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On reduced twisted group C*-algebras that are simple
and/or have a unique trace
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Abstract. We study the problem of determining when the reduced twisted group C�-algebra
associated with a discrete group G is simple and/or has a unique tracial state, and present
new sufficient conditions for this to hold. One of our main tools is a combinatorial property,
that we call the relative Kleppner condition, which ensures that a quotient group G=H acts
by freely acting automorphisms on the twisted group von Neumann algebra associated to a
normal subgroupH . We apply our results to different types of groups, e.g. wreath products and
Baumslag–Solitar groups.
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1. Introduction

The theory of twisted group C�-algebras is closely related to projective unitary
representations of groups, and we refer to [49] for a survey describing its importance
in various fields of mathematics and physics. In this article, we will only consider
discrete groups. Simplicity and/or uniqueness of the trace for reduced twisted group
C�-algebras have been investigated in several papers, e.g. [2–4, 6, 7, 45, 48, 51, 58],
and our aim with the present work is to provide better insight on this topic. Finding
new examples of simple C�-algebras is always a valuable task, due to the role they
play as building blocks and test objects. From the point of view of representation
theory, simplicity of the reduced twisted groupC�-algebraC �r .G; �/ gives interesting
information as it amounts to the fact that any � -projective unitary representation ofG
which is weakly contained in the (left) regular � -projective representation �� of G
is weakly equivalent to �� . The reasoning behind this is essentially the same as the
one given in [27] in the untwisted case, i.e., when � is trivial. On the other hand,
knowing that C �r .G; �/ has a unique tracial state � is also very useful. This property
is a C�-algebraic invariant in itself, which may be refined by taking into account the
�Funded by the Research Council of Norway through FRINATEK, project no. 240913.
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range of the restriction of � to all projections in C �r .G; �/. When G is countable,
this range is a countable subset of the interval Œ0; 1� (see [55]), giving a way to label
the gaps of the spectrum of self-adjoint elements in C �r .G; �/.

We will let G denote a group and � WG � G ! T a normalized 2-cocycle on G
with values in the circle group T , that is, � 2 Z2.G;T /. We will often use the
terminolgy introduced in [7] and say that the pair .G; �/ is C �-simple (resp. has
the unique trace property) when the reduced twisted group C�-algebra C �r .G; �/
is simple (resp. has a unique tracial state). If this holds when � is trivial, we
will just say that G is C �-simple (resp. has the unique trace property), as in for
example [2–4, 13, 15, 25, 27, 28, 33, 35, 43, 61]. We recall that if .G; �/ is C �-simple
(resp. has the unique trace property), then .G; �/ satisfies Kleppner’s condition,
that is, every nontrivial � -regular conjugacy class in G is infinite (cf. [37] and
Subsection 2.3). In other words, setting

C �S.G/ D f� 2 Z2.G;T / j .G; �/ is C �-simpleg;
U T .G/ D f� 2 Z2.G;T / j .G; �/ has the unique trace propertyg;
K.G/ D f� 2 Z2.G;T / j � satisfies Kleppner’s conditiong;

we always have C �S.G/ � K.G/ and UT .G/ � K.G/. Following [7], we will
let KC�S (resp. KUT ) denote the class of groups G satisfying C �S.G/ D K.G/

(resp. UT .G/ D K.G/). Moreover, K will denote the intersection of KC�S

and KUT . Thus, ifG belongs to K , then for any � 2 Z2.G;T /, we have that .G; �/
is C �-simple if and only if .G; �/ has the unique trace property, if and only if .G; �/
satisfies Kleppner’s condition.

It is noteworthy that the class K contains many amenable groups. Finite groups,
abelian groups, FC-groups and nilpotent groups all lie in K , and more generally,
as shown in [7], every FC-hypercentral group belongs to K (cf. Subsection 2.5).
On the other hand, it is known [51] that some semidirect products of Zn by actions
of Z do not belong to KC�S (and neither to KUT ). In a somewhat opposite
direction, Bryder and Kennedy have recently shown [17] that C �S.G/ D Z2.G;T /
(resp. UT .G/ D Z2.G;T /) whenever G is C �-simple (resp. has the unique trace
property). Since the class of C �-simple groups is (strictly) contained in the class of
groups with the unique trace property [13, 15], we get that every C �-simple group
belongs to K , while every group with the unique trace property belongs to KUT .
Combining results from [7] and [17], we show in the present paper that a group G
belongs to KUT whenever the FC-hypercenter of G coincides with its amenable
radical (cf. Theorem 3.7). An interesting question is whether this property in fact
characterizes KUT .

When some � 2 Z2.G;T / is given and it is unclear whether G lies in KC�S , or
inKUT , one would like to be able to decide whether � lies inC �S.G/, or inUT .G/.
Ourmain contribution is to provide several new conditions that are sufficient to handle
many cases. As the first step in our approach, we consider a normal subgroup H
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of G and study when certain naturally arising �-automorphisms of the twisted group
von Neumann algebra M associated to H are freely acting (or properly outer)
in the sense of [34]. This leads us to introduce a combinatorial property for a
triple .G;H; �/, that we call the relative Kleppner condition, which ensures that the
canonical twisted action of the quotient groupG=H on the vonNeumann algebraM is
freely acting. Combining this property with some results from [2,4] and building on
previous works of Kishimoto in [36] andOlesen and Pedersen in [42], we obtain some
conditions that are sufficient for � to belong toUT .G/, or toC �S.G/\UT .G/. We
illustrate the usefulness of these conditions by applying them to a variety of groups
(e.g. semidirect products, wreath products, and Baumslag–Solitar groups).

The paper is organized as follows. Section 2 contains a review of the definitions
and of the results that are relevant for this article. In Section 3 we look at the
behavior of C �-simplicity and the unique trace property for pairs .G; �/ in a few
basic group constructions, in particular in connection with subgroups. Section 4
is devoted to freely acting automorphisms and the relative Kleppner condition for
triples .G;H; �/. Our main result is Theorem 4.9, which relies on some technically
involved arguments, in particular in the proof of Proposition 4.7. Theorem 4.9 has
several consequences; especially, it implies that C �-simplicity and the unique trace
property pass from .H; �jH�H / to .G; �/ whenever .G;H; �/ satisfies the relative
Kleppner condition. Section 5 contains a detailed study of several new examples.
First we discuss semidirect products of abelian groups by aperiodic automorphisms.
Next we look at wreath products, with special focus on Z o Z and Z2 o Z, where the
former requires investigation of the noncommutative infinite-dimensional torus, and
the latter gives rise to a noncommutative version of the lamplighter group. Then we
discuss a semidirect product arising from the Sanov action of F2 on Z2. Finally, we
consider the Baumslag–Solitar groups.

We will often refer to the fact that if G is amenable, or if G is exact and
C �r .G; �/ has stable rank one, then .G; �/ is C �-simple whenever it has the unique
trace property (cf. Theorem 2.1). For completeness, adapting some previous work
of Dykema and de la Harpe [20] for reduced group C�-algebras, we discuss in
Appendix A some conditions ensuring that C �r .G; �/ has stable rank one. In
Appendix B we prove a twisted version of Tucker-Drob’s unpublished result in [61]
saying that a group has the unique trace property whenever it has the so-called
property (BP). Finally, in Appendix C, we generalize Gong’s recent result in [23]
by showing how decay properties of .G; �/ can be combined with superpolynomial
growth of nontrivial � -regular classes to deduce uniqueness of the trace.

2. Preliminaries and known results

2.1. 2-cocycles. Throughout this paper,G will denote a (discrete) group with ident-
ity e, while � will denote a normalized 2-cocycle (sometimes called a multiplier)
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on G with values in the circle group T , as in [65]. This means that we have
�.g; e/ D �.e; g/ D 1 for every g 2 G and that the cocycle identity

�.g; h/�.gh; k/ D �.h; k/�.g; hk/ (2.1)

holds for every g; h; k 2 G.
The set Z2.G;T / of all normalized 2-cocycles becomes an abelian group under

pointwise product, the inverse operation corresponding to conjugation, i.e., ��1 D x� ,
where x�.g; h/ D �.g; h/, and the identity element being the trivial 2-cocycle 1 onG.

An element ˇ 2 Z2.G;T / is called a coboundary whenever we have

ˇ.g; h/ D b.g/b.h/b.gh/

for all g; h 2 G, for some bWG ! T such that b.e/ D 1 (such a function b
is uniquely determined up to multiplication by a character of G). The set of all
coboundaries B2.G;T / is a subgroup of Z2.G;T /, and elements in the quotient
groupH 2.G;T / D Z2.G;T /=B2.G;T / will be denoted by Œ��.

For �; ! 2 Z2.G;T /, wewrite � � ! and say that � is similar (or cohomologous)
to ! when Œ�� D Œ!� inH 2.G;T /.

2.2. Twisted groupalgebras. The left regular� -projective unitary representation��
of G on B.`2.G// is given by�

�� .g/�
�
.h/ D �.g; g�1h/ �.g�1h/

for g; h 2 G and � 2 `2.G/. Note that we have

�� .g/ ıh D �.g; h/ ıgh ;

�� .g/ �� .h/ D �.g; h/ �� .gh/

for all g; h 2 G, where ıh.g/ D 1 if g D h and ıh.g/ D 0 otherwise. It follows that
for all g; h 2 G we have

�� .g/�� .h/�� .g/
�
D �.g; h/ �.ghg�1; g/ �� .ghg

�1/ :

We will use the notation g � h WD ghg�1 to denote the action of G on itself by
conjugation. Letting z� WG �G ! C denote the anti-symmetrized form of � defined
by

z�.g; h/ D �.g; h/ �.g � h; g/ ; (2.2)

we get
�� .g/�� .h/�� .g/

�
D z�.g; h/ �� .g � h/ (2.3)

for all g; h 2 G.
The reduced twisted group C�-algebra C �r .G; �/ and the twisted group von Neu-

mann algebra W �.G; �/ are, respectively, the C�-algebra and the von Neumann
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algebra generated by �� .G/. We will use the convention that when � is the trivial
cocycle, we just drop � from all our notation. It is well known and easy to check
that C �r .G; �/ ' C �r .G; !/ (resp. W �.G; �/ ' W �.G; !// whenever � � !

in Z2.G;T /.
We will denote by ƒ� the map from `1.G/ into B.`2.G// given by

ƒ� .f / D
X
g2G

f .g/ �� .g/

for f 2 `1.G/. Note that for f 2 `1.G/ and � 2 `2.G/, we haveƒ� .f / � D f �� � ,
where

.f �� �/.h/ D
X
g2G

f .g/ �.g�1h/�.g; g�1h/

for each h 2 G.
The canonical tracial state onW �.G; �/will be denoted by � (or by �� if confusion

may arise); it is given as the restriction to W �.G; �/ of the vector state associated
with ıe . As is well known, � is faithful and satisfies �.�� .g// D 0 for every g ¤ e.
The restriction of � to C �r .G; �/ will also be denoted by � (or by �� ).

Note that one can also consider the right regular � -projective unitary representa-
tion �� of G on B.`2.G// given by

.�� .g/�/.h/ D �.h; g/ �.hg/

for all � 2 `2.G/ and g; h 2 G. One easily checks (see e.g. [44, Section 2]) that for
every g; h 2 G we have

�� .g/ �x� .h/ D �x� .h/ �� .g/ :

We will say that .G; �/ is C �-simple (resp. has the unique trace property) whenever
C �r .G; �/ is simple (resp. � is the only tracial state of C �r .G; �/).

2.3. Kleppner’s condition. We recall [37,44,48] that g 2 G is called � -regular if

�.h; g/ D �.g; h/ whenever h 2 G commutes with g :

If g is � -regular, then kgk�1 is � -regular for all k inG, so the notion of � -regularity
makes sense for conjugacy classes in G.

Following [44], we will say that the pair .G; �/ satisfies Kleppner’s condition
(or condition K) if every nontrivial � -regular conjugacy class of G is infinite. It is
known [37,44,48] that .G; �/ satisfies Kleppner’s condition if and only ifW �.G; �/
is a factor, if and only if C �r .G; �/ has trivial center, if and only if C �r .G; �/ is prime.

It follows easily from the above equivalences that Kleppner’s condition is
necessary for .G; �/ to be C �-simple (resp. to have a unique trace). However,
in general, Kleppner’s condition is not sufficient for any of these two properties
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to hold. For instance, if G is a nontrivial amenable group which is ICC (i.e., every
nontrivial conjugacy class inG is infinite), then .G; 1/ satisfies Kleppner’s condition,
but .G; 1/ is neither C �-simple, nor has a unique tracial state (since there exists a
nontrivial homomorphism �WC �r .G/! C whenever G is amenable, cf. [16]).

Recall from the introduction that

C �S.G/ D f� 2 Z2.G;T / j .G; �/ is C �-simpleg ;
U T .G/ D f� 2 Z2.G;T / j .G; �/ has the unique trace propertyg ;
K.G/ D f� 2 Z2.G;T / j � satisfies Kleppner’s conditiong :

We then have
C �S.G/ � K.G/ and UT .G/ � K.G/ :

It is straightforward to see that if � lies inC �S.G/ (resp.UT .G/) and! 2 Z2.G;T /
is similar to � , then! also lies inC �S.G/ (resp.UT .G/). Hence, it follows from [15]
that if � � 1 and � 2 C �S.G/, then � 2 UT .G/. We do not know whether this
implication holds when � 6� 1. Note that it may happen thatK.G/ is empty, in which
case C �S.G/ and UT .G/ are also empty. For example, suppose that G is finite and
that there exists some � 2 K.G/. Then W �.G; �/ is a finite-dimensional factor
having a basis indexed byG. So jGj, the cardinality ofG, has to be a square number.
Thus, K.G/ D ; whenever G is finite and jGj is not a square number. We also note
that K.Z/ D ;, as readily follows from the fact that H 2.Z;T / is trivial. Another
fact which is almost immediate is that G is ICC if and only if K.G/ D Z2.G;T /.

We will say that G belongs to the class KC�S if C �S.G/ D K.G/, and that G
belongs to the class KUT if UT .G/ D K.G/. Moreover, K will denote the
intersection of KC�S and KUT .

Finally, we mention that it follows from [26] that � 2 C �S.G/ \ UT .G/ if and
only if C �r .G; �/ has the Dixmier property relative to C � 1, if and only if � 2 K.G/
and C �r .G; �/ has the Dixmier property relative to its center (as defined for example
in [10, III.2.5.16]).

2.4. Murphy’s theorem. A useful consequence of a result due to Murphy [40] is
the following theorem (cf. Corollaries 2.3 and 2.4 in [7]):
Theorem 2.1. Assume that G is amenable, or that G is exact and A D C �r .G; �/

has stable rank one (i.e., the invertible elements of A are dense in A). Then .G; �/
is C �-simple whenever it has the unique trace property.

