenever B acts minimally
on C}(H,o’). The converse statement also holds, as may be seen by writing
CX(G,0) as areduced crossed product over C*(H, o). O

Remark 5.2. In the situation of Theorem 5.1, we do not know whether (iii) = (i),
or, equivalently, whether (iii) = (ii). The following discussion sheds some light on
this problem. Suppose that (i) does not hold, so S is nontrivial, and in fact infinite.
As ¢” is a coboundary, there exists a function b: S — T such that »(0) = 1 and
o”(x,y) = b(x)b(y)b(x + y) for all x,y € S. Assume that we can choose b in
such a way that there exists some m € Z \ {0} such that b(—m - x) = b(x) for
all x € S. Then (G, 0) is not C *-simple.
To verify this, we first extend b to c: G — T by setting

b(x) forx € Sandn € Z,

c(x,n) =
1 forx e N\ S andn € Z.

To lighten our notation, we will just write yn for an element (y,n) € G from now
on. Let then p € B2(G, T) be the coboundary associated to ¢ and set w := 0p ~ 0.
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Note that w(x, yA) = 1forall x,y € S. According to [51, Theorem 1.5], there is an
action of G on S (the Pontryagin dual of §) given by

(yn-9)(x) = o(x, (yn) o((yn), ym)~Lx(yn) ¥ ((yn) "' x(yn)),  (5.3)

fory e NyneZ(ie,yn e G), ¥ € Sand x € S. Letting 1 denote the trivial
character on S, we then get

(n-1(x) =wlx,nw@,(—n) - x)
= 0'(x,0)c(x)c(n)c(xn)o’ (0, x)c(n)c(—n - x)c(xn)
= b(—n - x)b(x)

forall n € Z and x € S. Using our assumption on b, we thus get that m - 1 = 1.
Hence, the orbitof 1 in S under the action of Z is finite. Since S is infinite, this implies
that Z does not act minimally on S. Hence, [51, Theorem 1.5] gives that (G, w) is
not C *-simple, and it follows that (G, o) is not C *-simple. Equivalently, this shows
that 8 does not act minimally on C,*(H, ¢”).

It is unclear to us whether it is always possible to choose b as above.

Example 5.3. Consider the case where H = Z" and B(x) = Ax for a matrix
A€ GL(n,Z) such that B is aperiodic. ~One can then deduce from [51,
Proposition 3.1] that, up to similarity, any o0 € Z2(Z" x4 7, T) arises from some
Z-invariant o’ € Z2(Z", T). Moreover, all three conditions in Theorem 5.1 are then
equivalent. Indeed, assume (i) does not hold, i.e., S # {0}, and let w ~ o be such
that wjsxs = 1. As B is aperiodic, A — I is not nilpotent, so [51, Remark 3.3]
gives that the action of Z on S (defined as in equation (5.3)) is not minimal. It
follows then from [51, Theorem 3.2] that C*(Z" x4 Z, w) is not simple, and hence
CX(Z" x4 Z,0) is not simple.

5.2. Wreath products. Let N and K be nontrivial groups. We recall that the wreath
product N ¢ K is defined as the semidirect product (P N) x K, where K acts by
(left) translation on the index set, that is, by

(k . (xj)jeK)l = Xg—17, Or, equivalently, by k - (x;) jex = (Xg-1;) jek-

We start by recording a useful result.

Lemma 5.4. The triple (N ¢ K, @D g N, 1) satisfies the relative Kleppner condition
if and only if K or N is infinite.

Proof. If y € (N ¢ K) \ @k N, thatis, y = ((y;) ek k), where k # e, and
x = ((xj)jek.e) € Pg N, then

xyx_l = ((Xj)jeK,e)((yj)jeK’k)((xfl)jeK,e) = ((XjJ’jx]:—llj)jeK,k)-
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If @ g N is infinite, by letting (x;) jex vary, this takes an infinite number of values.
To see this, note first that ) g N is infinite whenever N or K is infinite. If N is
infinite, then it suffices to fix one / € K and consider all sequences (x;);ex with
x; = eif j # [. On the other hand, if N is finite, then K is infinite, so we fix
a nontrivial & € N, and consider all sequences (x;);ecg such that for some finite
FCN,xj=hforj e Fandx; =e. O]

With a similar argument, one can show that N ¢ K is ICC if and only if K is
infinite or N is ICC (cf. [53, Corollary 4.2]).

Proposition 5.5. The wreath product N ? K is C*-simple (resp. has the unique trace
property) if and only if N is C*-simple (resp. has the unique trace property).

Proof. If N ¢ K is C*-simple, then the normal subgroup Py N is C*-simple
[15, Theorem 3.14], and (the canonical copy of) N is normal in P x N, soitis
C*-simple as well.

If N is C*-simple, then the direct sum @g N is C*-simple [10, Corol-
lary 11.8.2.5] and N is infinite, so it follows from Lemma 5.4 and Corollary 4.11
that N ? K is C*-simple.

A similar argument works for the unique trace property. O

A description of H?(N ¢ K, T) may be deduced from a result of Tappe, [60,
Corollary on p. 2], where he deals with a more general situation: he lets K acts on
an index set /, while we only consider the case where / = K and K acts on itelf by
(left) translation.

Let H2(@g N, T)X denote the elements in H2(P g N, T) that are invariant
under the natural action of K induced from its action on @ g N. Then Tappe’s result
says first that

2 ~ 72 2 K
H*(N:K,T) ~ H¥K,T)x H (@KN,T) .

