Quasimodular Hecke algebras and Hopf actions

Abhishek Banerjee

Abstract. Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$. In this paper, we extend the theory of modular Hecke algebras due to Connes and Moscovici to define the algebra $\mathcal{Q}(\Gamma)$ of quasimodular Hecke operators of level Γ . Then, $\mathcal{Q}(\Gamma)$ carries an action of "the Hopf algebra \mathcal{H}_1 of codimension 1 foliations" that also acts on the modular Hecke algebra $\mathcal{A}(\Gamma)$ of Connes and Moscovici. However, in the case of quasimodular forms, we have several new operators acting on the quasimodular Hecke algebra $\mathcal{Q}(\Gamma)$. Further, for each $\sigma \in SL_2(\mathbb{Z})$, we introduce the collection $\mathcal{Q}_{\sigma}(\Gamma)$ of quasimodular Hecke operators of level Γ twisted by σ . Then, $\mathcal{Q}_{\sigma}(\Gamma)$ is a right $\mathcal{Q}(\Gamma)$ -module and is endowed with a pairing

$$
(\underline{\hspace{1cm}}) : \mathcal{Q}_{\sigma}(\Gamma) \otimes \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma}(\Gamma).
$$

We show that there is a "Hopf action" of a certain Hopf algebra \mathfrak{h}_1 on the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$. Finally, for any $\sigma \in SL_2(\mathbb{Z})$, we consider operators acting between the levels of the graded module $\mathbb{Q}_{\sigma}(\Gamma) = \bigoplus_{m \in \mathbb{Z}} \mathcal{Q}_{\sigma(m)}(\Gamma)$, where

$$
\sigma(m) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \cdot \sigma
$$

for any $m \in \mathbb{Z}$. The pairing on $\mathcal{Q}_{\sigma}(\Gamma)$ can be extended to a graded pairing on $\mathbb{Q}_{\sigma}(\Gamma)$ and we show that there is a Hopf action of a larger Hopf algebra $\mathfrak{h}_{\mathbb{Z}} \supset \mathfrak{h}_1$ on the pairing on $\mathbb{Q}_{\sigma}(\Gamma)$.

Mathematics Subject Classification (2010). 11F03, 16T05.

Keywords. Modular Hecke algebras, Hopf actions.

1. Introduction

Let $N \ge 1$ be an integer and let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$. In [\[6,](#page-39-0)[7\]](#page-39-1), Connes and Moscovici have introduced the "modular Hecke algebra" $A(\Gamma)$ that combines the pointwise product on modular forms with the action of Hecke operators. Further, Connes and Moscovici have shown that the modular Hecke algebra $\mathcal{A}(\Gamma)$ carries an action of "the Hopf algebra \mathcal{H}_1 of codimension 1 foliations". The Hopf algebra \mathcal{H}_1 is part of a larger family of Hopf algebras $\{\mathcal{H}_n|n\geq 1\}$ defined by them in [\[5\]](#page-38-0), with the Hopf algebra \mathcal{H}_n acting on C^* -algebras

coming from foliations of codimension n . Then, the discovery by Connes and Moscovici [\[6\]](#page-39-0) of the \mathcal{H}_1 -action on the modular Hecke algebra $\mathcal{A}(\Gamma)$ reveals deep connections between noncommutative geometry and number theory. For further work on this Hopf algebra \mathcal{H}_1 , we refer the reader, for instance, to [\[4,](#page-38-1) [13\]](#page-39-2).

In [\[1\]](#page-38-2), we showed that the action of the Hopf algebra \mathcal{H}_1 is associated with Frobenius and monodromy operators in arithmetic geometry. In fact, the Hopf algebra \mathcal{H}_1 acts on a complex in [\[1\]](#page-38-2) that is obtained by modifying a certain bi-complex introduced by Consani [\[8,](#page-39-3) § 4] for computing the cohomology of the "fiber at infinity" of an arithmetic variety. The bi-complex of Consani [\[8\]](#page-39-3) is the arithmetic analogue of the 'nearby cycles complex' in algebraic geometry (see, for instance, [\[9,](#page-39-4) § 2]). By considering modular forms as sections of line bundles, we also developed in [\[2\]](#page-38-3) an \mathcal{H}_1 -action on an algebra of Hecke operators lifted to line bundles over modular curves. The lifting of Hecke operators to the level of line bundles in [\[2\]](#page-38-3) also leads to additional operators that are obtained by modifying the \mathcal{H}_1 -action.

The objective of this paper is to introduce and study quasimodular Hecke algebras $\mathcal{Q}(\Gamma)$ that combine the pointwise product on quasimodular forms with the action of Hecke operators. Further, we will also study the collection $\mathcal{Q}_{\sigma}(\Gamma)$ of quasimodular Hecke operators twisted by some $\sigma \in SL_2(\mathbb{Z})$. The latter is an extension of our theory of twisted modular Hecke operators introduced in [\[3\]](#page-38-4). We recall that quasimodular forms can be interpreted geometrically as sections of bundles on the moduli space of elliptic curves (see [\[11\]](#page-39-5)). As such, the \mathcal{H}_1 -action on $\mathcal{Q}(\Gamma)$ demonstrates the amazing versatility of the Hopf algebra \mathcal{H}_1 of Connes and Moscovici. Additionally, the use of quasimodular forms helps us to find new operators on the algebra $\mathcal{Q}(\Gamma)$. At the heart of these new operators is the classical Eisenstein series G_2 of weight 2 which is not a modular form but only quasimodular (see Section [2](#page-4-0) for details). However, we know (see $[6,$ Remark 1]) that G_2 plays an important role in defining actions on the modular Hecke algebra . Hence, we feel that working with the quasimodular Hecke algebra allows us to fully involve the Eisenstein series G_2 in the theory. The action of these new operators is also expressed in terms of the action of a co-commutative Hopf algebra, which arises as the universal enveloping algebra of a Lie algebra. We also hope that in the future, we can lift the quasimodular Hecke operators to the level of bundles in the same spirit as our work in [\[2\]](#page-38-3).

We now describe the paper in detail. In Section [2,](#page-4-0) we briefly recall the notion of modular Hecke algebras of Connes and Moscovici [\[6,](#page-39-0) [7\]](#page-39-1). We let $Q\mathcal{M}$ be the "quasimodular tower", i.e., QM is the colimit over all N of the spaces $\mathcal{QM}(\Gamma(N))$ of quasimodular forms of level $\Gamma(N)$ (see [\(2.8\)](#page-5-0)). We define a quasimodular Hecke operator of level Γ to be a function of finite support from $\Gamma \backslash GL_2^+(\mathbb{Q})$ to the quasimodular tower \mathcal{QM} satisfying a certain covariance condition (see Definition [2.4\)](#page-6-0). We then show that the collection $\mathcal{Q}(\Gamma)$ of quasimodular Hecke operators of level Γ carries an algebra structure $(\mathcal{Q}(\Gamma), *)$ by considering

a convolution product over cosets of Γ in $GL_2^+(\mathbb{Q})$. Further, the modular Hecke algebra of Connes and Moscovici embeds naturally as a subalgebra of $\mathcal{Q}(\Gamma)$. We also show that the quasimodular Hecke operators of level Γ act on quasimodular forms of level Γ , i.e., $\mathcal{QM}(\Gamma)$ is a left $\mathcal{Q}(\Gamma)$ -module. In this section, we will also define a second algebra structure $(\mathcal{Q}(\Gamma), *^r)$ on $\mathcal{Q}(\Gamma)$ by considering the convolution product over cosets of Γ in $SL_2(\mathbb{Z})$, a construction that should be compared to the "restricted" modular Hecke algebra from [\[1,](#page-38-2) § 4]. When we consider $\mathcal{Q}(\Gamma)$ as an algebra equipped with this latter product $*^r$, it will be denoted by $\mathcal{Q}^r(\Gamma) = (\mathcal{Q}(\Gamma), *^r)$.

In Section [3,](#page-11-0) we define Lie algebra and Hopf algebra actions on $\mathcal{Q}(\Gamma)$. Given a quasimodular form $f \in Q\mathcal{M}(\Gamma)$ of level Γ , it is well known that we can write f as a sum

$$
f = \sum_{i=0}^{s} a_i(f) \cdot G_2^i,
$$
 (1.1)

where the coefficients $a_i(f)$ are modular forms of level Γ and G_2 is the classical Eisenstein series of weight 2. Therefore, we can consider two different sets of operators on the quasimodular tower $Q.M$: those which act on the powers of G_2 appearing in the expression for f and those which act on the modular coefficients $a_i(f)$. The collection of operators acting on the modular coefficients $a_i(f)$ are studied in Section [3.2.](#page-21-0) These induce on $\mathcal{Q}(\Gamma)$ analogues of operators acting on the modular Hecke algebra $\mathcal{A}(\Gamma)$ of Connes and Moscovici and we show that $\mathcal{Q}(\Gamma)$ carries an action of the same Hopf algebra \mathcal{H}_1 of codimension 1 foliations that acts on $\mathcal{A}(\Gamma)$. On the other hand, by considering operators on $\mathcal{Q}\mathcal{M}$ that act on the powers of G_2 appearing in (1.1) , we are able to define additional operators D, $\{T_k^l\}_{k \geq 1, l \geq 0}$ and $\{\phi^{(m)}\}_{m \geq 1}$ on $\mathcal{Q}(\Gamma)$ (see Section [3.1\)](#page-11-1). Further, we show that these operators satisfy the following commutator relations:

$$
\begin{aligned}\n[T_k^l, T_{k'}^{l'}] &= (k' - k) T_{k + k' - 2}^{l + l'} \\
[D, \phi^{(m)}] &= 0, \quad [T_k^l, \phi^{(m)}] = 0, \quad [\phi^{(m)}, \phi^{(m')}] = 0 \\
[T_k^l, D] &= \frac{5}{24}(k - 1) T_{k - 1}^{l + 1} - \frac{1}{2}(k - 3) T_{k + 1}^l.\n\end{aligned} \tag{1.2}
$$

We then consider the Lie algebra $\mathscr L$ generated by the symbols D, $\{T_k^l\}_{k \geq 1, l \geq 0}$, $\{\phi^{(m)}\}_{m\geq 1}$ satisfying the commutator relations in [\(1.2\)](#page-2-1). Then, there is a Lie action of $\mathcal L$ on $\mathcal Q(\Gamma)$. Finally, let $\mathcal H$ be the Hopf algebra given by the universal enveloping algebra $\mathcal{U}(\mathcal{X})$ of \mathcal{X} . Then, we show that \mathcal{H} has a Hopf action with respect to the product $*^r$ on $\mathcal{Q}(\Gamma)$ and this action captures the operators D, $\{T_k^l\}_{k \geq 1, l \geq 0}$ and $\{\phi^{(m)}\}_{m\geq 1}$ on $\mathcal{Q}(\Gamma)$. In other words, $\mathcal H$ acts on $\mathcal{Q}(\Gamma)$ such that:

$$
h(F^1 *^r F^2) = \sum h_{(1)}(F^1) *^r h_{(2)}(F^2), \quad \forall \, h \in \mathcal{H}, \ F^1, F^2 \in \mathcal{Q}(\Gamma), \quad (1.3)
$$

where the coproduct $\Delta: \mathcal{H} \longrightarrow \mathcal{H} \otimes \mathcal{H}$ is given by $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$ for any $h \in \mathcal{H}$.

In Section [4,](#page-25-0) we develop the theory of twisted quasimodular Hecke operators. For any $\sigma \in SL_2(\mathbb{Z})$, we define in Section [4.1](#page-27-0) the collection $\mathcal{Q}_{\sigma}(\Gamma)$ of quasimodular Hecke operators of level Γ twisted by σ . When $\sigma = 1$, this reduces to the original definition of $\mathcal{Q}(\Gamma)$. In general, $\mathcal{Q}_{\sigma}(\Gamma)$ is not an algebra but we show that $\mathcal{Q}_{\sigma}(\Gamma)$ carries a pairing:

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\sigma}(\Gamma) \otimes \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma}(\Gamma). \tag{1.4}
$$

Further, we show that $\mathcal{Q}_{\sigma}(\Gamma)$ may be equipped with the structure of a right $\mathcal{Q}(\Gamma)$ module. We can also extend the action of the Hopf algebra \mathcal{H}_1 of codimension 1 foliations to $\mathcal{Q}_{\sigma}(\Gamma)$. In fact, we show that \mathcal{H}_1 has an action on the right $\mathcal{Q}(\Gamma)$ -module $\mathcal{Q}_{\sigma}(\Gamma)$ and this action is Hopf, i.e.,

$$
h(F^{1} * F^{2}) = \sum h_{(1)}(F^{1}) * h_{(2)}(F^{2}),
$$

$$
\forall h \in \mathcal{H}_{1}, F^{1} \in \mathcal{Q}_{\sigma}(\Gamma), F^{2} \in \mathcal{Q}(\Gamma). \quad (1.5)
$$

We recall from [\[6\]](#page-39-0) that \mathcal{H}_1 is equal as an algebra to the universal enveloping algebra of the Lie algebra \mathcal{L}_1 with generators X, Y, $\{\delta_n\}_{n\geq1}$ satisfying the following relations:

$$
[Y, X] = X, \quad [X, \delta_n] = \delta_{n+1}, \quad [Y, \delta_n] = n\delta_n, \quad [\delta_k, \delta_l] = 0,
$$

$$
\forall k, l, n \ge 1. \quad (1.6)
$$

Then, we can consider the smaller Lie algebra $I_1 \subseteq \mathcal{L}_1$ with two generators X, Y satisfying $[Y, X] = X$. If we let \mathfrak{h}_1 be the Hopf algebra that is the universal enveloping algebra of I_1 , we show that the pairing in [\(1.4\)](#page-3-0) on $\mathcal{Q}_{\sigma}(\Gamma)$ carries a "Hopf action" of \mathfrak{h}_1 . In other words, we have:

$$
h(F^1, F^2) = \sum (h_{(1)}(F^1), h_{(2)}(F^2)), \quad \forall \, h \in \mathfrak{h}_1, \ F^1, F^2 \in \mathcal{Q}_\sigma(\Gamma). \tag{1.7}
$$

In Section [4.2,](#page-33-0) we consider operators between the modules $\mathcal{Q}_{\sigma}(\Gamma)$ as σ varies over $SL_2(\mathbb{Z})$. More precisely, for any $\tau, \sigma \in SL_2(\mathbb{Z})$, we define a morphism:

$$
X_{\tau}: \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\tau\sigma}(\Gamma). \tag{1.8}
$$

In particular, this gives us operators acting between the levels of the graded module

$$
\mathbb{Q}_{\sigma}(\Gamma) = \bigoplus_{m \in \mathbb{Z}} \mathcal{Q}_{\sigma(m)}(\Gamma),\tag{1.9}
$$

where for any $\sigma \in SL_2(\mathbb{Z})$, we set

$$
\sigma(m) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix} \cdot \sigma.
$$

Further, we generalize the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$ in [\(1.4\)](#page-3-0) to a pairing:

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\tau_1\sigma}(\Gamma) \otimes \mathcal{Q}_{\tau_2\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\tau_1\tau_2\sigma}(\Gamma), \tag{1.10}
$$

where τ_1 , τ_2 are commuting matrices in $SL_2(\mathbb{Z})$. In particular, [\(1.10\)](#page-3-1) gives us a pairing

$$
\mathcal{Q}_{\sigma(m)}(\Gamma) \otimes \mathcal{Q}_{\sigma(n)}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma(m+n)}(\Gamma), \quad \forall \, m, n \in \mathbb{Z}
$$

and hence a pairing on the tower $\mathbb{Q}_{\sigma}(\Gamma)$. Finally, we consider the Lie algebra $\mathfrak{l}_\mathbb{Z} \supseteq \mathfrak{l}_1$ with generators $\{Z, X_n | n \in \mathbb{Z}\}$ satisfying the following commutator relations:

$$
[Z, X_n] = (n+1)X_n, \quad [X_n, X_{n'}] = 0, \quad \forall n, n' \in \mathbb{Z}.
$$
 (1.11)

Then, if we let $\eta_{\mathbb{Z}}$ be the Hopf algebra that is the universal enveloping algebra of $\mathfrak{l}_{\mathbb{Z}}$, we show that $\mathfrak{h}_{\mathbb{Z}}$ has a Hopf action on the pairing on $\mathbb{Q}_{\sigma}(\Gamma)$. In other words, for any $F^1, F^2 \in \mathbb{Q}_{\sigma}(\Gamma)$, we have

$$
h(F1, F2) = \sum (h(1)(F1), h(2)(F2)), \forall h \in \mathfrak{h}_{\mathbb{Z}}.
$$
 (1.12)

2. The quasimodular Hecke algebra

We begin this section by briefly recalling the notion of quasimodular forms. The notion of quasimodular forms is due to Kaneko and Zagier [\[10\]](#page-39-6). The theory has been further developed in Zagier [\[14\]](#page-39-7). For an introduction to the basic theory of quasimodular forms, we refer the reader to the exposition of Royer [\[12\]](#page-39-8).

Throughout, let $\mathbb{H} \subseteq \mathbb{C}$ be the upper half plane. Then, there is a well known action of $SL_2(\mathbb{Z})$ on \mathbb{H} :

$$
z \mapsto \frac{az+b}{cz+d}, \quad \forall z \in \mathbb{H}, \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).
$$
 (2.1)

For any $N \geq 1$, we denote by $\Gamma(N)$ the following principal congruence subgroup of $SL_2(\mathbb{Z})$:

$$
\Gamma(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}) \middle| \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} (\text{mod } N) \right\}.
$$
 (2.2)

In particular, $\Gamma(1) = SL_2(\mathbb{Z})$. We are now ready to define quasimodular forms.