This result implies that if G is amenable, then UT .G/ � C �S.G/. Hence, an
amenable group belongs to K if and only it belongs to KUT . WhenG is a countable
and amenable, and .G; �/ has the unique trace property, one can conclude from
Theorem 2.1 that C �r .G; �/ is a separable, simple, nuclear C�-algebra with a unique
tracial state, hence belongs to a class of C�-algebras being currently under intensive
study.
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Concerning exactness of groups, the reader may consult [16] and references
therein. When � 6� 1, there are few known examples of pairs .G; �/ such that
C �r .G; �/ has stable rank one. Putnam’s result [54] for irrational rotation algebras
deals with the case where G D Z2 (after rewriting rotation algebras as a twisted
group C�-algebras associated to Z2). His result was generalized to G D Zn for
any n � 2 by Blackadar, Kumjian and Rørdam [11], but one should note that they
effectively use simplicity to deduce stable rank one.

Question 2.2. Suppose G is exact, � 2 Z2.G;T / and consider the following
statements:

(i) .G; �/ is C �-simple.

(ii) C �r .G; �/ has stable rank one and .G; �/ has the unique trace property.

Theorem 2.1 gives that (ii)) (i). Does (i)) (ii) always hold?

If � � 1, thanks to [15], this question reduces to asking whether C �r .G/ has
stable rank one wheneverG is C �-simple (andG is exact). More generally, one may
wonder if C �r .G; �/ has stable rank one whenever .G; �/ is C �-simple.

Adapting the approach used in [20], where several groups whose reduced group
C�-algebras have stable rank one are presented, we discuss in Appendix A of this
paper some conditions ensuring that C �r .G; �/ has stable rank one.

2.5. FC-hypercentral groups. It is known that a group G has a smallest normal
subgroup that produces an ICC quotient group (cf. [31, Remark 4.1] and [7,
Proposition 2.5]). This subgroup coincides with the so-called FC-hypercenter [56]
of G and is denoted by FCH.G/. Clearly, FCH.G/ D feg if and only if G is ICC.
Letting Z.G/ denote the center of G and FC.G/ the FC-center of G (that is, the
(normal) subgroup of G consisting of all elements of G having a finite conjugacy
class in G), we have

Z.G/ � FC.G/ � FCH.G/:

When G D FCH.G/, G is said to be FC-hypercentral. Every FC-hypercentral
group is amenable [21]. It follows that the FC-hypercenter of a groupG is amenable,
so we have

FCH.G/ � AR.G/;

whereAR.G/ denotes the amenable radical ofG, that is, the largest normal amenable
subgroup of G. Alternatively, one may deduce this inclusion by observing that
G=AR.G/ has no normal amenable subgroup other than the trivial one, hence is ICC.

Theorem 2.3 ([7]). Assume that G is FC-hypercentral. Then G belongs to K .

We do not know of any amenable group that belongs to K without being FC-
hypercentral.
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2.6. C �-simple groups and groups with the unique trace property. We refer
to [27] for a thorough introduction to C �-simple groups and groups with the unique
trace property. Among the many recent articles dealing with such groups, we
mention [6, 13–15, 17, 23–25, 28, 30, 33, 35, 43, 61]. As already pointed out in the
introduction, it is now known from [13, 15] that the class of C �-simple groups is
strictly contained in the class of groups with the unique trace property. Another
interesting result from [15] is that a group has the unique trace property if and only
if its amenable radical is trivial. Moreover, if G is C �-simple (resp. has the unique
trace property), then .G; �/ is C �-simple (resp. has the unique trace property) for
every � 2 Z2.G;T /, as shown in [17]. It follows that the class of C �-simple groups
is (strictly) contained in K and that the class of groups with the unique trace property
is (strictly) contained in KUT .

A very large family of groups with the unique trace property is the class of groups
having the property (BP) introduced in [61]. As the proof of this fact, which relies
on some arguments from [8], is only very briefly sketched in [61, Remark 5.9], we
prove in Appendix B that .G; �/ has the unique trace property whenever G has
property (BP).

In [30], the authors consider (nondegenerate) free products of groups with
amalgamation. They give (in [30, Section 4]) an example of such a group
� D G0 �H G1 which is not C �-simple, but is a so-called weak� Powers group,
hence has property (BP) (cf. [61, Theorem 5.4]). In particular, � has the unique trace
property. Moreover, as G0 and G1 are easily seen to be amenable, hence exact, � is
also exact (cf. [18]). It therefore follows from Theorem 2.1 that C �r .�/ does not have
stable rank one.

In another direction, Gong has recently shown in [23, Theorem 3.11] that if a
group G has property RD [32] with respect to some length function L, and every
nontrivial conjugacy class of G has superpolynomial growth (w.r.t. L), then G has
the unique trace property. This result applies for example when G is a torsion-free,
non-elementary, Gromov hyperbolic group, see [23,24]. Such groups are in fact well
known to be C �-simple, cf. [27]. We show in Appendix C how Gong’s result may be
generalized by considering suitable decay properties for a pair .G; �/ in combination
with superpolynomial growth of � -regular classes.

3. Looking at subgroups

3.1. Subgroups and normal subgroups. Let H be a subgroup of G and let � 0
denote the restriction of � to H � H . We will denote the canonical tracial state
on W �.H; � 0/ (resp. C �r .H; � 0/) by � 0. It follows from [65, Subsection 4.26]
that there is a natural embedding of W �.H; � 0/ (resp. C �r .H; � 0/) into W �.G; �/
(resp. C �r .G; �/), sending �� 0.h/ to �� .h/ for each h 2 H .

We will usually identify W �.H; � 0/ (resp. C �r .H; � 0/) with its canonical copy
inside W �.G; �/ (resp. C �r .G; �/). We note that there exists a normal conditional



Simplicity and/or uniqueness of the trace for C�r .G; �/ 955

expectation E from W �.G; �/ onto W �.H; � 0/, satisfying E.�� .g// D �� .g/

if g 2 H , and E.�� .g// D 0 otherwise. Indeed, since the characteristic function
of H in G is positive definite, the existence of a normal completely positive map E

with this property follows for example from [5] (see Proposition 4.2 and Corollary 4.4
therein). It is then straightforward to check that this map is a conditional expectation.
Wewill also use that the restriction ofE toC �r .G; �/ gives a conditional expectationE
from C �r .G; �/ onto C �r .H; � 0/.

When H is a normal subgroup of G, the relationship between W �.G; �/

and W �.H; � 0/ (resp. between C �r .G; �/ and C �r .H; � 0/), may be described as
follows, cf. [1] (resp. [2]). First we note that equation (2.3) implies that for
each g 2 G, the inner automorphism ofW �.G; �/ (resp. C �r .G; �/) implemented by
the unitary �� .g/ restricts to a �-automorphism g ofW �.H; � 0/ (resp. C �r .H; � 0/)
satisfying

g
�
�� 0.h/

�
D z�.g; h/ �� 0.g � h/ for each h 2 H :

Let q denote the canonical homomorphism from G onto K WD G=H , let sWK ! G

be a section for q satisfying s.e/ D e, and define mWK �K ! H by

m.k; l/ D s.k/s.l/s.kl/�1 :

Moreover, define ˇWK ! Aut.W �.H; � 0// (resp. Aut.C �r .H; � 0//) by

ˇk D s.k/ for each k 2 K;

and !WK �K ! U
�
C �r .H; �

0/
�
� U

�
W �.H; � 0/

�
by

!.k; l/ D �
�
s.k/; s.l/

�
�
�
m.k; l/; s.kl/

�
�� 0.m.k; l//

for each k; l 2 K. Then .ˇ; !/ is a twisted action (sometimes called a cocycle
crossed action) of K on W �.H; � 0/ (resp. C �r .H; � 0/) such that

W �.G; �/ ' W �.H; � 0/ Ì.ˇ;!/ K;
.resp. C �r .G; �/ ' C �r

�
C �r .H; �

0/;K; ˇ; !
�
/;

cf. [1, Theorem 1] (resp. [2, Theorem 2.1]). It should be noted that a similar
decomposition result was first established for full twisted group C�-algebras and full
twisted crossed products by Packer and Raeburn in [51, Theorem 4.1].

When there is danger of confusion, we will denote each ˇk by ˇr
k
when we

consider it as a �-automorphism of C �r .H; � 0/, and denote the associated twisted
action of K by .ˇr ; !/. We note that the canonical tracial state � 0 of C �r .H; � 0/ is
invariant under ˇr , that is, we have � 0 ı ˇr

k
D � 0 for each k 2 K. This may be

verified by direct computation on the generators of C �r .H; � 0/. Alternatively, we
may use that � 0 is the restriction of � to C �r .H; � 0/ and observe that the restriction
to C �r .H; � 0/ of any tracial state of C �r .G; �/ is invariant under ˇr , since each ˇrk is
implemented by a unitary in C �r .G; �/, namely �� .s.k//.
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For simplicity, we will just say that a tracial state of C �r .H; � 0/ is K-invariant
when it is invariant under ˇr . We will also say thatK acts onC �r .H; � 0/ in a minimal
way when the zero ideal is the only proper (two-sided, closed) ideal of C �r .H; � 0/
which is invariant under ˇr

k
for each k 2 K.

Using the decomposition C �r .G; �/ ' C �r
�
C �r .H; �

0/;K; ˇr ; !
�
, the following

proposition is an immediate consequence of Bryder and Kennedy’s recent results
[17, Corollaries 1.2 and 1.4].
Proposition 3.1. AssumeH is normal and K D G=H .
(i) If K is C �-simple, then .G; �/ is C �-simple if and only if K acts on C �r .H; � 0/

in a minimal way.
(ii) If K has the unique trace property, then .G; �/ has the unique trace property if

and only if � 0 is the only K-invariant tracial state of C �r .H; � 0/.
Remark 3.2. When C �r .H; � 0/ is abelian, one may investigate if K acts minimally
by computing first the Gelfand spectrum ofC �r .H; � 0/, as we will do in Example 3.10
and Proposition 5.17. More generally, onemay try to determine Prim.C �r .H; � 0//, the
primitive ideal space of C �r .H; � 0/ equipped with the hull-kernel topology, and use
the fact that there is a one-to-one correspondence between the ideals of a C�-algebraA
and the closed subsets of Prim.A/ (see e.g. [10, Section II.6.5]). If A is unital, then
Prim.A/ is compact and the Dauns-Hofmann theorem provides an isomorphism
between the center Z.A/ of A and C.Prim.A//. Thus, in the special case where A is
unital and Prim.A/ is Hausdorff, Prim.A/ is homeomorphic to the Gelfand spectrum
of Z.A/. We will illustrate how this may used in combination with Proposition 3.1
in Subsection 5.3.

3.2. Subgroups of finite index. It is known [9,52] that ifG is an ICC group andH
is a subgroup of G with finite index, then we have

G is C �-simple ” H is C �-simple (3.1)
and
G has the unique trace property ” H has the unique trace property: (3.2)

Note that H is ICC whenever G is ICC and ŒG W H� < 1. In the twisted case,
Kleppner’s condition is not necessarily inherited by a subgroup of finite index. A
twisted version of (3.1) and (3.2) is therefore as follows.
Proposition 3.3. Let H be a subgroup of G with finite index. Let � 2 Z2.G;T /
and let � 0 denote the restriction of � toH �H . Assume that both .G; �/ and .H; � 0/
satisfy Kleppner’s condition. Then we have

.G; �/ is C �-simple ” .H; � 0/ is C �-simple (3.3)
and
.G; �/ has the unique trace property ” .H; � 0/ has the unique trace property:

(3.4)
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Proof. We will deduce both equivalences from [52, Corollary 4.6], so we have
to check that all the assumptions in this corollary are satisfied. We first recall
that the GNS-representation of A WD C �r .G; �/ corresponding to � is the identity
representation of A on `2.G/. The canonical conditional expectation E from A

onto B WD C �r .H; �
0/ (identified as a unital C�-subalgebra of A) clearly satisfies

that � D � ı E. Since .G; �/ satisfies Kleppner’s condition (by assumption), we
know that W �.G; �/ is a factor, hence that � is factorial. Moreover, since �jB
coincides with the canonical tracial state � 0 of B , and .H; � 0/ is assumed to satisfy
Kleppner’s condition, we also know that �jB is factorial. As explained in 3.1, there
exists a conditional expectation E from W �.G; �/ onto W �.H; � 0/ that extends E.

Now, let fg1; : : : ; gng be a set of left coset representatives of H in G. Then
f�� .gi /; �� .gi /

�gniD1 is a quasi-basis for E in the sense of [62, Definition 1.2.2],
that is, we have

nX
iD1

�� .gi /E
�
�� .gi /

� x
�
D x D

nX
iD1

E
�
x �� .gi /

�
�� .gi /

�

for all x 2 A. Indeed, by a density argument, it suffices to show that this holds when x
is of the form x D

P
g2S xg �� .g/, where S is a finite subset of G and xg 2 C for

all g 2 S . We then have

nX
iD1

�� .gi /E
�
�� .gi /

� x
�

D

nX
iD1

�� .gi /
X
g2S

xg E
�
�� .gi /

� �� .g/
�

D

nX
iD1

�� .gi /
X
g2S

xg �.g
�1
i ; gi / �.g

�1
i ; g/E

�
�� .g

�1
i g/

�
D

nX
iD1

�� .gi /
X

g02g�1
i
S

xgig0 �.g
�1
i ; gi / �.g

�1
i ; gi g

0/E
�
�� .g

0/
�

D

nX
iD1

�� .gi /
X

h2H \g�1
i
S

xgih �.g
�1
i ; gi / �.g

�1
i ; gi h/ �� .h/

D

nX
iD1

X
h2H \g�1

i
S

x�.g�1i ; gi / �.g
�1
i ; gi h/ �.gi ; h/ �� .gih/

D

nX
iD1

X
h2H \g�1

i
S

x�� .gih/ D

nX
iD1

X
g2giH \S

xg �� .g/ D
X
g2S

xg �� .g/ D x ;

where we have used that �.g�1i ; gi / D �.g�1i ; gi / �.e; h/ D �.g
�1
i ; gi h/ �.gi ; h/.

The proof that
Pn
iD1 E

�
x �� .gi /

�
�� .gi /

� D x is similar.
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It follows from [62, Proposition 2.1.5] that E is of finite index in the sense
of Pimsner–Popa, and, moreover, that the extra assumption in Part 1 of [52,
Corollary 4.6] is also satisfied. Hence, we may apply Part 1 and Part 2 of [52,
Corollary 4.6] to conclude that the desired equivalences (3.3) and (3.4) hold.

3.3. Direct limits of groups. The following result is useful when considering direct
limit of groups.
Proposition 3.4. Assume that G is an inductive limit of a directed family of
subgroups fGigi2I . Let � 2 Z2.G;T / and let �i denote the restriction of � to
Gi �Gi for each i 2 I . Then the following assertions hold:
(i) If .Gi ; �i / satisfiesKleppner’s condition for all i , then .G; �/ satisfiesKleppner’s

condition.
(ii) If .Gi ; �i / is C �-simple for all i , then .G; �/ is C �-simple.
(iii) If .Gi ; �i / has the unique trace property for all i , then .G; �/ has the unique

trace property.

Proof. If g is a nontrivial � -regular element in G with finite conjugacy class, then
there is some i 2 I such that g 2 Gi . It is easy to check that g is then �i -regular inGi ,
and that its conjugacy class in Gi is finite. Hence, (i) holds. Assertion (ii) and (iii)
are consequences of general facts valid for C�-algebras, for example mentioned
in [9, Proposition 10].