Moreover, when K has no nontrivial elements of order two, as will be the case in the
examples we consider, the summand H 2 (€D x N, T)X may be described as follows.
Let B(N, N) denote the group of bihomomorphisms from N x N into T (which
is isomorphic to the dual group of H{(N) ®z Hi(N)). Further, let I, denote the
family of all subsets of K containing two distinct elements. Then K acts on I, by
translation, and we let I,/ K denote the associated orbit space. We then have

H (D, N.T)® ~ HXN.T)x [] BV.N).
/K
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When K has nontrivial elements of order two, an extra summand C appears, and we
refer to Tappe’s article for further details. Summarizing this discussion, we have:

Lemma 5.6. Assume K has no nontrivial element of order two. Then

H?>(N?K.T) ~ H*(K.T)x H*(N.T) x [[ B(N.N).
I>/K

We now consider the situation where N is abelian and K = Z. Then
H := @, N is abelian and the action of K = Z on H clearly arises from an
aperiodic automorphism of H. Hence the wreath product N ¢ Z = H x Z fits within
the set-up of the previous subsection. If w is a 2-cocycle on H = @), N which is
invariant under the action of Z, then & will denote the induced 2-cocycle on N ? Z
given by

o(((xj)jez .m). ((yj)jez .n)) = o((xj)jez .m - (¥j)jez)

Since H?(Z,T) = {1}, every 2-cocycle on N ? Z is similar to one that arises this
way.

Proposition 5.7. Assume that N is abelian and let o be a 2-cocycle on N Z. Let o’
denote its restriction to H = @, N. Consider the following conditions:

(i) (H,0’) satisfies Kleppner’s condition.
(i) (N Z, o) has the unique trace property.
(iii)) (N?Z,0) is C*-simple.
Then we have (i) <= (ii) = (iii). Moreover, if N is countable, then (iii) holds if
and only if the associated action of Z on C¥(H, o) is minimal.

Proof. By Tappe’s result mentioned above, there exists an invariant w € Z2(H, T)
such that o is similar to & via some coboundary p € B2(N ¢ Z,T). Then o’ is
similar to w via p|gx g, and the result follows from Theorem 5.1. O

In concrete cases, it is possible to be more specific. We illustrate this by choosing
first N = Z,then N = Z,.

5.2.1. The group Z?Z. First, before we discuss C *-simplicity and the unique trace
property of Z ? Z, we compute its 2-cocycles up to similarity, by using results of
the previous subsections. Since the wreath product Z 2 Z is given as (@Z Z) X 7,
we first look at the group P, Z = P>, Z and its second cohomology group.
The elements of Py Z are sequences x = (x;)72_,, where x; € Z for all
Jj € Z, and x; # 0 only for finitely many j’s. For each k € Z, we will let ex
denote the sequence in @, Z where (ex); = k. Gelfand theory gives that the
group C*-algebra of (P Z is isomorphic to C(T%), where TZ denotes the infinite-
dimensional torus [];cz T. When o’ € Z*(@ Z, T) is not similar to 1, we may
therefore think of C,* (D, Z, 0”) as a noncommutative infinite-dimensional torus.
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Standard properties of group cohomology give that

o0 n n
Hz(@Z,T) - Hz(l_ir_)n@Z,T) - l(i_r_nHz(@Z,T>

1 tnm-1) _
= 1im T 2 _1:[1?,

(5.4)

where the index set 1 is {(j,k) € Z? | j < k}. It follows that every element of
Z2(P, Z, T) is similar to one of the form

00((xj)jez. (vj)jez) = 1_[ @271 0) K Xj Yk (5.5)
j<k

where 6 = (6, ) is an upper triangular Z x Z-matrix with 6; € [0, 1) whenever j <k.

As @y Z is abelian, (P, Z,09) is C*-simple (resp. has the unique trace
property) if and only if Kleppner’s condition holds for (D, Z,0p). It is not easy
to express this condition in terms of @ (this is already the case when considering
@7‘:1 Z = Z" for finite n > 4). However, we remark that if Kleppner’s
condition holds for (D, Z. o), then for all k& > 1, the subgroup Sj generated
by {270k ¢27i%.j : j € 7} must be dense in T. Indeed, if this is not the case,
there exist k,m > 1 such that (S;)™ = {1}, and then m ¢j is o-regular. Moreover,
as opposed to the situation for finite direct sums of Z, Kleppner’s condition may hold
even when all entries 6 of 6 are rational, cf. Example 5.9(d).

For a given 8 as above, consider the homomorphism
[e.e] [e.e]
TPz —[]T
—0o0 —0o0
defined as the composition
(o) o o0 o0
PHz—Pr—[[R—]]T.
—00 —0oQ0 —00 —00
where the first map is the inclusion map, the middle one is the map x + (6 — 6*)x,
where 0* denotes the transpose of 6, and the third is the quotient map, mapping
(ri)kez € [Iz R to (e*™' " )gez € [15 T. Then (P4 Z, 0g) satisfies Kleppner’s

condition if and only if Ty is injective. Indeed, x is op-regular if and only if
o(x,ex) = o(ex,x) forall k € Z, i.e., if and only if

1 = mo’(Ek,X) — 1_[ ezmx_,-é)‘,-.k 1_[ e—2nix19k,1 — 627'[1' e/’("(e—e*)x
j<k k<l

for all k € Z. That is, the kernel of Ty consists precisely of all the og-regular
elements.
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Next, we consider
z:2=(P,2)~z,

where we recall that Z acts on 5, Z by

(n-(xj)jez)y = Xk—n-

In particular, 7 - ex = ex4, for k,n € Z. The 2-cocycle oy on P, Z is invariant
under the induced action of Z if and only if for all integers j < k and n we have

¥ 0k =g(ej,ex) =o(n-ej, n-ex) = 0(€jin,epin) = X litnictn,
That is, oy is invariant if and only if 0x = 6}, k+n for all integers j < k and n,
i.e., if and only if the matrix € is constant on its diagonals. Setting 8,, = 6o, for
each integer m > 1, this means that we have 0 = 6x_; when j < k and is 0
otherwise. It follows from Lemma 5.6 that
o
2 ~ 12 z .,
HXZ2:2.T)~ H* (P, 2.T)" ~ [] T.

m=1

Hence, any element of Z 2(Z Q 7, T) is, up to similarity, of the form &y, where

5o (((x)jez. n). () jez. n')) = 06((x;)jez . n - (¥j)jez) (5.6)

and 6 is an upper triangular 7 x Z-matrix which is constant on its diagonals, i.e.,
such that 6 x = 6x_; when j < k for some sequence {0, }men in [0, 1).