Definition 2.1. Let $f: \mathbb{H} \longrightarrow \mathbb{C}$ be a holomorphic function and let $N \geq 1, k, s \geq 0$ be integers. Then, the function f is a quasimodular form of level N , weight k and depth s if there exist holomorphic functions $f_0, f_1, \ldots, f_s : \mathbb{H} \longrightarrow \mathbb{C}$ with $f_s \neq 0$ such that:

$$
(cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right) = \sum_{j=0}^{s} f_j(z) \left(\frac{c}{cz+d}\right)^j
$$
 (2.3)

for any matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N)$. The collection of quasimodular forms of level N, weight k and depth s will be denoted by $\mathcal{QM}_{k}^{s}(\Gamma(N))$. By convention, we let the zero function $0 \in \mathcal{QM}_k^0(\Gamma(N))$ for every $k \geq 0, N \geq 1$.

More generally, for any holomorphic function $f: \mathbb{H} \longrightarrow \mathbb{C}$ and any matrix $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2^+(\mathbb{Q})$, we define:

$$
(f|_k \alpha)(z) := (cz+d)^{-k} f\left(\frac{az+b}{cz+d}\right), \quad \forall k \ge 0.
$$
 (2.4)

Then, we can say that f is quasimodular of level N , weight k and depth s if there exist holomorphic functions $f_0, f_1, \ldots, f_s: \mathbb{H} \longrightarrow \mathbb{C}$ with $f_s \neq 0$ such that:

$$
(f|_{k}\alpha)(z) = \sum_{j=0}^{s} f_{j}(z) \left(\frac{c}{cz+d}\right)^{j}, \quad \forall \alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma(N). \tag{2.5}
$$

When the integer k is clear from context, we write $f|_k\alpha$ simply as $f|\alpha$ for any $\alpha \in GL_2^+(\mathbb{Q})$. Also, it is clear that we have a product:

$$
\mathcal{QM}_{k}^{s}(\Gamma(N)) \otimes \mathcal{QM}_{l}^{t}(\Gamma(N)) \longrightarrow \mathcal{QM}_{k+l}^{s+t}(\Gamma(N)) \tag{2.6}
$$

on quasi-modular forms. For any $N \geq 1$, we now define:

$$
\mathcal{Q}\mathcal{M}(\Gamma(N)) := \bigoplus_{s=0}^{\infty} \bigoplus_{k=0}^{\infty} \mathcal{Q}\mathcal{M}_k^s(\Gamma(N)).
$$
\n(2.7)

We now consider the direct limit:

$$
\mathcal{Q}\mathcal{M} := \varinjlim_{N \ge 1} \mathcal{Q}\mathcal{M}(\Gamma(N)),\tag{2.8}
$$

which we will refer to as the quasimodular tower. Additionally, for any $k \geq 0$ and $N \geq 1$, we let $\mathcal{M}_k(\Gamma(N))$ denote the collection of usual modular forms of weight k and level N . Then, we can define the modular tower \mathcal{M} :

$$
\mathcal{M} := \varinjlim_{N \ge 1} \mathcal{M}(\Gamma(N)), \quad \mathcal{M}(\Gamma(N)) := \bigoplus_{k=0}^{\infty} \mathcal{M}_k(\Gamma(N)). \tag{2.9}
$$

We now recall the modular Hecke algebra of Connes and Moscovici [\[6\]](#page-39-0).

Definition 2.2 (see [\[6,](#page-39-0) § 1]). Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$. A modular Hecke operator of level Γ is a function of finite support

$$
F: \Gamma \backslash GL_2^+(\mathbb{Q}) \longrightarrow \mathcal{M}, \quad \Gamma \alpha \mapsto F_{\alpha} \tag{2.10}
$$

such that for any $\gamma \in \Gamma$, we have:

$$
F_{\alpha\gamma} = F_{\alpha}|\gamma. \tag{2.11}
$$

The collection of all modular Hecke operators of level Γ will be denoted by $\mathcal{A}(\Gamma)$.

Our first aim is to define a quasimodular Hecke algebra $\mathcal{Q}(\Gamma)$ analogous to the modular Hecke algebra $\mathcal{A}(\Gamma)$ of Connes and Moscovici. For this, we recall the structure theorem for quasimodular forms, proved by Kaneko and Zagier [\[10\]](#page-39-6).

Theorem 2.3 (see [\[10,](#page-39-6) § 1, Proposition 1]). *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *. For any even number* $K \geq 2$ *, let* G_K *denote the classical Eisenstein series of weight* K*:*

$$
G_K(z) := -\frac{B_K}{2K} + \sum_{n=1}^{\infty} \left(\sum_{d|n} d^{K-1} \right) e^{2\pi i nz},
$$
 (2.12)

where B_K *is the K-th Bernoulli number and* $z \in \mathbb{H}$ *. Then, every quasimodular form in* $QM(\Gamma)$ *can be written uniquely as a polynomial in* G_2 *with coefficients* in $\mathcal{M}(\Gamma)$. More precisely, for any quasimodular form $f \in \mathcal{QM}_{k}^{s}(\Gamma)$, there exist *functions* $a_0(f)$, $a_1(f)$, ..., $a_s(f)$ *such that:*

$$
f = \sum_{i=0}^{s} a_i(f) G_2^i,
$$
 (2.13)

where $a_i(f) \in \mathcal{M}_{k-2i}(\Gamma)$ *is a modular form of weight* $k - 2i$ *and level* Γ *for each* $0 \leq i \leq s$.

We now consider a quasimodular form $f \in Q\mathcal{M}$. For sake of definiteness, we may assume that $f \in \mathcal{QM}_{k}^{s}(\Gamma(N))$, i.e. f is a quasimodular form of level N, weight k and depth s. We now define an operation on $Q\mathcal{M}$ by setting:

$$
f \|\alpha = \sum_{i=0}^{i} (a_i(f)|_{k-2i}\alpha) G_2^i, \quad \forall \alpha \in GL_2^+(\mathbb{Q}), \tag{2.14}
$$

where $\{a_i(f) \in \mathcal{M}_{k-2i}(\Gamma(N))\}_{0 \leq i \leq s}$ is the collection of modular forms determining $f = \sum_{i=0}^{s} a_i(f) G_2^i$ as in Theorem [2.3.](#page-6-1) We know that for any $\alpha \in GL_2^+(\mathbb{Q})$, each $(a_i(f)|_{k-2i}\alpha)$ is an element of the modular tower M. This shows that

$$
f\|\alpha = \sum_{i=0}^i (a_i(f)|_{k-2i}\alpha)G_2^i \in \mathcal{Q}M.
$$

However, we note that for arbitrary $\alpha \in GL_2^+(\mathbb{Q})$ and $a_i(f) \in \mathcal{M}_{k-2i}(\Gamma(N))$, it is not necessary that $(a_i(f)|_{k-2i}\alpha) \in \mathcal{M}_{k-2i}(\Gamma(N))$. In other words, the operation defined in (2.14) on the quasimodular tower \mathcal{QM} does not descend to an endomorphism on each $\mathcal{QM}_{k}^{s}(\Gamma(N))$. From the expression in [\(2.14\)](#page-6-2), it is also clear that:

$$
(f \cdot g) \|\alpha = (f\|\alpha) \cdot (g\|\alpha), \quad f\|(\alpha \cdot \beta) = (f\|\alpha)\|\beta,
$$

$$
\forall f, g \in \mathcal{QM}, \alpha, \beta \in GL_2^+(\mathbb{Q}). \quad (2.15)
$$

We are now ready to define the quasimodular Hecke operators.

Definition 2.4. Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup. A quasimodular Hecke operator of level Γ is a function of finite support:

$$
F: \Gamma \backslash GL_2^+(\mathbb{Q}) \longrightarrow \mathcal{Q}\mathcal{M}, \quad \Gamma \alpha \mapsto F_{\alpha} \tag{2.16}
$$

such that for any $\gamma \in \Gamma$, we have:

$$
F_{\alpha\gamma} = F_{\alpha} \| \gamma. \tag{2.17}
$$

The collection of all quasimodular Hecke operators of level Γ will be denoted by $\mathcal{Q}(\Gamma)$.

We will now introduce the product structure on $\mathcal{Q}(\Gamma)$. In fact, we will introduce two separate product structures $(\mathcal{Q}(\Gamma), *)$ and $(\mathcal{Q}(\Gamma), *')$ on $\mathcal{Q}(\Gamma)$.

Proposition 2.5. (a) Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup and *let* $\mathcal{Q}(\Gamma)$ *be the collection of quasimodular Hecke operators of level* Γ *. Then, the product defined by:*

$$
(F * G)_{\alpha} := \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} F_{\beta} \cdot (G_{\alpha\beta^{-1}} \| \beta), \quad \forall \alpha \in GL_2^+(\mathbb{Q}) \tag{2.18}
$$

for all $F, G \in \mathcal{Q}(\Gamma)$ *makes* $\mathcal{Q}(\Gamma)$ *into an associative algebra.*

(b) Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup and let $\mathcal{Q}(\Gamma)$ be the *collection of quasimodular Hecke operators of level . Then, the product defined by:*

$$
(F *^r G)_{\alpha} := \sum_{\beta \in \Gamma \backslash SL_2(\mathbb{Z})} F_{\beta} \cdot (G_{\alpha\beta - 1} \| \beta), \quad \forall \alpha \in GL_2^+(\mathbb{Q}) \tag{2.19}
$$

for all $F, G \in \mathcal{Q}(\Gamma)$ *makes* $\mathcal{Q}(\Gamma)$ *into an associative algebra which we denote* by $Q^r(\Gamma)$.

Proof. (a) We need to check that the product in (2.18) is associative. First of all, we note that the expression in (2.18) can be rewritten as:

$$
(F * G)_{\alpha} = \sum_{\alpha_2 \alpha_1 = \alpha} F_{\alpha_1} \cdot G_{\alpha_2} || \alpha_1, \quad \forall \alpha \in GL_2^+(\mathbb{Q}), \tag{2.20}
$$

where the sum in [\(2.20\)](#page-7-1) is taken over all pairs (α_1, α_2) with $\alpha_2 \alpha_1 = \alpha$ modulo the following equivalence relation:

$$
(\alpha_1, \alpha_2) \sim (\gamma \alpha_1, \alpha_2 \gamma^{-1}), \quad \forall \gamma \in \Gamma. \tag{2.21}
$$

Hence, for F, G, $H \in \mathcal{Q}(\Gamma)$, we can write:

$$
(F * (G * H))_{\alpha} = \sum_{\alpha'_{2}\alpha_{1} = \alpha} F_{\alpha_{1}} \cdot (G * H)_{\alpha'_{2}} || \alpha_{1}
$$

$$
= \sum_{\alpha'_{2}\alpha_{1} = \alpha} F_{\alpha_{1}} \cdot \left(\sum_{\alpha_{3}\alpha_{2} = \alpha'_{2}} G_{\alpha_{2}} \cdot H_{\alpha_{3}} || \alpha_{2} \right) || \alpha_{1}
$$

$$
= \sum_{\alpha_{3}\alpha_{2}\alpha_{1} = \alpha} F_{\alpha_{1}} \cdot (G_{\alpha_{2}} || \alpha_{1}) \cdot (H_{\alpha_{3}} || \alpha_{2}\alpha_{1}),
$$

(2.22)

where the sum in [\(2.22\)](#page-8-0) is taken over all triples $(\alpha_1, \alpha_2, \alpha_3)$ with $\alpha_3 \alpha_2 \alpha_1 = \alpha$ modulo the following equivalence relation:

$$
(\alpha_1, \alpha_2, \alpha_3) \sim (\gamma \alpha_1, \gamma' \alpha_2 \gamma^{-1}, \alpha_3 \gamma'^{-1}), \quad \forall \gamma, \gamma' \in \Gamma
$$
 (2.23)

On the other hand, we have

$$
((F * G) * H)_{\alpha} = \sum_{\alpha_3 \alpha_2^{\prime\prime} = \alpha} (F * G)_{\alpha_2^{\prime\prime}} \cdot H_{\alpha_3} || \alpha_2^{\prime\prime}
$$

$$
= \sum_{\alpha_3 \alpha_2^{\prime\prime} = \alpha} \left(\sum_{\alpha_2 \alpha_1 = \alpha_2^{\prime\prime}} F_{\alpha_1} \cdot G_{\alpha_2} || \alpha_1 \right) \cdot H_{\alpha_3} || \alpha_2^{\prime\prime}
$$

$$
= \sum_{\alpha_3 \alpha_2 \alpha_1 = \alpha} F_{\alpha_1} \cdot (G_{\alpha_2} || \alpha_1) \cdot (H_{\alpha_3} || \alpha_2 \alpha_1),
$$

(2.24)

where the sum in [\(2.24\)](#page-8-1) is taken over all triples $(\alpha_1, \alpha_2, \alpha_3)$ with $\alpha_3 \alpha_2 \alpha_1 = \alpha$ modulo the equivalence relation in (2.23) . From (2.22) and (2.24) the result follows. We can similarly verify (b). \Box

We know that modular forms are quasimodular forms of depth 0, i.e., for any $k \ge 0, N \ge 1$, we have $\mathcal{M}_k(\Gamma(N)) = \mathcal{QM}_k^0(\Gamma(N))$. It follows that the modular tower M defined in (2.9) embeds into the quasimodular tower \mathcal{QM} defined in (2.8) . We are now ready to show that the modular Hecke algebra $\mathcal{A}(\Gamma)$ of Connes and Moscovici embeds into the quasimodular Hecke algebra $\mathcal{Q}(\Gamma)$ for any congruence subgroup $\Gamma = \Gamma(N)$.

Proposition 2.6. *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *. Let* $A(\Gamma)$ *be the modular Hecke algebra of level* Γ *as defined in Definition* [2.2](#page-5-2) *and let* $\mathcal{Q}(\Gamma)$ *be the quasimodular Hecke algebra of level* Γ *as defined in Definition* [2.4.](#page-6-0) *Then, there is a natural embedding of algebras* $\mathcal{A}(\Gamma) \hookrightarrow \mathcal{Q}(\Gamma)$ *.*

Proof. For any $\alpha \in GL_2^+(\mathbb{Q})$ and any $f \in \mathcal{QM}_k^s(\Gamma)$, we consider the operation $f \mapsto f || \alpha$ as defined in [\(2.14\)](#page-6-2):

$$
f \|\alpha = \sum_{i=0}^{i} (a_i(f)|_{k-2i}\alpha) G_2^i \in \mathcal{QM}.
$$
 (2.25)

In particular, if $f \in M_k(\Gamma) = Q \mathcal{M}_k^0(\Gamma)$ is a modular form, it follows from [\(2.25\)](#page-8-3) that:

$$
f \|\alpha = a_0(f)|_k \alpha = f|_k \alpha = f|\alpha \in \mathcal{M}.
$$
 (2.26)

Hence, using the embedding of M in \mathcal{QM} , it follows from [\(2.11\)](#page-5-3) in the definition of $\mathcal{A}(\Gamma)$ and from [\(2.17\)](#page-7-2) in the definition of $\mathcal{Q}(\Gamma)$ that we have an embedding $\mathcal{A}(\Gamma) \hookrightarrow \mathcal{Q}(\Gamma)$ of modules. Further, we recall from [\[6,](#page-39-0) § 1] that the product on $\mathcal{A}(\Gamma)$ is given by:

$$
(F * G)_{\alpha} := \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} F_{\beta} \cdot (G_{\alpha\beta^{-1}}|\beta), \quad \forall \alpha \in GL_2^+(\mathbb{Q}), \ F, G \in \mathcal{A}(\Gamma). \tag{2.27}
$$

Comparing [\(2.27\)](#page-9-0) with the product on $\mathcal{Q}(\Gamma)$ described in [\(2.18\)](#page-7-0) and using [\(2.26\)](#page-9-1) it follows that $A(\Gamma) \hookrightarrow \mathcal{Q}(\Gamma)$ is an embedding of algebras. \Box

We end this section by describing the action of the algebra $\mathcal{Q}(\Gamma)$ on $\mathcal{Q}M(\Gamma)$.

