
J. Noncommut. Geom. 12 (2018), 1041–1080
DOI 10.4171/JNCG/297

Journal of Noncommutative Geometry
© European Mathematical Society

Quasimodular Hecke algebras and Hopf actions

Abhishek Banerjee

Abstract. Let � D �.N/ be a principal congruence subgroup of SL2.Z/. In this paper,
we extend the theory of modular Hecke algebras due to Connes and Moscovici to define the
algebra Q.�/ of quasimodular Hecke operators of level � . Then, Q.�/ carries an action of “the
Hopf algebra H1 of codimension 1 foliations” that also acts on the modular Hecke algebra A.�/

of Connes and Moscovici. However, in the case of quasimodular forms, we have several new
operators acting on the quasimodular Hecke algebra Q.�/. Further, for each � 2 SL2.Z/, we
introduce the collection Q� .�/ of quasimodular Hecke operators of level � twisted by � . Then,
Q� .�/ is a right Q.�/-module and is endowed with a pairing

.__; __/WQ� .�/˝Q� .�/ �! Q� .�/:

We show that there is a “Hopf action” of a certain Hopf algebra h1 on the pairing on Q� .�/.
Finally, for any � 2 SL2.Z/, we consider operators acting between the levels of the graded
module Q� .�/ D ˚m2ZQ�.m/.�/, where

�.m/ D

�
1 m

0 1

�
� �

for any m 2 Z. The pairing on Q� .�/ can be extended to a graded pairing on Q� .�/ and we
show that there is a Hopf action of a larger Hopf algebra hZ � h1 on the pairing on Q� .�/.
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Keywords. Modular Hecke algebras, Hopf actions.

1. Introduction

Let N � 1 be an integer and let � D �.N/ be a principal congruence subgroup
of SL2.Z/. In [6, 7], Connes and Moscovici have introduced the “modular Hecke
algebra” A.�/ that combines the pointwise product on modular forms with the action
of Hecke operators. Further, Connes and Moscovici have shown that the modular
Hecke algebra A.�/ carries an action of “the Hopf algebra H1 of codimension 1
foliations”. The Hopf algebra H1 is part of a larger family of Hopf algebras
fHnjn � 1g defined by them in [5], with the Hopf algebra Hn acting on C �-algebras
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coming from foliations of codimension n. Then, the discovery by Connes and
Moscovici [6] of the H1-action on the modular Hecke algebra A.�/ reveals deep
connections between noncommutative geometry and number theory. For further
work on this Hopf algebra H1, we refer the reader, for instance, to [4, 13].

In [1], we showed that the action of the Hopf algebra H1 is associated with
Frobenius and monodromy operators in arithmetic geometry. In fact, the Hopf
algebraH1 acts on a complex in [1] that is obtained bymodifying a certain bi-complex
introduced by Consani [8, § 4] for computing the cohomology of the “fiber at infinity”
of an arithmetic variety. The bi-complex of Consani [8] is the arithmetic analogue
of the ‘nearby cycles complex’ in algebraic geometry (see, for instance, [9, § 2]).
By considering modular forms as sections of line bundles, we also developed in [2]
an H1-action on an algebra of Hecke operators lifted to line bundles over modular
curves. The lifting of Hecke operators to the level of line bundles in [2] also leads to
additional operators that are obtained by modifying the H1-action.

The objective of this paper is to introduce and study quasimodular Hecke
algebras Q.�/ that combine the pointwise product on quasimodular forms with
the action of Hecke operators. Further, we will also study the collection Q� .�/

of quasimodular Hecke operators twisted by some � 2 SL2.Z/. The latter is
an extension of our theory of twisted modular Hecke operators introduced in [3].
We recall that quasimodular forms can be interpreted geometrically as sections of
bundles on the moduli space of elliptic curves (see [11]). As such, the H1-action
on Q.�/ demonstrates the amazing versatility of the Hopf algebra H1 of Connes
and Moscovici. Additionally, the use of quasimodular forms helps us to find new
operators on the algebra Q.�/. At the heart of these new operators is the classical
Eisenstein series G2 of weight 2 which is not a modular form but only quasimodular
(see Section 2 for details). However, we know (see [6, Remark 1]) that G2 plays
an important role in defining actions on the modular Hecke algebra . Hence, we
feel that working with the quasimodular Hecke algebra allows us to fully involve
the Eisenstein series G2 in the theory. The action of these new operators is also
expressed in terms of the action of a co-commutative Hopf algebra, which arises as
the universal enveloping algebra of a Lie algebra. We also hope that in the future, we
can lift the quasimodular Hecke operators to the level of bundles in the same spirit
as our work in [2].

We now describe the paper in detail. In Section 2, we briefly recall the
notion of modular Hecke algebras of Connes and Moscovici [6, 7]. We let QM

be the “quasimodular tower”, i.e., QM is the colimit over all N of the spaces
QM.�.N // of quasimodular forms of level �.N/ (see (2.8)). We define a
quasimodular Hecke operator of level � to be a function of finite support from
�nGLC2 .Q/ to the quasimodular towerQM satisfying a certain covariance condition
(see Definition 2.4). We then show that the collection Q.�/ of quasimodular
Hecke operators of level � carries an algebra structure .Q.�/;�/ by considering
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a convolution product over cosets of � in GLC2 .Q/. Further, the modular Hecke
algebra of Connes and Moscovici embeds naturally as a subalgebra of Q.�/. We
also show that the quasimodular Hecke operators of level� act on quasimodular forms
of level � , i.e., QM.�/ is a left Q.�/-module. In this section, we will also define a
second algebra structure .Q.�/;�r/ on Q.�/ by considering the convolution product
over cosets of� inSL2.Z/, a construction that should be compared to the “restricted”
modular Hecke algebra from [1, § 4]. Whenwe considerQ.�/ as an algebra equipped
with this latter product �r , it will be denoted by Qr.�/ D .Q.�/;�r/.

In Section 3, we define Lie algebra and Hopf algebra actions on Q.�/. Given a
quasimodular form f 2 QM.�/ of level � , it is well known that we can write f as
a sum

f D

sX
iD0

ai .f / �G
i
2; (1.1)

where the coefficients ai .f / are modular forms of level � and G2 is the
classical Eisenstein series of weight 2. Therefore, we can consider two different
sets of operators on the quasimodular tower QM: those which act on the
powers of G2 appearing in the expression for f and those which act on the
modular coefficients ai .f /. The collection of operators acting on the modular
coefficients ai .f / are studied in Section 3.2. These induce on Q.�/ analogues of
operators acting on the modular Hecke algebra A.�/ of Connes and Moscovici and
we show that Q.�/ carries an action of the same Hopf algebra H1 of codimension 1
foliations that acts on A.�/. On the other hand, by considering operators on QM

that act on the powers of G2 appearing in (1.1), we are able to define additional
operators D, fT l

k
gk�1;l�0 and f�.m/gm�1 on Q.�/ (see Section 3.1). Further, we

show that these operators satisfy the following commutator relations:�
T lk ; T

l 0

k0

�
D .k0 � k/T lCl

0

kCk0�2�
D;�.m/

�
D 0;

�
T lk ; �

.m/
�
D 0;

�
�.m/; �.m

0/
�
D 0�

T lk ;D
�
D

5

24
.k � 1/T lC1

k�1
�
1

2
.k � 3/T lkC1:

(1.2)

We then consider the Lie algebra L generated by the symbols D, fT l
k
gk�1;l�0,

f�.m/gm�1 satisfying the commutator relations in (1.2). Then, there is a Lie action
of L on Q.�/. Finally, let H be the Hopf algebra given by the universal enveloping
algebra U.L/ of L. Then, we show that H has a Hopf action with respect to
the product �r on Q.�/ and this action captures the operators D, fT l

k
gk�1;l�0 and

f�.m/gm�1 on Q.�/. In other words, H acts on Q.�/ such that:

h.F 1 �r F 2/ D
X

h.1/.F
1/ �r h.2/.F

2/; 8 h 2 H ; F 1; F 2 2 Q.�/; (1.3)

where the coproduct �WH �! H ˝ H is given by �.h/ D
P
h.1/ ˝ h.2/ for

any h 2 H .
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In Section 4, we develop the theory of twisted quasimodular Hecke operators.
For any � 2 SL2.Z/, we define in Section 4.1 the collection Q� .�/ of quasimodular
Hecke operators of level � twisted by � . When � D 1, this reduces to the original
definition of Q.�/. In general, Q� .�/ is not an algebra but we show that Q� .�/

carries a pairing:
.__; __/WQ� .�/˝Q� .�/ �! Q� .�/: (1.4)

Further, we show that Q� .�/ may be equipped with the structure of a right Q.�/-
module. We can also extend the action of the Hopf algebra H1 of codimension 1
foliations toQ� .�/. In fact, we show thatH1 has an action on the rightQ.�/-module
Q� .�/ and this action is Hopf, i.e.,

h.F 1 � F 2/ D
X

h.1/.F
1/ � h.2/.F

2/;

8 h 2 H1; F
1
2 Q� .�/; F

2
2 Q.�/: (1.5)

We recall from [6] thatH1 is equal as an algebra to the universal enveloping algebra of
the Lie algebra L1 with generators X , Y , fıngn�1 satisfying the following relations:

ŒY; X� D X; ŒX; ın� D ınC1; ŒY; ın� D nın; Œık; ıl � D 0;

8 k; l; n � 1: (1.6)

Then, we can consider the smaller Lie algebra l1 � L1 with two generators X ,
Y satisfying ŒY; X� D X . If we let h1 be the Hopf algebra that is the universal
enveloping algebra of l1, we show that the pairing in (1.4) on Q� .�/ carries a “Hopf
action” of h1. In other words, we have:

h.F 1; F 2/ D
X�

h.1/.F
1/; h.2/.F

2/
�
; 8 h 2 h1; F

1; F 2 2 Q� .�/: (1.7)

In Section 4.2, we consider operators between the modules Q� .�/ as � varies
over SL2.Z/. More precisely, for any �; � 2 SL2.Z/, we define a morphism:

X� WQ� .�/ �! Q�� .�/: (1.8)

In particular, this gives us operators acting between the levels of the graded module

Q� .�/ D
M
m2Z

Q�.m/.�/; (1.9)

where for any � 2 SL2.Z/, we set

�.m/ D

�
1 m

0 1

�
� �:

Further, we generalize the pairing on Q� .�/ in (1.4) to a pairing:

.__; __/WQ�1� .�/˝Q�2� .�/ �! Q�1�2� .�/; (1.10)
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where �1, �2 are commuting matrices in SL2.Z/. In particular, (1.10) gives us a
pairing

Q�.m/.�/˝Q�.n/.�/ �! Q�.mCn/.�/; 8m; n 2 Z

and hence a pairing on the tower Q� .�/. Finally, we consider the Lie algebra lZ � l1
with generators fZ;Xnjn 2 Zg satisfying the following commutator relations:

ŒZ;Xn� D .nC 1/Xn; ŒXn; Xn0 � D 0; 8n; n
0
2 Z: (1.11)

Then, if we let hZ be the Hopf algebra that is the universal enveloping algebra of lZ,
we show that hZ has a Hopf action on the pairing on Q� .�/. In other words, for any
F 1, F 2 2 Q� .�/, we have

h.F 1; F 2/ D
X�

h.1/.F
1/; h.2/.F

2/
�
; 8 h 2 hZ: (1.12)

2. The quasimodular Hecke algebra

We begin this section by briefly recalling the notion of quasimodular forms. The
notion of quasimodular forms is due to Kaneko and Zagier [10]. The theory has
been further developed in Zagier [14]. For an introduction to the basic theory of
quasimodular forms, we refer the reader to the exposition of Royer [12].