Applying Proposition 5.7 we get:
Proposition 5.8. Assume that 0 is constant on its diagonals and ¢ is as in (5.6).
Then (Z : Z,Gp) has the unique trace property if and only if (D, Z.,0g) satisfies
Kleppner’s condition, which implies that (7.2 7., 6¢) is C*-simple.
Example 5.9. Here we provide some insight on Kleppner’s condition for (B, Z, o)
when the matrix @ is of the form described just before Proposition 5.8.

(a) First, we note that for every k > 1, the group Sy (as defined previously) coincide
with the subgroup S of T generated by {27 % : ;m e N}. Thus, density of S in T
is necessary (but not sufficient) for Kleppner’s condition to hold for (B, Z, 0p).

(b) If 6,, # 0 only for finitely many indices, then density of S is also sufficient.
Clearly, in this case S is dense in T if and only if it 8,, is irrational for some m € N.
Let us assume this holds, and let  be the largest number for which 6, is irrational.
Suppose that x is o-regular and assume (for contradiction) that x has some nonzero
terms. Let k be the largest index with xz 7 0. Then

1 = 04(entk. X)0g(x, eny) =1 [ [ 2™ Onth=i,
Jj<k

and only 60y, 0,41, ... appear in the expression above, so if 6, is the only irrational
number among these, it follows that x; = 0, which gives a contradiction.
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(c) To see why density of S in T in general is not sufficient, take r to be an irrational
number in (0, 1), and for k > 0 set

Osky1 =71, O4pz3=1—r, and Oy =0.

Then e; + ej3 is og-regular. In fact, e] (0 — 0*) = —e; (6 — 6%), i.e., column 1 and 3
of the matrix 8 — 6* are the negative of each other.

(d) Let p;y < p» < p3 < --- denote the list of all prime numbers and define
Om = 1/ pm, for every m > 1.

Then (D Z. o) satisfies Kleppner’s condition. Indeed, suppose that x is op-
regular and choose n so large that p, > > jez |x;|. Assume, for contradiction,
that x is nontrivial, and let X’ and k denote respectively the smallest and the largest
number in the set {j € Z : x; # 0}. Then
2mi (Zk x—j)

I =o0(entk,x)o(x,nt) =€ T=K Pntk—j

and | Zf‘:k’ pnii_j | < 1 by assumption, so the sum must be 0. But this is not
possible unless all x;’s in this sum are 0. Indeed, one easily checks that xi/p, ¢
Z[{1/pj : j > n}] when 0 < |xg| < py, so that we must have x; = 0. Proceeding
inductively, we also get xx—; = -+ = Xz = 0. Thus, x must be trivial, giving a

contradiction.

Remark 5.10. Since G = Z?Z is ICC and amenable, we have C*S(G) # K(G) =
Z2%(G,T). Moreover, Proposition 5.8 and Example 5.9 give that C*S(G) # 0.
Similarly, we have @ # UT(G) # K(G).

Remark 5.11. When the matrix 6 in Proposition 5.8 is such that (B, Z, 0y) does
not satisfy Kleppner’s condition, we do not know if it can happen that Z acts on
C} (@4 Z,0p) in a minimal way; this would imply that (Z 2 Z, 6g) is C*-simple
(cf. Proposition 5.7) without having the unique trace property.

5.2.2. The lamplighter group Z; 2 Z. Analogously to the previous example, we
start by computing the 2-cocycles of Z, ? Z up to similarity. Let §, Z, denote the
direct sum of Z5 indexed by Z. As in (5.4), we get that H>(D, Z», T) ~ []; Z5,
where the index set I is {(j, k) € Z? | j < k}. We will represent its elements by
7. x 7, -matrices of the form u = [@x]; kez » Where p i = 1 whenever j > k and
Wik € {—1,1}if j < k. Analogously to (5.5), every element of Z*(y Z», T) is
similar to one of the form

0u((sj)jez . (t))jez) = l_[ M;;'ctk'
j<k

Consider now the lamplighter group

2227 = (P, 22) » Z.
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where the action of Z on €@, Z is given by

(” : (Sj)jEZ)k = Sk—n

for k,n € Z. The following mirrors the previous subsection. The 2-cocycle oy,
of @y Z, is invariant under the action of Z if and only if ptjx = [ 4n k+n for all
j <kandn € Z, i.e., if the matrix p is constant on its diagonals. Moreover, up to
similarity, every 2-cocycle of Z, ¢ Z is similar to a 2-cocycle ¢, given by

Gu(((s)) ez 1), ((t))jez, n')) = 0u((s))jez . n - (t)) jez)

for some p which is constant on its diagonals. In other words, we have
2 ~ 2 Z ~ X
H* 2222, T) ~ H* (), 2..T)" ~ []z5.
N

We assume from now on that p is constant on its diagonals. C*-algebras of the
form C; (5, Z2, 0,,) for such p’s have been previously discussed in the literature
as “C*-algebras of bitstreams”, see for example [41, Section 12]. Letting u, denote
the entry of p on its n’th diagonal for each integer n > 1, the associated “bitstream”
{ente €10, 13N is given by setting €, = 0if i, = 1 and €, = 1if u,, = —1. Set

Xpy=n>l:eg=1={n>1:p, =-1}

and Y, = X, U(=X,) = {£n :n € X} C Z. Asin [41] we will say
that X, is periodic if Y, is periodic, i.e., if there exists an integer m > 1 such that
{m+y:yeY,} =Y, Itfollows from [41, Corollary 12.1.5] that (B, Z>,0,)
is C*-simple (resp. has the unique trace property) if and only if X, is nonperiodic,
in which case C) (D, Z»,0,) is the UHF algebra of type 2°°. Since Py Z, is
abelian, this means that (P, Z-, 0,,) satisfies Kleppner’s condition if and only if X/,
is nonperiodic.