Proposition 2.7. Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup and let $\mathcal{Q}(\Gamma)$ *be the algebra of quasimodular Hecke operators of level* Γ *. Then, for any element* $f \in \mathcal{QM}(\Gamma)$ the action of $\mathcal{Q}(\Gamma)$ defined by:

$$
F * f := \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} F_{\beta} \cdot f \| \beta, \quad \forall F \in \mathcal{Q}(\Gamma) \tag{2.28}
$$

makes $Q\mathcal{M}(\Gamma)$ *into a left module over* $Q(\Gamma)$ *.*

Proof. It is easy to check that the right hand side of (2.28) is independent of the choice of coset representatives. Further, since $F \in \mathcal{Q}(\Gamma)$ is a function of finite support, we can choose finitely many coset representatives $\{\beta_1, \beta_2, \ldots, \beta_n\}$ such that

$$
F * f = \sum_{j=1}^{n} F_{\beta_j} \cdot f \| \beta_j.
$$
 (2.29)

It suffices to consider the case $f \in \mathcal{QM}_{k}^{s}(\Gamma)$ for some weight k and depth s. Then, we can express f as a sum:

$$
f = \sum_{i=0}^{s} a_i(f) G_2^i,
$$
 (2.30)

where each $a_i(f) \in \mathcal{M}_{k-2i}(\Gamma)$. Similarly, for any $\beta \in GL_2^+(\mathbb{Q})$, we can express F_β as a finite sum:

$$
F_{\beta} = \sum_{r=0}^{t_{\beta}} a_{\beta r} (F_{\beta}) \cdot G_2^r \tag{2.31}
$$

with each $a_{\beta r}(F_{\beta}) \in \mathcal{M}$. In particular, we let $t = \max\{t_{\beta_1}, t_{\beta_2}, \dots, t_{\beta_n}\}\$ and we can now write:

$$
F_{\beta_j} = \sum_{r=0}^{t} a_{\beta_j r} (F_{\beta_j}) \cdot G_2^r
$$
 (2.32)

by adding appropriately many terms with zero coefficients in the expression for each F_{β_j} . Further, for any $\gamma \in \Gamma$, we know that

$$
F_{\beta_j \gamma} = F_{\beta_j} \|\gamma = \sum_{r=0}^t \left(a_{\beta_j r} (F_{\beta_j}) |\gamma \right) \cdot G_2^r.
$$

In other words, we have, for each j :

$$
F_{\beta_j \gamma} = \sum_{r=0}^{t} a_{\beta_j \gamma r} (F_{\beta_j \gamma}) \cdot G_2^r, \quad a_{\beta_j \gamma r} (F_{\beta_j \gamma}) = (a_{\beta_j r} (F_{\beta_j}) | \gamma).
$$
 (2.33)

The sum in (2.29) can now be expressed as:

$$
F * f := \sum_{j=1}^{n} F_{\beta_j} \cdot f \| \beta_j = \sum_{i=0}^{s} \sum_{r=0}^{t} \sum_{j=1}^{n} a_{\beta_j r} (F_{\beta_j}) \cdot (a_i(f) | \beta_j) \cdot G_2^{r+i}.
$$
 (2.34)

For any i, r , we now set:

$$
A_{ir}(F, f) := \sum_{j=1}^{n} a_{\beta_j r}(F_{\beta_j}) \cdot (a_i(f)|\beta_j).
$$
 (2.35)

Again, it is easy to see that the sum $A_{ir}(F, f)$ in [\(2.35\)](#page-10-0) does not depend on the choice of the coset representatives $\{\beta_1, \beta_2, \ldots, \beta_n\}$. Then, for any $\gamma \in \Gamma$, we have:

$$
A_{ir}(F, f)|\gamma = \sum_{j=1}^{n} (a_{\beta_{j}r}(F_{\beta_{j}})|\gamma) \cdot (a_{i}(f)|\beta_{j}\gamma)
$$

=
$$
\sum_{j=1}^{n} a_{\beta_{j}\gamma r}(F_{\beta_{j}\gamma}) \cdot (a_{i}(f)|\beta_{j}\gamma) = A_{ir}(F, f),
$$
 (2.36)

where the last equality in [\(2.36\)](#page-10-1) follows from the fact that $\{\beta_1\gamma, \beta_2\gamma, \dots, \beta_n\gamma\}$ is another collection of distinct cosets reprsentatives of Γ in $GL_2^+(\mathbb{Q})$. From [\(2.36\)](#page-10-1), we note that each $A_{ir}(F, f)$ belongs to $\mathcal{M}(\Gamma)$. Then, the sum:

$$
F * f = \sum_{i=0}^{s} \sum_{r=0}^{t} A_{ir}(F, f) \cdot G_2^{i+r}
$$
 (2.37)

is an element of $Q\mathcal{M}(\Gamma)$. Hence, $Q\mathcal{M}(\Gamma)$ is a left module over $Q(\Gamma)$. \Box

3. The Lie algebra and Hopf algebra actions on $Q(\Gamma)$

Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$. In this section, we will describe two different sets of operators on the collection $\mathcal{Q}(\Gamma)$ of quasimodular Hecke operators of level Γ . Given a quasimodular form $f \in \mathcal{QM}(\Gamma)$ of level Γ , we have mentioned in the last section that f can be expressed as a finite sum:

$$
f = \sum_{i=0}^{s} a_i(f) \cdot G_2^i,
$$
 (3.1)

where G_2 is the classical Eisenstein series of weight 2 and each $a_i(f)$ is a modular form of level Γ . Then in Section [3.1,](#page-11-1) we consider operators on the quasimodular tower that act on the powers of G_2 appearing in (3.1) . These induce operators D, $\{T_k^l\}_{k \geq 1, l \geq 0}$ on the collection $\mathcal{Q}(\Gamma)$ of quasimodular Hecke operators of level Γ . In order to understand the action of these operators on products of elements in $\mathcal{Q}(\Gamma)$, we also need to define extra operators $\{\phi^{(m)}\}_{m\geq 1}$. Finally, we show that these operators may all be described in terms of a Hopf algebra $\mathcal H$ with a "Hopf action" on $\mathcal Q^r(\Gamma)$, i.e.,

$$
h(F^1 *^r F^2) = \sum h_{(1)}(F^1) *^r h_{(2)}(F^2), \quad \forall \, h \in \mathcal{H}, \ F^1, F^2 \in \mathcal{Q}^r(\Gamma), \tag{3.2}
$$

where the coproduct $\Delta: \mathcal{H} \longrightarrow \mathcal{H} \otimes \mathcal{H}$ is given by $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$ for any $h \in \mathcal{H}$. In Section [3.2,](#page-21-0) we consider operators on the quasimodular tower $\mathcal{Q}M$ that act on the modular coefficients $a_i(f)$ appearing in [\(3.1\)](#page-11-2). These induce on $\mathcal{Q}(\Gamma)$ analogues of operators acting on the modular Hecke algebra $\mathcal{A}(\Gamma)$ of Connes and Moscovici [\[6\]](#page-39-0). Then, we show that $\mathcal{Q}(\Gamma)$ carries a Hopf action of the same Hopf algebra \mathcal{H}_1 of codimension 1 foliations that acts on $\mathcal{A}(\Gamma)$.

3.1. The operators D , $\{T_k^l\}$ \mathcal{R}_{k}^{l} and $\{\phi^{(m)}\}$ on $\mathcal{Q}(\Gamma)$. For any even number $K \geq 2$, let G_K be the classical Eisenstein series of weight K as in [\(2.12\)](#page-6-3). Since G_2 is a quasimodular form, i.e., $G_2 \in \mathcal{QM}$, its derivative $G'_2 \in \mathcal{QM}$. Further, it is well known that: $5\pi(\sqrt{2})$

$$
G_2' = \frac{5\pi(\sqrt{-1})}{3}G_4 - 4\pi(\sqrt{-1})G_2^2,\tag{3.3}
$$

where G_4 is the Eisenstein series of weight 4 (which is a modular form). For our purposes, it will be convenient to write:

$$
G_2' = \sum_{j=0}^{2} g_j G_2^j \tag{3.4}
$$

with each g_j a modular form. From [\(3.3\)](#page-11-3), it follows that:

$$
g_0 = \frac{5\pi(\sqrt{-1})}{3}G_4, \quad g_1 = 0, \quad g_2 = -4\pi(\sqrt{-1}).
$$
 (3.5)

We are now ready to define the operators D and $\{W_k\}_{k>1}$ on \mathcal{QM} . The first operator D differentiates the powers of G_2 :

$$
D: \mathcal{QM} \longrightarrow \mathcal{QM}
$$

$$
f = \sum_{i=0}^{i} a_i(f)G_2^i \mapsto -\frac{1}{8\pi(\sqrt{-1})} \left(\sum_{i=0}^{i} i a_i(f)G_2^{i-1} \cdot G_2' \right)
$$

$$
= -\frac{1}{8\pi(\sqrt{-1})} \sum_{i=0}^{i} \sum_{j=0}^{2} i a_i(f)g_j G_2^{i+j-1}.
$$
 (3.6)

The operators $\{W_k\}_{k\geq1}$ are "weight operators" and W_k also steps up the power of G_2 by $k - 2$. We set:

$$
W_k: \mathcal{Q} \mathcal{M} \longrightarrow \mathcal{Q} \mathcal{M}, \quad f = \sum_{i=0}^i a_i(f) G_2^i \mapsto \sum_{i=0}^i i a_i(f) G_2^{i+k-2}.
$$
 (3.7)

From the definitions in [\(3.6\)](#page-12-0) and [\(3.7\)](#page-12-1), we can easily check that D and W_k are derivations on $Q\mathcal{M}$. Finally, for any $\alpha \in GL_2^+(\mathbb{Q})$ and any integer $m \geq 1$, we set

$$
\nu_{\alpha}^{(m)} = -\frac{5}{24} \left(G_4^m | \alpha - G_4^m \right). \tag{3.8}
$$

Lemma 3.1. (a) Let $f \in \mathcal{QM}$ be an element of the quasimodular tower and $\alpha \in GL_2^+(\mathbb{Q})$. Then, the operator D satisfies:

$$
D(f)\|\alpha = D(f\|\alpha) + v_{\alpha}^{(1)} \cdot (W_1(f)\|\alpha),
$$
\n(3.9)

where, using (3.8) , we know that $v_\alpha^{(1)}$ is given by:

$$
\nu_{\alpha}^{(1)} := -\frac{1}{8\pi(\sqrt{-1})} \big(g_0|\alpha - g_0\big) = -\frac{5}{24} \big(G_4|\alpha - G_4\big),
$$
\n
$$
\forall \alpha \in GL_2^+(\mathbb{Q}). \quad (3.10)
$$

(b) For $f \in \mathcal{Q}\mathcal{M}$ and $\alpha \in GL_2^+(\mathbb{Q})$, each operator W_k , $k \geq 1$ satisfies:

$$
W_k(f)\|\alpha = W_k(f\|\alpha). \tag{3.11}
$$

Proof. (a) For the sake of definiteness, we assume that $f = \sum_{i=0}^{i} a_i(f) G_2^i$ with each $a_i(f) \in \mathcal{M}$. For $\alpha \in GL_2^+(\mathbb{Q})$, it follows from [\(3.6\)](#page-12-0) that:

$$
D(f)\|\alpha = -\frac{1}{8\pi(\sqrt{-1})} \Big(\sum_{i} \sum_{j} i a_{i}(f) g_{j} G_{2}^{i+j-1} \Big) \|\alpha
$$

$$
= -\frac{1}{8\pi(\sqrt{-1})} \sum_{i} \sum_{j} i (a_{i}(f)|\alpha) (g_{j}|\alpha) G_{2}^{i+j-1},
$$

$$
D(f\|\alpha) = D\Big(\sum_{i} (a_{i}(f)\alpha) G_{2}^{i}\Big)
$$

$$
= -\frac{1}{8\pi(\sqrt{-1})} \sum_{i} \sum_{j} i (a_{i}(f)|\alpha) g_{j} G_{2}^{i+j-1}.
$$
 (3.12)

From [\(3.12\)](#page-13-0) it follows that:

$$
D(f)\|\alpha - D(f\|\alpha) = -\frac{1}{8\pi(\sqrt{-1})} \sum_{i=0}^{s} \sum_{j=0}^{2} i (a_i(f)|\alpha)(g_j|\alpha - g_j)G_2^{i+j-1}.
$$
\n(3.13)

From [\(3.5\)](#page-11-4), it is clear that $g_j | \alpha - g_j = 0$ for $j = 1$ and $j = 2$. It follows that:

$$
D(f)\|\alpha - D(f\|\alpha) = -\frac{1}{8\pi(\sqrt{-1})} \sum_{i=0}^{s} i (a_i(f)|\alpha) (g_0|\alpha - g_0) G_2^{i-1}
$$

=
$$
-\frac{1}{8\pi(\sqrt{-1})} (g_0|\alpha - g_0) \cdot \left(\sum_{i=0}^{s} i (a_i(f)|\alpha) G_2^{i-1} \right).
$$

This proves the result of (a). The result of part (b) is clear from the definition in [\(3.7\)](#page-12-1). \Box

We note here that it follows from [\(3.8\)](#page-12-2) that for any α , $\beta \in GL_2^+(\mathbb{Q})$, we have:

$$
\nu_{\alpha\beta}^{(m)} = \nu_{\alpha}^{(m)}|\beta + \nu_{\beta}^{(m)}, \quad \forall m \ge 1.
$$
\n(3.14)

Additionally, since each G_4^m is a modular form, we know that when $\alpha \in SL_2(\mathbb{Z})$:

$$
\nu_{\alpha}^{(m)} = -\frac{5}{24} \big(G_4^m | \alpha - G_4^m \big) = 0, \quad \forall \alpha \in SL_2(\mathbb{Z}), m \ge 1. \tag{3.15}
$$

Moreover, from the definitions in (3.6) and (3.7) respectively, it is easily verified that D and $\{W_k\}_{k\geq1}$ are derivations on the quasimodular tower \mathcal{QM} . We now proceed to define operators on the quasimodular Hecke algebra $\mathcal{Q}(\Gamma)$ for some principal congruence subgroup $\Gamma = \Gamma(N)$. Choose $F \in \mathcal{Q}(\Gamma)$. We set:

$$
D, W_k, \phi^{(m)}: \mathcal{Q}(\Gamma) \longrightarrow \mathcal{Q}(\Gamma), \quad k \ge 1, \ m \ge 1
$$

$$
D(F)_{\alpha} := D(F_{\alpha}), \quad W_k(F)_{\alpha} := W_k(F_{\alpha}), \quad \phi^{(m)}(F)_{\alpha} := \nu_{\alpha}^{(m)} \cdot F_{\alpha}, \qquad (3.16)
$$

$$
\forall \alpha \in GL_2^+(\mathbb{Q}).
$$

From Lemma [3.1](#page-12-3) and the properties of $v_{\alpha}^{(m)}$ described in [\(3.14\)](#page-13-1) and [\(3.15\)](#page-13-2), it may be easily verified that the operators D, W_k and $\phi^{(m)}$ in [\(3.16\)](#page-13-3) are well defined on $\mathcal{Q}(\Gamma)$. We will now compute the commutators of the operators D, $\{W_k\}_{k\geq1}$ and $\{\phi^{(m)}\}_{m\geq1}$ on $\mathcal{Q}(\Gamma)$. In order to describe these commutators, we need one more operator E:

$$
E: \mathcal{QM} \longrightarrow \mathcal{QM}, \quad f \mapsto G_4 \cdot f. \tag{3.17}
$$

Since G_4 is a modular form of level $\Gamma(1) = SL_2(\mathbb{Z})$, i.e., $G_4|\gamma = G_4$ for any $\gamma \in SL_2(\mathbb{Z})$, it is clear that E induces a well defined operator on $\mathcal{Q}(\Gamma)$:

$$
E: \mathcal{Q}(\Gamma) \longrightarrow \mathcal{Q}(\Gamma), \quad E(F)_{\alpha} := E(F_{\alpha}) = G_4 \cdot F_{\alpha},
$$

$$
\forall F \in \mathcal{Q}(\Gamma), \ \alpha \in GL_2^+(\mathbb{Q}). \tag{3.18}
$$

We will now describe the commutator relations between the operators D, E , $\{E^l W_k\}_{k\geq 1,l\geq 0}$ and $\{\phi^{(m)}\}_{m\geq 1}$ on $\mathcal{Q}(\Gamma)$.

Proposition 3.2. Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup and let $\mathcal{Q}(\Gamma)$ *be the algebra of quasimodular Hecke operators of level* Γ *. The operators* D *, E,* $\{E^l W_k\}_{k\geq 1, l\geq 0}$ and $\{\phi^{(m)}\}_{m\geq 1}$ on $\mathcal{Q}(\Gamma)$ satisfy the following relations:

$$
[E, El Wk] = 0, [E, D] = 0,
$$

$$
[E, \phi(m)] = 0, [D, \phi(m)] = 0, [Wk, \phi(m)] = 0, [\phi(m), \phi(m')] = 0, (3.19)
$$

$$
[El Wk, D] = \frac{5}{24}(k - 1)(El+1 Wk-1) - \frac{1}{2}(k - 3)El Wk+1.
$$

Proof. For any $F \in \mathcal{Q}(\Gamma)$ and any $\alpha \in GL_2^+(\mathbb{Q})$, by definition, we know that $D(F)_{\alpha} = D(F_{\alpha}), W_k(F)_{\alpha} = W_k(F_{\alpha}),$ and $E(F)_{\alpha} = E(F_{\alpha}).$ Hence, in order to prove that $[E, W_k] = 0$ and $[E, D] = 0$, it suffices to show that $[E, W_k](f) = 0$ and $[E, D](f) = 0$, respectively, for any element $f \in \mathcal{QM}$. Both of these are easily verified from the definitions of D and W_k in [\(3.6\)](#page-12-0) and [\(3.7\)](#page-12-1) respectively. Further, since $[E, W_k] = 0$, it is clear that $[E, E^l W_k] = 0$.