3.4. Direct products of groups. We consider a couple of examples involving direct
product of groups. The first one just says that it is easy to handle product cocycles.
The second one illustrates that other types of cocycles require more work.
Proposition 3.5. For i D 1; 2, let Gi be a group and �i 2 Z2.Gi ;T /. Set G D
G1 �G2 and � D �1 � �2. Then it is well known that

C �r .G; �/ ' C
�
r .G1; �1/˝min C

�
r .G2; �2/

and the following statements are easily checked:
(i) .G; �/ satisfies Kleppner’s condition if and only if both .G1; �1/ and .G2; �2/

satisfy Kleppner’s condition.
(ii) .G; �/ is C �-simple if and only if both .G1; �1/ and .G2; �2/ are C �-simple.
(iii) .G; �/ has the unique trace property if and only if both .G1; �1/ and .G2; �2/

have the unique trace property.
Note that, in general, if G D G1 � G2, � 2 Z2.G;T /, and �i denotes the

restriction of � to Gi � Gi for i D 1; 2, then none of the above equivalences need
to hold, as one can verify by considering various cocycles on Z4 D Z2 � Z2.
(Statement (i) is discussed in [44, Section 3]).
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Example 3.6. Consider the group G D F2 �Z, where F2 denotes the free group on
two generators, say a and b. Clearly,G is non-amenable, hence not FC-hypercentral,
and non-ICC. Nevertheless, G belongs to K .

Indeed, as explained in [44, Example 3.11], every � 2 Z2.G;T / is, up
to similarity, given by �..x;m/; .y; n// D �.y;m/ for some bihomomorphism
�WF2 � Z! T . Letting  WF2 ! T denote the homomorphism (character) given
by .x/ D �.x; 1/, we have �.x;m/ D m.x/. Moreover, � is completely
determined by� D .a/ and � D .b/. The following conditions are then equivalent:

(i) at least one of � and � is nontorsion,

(ii) .G; �/ satisfies Kleppner’s condition,

(iii) .G; �/ is C �-simple,

(iv) .G; �/ has the unique trace property.

The equivalence of (i) and (ii) is shown in [44, Example 3.11]. Next, consider
H D F2 � f0g and let sWZ D G=H ! G be the section given by s.k/ D .e; k/.
From Subsection 3.1 we obtain the crossed product decomposition

C �r .G; �/ ' C �r
�
C �r .F2/;Z; ˇ

�
;

where the action ˇ of Z on C �r .F2/ is untwisted and determined by ˇk.�.x// D
k.x/ �.x/ for x 2 F2 and k 2 Z.

Assume now that (i) holds. Then the mapm 7! ˇm gives an embedding of Z into
Aut.C �r .F2//. As F2 is C �-simple and has the unique trace property, we can then
use [3, Theorem 7] to conclude that both (iii) and (iv) hold. Alternatively, we could
have used [64] here. Finally, as pointed out before, the implications (iii)) (ii) and
(iv)) (ii) always hold.

3.5. More on FC-hypercentral groups. Set ICC.G/ WD G=FCH.G/. We first
remark that ICC.G/ has the unique trace property, i.e., ICC.G/ has trivial amenable
radical, if and only if FCH.G/ D AR.G/.

Indeed, if FCH.G/ D AR.G/, then ICC.G/ D G=AR.G/, which has trivial
amenable radical. The converse implication follows from the fact that ifN is a normal
subgroup of G such that G=N has the unique trace property, then AR.G/ � N

(see [30, Lemma 6.11], and the comment before it).
In the same way, it can be shown that ICC.G/ is C �-simple if and only if

FCH.G/ D AH.G/, where AH.G/ denote the amenablish radical of G, as
introduced in [30].

Theorem 3.7. Assume that FCH.G/ D AR.G/, or equivalently, that ICC.G/
has the unique trace property. Then .G; �/ has the unique trace property whenever
.G; �/ satisfies Kleppner’s condition. Hence, G belongs to KUT .
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Proof. Suppose that .G; �/ satisfies Kleppner’s condition. Set H D FCH.G/ and
K D ICC.G/. Applying [7, Proposition 4.3], we get that the canonical tracial
state on C �r .H; � 0/ is the only K-invariant tracial state on C �r .H; � 0/. Since K
has the unique trace property, it follows from Proposition 3.1 (ii) (i.e., from [17,
Corollary 5.3]) that .G; �/ has the unique trace property.

Remark 3.8. Let us consider the case where ICC.G/ is C �-simple. Then ICC.G/
has the unique trace property, so Theorem 3.7 gives thatG lies in KUT , and one may
wonder whether it will always lie in K . SetH D FCH.G/. The problem is then to
decide ifK D ICC.G/ acts on C �r .H; � 0/ in a minimal way when � 2 K.G/, since
Proposition 3.1 (i) will then imply that .G; �/ is C �-simple.

An example of a situation where ICC.G/ acts onC �r .FCH.G/; � 0/ in a minimal
way is when .FCH.G/; � 0/ satisfies Kleppner’s condition, because FCH.G/ is FC-
hypercentral, so it follows from Theorem 2.3 that C �r .FCH.G/; � 0/ is simple in this
case. Hence Proposition 3.1 (i) and Theorem 3.7 give:
Corollary 3.9. If ICC.G/ is C �-simple and .FCH.G/; � 0/ satisfies Kleppner’s
condition, then .G; �/ is C �-simple with the unique trace property.
Example 3.10. The procedure described inRemark 3.8workswellwhenG D F2�Z,
as in Example 3.6. It is not difficult to check that H D FCH.G/ D feg � Z ' Z,
so K D ICC.G/ ' F2 D ha; bi, which is C �-simple. Let � 2 Z2.G;T / be
determined by� and � inT as in Example 3.6. Then� 0 D 1, soC �r .H; � 0/ D C �r .Z/.
Moreover, choosing the section sWK ! G given by s.x/ D .x; 0/, we get from
Subsection 3.1 that

C �r .G; �/ ' C
�
r .C

�
r .Z/;F2; ˇ/ ;

where the action ˇ of F2 on C �r .Z/ is untwisted and determined by

ˇx.�.m// D x�
moa.x/ x� mob.x/ �.m/

for x 2 F2 and m 2 Z, where oa (resp. ob)WF2 ! Z denotes the homomorphism
sending a to 1 and b to 0 (resp. sending a to 0 and b to 1). Identifying C �r .Z/ with
C.T / via the Gelfand transform, we get that each ˇx is the �-automorphism of C.T /
associated to the homeomorphism 'x of T given by

'x.z/ D �
oa.x/ � ob.x/ z

for z 2 T . Hence, if at least one of � and � is nontorsion, we see that every orbit
f'x.z/ W x 2 F2g is dense in T , so the action of F2 on C �r .H; � 0/ D C �r .Z/ is
minimal. We can therefore conclude that .G; �/ is C �-simple and has the unique
trace property in this case, in accordance with what we found in Example 3.6.

The next example shows that the class of solvable groups is not contained in K ,
and that the class of groups with exponential growth is neither contained in KC�S

nor in KUT . It also gives an example of an amenable ICC group G satisfying
; ¤ C �S.G/ D UT .G/ ¤ K.G/.
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Example 3.11. C �-simplicity of .G; �/ when G is a semidirect product of the form
Zn ÌA Z for some A 2 GL.n;Z/ is thoroughly discussed by Packer and Raeburn
in [51, Theorem 3.2] (see also Subsection 5.1 below, in particular Example 5.3).
To make our point, it will suffice to consider a matrix

A D

�
a b

c d

�
2 GL.2;Z/;

and the action of Z on Z2 associated with A, that is,

k � x D Akx

for k 2 Z and x 2 Z2. Let G D Z2 ÌA Z denote the corresponding semidirect
product, which is clearly a solvable group. Computations show thatG is ICC (and has
exponential growth) if and only if jaCd j > 1C detA. This holds for example when
a D 2 and b D c D d D 1. Assuming this, and making use of [51, Example 3.4],
we have that any � 2 Z2.G;T / is similar to L�� for some � 2 Œ0; 1=2/, where

L��
�
.x; k/; .y; l/

�
D exp 2�i

�
xt
�
0 �

�� 0

�
Aky

�
for x; y 2 Z2 and k; l 2 Z. Moreover,

C �r .G; �/ ' C
�
r .Z

2 ÌA Z; L�� / ' C
�
r

�
C �r .Z

2; �� /;Z; ˇ
�
; (3.5)

where

��
�
x; y

�
D exp 2�i

�
xt
�
0 �

�� 0

�
y
�
;

the action ˇWZ! Aut.C �r .Z2; �� // being determined by ˇk
�
��� .x/

�
D ��� .A

kx/
for x; y 2 Z2 and k 2 Z.

Consider now the statements

(i) � is irrational,

(ii) .G; L�� / is C �-simple,

(iii) .G; L�� / has the unique trace property.

Then these three statements are equivalent. Indeed, (ii)) (i) follows by applying [51,
Theorem 3.2]. Using the decomposition (3.5), one sees that the implication (i)) (iii)
is a special case of [3, Theorem 8] (and its proof). Finally, the implication (iii)) (ii)
follows from Theorem 2.1 since G is amenable.

However, asG is ICC, .G; L�� / always satisfies Kleppner’s condition, also when �
is rational. So we see that G does not belong to KC�S , nor to KUT .
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To deal with similar situations, the following somewhat curious notion may turn
out to be useful. Let us say that .G; �/ satisfies condition X if there exists a normal
subgroup N of G such that
(i) FC.G/ � N ,
(ii) G=N is FC-hypercentral,
(iii) for all h 2 N nfeg, there exists g 2 G such that hg D gh and �.h; g/ ¤ �.g; h/.
Note that FC.G/ � FC.N/ if and only if FC.G/ � N .

In general, condition X implies Kleppner’s condition, as can be seen by
combining (i) and (iii). Moreover, if G is FC-hypercentral, then .G; �/ satisfies
condition X if and only .G; �/ satisfies Kleppner’s condition. Indeed, if Kleppner’s
condition hold, then we may take N D FC.G/ to see that condition X holds.
Proposition 3.12. Let G be an amenable group and assume that .G; �/ satisfies
condition X. Then .G; �/ is C �-simple and has the unique trace property.

Proof. The result is a generalization of [7, Theorem 3.1]. Instead of using FC.G/
as the “base case” in the inductive proof of this theorem, we replace it by the (larger)
normal subgroup N . Then the same proof as in [7] will work, provided that G=N
is FC-hypercentral and N (and thus G) is amenable. We leave the details to the
reader.

This proposition seems potentially applicable when dealing with solvable groups
and “FC-hypercentral-by-FC-hypercentral” groups. For example, it may used it to
show that (i) implies (ii) and (iii) in Example 3.11: choosing N D Z2, one readily
checks that .Z2 ÌA Z; L�� / satisfies condition X whenever � is irrational.

4. On normal subgroups and freely acting automorphisms

Throughout this section, we assume that H is a normal subgroup of G and set
K D G=H . As before, the restriction of � 2 Z2.G;T / to H �H will be denoted
by � 0, and � 0 will denote the canonical tracial state onW �.H; � 0/ (resp. C �r .H; � 0/).
We recall from Subsection 3.1 that for each g 2 G there exists g 2 Aut.W �.H; � 0//
satisfying

g
�
�� 0.h/

�
D z�.g; h/ �� 0.g � h/ for all h 2 H :

We fix a section sWK ! G for the canonical homomorphism q from G onto K
satisfying s.e/ D e, and let .ˇ; !/ denote the associated twisted action of K on
W �.H; � 0//. We otherwise freely use the notation introduced in Subsection 3.1.

Our main goal in this section is to provide a set of conditions on G;H and �
guaranteeing that .G; �/ has the unique trace property, or is C �-simple with the
unique trace property (see Theorem 4.9). For the unique trace property, our plan is
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to invoke [4, Proposition 9], and our first task will therefore be to find a condition
ensuring that k 2 Aut.W �.H; � 0// is freely acting in the sense of Kallman [34]
(see also [59]) for each k 2 G n H . We will next show that C �-simplicity may
then be deduced in certain cases from various results, e.g. (the twisted version of)
Kishimoto’s theorem [36, Theorem 3.1].

For the convenience of the reader, we recall that ifM is a von Neumann algebra
and ˛ 2 Aut.M/, then ˛ is called freely acting (or properly outer) if the only element
T 2 M satisfying ˛.S/T D TS for all S 2 M is T D 0. Equivalently, ˛ is freely
acting if the restriction ˛jMp is outer for every nonzero central projection p in M
satisfying ˛.p/ D p. We also recall that a twisted action .ˇ; !/ of a group K onM
is called freely acting (or properly outer) if ˇk is freely acting for every k 2 K n feg.
Lemma 4.1. Let T 2 W �.H; � 0/ and k 2 G. Define fT 2 `2.H/ by fT D T ıe .
Then the following conditions are equivalent:
(i) k.S/T D TS for all S 2 W �.H; � 0/.
(ii) z�.k; s/ �.t; s/ �

�
k � s; .k � s/�1ts

�
fT
�
.k � s/�1ts

�
D fT .t/ for all s; t 2 H .

Proof. Since W �.H; � 0/ D �� 0.H/00, it is clear that (i) holds if and only if

k
�
�� 0.s/

�
T D T �� 0.s/ for all s 2 H:

Hence, since ıe is a separating vector for W �.H; � 0/ and

�� 0.s/� x� 0.s/ıe D � x� 0.s/�� 0.s/ıe D ıe for all s 2 H;

(i) is equivalent with

k.�� 0.s// � x� 0.s/ T ıe D T ıe for all s 2 H: (4.1)

Let t 2 H . Evaluating the left hand side of equation (4.1) at t gives�
k
�
�� 0.s/

�
� x� 0.s/ fT

�
.t/

D
�
z�.k; s/ �� 0.k � s/ � x� 0.s/ fT

�
.t/

D z�.k; s/ �
�
k � s; .k � s/�1t

� �
� x� 0.s/ fT

��
.k � s/�1 t

�
D z�.k; s/ �

�
k � s; .k � s/�1t

�
�..k � s/�1t; s/ fT

�
.k � s/�1ts

�
;

and (i) is now seen to be equivalent to (ii) by making use of (2.1).

Let g 2 G. We let CH .g/ denote theH -conjugacy class of g in G, that is,

CH .g/ D fsgs
�1
W s 2 H g:

Moreover, if k 2 G, we define the .k;H/-conjugacy class of g in G by

C k
H .g/ D f.k � s/ g s

�1
W s 2 H g:
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This class is nothing but the equivalence class of g w.r.t. the equivalence relation
on G defined by g0 �k g whenever g0 D .k � s/ g s�1 for some s 2 H . Clearly, we
have C kH .g/ � H if and only if g 2 H .