Nonperiodic X,’s are easy to produce. This happens for example when X, is
finite and nonempty. Since 0 ¢ Y, this is also happens when u, = —1 for every
even n > 1. On the other hand, if u, = —1 for every odd n > 1 and u, = 1
otherwise, i.e., X;, = N \ 2N, then X, is periodic.

From Proposition 5.7 we now get:

Proposition 5.12. Assume that @ is constant on its diagonals.  Then the
“noncommutative lamplighter” (Z, 2 7. ,G,,) has the unique trace property if and
only if X, is nonperiodic, which implies that (Z» Z ,6,,) is C*-simple.

Remark 5.13. Suppose that X;, = N \ 2N, and let 0, be the associated 2-cocycle.
Then X, is periodic, as indicated above, and

oulei +eit2,x) = (=) =0, (x,e; + ejy2)

forall x € H = @y Z,. We can now check that S = (¢; + e;42:i € Z) C H.
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Given an element x € H and i € {0, 1}, define x’ by

(xi) )Xk, ifk € 2Z +1,
k 0, else.

Then x = x® + x! and using that o, is a bicharacter, we have
0u(x,y) = 0u(x® + x1, 30 + y1) = 0, (% yHou(x', yO),

since 0, (x%, %) = o, (x!, y!) = 1 forall x,y € H.
Define b: H — T by
b(x) = Gu(xo,xl).

Let x, y € S and note that in this case we have
ou(x',y%) = 0 (x, ¥°) = 0, (v°, %) = 0, (%, x1).
We compute that

b(x +y) =0, (x*+y% x' +yh
= 0,,(x% x"0, (x% ¥y, (0, x 1o (0, ¥1)
= b(x)ou(x,y)b(y).

Thus, (0,.)|sxs coincides with the coboundary associated with b. As is easy to check,
b is invariant, i.e., b(1 - x) = b(x) for all x € S. So the argument of Remark 5.2
applies with m = —1, and it follows that (Z,? Z, 6,,) is not C *-simple. It is possible
that one could argue along the same lines whenever X, is periodic, but this might
be combinatorially much more involved, and we leave this as an open problem. An
alternative way to proceed could be to show that Z does not act on C;* (D4 Z2, 0,,)
in a minimal way when X, is periodic.

5.3. The Sanov transformation group. As is well known, the two matrices

o 1] = [

generate a free subgroup of SL(2, Z), sometimes called the Sanov subgroup. We
just denote this group [, and its generators v; and v,, and consider the semidirect
product G = Z? xTF, obtained via the canonical action of SL(2, Z) on Z?2. It is easy
to verify that G is ICC. We use e; = (1,0) and e, = (0, 1) to denote the generators
of Z2.

To compute the 2-cocycles of G up to similarity, one may use Mackey type results
as described in [45, 2.1-2.4] (see also [46, Theorem 2.1 and Proposition 2.2]). Note
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that up to similarity, every 2-cocycle of I, is trivial, and every 2-cocycle of Z? is
(uniquely) similar to one of the form

1
5(a1ba—asby)
oo((ar.az). (by.by)) = p2 2 (5.7)

for some g € T.
One gets that every 2-cocycle on G is similar to one given by

o((a,x),(b,y)) = oola,x -b)g(b,x),
where 0y is of the form (5.7), and g: Z? x F, — T is a function satisfying
gla+b.x)=g(a.x)gb.x),
gla,xy) =g(y-a.x)g(a,y),
g0.x) = g(a.1) =1,
gler,v2) = glez,v1) = 1.

(5.8)

It follows that g is uniquely determined by the two values g(e;,v;) = u; and
g(e2,v2) = 1 and one deduces then without much trouble that H?(G, T) = T?3.

We will therefore assume that o is of the form described above, hence is
determined by wo, 1, 42 € T, and consider the decomposition

C}(G,0) ~ C}(Cr(Z?,00),Fa, B, )

obtained as in Subsection 3.1, using the section s:F, — G given by s(x) = (0, x).
Straightforward computations give that w is trivial and B (A¢, (@) = g(a, X)Ag, (x-a)
foralla € Z2 and x € F,.

Assume first that ug is nontorsion. Then (Z2,0¢) is C*-simple and has the
unique trace property. Since [, is C*-simple, it follows from Proposition 3.1 that
(G, 0) is C*-simple and has the unique trace property.

Next, we assume that 1 < p < ¢ are integers with gcd(p,q) = 1 and uo =
e27iP/4_ Then CX¥(Z?,00) is a rational noncommutative 2-torus with generators
Ui = Agy(e1) and Up = Ag,(e2). It is well known that the center Z of C* (22, 09)
is the C*-subalgebra generated by U} and U, so Z ~ C(T?). It is also known that
Prim(C*(Z?, 0y)) is homeomorphic to T? (see e.g. [63, Example 8.46]). Hence,
using Remark 3.2, we see that IF, will act on C*(Z?, 0¢) in a minimal way whenever
there is no proper nontrivial ideal of Z which is invariant under the restriction of 8
to Z for every x € [F,.

One computes easily that

Bu, (UY) = niUY,
Bu, (US) = UPIUS.,
Bu, UY) = ULUSY,
Bu, (U = u3U;.
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Setv; = u? and v, = uf, and define homeomorphisms ¢; and @, of T2 by

¢1(z1,22) = (vlzl,zfzz),

02(21,22) = (2123, v222).