Similarly, in order to prove the expression for $[E^l W_k, D]$, it suffices to prove that:

$$
[ElWk, D](f) = \frac{5}{24}(k-1)(El+1Wk-1)(f) - \frac{1}{2}(k-3)ElWk+1(f)
$$
 (3.20)

for any $f \in \mathcal{QM}$. Further, it suffices to consider the case where

$$
f = \sum_{i=0}^{s} a_i(f) G_2^i,
$$

where the $a_i(f) \in \mathcal{M}$. We now have:

$$
W_k D(f) = -\frac{1}{8\pi(\sqrt{-1})} W_k \bigg(\sum_{i=0}^i \sum_{j=0}^2 i a_i(f) g_j G_2^{i+j-1} \bigg)
$$

=
$$
-\frac{1}{8\pi(\sqrt{-1})} \sum_{i=0}^i \sum_{j=0}^2 i(i+j-1) a_i(f) g_j G_2^{i+j+k-3},
$$

$$
DW_k(f) = D \bigg(\sum_{i=0}^i i a_i(f) G_2^{i+k-2} \bigg)
$$

=
$$
-\frac{1}{8\pi(\sqrt{-1})} \sum_{i=0}^i \sum_{j=0}^2 i(i+k-2) a_i(f) g_j G_2^{i+j+k-3}.
$$
 (3.21)

It follows from [\(3.21\)](#page-15-0) that:

$$
[W_k, D](f) = -\frac{1}{8\pi(\sqrt{-1})} \sum_{i=0}^i \sum_{j=0}^2 ija_i(f)g_j G_2^{i+j+k-3}
$$

+
$$
\frac{1}{8\pi(\sqrt{-1})} \sum_{i=0}^i \sum_{j=0}^2 i(k-1)a_i(f)g_j G_2^{i+j+k-3}
$$

=
$$
-\frac{2g_2}{8\pi(\sqrt{-1})} \sum_{i=0}^i i a_i(f) G_2^{i+k-1}
$$

+
$$
(k-1)\frac{1}{8\pi(\sqrt{-1})} \sum_{i=0}^i i a_i(f)g_0 G_2^{i+k-3}
$$

+
$$
(k-1)\frac{g_2}{8\pi(\sqrt{-1})} \sum_{i=0}^i i a_i(f) G_2^{i+k-1},
$$

where the second equality uses the fact that $g_1 = 0$. Further, since $g_0 = (5\pi(\sqrt{-1})/3)G_4$ and $g_2 = -4\pi(\sqrt{-1})$, it follows from [\(3.1\)](#page-15-0) that we have:

$$
[W_k, D](f) = \frac{5}{24}(k-1)\sum_{i=0}^i iG_4a_i(f)G_2^{i+k-3} - \frac{1}{2}(k-3)\sum_{i=0}^i i a_i(f)G_2^{i+k-1}
$$

=
$$
\frac{5}{24}(k-1)(EW_{k-1})(f) - \frac{1}{2}(k-3)W_{k+1}(f).
$$
 (3.22)

Finally, since E commutes with $\{W_k\}_{k\geq1}$ and D, it follows from [\(3.22\)](#page-15-1) that:

$$
[ElWk, D] = \frac{5}{24}(k-1)(El+1Wk-1) - \frac{1}{2}(k-3)ElWk+1,\forall k \ge 1, l \ge 0
$$
 (3.23)

as operators on $\mathcal{Q}(\Gamma)$. Finally, it may be easily verified from the definitions that

$$
[E, \phi^{(m)}] = [D, \phi^{(m)}] = [W_k, \phi^{(m)}] = 0.
$$

The operators $\{E^l W_k\}_{k\geq 1, l\geq 0}$ appearing in Proposition [3.2](#page-14-0) above can be described more succintly as:

$$
T_k^l: \mathcal{Q} \mathcal{M} \longrightarrow \mathcal{Q} \mathcal{M}, \quad T_k^l := E^l W_k, \quad \forall k \ge 1, l \ge 0 \tag{3.24}
$$

and

$$
T_k^l: \mathcal{Q}(\Gamma) \longrightarrow \mathcal{Q}(\Gamma), \quad T_k^l(F)_{\alpha} := T_k^l(F_{\alpha}) = E^l W_k(F_{\alpha}),
$$

$$
\forall F \in \mathcal{Q}(\Gamma), \ \alpha \in GL_2^+(\mathbb{Q}). \tag{3.25}
$$

We are now ready to describe the Lie algebra action on $\mathcal{Q}(\Gamma)$.

Proposition 3.3. Let \mathcal{L} be the Lie algebra generated by the symbols D, $\{T_k^l\}_{k \geq 1, l \geq 0}$, $\{\phi^{(m)}\}_{m\geq 1}$ along with the following relations between the commutators:

$$
\begin{aligned}\n[T_k^l, T_{k'}^{l'}] &= (k' - k) T_{k + k' - 2}^{l + l'}, \\
[D, \phi^{(m)}] &= 0, \quad [T_k^l, \phi^{(m)}] = 0, \quad [\phi^{(m)}, \phi^{(m')}] = 0, \\
[T_k^l, D] &= \frac{5}{24} (k - 1) T_{k - 1}^{l + 1} - \frac{1}{2} (k - 3) T_{k + 1}^l.\n\end{aligned} \tag{3.26}
$$

Then, for any principal congruence subgroup $\Gamma = \Gamma(N)$ *, we have a Lie action of* L *on the algebra of quasimodular Hecke operators* $\mathcal{Q}(\Gamma)$ *of level* Γ *.*

Proof. For any $k \ge 1$ and $l \ge 0$, T_k^l has been defined to be the operator $E^l W_k$ on $\mathcal{Q}(\Gamma)$. We want to verify that:

$$
\left[T_k^l, T_{k'}^{l'}\right] = (k - k')T_{k + k' - 2}^{l + l'}, \quad \forall \, k, k' \ge 1, \ l, l' \ge 0. \tag{3.27}
$$

As in the proof of Proposition [3.2,](#page-14-0) it suffices to show that the relation in (3.27) holds for any $\hat{f} \in \mathcal{QM}$. As before, we let $f = \sum_{i=0}^{s} a_i(f) G_2^i$, where each $a_i(f) \in \mathcal{M}$. We now have:

$$
T_k^l T_{k'}^{l'}(f) = T_k^l \left(\sum_{i=0}^i i a_i(f) G_4^{l'} \cdot G_2^{i+k'-2} \right)
$$

\n
$$
= \sum_{i=0}^i i(i+k'-2) a_i(f) G_4^{l+l'} \cdot G_2^{i+k'+k-4},
$$

\n
$$
T_{k'}^{l'} T_k^l(f) = T_{k'}^{l'} \left(\sum_{i=0}^i i a_i(f) G_4^l \cdot G_2^{i+k-2} \right)
$$

\n
$$
= \sum_{i=0}^i i(i+k-2) a_i(f) G_4^{l+l'} \cdot G_2^{i+k'+k-4}.
$$

\n(3.28)

From [\(3.28\)](#page-16-1) it follows that:

$$
[T_k^l, T_{k'}^{l'}](f) = (k'-k)\sum_{i=0}^i i a_i(f) G_4^{l+l'} \cdot G_2^{i+k'+k-4} = (k'-k)T_{k+k'-2}^{l+l'}.
$$
 (3.29)

Hence, the relation [\(3.27\)](#page-16-0) holds for the operators T_k^l , $T_{k'}^{l'}$ acting on $\mathcal{Q}(\Gamma)$. The remaining relations in [\(3.26\)](#page-16-2) for the Lie action of $\mathcal L$ on $\mathcal Q(\Gamma)$ follow from [\(3.19\)](#page-14-1).

Lemma 3.4. Let $f \in Q\mathcal{M}$ be an element of the quasimodular tower and let $\alpha \in GL_2^+(\mathbb{Q})$. Then, for any $k \geq 1$, $l \geq 0$, the operator T_k^l : $\mathcal{QM} \longrightarrow \mathcal{QM}$ *satisfies:*

$$
T_k^l(f) \| \alpha = T_k^l(f \| \alpha) - \frac{24}{5} v_\alpha^{(l)} \cdot (T_k^0(f) \| \alpha). \tag{3.30}
$$

Proof. For the sake of definiteness, we assume that $f = \sum_{i=0}^{s} a_i(f) \cdot G_2^i$ with each $a_i(f) \in \mathcal{M}$. We now compute:

$$
T_k^l(f) \|\alpha = (E^l W_k)(f) \|\alpha = \left(\sum_{i=0}^i i G_4^l \cdot a_i(f) G_2^{i+k-2}\right) \|\alpha
$$

$$
= \sum_{i=0}^i i (G_4^l |\alpha) \cdot (a_i(f) |\alpha) G_2^{i+k-2},
$$

$$
T_k^l(f \|\alpha) = (E^l W_k)(f \|\alpha) = (E^l W_k) \left(\sum_{i=0}^i (a_i(f) |\alpha) G_2^i\right)
$$

$$
= \sum_{i=0}^i i (G_4^l) \cdot (a_i(f) |\alpha) G_2^{i+k-2}.
$$
 (3.31)

Subtracting, it follows that:

$$
T_k^l(f) \|\alpha - T_k^l(f\|\alpha) = (G_4^l|\alpha - G_4^l) \cdot \left(\sum_{i=0}^i i\left(a_i(f)|\alpha\right) G_2^{i+k-2} \right)
$$

=
$$
-\frac{24}{5} \nu_\alpha^{(l)} \cdot \left(W_k(f) \|\alpha \right).
$$
 (3.32)

Putting $T_k^0 = E^0 W_k = W_k$, we have the result.

 \Box

Proposition 3.5. Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup and let $\mathcal{Q}(\Gamma)$ *be the algebra of quasimodular Hecke operators of level* Γ *. Then, for any* $k \geq 1$ *,* $l \geq 0$, the operator T_k^l satisfies:

$$
T_k^l(F^1 * F^2) = T_k^l(F^1) * F^2 + F^1 * T_k^l(F^2) + \frac{24}{5} (\phi^{(l)}(F^1) * T_k^0(F^2))_\alpha,
$$

$$
\forall F^1, F^2 \in \mathcal{Q}(\Gamma). \quad (3.33)
$$

Further, the operators $\{T_k^l\}_{k\geq 1,l\geq 0}$ *are all derivations on the algebra* $\mathcal{Q}^r(\Gamma)$ = $(\mathcal{Q}(\Gamma), *^r)$.

Proof. We know that $T_k^l = E^l W_k$ and that W_k is a derivation on $Q \mathcal{M}$. We choose quasimodular Hecke operators F^1 , $F^2 \in \mathcal{Q}(\Gamma)$. Then, for any $\alpha \in GL_2^+(\mathbb{Q})$, we know that:

$$
T_k^l (F^1 * F^2)_{\alpha}
$$

\n
$$
= E^l W_k \Big(\sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} F_\beta^1 \cdot (F_{\alpha \beta^{-1}}^2 \| \beta) \Big)
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} E^l W_k (F_\beta^1 \cdot (F_{\alpha \beta^{-1}}^2 \| \beta))
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} G_4^l \cdot W_k (F_\beta^1) \cdot (F_{\alpha \beta^{-1}}^2 \| \beta) + \sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} F_\beta^1 \cdot G_4^l \cdot W_k (F_{\alpha \beta^{-1}}^2 \| \beta)
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} G_4^l \cdot W_k (F_\beta^1) \cdot (F_{\alpha \beta^{-1}}^2 \| \beta) + \sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} F_\beta^1 \cdot G_4^l \cdot (W_k (F_{\alpha \beta^{-1}}^2) \| \beta)
$$

\n
$$
= (T_k^l (F^1) * F^2)_{\alpha} + \sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} F_\beta^1 \cdot (G_4^l \| \beta) \cdot (W_k (F_{\alpha \beta^{-1}}^2) \| \beta)
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} F_\beta^1 \cdot (G_4^l \| \beta - G_4^l) \cdot (W_k (F_{\alpha \beta^{-1}}^2) \| \beta)
$$

\n
$$
= (T_k^l (F^1) * F^2)_{\alpha} + (F^1 * T_k^l (F^2))_{\alpha}
$$

\n
$$
+ \frac{24}{5} \sum_{\beta \in \Gamma \setminus GL_2^+ (Q)} F_\beta^1 \cdot v_{\beta}^{(l)} \cdot (W_k (F_{\alpha \beta^{-1}}^2) \| \beta)
$$

\n
$$
= (T_k^l (F^1) * F^2)_{\alpha} + (F^1 * T_k^l (F^2))_{\alpha} + \frac{24}{5} (\phi^{(l)} (F^1) * T_k^0 (F^
$$

where it is understood that $\phi^{(0)} = 0$. This proves [\(3.33\)](#page-18-0). Further, since $v_{\beta}^{(l)} = 0$ for any $\beta \in SL_2(\mathbb{Z})$, when we consider the product $*^r$ defined in [\(2.19\)](#page-7-3) on the algebra $Q^{r}(\Gamma)$, the calculation above reduces to

$$
T_k^l(F^1 *^r F^2) = T_k^l(F^1) *^r F^2 + F^1 *^r T_k^l(F^2).
$$
 (3.34)

Hence, each T_k^l is a derivation on $\mathcal{Q}^r(\Gamma)$.

 \Box

Proposition 3.6. *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup and let* $\mathcal{Q}(\Gamma)$ *be the algebra of quasimodular Hecke operators of level* Γ *.*

(a) *The operator* $D: \mathcal{Q}(\Gamma) \longrightarrow \mathcal{Q}(\Gamma)$ *on the algebra* $(\mathcal{Q}(\Gamma), *)$ *satisfies:*

$$
D(F1 * F2) = D(F1) * F2 + F1 * D(F2) - \phi(1)(F1) * T10(F2),
$$

 $\forall F1, F2 \in \mathcal{Q}(\Gamma).$ (3.35)

When we consider the product $*^r$, the operator D becomes a derivation on the $algebra \mathcal{Q}^r(\Gamma) = (\mathcal{Q}(\Gamma), *^r), \text{ i.e.}:$

$$
D(F^1 *^r F^2) = D(F^1) *^r F^2 + F^1 *^r D(F^2), \quad \forall F^1, F^2 \in \mathcal{Q}^r(\Gamma). \tag{3.36}
$$

(b) *The operators* $\{W_k\}_{k\geq1}$ *and* $\{\phi^{(m)}\}_{m\geq1}$ *are derivations on* $\mathcal{Q}(\Gamma)$ *, i.e.,*

$$
W_k(F^1 * F^2) = W_k(F^1) * F^2 + F^1 * W_k(F^2),
$$

\n
$$
\phi^{(m)}(F^1 * F^2) = \phi^{(m)}(F^1) * F^2 + F^1 * \phi^{(m)}(F^2)
$$
\n(3.37)

for any F^1 , $F^2 \in \mathcal{Q}(\Gamma)$. Additionally, $\{\phi^{(m)}\}_{m \geq 1}$ and $\{W_k\}_{k \geq 1}$ are also *derivations on the algebra* $\mathcal{Q}^r(\Gamma) = (\mathcal{Q}(\Gamma), *^r)$.

Proof. (a) We choose quasimodular Hecke operators F^1 , $F^2 \in \mathcal{Q}(\Gamma)$. We have mentioned before that D is a derivation on \mathcal{Q}, \mathcal{M} . Then, for any $\alpha \in GL_2^+(\mathbb{Q})$, we have:

$$
D(F^{1} * F^{2})_{\alpha} = D\left(\sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot (F_{\alpha\beta-1}^{2} \| \beta)\right)
$$

\n
$$
= \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} D(F_{\beta}^{1} \cdot (F_{\alpha\beta-1}^{2} \| \beta))
$$

\n
$$
= \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} D(F_{\beta}^{1}) \cdot (F_{\alpha\beta-1}^{2} \| \beta) + \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot D(F_{\alpha\beta-1}^{2} \| \beta)
$$

\n
$$
= (D(F^{1}) * F^{2})_{\alpha} + \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot (D(F_{\alpha\beta-1}^{2}) \| \beta)
$$

\n
$$
= \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot \nu_{\beta}^{(1)} \cdot (W_{1}(F_{\alpha\beta-1}^{2}) \| \beta)
$$

\n
$$
= (D(F^{1}) * F^{2})_{\alpha} + (F^{1} * D(F^{2}))_{\alpha} - (\phi^{(1)}(F^{1}) * T_{1}^{0}(F^{2}))_{\alpha}.
$$

This proves [\(3.35\)](#page-19-0). In order to prove [\(3.36\)](#page-19-1), we note that $v_{\beta}^{(1)} = 0$ for any $\beta \in SL_2(\mathbb{Z})$ (see (3.15)). Hence, when we use the product $*^r$ defined in (2.19) , the calculation above reduces to

$$
D(F1 * F2) = D(F1) * F2 + F1 * F D(F2)
$$
 (3.38)

for any F^1 , $F^2 \in \mathcal{Q}^r(\Gamma)$.