We note that C k
H .g/ D k CH .k

�1g/. This gives

jC k
H .g/j D jCH .k

�1g/j � jCG.k
�1g/j :

We will also need the following definitions:
Definition 4.2. Let g 2 G. We say that g is � -regular w.r.t.H if

�.g; s/ D �.s; g/

whenever s 2 H commutes with g.
Definition 4.3. Let t 2 H and k 2 G. We say that t is � -regular w.r.t. .k;H/ if

�.k�1t; s/ D �.s; k�1t /

whenever s 2 H and k�1ts D sk�1t (that is, .k � s/t D ts).
Clearly, for k 2 G and t 2 H , we have

k is � -regular w.r.t. G H) k is � -regular w.r.t.H
and

k�1t is � -regular w.r.t.H ” t is � -regular w.r.t. .k;H/:

Lemma 4.4. The following hold:

(i) Let x 2 G and y 2 CH .x/.
If x is � -regular w.r.t.H , then y is � -regular w.r.t.H .

(ii) Let k 2 G , t 2 H and t 0 2 C k
H .t/.

If t is � -regular w.r.t. .k;H/, then t 0 is � -regular w.r.t. .k;H/.

Proof. (i) Assume that x is � -regular w.r.t. H . Write y D rxr�1 for some r 2 H ,
and assume ys D sy for some s 2 H . We have to show that �.y; s/ D �.s; y/.

Using the cocycle identity (2.1) twice, one readily checks that

�.s; y/�.y; s/ D �.y; r/�.s; rx/�.y; sr/ �.s; r/:

Now, as xr�1sr D r�1srx and r�1sr 2 H , the � -regularity of x w.r.t.H gives that
�.x; r�1sr/ D �.r�1sr; x/. Using this, some further cocycle computations give
that

�.y; sr/ D �.rx; r�1/ �.r; x/ �.r; r�1sr/�.sr; x/�.r�1; sr/:
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Thus, we get

�.s; y/�.y; s/

D �.y; r/�.s; rx/�.rx; r�1/�.r; x/�.r; r�1sr/ �.sr; x/ �.r�1; sr/ �.s; r/

D �.s; r/ �.sr; x/�.s; rx/�.r; x/ � �.rx; r�1/�.y; r/ � �.r; r�1sr/ �.r�1; sr/

D 1 � �.r�1; r/ � �.r; r�1/ D 1 :

(ii) Assume t is � -regular w.r.t. .k;H/. Then x WD k�1t is � -regular w.r.t. H and
t 0 D ky for some y 2 CH .x/. So (i) gives that y is � -regular w.r.t. H . Hence
t 0 D ky is � -regular w.r.t. .k;H/, as desired.

Lemma 4.4 shows that if some H -conjugacy class contains an element which is
� -regular w.r.t.H , then all its elements are also � -regular w.r.t.H ; we will therefore
call such aH -conjugacy class for � -regular.

This lemma also shows that if some .k;H/-conjugacy class in H contains an
element which is � -regular w.r.t. .k;H/, then all its elements are also � -regular w.r.t.
.k;H/; we will therefore say that such a .k;H/-conjugacy class inH is � -regular.
Definition 4.5. The triple .G;H; �/ is said to satisfy the relative Kleppner condition
if, for every k 2 G n H , all � -regular .k;H/-conjugacy classes in H are infinite,
that is, we have:
(1) jC k

H .t/j D 1 whenever k 2 G nH , t 2 H and C k
H .t/ is � -regular.

As is easily checked, this is equivalent to:
(2) jCH .g/j D 1 whenever g 2 G nH and CH .g/ is � -regular.
Remark 4.6. (a) IfH D G, then the relative Kleppner condition holds trivially. In
the opposite direction, ifH D feg, then the relative Kleppner condition never holds,
as immediately follows from (2).

(b) .G;H; 1/ satisfies the relative Kleppner condition if and only if jC k
H .t/j D 1

whenever k 2 GnH and t 2 H , if and only if jCH .g/j D 1wheneverg 2 GnH . In
particular, it follows that .G;H; �/ satisfies the relative Kleppner condition whenever
.G;H; 1/ satisfies the relative Kleppner condition.

(c) Assume that CH .g/ is finite for all g 2 G nH . For instance, this holds whenH
is central or finite. Then .G;H; �/ satisfies the relative Kleppner condition if and
only if there does not exist any � -regular element in G nH .

(d) Suppose that .G;H; �/ satisfies the relative Kleppner condition and thatH 0 is a
normal subgroup ofG containingH . Then .G;H 0; �/ satisfies the relative Kleppner
condition.

Indeed, let g 2 G n H 0 � G n H and suppose �.g; h/ D �.h; g/ whenever
gh D hg and h 2 H 0. Then �.g; h/ D �.h; g/ whenever gh D hg and h 2 H ,
so jCH .g/j D 1. Hence, jCH 0.g/j � jCH .g/j D 1.
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(e) We have that .G; �/ satisfies Kleppner’s condition and, at the same time,
.G;H; �/ satisfies the relative Kleppner condition if (and only if) the following
two conditions hold:
(i) jCG.h/j D 1 whenever h 2 H n feg and CG.h/ is � -regular,
(ii) jCH .g/j D 1 whenever g 2 G nH and CH .g/ is � -regular.

Indeed, assume that (i) and (ii) hold. In particular, .G;H; �/ satisfies the relative
Kleppner condition. Consider g 2 G nH such thatCG.g/ is � -regular. ThenCH .g/
is � -regular. Thus, using (ii), we get jCG.g/j � jCH .g/j D 1. Together with (i),
this shows that .G; �/ satisfies Kleppner’s condition. (The converse assertion is
trivial).
Proposition 4.7. Assume that .G;H; �/ satisfies the relative Kleppner condition.
Then k is freely acting for every k 2 G nH . Moreover, the twisted action .ˇ; !/
of K on W �.H; � 0/ is freely acting.

Proof. Let k 2 G nH and suppose T 2 W �.H; � 0/ satisfies k.T /S D ST for all
S 2 W �.H; � 0/. Using (ii) from Lemma 4.1, we get that

jfT j
�
.k � s/ts�1

�
D jfT j.t/

for all s; t 2 H . This means that jfT j is constant on each .k;H/-conjugacy
class C kH .t/.

Let t 2 H . Assume first that C kH .t/ is � -regular. Since .G;H; �/ satisfies
the relative Kleppner condition, we have jC kH .t/j D 1. As fT 2 `2.H/, we get
that jfT j is constantly equal to zero on C kH .t/. Hence, fT D 0 on C

k
H .t/.

Assume now that C kH .t/ is not � -regular. So there exists s 2 H such that

.k � s/t D ts (4.2)
and

�.k�1t; s/�.s; k�1t / ¤ 1 : (4.3)

Using equation (4.2) and (ii) in Lemma 4.1, we get

z�.k; s/ �.t; s/ �
�
k � s; t

�
fT .t/ D fT .t/ : (4.4)

Some detailed but routine cocycle computations give that

z�.k; s/ �.t; s/ �
�
k � s; t

�
D �.k�1t; s/�.s; k�1t / :

Thus, using (4.3), we get

z�.k; s/ �.t; s/ �
�
k � s; t

�
¤ 1 ;

so we conclude from (4.4) that fT .t/ D 0. As jfT j is constant on C kH .t/, we get that
fT D 0 on C kH .t/.
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Altogether, we have shown that fT D 0 on each .k;H/-conjugacy class in H .
Since H is the union of all such classes, it follows that fT D 0 on the whole of H .
As ıe is separating for W �.H; � 0/, we get that T D 0. This proves that k is freely
acting, as desired.

Finally, recall that ˇk D s.k/ for each k 2 K, where sWK ! G denotes the
chosen section for the quotient map from G onto K. Since s.k/ 2 G n H for
every k 2 K n feg, it follows that .ˇ; !/ is freely acting.

Remark 4.8. It can be shown that if k is freely acting for every k 2 G nH , then
.G;H; �/ satisfies the relative Kleppner condition. As we will not need this fact, we
leave this as an exercise for the reader.
Theorem 4.9. Assume that .G;H; �/ satisfies the relative Kleppner condition and
that � 0 is the unique K-invariant tracial state of C �r .H; � 0/. Then .G; �/ has the
unique trace property.

Assume, in addition, that at least one of the following two conditions is satisfied:
(a) G is amenable,
(b) G is exact and C �r .G; �/ has stable rank one.
Then .G; �/ is C �-simple.

Proof. SetA D C �r .H; � 0/. Wefirst have to show thatC �.G; �/ ' C �r
�
A;K; ˇr ; !

�
has a unique tracial state. Since � 0 is assumed to be the unique K-invariant tracial
state of A, according to [4, Proposition 9], it suffices to check that the twisted
action .ˇr ; !/ of K on A is tracially properly outer in the sense of [4]. As the
GNS-representation of C �r .H; � 0/ associated to � 0 is the identity representation of A
on `2.H/, this amounts to checking that .ˇ; !/ is freely acting on A00 D W �.H; � 0/.
Since .G;H; �/ is assumed to satisfy the relative Kleppner condition, this follows
from Proposition 4.7.

If (a) or (b) also holds, then combining the first assertion with Theorem 2.1 gives
that .G; �/ is C �-simple.

Remark 4.10. It follows from [4, Proposition 15 (i)] (see also [9, Proposition 6])
that if

jCH .g/j D 1 for all g 2 G nH (4.5)

and H has the unique trace property, then G has the unique trace property. Since
condition (4.5) corresponds to the relative Kleppner condition for .G;H; 1/, the first
assertion in Theorem 4.9 provides a twisted version of this result.

Proposition 4.7 and Theorem 4.9 have several interesting corollaries.
Corollary 4.11. Assume that .G;H; �/ satisfies the relative Kleppner property. Then
the following assertions hold:
(i) .G; �/ has the unique trace property whenever .H; � 0/ has the unique trace

property.
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(ii) .G; �/ is C �-simple whenever .H; � 0/ is C �-simple.

(iii) .G; �/ is C �-simple with the unique trace property whenever .H; � 0/ is
C �-simple with the unique trace property.

Proof. The first assertion is an immediate consequence of Theorem 4.9. Next,
suppose .H; � 0/ is C �-simple. Then W �.H; � 0/ is a factor, so it follows from
Proposition 4.7 that the twisted action .ˇ; !/ of K on W �.H; � 0/ is outer. This
implies that the twisted action .ˇr ; !/ of K on C �r .H; � 0/ is also outer. Hence,
[2, Theorem 3.2] (the twisted version of [36, Theorem 3.1]) gives that C �r .G; �/ '
C �r .A;K; ˇ

r ; !/ is simple. This shows that (ii) holds. The third assertion follows
readily from (i) and (ii).

Corollary 4.12. Assume that H is FC-hypercentral, .H; � 0/ satisfies Kleppner’s
condition and .G;H; �/ satisfies the relative Kleppner condition. Then .G; �/ is
C �-simple with the unique trace property.

Proof. As the first two assumptions imply that .H; � 0/ is C �-simple with the unique
trace property, cf. Theorem 2.3, this follows from Corollary 4.11 (iii).

Corollary 4.13. Assume that the following three conditions hold:

(i) .G; �/ satisfies Kleppner’s condition;

(ii) H is contained in FCH.G/;

(iii) .G;H; �/ satisfies the relative Kleppner condition.

Then .G; �/ has the unique trace property. If, in addition, G is amenable, or G is
exact and C �r .G; �/ has stable rank one, then .G; �/ is C �-simple.

Proof. Using Remark 4.6 d), it follows from (ii) and (iii) that .G; FCH.G/; �/
satisfies the relative Kleppner condition. If we let �0 denote the restriction of � to
FCH.G/ � FCH.G/, then we get from [7, Proposition 4.3] that (i) is equivalent
to C �r

�
FCH.G/; �0

�
having a unique ICC.G/-invariant tracial state. Hence, the

result follows from Theorem 4.9.

Remark 4.14. To apply Corollary 4.13, the natural choices forH areZ.G/, FC.G/,
andFCH.G/. Remark 4.6(e) is then useful to check that conditions (i) and (iii) hold,
as will be illustrated in the next section.

Another useful result is:

Corollary 4.15. Assume that .G;H; �/ satisfies the relative Kleppner condition
and that � 0 is the unique K-invariant tracial state of C �r .H; � 0/. If C �r .H; � 0/ is
commutative and K acts on C �r .H; � 0/ in a minimal way, then .G; �/ is C �-simple
with the unique trace property.
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Proof. We know from Theorem 4.9 that the first two assumptions imply that
.G; �/ has the unique trace property. As seen in the proof of this result, .ˇr ; !/
is then a tracially properly outer twisted action of K on A WD C �r .H; �

0/.
Since A is commutative and K acts on A in a minimal way, it follows from [4,
Theorem 10, part (b), case (ii)] that C �r .G; �/ ' C �r .A;K; ˇr ; !/ is simple.

We also include the following result:

Corollary 4.16. Assume that .G;H; �/ satisfies the relative Kleppner condition, H
is countable and K is torsion free. If K acts on C �r .H; � 0/ in a minimal way, then
.G; �/ is C �-simple. Moreover, if, in addition, � 0 is the unique K-invariant tracial
state of C �r .H; � 0/, then .G; �/ is C �-simple and has the unique trace property.

Proof. Assume that K acts on A WD C �r .H; �
0/ in a minimal way. To show that

C �r .G; �/ ' C �r .A;K; ˇ
r ; !/ is simple, it suffices then to show that for each

k 2 K n feg, ˇr
k
is properly outer as a �-automorphism of A, as defined in [42].

Indeed, this follows from [42, Theorem 7.2] by noting that A is separable whenH is
countable and that the proof of Olesen and Pedersen’s result is still valid in the case
of a twisted action. Now, we know from Proposition 4.7 that the twisted action .ˇ; !/
of K on W �.H; � 0/ is freely acting. Using that K is torsion free, we may copy the
argument given in the proof of [4, Theorem 10, part (b), case (iii)] to deduce from
this fact that ˇr

k
is properly outer for every k 2 K n feg.

The second assertion follows from the first assertion combined with Theorem 4.9.

It is known that if the centralizerZG.H/ ofH inG is trivial andH is C �-simple
(resp. has the unique trace property), thenG is C �-simple (resp. has the unique trace
property), cf. [2, 4]. We can generalize this to the twisted case as follows.

Definition 4.17. The � -centralizer ofH in G is the subset of G given by

Z�G.H/ D fg 2 G W gs D sg and �.g; s/ D �.s; g/ for all s 2 H g :

In other words,

Z�G.H/ D ZG.H/ \ fg 2 G W g is � -regular w.r.t.H g :

Proposition 4.18. Assume that H is ICC and Z�G.H/ is trivial. If .H; � 0/ is
C �-simple (resp. has the unique trace property), then .G; �/ is C �-simple (resp. has
the unique trace property).