Identifying Z with C(T?) in the obvious way, we get that fori = 1, 2, the restriction
of B,; to Z is the map f +— f o ¢;. By induction we obtain that

-1
(P?(Zl,Zz) = (vi’zl, v;’(" )Z%"zz),
-1
@y (21,22) = (V;(n )2125", V5 23)

for every n € N. Then one can use for example [39, Theorem 6.4] to deduce
that if v; is nontorsion for some i € {1,2} and (z1,z,) € T?2, then the sequence
(¢]'(z1,22))52=, is uniformly distributed (sometimes called equidistributed), and
therefore dense, in T2. This implies that if v; is nontorsion, then there is no proper
nontrivial ideal of Z which is invariant under B,,. Hence, it follows that [, acts
on C¥(Z?,0¢) in a minimal way if s or 11, is nontorsion. Since F, is C*-simple,
Proposition 3.1(i) gives then that (G, ) is C *-simple. Note that one can easily verify
that (G, Z?, o) satisfies the relative Kleppner’s condition (for any o), so we could
instead have invoked Corollary 4.16.

Let now p be a tracial state on C;* (G, o). Then one easily checks thatform,n, € Z
we have p(U["UJ') = 0 unless both m and n are multiples of g. Letting £z denote
the canonical conditional expectation from C* (Z?,00) onto Z (see e.g. [12]), we
get that p = po Ez where p denotes the restriction of p to Z. Since Ez is tracial and
equivariant with respect to the action of F, on C*(Z?, 0¢) and its restricted action
on Z, we obtain that the map p — p gives a one-to-one correspondence between
[F,-invariant tracial states on C,* (Z?,0¢) and F,-invariant states on Z.

Suppose that w; is nontorsion for some i € {1,2}. Since the sequence
(¢l (z1,22))32; is uniformly distributed in T? for every (z1.z2) € T2, we get
from [22, Proposition 3.7] that ¢; is uniquely ergodic on T? with respect to the
normalized Haar measure p, i.e., the state £,, on Z associated to p is the only state
on Z which is invariant under the restriction of ,, to Z.

So if 1 or p, is nontorsion, we can conclude that £, is the only F»-invariant
state on Z. As explained above, this implies that there is only one [F,-invariant
tracial state on C(Z?,00), namely the canonical tracial state t’. Applying
Proposition 3.1(ii) (or Corollary 4.16), we get then that (G, o) has the unique trace
property.

Finally, suppose that p1y and u, are both torsion. Considering the action of I,
on Z, and the associated action of IF, on T2 by homeomorphisms, one easily sees that
the orbit F of (1, 1) in T2 under this action is finite. Thus F is a closed F,-invariant
subset of T2 ~ Prim(C*(Z?,0¢)). Using Remark 3.2 we get that F, does not act
on Cf (Z2, 09) in a minimal way. Moreover, we obtain an [F,-invariant state £ on Z
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different from £, by setting £(f) = ﬁ Z(wl,wz)eF f(wy,wy) for f € C(T?).
This implies that there are at least two F»-invariant tracial states on C,*(Z2, 0p). All
in all, we arrive at the conclusion that (G, o) is not C *-simple and does not have the
unique trace property in this case.

Summarizing the above discussion, we record the following result:

Proposition 5.14. Let G = Z? x F, and let o € 7Z*(G,T) be determined by 1o,
U1, fo € T. Then the following conditions are equivalent:

() (G,0) is C*-simple.
(ii) (G, o) has the unique trace property.

(iii) At least one of o, |11, L2 is nontorsion.

5.4. Baumslag-Solitar groups. We recall that the Baumslag—Solitar groups
BS(m, n) are groups with presentation BS(m,n) = {a,b | ab™ = b"a) for nonzero
integers m, n. It is well known that BS(m,n) >~ BS(m’,n’) if and only if (m’,n") =
(m,n), (—m,—n), (n,m), or (—n,—m). The following holds, cf. [57, Equation 5.3]:

(@) Z(B(m,n)) ~ Z ifm = n;and Z(B(m,n)) = {e} if m # n.
(b) H*>(B(m,n),T) ~ T ifm = n; and H*(B(m,n), T) = {1} if m # n.

We therefore fix some n > 2 and set G = B(n,n). Note that Z(G) = (b") ~ Z,
and G/Z(G) ~ Z % Z, is ICC. Hence, Z(G) = FC(G) = FCH(G).

Let ¢: G — Z? be the homomorphism determined by ¢(a) = (1,0) and ¢(b) =
(0, 1). Then the kernel of ¢ can be described as

kergp = (a"bja_’-b_j 1 €eZ\{0},j €{1,2,...,n— 1}) >~ Foo.
For w € Z%(Z?,T), define the inflation Inf w € Z2(G, T) by

Inf w(x, y) = w(e(x), p(»)).

Lemma 5.15. The map o +— Inf @ induces an isomorphism from H*(Z?*,T) onto
H?(G,T).

Proof. Set N = ker¢ ~ Fq, so that G/N ~ Z?, and note that H>(N, T) and
H3(G/N, T) are both trivial. Therefore we get the following Lyndon-Hochschild—
Serre inflation-restriction exact sequence (see e.g. [51, Appendix 2]):
| — Hom(G/N, T) - Hom(G, T) - Hom(N, T)/¥
— H2(G/N,T) 2% H2(G,T) — H'(G/N,Hom(N,T)) —> 1.

It is straightforward to check that Hom(N, T)%/N and H'(G/N,Hom(N, T)) are
trivial, so we get that Inf induces an isomorphism. O
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For A € T we define wy, € Z%(Z?,T) by wy(r,s) = A"251.

Lemma 5.16. Let A € T and let w) € Z*(Z?*,T) be as above. Set o = Inf w;,.
Then the following conditions are equivalent:

(i) (G, o) satisfies Kleppner’s condition.

(i) (G, Z(G), o) satisfies the relative Kleppner condition.
(iii) A is nontorsion.
Proof. Let ¢1: G — Z be the homomorphism satisfying ¢,(a) = 1, ¢1(b) = 0,
s0 ¢1(x) is the first coordinate of ¢(x). Now, since the G-conjugacy class of any
element in G \ Z(G) is infinite, we have that (G, o) satisfies Kleppner’s condition if

and only if for each ¢ € Z\ {0} there is some x € G suchthat o (b", x) # o(x, b"),
i.e., such that

L# 0 (6™, x) 006 ) = 03 (p(b™), 9(x)) w2 (g (x), 9B = A7,

It is then clear that (i) is equivalent to (iii).