(b) For any F^1 , $F^2 \in \mathcal{Q}(\Gamma)$ and knowing from [\(3.14\)](#page-13-1) that $v_\alpha^{(m)} = v_\beta^{(m)} + v_{\alpha\beta-1}^{(m)} | \beta$, we have:

$$
\phi^{(m)}(F^{1} * F^{2})_{\alpha} = \nu_{\alpha}^{(m)} \cdot \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot (F_{\alpha\beta-1}^{2} \| \beta)
$$
\n
$$
= \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} (\nu_{\beta}^{(m)} \cdot F_{\beta}^{1}) \cdot (F_{\alpha\beta-1}^{2} \| \beta)
$$
\n
$$
+ \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot (\nu_{\alpha\beta-1}^{(m)} \| \beta) \cdot (F_{\alpha\beta-1}^{2} \| \beta)
$$
\n
$$
= \phi^{(m)}(F^{1}) * F^{2} + \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot ((\nu_{\alpha\beta-1}^{(m)} \cdot F_{\alpha\beta-1}^{2}) \| \beta)
$$
\n
$$
= \phi^{(m)}(F^{1}) * F^{2} + \sum_{\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot (\phi^{(m)}(F^{2})_{\alpha\beta-1} \| \beta)
$$
\n
$$
\beta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})
$$
\n
$$
= \phi^{(m)}(F^{1}) * F^{2} + F^{1} * \phi^{(m)}(F^{2}).
$$
\n(3.39)

The fact that each W_k is also a derivation on $\mathcal{Q}(\Gamma)$ now follows from a similar calculation using the fact that W_k is a derivation on the quasimodular tower $Q\mathcal{M}$ and that $W_k(f)$ $\alpha = W_k(f \| \alpha)$ for any $f \in \mathcal{QM}$, $\alpha \in GL_2^+(\mathbb{Q})$ (from [\(3.11\)](#page-12-4)). Finally, a similar calculation may be used to verify that $\{W_k\}_{k\geq 1}$ and $\{\phi^{(m)}\}_{m\geq 1}$ are all derivations on $\mathcal{Q}^r(\Gamma)$. \Box

We now introduce the Hopf algebra $\mathcal H$ that acts on $\mathcal Q^r(\Gamma)$. The Hopf algebra $\mathcal H$ is the universal enveloping algebra $\mathcal{U}(\mathcal{L})$ of the Lie algebra $\mathcal L$ introduced in Proposition [3.3.](#page-16-3) As such, the coproduct $\Delta: \mathcal{H} \longrightarrow \mathcal{H} \otimes \mathcal{H}$ is defined by:

$$
\Delta(D) = D \otimes 1 + 1 \otimes D, \quad \Delta(T_k^l) = T_k^l \otimes 1 + 1 \otimes T_k^l, \n\Delta(\phi^{(m)}) = \phi^{(m)} \otimes 1 + 1 \otimes \phi^{(m)}.
$$
\n(3.40)

We will now show that $\mathcal H$ has a Hopf action on the algebra $\mathcal Q^r(\Gamma)$.

Proposition 3.7. Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$. Then, there is a Hopf action of $\mathcal H$ on the algebra $\mathcal Q^r(\Gamma)$, i.e.,

$$
h(F^1 *^r F^2) = \sum h_{(1)}(F^1) *^r h_{(2)}(F^2), \quad \forall F^1, F^2 \in \mathcal{Q}^r(\Gamma), \ h \in \mathcal{H}, \ (3.41)
$$

where $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$ *for any* $h \in \mathcal{H}$ *.*

Proof. In order to prove [\(3.41\)](#page-20-0), it suffices to verify the relation for D and each of $\{T_k^l\}_{k\geq 1, l\geq 0}, \{\phi^{(m)}\}_{m\geq 1}$. From Proposition [3.5](#page-18-1) and Proposition [3.6,](#page-19-2) we know that for F^1 , $F^2 \in \mathcal{Q}^r(\Gamma)$ and any $k \ge 1, l \ge 0, m \ge 1$:

$$
D(F1 * F2) = D(F1) * F2 + F1 * F D(F2),
$$

\n
$$
Tk1(F1 * F2) = Tk1(F1) * F2 + F1 * Tk1(F2),
$$

\n
$$
\phi(m)(F1 * F2) = \phi(m)(F1) * F2 + F1 * F(m)(F2).
$$
\n(3.42)

Comparing with the expressions for the coproduct in (3.40) , it is clear that (3.41) holds for each $h \in \mathcal{H}$. \Box

3.2. The operators X, Y, and $\{\delta_n\}$ of Connes and Moscovici. Let $\Gamma = \Gamma(N)$ be a congruence subgroup. In this subsection, we will show that the algebra $\mathcal{Q}(\Gamma)$ carries an action of the Hopf algebra \mathcal{H}_1 of Connes and Moscovici [\[5\]](#page-38-0). The Hopf algebra \mathcal{H}_1 is part of a larger family $\{\mathcal{H}_n\}_{n\geq1}$ of Hopf algebras defined in [\[5\]](#page-38-0) and \mathcal{H}_1 is the Hopf algebra corresponding to "codimension 1 foliations". As an algebra, \mathcal{H}_1 is identical to the universal enveloping algebra $\mathcal{U}(\mathcal{L}_1)$ of the Lie algebra \mathcal{L}_1 generated by X, Y, $\{\delta_n\}_{n\geq1}$ satisfying the commutator relations:

$$
[Y, X] = X, \quad [X, \delta_n] = \delta_{n+1}, \quad [Y, \delta_n] = n\delta_n, \quad [\delta_k, \delta_l] = 0, \forall k, l, n \ge 1. \quad (3.43)
$$

Further, the coproduct $\Delta: \mathcal{H}_1 \longrightarrow \mathcal{H}_1 \otimes \mathcal{H}_1$ on \mathcal{H}_1 is determined by:

$$
\Delta(X) = X \otimes 1 + 1 \otimes X + \delta_1 \otimes Y,
$$

\n
$$
\Delta(Y) = Y \otimes 1 + 1 \otimes Y, \quad \Delta(\delta_1) = \delta_1 \otimes 1 + 1 \otimes \delta_1.
$$
\n(3.44)

Finally, the antipode $S: \mathcal{H}_1 \longrightarrow \mathcal{H}_1$ is given by:

$$
S(X) = -X + \delta_1 Y, \quad S(Y) = -Y, \quad S(\delta_1) = -\delta_1. \tag{3.45}
$$

Following Connes and Moscovici [\[6\]](#page-39-0), we define the operators X and Y on the modular tower: for any congruence subgroup $\Gamma = \Gamma(N)$, we set:

$$
Y: \mathcal{M}_k(\Gamma) \longrightarrow \mathcal{M}_k(\Gamma), \quad Y(f) := \frac{k}{2} f, \quad \forall \ f \in \mathcal{M}_k(\Gamma). \tag{3.46}
$$

Further, the operator $X: \mathcal{M}_k(\Gamma) \longrightarrow \mathcal{M}_{k+2}(\Gamma)$ is the Ramanujan differential operator on modular forms:

$$
X(f) := \frac{1}{2\pi i} \frac{d}{dz}(f) - \frac{1}{12\pi i} \frac{d}{dz} (\log \Delta) \cdot Y(f), \quad \forall \ f \in \mathcal{M}_k(\Gamma), \tag{3.47}
$$

where $\Delta(z)$ is the well known modular form of weight 12 given by:

$$
\Delta(z) = (2\pi)^{12} q \prod_{n=1}^{\infty} (1 - q^n)^{24}, \quad q = e^{2\pi i z}.
$$
 (3.48)

We start by extending these operators to the quasimodular tower $Q.M$. Let $f \in \mathcal{QM}_{k}^{s}(\Gamma)$ be a quasimodular form. Then, we can express $f = \sum_{i=0}^{i} a_i(f)G_2^i$, where $a_i(f) \in \mathcal{M}_{k-2i}(\Gamma)$. We set:

$$
X(f) = \sum_{i=0}^{s} X(a_i(f)) \cdot G_2^i, \quad Y(f) = \sum_{i=0}^{s} Y(a_i(f)) \cdot G_2^i.
$$
 (3.49)

From (3.49) , it is clear that X and Y are derivations on \mathcal{Q} M.

Lemma 3.8. Let $f \in \mathcal{QM}$ be an element of the quasimodular tower. Then, for any $\alpha \in GL_2^+(\mathbb{Q})$, we have:

$$
X(f)\|\alpha = X(f\|\alpha) + \left(\mu_{\alpha^{-1}} \cdot Y(f)\right)\|\alpha,\tag{3.50}
$$

where, for any $\delta \in GL_2^+(\mathbb{Q})$, we set:

$$
\mu_{\delta} := \frac{1}{12\pi i} \frac{d}{dz} \log \frac{\Delta|\delta}{\Delta}.
$$
\n(3.51)

Further, we have $Y(f||\alpha) = Y(f)||\alpha$.

Proof. Following [\[6,](#page-39-0) Lemma 5], we know that for any $g \in M$, we have:

$$
X(g)|\alpha = X(g|\alpha) + \left(\mu_{\alpha^{-1}} \cdot Y(g)\right)|\alpha, \quad \forall \alpha \in GL_2^+(\mathbb{Q}).\tag{3.52}
$$

It suffices to consider the case $f \in \mathcal{QM}_{k}^{s}(\Gamma)$ for some congruence subgroup Γ . If we express $f \in \mathcal{Q} \mathcal{M}_k^s(\Gamma)$ as $f = \sum_{i=0}^i a_i(f) G_2^i$ with $a_i(f) \in \mathcal{M}_{k-2i}(\Gamma)$, it follows that:

$$
Xa_i(f)|\alpha = X(a_i(f)|\alpha) + (\mu_{\alpha^{-1}} \cdot Y(a_i(f)))|\alpha, \quad \forall \alpha \in GL_2^+(\mathbb{Q}) \quad (3.53)
$$

for each $0 \le i \le s$. Combining [\(3.53\)](#page-22-1) with the definitions of X and Y on the quasimodular tower in (3.49) , we can easily prove (3.50) . Finally, it is clear from the definition of Y that $Y(f||\alpha) = Y(f)||\alpha$.

 \Box

From the definition of μ_{δ} in [\(3.51\)](#page-22-3), one may verify that (see [\[6,](#page-39-0) § 3)]):

$$
\mu_{\delta_1 \delta_2} = \mu_{\delta_1} |\delta_2 + \mu_{\delta_2}, \quad \forall \delta_1, \delta_2 \in GL_2^+(\mathbb{Q}) \tag{3.54}
$$

and that $\mu_{\delta} = 0$ for any $\delta \in SL_2(\mathbb{Z})$. We now define operators X, Y and $\{\delta_n\}_{n \geq 1}$ on the quasimodular Hecke algebra $\mathcal{Q}(\Gamma)$ for some congruence subgroup $\Gamma = \Gamma(N)$. Let $F \in \mathcal{Q}(\Gamma)$ be a quasimodular Hecke operator of level Γ ; then we define operators:

$$
X, Y, \delta_n: \mathcal{Q}(\Gamma) \longrightarrow \mathcal{Q}(\Gamma),
$$

$$
X(F)_{\alpha} := X(F_{\alpha}), \quad Y(F)_{\alpha} := Y(F_{\alpha}), \quad \delta_n(F)_{\alpha} = X^{n-1}(\mu_{\alpha}) \cdot F_{\alpha}, \quad (3.55)
$$

$$
\forall \alpha \in GL_2^+(\mathbb{Q}).
$$

We will now show that the Lie algebra \mathcal{L}_1 with generators X, Y, $\{\delta_n\}_{n>1}$ satisfying the commutator relations in [\(3.43\)](#page-21-1) acts on the algebra $\mathcal{Q}(\Gamma)$. Additionally, in order to give a Lie action on the algebra $\mathcal{Q}^r(\Gamma) = (\mathcal{Q}(\Gamma), *^r)$, we define at this juncture the smaller Lie algebra $I_1 \subseteq \mathcal{L}_1$ with generators X and Y satisfying the relation

$$
[Y, X] = X. \tag{3.56}
$$

Further, we consider the Hopf algebra h_1 that arises as the universal enveloping algebra $\mathcal{U}(\mathfrak{l}_1)$ of the Lie algebra \mathfrak{l}_1 . We have used the Hopf algebra \mathfrak{h}_1 in a similar manner before to act on a "restricted" version of a modular Hecke algebra in [\[1,](#page-38-2) § 4]. We will show that \mathcal{H}_1 (resp. \mathfrak{h}_1) has a Hopf action on the algebra $\mathcal{Q}(\Gamma)$ (resp. $\mathcal{Q}^r(\Gamma)$). We start by describing the Lie actions.

Proposition 3.9. Let \mathcal{L}_1 be the Lie algebra with generators X, Y and $\{\delta_n\}_{n>1}$ *satisfying the following commutator relations:*

$$
[Y, X] = X, \quad [X, \delta_n] = \delta_{n+1}, \quad [Y, \delta_n] = n\delta_n, \quad [\delta_k, \delta_l] = 0,
$$

$$
\forall k, l, n \ge 1. \quad (3.57)
$$

Then, for any given congruence subgroup $\Gamma = \Gamma(N)$ *of* $SL_2(\mathbb{Z})$ *, we have a Lie action of* \mathcal{L}_1 *on the module* $\mathcal{Q}(\Gamma)$ *.*

Proof. From [\[6,](#page-39-0) § 3], we know that for any element $g \in \mathcal{M}$ of the modular tower, we have $[Y, X](g) = X(g)$. Since the action of X and Y on the quasimodular tower $Q\mathcal{M}$ (see [\(3.49\)](#page-22-0)) is naturally extended from their action on \mathcal{M} , it follows that $[Y, X] = X$ on the quasimodular tower \mathcal{Q}, \mathcal{M} . In particular, given any quasimodular Hecke operator $F \in \mathcal{Q}(\Gamma)$ and any $\alpha \in GL_2^+(\mathbb{Q})$, we have $[Y, X](F_\alpha) = X(F_\alpha)$ for the element $F_{\alpha} \in \mathcal{QM}$. By definition, $X(F)_{\alpha} = X(F_{\alpha})$ and $Y(F_{\alpha}) = Y(F)_{\alpha}$ and hence $[Y, X] = X$ holds for the action of X and Y on $\mathcal{Q}(\Gamma)$.

Further, since X is a derivation on \mathcal{QM} and $\delta_n(F)_{\alpha} = X^{n-1}(\mu_{\alpha}) \cdot F_{\alpha}$, we have

$$
[X, \delta_n](F)_{\alpha} = X(X^{n-1}(\mu_{\alpha}) \cdot F_{\alpha}) - X^{n-1}(\mu_{\alpha}) \cdot X(F_{\alpha}),
$$

= $X(X^{n-1}(\mu_{\alpha})) \cdot F_{\alpha} = X^n(\mu_{\alpha}) \cdot F_{\alpha} = \delta_{n+1}(F)_{\alpha}.$ (3.58)

Similarly, since $\mu_{\alpha} \in \mathcal{M} \subseteq \mathcal{QM}$ is of weight 2 and Y is a derivation on \mathcal{QM} , we have:

$$
[Y, \delta_n](F)_{\alpha} = Y(X^{n-1}(\mu_{\alpha}) \cdot F_{\alpha}) - X^{n-1}(\mu_{\alpha}) \cdot Y(F_{\alpha}),
$$

= $Y(X^{n-1}(\mu_{\alpha})) \cdot F_{\alpha} = nX^{n-1}(\mu_{\alpha}) \cdot F_{\alpha} = n\delta_n(F)_{\alpha}.$ (3.59)

Finally, we can verify easily that $[\delta_k, \delta_l] = 0$ for any $k, l \ge 1$. \Box

From Proposition [3.9,](#page-23-0) it is also clear that the smaller Lie algebra $\mathfrak{l}_1 \subseteq \mathcal{L}_1$ has a Lie action on the module $\mathcal{Q}(\Gamma)$.

Lemma 3.10. *Let* $\Gamma = \Gamma(N)$ *be a congruence subgroup of* $SL_2(\mathbb{Z})$ *and let* $\mathcal{Q}(\Gamma)$ *be the algebra of quasimodular Hecke operators of level* Γ *. Then, the operator* $X: \mathcal{Q}(\Gamma) \longrightarrow \mathcal{Q}(\Gamma)$ on the algebra $(\mathcal{Q}(\Gamma), *)$ satisfies:

$$
X(F1 * F2) = X(F1) * F2 + F1 * X(F2) + \delta_1(F1) * Y(F2),
$$

$$
\forall F1, F2 \in \mathcal{Q}(\Gamma). \quad (3.60)
$$

When we consider the product $*^r$, the operator *X* becomes a derivation on the algebra $\mathcal{Q}^r(\Gamma) = (\mathcal{Q}(\Gamma), *^r),$ *i.e.*

$$
X(F1 * F2) = X(F1) * F2 + F1 * F X(F2), \forall F1, F2 \in \mathcal{Q}^r(\Gamma). \quad (3.61)
$$

Proof. We choose quasimodular Hecke operators F^1 , $F^2 \in \mathcal{Q}(\Gamma)$. Using [\(3.54\)](#page-22-4), we also note that

$$
0 = \mu_1 = \mu_{\beta^{-1}}|\beta + \mu_{\beta}, \quad \forall \beta \in GL_2^+(\mathbb{Q}).
$$
 (3.62)

We have mentioned before that X is a derivation on \mathcal{QM} . Then, for any $\alpha \in GL_2^+(\mathbb{Q})$, we have:

$$
X(F^{1} * F^{2})_{\alpha} = X\left(\sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot (F_{\alpha\beta-1}^{2} \| \beta)\right)
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} X(F_{\beta}^{1} \cdot (F_{\alpha\beta-1}^{2} \| \beta))
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} X(F_{\beta}^{1}) \cdot (F_{\alpha\beta-1}^{2} \| \beta) + \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot X(F_{\alpha\beta-1}^{2} \| \beta)
$$

\n
$$
= (X(F^{1}) * F^{2})_{\alpha} + \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot (X(F_{\alpha\beta-1}^{2}) \| \beta)
$$

\n
$$
- \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} F_{\beta}^{1} \cdot ((\mu_{\beta-1} \cdot Y(F_{\alpha\beta-1}^{2})) \| \beta)
$$

\n
$$
= (X(F^{1}) * F^{2})_{\alpha} + (F^{1} * X(F^{2}))_{\alpha}
$$

\n
$$
+ \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} (F_{\beta}^{1} \cdot \mu_{\beta}) \cdot (Y(F_{\alpha\beta-1}^{2}) \| \beta)
$$

\n
$$
= (X(F^{1}) * F^{2})_{\alpha} + (F^{1} * X(F^{2}))_{\alpha} + (\delta_{1}(F^{1}) * Y(F^{2}))_{\alpha}.
$$

This proves [\(3.60\)](#page-24-0). In order to prove [\(3.61\)](#page-24-1), we note that $\mu_{\beta} = 0$ for any $\beta \in SL_2(\mathbb{Z})$. Hence, if we use the product \ast^r , the calculation above reduces to

$$
X(F1 *r F2) = X(F1) *r F2 + F1 *r X(F2)
$$
 (3.63)

for any
$$
F^1, F^2 \in \mathcal{Q}^r(\Gamma)
$$
.