Throughout, let H � C be the upper half plane. Then, there is a well known
action of SL2.Z/ on H:

z 7!
az C b

cz C d
; 8 z 2 H;

�
a b

c d

�
2 SL2.Z/: (2.1)

For any N � 1, we denote by �.N/ the following principal congruence subgroup of
SL2.Z/:

�.N/ WD

��
a b

c d

�
2 SL2.Z/

ˇ̌̌̌ �
a b

c d

�
�

�
1 0

0 1

�
.modN/

�
: (2.2)

In particular, �.1/ D SL2.Z/. We are now ready to define quasimodular forms.
Definition 2.1. Let f WH �! C be a holomorphic function and let N � 1, k, s � 0
be integers. Then, the function f is a quasimodular form of level N , weight k and
depth s if there exist holomorphic functions f0, f1, . . . , fsWH �! C with fs ¤ 0

such that:

.cz C d/�kf

�
az C b

cz C d

�
D

sX
jD0

fj .z/

�
c

cz C d

�j
(2.3)

for any matrix
�
a b
c d

�
2 �.N/. The collection of quasimodular forms of level N ,

weight k and depth s will be denoted by QMs
k.�.N //. By convention, we let the

zero function 0 2 QM0
k.�.N // for every k � 0, N � 1.
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More generally, for any holomorphic function f WH �! C and any matrix
˛ D

�
a b
c d

�
2 GLC2 .Q/, we define:

.f jk˛/.z/ WD .cz C d/
�kf

�
az C b

cz C d

�
; 8 k � 0: (2.4)

Then, we can say that f is quasimodular of level N , weight k and depth s if there
exist holomorphic functions f0, f1, . . . , fsWH �! C with fs ¤ 0 such that:

.f jk˛/.z/ D

sX
jD0

fj .z/

�
c

cz C d

�j
; 8˛ D

�
a b

c d

�
2 �.N/: (2.5)

When the integer k is clear from context, we write f jk˛ simply as f j˛ for
any ˛ 2 GLC2 .Q/. Also, it is clear that we have a product:

QMs
k.�.N //˝QMt

l.�.N // �! QMsCt
kCl

.�.N // (2.6)

on quasi-modular forms. For any N � 1, we now define:

QM.�.N // WD

1M
sD0

1M
kD0

QMs
k.�.N //: (2.7)

We now consider the direct limit:

QM WD lim
�!
N�1

QM.�.N //; (2.8)

which we will refer to as the quasimodular tower. Additionally, for any k � 0 and
N � 1, we let Mk.�.N // denote the collection of usual modular forms of weight k
and level N . Then, we can define the modular tower M:

M WD lim
�!
N�1

M.�.N //; M.�.N // WD

1M
kD0

Mk.�.N //: (2.9)

We now recall the modular Hecke algebra of Connes and Moscovici [6].
Definition 2.2 (see [6, § 1]). Let � D �.N/ be a principal congruence subgroup
of SL2.Z/. A modular Hecke operator of level � is a function of finite support

F W�nGLC2 .Q/ �!M; �˛ 7! F˛ (2.10)

such that for any 
 2 � , we have:

F˛
 D F˛j
: (2.11)

The collection of all modular Hecke operators of level � will be denoted by A.�/.
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Our first aim is to define a quasimodular Hecke algebra Q.�/ analogous to the
modular Hecke algebra A.�/ of Connes and Moscovici. For this, we recall the
structure theorem for quasimodular forms, proved by Kaneko and Zagier [10].
Theorem2.3 (see [10, § 1, Proposition 1]). Let� D �.N/ be a principal congruence
subgroup of SL2.Z/. For any even number K � 2, let GK denote the classical
Eisenstein series of weight K:

GK.z/ WD �
BK

2K
C

1X
nD1

�X
d jn

dK�1
�
e2�inz; (2.12)

where BK is the K-th Bernoulli number and z 2 H. Then, every quasimodular
form in QM.�/ can be written uniquely as a polynomial in G2 with coefficients
in M.�/. More precisely, for any quasimodular form f 2 QMs

k.�/, there exist
functions a0.f /, a1.f /, . . . , as.f / such that:

f D

sX
iD0

ai .f /G
i
2; (2.13)

where ai .f / 2 Mk�2i .�/ is a modular form of weight k � 2i and level � for each
0 � i � s.

We now consider a quasimodular form f 2 QM. For sake of definiteness, we
may assume that f 2 QMs

k.�.N //, i.e. f is a quasimodular form of level N ,
weight k and depth s. We now define an operation on QM by setting:

f k˛ D

iX
iD0

�
ai .f /jk�2i˛

�
Gi2; 8˛ 2 GL

C
2 .Q/; (2.14)

where fai .f / 2Mk�2i .�.N //g0�i�s is the collection ofmodular forms determining
f D

Ps
iD0 ai .f /G

i
2 as in Theorem 2.3. We know that for any ˛ 2 GLC2 .Q/, each

.ai .f /jk�2i˛/ is an element of the modular tower M. This shows that

f k˛ D

iX
iD0

�
ai .f /jk�2i˛

�
Gi2 2 QM:

However, we note that for arbitrary ˛ 2 GLC2 .Q/ and ai .f / 2 Mk�2i .�.N //,
it is not necessary that .ai .f /jk�2i˛/ 2 Mk�2i .�.N //. In other words, the
operation defined in (2.14) on the quasimodular tower QM does not descend to
an endomorphism on each QMs

k.�.N //. From the expression in (2.14), it is also
clear that:

.f � g/k˛ D .f k˛/ � .gk˛/; f k.˛ � ˇ/ D .f k˛/kˇ;

8f; g 2 QM; ˛; ˇ 2 GLC2 .Q/: (2.15)

We are now ready to define the quasimodular Hecke operators.
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Definition 2.4. Let � D �.N/ be a principal congruence subgroup. A quasimodular
Hecke operator of level � is a function of finite support:

F W�nGLC2 .Q/ �! QM; �˛ 7! F˛ (2.16)

such that for any 
 2 � , we have:

F˛
 D F˛k
: (2.17)

The collection of all quasimodular Hecke operators of level � will be denoted
by Q.�/.

We will now introduce the product structure on Q.�/. In fact, we will introduce
two separate product structures .Q.�/;�/ and .Q.�/;�r/ on Q.�/.

Proposition 2.5. (a) Let � D �.N/ be a principal congruence subgroup and
let Q.�/ be the collection of quasimodular Hecke operators of level � . Then,
the product defined by:

.F �G/˛ WD
X

ˇ2�nGL
C

2
.Q/

Fˇ � .G˛ˇ�1kˇ/; 8˛ 2 GL
C
2 .Q/ (2.18)

for all F , G 2 Q.�/ makes Q.�/ into an associative algebra.

(b) Let � D �.N/ be a principal congruence subgroup and let Q.�/ be the
collection of quasimodular Hecke operators of level � . Then, the product defined
by:

.F �r G/˛ WD
X

ˇ2�nSL2.Z/

Fˇ � .G˛ˇ�1kˇ/; 8˛ 2 GL
C
2 .Q/ (2.19)

for all F , G 2 Q.�/ makes Q.�/ into an associative algebra which we denote
by Qr.�/.

Proof. (a) We need to check that the product in (2.18) is associative. First of all, we
note that the expression in (2.18) can be rewritten as:

.F �G/˛ D
X

˛2˛1D˛

F˛1 �G˛2k˛1; 8˛ 2 GL
C
2 .Q/; (2.20)

where the sum in (2.20) is taken over all pairs .˛1; ˛2/ with ˛2˛1 D ˛ modulo the
following equivalence relation:

.˛1; ˛2/ � .
˛1; ˛2

�1/; 8 
 2 �: (2.21)
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Hence, for F , G,H 2 Q.�/, we can write:

.F � .G �H//˛ D
X

˛0
2
˛1D˛

F˛1 � .G �H/˛02
k˛1

D

X
˛0
2
˛1D˛

F˛1 �

� X
˛3˛2D˛

0
2

G˛2 �H˛3k˛2

�
k˛1

D

X
˛3˛2˛1D˛

F˛1 � .G˛2k˛1/ � .H˛3k˛2˛1/;

(2.22)

where the sum in (2.22) is taken over all triples .˛1; ˛2; ˛3/with ˛3˛2˛1 D ˛modulo
the following equivalence relation:

.˛1; ˛2; ˛3/ � .
˛1; 

0˛2


�1; ˛3

0�1/; 8 
; 
 0 2 � (2.23)

On the other hand, we have

..F �G/ �H/˛ D
X

˛3˛
00
2
D˛

.F �G/˛00
2
�H˛3k˛

00
2

D

X
˛3˛
00
2
D˛

� X
˛2˛1D˛

00
2

F˛1 �G˛2k˛1

�
�H˛3k˛

00
2

D

X
˛3˛2˛1D˛

F˛1 � .G˛2k˛1/ � .H˛3k˛2˛1/;

(2.24)

where the sum in (2.24) is taken over all triples .˛1; ˛2; ˛3/with ˛3˛2˛1 D ˛modulo
the equivalence relation in (2.23). From (2.22) and (2.24) the result follows. We can
similarly verify (b).

We know that modular forms are quasimodular forms of depth 0, i.e., for
any k � 0,N � 1, we have Mk.�.N // D QM0

k.�.N //. It follows that the modular
tower M defined in (2.9) embeds into the quasimodular tower QM defined in (2.8).
We are now ready to show that the modular Hecke algebra A.�/ of Connes and
Moscovici embeds into the quasimodular Hecke algebra Q.�/ for any congruence
subgroup � D �.N/.
Proposition 2.6. Let � D �.N/ be a principal congruence subgroup of SL2.Z/.
Let A.�/ be the modular Hecke algebra of level � as defined in Definition 2.2 and
let Q.�/ be the quasimodular Hecke algebra of level � as defined in Definition 2.4.
Then, there is a natural embedding of algebras A.�/ ,! Q.�/.

Proof. For any ˛ 2 GLC2 .Q/ and any f 2 QMs
k.�/, we consider the operation

f 7! f k˛ as defined in (2.14):

f k˛ D

iX
iD0

�
ai .f /jk�2i˛

�
Gi2 2 QM: (2.25)
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In particular, if f 2 Mk.�/ D QM0
k.�/ is a modular form, it follows from (2.25)

that:
f k˛ D a0.f /jk˛ D f jk˛ D f j˛ 2M: (2.26)

Hence, using the embedding of M in QM, it follows from (2.11) in the definition
of A.�/ and from (2.17) in the definition of Q.�/ that we have an embedding
A.�/ ,! Q.�/ of modules. Further, we recall from [6, § 1] that the product
on A.�/ is given by:

.F �G/˛ WD
X

ˇ2�nGL
C

2
.Q/

Fˇ � .G˛ˇ�1 jˇ/; 8˛ 2 GL
C
2 .Q/; F;G 2 A.�/: (2.27)

Comparing (2.27) with the product on Q.�/ described in (2.18) and using (2.26) it
follows that A.�/ ,! Q.�/ is an embedding of algebras.

We end this section by describing the action of the algebra Q.�/ on QM.�/.

Proposition 2.7. Let � D �.N/ be a principal congruence subgroup and let Q.�/

be the algebra of quasimodular Hecke operators of level � . Then, for any element
f 2 QM.�/ the action of Q.�/ defined by:

F � f WD
X

ˇ2�nGL
C

2
.Q/

Fˇ � f kˇ; 8F 2 Q.�/ (2.28)

makes QM.�/ into a left module over Q.�/.

Proof. It is easy to check that the right hand side of (2.28) is independent of the
choice of coset representatives. Further, since F 2 Q.�/ is a function of finite
support, we can choose finitely many coset representatives fˇ1; ˇ2; : : : ; ˇng such
that

F � f D

nX
jD1

Fˇj � f kˇj : (2.29)

It suffices to consider the case f 2 QMs
k.�/ for some weight k and depth s. Then,

we can express f as a sum:

f D

sX
iD0

ai .f /G
i
2; (2.30)

where each ai .f / 2Mk�2i .�/. Similarly, for any ˇ 2 GLC2 .Q/, we can express Fˇ
as a finite sum:

Fˇ D

tˇX
rD0

aˇr.Fˇ / �G
r
2 (2.31)
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with each aˇr.Fˇ / 2M. In particular, we let t D maxftˇ1 ; tˇ2 ; : : : ; tˇng and we can
now write:

Fˇj D

tX
rD0

aˇj r.Fˇj / �G
r
2 (2.32)

by adding appropriately many terms with zero coefficients in the expression for
each Fˇj . Further, for any 
 2 � , we know that

Fˇj 
 D Fˇj k
 D

tX
rD0

�
aˇj r.Fˇj /j


�
�Gr2 :

In other words, we have, for each j :

Fˇj 
 D

tX
rD0

aˇj 
r.Fˇj 
 / �G
r
2 ; aˇj 
r.Fˇj 
 / D

�
aˇj r.Fˇj /j


�
: (2.33)

The sum in (2.29) can now be expressed as:

F � f WD

nX
jD1

Fˇj � f kˇj D

sX
iD0

tX
rD0

nX
jD1

aˇj r.Fˇj / �
�
ai .f /jˇj

�
�GrCi2 : (2.34)

For any i , r , we now set:

Air.F; f / WD

nX
jD1

aˇj r.Fˇj / �
�
ai .f /jˇj

�
: (2.35)

Again, it is easy to see that the sum Air.F; f / in (2.35) does not depend on the
choice of the coset representatives fˇ1; ˇ2; : : : ; ˇng. Then, for any 
 2 � , we have:

Air.F; f /j
 D

nX
jD1

�
aˇj r.Fˇj /j


�
�
�
ai .f /jˇj 


�
D

nX
jD1

aˇj 
r.Fˇj 
 / �
�
ai .f /jˇj 


�
D Air.F; f /;

(2.36)

where the last equality in (2.36) follows from the fact that fˇ1
; ˇ2
; : : : ; ˇn
g is
another collection of distinct cosets reprsentatives of � in GLC2 .Q/. From (2.36),
we note that each Air.F; f / belongs to M.�/. Then, the sum:

F � f D

sX
iD0

tX
rD0

Air.F; f / �G
iCr
2 (2.37)

is an element of QM.�/. Hence, QM.�/ is a left module over Q.�/.
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3. The Lie algebra and Hopf algebra actions on Q.�/

Let � D �.N/ be a principal congruence subgroup of SL2.Z/. In this section, we
will describe two different sets of operators on the collection Q.�/ of quasimodular
Hecke operators of level � . Given a quasimodular form f 2 QM.�/ of level � , we
have mentioned in the last section that f can be expressed as a finite sum:

f D

sX
iD0

ai .f / �G
i
2; (3.1)

where G2 is the classical Eisenstein series of weight 2 and each ai .f / is a modular
form of level � . Then in Section 3.1, we consider operators on the quasimodular
tower that act on the powers of G2 appearing in (3.1). These induce operators D,
fT l
k
gk�1;l�0 on the collection Q.�/ of quasimodular Hecke operators of level � . In

order to understand the action of these operators on products of elements in Q.�/, we
also need to define extra operators f�.m/gm�1. Finally, we show that these operators
may all be described in terms of a Hopf algebra H with a “Hopf action” on Qr.�/,
i.e.,

h.F 1 �r F 2/ D
X

h.1/.F
1/ �r h.2/.F

2/; 8 h 2 H ; F 1; F 2 2 Qr.�/; (3.2)

where the coproduct �WH �! H ˝H is given by �.h/ D
P
h.1/ ˝ h.2/ for any

h 2 H . In Section 3.2, we consider operators on the quasimodular tower QM that
act on the modular coefficients ai .f / appearing in (3.1). These induce on Q.�/

analogues of operators acting on the modular Hecke algebra A.�/ of Connes and
Moscovici [6]. Then, we show that Q.�/ carries a Hopf action of the same Hopf
algebra H1 of codimension 1 foliations that acts on A.�/.