Moreover, if x € G, then its Z(G)-conjugacy class in G is just {x}.
Hence, (G, Z(G), o) satisfies the relative Kleppner condition if and only if every
x € G\ Z(G)isnoto-regularw.r.t. Z(G). Considerx € G\Z(G). Theng;(x) # 0
and, as above, we have

o (b, x) o (x, bdn) = (91 ()dn

for all d € Z. Hence, if A is nontorsion, we see that we can pick d € Z such
a(bd”,x) #* a(x,bd”), so x is not o-regular w.r.t. Z(G). This show that (iii)
implies (i). On the other hand, if A has torsion, say A™ = 1, then, as ¢;(a”) = m,
we see that x = a™ is o-regular w.r.t. Z(G). It follows that (i) implies (iii). O

Using the above lemmas we can prove the following result, which completes
[7, Example 4.6] where only (i) implies (iii) was explained:

Proposition 5.17. Letn > 2 and o € Z>(BS(n,n), T).
Then the following are equivalent:

(i) (BS(n,n),o) satisfies Kleppner’s condition.

(ii) (BS(n,n), o) is C*-simple.
(iii) (BS(n,n), o) has the unique trace property.
Hence, BS(n,n) lies in XK.
Proof. Using Lemma 5.15 we can assume that 0 = Inf @, for some A € T. To prove
that (i) = (ii) and (i) = (iii), we will appeal to Corollary 4.15 with G = BS(n,n),

H=Z7(G)~Z,and K = G/H = Z xZ,. Asasections: K — G for the quotient
map G - K = Z % Z, >~ (u,v | v"), we choose the obvious map s sending a
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word in u and v to the corresponding word in @ and b. Assume that (G, o) satisfies
Kleppner’s condition. Since

o (0", by = w; ((0,6M), (0,5™)) =10 =1

forallc,d € Z,wehave o’ = 1,50 C;*(H,0') = C}(Z) is commutative. Moreover,
Lemma 5.16 gives that (G, H, o) satisfies the relative Kleppner condition and it
follows from [7, Proposition 4.3] that 7’ is the only K-invariant tracial state on
CX¥(H,o’). So to apply Corollary 4.15 and obtain that (G, o) is C*-simple with the
unique trace property, it only remains to show that K acts on C*(H,0’) ~ C;*(Z) in
a minimal way. One easily computes that the action B of K is untwisted and satisfies
that
Br(ho ™) = 2" ho 0

for all k € K and ¢ € Z, where ¢; is defined as in the proof of Lemma 5.16.
Identifying C¥(H,0') ~ C}(Z) with C(T) via Gelfand’s transform, we get that
each By is the x-automorphism of C(T) induced by the homeomorphism of T
given by

br(z) = A e1sk)

forallz € T. Since ¢ (s(u™)) = ¢1(a™) = m for every m € Z, and A is nontorsion
(using Lemma 5.16), we see that the orbit {¢y(z) : k € K} is dense in T for
every z € T, so the action of K on C;*(H, ¢”) is minimal, as desired.

Since both (ii) = (i) and (iii) = (i) always hold, the proof is finished. O

Finally, we can now deduce that BS(m,n) belongs to K if |m|,|n| > 2.
Indeed, when |m|, |n| > 2 and |m| # |n|, the group BS(m,n) is C*-simple by
[29, Theorem 4.10], and if m = —n then B S(m, n) is not ICC and has no 2-cocycles.

A. On reduced twisted group C*-algebras with stable rank one

Let G be a discrete group and 0 € Z?(G,T). We set § = §, and let ||-||, denote the
usual norm in £2(G). For a € B({*(G)) we set
ra(a) = limsup||a"6||;/" .
n—>oo
Since ||b 8|2 < ||b]| for every b € B({*(G)), we have r2(a) < r(a) < ||a| < oo,
where r(a) denotes the usual spectral radius of a € B({*(G)).

We recall some definitions from [20]. We let C.(G) denote the space of all
complex-valued functions on G having finite support. A finite subset S of G is said
to have the ¢2-spectral radius property if, for every f € C.(G) with supp(f) C S,
we have

r2(A(S)) = r(A(S)). (A1)
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The group G is said to have the {2-spectral radius property if every finite subset of G
has the £2-spectral radius property, that is, if (A.1) holds for every f € C.(G).

Dykema and de la Harpe show in [20, Theorem 1.4] that C;*(G) has stable rank
one whenever G satisfies the following condition:

For every finite subset F of G, there exists g € G such that gF is semi-
free (i.e., the subsemigroup generated by gF in G is free over gF') and (DH)
gF has the (*-spectral radius property.

The group G is said to have the free semigroup property if for every finite subset F
of G, there exists g € G such that gF is semifree. An immediate corollary is that
C}(G) has stable rank one whenever G is a group having both the free semigroup
property and the £2-spectral radius property. We will show below that a similar result
hold in the twisted case.

It will be convenient to introduce some more terminology. We first note that if
f € C.(G), then A;(f)S§ = f,so we have

1fll2 = 1A (O

A finite subset S of G will be said to have the SR-property w.r.t. o if for every
f € C.(G) with supp(f) C S, we have

r(Aa() = 1Sz

In the case where o = 1, we just say that S has the SR-property.
Theorem A.1. Consider the following conditions:

(i) G has the £>-spectral radius property and the free semigroup property.
(ii) G satisfies condition (DH).

(iii) For every finite subset F of G, there exists g € G such that gF has the
SR-property.

(iv) For every finite subset F of G, there exists g € G such that gF has the
SR-property w.r.t. 0.