Proof. Wefirst prove that .G;H; �/ satisfies the relativeKleppner condition. Assume
g 2 G nH is � -regular w.r.t. H . We must show that jCH .g/j D 1. Suppose that
this is not the case. Let g0 2 CH .g/, so g0 D sgs�1 for some s 2 H . Then we
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have g�1g0 D .g�1sg/s�1 2 H . Moreover, CH .g�1g0/ � CH .g/
�1CH .g

0/ D

CH .g/
�1CH .g/, so

jCH .g
�1g0/j � jCH .g/

�1CH .g
0/j � jCH .g/j

2 <1 :

Since H is ICC, we must have g�1g0 D e. Thus, g0 D g, that is, CH .g/ D fgg,
and it follows that g 2 Z�G.H/. Since Z

�
G.H/ D feg, we get that g D e, which is

impossible since g 2 G nH .
Since .G;H; �/ satisfies the relative Kleppner condition, Proposition 4.7 gives

that ˇk is a freely acting automorphism of W �.H; �/ for each k 2 K n feg. This
implies that ˇr

k
is an outer automorphism of C �r .H; � 0/ for each k 2 K n feg. Hence,

if .H; � 0/ is C �-simple, that is, A WD C �r .H; �
0/ is simple, then it follows from

the twisted version of Kishimoto’s theorem (see [2, Theorem 3.2]) that C �r .G; �/ '
C �r .A;K; ˇ

r ; !/ is simple. On the other hand, if .H; � 0/ has the unique trace
property, then Theorem 4.9 applies and it follows that .G; �/ has the unique trace
property, as desired.

Remark 4.19. It is possible that the assumption that H is ICC in Proposition 4.18
is redundant. The proof shows that the argument goes through as long as one knows
that jCH .g/j 2 f1;1g for every g 2 G nH , but we do not see how to deduce this
from the assumption that Z�G.H/ is trivial.

Remark 4.20. Proposition 4.18 is applied in the study of braid related groups in [47].
There is an action ˛ of the braid group Bn on n strands on the free group Fn, often
called “Artin’s representation”, and it is shown that the corresponding semidirect
product Fn Ì˛ Bn belongs to the class K for all n, by computing that the centralizer
of Fn is trivial.

Moreover, Corollary 4.11 is applied to prove that the braid groups B1 and P1
on infinitely many strands are both C �-simple. For the latter, one checks the
relative Kleppner condition for .P1;F1; 1/, and then forB1 one checks the relative
Kleppner condition for .B1; P1; 1/.

5. Examples

5.1. Semidirect products of abelian groups by aperiodic automorphisms.
Throughout this subsection, H will be an infinite abelian group and ˇ will denote
an automorphism of H . We will use addition to denote the group operation in H .
Moreover, for k 2 Z and x 2 H , we will often write k � x instead of ˇk.x/. The
automorphism ˇ will be called aperiodic when the orbit of any nontrivial element
inH is infinite (or, equivalently, when k �x ¤ x for allk 2 Znf0g and allx 2 Hnf0g).
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We will consider the semidirect product G D H Ì Z associated with the action
of Z on H induced by ˇ. For further use, we note that for x; y 2 H and k 2 Z, we
have

.y; k/.x; 0/.y; k/�1 D .y; 0/.k � x; 0/.y; 0/�1 D .k � x; 0/ : (5.1)

As usual, we will sometimes identify H and Z with their canonical copies in G via
the maps x 7! .x; 0/ and k 7! .0; k/, so that we may write (5.1) as

.y; k/ x .y; k/�1 D k � x :

In particular, we then have kxk�1 D k � x for x 2 H and k 2 Z, in agreement with
the notation used in Subsection 3.1.

Next, we remark that the following conditions are equivalent:
(i) ˇ is aperiodic;
(ii) G is ICC.
Indeed, if ˇ is not aperiodic, so there exists x 2 H n f0g with a finite orbit inH , one
easily sees from equation (5.1) that the conjugacy class of x D .x; 0/ in G is finite.
On the other hand, assume that ˇ is aperiodic. If x 2 H n f0g, then

f.0; l/.x; k/.0; l/�1 W l 2 Zg D f.l � x; k/ W l 2 Zg

is clearly infinite for each k 2 Z. Further, if k 2 Z n f0g, then

f.y; 0/.0; k/.y; 0/�1 W y 2 H g D f.y C k � .�y/; k/ W y 2 H g (5.2)

is infinite. Indeed, if y1C k � .�y1/ D y2C k � .�y2/, then y1� y2 D k � .y1� y2/,
so y1 D y2 as ˇ is aperiodic. Since H is infinite, the claim holds. Thus we see
that G is ICC.

When ˇ is aperiodic, we thus get that the amenable group G, being ICC, does
not lie in K . However, as seen previously in Example 3.11 in the case where
G D Zn ÌA Z, there can still exist 2-cocycles � on G such that .G; �/ is C �-simple
and/or has the unique trace property. Our aim is to illustrate this in a more general
context.

Let � 0 2 Z2.H;T /. We will assume that � 0 is Z-invariant, meaning that it
satisfies

� 0.k � x; k � y/ D � 0.x; y/

for all x; y 2 H and k 2 Z. As is well known, see e.g. [51, Appendix 2] or [45, 2.1–
2.4] (and [46]), we may then define a 2-cocycle � 2 Z2.G;T / by

�
�
.x; k/; .y; l/

�
D � 0.x; k � y/

for x; y 2 H and k; l 2 Z. We then have that z�
�
.0; k/; .h; 0/

�
D 1 for all k 2 Z

and h 2 H , so it follows that C �r .G; �/ decomposes as the reduced crossed product
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of A D C �r .H; �
0/ by the action of Z on A associated to the �-automorphism ž

of A determined by ž
�
�� 0.x/

�
D �� 0.ˇ.x// for all x 2 H . We note that saying

that Z D G=H acts on A in a minimal way just means that ž acts minimally on A,
i.e., that the zero ideal is the only proper ideal of A which is invariant under ž.

To ease our analysis, we set

S WD fx 2 H W x is � 0-regularg:

Since H is abelian, we have S D fx 2 H W � 0.x; y/ D � 0.y; x/ for all y 2 H g.
Moreover, S is a subgroup of H such that k � x 2 S whenever k 2 Z and x 2 S
(since � 0 is invariant).

We also set � 00 WD .� 0/jS�S D �jS�S 2 Z
2.S;T /. As � 00 is a symmetric, it

follows from [38] that � 00 is a coboundary, i.e., � 00 2 B2.S;T /, so C �r .S; � 00/ '
C �r .S/ is commutative.
Theorem 5.1. Let H , ˇ, G, � , and � 0 be as above and suppose that ˇ is aperiodic.
Consider the following conditions:
(i) .H; � 0/ satisfies Kleppner’s condition.
(ii) .G; �/ has the unique trace property.
(iii) .G; �/ is C �-simple.
Then we have (i)” (ii) H) (iii). Moreover, if H is countable, then (iii) holds if
and only if ž acts minimally on C �r .H; � 0/.

Proof. Suppose that .x; k/ 2 G nH , i.e., x 2 H and k 2 Z n f0g. Then

f.y; 0/.x; k/.y; 0/�1 W y 2 H g D f.y C x C k � .�y/; k/ W y 2 H g

is infinite, since fy C k � .�y/ W y 2 H g is infinite for every k 2 Z n f0g by a
similar argument as the one used after (5.2). Thus it follows that .G;H; 1/ satisfies
the relative Kleppner condition. Remark 4.6 (b) then implies that .G;H; �/ always
satisfies the relative Kleppner condition. Hence, using Corollary 4.12 we get that
(i)) (ii) (and also (i)) (iii)). Since G D H Ì Z is amenable, Theorem 2.1 gives
that (ii)) (iii).

To show the implication (ii)) (i), we first observe that S is a normal subgroup
of G. Hence, as in Subsection 3.1, we get that for each .y; n/ 2 G, there exists a
�-automorphism .y;n/ of C �r .S; � 00/ satisfying

.y;n/
�
�� 00.x/

�
D �

�
.y; n/; .x; 0/

�
�
�
.n � x; 0/; .y; n/

�
�� 00.n � x/

D � 0.y; n � x/� 0.n � x; y/ �� 00.n � x/

D �� 00.n � x/

for all x 2 S .
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Set  D .0;1/. We then have n.�� 00.x// D �� 00.n � x/ for all n 2 Z and x 2 S .
Thus n 7! n is the Z-action on C �r .S; � 00/ associated to the Z-action on S induced
by the automorphism ˇS of S given by ˇS .x/ D ˇ.x/ D 1 � x for x 2 S .

Assume now that (i) does not hold. Since H is abelian, this means that S is
non-trivial. Since ˇ is aperiodic, ˇS is also aperiodic. Now, since � 00 is symmetric,
we have

1X
nD1

ˇ̌
1 � � 00.n � x; y/� 00.y; n � x/

ˇ̌
D 0

for all x; y 2 S . Therefore, combining [41, Corollary 11.3.4] with [41, Theo-
rem 11.4.2] we get that there exists a  -invariant state ' on C �r .S; � 00/ different from
the canonical tracial state � 00. Since C �r .S; � 00/ is commutative, ' is automatically
tracial. Moreover, we have

'
�
.y;n/

�
�� 00.x/

��
D '

�
�� 00.n � x/

�
D '

�
n.�� 00.x//

�
D '.�� 00.x//

for all .y; n/ 2 G and all x 2 S . It follows then by linearity and continuity that ' is
invariant under each .y;n/. If we now use Subsection 3.1 to decompose C �r .G; �/ as

C �r .G; �/ ' C
�
r

�
C �r .S; �

00/; G=S; ı; !
�
;

we can then conclude that ' isG=S -invariant. Hence, lettingES denote the canonical
conditional expectation from C �r .G; �/ onto C �r .S; � 00/, we obtain that z' WD ' ıES
is a tracial state on C �r .G; �/, which is different from the canonical one since the
restriction of z' to C �r .S; � 00/ is different from � 00. Thus (ii) does not hold.

To show the final assertion, assume thatH is countable. As .G;H; �/ satisfies the
relative Kleppner condition, Corollary 4.16 gives that .G; �/ is C �-simple whenever
Z D G=H acts on C �r .H; � 0/ in a minimal way, i.e., whenever ž acts minimally
on C �r .H; � 0/. The converse statement also holds, as may be seen by writing
C �r .G; �/ as a reduced crossed product over C �r .H; � 0/.

Remark 5.2. In the situation of Theorem 5.1, we do not know whether (iii)) (i),
or, equivalently, whether (iii)) (ii). The following discussion sheds some light on
this problem. Suppose that (i) does not hold, so S is nontrivial, and in fact infinite.
As � 00 is a coboundary, there exists a function bWS ! T such that b.0/ D 1 and
� 00.x; y/ D b.x/b.y/b.x C y/ for all x; y 2 S . Assume that we can choose b in
such a way that there exists some m 2 Z n f0g such that b.�m � x/ D b.x/ for
all x 2 S . Then .G; �/ is not C �-simple.

To verify this, we first extend b to cWG ! T by setting

c.x; n/ D

(
b.x/ for x 2 S and n 2 Z,
1 for x 2 N n S and n 2 Z.

To lighten our notation, we will just write yn for an element .y; n/ 2 G from now
on. Let then � 2 B2.G;T / be the coboundary associated to c and set ! WD �� � � .



974 E. Bédos and T. Omland

Note that !.x; y/ D 1 for all x; y 2 S . According to [51, Theorem 1.5], there is an
action of G on yS (the Pontryagin dual of S ) given by

.yn �  /.x/ D !.x; .yn// !..yn/; .yn/�1x.yn// ..yn/�1x.yn//; (5.3)

for y 2 N , n 2 Z (i.e., yn 2 G),  2 yS and x 2 S . Letting 1 denote the trivial
character on S , we then get

.n � 1/.x/ D !.x; n/!.n; .�n/ � x/

D � 0.x; 0/c.x/c.n/c.xn/� 0.0; x/c.n/c.�n � x/c.xn/

D b.�n � x/b.x/

for all n 2 Z and x 2 S . Using our assumption on b, we thus get that m � 1 D 1.
Hence, the orbit of 1 in yS under the action ofZ is finite. Since yS is infinite, this implies
that Z does not act minimally on yS . Hence, [51, Theorem 1.5] gives that .G; !/ is
not C �-simple, and it follows that .G; �/ is not C �-simple. Equivalently, this shows
that ž does not act minimally on C �r .H; � 0/.

It is unclear to us whether it is always possible to choose b as above.
Example 5.3. Consider the case where H D Zn and ˇ.x/ D Ax for a matrix
A 2 GL.n;Z/ such that ˇ is aperiodic. One can then deduce from [51,
Proposition 3.1] that, up to similarity, any � 2 Z2.Zn ÌA Z;T / arises from some
Z-invariant � 0 2 Z2.Zn;T /. Moreover, all three conditions in Theorem 5.1 are then
equivalent. Indeed, assume (i) does not hold, i.e., S ¤ f0g, and let ! � � be such
that !jS�S D 1. As ˇ is aperiodic, A � I is not nilpotent, so [51, Remark 3.3]
gives that the action of Z on yS (defined as in equation (5.3)) is not minimal. It
follows then from [51, Theorem 3.2] that C �r .Zn ÌA Z; !/ is not simple, and hence
C �r .Z

n ÌA Z; �/ is not simple.

5.2. Wreath products. LetN andK be nontrivial groups. We recall that thewreath
product N oK is defined as the semidirect product .

L
K N/ ÌK, where K acts by

(left) translation on the index set, that is, by�
k � .xj /j2K

�
l
D xk�1l , or, equivalently, by k � .xj /j2K D .xk�1j /j2K :

We start by recording a useful result.
Lemma 5.4. The triple .N o K;

L
K N; 1/ satisfies the relative Kleppner condition

if and only if K or N is infinite.

Proof. If y 2 .N o K/ n
L
K N , that is, y D ..yj /j2K ; k/, where k ¤ e, and

x D ..xj /j2K ; e/ 2
L
K N , then

xyx�1 D
�
.xj /j2K ; e

��
.yj /j2K ; k

��
.x�1j /j2K ; e

�
D
�
.xjyjx

�1
k�1j

/j2K ; k
�
:
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If
L
K N is infinite, by letting .xj /j2K vary, this takes an infinite number of values.

To see this, note first that
L
K N is infinite whenever N or K is infinite. If N is

infinite, then it suffices to fix one l 2 K and consider all sequences .xj /j2K with
xj D e if j ¤ l . On the other hand, if N is finite, then K is infinite, so we fix
a nontrivial h 2 N , and consider all sequences .xj /j2K such that for some finite
F � N , xj D h for j 2 F and xj D e.

With a similar argument, one can show that N o K is ICC if and only if K is
infinite or N is ICC (cf. [53, Corollary 4.2]).

Proposition 5.5. The wreath productN oK is C �-simple (resp. has the unique trace
property) if and only if N is C �-simple (resp. has the unique trace property).

Proof. If N o K is C �-simple, then the normal subgroup
L
K N is C �-simple

[15, Theorem 3.14], and (the canonical copy of) N is normal in
L
K N , so it is

C �-simple as well.
If N is C �-simple, then the direct sum

L
K N is C �-simple [10, Corol-

lary II.8.2.5] and N is infinite, so it follows from Lemma 5.4 and Corollary 4.11
that N oK is C �-simple.

A similar argument works for the unique trace property.

A description of H 2.N o K;T / may be deduced from a result of Tappe, [60,
Corollary on p. 2], where he deals with a more general situation: he lets K acts on
an index set I , while we only consider the case where I D K and K acts on itelf by
(left) translation.

Let H 2.
L
K N;T /

K denote the elements in H 2.
L
K N;T / that are invariant

under the natural action ofK induced from its action on
L
K N . Then Tappe’s result

says first that

H 2.N oK;T / ' H 2.K;T / �H 2
�M

K
N;T

�K
:

Moreover, whenK has no nontrivial elements of order two, as will be the case in the
examples we consider, the summand H 2.