3.1. The operators D, fT l
k
g and f�.m/g on Q.�/. For any even number K � 2,

let GK be the classical Eisenstein series of weight K as in (2.12). Since G2 is a
quasimodular form, i.e., G2 2 QM, its derivative G02 2 QM. Further, it is well
known that:

G02 D
5�.
p
�1/

3
G4 � 4�.

p
�1/G22 ; (3.3)

where G4 is the Eisenstein series of weight 4 (which is a modular form). For our
purposes, it will be convenient to write:

G02 D

2X
jD0

gjG
j
2 (3.4)

with each gj a modular form. From (3.3), it follows that:

g0 D
5�.
p
�1/

3
G4; g1 D 0; g2 D �4�.

p
�1/: (3.5)
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We are now ready to define the operators D and fWkgk�1 on QM. The first
operatorD differentiates the powers of G2:

DWQM �! QM

f D

iX
iD0

ai .f /G
i
2 7! �

1

8�.
p
�1/

� iX
iD0

iai .f /G
i�1
2 �G02

�
D �

1

8�.
p
�1/

iX
iD0

2X
jD0

iai .f /gjG
iCj�1
2 :

(3.6)

The operators fWkgk�1 are “weight operators” andWk also steps up the power ofG2
by k � 2. We set:

Wk WQM �! QM; f D

iX
iD0

ai .f /G
i
2 7!

iX
iD0

iai .f /G
iCk�2
2 : (3.7)

From the definitions in (3.6) and (3.7), we can easily check that D and Wk are
derivations on QM. Finally, for any ˛ 2 GLC2 .Q/ and any integer m � 1, we set

�.m/˛ D �
5

24

�
Gm4 j˛ �G

m
4

�
: (3.8)

Lemma 3.1. (a) Let f 2 QM be an element of the quasimodular tower and
˛ 2 GLC2 .Q/. Then, the operatorD satisfies:

D.f /k˛ D D.f k˛/C �.1/˛ �
�
W1.f /k˛

�
; (3.9)

where, using (3.8), we know that �.1/˛ is given by:

�.1/˛ WD �
1

8�.
p
�1/

�
g0j˛ � g0

�
D �

5

24

�
G4j˛ �G4

�
;

8˛ 2 GLC2 .Q/: (3.10)

(b) For f 2 QM and ˛ 2 GLC2 .Q/, each operator Wk , k � 1 satisfies:

Wk.f /k˛ D Wk.f k˛/: (3.11)
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Proof. (a) For the sake of definiteness, we assume that f D
Pi
iD0 ai .f /G

i
2 with

each ai .f / 2M. For ˛ 2 GLC2 .Q/, it follows from (3.6) that:

D.f /k˛ D �
1

8�.
p
�1/

�X
i

X
j

iai .f /gjG
iCj�1
2

�
k˛

D �
1

8�.
p
�1/

X
i

X
j

i
�
ai .f /j˛

�
.gj j˛/G

iCj�1
2 ;

D.f k˛/ D D

�X
i

�
ai .f /˛

�
Gi2

�
D �

1

8�.
p
�1/

X
i

X
j

i
�
ai .f /j˛

�
gjG

iCj�1
2 :

(3.12)

From (3.12) it follows that:

D.f /k˛ �D.f k˛/ D �
1

8�.
p
�1/

sX
iD0

2X
jD0

i
�
ai .f /j˛

��
gj j˛ � gj

�
G
iCj�1
2 :

(3.13)
From (3.5), it is clear that gj j˛ � gj D 0 for j D 1 and j D 2. It follows that:

D.f /k˛ �D.f k˛/ D �
1

8�.
p
�1/

sX
iD0

i
�
ai .f /j˛

��
g0j˛ � g0

�
Gi�12

D �
1

8�.
p
�1/

�
g0j˛ � g0

�
�

� sX
iD0

i
�
ai .f /j˛

�
Gi�12

�
:

This proves the result of (a). The result of part (b) is clear from the definition
in (3.7).

We note here that it follows from (3.8) that for any ˛, ˇ 2 GLC2 .Q/, we have:

�
.m/

˛ˇ
D �.m/˛ jˇ C �

.m/

ˇ
; 8m � 1: (3.14)

Additionally, since each Gm4 is a modular form, we know that when ˛ 2 SL2.Z/:

�.m/˛ D �
5

24

�
Gm4 j˛ �G

m
4

�
D 0; 8˛ 2 SL2.Z/;m � 1: (3.15)

Moreover, from the definitions in (3.6) and (3.7) respectively, it is easily verified
that D and fWkgk�1 are derivations on the quasimodular tower QM. We now
proceed to define operators on the quasimodular Hecke algebra Q.�/ for some
principal congruence subgroup � D �.N/. Choose F 2 Q.�/. We set:

D;Wk; �
.m/
WQ.�/ �! Q.�/; k � 1; m � 1

D.F /˛ WD D.F˛/; Wk.F /˛ WD Wk.F˛/; �.m/.F /˛ WD �
.m/
˛ � F˛;

8˛ 2 GLC2 .Q/:

(3.16)
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From Lemma 3.1 and the properties of �.m/˛ described in (3.14) and (3.15), it may be
easily verified that the operatorsD,Wk and �.m/ in (3.16) are well defined on Q.�/.
We will now compute the commutators of the operatorsD, fWkgk�1 and f�.m/gm�1
on Q.�/. In order to describe these commutators, we need one more operator E:

EWQM �! QM; f 7! G4 � f: (3.17)

Since G4 is a modular form of level �.1/ D SL2.Z/, i.e., G4j
 D G4 for any

 2 SL2.Z/, it is clear that E induces a well defined operator on Q.�/:

EWQ.�/ �! Q.�/; E.F /˛ WD E.F˛/ D G4 � F˛;

8F 2 Q.�/; ˛ 2 GLC2 .Q/: (3.18)

We will now describe the commutator relations between the operators D, E,
fElWkgk�1;l�0 and f�.m/gm�1 on Q.�/.

Proposition 3.2. Let � D �.N/ be a principal congruence subgroup and let Q.�/

be the algebra of quasimodular Hecke operators of level � . The operators D, E,
fElWkgk�1;l�0 and f�.m/gm�1 on Q.�/ satisfy the following relations:�

E;ElWk
�
D 0;

�
E;D

�
D 0;�

E; �.m/
�
D 0;

�
D;�.m/

�
D 0;

�
Wk; �

.m/
�
D 0;

�
�.m/; �.m

0/
�
D 0;�

ElWk;D
�
D

5

24
.k � 1/

�
ElC1Wk�1

�
�
1

2
.k � 3/ElWkC1:

(3.19)

Proof. For any F 2 Q.�/ and any ˛ 2 GLC2 .Q/, by definition, we know that
D.F /˛ D D.F˛/, Wk.F /˛ D Wk.F˛/, and E.F /˛ D E.F˛/. Hence, in order to
prove that ŒE;Wk� D 0 and ŒE;D� D 0, it suffices to show that ŒE;Wk�.f / D 0 and
ŒE;D�.f / D 0, respectively, for any element f 2 QM. Both of these are easily
verified from the definitions of D and Wk in (3.6) and (3.7) respectively. Further,
since ŒE;Wk� D 0, it is clear that ŒE;ElWk� D 0.

Similarly, in order to prove the expression for ŒElWk;D�, it suffices to prove that:

ŒElWk;D�.f / D
5

24
.k � 1/.ElC1Wk�1/.f / �

1

2
.k � 3/ElWkC1.f / (3.20)

for any f 2 QM. Further, it suffices to consider the case where

f D

sX
iD0

ai .f /G
i
2;
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where the ai .f / 2M. We now have:

WkD.f / D �
1

8�.
p
�1/

Wk

� iX
iD0

2X
jD0

iai .f /gjG
iCj�1
2

�

D �
1

8�.
p
�1/

iX
iD0

2X
jD0

i.i C j � 1/ai .f /gjG
iCjCk�3
2 ;

DWk.f / D D

� iX
iD0

iai .f /G
iCk�2
2

�
D �

1

8�.
p
�1/

iX
iD0

2X
jD0

i.i C k � 2/ai .f /gjG
iCjCk�3
2 :

(3.21)

It follows from (3.21) that:

ŒWk;D�.f / D �
1

8�.
p
�1/

iX
iD0

2X
jD0

ijai .f /gjG
iCjCk�3
2

C
1

8�.
p
�1/

iX
iD0

2X
jD0

i.k � 1/ai .f /gjG
iCjCk�3
2

D �
2g2

8�.
p
�1/

iX
iD0

iai .f /G
iCk�1
2

C .k � 1/
1

8�.
p
�1/

iX
iD0

iai .f /g0G
iCk�3
2

C .k � 1/
g2

8�.
p
�1/

iX
iD0

iai .f /G
iCk�1
2 ;

where the second equality uses the fact that g1 D 0. Further, since g0 D
.5�.
p
�1/=3/G4 and g2 D �4�.

p
�1/, it follows from (3.1) that we have:

ŒWk;D�.f / D
5

24
.k � 1/

iX
iD0

iG4ai .f /G
iCk�3
2 �

1

2
.k � 3/

iX
iD0

iai .f /G
iCk�1
2

D
5

24
.k � 1/.EWk�1/.f / �

1

2
.k � 3/WkC1.f /: (3.22)

Finally, since E commutes with fWkgk�1 andD, it follows from (3.22) that:�
ElWk;D

�
D

5

24
.k � 1/

�
ElC1Wk�1

�
�
1

2
.k � 3/ElWkC1;

8 k � 1; l � 0 (3.23)
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as operators on Q.�/. Finally, it may be easily verified from the definitions that�
E; �.m/

�
D
�
D;�.m/

�
D
�
Wk; �

.m/
�
D 0:

The operators fElWkgk�1;l�0 appearing in Proposition 3.2 above can be
described more succintly as:

T lk WQM �! QM; T lk WD E
lWk; 8 k � 1; l � 0 (3.24)

and

T lk WQ.�/ �! Q.�/; T lk .F /˛ WD T
l
k .F˛/ D E

lWk.F˛/;

8F 2 Q.�/; ˛ 2 GLC2 .Q/: (3.25)

We are now ready to describe the Lie algebra action on Q.�/.
Proposition 3.3. Let L be the Lie algebra generated by the symbolsD, fT l

k
gk�1;l�0,

f�.m/gm�1 along with the following relations between the commutators:�
T lk ; T

l 0

k0

�
D .k0 � k/T lCl

0

kCk0�2
;�

D;�.m/
�
D 0;

�
T lk ; �

.m/
�
D 0;

�
�.m/; �.m

0/
�
D 0;�

T lk ;D
�
D

5

24
.k � 1/T lC1

k�1
�
1

2
.k � 3/T lkC1:

(3.26)

Then, for any principal congruence subgroup � D �.N/, we have a Lie action of L

on the algebra of quasimodular Hecke operators Q.�/ of level � .

Proof. For any k � 1 and l � 0, T l
k
has been defined to be the operator ElWk

on Q.�/. We want to verify that:�
T lk ; T

l 0

k0

�
D .k � k0/T lCl

0

kCk0�2
; 8 k; k0 � 1; l; l 0 � 0: (3.27)

As in the proof of Proposition 3.2, it suffices to show that the relation in (3.27) holds
for any f 2 QM. As before, we let f D

Ps
iD0 ai .f /G

i
2, where each ai .f / 2 M.