(v) CX(G,o0) has stable rank one.
Then we have (i) = (ii) = (iii) = (iv) = (v).
The following lemma will be useful in the proof of Theorem A.1.

Lemma A.2. Let f €C.(G) andseta=As(f) € C}(G,0), b=A(|f]) € C}(G).
Then ||a™ || < ||b"|| for every n € N.

Proof. We first prove by induction on 7 that for each n € N, we have

la" Ell2 < || b" €] |l2 forevery & € £2(G). (A2)
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Let £ € £2(G). Since

la&l = |f *s E| < |f] *|E] = b|E],
we have ||[a &, = || |aé]]l2 < || b|€] |2, i.e., (A.2) holds whenn = 1.
Now, assume that (A.2) holds for some n € N. Then, for £ € 02(G), we get

1 1
la" " &2 = lla" agllz < 1" la g2 < 16" [E] 2.

where we have used the induction hypothesis at the second step and the fact that
0 <b"|ak| < b"b|E| = b"F!|£| at the third step. This shows that (A.2) holds
for n + 1, as desired.

From (A.2), we get

la™ &llz < 16" [11lz < 16" 1111E112 = 1571116 II2

for every £ € £2(G), and the assertion clearly follows. O

Proof of Theorem A.1. As already pointed out, (i) = (ii) is immediate from the
definitions. Next, let S be a finite subset S of G. Recall that if S is semifree, then we
have r2(A(f)) = || fl2 forany f € C.(G) (cf. step two in the proof of Theorem 1.4
in [20]). Hence, if S is semifree and has the ¢2-spectral radius property, then we
have r(A(f)) = ra(A(f)) = || f || for every f € C.(G) with supp(f) C S,s0o S
has the SR-property. This shows that (ii) = (iii).

Now, let S be a finite subset of G such that S has the SR-property. To show
that (iii) = (iv) holds, it suffices to show that S has the SR-property w.r.t. 0. So
consider f € C.(G) with supp(f) C S and set a = Ay(f). We have to show
that r(a) < || fll2. Setb = A(|f]) € CF(G). Since supp(| f]) = supp(f) C S
and S has the SR-property, we get that r(b) < |[|f|ll2 = || f]l2. Thus, we see
that it is enough to show that r(a) < r(b). Using the spectral radius formula, this
immediately follows from Lemma A.2.

The proof of (iv) = (v) is an adaptation of the proof of [20, Theorem 1.4]
(which itself builds upon ideas from [19]). For the sake of completeness, we
sketch the argument. Assume that (iv) holds and suppose (for contradiction) that
A = C}(G,o0) does not have stable rank one. Proceeding as in step three of the
proof of [20, Theorem 1.4], we get that there exists some f € C.(G) such that

1£1l2 < d(Ac(f), GL(A)),

where d (x, GL(A4)) denotes the distance (w.r.t. operator norm) from some x € A to
the set of invertible elements in A.

Seta = Ays(f) and F = supp(f). By assumption, there exists g € G such
that g F' has the SR-property w.r.t. 0. Setc = Ay;(g)a € A. Clearly, d(c, GL(A)) =
d(a, GL(A)). Moreover, since ¢ = Ay (fg), where

fe =Y f)o(g. 1) 8.

heF
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we get that || fgll2 = || f]l2 and supp(fy) = gF. Hence, since gF has the SR-
property w.r.t. o, we get that

r(e) = I fellz = 1/12-

We also have d(c, GL(A)) < r(c) (as this inequality holds in every unital
C*-algebra, cf. step one in the proof of [20, Theorem 1.4]). Thus, altogether, we get

I fll2 < d(a, GL(A)) = d(c, GL(A)) < r(c) < fl=.
which gives a contradiction. So A must have stable rank one, that is, (v) holds. [J

Remark A.3. Several examples of groups having both the free semigroup property
and the £2-spectral radius property are exhibited in [20]. If G denotes any of
these groups, then Theorem A.1 gives that C,*(G, o) has stable rank one for any
o € Z%(G,T). In all these examples, it is known that G is C*-simple (being a
Powers group), hence that (G, o) is also C*-simple. This provides some evidence
that it might be true that C;* (G, o) has stable rank one whenever (G, o) is C *-simple
(cf. Question 2.2).

B. On groups with property (BP)

We recall from [61] that a group G is said to have property (BP) if forevery g € G \{e}
and n € N, n > 2, there exist g1,...,8, € G, a subgroup H of G, and pairwise
disjoint nonempty subsets 77, ..., T, C H such that

gjgg; (H\T;) C T

forall j =1,...,n.

In [61, Remark 5.9], Tucker-Drob sketches briefly how some arguments of Bekka,
Cowling and de la Harpe in [8] can be adapted to prove that G has the unique trace
property whenever G has property (BP). With the kind permission of Tucker-Drob,
we give below an expanded version of his proof in the twisted case.

Proposition B.1. Assume that G has property (BP) and let 0 € Z*(G,T). Then
(G, o) has the unique trace property. Moreover, G is ICC and belongs to Kyr.

Proof. Let ¥ be a tracial state on A := C(G,0). To show the first assertion, by
continuity of ¥ and density of the x-subalgebra of A generated by A, (G), it suffices
to show that Y (A5(g)) = Oforallg € G\{e}. Fixg € G\{e}andletn € N, n > 2.
Pick g1,...,gn, H and Ty, ..., T, as in the definition of property (BP), and set

n

1 < LI e -
an = 3" do(8) Ao do(8))" = 3" 5810 Mol 827
j=1

Jj=1
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where ¢ is defined as in (2.2). We will show that

| an || < (B.1)

2
T

Using this inequality and the traciality of 1, we then obtain that

¥ Go@)| = @] = ol = .
Letting n — oo, we get ¥ (Ls(g)) = 0, as desired.

To show that (B.1) holds, we set r; = g; gg;1 foreach j = 1,...,n. The
assumption says that r;(H \ T;) C Tj foreach j = 1,...,n. Since H \ T; # 0
for each j (otherwise the 7;’s could not be pairwise disjoint), we see that each r;
belongs to H.