Finally, we describe the Hopf action of \mathcal{H}_1 on the algebra $(\mathcal{Q}(\Gamma), *)$ as well as the Hopf action of \mathfrak{h}_1 on the algebra $\mathcal{Q}^r(\Gamma) = (\mathcal{Q}(\Gamma), *^r)$.

Proposition 3.11. *Let* $\Gamma = \Gamma(N)$ *be a congruence subgroup of* $SL_2(\mathbb{Z})$ *. Then, the Hopf algebra* \mathcal{H}_1 *has a Hopf action on the quasimodular Hecke algebra* $(\mathcal{Q}(\Gamma), *)$; *in other words, we have:*

$$
h(F^1 * F^2) = \sum h_{(1)}(F^1) \otimes h_{(2)}(F^2), \quad \forall \, h \in \mathcal{H}_1, \ F^1, F^2 \in \mathcal{Q}(\Gamma), \tag{3.64}
$$

where the coproduct $\Delta: \mathcal{H}_1 \longrightarrow \mathcal{H}_1 \otimes \mathcal{H}_1$ is given by $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$ for *any* $h \in \mathcal{H}_1$ *. Similarly, there exists a Hopf action of the Hopf algebra* h_1 *on the* $algebra \mathcal{Q}^r(\Gamma) = (\mathcal{Q}(\Gamma), *^r).$

Proof. In order to prove [\(3.64\)](#page-25-1), it suffices to check the relation for X, Y and $\delta_1 \in \mathcal{H}_1$. For the element $X \in \mathcal{H}_1$, this is already the result of Lemma [3.10.](#page-23-1) Now, for any F^1 , $F^2 \in \mathcal{Q}(\Gamma)$ and $\alpha \in GL_2^+(\mathbb{Q})$, we have:

$$
\delta_1(F^1 * F^2)_{\alpha} = \mu_{\alpha} \cdot \left(\sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} F_{\beta}^1 \cdot (F_{\alpha \beta^{-1}}^2 \| \beta) \right)
$$

=
$$
\sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} (\mu_{\beta} \cdot F_{\beta}^1) \cdot (F_{\alpha \beta^{-1}}^2 \| \beta) + \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} F_{\beta}^1 \cdot ((\mu_{\alpha \beta^{-1}} \cdot F_{\alpha \beta^{-1}}^2) \| \beta)
$$

=
$$
(\delta_1(F^1) * F^2)_{\alpha} + (F^1 * \delta_1(F^2))_{\alpha}.
$$
 (3.65)

Further, using the fact that Y is a derivation on \mathcal{QM} and $Y(f||\alpha) = Y(f)||\alpha$ for any $f \in QM$, $\alpha \in GL_2^+(\mathbb{Q})$, we can easily verify the relation [\(3.64\)](#page-25-1) for the element $Y \in \mathcal{H}_1$. This proves [\(3.64\)](#page-25-1) for all $h \in \mathcal{H}_1$.

Finally, in order to demonstrate the Hopf action of \mathfrak{h}_1 on $\mathcal{Q}^r(\Gamma)$, we need to check that:

$$
X(F1 * F2) = X(F1) * F2 + F1 * F2(F2),
$$

\n
$$
Y(F1 * F2) = Y(F1) * F2 + F1 * F2(F2)
$$
\n(3.66)

for any F^1 , $F^2 \in \mathcal{Q}^r(\Gamma)$. The relation for X has already been proved in [\(3.63\)](#page-24-2). The relation for Y is again an easy consequence of the fact that Y is a derivation on \mathcal{Q} M and $Y(f \| \alpha) = Y(f) \| \alpha$ for any $f \in \mathcal{QM}, \alpha \in GL_2^+(\mathbb{Q})$. \Box

4. Twisted quasimodular Hecke operators

Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$. For any $\sigma \in SL_2(\mathbb{Z})$, we have developed the theory of σ -twisted modular Hecke operators in [\[3\]](#page-38-4). In this section, we introduce and study the collection $\mathcal{Q}_{\sigma}(\Gamma)$ of quasimodular Hecke operators of level Γ twisted by σ . When $\sigma = 1$, $\mathcal{Q}_{\sigma}(\Gamma)$ coincides with the

algebra $\mathcal{Q}(\Gamma)$ of quasimodular Hecke operators. In general, we will show that $\mathcal{Q}_{\sigma}(\Gamma)$ is a right $\mathcal{Q}(\Gamma)$ -module and carries a pairing:

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\sigma}(\Gamma) \otimes \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma}(\Gamma). \tag{4.1}
$$

We recall from Section [3](#page-11-0) the Lie algebra I_1 with two generators Y, X satisfying $[Y, X] = X$. If we let \mathfrak{h}_1 be the Hopf algebra that is the universal enveloping algebra of I_1 , we show in Section [4.1](#page-27-0) that the pairing in [\(4.1\)](#page-26-0) on $\mathcal{Q}_{\sigma}(\Gamma)$ carries a "Hopf action" of \mathfrak{h}_1 . In other words, we have:

$$
h(F^1, F^2) = \sum (h_{(1)}(F^1), h_{(2)}(F^2)), \quad \forall \, h \in \mathfrak{h}_1, \ F^1, F^2 \in \mathcal{Q}_\sigma(\Gamma), \tag{4.2}
$$

where the coproduct $\Delta: \mathfrak{h}_1 \longrightarrow \mathfrak{h}_1 \otimes \mathfrak{h}_1$ is given by $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$ for any $h \in \mathfrak{h}_1$. In Section [4.2,](#page-33-0) we consider operators $X_{\tau} : \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\tau\sigma}(\Gamma)$ for any τ , $\sigma \in SL_2(\mathbb{Z})$. In particular, we consider operators acting between the levels of the graded module:

$$
\mathbb{Q}_{\sigma}(\Gamma) = \bigoplus_{m \in \mathbb{Z}} \mathcal{Q}_{\sigma(m)}(\Gamma),\tag{4.3}
$$

where for any $\sigma \in SL_2(\mathbb{Z})$, we set $\sigma(m) = \left(\begin{smallmatrix} 1 & m \\ 0 & 1 \end{smallmatrix}\right) \cdot \sigma$. Further, we generalize the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$ in [\(4.1\)](#page-26-0) to a pairing:

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\sigma(m)}(\Gamma) \otimes \mathcal{Q}_{\sigma(n)}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma(m+n)}(\Gamma), \quad \forall \, m, n \in \mathbb{Z}.\tag{4.4}
$$

We show that the pairing in (4.4) is a special case of a more general pairing

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\tau_1\sigma}(\Gamma) \otimes \mathcal{Q}_{\tau_2\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\tau_1\tau_2\sigma}(\Gamma), \tag{4.5}
$$

where τ_1 , τ_2 are commuting matrices in $SL_2(\mathbb{Z})$. From [\(4.4\)](#page-26-1), it is clear that we have a graded pairing on $\mathbb{Q}_{\sigma}(\Gamma)$ that extends the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$. Finally, we consider the Lie algebra $\mathfrak{l}_\mathbb{Z}$ with generators $\{Z, X_n | n \in \mathbb{Z}\}$ satisfying the commutator relations:

$$
[Z, X_n] = (n+1)X_n, \quad [X_n, X_{n'}] = 0, \quad \forall n, n' \in \mathbb{Z}.
$$
 (4.6)

Then, for $n = 0$, we have $[Z, X_0] = X_0$ and hence the Lie algebra $I_{\mathbb{Z}}$ contains the Lie algebra \mathfrak{l}_1 acting on $\mathcal{Q}_{\sigma}(\Gamma)$. Then, if we let $\mathfrak{h}_\mathbb{Z}$ be the Hopf algebra that is the universal enveloping algebra of $I_{\mathbb{Z}}$, we show that $\mathfrak{h}_{\mathbb{Z}}$ has a Hopf action on the pairing on $\mathbb{Q}_{\sigma}(\Gamma)$. In other words, for any F^1 , $F^2 \in \mathbb{Q}_{\sigma}(\Gamma)$, we have

$$
h(F^1, F^2) = \sum (h_{(1)}(F^1), h_{(2)}(F^2)), \quad \forall \, h \in \mathfrak{h}_\mathbb{Z}, \tag{4.7}
$$

where the coproduct $\Delta: \mathfrak{h}_{\mathbb{Z}} \longrightarrow \mathfrak{h}_{\mathbb{Z}} \otimes \mathfrak{h}_{\mathbb{Z}}$ is defined by setting $\Delta(h) := \sum h_{(1)} \otimes h_{(2)}$. for each $h \in \mathfrak{h}_\mathbb{Z}$.

4.1. The pairing on $\mathcal{Q}_{\sigma}(\Gamma)$ **and Hopf action.** Let $\sigma \in SL_2(\mathbb{Z})$ and let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$. We start by defining the collection $\mathcal{Q}_{\sigma}(\Gamma)$ of quasimodular Hecke operators of level Γ twisted by σ . When $\sigma = 1$, this reduces to the definition of $\mathcal{Q}(\Gamma)$.

Definition 4.1. Choose $\sigma \in SL_2(\mathbb{Z})$ and let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$. A σ -twisted quasimodular Hecke operator F of level Γ is a function of finite support:

$$
F: \Gamma \backslash GL_2^+(\mathbb{Q}) \longrightarrow \mathcal{QM}, \quad \Gamma \alpha \mapsto F_\alpha \in \mathcal{QM}
$$
 (4.8)

such that:

$$
F_{\alpha\gamma} = F_{\alpha} \| \sigma \gamma \sigma^{-1}, \quad \forall \gamma \in \Gamma. \tag{4.9}
$$

We denote by $\mathcal{Q}_{\sigma}(\Gamma)$ the collection of σ -twisted quasimodular Hecke operators of level Γ .

Proposition 4.2. *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *and choose some* $\sigma \in SL_2(\mathbb{Z})$ *. Then there exists a pairing:*

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\sigma}(\Gamma) \otimes \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma}(\Gamma) \tag{4.10}
$$

defined as follows:

$$
(F^1, F^2)_{\alpha} := \sum_{\beta \in \Gamma \backslash SL_2(\mathbb{Z})} F^1_{\beta \sigma} \cdot (F^2_{\alpha \sigma^{-1} \beta^{-1}} \| \sigma \beta),
$$

$$
\forall F^1, F^2 \in \mathcal{Q}_{\sigma}(\Gamma), \ \alpha \in GL_2^+(\mathbb{Q}). \tag{4.11}
$$

Proof. We choose $\gamma \in \Gamma$. Then, for any $\beta \in SL_2(\mathbb{Z})$, we have:

$$
F_{\gamma\beta\sigma}^{1} = F_{\beta\sigma}^{1},
$$

\n
$$
F_{\alpha\sigma^{-1}\beta^{-1}\gamma^{-1}}^{2} \| \sigma \gamma\beta = F_{\alpha\sigma^{-1}\beta^{-1}}^{2} \| \sigma \gamma^{-1}\sigma^{-1}\sigma \gamma\beta = F_{\alpha\sigma^{-1}\beta^{-1}}^{2} \| \sigma\beta
$$
\n(4.12)

and hence the sum in (4.11) is well defined, i.e., it does not depend on the choice of coset representatives. We have to show that $(F^1, F^2) \in \mathcal{Q}_{\sigma}(\Gamma)$. For this, we first note that $F^2_{\gamma\alpha\sigma^{-1}\beta^{-1}} = F^2_{\alpha\sigma^{-1}\beta^{-1}}$ for any $\gamma \in \Gamma$ and hence from the expression in [\(4.11\)](#page-27-1), it follows that $(F^1, F^2)_{\gamma\alpha} = (F^1, F^2)_{\alpha}$. On the other hand, for any $\gamma \in \Gamma$, we can write:

$$
(F^1, F^2)_{\alpha\gamma} = \sum_{\beta \in \Gamma \backslash SL_2(\mathbb{Z})} F^1_{\beta\sigma} \cdot (F^2_{\alpha\gamma\sigma^{-1}\beta^{-1}} \| \sigma \beta). \tag{4.13}
$$

We put $\delta = \beta \sigma \gamma^{-1} \sigma^{-1}$. It is clear that as β runs through all the coset representatives of Γ in $SL_2(\mathbb{Z})$, so does δ . From [\(4.9\)](#page-27-2), we know that $F^1_{\delta \sigma \gamma} = F^1_{\delta \sigma} || \sigma \gamma \sigma^{-1}$. Then, we can rewrite (4.13) as:

$$
(F^1, F^2)_{\alpha\gamma} = \sum_{\delta \in \Gamma \backslash SL_2(\mathbb{Z})} F^1_{\delta \sigma \gamma} \cdot (F^2_{\alpha\sigma^{-1}\delta^{-1}} \| \sigma \delta \sigma \gamma \sigma^{-1})
$$

\n
$$
= \sum_{\delta \in \Gamma \backslash SL_2(\mathbb{Z})} (F^1_{\delta \sigma} \| \sigma \gamma \sigma^{-1}) \cdot ((F^2_{\alpha\sigma^{-1}\delta^{-1}} \| \sigma \delta) \| \sigma \gamma \sigma^{-1})
$$

\n
$$
= \left(\sum_{\delta \in \Gamma \backslash SL_2(\mathbb{Z})} F^1_{\delta \sigma} \cdot (F^2_{\alpha\sigma^{-1}\delta^{-1}} \| \sigma \delta) \right) \| (\sigma \gamma \sigma^{-1})
$$

\n
$$
= (F^1, F^2)_{\alpha} \| \sigma \gamma \sigma^{-1}.
$$

\n(4.14)

It follows that $(F^1, F^2) \in \mathcal{Q}_{\sigma}(\Gamma)$ and hence we have a well defined pairing

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\sigma}(\Gamma) \otimes \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma}(\Gamma).
$$

We now consider the Hopf algebra \mathfrak{h}_1 defined in Section [3.2.](#page-21-0) By definition, \mathfrak{h}_1 is the universal enveloping algebra of the Lie algebra I_1 with two generators X and Y satisfying $[Y, X] = X$. We will now show that \mathfrak{l}_1 has a Lie action on $\mathcal{Q}_{\sigma}(\Gamma)$ and that \mathfrak{h}_1 has a "Hopf action" with respect to the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$.

Proposition 4.3. Let $\sigma \in SL_2(\mathbb{Z})$ and let $\Gamma = \Gamma(N)$ be a principal congruence *subgroup of* $SL_2(\mathbb{Z})$ *.*

(a) *The Lie algebra* I_1 *has a Lie action on* $\mathcal{Q}_\sigma(\Gamma)$ *defined by:*

$$
X(F)_{\alpha} := X(F_{\alpha}), \quad Y(F)_{\alpha} := Y(F_{\alpha}),
$$

$$
\forall F \in \mathcal{Q}_{\sigma}(\Gamma), \alpha \in GL_2^+(\mathbb{Q}). \quad (4.15)
$$

(b) *The universal enveloping algebra* h_1 *of the Lie algebra* l_1 *has a "Hopf action" with respect to the pairing on* $\mathcal{Q}_{\sigma}(\Gamma)$ *; in other words, we have:*

$$
h(F^1, F^2) = \sum (h_{(1)}(F^1), h_{(2)}(F^2)),
$$

$$
\forall F^1, F^2 \in \mathcal{Q}_{\sigma}(\Gamma), h \in \mathfrak{h}_1, (4.16)
$$

where the coproduct Δ : $\mathfrak{h}_1 \longrightarrow \mathfrak{h}_1 \otimes \mathfrak{h}_1$ *is given by* $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$ *for any* $h \in \mathfrak{h}_1$.

Proof. (a) We need to verify that for any $F \in \mathcal{Q}_{\sigma}(\Gamma)$ and any $\alpha \in GL_2^+(\mathbb{Q})$, we have $([Y, X](F))_{\alpha} = X(F)_{\alpha}$. We know that for any element $g \in \mathcal{QM}$ and hence in particular for the element $F_{\alpha} \in \mathcal{QM}$, we have $[Y, X](g) = X(g)$. The result now follows from the definition of the action of X and Y in [\(4.15\)](#page-28-0).