L
K N;T /

K may be described as follows.
Let B.N;N / denote the group of bihomomorphisms from N � N into T (which
is isomorphic to the dual group of H1.N / ˝Z H1.N /). Further, let I2 denote the
family of all subsets of K containing two distinct elements. Then K acts on I2 by
translation, and we let I2=K denote the associated orbit space. We then have

H 2
�M

K
N;T

�K
' H 2.N;T / �

Y
I2=K

B.N;N / :
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WhenK has nontrivial elements of order two, an extra summand C appears, and we
refer to Tappe’s article for further details. Summarizing this discussion, we have:
Lemma 5.6. Assume K has no nontrivial element of order two. Then

H 2.N oK;T / ' H 2.K;T / �H 2.N;T / �
Y
I2=K

B.N;N / :

We now consider the situation where N is abelian and K D Z. Then
H WD

L
ZN is abelian and the action of K D Z on H clearly arises from an

aperiodic automorphism ofH . Hence the wreath productN oZ D H Ì Z fits within
the set-up of the previous subsection. If ! is a 2-cocycle on H D

L
ZN which is

invariant under the action of Z, then L! will denote the induced 2-cocycle on N o Z
given by

L!
��
.xj /j2Z ; m

�
;
�
.yj /j2Z ; n

��
D !

�
.xj /j2Z ; m � .yj /j2Z

�
:

Since H 2.Z;T / D f1g, every 2-cocycle on N o Z is similar to one that arises this
way.
Proposition 5.7. Assume thatN is abelian and let � be a 2-cocycle onN oZ. Let � 0
denote its restriction toH D

L
ZN . Consider the following conditions:

(i) .H; � 0/ satisfies Kleppner’s condition.
(ii) .N o Z; �/ has the unique trace property.
(iii) .N o Z; �/ is C �-simple.
Then we have (i)” (ii) H) (iii). Moreover, if N is countable, then (iii) holds if
and only if the associated action of Z on C �r .H; � 0/ is minimal.

Proof. By Tappe’s result mentioned above, there exists an invariant ! 2 Z2.H;T /
such that � is similar to L! via some coboundary � 2 B2.N o Z;T /. Then � 0 is
similar to ! via �jH�H , and the result follows from Theorem 5.1.

In concrete cases, it is possible to be more specific. We illustrate this by choosing
first N D Z, then N D Z2.

5.2.1. The group Z oZ. First, before we discussC �-simplicity and the unique trace
property of Z o Z, we compute its 2-cocycles up to similarity, by using results of
the previous subsections. Since the wreath product Z o Z is given as

�L
Z Z

�
Ì Z,

we first look at the group
L

Z Z D
L1
�1Z and its second cohomology group.

The elements of
L

Z Z are sequences x D .xj /
1
jD�1, where xj 2 Z for all

j 2 Z, and xj ¤ 0 only for finitely many j ’s. For each k 2 Z, we will let ek
denote the sequence in

L
Z Z where .ek/j D ıjk . Gelfand theory gives that the

group C�-algebra of
L

Z Z is isomorphic to C.T Z/, where T Z denotes the infinite-
dimensional torus

Q
j2Z T . When � 0 2 Z2.

L
Z Z;T / is not similar to 1, we may

therefore think of C �r .
L

Z Z; � 0/ as a noncommutative infinite-dimensional torus.
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Standard properties of group cohomology give that

H 2
� 1M
�1

Z;T
�
D H 2

�
lim
�!

nM
�n

Z;T
�
D lim
 �

H 2
� nM
�n

Z;T
�

D lim
 �

T
1
2n.n�1/ D

Y
I

T ;
(5.4)

where the index set I is f.j; k/ 2 Z2 j j < kg. It follows that every element of
Z2.

L
Z Z;T / is similar to one of the form

��
�
.xj /j2Z; .yj /j2Z

�
D

Y
j<k

e2�i �j;k xjyk ; (5.5)

where �D.�j;k/ is an upper triangularZ�Z-matrixwith �j;k 2 Œ0; 1/whenever j <k.
As

L
Z Z is abelian, .

L
Z Z; �� / is C �-simple (resp. has the unique trace

property) if and only if Kleppner’s condition holds for .
L

Z Z; �� /. It is not easy
to express this condition in terms of � (this is already the case when consideringLn
jD1 Z D Zn for finite n � 4). However, we remark that if Kleppner’s

condition holds for .
L

Z Z; �� /, then for all k � 1, the subgroup Sk generated
by fe2�i�j;k ; e2�i�k;j W j 2 Zg must be dense in T . Indeed, if this is not the case,
there exist k;m � 1 such that .Sk/m D f1g, and then mek is � -regular. Moreover,
as opposed to the situation for finite direct sums of Z, Kleppner’s condition may hold
even when all entries �jk of � are rational, cf. Example 5.9(d).

For a given � as above, consider the homomorphism

T� W

1M
�1

Z �!
1Y
�1

T

defined as the composition
1M
�1

Z �!
1M
�1

R �!
1Y
�1

R �!
1Y
�1

T ;

where the first map is the inclusion map, the middle one is the map x 7! .� � ��/x,
where �� denotes the transpose of � , and the third is the quotient map, mapping
.rk/k2Z 2

Q
Z R to .e2�i rk /k2Z 2

Q
Z T . Then .

L
Z Z; �� / satisfies Kleppner’s

condition if and only if T� is injective. Indeed, x is �� -regular if and only if
�.x; ek/ D �.ek; x/ for all k 2 Z, i.e., if and only if

1 D �.x; ek/�.ek; x/ D
Y
j<k

e2�ixj �j;k
Y
k<l

e�2�ixl�k;l D e2�i e
�
k
.����/x

for all k 2 Z. That is, the kernel of T� consists precisely of all the �� -regular
elements.
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Next, we consider
Z o Z D

�M
Z

Z
�

Ì Z;

where we recall that Z acts on
L

Z Z by�
n � .xj /j2Z

�
k
D xk�n:

In particular, n � ek D ekCn for k; n 2 Z. The 2-cocycle �� on
L

Z Z is invariant
under the induced action of Z if and only if for all integers j < k and n we have

e2�i �j;k D �.ej ; ek/ D �.n � ej ; n � ek/ D �.ejCn; ekCn/ D e
2�i �jCn;kCn :

That is, �� is invariant if and only if �jk D �jCn;kCn for all integers j < k and n,
i.e., if and only if the matrix � is constant on its diagonals. Setting �m D �0;m for
each integer m � 1, this means that we have �j;k D �k�j when j < k and is 0
otherwise. It follows from Lemma 5.6 that

H 2.Z o Z;T / ' H 2
�M

Z
Z;T

�Z
'

1Y
mD1

T :

Hence, any element of Z2.Z o Z;T / is, up to similarity, of the form L�� , where

L��
��
.xj /j2Z; n

�
;
�
.yj /j2Z; n

0
��
D ��

�
.xj /j2Z ; n � .yj /j2Z

�
(5.6)

and � is an upper triangular Z � Z-matrix which is constant on its diagonals, i.e.,
such that �j;k D �k�j when j < k for some sequence f�mgm2N in Œ0; 1/.

Applying Proposition 5.7 we get:
Proposition 5.8. Assume that � is constant on its diagonals and L�� is as in (5.6).
Then .Z o Z; L�� / has the unique trace property if and only if .

L
Z Z; �� / satisfies

Kleppner’s condition, which implies that .Z o Z; L�� / is C �-simple.
Example 5.9. Here we provide some insight on Kleppner’s condition for .

L
Z Z; �� /

when the matrix � is of the form described just before Proposition 5.8.
(a) First, we note that for every k � 1, the group Sk (as defined previously) coincide
with the subgroup S of T generated by fe2�i �m W m 2 Ng. Thus, density of S in T
is necessary (but not sufficient) for Kleppner’s condition to hold for .

L
Z Z; �� /.

(b) If �m ¤ 0 only for finitely many indices, then density of S is also sufficient.
Clearly, in this case S is dense in T if and only if it �m is irrational for somem 2 N.
Let us assume this holds, and let n be the largest number for which �n is irrational.
Suppose that x is � -regular and assume (for contradiction) that x has some nonzero
terms. Let k be the largest index with xk ¤ 0. Then

1 D �� .enCk; x/�� .x; enCk/ D 1 �
Y
j�k

e2�i �nCk�jxj ;

and only �n; �nC1; : : : appear in the expression above, so if �n is the only irrational
number among these, it follows that xk D 0, which gives a contradiction.
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(c) To see why density of S in T in general is not sufficient, take r to be an irrational
number in .0; 1/, and for k � 0 set

�4kC1 D r; �4kC3 D 1 � r; and �2k D 0:

Then e1C e3 is �� -regular. In fact, e�1 .� � ��/ D �e�3 .� � ��/, i.e., column 1 and 3
of the matrix � � �� are the negative of each other.

(d) Let p1 < p2 < p3 < � � � denote the list of all prime numbers and define
�m D 1=pm for every m � 1.

Then .
L

Z Z; �� / satisfies Kleppner’s condition. Indeed, suppose that x is �� -
regular and choose n so large that pn >

P
j2Z jxj j. Assume, for contradiction,

that x is nontrivial, and let k0 and k denote respectively the smallest and the largest
number in the set fj 2 Z W xj ¤ 0g. Then

1 D �.enCk; x/�.x; enCk/ D e
2�i

�Pk
jDk0

xj
pnCk�j

�
and

ˇ̌Pk
jDk0

xj
pnCk�j

ˇ̌
< 1 by assumption, so the sum must be 0. But this is not

possible unless all xj ’s in this sum are 0. Indeed, one easily checks that xk=pn …
ZŒf1=pj W j > ng� when 0 < jxkj < pn, so that we must have xk D 0. Proceeding
inductively, we also get xk�1 D � � � D xk0 D 0. Thus, x must be trivial, giving a
contradiction.
Remark 5.10. SinceG D Z oZ is ICC and amenable, we have C �S.G/ ¤ K.G/ D
Z2.G;T /. Moreover, Proposition 5.8 and Example 5.9 give that C �S.G/ ¤ ;.
Similarly, we have ; ¤ UT .G/ ¤ K.G/.
Remark 5.11. When the matrix � in Proposition 5.8 is such that .

L
Z Z; �� / does

not satisfy Kleppner’s condition, we do not know if it can happen that Z acts on
C �r .

L
Z Z; �� / in a minimal way; this would imply that .Z o Z; L�� / is C �-simple

(cf. Proposition 5.7) without having the unique trace property.

5.2.2. The lamplighter group Z2 o Z. Analogously to the previous example, we
start by computing the 2-cocycles of Z2 o Z up to similarity. Let

L
Z Z2 denote the

direct sum of Z2 indexed by Z. As in (5.4), we get that H 2.
L

Z Z2;T / '
Q
I Z�2 ,

where the index set I is f.j; k/ 2 Z2 j j < kg. We will represent its elements by
Z � Z -matrices of the form � D Œ�jk�j;k2Z , where �jk D 1 whenever j � k and
�jk 2 f�1; 1g if j < k. Analogously to (5.5), every element of Z2.

L
Z Z2 ;T / is

similar to one of the form

��
�
.sj /j2Z ; .tj /j2Z

�
D

Y
j<k

�
sj tk
jk

:

Consider now the lamplighter group

Z2 o Z D
�M

Z
Z2
�

Ì Z;
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where the action of Z on
L

Z Z2 is given by�
n � .sj /j2Z

�
k
D sk�n

for k; n 2 Z. The following mirrors the previous subsection. The 2-cocycle ��
of
L

Z Z2 is invariant under the action of Z if and only if �jk D �jCn;kCn for all
j < k and n 2 Z, i.e., if the matrix � is constant on its diagonals. Moreover, up to
similarity, every 2-cocycle of Z2 o Z is similar to a 2-cocycle L�� given by

L��
��
.sj /j2Z; n

�
;
�
.tj /j2Z; n

0
��
D ��

�
.sj /j2Z ; n � .tj /j2Z

�
for some � which is constant on its diagonals. In other words, we have

H 2.Z2 o Z;T / ' H 2
�M

Z
Z2;T

�Z
'

Y
N

Z�2 :

We assume from now on that � is constant on its diagonals. C�-algebras of the
form C �r .

L
Z Z2; ��/ for such �’s have been previously discussed in the literature

as “C�-algebras of bitstreams”, see for example [41, Section 12]. Letting �n denote
the entry of � on its n’th diagonal for each integer n � 1, the associated “bitstream”
f�ng

1
nD1 2 f0; 1g

N is given by setting �n D 0 if �n D 1 and �n D 1 if �n D �1. Set

X� WD fn � 1 W �n D 1g D fn � 1 W �n D �1g

and Y� WD X� [ .�X�/ D f˙n W n 2 X�g � Z. As in [41] we will say
that X� is periodic if Y� is periodic, i.e., if there exists an integer m � 1 such that
fmC y W y 2 Y�g D Y�. It follows from [41, Corollary 12.1.5] that .

L
Z Z2; ��/

is C �-simple (resp. has the unique trace property) if and only if X� is nonperiodic,
in which case C �r .

L
Z Z2; ��/ is the UHF algebra of type 21. Since

L
Z Z2 is

abelian, this means that .
L

Z Z2; ��/ satisfies Kleppner’s condition if and only ifX�
is nonperiodic.

Nonperiodic X�’s are easy to produce. This happens for example when X� is
finite and nonempty. Since 0 … Y�, this is also happens when �n D �1 for every
even n � 1. On the other hand, if �n D �1 for every odd n � 1 and �n D 1

otherwise, i.e., X� D N n 2N, then X� is periodic.
From Proposition 5.7 we now get:

Proposition 5.12. Assume that � is constant on its diagonals. Then the
“noncommutative lamplighter” .Z2 o Z ; L��/ has the unique trace property if and
only if X� is nonperiodic, which implies that .Z2 o Z ; L��/ is C �-simple.
Remark 5.13. Suppose that X� D N n 2N, and let �� be the associated 2-cocycle.
Then X� is periodic, as indicated above, and

��.ei C eiC2; x/ D .�1/
xiC1 D ��.x; ei C eiC2/

for all x 2 H D
L

Z Z2. We can now check that S D hei C eiC2 W i 2 Zi � H .
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Given an element x 2 H and i 2 f0; 1g, define xi by

.xi /k D

(
xk; if k 2 2ZC i ,
0; else.

Then x D x0 C x1 and using that �� is a bicharacter, we have

��.x; y/ D ��.x
0
C x1; y0 C y1/ D ��.x

0; y1/��.x
1; y0/;

since ��.x0; y0/ D ��.x1; y1/ D 1 for all x; y 2 H .
Define bWH ! T by

b.x/ D ��.x
0; x1/:

Let x; y 2 S and note that in this case we have

��.x
1; y0/ D ��.x; y

0/ D ��.y
0; x/ D ��.y

0; x1/:

We compute that

b.x C y/ D ��.x
0
C y0; x1 C y1/

D ��.x
0; x1/��.x

0; y1/��.y
0; x1/��.y

0; y1/

D b.x/��.x; y/b.y/:

Thus, .��/jS�S coincides with the coboundary associated with b. As is easy to check,
b is invariant, i.e., b.1 � x/ D b.x/ for all x 2 S . So the argument of Remark 5.2
applies withm D �1, and it follows that .Z2 oZ; L��/ is not C �-simple. It is possible
that one could argue along the same lines whenever X� is periodic, but this might
be combinatorially much more involved, and we leave this as an open problem. An
alternative way to proceed could be to show that Z does not act on C �r .