Let ¢’ denote the restriction of 0 to H x H. If D C H, we let Pp denote
the orthogonal projection from £?(H) onto £2(D) (identified as a closed subspace
of £2(H)). We then have Ay (h) Pp = Pjp Ae(h) for all h € H. Note also
that, since r; (H \ T;) N (H \ T;) = 9, we have Pr a\1;) Pu\1; = 0 for each
j=1,....n.

Set a, = %ZZLI G(gj.8)Ao(rj) € CX(H,o'). To estimate |a,]|, let
£,n € {?(H). Using the triangle inequality, the remarks above and the Cauchy—
Schwarz inequality, we get

|<5(gj,g)kg/(”j)§, 77)| = \ ka’(rj)é’ ”)\

(
< (Ao (ry) Pr; & m)| + (Ao () Panve; &, 1)
< |(Aor(rj) Pr; & )| + [(Pr; 1)) Aot (1) €, 1)
= [(Ae(r)) Pr; §&. )| 4+ [(Pr; (1)) Aor () &, Pr;1)|
< [Pz, Elllnll + &1 1P, nll
foreach j = 1,...,n. Since the T ’s are pairwise disjoint, this gives

> B (&) 8) Ao (r) £, 1)
Jj=1
< (1l X 0p €0+ el e,
j=1 j=1
n 1/2 n 1/2
s(ﬁnnu(ZuPT,suz) +¢E||5||(Z||Prjn||2) )

Jj=1 J=1

<2vn &l lnl.
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Thus we get

S| =

(@, & n) <= 3 |(5(g,. ) hor(r) £ )| < %wﬁnsn Il = i el il
j=1

7

It follows that ||a|| = |la, || < 2/+/n, thatis, (B.1) holds, and the proof of the first
assertion is finished. Since this assertion is true for any o € Z2?(G, T), the second
assertion follows readily. 0

C. On decay properties and uniqueness of the trace

A recent result of Gong says that if a group G has Jolissaint’s property RD [32]
(with respect to some length function L), and every nontrivial conjugacy class of G
has superpolynomial growth (w.r.t. L), then G has the unique trace property (see
[23, Theorem 3.11]). We give below a generalized version of her result.

Consider k: G — [1,00). For£: G — C, set

/
= (X e@?) " e 0.0l

geG

€]

Let 0 € Z%(G,T). We will say that (G, o) is k-decaying if there exists some
M > 0 such that

A (I = M || f |2,

for every function f: G — C having finite support. Itis easy to see that this definition
agrees with the one given in [5]. When (G, 1) is k-decaying, we will just say that G
is k-decaying. We note that if L is a length function on G, then G has property RD
(w.r.t. L) in the sense of [32] if and only if there exists some s > 0 such that G
is (1 + L)*-decaying.

According to [5, Theorem 3.5 and Proposition 3.7], we have:

(i) if G is k-decaying, then (G, o) is k-decaying;

(ii) if (G, 0) is k-decaying, then the series ) geG §(8)As(g) is convergent w.r.t. the
operator-norm in C* (G, o) whenever ||§]|2, < 00.

Assume now that k: G — [1, 00) is proper (so G is countable). Let C be a subset
of G. Foreachk e N,setCy = CN{ge G :k—1<«k(g) <k} Wewill say
that C has superpolynomial growth (w.r.t. k) if for every (real) polynomial P there
exists an infinite subset K of N such that |Cy| > P (k) forall k € K.

Theorem C.1. Assume that k: G — [1,00) is a proper map, (G, ) is k-decaying
and every nontrivial o-regular conjugacy class in G has superpolynomial growth
(w.r.t. k). Then (G, 0) has the unique trace property.
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Proof. A major part of the proof is an adaptation of the proof of [23, Lemma 3.9].
Let w be a tracial state on C,* (G, o). It suffices to show that w(15(g)) = 0 for every
g € G\ {e}. Assume first that g € G is not o-regular. Let then 2 € G be such that &
commutes with g and o (h, g) # o(g, h). We then have 5(h, g) # 1 and

®(A(g)) = 0(Ae (MAs()Ae(M)*) = T (h, 8) ©(Xs(g)),

so it follows that w(A4(g)) = 0.

Next, assume that g € G \ {e} is o-regular. Set C = Cg(g) (the conjugacy
class of g in G) and let Cy be defined as above for each k € N. Since C has super-
polynomial growth (w.r.t. k), we can find an increasing sequence 1 < k1 < kp < ---
in N such that ¢; := [Cy; | > (k;)* forevery j € N.

Using equation (2.3) we get that for each & € C, there exists some y;, € T such
that w(As (h)) = y, w(As(g)). Define then £: G — C by

5/8, ifh e ij for some j € N,

VhCj
h) = J
st 0, otherwise.

Then

”S”%’K:Z Z |V_hcj_5/8K(h)}2§Z Z C;lO/ska

JEN heCki JEN heCki
—1/4 ;2 —Jj2

> G = KR <o

JEN JEN

Since (G, 0) is k-decaying, we get that ) ", . £ (h) A, (h) converges in operator-norm
to some x € C¥(G, o). Thus, by continuity of @, we get

Y e (Ao (b)) = w(x).

heG
But
o To/8 A ifh € C, fi i €N
£ (o (h) = {yh o melele)., 1 E S forsome ] €1
0, otherwise.
B cj—s/s w(Ao(g)), ifh € Cy; forsome j € N,
~ o, otherwise.
Hence
Y to(ts) =o(s(@) > Y P =0(9) > .
heG JjeN heij jeN

As ZjGN c]3-/8 = 00, we see that we must have w(A1,(g)) = 0.
Thus, altogether, we have shown that w(A,(g)) = 0 for all g € G \ {e}, which
implies that @ agrees with the canonical tracial state on C,* (G, 0). 0
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