We now have:

T lkT
l 0

k0 .f / D T
l
k

� iX
iD0

iai .f /G
l 0

4 �G
iCk0�2
2

�
D

iX
iD0

i.i C k0 � 2/ai .f /G
lCl 0

4 �GiCk
0Ck�4

2 ;

T l
0

k0T
l
k .f / D T

l 0

k0

� iX
iD0

iai .f /G
l
4 �G

iCk�2
2

�
D

iX
iD0

i.i C k � 2/ai .f /G
lCl 0

4 �GiCk
0Ck�4

2 :

(3.28)
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From (3.28) it follows that:

�
T lk ; T

l 0

k0

�
.f / D .k0�k/

iX
iD0

iai .f /G
lCl 0

4 �GiCk
0Ck�4

2 D .k0�k/T lCl
0

kCk0�2
: (3.29)

Hence, the relation (3.27) holds for the operators T l
k
, T l 0

k0
acting on Q.�/. The

remaining relations in (3.26) for the Lie action of L on Q.�/ follow from (3.19).

Lemma 3.4. Let f 2 QM be an element of the quasimodular tower and let
˛ 2 GLC2 .Q/. Then, for any k � 1, l � 0, the operator T l

k
WQM �! QM

satisfies:

T lk .f /k˛ D T
l
k .f k˛/ �

24

5
�.l/˛ �

�
T 0k .f /k˛

�
: (3.30)

Proof. For the sake of definiteness, we assume that f D
Ps
iD0 ai .f / �G

i
2 with each

ai .f / 2M. We now compute:

T lk .f /k˛ D .E
lWk/.f /k˛ D

� iX
iD0

iGl4 � ai .f /G
iCk�2
2

�
k˛

D

iX
iD0

i.Gl4j˛/ �
�
ai .f /j˛

�
GiCk�22 ;

T lk .f k˛/ D .E
lWk/.f k˛/ D .E

lWk/

� iX
iD0

�
ai .f /j˛

�
Gi2

�
D

iX
iD0

i.Gl4/ �
�
ai .f /j˛

�
GiCk�22 :

(3.31)

Subtracting, it follows that:

T lk .f /k˛ � T
l
k .f k˛/ D .G

l
4j˛ �G

l
4/ �

� iX
iD0

i
�
ai .f /j˛

�
GiCk�22

�
D �

24

5
�.l/˛ �

�
Wk.f /k˛

�
:

(3.32)

Putting T 0
k
D E0Wk D Wk , we have the result.
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Proposition 3.5. Let � D �.N/ be a principal congruence subgroup and let Q.�/

be the algebra of quasimodular Hecke operators of level � . Then, for any k � 1,
l � 0, the operator T l

k
satisfies:

T lk .F
1
� F 2/ D T lk .F

1/ � F 2 C F 1 � T lk .F
2/C

24

5

�
�.l/.F 1/ � T 0k .F

2/
�
˛
;

8F 1; F 2 2 Q.�/: (3.33)

Further, the operators fT l
k
gk�1;l�0 are all derivations on the algebra Qr.�/ D

.Q.�/;�r/.

Proof. We know that T l
k
D ElWk and that Wk is a derivation on QM. We choose

quasimodular Hecke operators F 1, F 2 2 Q.�/. Then, for any ˛ 2 GLC2 .Q/, we
know that:
T lk
�
F 1 � F 2

�
˛

D ElWk

� X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
F 2
˛ˇ�1
kˇ
��

D

X
ˇ2�nGL

C

2
.Q/

ElWk
�
F 1ˇ �

�
F 2
˛ˇ�1
kˇ
��

D

X
ˇ2�nGL

C

2
.Q/

Gl4 �Wk.F
1
ˇ / �

�
F 2
˛ˇ�1
kˇ
�
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �G
l
4 �Wk

�
F 2
˛ˇ�1
kˇ
�

D

X
ˇ2�nGL

C

2
.Q/

Gl4 �Wk.F
1
ˇ / �

�
F 2
˛ˇ�1
kˇ
�
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �G
l
4 �
�
Wk.F

2
˛ˇ�1

/kˇ
�

D
�
T lk .F

1/ � F 2
�
˛
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ � .G
l
4jˇ/ �

�
Wk.F

2
˛ˇ�1

/kˇ
�

�

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
Gl4jˇ �G

l
4

�
�
�
Wk.F

2
˛ˇ�1

/kˇ
�

D
�
T lk .F

1/ � F 2
�
˛
C
�
F 1 � T lk .F

2/
�
˛

C
24

5

X
ˇ2�nGL

C

2
.Q/

F 1ˇ � �
.l/

ˇ
�
�
Wk.F

2
˛ˇ�1

/kˇ
�

D
�
T lk .F

1/ � F 2
�
˛
C
�
F 1 � T lk .F

2/
�
˛
C
24

5

�
�.l/.F 1/ � T 0k .F

2/
�
˛
;

where it is understood that �.0/ D 0. This proves (3.33). Further, since �.l/
ˇ
D 0 for

any ˇ 2 SL2.Z/, when we consider the product �r defined in (2.19) on the algebra
Qr.�/, the calculation above reduces to

T lk .F
1
�
r F 2/ D T lk .F

1/ �r F 2 C F 1 �r T lk .F
2/: (3.34)

Hence, each T l
k
is a derivation on Qr.�/.
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Proposition 3.6. Let � D �.N/ be a principal congruence subgroup and let Q.�/

be the algebra of quasimodular Hecke operators of level � .
(a) The operatorDWQ.�/ �! Q.�/ on the algebra .Q.�/;�/ satisfies:

D.F 1 � F 2/ D D.F 1/ � F 2 C F 1 �D.F 2/ � �.1/.F 1/ � T 01 .F
2/;

8F 1; F 2 2 Q.�/: (3.35)

When we consider the product �r , the operator D becomes a derivation on the
algebra Qr.�/ D .Q.�/;�r/, i.e.:

D.F 1 �r F 2/ D D.F 1/�r F 2CF 1 �r D.F 2/; 8F 1; F 2 2 Qr.�/: (3.36)

(b) The operators fWkgk�1 and f�.m/gm�1 are derivations on Q.�/, i.e.,

Wk.F
1
� F 2/ D Wk.F

1/ � F 2 C F 1 �Wk.F
2/;

�.m/.F 1 � F 2/ D �.m/.F 1/ � F 2 C F 1 � �.m/.F 2/
(3.37)

for any F 1, F 2 2 Q.�/. Additionally, f�.m/gm�1 and fWkgk�1 are also
derivations on the algebra Qr.�/ D .Q.�/;�r/.

Proof. (a) We choose quasimodular Hecke operators F 1, F 2 2 Q.�/. We have
mentioned before that D is a derivation on QM. Then, for any ˛ 2 GLC2 .Q/, we
have:

D.F 1 � F 2/˛ D D

� X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
F 2
˛ˇ�1
kˇ
��

D

X
ˇ2�nGL

C

2
.Q/

D
�
F 1ˇ �

�
F 2
˛ˇ�1
kˇ
��

D

X
ˇ2�nGL

C

2
.Q/

D.F 1ˇ / �
�
F 2
˛ˇ�1
kˇ
�
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �D
�
F 2
˛ˇ�1
kˇ
�

D
�
D.F 1/ � F 2

�
˛
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
D.F 2

˛ˇ�1
/kˇ

�
�

X
ˇ2�nGL

C

2
.Q/

F 1ˇ � �
.1/

ˇ
�
�
W1.F

2
˛ˇ�1

/kˇ
�

D
�
D.F 1/ � F 2

�
˛
C
�
F 1 �D.F 2/

�
˛
�
�
�.1/.F 1/ � T 01 .F

2/
�
˛
:

This proves (3.35). In order to prove (3.36), we note that �.1/
ˇ
D 0 for anyˇ 2 SL2.Z/

(see (3.15)). Hence, when we use the product �r defined in (2.19), the calculation
above reduces to

D.F 1 �r F 2/ D D.F 1/ �r F 2 C F 1 �r D.F 2/ (3.38)

for any F 1, F 2 2 Qr.�/.
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(b) For any F 1, F 2 2 Q.�/ and knowing from (3.14) that �.m/˛ D �
.m/

ˇ
C �

.m/

˛ˇ�1
jˇ,

we have:

�.m/.F 1 � F 2/˛ D �
.m/
˛ �

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
F 2
˛ˇ�1
kˇ
�

D

X
ˇ2�nGL

C

2
.Q/

�
�
.m/

ˇ
� F 1ˇ

�
�
�
F 2
˛ˇ�1
kˇ
�

C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
�
.m/

˛ˇ�1
jˇ
�
�
�
F 2
˛ˇ�1
kˇ
�

D �.m/.F 1/ � F 2 C
X

ˇ2�nGL
C

2
.Q/

F 1ˇ �
�
.�
.m/

˛ˇ�1
� F 2
˛ˇ�1

/kˇ
�

D �.m/.F 1/ � F 2 C
X

ˇ2�nGL
C

2
.Q/

F 1ˇ �
�
�.m/.F 2/˛ˇ�1kˇ

�
D �.m/.F 1/ � F 2 C F 1 � �.m/.F 2/:

(3.39)

The fact that each Wk is also a derivation on Q.�/ now follows from a similar
calculation using the fact that Wk is a derivation on the quasimodular tower QM

and that Wk.f /k˛ D Wk.f k˛/ for any f 2 QM, ˛ 2 GLC2 .Q/ (from (3.11)).
Finally, a similar calculation may be used to verify that fWkgk�1 and f�.m/gm�1 are
all derivations on Qr.�/.

We now introduce the Hopf algebra H that acts on Qr.�/. The Hopf algebra H

is the universal enveloping algebra U.L/ of the Lie algebra L introduced in
Proposition 3.3. As such, the coproduct �WH �! H ˝H is defined by:

�.D/ D D ˝ 1C 1˝D; �.T lk / D T
l
k ˝ 1C 1˝ T

l
k ;

�.�.m// D �.m/ ˝ 1C 1˝ �.m/:
(3.40)

We will now show that H has a Hopf action on the algebra Qr.�/.

Proposition 3.7. Let � D �.N/ be a principal congruence subgroup of SL2.Z/.
Then, there is a Hopf action of H on the algebra Qr.�/, i.e.,

h.F 1 �r F 2/ D
X

h.1/.F
1/ �r h.2/.F

2/; 8F 1; F 2 2 Qr.�/; h 2 H ; (3.41)

where �.h/ D
P
h.1/ ˝ h.2/ for any h 2 H .
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Proof. In order to prove (3.41), it suffices to verify the relation for D and each of
fT l
k
gk�1;l�0, f�.m/gm�1. From Proposition 3.5 and Proposition 3.6, we know that

for F 1, F 2 2 Qr.�/ and any k � 1, l � 0, m � 1:

D.F 1 �r F 2/ D D.F 1/ �r F 2 C F 1 �r D.F 2/;

T lk .F
1
�
r F 2/ D T lk .F

1/ �r F 2 C F 1 �r T lk .F
2/;

�.m/.F 1 �r F 2/ D �.m/.F 1/ �r F 2 C F 1 �r �.m/.F 2/:

(3.42)

Comparing with the expressions for the coproduct in (3.40), it is clear that (3.41)
holds for each h 2 H .

3.2. The operatorsX , Y , and fıng of Connes andMoscovici. Let � D �.N/ be a
congruence subgroup. In this subsection, we will show that the algebra Q.�/ carries
an action of the Hopf algebra H1 of Connes andMoscovici [5]. The Hopf algebra H1

is part of a larger family fHngn�1 of Hopf algebras defined in [5] and H1 is the Hopf
algebra corresponding to “codimension 1 foliations”. As an algebra, H1 is identical
to the universal enveloping algebra U.L1/ of the Lie algebra L1 generated byX , Y ,
fıngn�1 satisfying the commutator relations:

ŒY; X� D X; ŒX; ın� D ınC1; ŒY; ın� D nın; Œık; ıl � D 0;

8 k; l; n � 1: (3.43)

Further, the coproduct �WH1 �! H1 ˝H1 on H1 is determined by:

�.X/ D X ˝ 1C 1˝X C ı1 ˝ Y;

�.Y / D Y ˝ 1C 1˝ Y; �.ı1/ D ı1 ˝ 1C 1˝ ı1:
(3.44)

Finally, the antipode S WH1 �! H1 is given by:

S.X/ D �X C ı1Y; S.Y / D �Y; S.ı1/ D �ı1: (3.45)

FollowingConnes andMoscovici [6], we define the operatorsX andY on themodular
tower: for any congruence subgroup � D �.N/, we set:

Y WMk.�/ �!Mk.�/; Y.f / WD
k

2
f; 8 f 2Mk.�/: (3.46)

Further, the operatorX WMk.�/ �!MkC2.�/ is theRamanujan differential operator
on modular forms:

X.f / WD
1

2�i

d

dz
.f / �

1

12�i

d

dz
.log�/ � Y.f /; 8 f 2Mk.�/; (3.47)

where �.z/ is the well known modular form of weight 12 given by:

�.z/ D .2�/12q

1Y
nD1

.1 � qn/24; q D e2�iz : (3.48)
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We start by extending these operators to the quasimodular tower QM. Let
f 2 QMs

k.�/ be a quasimodular form. Then, we can express f D
Pi
iD0 ai .f /G

i
2,

where ai .f / 2Mk�2i .�/. We set:

X.f / D

sX
iD0

X
�
ai .f /

�
�Gi2; Y.f / D

sX
iD0

Y
�
ai .f /

�
�Gi2: (3.49)

From (3.49), it is clear that X and Y are derivations on QM.
Lemma 3.8. Let f 2 QM be an element of the quasimodular tower. Then, for any
˛ 2 GLC2 .Q/, we have:

X.f /k˛ D X.f k˛/C
�
�˛�1 � Y.f /

�
k˛; (3.50)

where, for any ı 2 GLC2 .Q/, we set:

�ı WD
1

12�i

d

dz
log

�jı

�
: (3.51)

Further, we have Y.f k˛/ D Y.f /k˛.