(b) The Lie action of \mathfrak{l}_1 on $\mathcal{Q}_{\sigma}(\Gamma)$ from part (a) induces an action of the universal enveloping algebra \mathfrak{h}_1 on $\mathcal{Q}_\sigma(\Gamma)$. In order to prove [\(4.16\)](#page-28-1), it suffices to prove the result for the generators X and Y . We have:

$$
X(F^1, F^2)\Big)_{\alpha} = X((F^1, F^2)_{\alpha})
$$

\n
$$
= X\Big(\sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} F^1_{\beta \sigma} \cdot (F^2_{\alpha \sigma^{-1} \beta^{-1}} \| \sigma \beta) \Big)
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} X(F^1_{\beta \sigma}) \cdot (F^2_{\alpha \sigma^{-1} \beta^{-1}} \| \sigma \beta)
$$

\n
$$
+ \sum_{\beta \in \Gamma \setminus GL_2^+(\mathbb{Q})} F^1_{\beta \sigma} \cdot X(F^2_{\alpha \sigma^{-1} \beta^{-1}} \| \sigma \beta) \quad (4.17)
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} X(F^1_{\beta \sigma}) \cdot (F^2_{\alpha \sigma^{-1} \beta^{-1}} \| \sigma \beta)
$$

\n
$$
+ \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} F^1_{\beta \sigma} \cdot (X(F^2_{\alpha \sigma^{-1} \beta^{-1}}) \| \sigma \beta)
$$

\n
$$
= (X(F^1), F^2))_{\alpha} + (F^1, X(F^2))_{\alpha}.
$$

In [\(4.17\)](#page-29-0), we have used the fact that $\sigma\beta \in SL_2(\mathbb{Z})$ and hence

$$
X(F_{\alpha\sigma^{-1}\beta^{-1}}^2\|\sigma\beta)=X(F_{\alpha\sigma^{-1}\beta^{-1}}^2)\|\sigma\beta.
$$

We can similarly verify the relation [\(4.16\)](#page-28-1) for $Y \in \mathfrak{h}_1$. This proves the result. \Box

Our next aim is to show that $\mathcal{Q}_{\sigma}(\Gamma)$ is a right $\mathcal{Q}(\Gamma)$ -module. Thereafter, we will consider the Hopf algebra H_1 defined in Section [3.2](#page-21-0) and show that there is a "Hopf action" of \mathcal{H}_1 on the right $\mathcal{Q}(\Gamma)$ -module $\mathcal{Q}_\sigma(\Gamma)$.

Proposition 4.4. *Let* $\sigma \in SL_2(\mathbb{Z})$ *and let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *. Then,* $\mathcal{Q}_{\sigma}(\Gamma)$ *carries a right* $\mathcal{Q}(\Gamma)$ *-module structure defined by:*

$$
(F^1 * F^2)_{\alpha} := \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} F^1_{\beta \sigma} \cdot (F^2_{\alpha \sigma^{-1} \beta^{-1}} | \beta)
$$
(4.18)

for any $F^1 \in \mathcal{Q}_\sigma(\Gamma)$ *and any* $F^2 \in \mathcal{Q}(\Gamma)$ *.*

Proof. We take $\gamma \in \Gamma$. Then, since $F^1 \in \mathcal{Q}_\sigma(\Gamma)$ and $F^2 \in \mathcal{Q}(\Gamma)$, we have:

$$
F_{\gamma\beta\sigma}^1 = F_{\beta\sigma}^1, \quad F_{\alpha\sigma^{-1}\beta^{-1}\gamma^{-1}}^2 |\gamma\beta| = F_{\alpha\sigma^{-1}\beta^{-1}}^2 |\gamma^{-1}\gamma\beta| = F_{\alpha\sigma^{-1}\beta^{-1}}^2 |\beta. \quad (4.19)
$$

It follows that the sum in (4.18) is well defined, i.e., it does not depend on the choice of coset representatives for Γ in $GL_2^+(\mathbb{Q})$. Further, it is clear that $(F^1 * F^2)_{\gamma\alpha} =$ $(F^1 * F^2)_{\alpha}$. In order to show that $F^1 * F^2 \in \mathcal{Q}_{\sigma}(\Gamma)$, it remains to show that

$$
(F^1 * F^2)_{\alpha\gamma} = (F^1 * F_2)_{\alpha} || \sigma \gamma \sigma^{-1}.
$$

 $\overline{}$

By definition, we know that:

$$
(F^1 * F^2)_{\alpha\gamma} = \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} F^1_{\beta\sigma} \cdot (F^2_{\alpha\gamma\sigma^{-1}\beta^{-1}} | \beta)
$$
(4.20)

We now set $\delta = \beta \sigma \gamma^{-1} \sigma^{-1}$. This allows us to rewrite [\(4.20\)](#page-30-0) as follows:

$$
(F^{1} * F^{2})_{\alpha\gamma} = \sum_{\delta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F^{1}_{\delta\sigma\gamma} \cdot (F^{2}_{\alpha\sigma^{-1}\delta^{-1}} | \delta\sigma\gamma\sigma^{-1})
$$

\n
$$
= \sum_{\delta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} (F^{1}_{\delta\sigma} || \sigma\gamma\sigma^{-1}) \cdot ((F^{2}_{\alpha\sigma^{-1}\delta^{-1}} | \delta) | \sigma\gamma\sigma^{-1})
$$

\n
$$
= \left(\sum_{\delta \in \Gamma \backslash GL_{2}^{+}(\mathbb{Q})} F^{1}_{\delta\sigma} \cdot (F^{2}_{\alpha\sigma^{-1}\delta^{-1}} | \delta) \right) || \sigma\gamma\sigma^{-1}
$$

\n
$$
= (F^{1} * F^{2})_{\alpha} || \sigma\gamma\sigma^{-1}.
$$

\n(4.21)

Hence, $(F^1 * F^2) \in \mathcal{Q}_{\sigma}(\Gamma)$. In order to show that $\mathcal{Q}_{\sigma}(\Gamma)$ is a right $\mathcal{Q}(\Gamma)$ -module, we need to check that $F^1 * (F^2 * F^3) = (F^1 * F^2) * F^3$ for any $F^1 \in \mathcal{Q}_{\sigma}(\Gamma)$ and any F^2 , $F^3 \in \mathcal{Q}(\Gamma)$. For this, we note that:

$$
(F^1 * F^2)_{\alpha} = \sum_{\alpha_2 \alpha_1 = \alpha} F^1_{\alpha_1} \cdot (F^2_{\alpha_2} | \alpha_1 \sigma^{-1}), \quad \forall \alpha \in GL_2^+(\mathbb{Q}), \tag{4.22}
$$

where the sum in [\(4.22\)](#page-30-1) is taken over all pairs (α_1, α_2) such that $\alpha_2 \alpha_1 = \alpha$ modulo the the following equivalence relation:

$$
(\alpha_1, \alpha_2) \sim (\gamma \alpha_1, \alpha_2 \gamma^{-1}), \quad \forall \gamma \in \Gamma. \tag{4.23}
$$

It follows that for any $\alpha \in GL_2^+(\mathbb{Q})$, we have:

$$
((F^1 * F^2) * F^3)_{\alpha} = \sum_{\alpha_3 \alpha_2 \alpha_1 = \alpha} F^1_{\alpha_1} \cdot (F^2_{\alpha_2} | \alpha_1 \sigma^{-1}) \cdot (F^3_{\alpha_3} | \alpha_2 \alpha_1 \sigma^{-1}), \tag{4.24}
$$

where the sum in [\(4.24\)](#page-30-2) is taken over all triples $(\alpha_1, \alpha_2, \alpha_3)$ such that $\alpha_3 \alpha_2 \alpha_1 = \alpha$ modulo the following equivalence relation:

$$
(\alpha_1, \alpha_2, \alpha_3) \sim (\gamma \alpha_1, \gamma' \alpha_2 \gamma^{-1}, \alpha_3 \gamma'^{-1}), \quad \forall \gamma, \gamma' \in \Gamma. \tag{4.25}
$$

On the other hand, we have:

$$
(F^{1} * (F^{2} * F^{3}))_{\alpha} = \sum_{\substack{\alpha'_{2} \alpha_{1} = \alpha}} F^{1}_{\alpha_{1}} \cdot ((F^{2} * F^{3})_{\alpha'_{2}} | \alpha_{1} \sigma^{-1})
$$

$$
= \sum_{\substack{\alpha_{3} \alpha_{2} \alpha_{1} = \alpha}} F^{1}_{\alpha_{1}} \cdot (F^{2}_{\alpha_{2}} | \alpha_{1} \sigma^{-1}) \cdot (F^{3}_{\alpha_{3}} | \alpha_{2} \alpha_{1} \sigma^{-1}).
$$
\n(4.26)

Again, we see that the sum in [\(4.26\)](#page-30-3) is taken over all triples $(\alpha_1, \alpha_2, \alpha_3)$ such that $\alpha_3 \alpha_2 \alpha_1 = \alpha$ modulo the equivalence relation in [\(4.25\)](#page-30-4). From [\(4.24\)](#page-30-2) and [\(4.26\)](#page-30-3), it follows that $(F^1 * (F^2 * F^3))_{\alpha} = ((F^1 * F^2) * F^3)_{\alpha}$. This proves the result.

We are now ready to describe the action of the Hopf algebra \mathcal{H}_1 on $\mathcal{Q}_{\sigma}(\Gamma)$. From Section [3.2,](#page-21-0) we know that \mathcal{H}_1 is generated by $X, Y, \{\delta_n\}_{n>1}$ which satisfy the relations [\(3.43\)](#page-21-1), [\(3.44\)](#page-21-2), [\(3.45\)](#page-21-3).

Proposition 4.5. *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *and choose some* $\sigma \in SL_2(\mathbb{Z})$ *.*

(a) *The collection of* σ *-twisted quasimodular Hecke operators of level* Γ *can be made into an* \mathcal{H}_1 *-module as follows; for any* $F \in \mathcal{Q}_\sigma(\Gamma)$ and $\alpha \in GL_2^+(\mathbb{Q})$ *:*

$$
X(F)_{\alpha} := X(F_{\alpha}), \quad Y(F)_{\alpha} := Y(F_{\alpha}), \quad \delta_n(F)_{\alpha} := X^{n-1}(\mu_{\alpha\sigma^{-1}}) \cdot F_{\alpha},
$$

$$
\forall n \ge 1. \quad (4.27)
$$

(b) *The Hopf algebra* \mathcal{H}_1 *has a "Hopf action" on the right* $\mathcal{Q}(\Gamma)$ *-module* $\mathcal{Q}_\sigma(\Gamma)$ *; in other words, for any* $F^1 \in \mathcal{Q}_\sigma(\Gamma)$ *and any* $F^2 \in \mathcal{Q}(\Gamma)$ *, we have:*

$$
h(F^1 * F^2) = \sum h_{(1)}(F^1) * h_{(2)}(F^2), \quad \forall \, h \in \mathcal{H}_1,\tag{4.28}
$$

where the coproduct Δ : $\mathcal{H}_1 \longrightarrow \mathcal{H}_1 \otimes \mathcal{H}_1$ is given by $\Delta(h) = \sum h_{(1)} \otimes h_{(2)}$ for *each* $h \in \mathcal{H}_1$.

Proof. (a) For any $F \in \mathcal{Q}_{\sigma}(\Gamma)$, we have already checked in the proof of Proposition [4.3](#page-28-2) that $X(F)$, $Y(F) \in \mathcal{Q}_{\sigma}(\Gamma)$. Further, from [\(3.54\)](#page-22-4), we know that for any $\alpha \in GL_2^+(\mathbb{Q})$ and $\gamma \in \Gamma$, we have:

$$
\mu_{\gamma\alpha\sigma^{-1}} = \mu_{\gamma}|\alpha\sigma^{-1} + \mu_{\alpha\sigma^{-1}} = \mu_{\alpha\sigma^{-1}},
$$

\n
$$
\mu_{\alpha\gamma\sigma^{-1}} = \mu_{\alpha\sigma^{-1}}|\sigma\gamma\sigma^{-1} + \mu_{\sigma\gamma\sigma^{-1}} = \mu_{\alpha\sigma^{-1}}|\sigma\gamma\sigma^{-1}.
$$
\n(4.29)

Hence, for any $F \in \mathcal{Q}_{\sigma}(\Gamma)$, we have:

$$
\delta_n(F)_{\gamma\alpha} = X^{n-1}(\mu_{\gamma\alpha\sigma^{-1}}) \cdot F_{\gamma\alpha} = X^{n-1}(\mu_{\alpha\sigma^{-1}}) \cdot F_{\alpha} = \delta_n(F)_{\alpha},
$$

\n
$$
\delta_n(F)_{\alpha\gamma} = X^{n-1}(\mu_{\alpha\gamma\sigma^{-1}}) \cdot F_{\alpha\gamma} = X^{n-1}(\mu_{\alpha\sigma^{-1}}|\sigma\gamma\sigma^{-1}) \cdot (F_{\alpha}||\sigma\gamma\sigma^{-1}) \quad (4.30)
$$

\n
$$
= \delta_n(F)_{\alpha} ||\sigma\gamma\sigma^{-1}.
$$

Hence, $\delta_n(F) \in \mathcal{Q}_{\sigma}(\Gamma)$. In order to show that there is an action of the Lie algebra \mathcal{L}_1 (and hence of its universal eneveloping algebra \mathcal{H}_1) on $\mathcal{Q}_{\sigma}(\Gamma)$, it remains to check the commutator relations [\(3.43\)](#page-21-1) between the operators X, Y and δ_n acting on $\mathcal{Q}_{\sigma}(\Gamma)$. We have already checked that $[Y, X] = X$ in the proof of Proposition [4.3.](#page-28-2) Since X is a derivation on \mathcal{QM} and $\delta_n(F)_{\alpha} = X^{n-1}(\mu_{\alpha\sigma^{-1}}) \cdot F_{\alpha}$, we have:

$$
[X, \delta_n](F)_{\alpha} = X(X^{n-1}(\mu_{\alpha\sigma^{-1}}) \cdot F_{\alpha}) - X^{n-1}(\mu_{\alpha\sigma^{-1}}) \cdot X(F_{\alpha})
$$

= $X(X^{n-1}(\mu_{\alpha\sigma^{-1}})) \cdot F_{\alpha} = X^n(\mu_{\alpha\sigma^{-1}}) \cdot F_{\alpha} = \delta_{n+1}(F)_{\alpha}.$ (4.31)

Similarly, since $\mu_{\alpha\alpha^{-1}} \in \mathcal{M} \subseteq \mathcal{QM}$ is of weight 2 and Y is a derivation on \mathcal{QM} , we have:

$$
[Y, \delta_n](F)_{\alpha} = Y(X^{n-1}(\mu_{\alpha\sigma^{-1}}) \cdot F_{\alpha}) - X^{n-1}(\mu_{\alpha\sigma^{-1}}) \cdot Y(F_{\alpha})
$$

=
$$
Y(X^{n-1}(\mu_{\alpha\sigma^{-1}})) \cdot F_{\alpha} = nX^{n-1}(\mu_{\alpha\sigma^{-1}}) \cdot F_{\alpha} = n\delta_n(F)_{\alpha}.
$$
 (4.32)

Finally, we can verify easily that $[\delta_k, \delta_l] = 0$ for any $k, l \ge 1$.

(b) In order to prove (4.28) , it is enough to check this equality for the generators X, Y and $\delta_1 \in \mathcal{H}_1$. For $F^1 \in \mathcal{Q}_{\sigma}(\Gamma)$, $F^2 \in \mathcal{Q}(\Gamma)$ and $\alpha \in GL_2^+(\mathbb{Q})$, we have:

$$
(X(F^{1} * F^{2}))_{\alpha} = X((F^{1} * F^{2})_{\alpha})
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} X(F^{1}_{\beta \sigma} \cdot (F^{2}_{\alpha \sigma^{-1} \beta^{-1}} | \beta))
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} X(F^{1}_{\beta \sigma}) \cdot (F^{2}_{\alpha \sigma^{-1} \beta^{-1}} | \beta) + \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} F^{1}_{\beta \sigma} \cdot X(F^{2}_{\alpha \sigma^{-1} \beta^{-1}} | \beta)
$$

\n
$$
= (X(F^{1}) * F^{2})_{\alpha} + \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} F^{1}_{\beta \sigma} \cdot X(F^{2}_{\alpha \sigma^{-1} \beta^{-1}}) | \beta
$$

\n
$$
- \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} F^{1}_{\beta \sigma} \cdot (\mu_{\beta^{-1}} | \beta) \cdot Y(F^{2}_{\alpha \sigma^{-1} \beta^{-1}}) | \beta
$$

\n
$$
= (X(F^{1}) * F^{2})_{\alpha} + \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} F^{1}_{\beta \sigma} \cdot X(F^{2}_{\alpha \sigma^{-1} \beta^{-1}}) | \beta
$$

\n
$$
= (X(F^{1}) * F^{2})_{\alpha} + (F^{1} * X(F^{2}))_{\alpha}
$$

\n
$$
+ \sum_{\beta \in \Gamma \setminus GL_{2}^{+}(\mathbb{Q})} \delta_{1}(F)_{\beta \sigma} \cdot Y(F^{2})_{\alpha \sigma^{-1} \beta^{-1}} | \beta
$$

\n
$$
= (X(F^{1}) * F^{2})_{\alpha} + (F^{1} * X(F^{2}))_{\alpha} + (\delta_{1}(F^{1}) * Y(F^{2}))_{\alpha}.
$$

\n
$$
= (X(F^{1}) * F^{2})_{\alpha} + (F^{1} * X(F^{2}))_{\alpha} + (\delta_{1}(F^{1}) * Y(F^{2}))_{\alpha}.
$$

\n(4.33)

In [\(4.33\)](#page-32-0) above, we have used the fact that $0 = \mu_{\beta^{-1}\beta} = \mu_{\beta^{-1}}|\beta + \mu_{\beta}$. For α , $\beta \in GL_2^+(\mathbb{Q})$, it follows from [\(3.54\)](#page-22-4) that

$$
\mu_{\alpha\sigma^{-1}} = \mu_{\alpha\sigma^{-1}\beta^{-1}\beta} = \mu_{\alpha\sigma^{-1}\beta^{-1}}|\beta + \mu_{\beta}.
$$
\n(4.34)

Since $F^2 \in \mathcal{Q}(\Gamma)$ we know from [\(3.55\)](#page-22-5) that $\delta_1(F^2)_{\alpha\sigma^{-1}\beta^{-1}} = \mu_{\alpha\sigma^{-1}\beta^{-1}} \cdot F_{\alpha\sigma^{-1}\beta^{-1}}^2$.