L
Z Z2; ��/

in a minimal way when X� is periodic.

5.3. The Sanov transformation group. As is well known, the two matrices�
1 2

0 1

�
and

�
1 0

2 1

�
generate a free subgroup of SL.2;Z/, sometimes called the Sanov subgroup. We
just denote this group F2 and its generators v1 and v2, and consider the semidirect
productG D Z2Ì F2 obtained via the canonical action of SL.2;Z/ on Z2. It is easy
to verify that G is ICC. We use e1 D .1; 0/ and e2 D .0; 1/ to denote the generators
of Z2.

To compute the 2-cocycles ofG up to similarity, one may useMackey type results
as described in [45, 2.1–2.4] (see also [46, Theorem 2.1 and Proposition 2.2]). Note
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that up to similarity, every 2-cocycle of F2 is trivial, and every 2-cocycle of Z2 is
(uniquely) similar to one of the form

�0..a1; a2/; .b1; b2// D �
1
2
.a1b2�a2b1/

0 (5.7)

for some �0 2 T .
One gets that every 2-cocycle on G is similar to one given by

�..a; x/; .b; y// D �0.a; x � b/g.b; x/;

where �0 is of the form (5.7), and gWZ2 � F2 ! T is a function satisfying

g.aC b; x/ D g.a; x/g.b; x/;

g.a; xy/ D g.y � a; x/g.a; y/;

g.0; x/ D g.a; 1/ D 1;

g.e1; v2/ D g.e2; v1/ D 1:

(5.8)

It follows that g is uniquely determined by the two values g.e1; v1/ D �1 and
g.e2; v2/ D �2 and one deduces then without much trouble thatH 2.G;T / Š T3.

We will therefore assume that � is of the form described above, hence is
determined by �0; �1; �2 2 T , and consider the decomposition

C �r .G; �/ ' C
�
r

�
Cr.Z

2; �0/;F2; ˇ; !
�

obtained as in Subsection 3.1, using the section sWF2 ! G given by s.x/ D .0; x/.
Straightforward computations give that! is trivial andˇx.��0.a//Dg.a; x/��0.x �a/
for all a 2 Z2 and x 2 F2.

Assume first that �0 is nontorsion. Then .Z2; �0/ is C �-simple and has the
unique trace property. Since F2 is C �-simple, it follows from Proposition 3.1 that
.G; �/ is C �-simple and has the unique trace property.

Next, we assume that 1 � p < q are integers with gcd.p; q/ D 1 and �0 D
e2�ip=q . Then C �r .Z2; �0/ is a rational noncommutative 2-torus with generators
U1 D ��0.e1/ and U2 D ��0.e2/. It is well known that the center Z of C �r .Z2; �0/
is the C�-subalgebra generated by U q1 and U q2 , so Z ' C.T2/. It is also known that
Prim.C �r .Z2; �0// is homeomorphic to T2 (see e.g. [63, Example 8.46]). Hence,
using Remark 3.2, we see that F2 will act on C �r .Z2; �0/ in a minimal way whenever
there is no proper nontrivial ideal of Z which is invariant under the restriction of ˇx
to Z for every x 2 F2.

One computes easily that

ˇv1.U
q
1 / D �

q
1U

q
1 ;

ˇv1.U
q
2 / D U

2q
1 U

q
2 ;

ˇv2.U
q
1 / D U

q
1 U

2q
2 ;

ˇv2.U
q
2 / D �

q
2U

q
2 :
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Set �1 D �q1 and �2 D �
q
2, and define homeomorphisms '1 and '2 of T2 by

'1.z1; z2/ D .�1z1; z
2
1z2/;

'2.z1; z2/ D .z1z
2
2 ; �2z2/:

IdentifyingZ with C.T2/ in the obvious way, we get that for i D 1; 2, the restriction
of ˇvi to Z is the map f 7! f ı 'i . By induction we obtain that

'n1 .z1; z2/ D .�
n
1z1; �

n.n�1/
1 z2n1 z2/;

'n2 .z1; z2/ D .�
n.n�1/
2 z1z

2n
2 ; �

n
2z2/

for every n 2 N. Then one can use for example [39, Theorem 6.4] to deduce
that if �i is nontorsion for some i 2 f1; 2g and .z1; z2/ 2 T2, then the sequence
.'ni .z1; z2//

1
nD1 is uniformly distributed (sometimes called equidistributed), and

therefore dense, in T2. This implies that if �i is nontorsion, then there is no proper
nontrivial ideal of Z which is invariant under ˇvi . Hence, it follows that F2 acts
on C �r .Z2; �0/ in a minimal way if �1 or �2 is nontorsion. Since F2 is C �-simple,
Proposition 3.1(i) gives then that .G; �/ isC �-simple. Note that one can easily verify
that .G;Z2; �/ satisfies the relative Kleppner’s condition (for any � ), so we could
instead have invoked Corollary 4.16.

Let now � be a tracial state onC �r .G; �/. Then one easily checks that form; n;2 Z
we have �.Um1 U n2 / D 0 unless both m and n are multiples of q. Letting EZ denote
the canonical conditional expectation from C �r .Z

2; �0/ onto Z (see e.g. [12]), we
get that � D z�ıEZ where z� denotes the restriction of � toZ. SinceEZ is tracial and
equivariant with respect to the action of F2 on C �r .Z2; �0/ and its restricted action
on Z, we obtain that the map � 7! z� gives a one-to-one correspondence between
F2-invariant tracial states on C �r .Z2; �0/ and F2-invariant states on Z.

Suppose that �i is nontorsion for some i 2 f1; 2g. Since the sequence
.'ni .z1; z2//

1
nD1 is uniformly distributed in T2 for every .z1; z2/ 2 T2, we get

from [22, Proposition 3.7] that 'i is uniquely ergodic on T2 with respect to the
normalized Haar measure �, i.e., the state `� on Z associated to � is the only state
on Z which is invariant under the restriction of ˇvi to Z.

So if �1 or �2 is nontorsion, we can conclude that `� is the only F2-invariant
state on Z. As explained above, this implies that there is only one F2-invariant
tracial state on C �r .Z

2; �0/, namely the canonical tracial state � 0. Applying
Proposition 3.1(ii) (or Corollary 4.16), we get then that .G; �/ has the unique trace
property.

Finally, suppose that �1 and �2 are both torsion. Considering the action of F2
onZ, and the associated action of F2 onT2 by homeomorphisms, one easily sees that
the orbit F of .1; 1/ in T2 under this action is finite. Thus F is a closed F2-invariant
subset of T2 ' Prim.C �r .Z2; �0//. Using Remark 3.2 we get that F2 does not act
on C �r .Z2; �0/ in a minimal way. Moreover, we obtain an F2-invariant state ` on Z
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different from `� by setting `.f / D 1
jF j

P
.w1;w2/2F

f .w1; w2/ for f 2 C.T2/.
This implies that there are at least two F2-invariant tracial states on C �r .Z2; �0/. All
in all, we arrive at the conclusion that .G; �/ is not C �-simple and does not have the
unique trace property in this case.

Summarizing the above discussion, we record the following result:
Proposition 5.14. Let G D Z2 Ì F2 and let � 2 Z2.G;T / be determined by �0,
�1, �2 2 T . Then the following conditions are equivalent:
(i) .G; �/ is C �-simple.
(ii) .G; �/ has the unique trace property.
(iii) At least one of �0, �1, �2 is nontorsion.

5.4. Baumslag–Solitar groups. We recall that the Baumslag–Solitar groups
BS.m; n/ are groups with presentationBS.m; n/ D ha; b j abm D bnai for nonzero
integersm; n. It is well known thatBS.m; n/ ' BS.m0; n0/ if and only if .m0; n0/ D
.m; n/, .�m;�n/, .n;m/, or .�n;�m/. The following holds, cf. [57, Equation 5.3]:
(a) Z.B.m; n// ' Z if m D n; and Z.B.m; n// D feg if m ¤ n.
(b) H 2.B.m; n/;T / ' T if m D n; andH 2.B.m; n/;T / D f1g if m ¤ n.

We therefore fix some n � 2 and setG D B.n; n/. Note thatZ.G/ D hbni ' Z,
and G=Z.G/ ' Z � Zn is ICC. Hence, Z.G/ D FC.G/ D FCH.G/.

Let 'WG ! Z2 be the homomorphism determined by '.a/ D .1; 0/ and '.b/ D
.0; 1/. Then the kernel of ' can be described as

ker ' D
˝
aibja�ib�j W i 2 Z n f0g; j 2 f1; 2; : : : ; n � 1g

˛
' F1:

For ! 2 Z2.Z2;T /, define the inflation Inf ! 2 Z2.G;T / by

Inf !.x; y/ D !.'.x/; '.y//:

Lemma 5.15. The map ! 7! Inf ! induces an isomorphism from H 2.Z2;T / onto
H 2.G;T /.

Proof. Set N D ker ' ' F1, so that G=N ' Z2, and note that H 2.N;T / and
H 3.G=N;T / are both trivial. Therefore we get the following Lyndon–Hochschild–
Serre inflation-restriction exact sequence (see e.g. [51, Appendix 2]):

1 �! Hom.G=N;T /
inf
�! Hom.G;T /

res
�! Hom.N;T /G=N

�! H 2.G=N;T /
Inf
�! H 2.G;T / �! H 1.G=N;Hom.N;T // �! 1:

It is straightforward to check that Hom.N;T /G=N and H 1.G=N;Hom.N;T // are
trivial, so we get that Inf induces an isomorphism.
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For � 2 T we define !� 2 Z2.Z2;T / by !�.r; s/ D �r2s1 .
Lemma 5.16. Let � 2 T and let !� 2 Z2.Z2;T / be as above. Set � D Inf !�.

Then the following conditions are equivalent:
(i) .G; �/ satisfies Kleppner’s condition.
(ii) .G;Z.G/; �/ satisfies the relative Kleppner condition.
(iii) � is nontorsion.

Proof. Let '1WG ! Z be the homomorphism satisfying '1.a/ D 1, '1.b/ D 0,
so '1.x/ is the first coordinate of '.x/. Now, since the G-conjugacy class of any
element in G nZ.G/ is infinite, we have that .G; �/ satisfies Kleppner’s condition if
and only if for each c 2 Znf0g there is some x 2 G such that �.bcn; x/ ¤ �.x; bcn/,
i.e., such that

1 ¤ �.bcn; x/ �.x; bcn/ D !�.'.b
cn/; '.x// !�.'.x/; '.bcn// D �

'1.x/cn:

It is then clear that (i) is equivalent to (iii).
Moreover, if x 2 G, then its Z.G/-conjugacy class in G is just fxg.

Hence, .G;Z.G/; �/ satisfies the relative Kleppner condition if and only if every
x 2 G nZ.G/ is not� -regularw.r.t.Z.G/. Considerx 2 GnZ.G/. Then'1.x/ ¤ 0
and, as above, we have

�.bdn; x/ �.x; bdn/ D �'1.x/dn

for all d 2 Z. Hence, if � is nontorsion, we see that we can pick d 2 Z such
�.bdn; x/ ¤ �.x; bdn/, so x is not � -regular w.r.t. Z.G/. This show that (iii)
implies (i). On the other hand, if � has torsion, say �m D 1, then, as '1.am/ D m,
we see that x D am is � -regular w.r.t. Z.G/. It follows that (i) implies (iii).

Using the above lemmas we can prove the following result, which completes
[7, Example 4.6] where only (i) implies (iii) was explained:
Proposition 5.17. Let n � 2 and � 2 Z2.BS.n; n/;T /.

Then the following are equivalent:
(i) .BS.n; n/; �/ satisfies Kleppner’s condition.
(ii) .BS.n; n/; �/ is C �-simple.
(iii) .BS.n; n/; �/ has the unique trace property.
Hence, BS.n; n/ lies in K .

Proof. Using Lemma 5.15 we can assume that � D Inf !� for some � 2 T . To prove
that (i)) (ii) and (i)) (iii), we will appeal to Corollary 4.15 with G D BS.n; n/,
H D Z.G/ ' Z, andK D G=H D Z�Zn. As a section sWK ! G for the quotient
map G ! K D Z � Zn ' hu; v j vni, we choose the obvious map s sending a
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word in u and v to the corresponding word in a and b. Assume that .G; �/ satisfies
Kleppner’s condition. Since

�.bcn; bdn/ D !�
�
.0; bcn/; .0; bdn/

�
D �0 D 1

for all c; d 2 Z, we have � 0 D 1, soC �r .H; � 0/ D C �r .Z/ is commutative. Moreover,
Lemma 5.16 gives that .G;H; �/ satisfies the relative Kleppner condition and it
follows from [7, Proposition 4.3] that � 0 is the only K-invariant tracial state on
C �r .H; �

0/. So to apply Corollary 4.15 and obtain that .G; �/ is C �-simple with the
unique trace property, it only remains to show thatK acts on C �r .H; � 0/ ' C �r .Z/ in
a minimal way. One easily computes that the action ˇ ofK is untwisted and satisfies
that

ˇk
�
�� 0.b

cn/
�
D �

cn'1.s.k//
�� 0.b

cn/

for all k 2 K and c 2 Z, where '1 is defined as in the proof of Lemma 5.16.
Identifying C �r .H; � 0/ ' C �r .Z/ with C.T / via Gelfand’s transform, we get that
each ˇk is the �-automorphism of C.T / induced by the homeomorphism of T
given by

�k.z/ D �
n'1.s.k// z

for all z 2 T . Since '1.s.um// D '1.am/ D m for everym 2 Z, and � is nontorsion
(using Lemma 5.16), we see that the orbit f�k.z/ W k 2 Kg is dense in T for
every z 2 T , so the action of K on C �r .H; � 0/ is minimal, as desired.

Since both (ii)) (i) and (iii)) (i) always hold, the proof is finished.

Finally, we can now deduce that BS.m; n/ belongs to K if jmj; jnj � 2.
Indeed, when jmj; jnj � 2 and jmj ¤ jnj, the group BS.m; n/ is C �-simple by
[29, Theorem 4.10], and ifm D �n thenBS.m; n/ is not ICC and has no 2-cocycles.

A. On reduced twisted group C�-algebras with stable rank one

Let G be a discrete group and � 2 Z2.G;T /. We set ı D ıe and let k�k2 denote the
usual norm in `2.G/. For a 2 B.`2.G// we set

r2.a/ D lim sup
n!1

kanık
1=n
2 :

Since kb ık2 � kbk for every b 2 B.`2.G//, we have r2.a/ � r.a/ � kak < 1,
where r.a/ denotes the usual spectral radius of a 2 B.`2.G//.