Proof. Following [6, Lemma 5], we know that for any g 2M, we have:

X.g/j˛ D X.gj˛/C
�
�˛�1 � Y.g/

�
j˛; 8˛ 2 GLC2 .Q/: (3.52)

It suffices to consider the case f 2 QMs
k.�/ for some congruence subgroup � . If we

express f 2 QMs
k.�/ as f D

Pi
iD0 ai .f /G

i
2 with ai .f / 2 Mk�2i .�/, it follows

that:

Xai .f /j˛ D X
�
ai .f /j˛

�
C
�
�˛�1 � Y

�
ai .f /

��
j˛; 8˛ 2 GLC2 .Q/ (3.53)

for each 0 � i � s. Combining (3.53) with the definitions of X and Y on the
quasimodular tower in (3.49), we can easily prove (3.50). Finally, it is clear from the
definition of Y that Y.f k˛/ D Y.f /k˛.

From the definition of �ı in (3.51), one may verify that (see [6, § 3)]):

�ı1ı2 D �ı1 jı2 C �ı2 ; 8 ı1; ı2 2 GL
C
2 .Q/ (3.54)

and that �ı D 0 for any ı 2 SL2.Z/. We now define operatorsX , Y and fıngn�1 on
the quasimodular Hecke algebra Q.�/ for some congruence subgroup � D �.N/.
LetF 2 Q.�/ be a quasimodular Hecke operator of level�; thenwe define operators:

X; Y; ınWQ.�/ �! Q.�/;

X.F /˛ WD X.F˛/; Y.F /˛ WD Y.F˛/; ın.F /˛ D X
n�1.�˛/ � F˛;

8˛ 2 GLC2 .Q/:

(3.55)
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We will now show that the Lie algebra L1 with generators X , Y , fıngn�1 satisfying
the commutator relations in (3.43) acts on the algebra Q.�/. Additionally, in order
to give a Lie action on the algebra Qr.�/ D .Q.�/;�r/, we define at this juncture
the smaller Lie algebra l1 � L1 with generators X and Y satisfying the relation

ŒY; X� D X: (3.56)

Further, we consider the Hopf algebra h1 that arises as the universal enveloping
algebra U.l1/ of the Lie algebra l1. We have used the Hopf algebra h1 in a similar
manner before to act on a “restricted” version of a modular Hecke algebra in [1, § 4].
Wewill show thatH1 (resp. h1) has a Hopf action on the algebraQ.�/ (resp.Qr.�//.
We start by describing the Lie actions.
Proposition 3.9. Let L1 be the Lie algebra with generators X , Y and fıngn�1
satisfying the following commutator relations:

ŒY; X� D X; ŒX; ın� D ınC1; ŒY; ın� D nın; Œık; ıl � D 0;

8 k; l; n � 1: (3.57)

Then, for any given congruence subgroup � D �.N/ of SL2.Z/, we have a Lie
action of L1 on the module Q.�/.

Proof. From [6, § 3], we know that for any element g 2 M of the modular tower,
we have ŒY; X�.g/ D X.g/. Since the action of X and Y on the quasimodular
tower QM (see (3.49)) is naturally extended from their action on M, it follows that
ŒY; X� D X on the quasimodular tower QM. In particular, given any quasimodular
Hecke operator F 2 Q.�/ and any ˛ 2 GLC2 .Q/, we have ŒY; X�.F˛/ D X.F˛/ for
the element F˛ 2 QM. By definition, X.F /˛ D X.F˛/ and Y.F˛/ D Y.F /˛ and
hence ŒY; X� D X holds for the action of X and Y on Q.�/.

Further, since X is a derivation on QM and ın.F /˛ D Xn�1.�˛/ � F˛ , we have

ŒX; ın�.F /˛ D X
�
Xn�1.�˛/ � F˛

�
�Xn�1.�˛/ �X.F˛/;

D X
�
Xn�1.�˛/

�
� F˛ D X

n.�˛/ � F˛ D ınC1.F /˛:
(3.58)

Similarly, since �˛ 2 M � QM is of weight 2 and Y is a derivation on QM, we
have:

ŒY; ın�.F /˛ D Y
�
Xn�1.�˛/ � F˛

�
�Xn�1.�˛/ � Y.F˛/;

D Y
�
Xn�1.�˛/

�
� F˛ D nX

n�1.�˛/ � F˛ D nın.F /˛:
(3.59)

Finally, we can verify easily that Œık; ıl � D 0 for any k, l � 1.

From Proposition 3.9, it is also clear that the smaller Lie algebra l1 � L1 has a
Lie action on the module Q.�/.
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Lemma 3.10. Let � D �.N/ be a congruence subgroup of SL2.Z/ and let Q.�/

be the algebra of quasimodular Hecke operators of level � . Then, the operator
X WQ.�/ �! Q.�/ on the algebra .Q.�/;�/ satisfies:

X.F 1 � F 2/ D X.F 1/ � F 2 C F 1 �X.F 2/C ı1.F
1/ � Y.F 2/;

8F 1; F 2 2 Q.�/: (3.60)

Whenwe consider the product�r , the operatorX becomes a derivation on the algebra
Qr.�/ D .Q.�/;�r/, i.e.

X.F 1 �r F 2/ D X.F 1/ �r F 2 C F 1 �r X.F 2/; 8F 1; F 2 2 Qr.�/: (3.61)

Proof. We choose quasimodular Hecke operators F 1, F 2 2 Q.�/. Using (3.54), we
also note that

0 D �1 D �ˇ�1 jˇ C �ˇ ; 8ˇ 2 GL
C
2 .Q/: (3.62)

We havementioned before thatX is a derivation onQM. Then, for any˛ 2 GLC2 .Q/,
we have:

X.F 1 � F 2/˛ D X

� X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
F 2
˛ˇ�1
kˇ
��

D

X
ˇ2�nGL

C

2
.Q/

X
�
F 1ˇ �

�
F 2
˛ˇ�1
kˇ
��

D

X
ˇ2�nGL

C

2
.Q/

X.F 1ˇ / �
�
F 2
˛ˇ�1
kˇ
�
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �X
�
F 2
˛ˇ�1
kˇ
�

D
�
X.F 1/ � F 2

�
˛
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
X.F 2

˛ˇ�1
/kˇ

�
�

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
.�ˇ�1 � Y.F

2
˛ˇ�1

//kˇ
�

D
�
X.F 1/ � F 2

�
˛
C
�
F 1 �X.F 2/

�
˛

C

X
ˇ2�nGL

C

2
.Q/

�
F 1ˇ � �ˇ

�
�
�
Y.F 2

˛ˇ�1
/kˇ

�
D
�
X.F 1/ � F 2

�
˛
C
�
F 1 �X.F 2/

�
˛
C
�
ı1.F

1/ � Y.F 2/
�
˛
:

This proves (3.60). In order to prove (3.61), we note that�ˇ D 0 for anyˇ 2 SL2.Z/.
Hence, if we use the product �r , the calculation above reduces to

X.F 1 �r F 2/ D X.F 1/ �r F 2 C F 1 �r X.F 2/ (3.63)

for any F 1, F 2 2 Qr.�/.
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Finally, we describe the Hopf action of H1 on the algebra .Q.�/;�/ as well as
the Hopf action of h1 on the algebra Qr.�/ D .Q.�/;�r/.

Proposition 3.11. Let � D �.N/ be a congruence subgroup of SL2.Z/. Then, the
Hopf algebra H1 has a Hopf action on the quasimodular Hecke algebra .Q.�/;�/;
in other words, we have:

h.F 1 � F 2/ D
X

h.1/.F
1/˝ h.2/.F

2/; 8 h 2 H1; F
1; F 2 2 Q.�/; (3.64)

where the coproduct �WH1 �! H1 ˝ H1 is given by �.h/ D
P
h.1/ ˝ h.2/ for

any h 2 H1. Similarly, there exists a Hopf action of the Hopf algebra h1 on the
algebra Qr.�/ D .Q.�/;�r/.

Proof. In order to prove (3.64), it suffices to check the relation forX , Y and ı1 2 H1.
For the element X 2 H1, this is already the result of Lemma 3.10. Now, for any F 1,
F 2 2 Q.�/ and ˛ 2 GLC2 .Q/, we have:

ı1.F
1
� F 2/˛ D �˛ �

� X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
F 2
˛ˇ�1
kˇ
��

D

X
ˇ2�nGL

C

2
.Q/

�
�ˇ � F

1
ˇ

�
�
�
F 2
˛ˇ�1
kˇ
�
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ �
�
.�˛ˇ�1 � F

2
˛ˇ�1

/kˇ
�

D
�
ı1.F

1/ � F 2
�
˛
C
�
F 1 � ı1.F

2/
�
˛
: (3.65)

Further, using the fact that Y is a derivation on QM and Y.f k˛/ D Y.f /k˛ for
any f 2 QM, ˛ 2 GLC2 .Q/, we can easily verify the relation (3.64) for the element
Y 2 H1. This proves (3.64) for all h 2 H1.

Finally, in order to demonstrate the Hopf action of h1 on Qr.�/, we need to check
that:

X.F 1 �r F 2/ D X.F 1/ �r F 2 C F 1 �r X.F 2/;

Y.F 1 �r F 2/ D Y.F 1/ �r F 2 C F 1 �r Y.F 2/
(3.66)

for any F 1, F 2 2 Qr.�/. The relation for X has already been proved in (3.63). The
relation for Y is again an easy consequence of the fact that Y is a derivation on QM

and Y.f k˛/ D Y.f /k˛ for any f 2 QM, ˛ 2 GLC2 .Q/.

4. Twisted quasimodular Hecke operators

Let� D �.N/ be a principal congruence subgroup ofSL2.Z/. For any� 2 SL2.Z/,
we have developed the theory of � -twisted modular Hecke operators in [3]. In
this section, we introduce and study the collection Q� .�/ of quasimodular Hecke
operators of level � twisted by � . When � D 1, Q� .�/ coincides with the



Quasimodular Hecke algebras and Hopf actions 1067

algebra Q.�/ of quasimodular Hecke operators. In general, we will show that Q� .�/

is a right Q.�/-module and carries a pairing:

.__; __/WQ� .�/˝Q� .�/ �! Q� .�/: (4.1)

We recall from Section 3 the Lie algebra l1 with two generators Y , X satisfying
ŒY; X� D X . If we let h1 be the Hopf algebra that is the universal enveloping algebra
of l1, we show in Section 4.1 that the pairing in (4.1) on Q� .�/ carries a “Hopf
action” of h1. In other words, we have:

h.F 1; F 2/ D
X�

h.1/.F
1/; h.2/.F

2/
�
; 8 h 2 h1; F

1; F 2 2 Q� .�/; (4.2)

where the coproduct �W h1 �! h1 ˝ h1 is given by �.h/ D
P
h.1/ ˝ h.2/ for

any h 2 h1. In Section 4.2, we consider operatorsX� WQ� .�/ �! Q�� .�/ for any � ,
� 2 SL2.Z/. In particular, we consider operators acting between the levels of the
graded module:

Q� .�/ D
M
m2Z

Q�.m/.�/; (4.3)

where for any � 2 SL2.Z/, we set �.m/ D
�
1 m
0 1

�
� � . Further, we generalize the

pairing on Q� .�/ in (4.1) to a pairing:

.__; __/WQ�.m/.�/˝Q�.n/.�/ �! Q�.mCn/.�/; 8m; n 2 Z: (4.4)

We show that the pairing in (4.4) is a special case of a more general pairing

.__; __/WQ�1� .�/˝Q�2� .�/ �! Q�1�2� .�/; (4.5)

where �1, �2 are commuting matrices in SL2.Z/. From (4.4), it is clear that we have a
graded pairing on Q� .�/ that extends the pairing on Q� .�/. Finally, we consider the
Lie algebra lZ with generators fZ;Xnjn 2 Zg satisfying the commutator relations:

ŒZ;Xn� D .nC 1/Xn; ŒXn; Xn0 � D 0; 8n; n
0
2 Z: (4.6)

Then, for n D 0, we have ŒZ;X0� D X0 and hence the Lie algebra lZ contains the
Lie algebra l1 acting on Q� .�/. Then, if we let hZ be the Hopf algebra that is the
universal enveloping algebra of lZ, we show that hZ has a Hopf action on the pairing
on Q� .�/. In other words, for any F 1, F 2 2 Q� .�/, we have

h.F 1; F 2/ D
X�

h.1/.F
1/; h.2/.F

2/
�
; 8 h 2 hZ; (4.7)

where the coproduct�W hZ �! hZ˝hZ is defined by setting�.h/ WD
P
h.1/˝h.2/

for each h 2 hZ.
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4.1. The pairing on Q� .�/ and Hopf action. Let � 2 SL2.Z/ and let � D �.N/
be a principal congruence subgroup of SL2.Z/. We start by defining the collection
Q� .�/ of quasimodular Hecke operators of level � twisted by � . When � D 1, this
reduces to the definition of Q.�/.

Definition 4.1. Choose � 2 SL2.Z/ and let � D �.N/ be a principal congruence
subgroup of SL2.Z/. A � -twisted quasimodular Hecke operator F of level � is a
function of finite support:

F W�nGLC2 .Q/ �! QM; �˛ 7! F˛ 2 QM (4.8)

such that:

F˛
 D F˛k�
�
�1; 8 
 2 �: (4.9)

We denote by Q� .�/ the collection of � -twisted quasimodular Hecke operators of
level � .

Proposition 4.2. Let � D �.N/ be a principal congruence subgroup of SL2.Z/
and choose some � 2 SL2.Z/. Then there exists a pairing:

.__; __/WQ� .�/˝Q� .�/ �! Q� .�/ (4.10)

defined as follows:

.F 1; F 2/˛ WD
X

ˇ2�nSL2.Z/

F 1ˇ� �
�
F 2
˛��1ˇ�1

k�ˇ
�
;

8F 1; F 2 2 Q� .�/; ˛ 2 GL
C
2 .Q/: (4.11)

Proof. We choose 
 2 � . Then, for any ˇ 2 SL2.Z/, we have:

F 1
ˇ� D F
1
ˇ� ;

F 2
˛��1ˇ�1
�1

k�
ˇ D F 2
˛��1ˇ�1

k�
�1��1�
ˇ D F 2
˛��1ˇ�1

k�ˇ
(4.12)

and hence the sum in (4.11) is well defined, i.e., it does not depend on the choice
of coset representatives. We have to show that .F 1; F 2/ 2 Q� .�/. For this, we
first note that F 2


˛��1ˇ�1
D F 2

˛��1ˇ�1
for any 
 2 � and hence from the expression

in (4.11), it follows that .F 1; F 2/
˛ D .F 1; F 2/˛ . On the other hand, for any 
 2 � ,
we can write:

.F 1; F 2/˛
 D
X

ˇ2�nSL2.Z/

F 1ˇ� �
�
F 2
˛
��1ˇ�1

k�ˇ
�
: (4.13)
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We put ı D ˇ�
�1��1. It is clear that as ˇ runs through all the coset representatives
of � in SL2.Z/, so does ı. From (4.9), we know that F 1

ı�

D F 1

ı�
k�
��1. Then,

we can rewrite (4.13) as:

.F 1; F 2/˛
 D
X

ı2�nSL2.Z/

F 1ı�
 �
�
F 2
˛��1ı�1

k�ı�
��1
�

D

X
ı2�nSL2.Z/

�
F 1ı�k�
�

�1
�
�
��
F 2
˛��1ı�1

k�ı
�
k�
��1

�
D

� X
ı2�nSL2.Z/

F 1ı� �
�
F 2
˛��1ı�1

k�ı
��
k.�
��1/

D .F 1; F 2/˛k�
�
�1:

(4.14)

It follows that .F 1; F 2/ 2 Q� .�/ and hence we have a well defined pairing

.__; __/WQ� .�/˝Q� .�/ �! Q� .�/:

We now consider the Hopf algebra h1 defined in Section 3.2. By definition, h1 is
the universal enveloping algebra of the Lie algebra l1 with two generators X and Y
satisfying ŒY; X� D X . We will now show that l1 has a Lie action on Q� .�/ and
that h1 has a “Hopf action” with respect to the pairing on Q� .�/.
Proposition 4.3. Let � 2 SL2.Z/ and let � D �.N/ be a principal congruence
subgroup of SL2.Z/.

(a) The Lie algebra l1 has a Lie action on Q� .�/ defined by:

X.F /˛ WD X.F˛/; Y.F /˛ WD Y.F˛/;

8F 2 Q� .�/; ˛ 2 GL
C
2 .Q/: (4.15)

(b) The universal enveloping algebra h1 of the Lie algebra l1 has a “Hopf action”
with respect to the pairing on Q� .�/; in other words, we have:

h.F 1; F 2/ D
X�

h.1/.F
1/; h.2/.F

2/
�
;

8F 1; F 2 2 Q� .�/; h 2 h1; (4.16)

where the coproduct �W h1 �! h1 ˝ h1 is given by �.h/ D
P
h.1/ ˝ h.2/ for

any h 2 h1.

Proof. (a) We need to verify that for any F 2 Q� .�/ and any ˛ 2 GLC2 .Q/, we
have .ŒY;X�.F //˛ D X.F /˛ . We know that for any element g 2 QM and hence in
particular for the element F˛ 2 QM, we have ŒY; X�.g/ D X.g/. The result now
follows from the definition of the action of X and Y in (4.15).
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(b) The Lie action of l1 on Q� .�/ from part (a) induces an action of the universal
enveloping algebra h1 on Q� .�/. In order to prove (4.16), it suffices to prove the
result for the generators X and Y . We have:�
X.F 1; F 2/

�
˛
D X

�
.F 1; F 2/˛

�
D X

� X
ˇ2�nSL2.Z/

F 1ˇ� �
�
F 2
˛��1ˇ�1

k�ˇ
��

D

X
ˇ2�nSL2.Z/

X.F 1ˇ� / �
�
F 2
˛��1ˇ�1

k�ˇ
�

C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ� �X
�
F 2
˛��1ˇ�1

k�ˇ
�

D

X
ˇ2�nSL2.Z/

X.F 1ˇ� / �
�
F 2
˛��1ˇ�1

k�ˇ
�

C

X
ˇ2�nSL2.Z/

F 1ˇ� �
�
X.F 2

˛��1ˇ�1
/k�ˇ

�
D
�
X.F 1/; F 2/

�
˛
C
�
F 1; X.F 2/

�
˛
:

(4.17)

In (4.17), we have used the fact that �ˇ 2 SL2.Z/ and hence

X
�
F 2
˛��1ˇ�1

k�ˇ
�
D X

�
F 2
˛��1ˇ�1

�
k�ˇ:

We can similarly verify the relation (4.16) for Y 2 h1. This proves the result.

Our next aim is to show that Q� .�/ is a right Q.�/-module. Thereafter, we will
consider the Hopf algebra H1 defined in Section 3.2 and show that there is a “Hopf
action” of H1 on the right Q.�/-module Q� .�/.
Proposition 4.4. Let � 2 SL2.Z/ and let � D �.N/ be a principal congruence
subgroup of SL2.Z/. Then, Q� .�/ carries a right Q.�/-module structure defined
by:

.F 1 � F 2/˛ WD
X

ˇ2�nGL
C

2
.Q/

F 1ˇ� �
�
F 2
˛��1ˇ�1

jˇ
�

(4.18)

for any F 1 2 Q� .�/ and any F 2 2 Q.�/.

Proof. We take 
 2 � . Then, since F 1 2 Q� .�/ and F 2 2 Q.�/, we have:

F 1
ˇ� D F
1
ˇ� ; F 2

˛��1ˇ�1
�1
j
ˇ D F 2

˛��1ˇ�1
j
�1
ˇ D F 2

˛��1ˇ�1
jˇ: (4.19)

It follows that the sum in (4.18) is well defined, i.e., it does not depend on the choice
of coset representatives for � in GLC2 .Q/. Further, it is clear that .F 1 � F 2/
˛ D
.F 1 � F 2/˛ . In order to show that F 1 � F 2 2 Q� .�/, it remains to show that

.F 1 � F 2/˛
 D .F
1
� F2/˛k�
�

�1:
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By definition, we know that:

.F 1 � F 2/˛
 D
X

ˇ2�nGL
C

2
.Q/

F 1ˇ� �
�
F 2
˛
��1ˇ�1

jˇ
�

(4.20)

We now set ı D ˇ�
�1��1. This allows us to rewrite (4.20) as follows:

.F 1 � F 2/˛
 D
X

ı2�nGL
C

2
.Q/

F 1ı�
 �
�
F 2
˛��1ı�1

jı�
��1
�

D

X
ı2�nGL

C

2
.Q/

�
F 1ı�k�
�

�1
�
�
��
F 2
˛��1ı�1

jı
�
j�
��1

�
D

� X
ı2�nGL

C

2
.Q/

F 1ı� �
�
F 2
˛��1ı�1

jı
��
k�
��1

D .F 1 � F 2/˛k�
�
�1:

(4.21)

Hence, .F 1 � F 2/ 2 Q� .�/. In order to show that Q� .�/ is a right Q.�/-module,
we need to check that F 1 � .F 2 � F 3/ D .F 1 � F 2/ � F 3 for any F 1 2 Q� .�/ and
any F 2; F 3 2 Q.�/. For this, we note that:

.F 1 � F 2/˛ D
X

˛2˛1D˛

F 1˛1 �
�
F 2˛2 j˛1�

�1
�
; 8˛ 2 GLC2 .Q/; (4.22)

where the sum in (4.22) is taken over all pairs .˛1; ˛2/ such that ˛2˛1 D ˛ modulo
the the following equivalence relation:

.˛1; ˛2/ �
�

˛1; ˛2


�1
�
; 8 
 2 �: (4.23)

It follows that for any ˛ 2 GLC2 .Q/, we have:�
.F 1 � F 2/ � F 3

�
˛
D

X
˛3˛2˛1D˛

F 1˛1 �
�
F 2˛2 j˛1�

�1
�
�
�
F 3˛3 j˛2˛1�

�1
�
; (4.24)

where the sum in (4.24) is taken over all triples .˛1; ˛2; ˛3/ such that ˛3˛2˛1 D ˛

modulo the following equivalence relation:

.˛1; ˛2; ˛3/ �
�

˛1; 


0˛2

�1; ˛3


0�1
�
; 8 
; 
 0 2 �: (4.25)

On the other hand, we have:�
F 1 � .F 2 � F 3/

�
˛
D

X
˛0
2
˛1D˛

F 1˛1 �
�
.F 2 � F 3/˛0

2
j˛1�

�1
�

D

X
˛3˛2˛1D˛

F 1˛1 �
�
F 2˛2 j˛1�

�1
�
�
�
F 3˛3 j˛2˛1�

�1
�
:

(4.26)
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Again, we see that the sum in (4.26) is taken over all triples .˛1; ˛2; ˛3/ such that
˛3˛2˛1 D ˛ modulo the equivalence relation in (4.25). From (4.24) and (4.26), it
follows that .F 1 � .F 2 � F 3//˛ D ..F 1 � F 2/ � F 3/˛ . This proves the result.

We are now ready to describe the action of the Hopf algebra H1 on Q� .�/.
From Section 3.2, we know that H1 is generated by X , Y , fıngn�1 which satisfy the
relations (3.43), (3.44), (3.45).
Proposition 4.5. Let � D �.N/ be a principal congruence subgroup of SL2.Z/
and choose some � 2 SL2.Z/.
(a) The collection of � -twisted quasimodular Hecke operators of level � can be

made into an H1-module as follows; for any F 2 Q� .�/ and ˛ 2 GLC2 .Q/:

X.F /˛ WD X.F˛/; Y.F /˛ WD Y.F˛/; ın.F /˛ WD X
n�1.�˛��1/ � F˛;

8n � 1: (4.27)

(b) The Hopf algebra H1 has a “Hopf action” on the right Q.�/-module Q� .�/; in
other words, for any F 1 2 Q� .�/ and any F 2 2 Q.�/, we have:

h.F 1 � F 2/ D
X

h.1/.F
1/ � h.2/.F

2/; 8 h 2 H1; (4.28)

where the coproduct�WH1 �! H1˝H1 is given by�.h/ D
P
h.1/˝h.2/ for

each h 2 H1.