We recall some definitions from [20]. We let Cc.G/ denote the space of all
complex-valued functions on G having finite support. A finite subset S of G is said
to have the `2-spectral radius property if, for every f 2 Cc.G/ with supp.f / � S ,
we have

r2
�
ƒ.f /

�
D r

�
ƒ.f /

�
: (A.1)
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The groupG is said to have the `2-spectral radius property if every finite subset ofG
has the `2-spectral radius property, that is, if (A.1) holds for every f 2 Cc.G/.

Dykema and de la Harpe show in [20, Theorem 1.4] that C �r .G/ has stable rank
one whenever G satisfies the following condition:

For every finite subset F of G, there exists g 2 G such that gF is semi-
free (i.e., the subsemigroup generated by gF in G is free over gF ) and
gF has the `2-spectral radius property.

(DH)

The groupG is said to have the free semigroup property if for every finite subsetF
of G, there exists g 2 G such that gF is semifree. An immediate corollary is that
C �r .G/ has stable rank one whenever G is a group having both the free semigroup
property and the `2-spectral radius property. We will show below that a similar result
hold in the twisted case.

It will be convenient to introduce some more terminology. We first note that if
f 2 Cc.G/, then ƒ� .f /ı D f , so we have

kf k2 � kƒ� .f /k :

A finite subset S of G will be said to have the SR-property w.r.t. � if for every
f 2 Cc.G/ with supp.f / � S , we have

r
�
ƒ� .f /

�
� kf k2 :

In the case where � D 1, we just say that S has the SR-property.
Theorem A.1. Consider the following conditions:
(i) G has the `2-spectral radius property and the free semigroup property.
(ii) G satisfies condition (DH).
(iii) For every finite subset F of G, there exists g 2 G such that gF has the

SR-property.
(iv) For every finite subset F of G, there exists g 2 G such that gF has the

SR-property w.r.t. � .
(v) C �r .G; �/ has stable rank one.
Then we have (i)) (ii)) (iii)) (iv)) (v).

The following lemma will be useful in the proof of Theorem A.1.
Lemma A.2. Let f 2Cc.G/ and set aDƒ� .f / 2 C �r .G; �/, bDƒ.jf j/ 2 C �r .G/.
Then kank � kbnk for every n 2 N.

Proof. We first prove by induction on n that for each n 2 N, we have

kan �k2 � k b
n
j�j k2 for every � 2 `2.G/ : (A.2)
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Let � 2 `2.G/. Since

ja �j D jf �� �j � jf j � j�j D b j�j ;

we have ka �k2 D k ja �j k2 � k b j�j k2, i.e., (A.2) holds when n D 1.
Now, assume that (A.2) holds for some n 2 N. Then, for � 2 `2.G/, we get

kanC1 �k2 D ka
n a �k2 � k b

n
ja �j k2 � kb

nC1
j�j k2 ;

where we have used the induction hypothesis at the second step and the fact that
0 � bn ja �j � bn b j�j D bnC1 j�j at the third step. This shows that (A.2) holds
for nC 1, as desired.

From (A.2), we get

kan �k2 � k b
n
j�j k2 � kb

n
k k j�j k2 D kb

n
k k� k2

for every � 2 `2.G/, and the assertion clearly follows.

Proof of Theorem A.1. As already pointed out, (i) ) (ii) is immediate from the
definitions. Next, let S be a finite subset S ofG. Recall that if S is semifree, then we
have r2.ƒ.f // D kf k2 for any f 2 Cc.G/ (cf. step two in the proof of Theorem 1.4
in [20]). Hence, if S is semifree and has the `2-spectral radius property, then we
have r.ƒ.f // D r2.ƒ.f // D kf k2 for every f 2 Cc.G/ with supp.f / � S , so S
has the SR-property. This shows that (ii)) (iii).

Now, let S be a finite subset of G such that S has the SR-property. To show
that (iii) ) (iv) holds, it suffices to show that S has the SR-property w.r.t. � . So
consider f 2 Cc.G/ with supp.f / � S and set a D ƒ� .f /. We have to show
that r.a/ � kf k2. Set b D ƒ.jf j/ 2 C �r .G/. Since supp.jf j/ D supp.f / � S

and S has the SR-property, we get that r.b/ � k jf j k2 D kf k2. Thus, we see
that it is enough to show that r.a/ � r.b/. Using the spectral radius formula, this
immediately follows from Lemma A.2.

The proof of (iv) ) (v) is an adaptation of the proof of [20, Theorem 1.4]
(which itself builds upon ideas from [19]). For the sake of completeness, we
sketch the argument. Assume that (iv) holds and suppose (for contradiction) that
A WD C �r .G; �/ does not have stable rank one. Proceeding as in step three of the
proof of [20, Theorem 1.4], we get that there exists some f 2 Cc.G/ such that

kf k2 < d
�
ƒ� .f /;GL.A/

�
;

where d
�
x;GL.A/

�
denotes the distance (w.r.t. operator norm) from some x 2 A to

the set of invertible elements in A.
Set a D ƒ� .f / and F D supp.f /. By assumption, there exists g 2 G such

that gF has the SR-property w.r.t. � . Set c D �� .g/ a 2 A. Clearly, d.c; GL.A// D
d.a; GL.A//. Moreover, since c D ƒ� .fg/, where

fg WD
X
h2F

f .h/�.g; h/ ıgh ;
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we get that kfgk2 D kf k2 and supp.fg/ D gF . Hence, since gF has the SR-
property w.r.t. � , we get that

r.c/ � kfgk2 D kf k2 :

We also have d
�
c; GL.A/

�
� r.c/ (as this inequality holds in every unital

C�-algebra, cf. step one in the proof of [20, Theorem 1.4]). Thus, altogether, we get

kf k2 < d
�
a; GL.A/

�
D d

�
c; GL.A/

�
� r.c/ � kf k2 ;

which gives a contradiction. So A must have stable rank one, that is, (v) holds.

Remark A.3. Several examples of groups having both the free semigroup property
and the `2-spectral radius property are exhibited in [20]. If G denotes any of
these groups, then Theorem A.1 gives that C �r .G; �/ has stable rank one for any
� 2 Z2.G;T /. In all these examples, it is known that G is C �-simple (being a
Powers group), hence that .G; �/ is also C �-simple. This provides some evidence
that it might be true that C �r .G; �/ has stable rank one whenever .G; �/ is C �-simple
(cf. Question 2.2).

B. On groups with property (BP)

We recall from [61] that a groupG is said to have property (BP) if for everyg 2 Gnfeg
and n 2 N, n � 2, there exist g1; : : : ; gn 2 G, a subgroup H of G, and pairwise
disjoint nonempty subsets T1; : : : ; Tn � H such that

gj g g
�1
j

�
H n Tj

�
� Tj

for all j D 1; : : : ; n.
In [61, Remark 5.9], Tucker-Drob sketches briefly how some arguments of Bekka,

Cowling and de la Harpe in [8] can be adapted to prove that G has the unique trace
property whenever G has property (BP). With the kind permission of Tucker-Drob,
we give below an expanded version of his proof in the twisted case.
Proposition B.1. Assume that G has property (BP) and let � 2 Z2.G;T /. Then
.G; �/ has the unique trace property. Moreover, G is ICC and belongs to KUT .

Proof. Let  be a tracial state on A WD C �r .G; �/. To show the first assertion, by
continuity of  and density of the �-subalgebra of A generated by �� .G/, it suffices
to show that .�� .g// D 0 for all g 2 Gnfeg. Fix g 2 Gnfeg and let n 2 N; n � 2.

Pick g1; : : : ; gn,H and T1; : : : ; Tn as in the definition of property (BP), and set

an D
1

n

nX
jD1

�� .gj / �� .g/ �� .gj /
�
D
1

n

nX
jD1

z�.gj ; g/ �� .gj g g
�1
j / ;
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where z� is defined as in (2.2). We will show that

k an k �
2
p
n
: (B.1)

Using this inequality and the traciality of  , we then obtain thatˇ̌
 
�
�� .g/

�ˇ̌
D
ˇ̌
 .an/

ˇ̌
� kank �

2
p
n
:

Letting n!1, we get  .�� .g// D 0, as desired.
To show that (B.1) holds, we set rj D gj g g

�1
j for each j D 1; : : : ; n. The

assumption says that rj .H n Tj / � Tj for each j D 1; : : : ; n. Since H n Tj ¤ ;
for each j (otherwise the Tj ’s could not be pairwise disjoint), we see that each rj
belongs toH .

Let � 0 denote the restriction of � to H � H . If D � H , we let PD denote
the orthogonal projection from `2.H/ onto `2.D/ (identified as a closed subspace
of `2.H/). We then have �� 0.h/ PD D PhD �� 0.h/ for all h 2 H . Note also
that, since rj .H n Tj / \ .H n Tj / D ;, we have Prj .HnTj / PHnTj D 0 for each
j D 1; : : : ; n.

Set a0n D
1
n

Pn
jD1 z�.gj ; g/ �� 0.rj / 2 C �r .H; �

0/ : To estimate ka0nk, let
�; � 2 `2.H/. Using the triangle inequality, the remarks above and the Cauchy–
Schwarz inequality, we getˇ̌
hz�.gj ; g/ �� 0.rj / �; �i

ˇ̌
D
ˇ̌
h�� 0.rj / �; �i

ˇ̌
�
ˇ̌
h�� 0.rj / PTj �; �i

ˇ̌
C
ˇ̌
h�� 0.rj / PHnTj �; �i

ˇ̌
�
ˇ̌
h�� 0.rj / PTj �; �i

ˇ̌
C
ˇ̌
hPrj .HnTj / �� 0.rj / �; �i

ˇ̌
D
ˇ̌
h�� 0.rj / PTj �; �i

ˇ̌
C
ˇ̌
hPrj .HnTj / �� 0.rj / �; PTj �i

ˇ̌
� kPTj �k k�k C k�k kPTj �k

for each j D 1; : : : ; n. Since the Tj ’s are pairwise disjoint, this gives

nX
jD1

ˇ̌
hz�.gj ; g/ �� 0.rj / �; �i

ˇ̌
�

�
k�k

nX
jD1

kPTj �k C k�k

nX
jD1

kPTj �k

�
�

�
p
n k�k

� nX
jD1

kPTj �k
2

�1=2
C
p
n k�k

� nX
jD1

kPTj �k
2

�1=2 �
� 2
p
n k�k k�k :
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Thus we get

ˇ̌˝
a0n �; �

˛ˇ̌
�
1

n

nX
jD1

ˇ̌˝
z�.gj ; g/ �� 0.rj / �; �

˛ˇ̌
�
1

n
2
p
n k�k k�k D

2
p
n
k�k k�k :

It follows that kank D ka0nk � 2=
p
n, that is, (B.1) holds, and the proof of the first

assertion is finished. Since this assertion is true for any � 2 Z2.G;T /, the second
assertion follows readily.

C. On decay properties and uniqueness of the trace

A recent result of Gong says that if a group G has Jolissaint’s property RD [32]
(with respect to some length function L), and every nontrivial conjugacy class of G
has superpolynomial growth (w.r.t. L), then G has the unique trace property (see
[23, Theorem 3.11]). We give below a generalized version of her result.

Consider �WG ! Œ1;1/. For �WG ! C, set

k�k2;� D
�X
g2G

ˇ̌
�.g/�.g/

ˇ̌2�1=2
2 Œ0;1�:

Let � 2 Z2.G;T /. We will say that .G; �/ is �-decaying if there exists some
M > 0 such that

kƒ� .f /k �M kf k2;�

for every function f WG ! C having finite support. It is easy to see that this definition
agrees with the one given in [5]. When .G; 1/ is �-decaying, we will just say that G
is �-decaying. We note that if L is a length function on G, then G has property RD
(w.r.t. L) in the sense of [32] if and only if there exists some s > 0 such that G
is .1C L/s-decaying.

According to [5, Theorem 3.5 and Proposition 3.7], we have:
(i) if G is �-decaying, then .G; �/ is �-decaying;
(ii) if .G; �/ is �-decaying, then the series

P
g2G �.g/�� .g/ is convergent w.r.t. the

operator-norm in C �r .G; �/ whenever k�k2;� <1.
Assume now that �WG ! Œ1;1/ is proper (soG is countable). Let C be a subset

of G. For each k 2 N, set Ck D C \ fg 2 G W k � 1 < �.g/ � kg. We will say
that C has superpolynomial growth (w.r.t. �) if for every (real) polynomial P there
exists an infinite subset K of N such that jCkj > P.k/ for all k 2 K.
Theorem C.1. Assume that �WG ! Œ1;1/ is a proper map, .G; �/ is �-decaying
and every nontrivial � -regular conjugacy class in G has superpolynomial growth
(w.r.t. �). Then .G; �/ has the unique trace property.
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Proof. A major part of the proof is an adaptation of the proof of [23, Lemma 3.9].
Let ! be a tracial state on C �r .G; �/. It suffices to show that !.�� .g// D 0 for every
g 2 G n feg. Assume first that g 2 G is not � -regular. Let then h 2 G be such that h
commutes with g and �.h; g/ ¤ �.g; h/. We then have z�.h; g/ ¤ 1 and

!
�
�� .g/

�
D !

�
�� .h/�� .g/�� .h/

�
�
D z�.h; g/ !

�
�� .g/

�
;

so it follows that !.�� .g// D 0.
Next, assume that g 2 G n feg is � -regular. Set C D CG.g/ (the conjugacy

class of g in G) and let Ck be defined as above for each k 2 N. Since C has super-
polynomial growth (w.r.t. �), we can find an increasing sequence 1 < k1 < k2 < � � �
in N such that cj WD jCkj j > .kj /

4j for every j 2 N.
Using equation (2.3) we get that for each h 2 C , there exists some h 2 T such

that !.�� .h// D h !.�� .g//. Define then �WG ! C by

�.h/ D

(
Sh c
�5=8
j ; if h 2 Ckj for some j 2 N;

0; otherwise.

Then

k�k22;� D
X
j2N

X
h2Ckj

ˇ̌
Sh c
�5=8
j �.h/

ˇ̌2
�

X
j2N

X
h2Ckj

c
�10=8
j k 2j

D

X
j2N

c
�1=4
j k 2j �

X
j2N

k
�j
j k 2j < 1 :

Since .G; �/ is �-decaying, we get that
P
h2G �.h/ �� .h/ converges in operator-norm

to some x 2 C �r .G; �/. Thus, by continuity of !, we getX
h2G

�.h/ !
�
�� .h/

�
D !.x/:

But

�.h/ !.�� .h/
�
D

(
Sh c
�5=8
j h !.�� .g//; if h 2 Ckj for some j 2 N;

0; otherwise.

D

(
c
�5=8
j !.�� .g//; if h 2 Ckj for some j 2 N;

0; otherwise.

HenceX
h2G

�.h/!
�
�� .h/

�
D !

�
�� .g/

� X
j2N

X
h2Ckj

c
�5=8
j D !

�
�� .g/

� X
j2N

c
3=8
j :

As
P
j2N c

3=8
j D1, we see that we must have !.�� .g// D 0.

Thus, altogether, we have shown that !.�� .g// D 0 for all g 2 G n feg, which
implies that ! agrees with the canonical tracial state on C �r .G; �/.
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