Proof. (a) For any F 2 Q� .�/, we have already checked in the proof of
Proposition 4.3 that X.F /, Y.F / 2 Q� .�/. Further, from (3.54), we know that
for any ˛ 2 GLC2 .Q/ and 
 2 � , we have:

�
˛��1 D �
 j˛�
�1
C �˛��1 D �˛��1 ;

�˛
��1 D �˛��1 j�
�
�1
C ��
��1 D �˛��1 j�
�

�1:
(4.29)

Hence, for any F 2 Q� .�/, we have:

ın.F /
˛ D X
n�1.�
˛��1/ � F
˛ D X

n�1.�˛��1/ � F˛ D ın.F /˛;

ın.F /˛
 D X
n�1.�˛
��1/ � F˛
 D X

n�1.�˛��1 j�
�
�1/ � .F˛k�
�

�1/

D ın.F /˛k�
�
�1:

(4.30)

Hence, ın.F / 2 Q� .�/. In order to show that there is an action of the Lie algebra L1

(and hence of its universal eneveloping algebra H1) on Q� .�/, it remains to check
the commutator relations (3.43) between the operatorsX , Y and ın acting on Q� .�/.
We have already checked that ŒY; X� D X in the proof of Proposition 4.3. Since X
is a derivation on QM and ın.F /˛ D Xn�1.�˛��1/ � F˛ , we have:

ŒX; ın�.F /˛ D X
�
Xn�1.�˛��1/ � F˛

�
�Xn�1.�˛��1/ �X.F˛/

D X
�
Xn�1.�˛��1/

�
� F˛ D X

n.�˛��1/ � F˛ D ınC1.F /˛:
(4.31)
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Similarly, since �˛��1 2M � QM is of weight 2 and Y is a derivation on QM, we
have:

ŒY; ın�.F /˛ D Y
�
Xn�1.�˛��1/ � F˛

�
�Xn�1.�˛��1/ � Y.F˛/

D Y
�
Xn�1.�˛��1/

�
� F˛ D nX

n�1.�˛��1/ � F˛ D nın.F /˛:
(4.32)

Finally, we can verify easily that Œık; ıl � D 0 for any k, l � 1.

(b) In order to prove (4.28), it is enough to check this equality for the generators X ,
Y and ı1 2 H1. For F 1 2 Q� .�/, F 2 2 Q.�/ and ˛ 2 GLC2 .Q/, we have:�
X.F 1 � F 2/

�
˛
D X

�
.F 1 � F 2/˛

�
D

X
ˇ2�nGL

C

2
.Q/

X
�
F 1ˇ� � .F

2
˛��1ˇ�1

jˇ/
�

D

X
ˇ2�nGL

C

2
.Q/

X.F 1ˇ� / �
�
F 2
˛��1ˇ�1

jˇ
�
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ� �X
�
F 2
˛��1ˇ�1

jˇ
�

D
�
X.F 1/ � F 2

�
˛
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ� �X
�
F 2
˛��1ˇ�1

�
jˇ

�

X
ˇ2�nGL

C

2
.Q/

F 1ˇ� �
�
�ˇ�1 jˇ

�
� Y
�
F 2
˛��1ˇ�1

�
jˇ

D
�
X.F 1/ � F 2

�
˛
C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ� �X
�
F 2
˛��1ˇ�1

�
jˇ

C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ� � �ˇ � Y
�
F 2
˛��1ˇ�1

�
jˇ

D
�
X.F 1/ � F 2

�
˛
C
�
F 1 �X.F 2/

�
˛

C

X
ˇ2�nGL

C

2
.Q/

ı1.F /ˇ� � Y.F
2/˛��1ˇ�1 jˇ

D
�
X.F 1/ � F 2

�
˛
C
�
F 1 �X.F 2/

�
˛
C
�
ı1.F

1/ � Y.F 2/
�
˛
:
(4.33)

In (4.33) above, we have used the fact that 0 D �ˇ�1ˇ D �ˇ�1 jˇ C �ˇ . For ˛,
ˇ 2 GLC2 .Q/, it follows from (3.54) that

�˛��1 D �˛��1ˇ�1ˇ D �˛��1ˇ�1 jˇ C �ˇ : (4.34)

SinceF 2 2 Q.�/weknow from (3.55) that ı1.F 2/˛��1ˇ�1 D �˛��1ˇ�1 �F 2˛��1ˇ�1 .
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Combining with (4.34), we have:

ı1
�
.F 1 � F 2/

�
˛
D �˛��1 � .F

1
� F 2/˛

D

X
ˇ2�nGL

C

2
.Q/

�˛��1 �
�
F 1ˇ� � .F

2
˛��1ˇ�1

jˇ/
�

D

X
ˇ2�nGL

C

2
.Q/

�
�ˇ � F

1
ˇ�

�
�
�
F 2
˛��1ˇ�1

jˇ
�

C

X
ˇ2�nGL

C

2
.Q/

F 1ˇ� �
�
�˛��1ˇ�1 � F

2
˛��1ˇ�1

�
jˇ

D
�
ı1.F

1/ � F 2
�
˛
C
�
F 1 � ı1.F

2/
�
˛
:

(4.35)

Finally, from the definition of Y , it is easy to show that�
Y.F 1 � F 2/

�
˛
D
�
Y.F 1/ � F 2

�
˛
C
�
F 1 � Y.F 2/

�
˛
:

4.2. The operatorsX�WQ� .�/ �! Q�� .�/ andHopf action. Let � D �.N/ be
a principal congruence subgroup and choose some � 2 SL2.Z/. In Section 4.1, we
have only considered operatorsX , Y and fıngn�1 that are endomorphisms of Q� .�/.
In this section, we will define an operator

X� WQ� .�/ �! Q�� .�/ (4.36)

for � 2 SL2.Z/. In particular, we consider the commuting family f�n WD
�
1 n
0 1

�
gn2Z

of matrices in SL2.Z/ and write �.n/ WD �n � � . Then, we have operators:

X�n WQ�.m/.�/ �! Q�.mCn/.�/; 8m; n 2 Z (4.37)

acting “between the levels” of the graded module Q� .�/ WD
L
m2Z Q�.m/.�/. We

already know that Q� .�/ carries an action of the Hopf algebra h1. Further, h1 has
a Hopf action on the pairing on Q� .�/ in the sense of Proposition 4.3. We will
now show that h1 can be naturally embedded into a larger Hopf algebra hZ acting
on Q� .�/ that incorporates the operators X�n in (4.37). Finally, we will show that
the pairing on Q� .�/ can be extended to a pairing:

.__; __/WQ�.m/.�/˝Q�.n/.�/ �! Q�.mCn/.�/; 8m; n 2 Z: (4.38)

This gives us a pairing on Q� .�/ and we prove that this pairing carries a Hopf action
of hZ. We start by defining the operators X� mentioned in (4.36).
Proposition 4.6. Let � D �.N/ be a principal congruence subgroup of SL2.Z/
and choose � 2 SL2.Z/.
(a) For each � 2 SL2.Z/, we have a morphism:

X� WQ� .�/ �! Q�� .�/; X� .F /˛ WD X.F˛/k�
�1;

8F 2 Q� .�/; ˛ 2 GL
C
2 .Q/: (4.39)
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(b) Let �1, �2 2 SL2.Z/ be two matrices such that �1�2 D �2�1. Then, the commut-
ator ŒX�1 ; X�2 � D 0.

Proof. (a) We choose any F 2 Q� .�/. From (4.39), it is clear that X� .F /
˛ D
X� .F /˛ for any 
 2 � and ˛ 2 GLC2 .Q/. Further, we note that:

X� .F /˛
 D X.F˛
 /k�
�1
D X

�
F˛k�
�

�1
�
k��1

D X
�
F˛k�

�1
�
k��
��1��1

D X� .F˛/k
�
.��/
.��1��1/

�
:

(4.40)

It follows from (4.40) that X� .F / 2 Q�� .�/ for any F 2 Q� .�/.

(b) Since �1 and �2 commute, both X�1X�2 and X�2X�1 are operators from Q� .�/

to Q�1�2� .�/ D Q�2�1� .�/. For any F 2 Q� .�/, we have (8 ˛ 2 GLC2 .Q/):�
X�1X�2.F /

�
˛
D X

�
X�2.F /˛

�
k��11

D X2.F˛/k�
�1
2 ��11

D X2.F˛/k�
�1
1 ��12 D

�
X�2X�1.F /

�
˛
:

(4.41)

This proves the result.

As mentioned before, we now consider the commuting family f�n WD
�
1 n
0 1

�
gn2Z

of matrices in SL2.Z/ and set �.n/ WD �n � � for any � 2 SL2.Z/. We want to
define a pairing on the graded module Q� .�/ D

L
m2Z Q�.m/.�/ that extends the

pairing on Q� .�/. In fact, we will prove a more general result.
Proposition 4.7. Let � D �.N/ be a principal congruence subgroup of SL2.Z/ and
choose � 2 SL2.Z/. Let �1, �2 2 SL2.Z/ be two matrices such that �1�2 D �2�1.
Then, there exists a pairing:

.__; __/WQ�1� .�/˝Q�2� .�/ �! Q�1�2� .�/ (4.42)

defined as follows: for any F 1 2 Q�1� .�/ and any F 2 2 Q�2� .�/, we set:

.F 1; F 2/˛ WD
X

ˇ2�nSL2.Z/

�
F 1ˇ�k�

�1
2

�
�
�
F 2
˛��1ˇ�1

k�2�ˇ�
�1
1 ��12

�
;

8˛ 2 GLC2 .Q/: (4.43)

In particular, when �1 D �2 D 1, the pairing in (4.43) reduces to the pairing
on Q� .�/ defined in (4.11).

Proof. We choose some 
 2 � . Then, for any ˛ 2 GLC2 .Q/, ˇ 2 SL2.Z/, we have
F 1

ˇ�
D F 1

ˇ�
and:�

F 2
˛��1ˇ�1
�1

k�2�
ˇ�
�1
1 ��12

�
D
�
F 2
˛��1ˇ�1

k�2�

�1��1��12 �2�
ˇ�

�1
1 ��12

�
D
�
F 2
˛��1ˇ�1

k�2�ˇ�
�1
1 ��12

�
:
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It follows that the sum in (4.43) is well defined, i.e. independent of the choice of coset
representatives of � in SL2.Z/. Additionally, we have:

.F 1; F 2/˛
 WD
X

ˇ2�nSL2.Z/

�
F 1ˇ�k�

�1
2

�
�
�
F 2
˛
��1ˇ�1

k�2�ˇ�
�1
1 ��12

�
: (4.44)

We now set ı D ˇ�
�1��1. Since F 1 2 Q�1� .�/, we know that

F 1ı�
 D F
1
ı�k�1�
�

�1��11 :

Then, we can rewrite the expression in (4.44) as follows:

.F 1; F 2/˛


D

X
ˇ2�nSL2.Z/

�
F 1ı�
k�

�1
2

�
�
�
F 2
˛��1ı�1

k�2�ı�
�
�1��11 ��12

�
D

X
ˇ2�nSL2.Z/

�
F 1ı�k�1�
�

�1��11 ��12
�
�
�
F 2
˛��1ı�1

k�2�ı�
�
�1��11 ��12

�
D

� X
ˇ2�nSL2.Z/

�
F 1ı�k�

�1
2

�
�
�
F 2
˛��1ı�1

k�2�ı�
�1
1 ��12

��
k�1�2�
�

�1��11 ��12

D .F 1; F 2/˛k�1�2�
�
�1��11 ��12 : (4.45)

From (4.45) it follows that .F 1; F 2/ 2 Q�1�2� .�/.

In particular, it follows from the pairing in (4.42) that for any m, n 2 Z, we have
a pairing

.__; __/WQ�.m/.�/˝Q�.n/.�/ �! Q�.mCn/.�/: (4.46)

It is clear that (4.46) induces a pairing on Q� .�/ D
L
m2Z Q�.m/.�/ for each

� 2 SL2.Z/. We will now define operators fXngn2Z and Z on Q� .�/. For
each n 2 Z, the operator XnWQ� .�/ �! Q� .�/ is induced by the collection of
operators:

Xmn WD X�n WQ�.m/.�/ �! Q�.mCn/.�/; 8m 2 Z; (4.47)

where, as mentioned before, �n D
�
1 n
0 1

�
. Then, XnWQ� .�/ �! Q� .�/ is an

operator of homogeneous degree n on the graded module Q� .�/. We also consider:

ZWQ�.m/.�/ �! Q�.m/.�/; Z.F /˛ WD mF˛ C Y.F˛/;

8F 2 Q�.m/.�/; ˛ 2 GL
C
2 .Q/: (4.48)

This induces an operator ZWQ� .�/ �! Q� .�/ of homogeneous degree 0 on the
graded module Q� .�/. We will now show that Q� .�/ is acted upon by a certain
Lie algebra lZ such that the Lie action incorporates the operators fXngn2Z and Z
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mentioned above. We define lZ to be the Lie algebra with generators fZ;Xnjn 2 Zg
satisfying the following commutator relations:

ŒZ;Xn� D .nC 1/Xn; ŒXn; Xn0 � D 0; 8n; n
0
2 Z: (4.49)

In particular, we note that ŒZ;X0� D X0. It follows that the Lie algebra lZ contains
the Lie algebra l1 defined in (3.56). We now describe the action of lZ on Q� .�/.

Proposition 4.8. Let � D �.N/ be a principal congruence subgroup of SL2.Z/
and let � 2 SL2.Z/. Then, the Lie algebra lZ has a Lie action on Q� .�/.

Proof. We need to check that ŒZ;Xn� D .nC 1/Xn and ŒXn; Xn0 � D 0, 8 n, n0 2 Z
for the operators fZ;Xnjn 2 Zg on Q� .�/. From part (b) of Proposition 4.6, we
know that ŒXn; Xn0 � D 0. From (4.47) and (4.48), it is clear that in order to show that
ŒZ;Xn� D .nC 1/Xn, we need to check that

ŒZ;Xmn � D .nC 1/X
m
n WQ�.m/.�/ �! Q�.mCn/.�/

for any given m 2 Z. For any F 2 Q�.m/.�/ and any ˛ 2 GLC2 .Q/, we now check
that: �

ZXmn .F /
�
˛
D .nCm/Xmn .F /˛ C Y

�
Xmn .F /˛

�
D .nCm/X.F˛/k�

�1
n C YX.F˛/k�

�1
n ;�

Xmn Z.F /
�
˛
D X

�
Z.F /˛

�
k��1n D mX.F˛/k�

�1
n CXY.F˛/k�

�1
n :

(4.50)

Combining (4.50) with the fact that ŒY; X� D X , it follows that ŒZ;Xmn � D .nC1/Xmn
for each m 2 Z. Hence, the result follows.

We now consider the universal enveloping algebra hZ of the Lie algebra lZ.
Accordingly, the coproduct � on hZ is given by:

�.Xn/ D Xn ˝ 1C 1˝Xn; �.Z/ D Z ˝ 1C 1˝Z; 8n 2 Z: (4.51)

It is clear that hZ contains the Hopf algebra h1, the universal enveloping algebra of l1.
From Proposition 4.3, we know that h1 has a Hopf action on the pairing on Q� .�/.
We want to show that hZ has a Hopf action on the pairing on Q� .�/. For this, we
prove the following lemma.

Lemma 4.9. Let � D �.N/ be a principal congruence subgroup of SL2.Z/ and let
� 2 SL2.Z/. Let �1, �2, �3 2 SL2.Z/ be three matrices such that �i�j D �j �i , 8 i ,
j 2 f1; 2; 3g. Then, for any F 1 2 Q�1� .�/, F 2 2 Q�2� .�/, we have:

X�3.F
1; F 2/ D

�
X�3.F

1/; F 2
�
C
�
F 1; X�3.F

2/
�
: (4.52)
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Proof. Consider any ˛ 2 GLC2 .Q/. Then, from the definition of X�3 , it follows that

X�3.F
1; F 2/˛ D

X
ˇ2�nSL2.Z/

X
��
F 1ˇ�k�

�1
2

�
�
�
F 2
˛��1ˇ�1

k�2�ˇ�
�1
1 ��12

��
k��13 (4.53)

D

X
ˇ2�nSL2.Z/

�
X.F 1ˇ� /k�

�1
2 ��13

�
�
�
F 2
˛��1ˇ�1

k�2�ˇ�
�1
1 ��12 ��13

�
C

X
ˇ2�nSL2.Z/

�
F 1ˇ�k�

�1
2 ��13

�
�
�
X
�
F 2
˛��1ˇ�1

�
k�2�ˇ�

�1
1 ��12 ��13

�
:

Since F 1 2 Q�1� .�/, it follows that X�3.F 1/ 2 Q�1�3� .�/. Similarly, we see that
X�3.F

2/ 2 Q�2�3� .�/. It follows that:�
X�3.F

1/; F 2
�
˛
D

X
ˇ2�nSL2.Z/

�
X�3.F

1/ˇ�k�
�1
2

�
�
�
F 2
˛��1ˇ�1

k�2�ˇ�
�1
1 ��12 ��13

�
D

X
ˇ2�nSL2.Z/

�
X.F 1ˇ� /k�

�1
2 ��13

�
�
�
F 2
˛��1ˇ�1

k�2�ˇ�
�1
1 ��12 ��13

�
.F 1; X�3.F

2//˛ D
X

ˇ2�nSL2.Z/

�
F 1ˇ�k�

�1
2 ��13

�
�
�
X�3.F

2/˛��1ˇ�1k�2�3�ˇ�
�1
1 ��12 ��13

�
D

X
ˇ2�nSL2.Z/

�
F 1ˇ�k�

�1
2 ��13

�
�
�
X
�
F 2
˛��1ˇ�1

�
k��13 �2�3�ˇ�

�1
1 ��12 ��13

�
D

X
ˇ2�nSL2.Z/

�
F 1ˇ�k�

�1
2 ��13

�
�
�
X
�
F 2
˛��1ˇ�1

�
k�2�ˇ�

�1
1 ��12 ��13

�
:

(4.54)
Comparing (4.53) and (4.54), the result of (4.52) follows.

As a special case of Lemma 4.9, it follows that for any F 1 2 Q�.m/.�/ and
F 2 2 Q�.m0/.�/, we have:

X�n.F
1; F 2/ D Xn.F

1; F 2/ D
�
Xn.F

1/; F 2
�
C
�
F 1; Xn.F

2/
�
; 8n 2 Z:

(4.55)
We conclude by showing that hZ has a Hopf action on the pairing on Q� .�/.
Proposition 4.10. Let � D �.N/ be a principal congruence subgroup of SL2.Z/
and let � 2 SL2.Z/. Then, the Hopf algebra hZ has a Hopf action on the pairing
on Q� .�/. In other words, for F 1, F 2 2 Q� .�/, we have

h.F 1; F 2/ D
X�

h.1/.F
1/; h.2/.F

2/
�
; (4.56)

where the coproduct�W hZ �! hZ˝hZ is defined by setting�.h/ WD
P
h.1/˝h.2/

for each h 2 hZ.

Proof. It suffices to prove the result in the casewhereF 12Q�.m/.�/,F 22Q�.m0/.�/

for somem,m0 2 Z. Further, it suffices to prove the relation (4.56) for the generators
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fZ;Xnjn 2 Zg of the Hopf algebra hZ. For the generatorsXn, n 2 Z, this is already
the result of (4.55) which follows from Lemma 4.9. Since�.Z/ D Z˝ 1C 1˝Z,
it remains to show that

Z.F 1; F 2/ D
�
Z.F 1/; F 2

�
C
�
F 1; Z.F 2/

�
;

8F 1 2 Q�.m/.�/; F
2
2 Q�.m0/.�/: (4.57)

By the definition of the pairing on Q� .�/, we know that .F 1; F 2/ 2 Q�.mCm0/.�/.
Then, for any ˛ 2 GLC2 .Q/, we have:

Z.F 1; F 2/˛ D .mCm
0/.F 1; F 2/˛ C Y.F

1; F 2/˛

D .mCm0/
X

ˇ2�nSL2.Z/

��
F 1ˇ�k�

�1
m0

�
�
�
F 2
˛��1ˇ�1

k�m0�ˇ�
�1
m ��1m0

��
C

X
ˇ2�nSL2.Z/

Y
��
F 1ˇ�k�

�1
m0

�
�
�
F 2
˛��1ˇ�1

k�m0�ˇ�
�1
m ��1m0

��
D

X
ˇ2�nSL2.Z/

��
mF 1ˇ� C Y.F

1
ˇ� /

�
k��1m0

�
�
�
F 2
˛��1ˇ�1

k�m0�ˇ�
�1
m ��1m0

�
C

X
ˇ2�nSL2.Z/

�
F 1ˇ�k�

�1
m0

�
�
��
m0F 2

˛��1ˇ�1
C Y

�
F 2
˛��1ˇ�1

��
k�m0�ˇ�

�1
m ��1m0

�
D

X
ˇ2�nSL2.Z/

�
Z.F 1/ˇ�k�

�1
m0

�
�
�
F 2
˛��1ˇ�1

k�m0�ˇ�
�1
m ��1m0

�
C

X
ˇ2�nSL2.Z/

�
F 1ˇ�k�

�1
m0

�
�
�
Z.F 2/˛��1ˇ�1k�m0�ˇ�

�1
m ��1m0

�
D
�
Z.F 1/; F 2

�
˛
C
�
F 1; Z.F 2/

�
˛
: (4.58)

References

[1] A. Banerjee, Hopf action and Rankin–Cohen brackets on an Archimedean complex, J.
Noncommut. Geom., 5 (2011), no. 3, 401–421. Zbl 1263.11051 MR 2817645

[2] A. Banerjee, Hecke operators on line bundles over modular curves, J. Number Theory,
132 (2012), no. 4, 714–734. Zbl 1277.11036 MR 2887615

[3] A. Banerjee, Action de Hopf sur les opérateurs de Hecke modulaires tordus (French), J.
Noncommut. Geom., 9 (2015), no. 4, 1155–1173. Zbl 1388.11015 MR 3448332

[4] P. Bieliavsky, X. Tang, and Y. Yao, Rankin–Cohen brackets and formal quantization, Adv.
Math., 212 (2007), no. 1, 293–314. Zbl 1123.53049 MR 2319770

[5] A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index
theorem, Comm. Math. Phys., 198 (1998), no. 1, 199–246. Zbl 0940.58005 MR 1657389

https://zbmath.org/?q=an:1263.11051
http://www.ams.org/mathscinet-getitem?mr=2817645
https://zbmath.org/?q=an:1277.11036
http://www.ams.org/mathscinet-getitem?mr=2887615
https://zbmath.org/?q=an:1388.11015
http://www.ams.org/mathscinet-getitem?mr=3448332
https://zbmath.org/?q=an:1123.53049
http://www.ams.org/mathscinet-getitem?mr=2319770
https://zbmath.org/?q=an:0940.58005
http://www.ams.org/mathscinet-getitem?mr=1657389


1080 A. Banerjee

[6] A. Connes and H. Moscovici, Modular Hecke algebras and their Hopf symmetry, Mosc.
Math. J., 4 (2004), no. 1, 67–109. Zbl 1122.11023 MR 2074984

[7] A. Connes and H. Moscovici, Rankin–Cohen brackets and the Hopf algebra of transverse
geometry, Mosc. Math. J., 4 (2004), no. 1, 111–130. Zbl 1122.11024 MR 2074985

[8] C. Consani, Double complexes and Euler L-factors, Compositio Math., 111 (1998), no. 3,
323–358. Zbl 0932.14011 MR 1617133

[9] F. Guillén and V. Navarro Aznar, Sur le théorème local des cycles invariants (French),
Duke Math. J., 61 (1990), no. 1, 133–155. Zbl 0722.14002 MR 1068383

[10] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in
The moduli space of curves (Texel Island, 1994), 165–172, Progr. Math., 129, Birkhäuser
Boston, Boston, MA, 1995. Zbl 0892.11015 MR 1363056

[11] H. Movasati, Quasi-modular forms attached to elliptic curves. I, Ann. Math. Blaise Pascal,
19 (2012), no. 2, 307–377. Zbl 1264.11031 MR 3025138

[12] E. Royer, Quasimodular forms: an introduction,Ann.Math. Blaise Pascal, 19 (2012), no. 2,
297–306. Zbl 1268.11055 MR 3025137

[13] X. Tang and Y.-J. Yao, A universal deformation formula for H1 without projectivity
assumption, J. Noncommut. Geom., 3 (2009), no. 2, 151–179. Zbl 1166.58006
MR 2486792

[14] D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of modular forms,
1–103, Universitext, Springer, Berlin, 2008. Zbl 1259.11042 MR 2409678

Received 01 November, 2016

A. Banerjee, Department of Mathematics, Indian Institute of Science,
Bangalore 560012, India
E-mail: abhishekbanerjee1313@gmail.com

https://zbmath.org/?q=an:1122.11023
http://www.ams.org/mathscinet-getitem?mr=2074984
https://zbmath.org/?q=an:1122.11024
http://www.ams.org/mathscinet-getitem?mr=2074985
https://zbmath.org/?q=an:0932.14011
http://www.ams.org/mathscinet-getitem?mr=1617133
https://zbmath.org/?q=an:0722.14002
http://www.ams.org/mathscinet-getitem?mr=1068383
https://zbmath.org/?q=an:0892.11015
http://www.ams.org/mathscinet-getitem?mr=1363056
https://zbmath.org/?q=an:1264.11031
http://www.ams.org/mathscinet-getitem?mr=3025138
https://zbmath.org/?q=an:1268.11055
http://www.ams.org/mathscinet-getitem?mr=3025137
https://zbmath.org/?q=an:1166.58006
http://www.ams.org/mathscinet-getitem?mr=2486792
https://zbmath.org/?q=an:1259.11042
http://www.ams.org/mathscinet-getitem?mr=2409678
mailto:abhishekbanerjee1313@gmail.com

	Introduction
	The quasimodular Hecke algebra
	The Lie algebra and Hopf algebra actions on Q(G)
	The operators D, [T] and [p] on Q(G)
	The operators X, Y, and [d] of Connes and Moscovici

	Twisted quasimodular Hecke operators
	The pairing on Q(G) and Hopf action
	The operators X:Q(G)QG and Hopf action