Combining with [\(4.34\)](#page-32-1), we have:

$$
\delta_1((F^1 * F^2))_{\alpha} = \mu_{\alpha\sigma^{-1}} \cdot (F^1 * F^2)_{\alpha}
$$

\n
$$
= \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} \mu_{\alpha\sigma^{-1}} \cdot (F_{\beta\sigma}^1 \cdot (F_{\alpha\sigma^{-1}\beta^{-1}}^2 | \beta))
$$

\n
$$
= \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} (\mu_{\beta} \cdot F_{\beta\sigma}^1) \cdot (F_{\alpha\sigma^{-1}\beta^{-1}}^2 | \beta) \qquad (4.35)
$$

\n
$$
+ \sum_{\beta \in \Gamma \backslash GL_2^+(\mathbb{Q})} F_{\beta\sigma}^1 \cdot (\mu_{\alpha\sigma^{-1}\beta^{-1}} \cdot F_{\alpha\sigma^{-1}\beta^{-1}}^2) | \beta
$$

\n
$$
= (\delta_1(F^1) * F^2)_{\alpha} + (F^1 * \delta_1(F^2))_{\alpha}.
$$

Finally, from the definition of Y , it is easy to show that

$$
(Y(F^{1} * F^{2}))_{\alpha} = (Y(F^{1}) * F^{2})_{\alpha} + (F^{1} * Y(F^{2}))_{\alpha}.
$$

4.2. The operators $X_{\tau} : \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\tau\sigma}(\Gamma)$ and Hopf action. Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup and choose some $\sigma \in SL_2(\mathbb{Z})$. In Section [4.1,](#page-27-0) we have only considered operators X, Y and $\{\delta_n\}_{n>1}$ that are endomorphisms of $\mathcal{Q}_{\sigma}(\Gamma)$. In this section, we will define an operator

$$
X_{\tau}: \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\tau\sigma}(\Gamma) \tag{4.36}
$$

for $\tau \in SL_2(\mathbb{Z})$. In particular, we consider the commuting family $\{\rho_n := \left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix}\right)\}_{n \in \mathbb{Z}}$ of matrices in $SL_2(\mathbb{Z})$ and write $\sigma(n) := \rho_n \cdot \sigma$. Then, we have operators:

$$
X_{\rho_n}: \mathcal{Q}_{\sigma(m)}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma(m+n)}(\Gamma), \quad \forall \, m, n \in \mathbb{Z}
$$
 (4.37)

acting "between the levels" of the graded module $\mathbb{Q}_{\sigma}(\Gamma) := \bigoplus_{m \in \mathbb{Z}} \mathcal{Q}_{\sigma(m)}(\Gamma)$. We already know that $\mathcal{Q}_{\sigma}(\Gamma)$ carries an action of the Hopf algebra \mathfrak{h}_1 . Further, \mathfrak{h}_1 has a Hopf action on the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$ in the sense of Proposition [4.3.](#page-28-2) We will now show that h_1 can be naturally embedded into a larger Hopf algebra $h_{\mathbb{Z}}$ acting on $\mathbb{Q}_{\sigma}(\Gamma)$ that incorporates the operators X_{ρ_n} in [\(4.37\)](#page-33-1). Finally, we will show that the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$ can be extended to a pairing:

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\sigma(m)}(\Gamma) \otimes \mathcal{Q}_{\sigma(n)}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma(m+n)}(\Gamma), \quad \forall \, m, n \in \mathbb{Z}. \tag{4.38}
$$

This gives us a pairing on $\mathbb{Q}_{\sigma}(\Gamma)$ and we prove that this pairing carries a Hopf action of $\eta_{\mathbb{Z}}$. We start by defining the operators X_{τ} mentioned in [\(4.36\)](#page-33-2).

Proposition 4.6. *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *and choose* $\sigma \in SL_2(\mathbb{Z})$ *.*

(a) *For each* $\tau \in SL_2(\mathbb{Z})$ *, we have a morphism:*

$$
X_{\tau}: \mathcal{Q}_{\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\tau\sigma}(\Gamma), \quad X_{\tau}(F)_{\alpha} := X(F_{\alpha}) || \tau^{-1},
$$

$$
\forall F \in \mathcal{Q}_{\sigma}(\Gamma), \ \alpha \in GL_2^+(\mathbb{Q}). \tag{4.39}
$$

(b) Let $\tau_1, \tau_2 \in SL_2(\mathbb{Z})$ be two matrices such that $\tau_1 \tau_2 = \tau_2 \tau_1$. Then, the commut $ator\left[X_{\tau_1}, X_{\tau_2}\right] = 0.$

Proof. (a) We choose any $F \in \mathcal{Q}_{\sigma}(\Gamma)$. From [\(4.39\)](#page-33-3), it is clear that $X_{\tau}(F)_{\gamma\alpha} =$ $X_{\tau}(F)_{\alpha}$ for any $\gamma \in \Gamma$ and $\alpha \in GL_2^+(\mathbb{Q})$. Further, we note that:

$$
X_{\tau}(F)_{\alpha\gamma} = X(F_{\alpha\gamma})\|\tau^{-1} = X\big(F_{\alpha}\|\sigma\gamma\sigma^{-1}\big)\|\tau^{-1}
$$

=
$$
X\big(F_{\alpha}\|\tau^{-1}\big)\|\tau\sigma\gamma\sigma^{-1}\tau^{-1}
$$

=
$$
X_{\tau}(F_{\alpha})\|((\tau\sigma)\gamma(\sigma^{-1}\tau^{-1})).
$$
 (4.40)

It follows from [\(4.40\)](#page-34-0) that $X_{\tau}(F) \in \mathcal{Q}_{\tau\sigma}(\Gamma)$ for any $F \in \mathcal{Q}_{\sigma}(\Gamma)$.

(b) Since τ_1 and τ_2 commute, both $X_{\tau_1} X_{\tau_2}$ and $X_{\tau_2} X_{\tau_1}$ are operators from $\mathcal{Q}_{\sigma}(\Gamma)$ to $\mathcal{Q}_{\tau_1 \tau_2 \sigma}(\Gamma) = \mathcal{Q}_{\tau_2 \tau_1 \sigma}(\Gamma)$. For any $F \in \mathcal{Q}_{\sigma}(\Gamma)$, we have $(\forall \alpha \in GL_2^+(\mathbb{Q}))$:

$$
\begin{aligned} \left(X_{\tau_1} X_{\tau_2}(F)\right)_{\alpha} &= X \left(X_{\tau_2}(F)_{\alpha}\right) \| \tau_1^{-1} \\ &= X^2(F_{\alpha}) \| \tau_2^{-1} \tau_1^{-1} \\ &= X^2(F_{\alpha}) \| \tau_1^{-1} \tau_2^{-1} = \left(X_{\tau_2} X_{\tau_1}(F)\right)_{\alpha}. \end{aligned} \tag{4.41}
$$

This proves the result.

As mentioned before, we now consider the commuting family $\{\rho_n := \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}\}_{n \in \mathbb{Z}}$ of matrices in $SL_2(\mathbb{Z})$ and set $\sigma(n) := \rho_n \cdot \sigma$ for any $\sigma \in SL_2(\mathbb{Z})$. We want to define a pairing on the graded module $\mathbb{Q}_{\sigma}(\Gamma) = \bigoplus_{m \in \mathbb{Z}} \mathcal{Q}_{\sigma(m)}(\Gamma)$ that extends the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$. In fact, we will prove a more general result.

Proposition 4.7. Let $\Gamma = \Gamma(N)$ be a principal congruence subgroup of $SL_2(\mathbb{Z})$ and *choose* $\sigma \in SL_2(\mathbb{Z})$ *. Let* τ_1 *,* $\tau_2 \in SL_2(\mathbb{Z})$ *be two matrices such that* $\tau_1 \tau_2 = \tau_2 \tau_1$ *. Then, there exists a pairing:*

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\tau_1\sigma}(\Gamma) \otimes \mathcal{Q}_{\tau_2\sigma}(\Gamma) \longrightarrow \mathcal{Q}_{\tau_1\tau_2\sigma}(\Gamma) \tag{4.42}
$$

defined as follows: for any $F^1 \in \mathcal{Q}_{\tau_1 \sigma}(\Gamma)$ and any $F^2 \in \mathcal{Q}_{\tau_2 \sigma}(\Gamma)$, we set:

$$
(F^1, F^2)_{\alpha} := \sum_{\beta \in \Gamma \backslash SL_2(\mathbb{Z})} (F^1_{\beta \sigma} || \tau_2^{-1}) \cdot (F^2_{\alpha \sigma^{-1} \beta^{-1}} || \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1}),
$$

 $\forall \alpha \in GL_2^+(\mathbb{Q}).$ (4.43)

In particular, when $\tau_1 = \tau_2 = 1$ *, the pairing in* [\(4.43\)](#page-34-1) *reduces to the pairing on* $\mathcal{Q}_{\sigma}(\Gamma)$ *defined in* [\(4.11\)](#page-27-1)*.*

Proof. We choose some $\gamma \in \Gamma$. Then, for any $\alpha \in GL_2^+(\mathbb{Q})$, $\beta \in SL_2(\mathbb{Z})$, we have $F_{\gamma\beta\sigma}^1 = F_{\beta\sigma}^1$ and:

$$
(F_{\alpha\sigma^{-1}\beta^{-1}\gamma^{-1}}^2 \| \tau_2 \sigma \gamma \beta \tau_1^{-1} \tau_2^{-1}) = (F_{\alpha\sigma^{-1}\beta^{-1}}^2 \| \tau_2 \sigma \gamma^{-1} \sigma^{-1} \tau_2^{-1} \tau_2 \sigma \gamma \beta \tau_1^{-1} \tau_2^{-1})
$$

= $(F_{\alpha\sigma^{-1}\beta^{-1}}^2 \| \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1}).$

 \Box

It follows that the sum in [\(4.43\)](#page-34-1) is well defined, i.e. independent of the choice of coset representatives of Γ in $SL_2(\mathbb{Z})$. Additionally, we have:

$$
(F^1, F^2)_{\alpha\gamma} := \sum_{\beta \in \Gamma \backslash SL_2(\mathbb{Z})} (F^1_{\beta\sigma} \| \tau_2^{-1}) \cdot (F^2_{\alpha\gamma\sigma^{-1}\beta^{-1}} \| \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1}). \tag{4.44}
$$

We now set $\delta = \beta \sigma \gamma^{-1} \sigma^{-1}$. Since $F^1 \in \mathcal{Q}_{\tau_1 \sigma}(\Gamma)$, we know that

$$
F^1_{\delta\sigma\gamma} = F^1_{\delta\sigma} \| \tau_1 \sigma \gamma \sigma^{-1} \tau_1^{-1}.
$$

Then, we can rewrite the expression in [\(4.44\)](#page-35-0) as follows:

$$
(F^{1}, F^{2})_{\alpha\gamma}
$$
\n
$$
= \sum_{\beta \in \Gamma \backslash SL_{2}(\mathbb{Z})} (F^{1}_{\delta\sigma\gamma} || \tau_{2}^{-1}) \cdot (F^{2}_{\alpha\sigma^{-1}\delta^{-1}} || \tau_{2}\sigma\delta\sigma\gamma\sigma^{-1}\tau_{1}^{-1}\tau_{2}^{-1})
$$
\n
$$
= \sum_{\beta \in \Gamma \backslash SL_{2}(\mathbb{Z})} (F^{1}_{\delta\sigma} || \tau_{1}\sigma\gamma\sigma^{-1}\tau_{1}^{-1}\tau_{2}^{-1}) \cdot (F^{2}_{\alpha\sigma^{-1}\delta^{-1}} || \tau_{2}\sigma\delta\sigma\gamma\sigma^{-1}\tau_{1}^{-1}\tau_{2}^{-1})
$$
\n
$$
= \left(\sum_{\beta \in \Gamma \backslash SL_{2}(\mathbb{Z})} (F^{1}_{\delta\sigma} || \tau_{2}^{-1}) \cdot (F^{2}_{\alpha\sigma^{-1}\delta^{-1}} || \tau_{2}\sigma\delta\tau_{1}^{-1}\tau_{2}^{-1}) \right) || \tau_{1}\tau_{2}\sigma\gamma\sigma^{-1}\tau_{1}^{-1}\tau_{2}^{-1}
$$
\n
$$
= (F^{1}, F^{2})_{\alpha} || \tau_{1}\tau_{2}\sigma\gamma\sigma^{-1}\tau_{1}^{-1}\tau_{2}^{-1}.
$$
\n(4.45)

From [\(4.45\)](#page-35-1) it follows that $(F^1, F^2) \in \mathcal{Q}_{\tau_1 \tau_2 \sigma}(\Gamma)$.

In particular, it follows from the pairing in [\(4.42\)](#page-34-2) that for any $m, n \in \mathbb{Z}$, we have a pairing

$$
(\underline{\hspace{1cm}},\underline{\hspace{1cm}}): \mathcal{Q}_{\sigma(m)}(\Gamma) \otimes \mathcal{Q}_{\sigma(n)}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma(m+n)}(\Gamma). \tag{4.46}
$$

 \Box

It is clear that [\(4.46\)](#page-35-2) induces a pairing on $\mathbb{Q}_{\sigma}(\Gamma) = \bigoplus_{m \in \mathbb{Z}} \mathcal{Q}_{\sigma(m)}(\Gamma)$ for each $\sigma \in SL_2(\mathbb{Z})$. We will now define operators $\{X_n\}_{n\in\mathbb{Z}}$ and Z on $\mathbb{Q}_{\sigma}(\Gamma)$. For each $n \in \mathbb{Z}$, the operator $X_n : \mathbb{Q}_\sigma(\Gamma) \longrightarrow \mathbb{Q}_\sigma(\Gamma)$ is induced by the collection of operators:

$$
X_n^m := X_{\rho_n}: \mathcal{Q}_{\sigma(m)}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma(m+n)}(\Gamma), \quad \forall \, m \in \mathbb{Z}, \tag{4.47}
$$

where, as mentioned before, $\rho_n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$. Then, $X_n : \mathbb{Q}_{\sigma}(\Gamma) \longrightarrow \mathbb{Q}_{\sigma}(\Gamma)$ is an operator of homogeneous degree *n* on the graded module $\mathbb{Q}_{\sigma}(\Gamma)$. We also consider:

$$
Z: \mathcal{Q}_{\sigma(m)}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma(m)}(\Gamma), \quad Z(F)_{\alpha} := mF_{\alpha} + Y(F_{\alpha}),
$$

$$
\forall F \in \mathcal{Q}_{\sigma(m)}(\Gamma), \ \alpha \in GL_2^+(\mathbb{Q}). \tag{4.48}
$$

This induces an operator $Z:\mathbb{Q}_{\sigma}(\Gamma) \longrightarrow \mathbb{Q}_{\sigma}(\Gamma)$ of homogeneous degree 0 on the graded module $\mathbb{Q}_{\sigma}(\Gamma)$. We will now show that $\mathbb{Q}_{\sigma}(\Gamma)$ is acted upon by a certain Lie algebra $\mathfrak{l}_\mathbb{Z}$ such that the Lie action incorporates the operators $\{X_n\}_{n\in\mathbb{Z}}$ and Z

mentioned above. We define $I_{\mathbb{Z}}$ to be the Lie algebra with generators $\{Z, X_n | n \in \mathbb{Z}\}\$ satisfying the following commutator relations:

$$
[Z, X_n] = (n+1)X_n, \quad [X_n, X_{n'}] = 0, \quad \forall n, n' \in \mathbb{Z}.
$$
 (4.49)

In particular, we note that $[Z, X_0] = X_0$. It follows that the Lie algebra $\mathfrak{l}_\mathbb{Z}$ contains the Lie algebra \mathfrak{l}_1 defined in [\(3.56\)](#page-23-2). We now describe the action of $\mathfrak{l}_\mathbb{Z}$ on $\mathbb{Q}_\sigma(\Gamma)$.

Proposition 4.8. *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *and let* $\sigma \in SL_2(\mathbb{Z})$ *. Then, the Lie algebra* $\mathfrak{l}_\mathbb{Z}$ *has a Lie action on* $\mathbb{Q}_\sigma(\Gamma)$ *.*

Proof. We need to check that $[Z, X_n] = (n + 1)X_n$ and $[X_n, X_{n'}] = 0, \forall n, n' \in \mathbb{Z}$ for the operators $\{Z, X_n | n \in \mathbb{Z}\}$ on $\mathbb{Q}_{\sigma}(\Gamma)$. From part (b) of Proposition [4.6,](#page-33-4) we know that $[X_n, X_{n'}] = 0$. From [\(4.47\)](#page-35-3) and [\(4.48\)](#page-35-4), it is clear that in order to show that $[Z, X_n] = (n + 1)X_n$, we need to check that

$$
[Z, X_n^m] = (n+1)X_n^m: \mathcal{Q}_{\sigma(m)}(\Gamma) \longrightarrow \mathcal{Q}_{\sigma(m+n)}(\Gamma)
$$

for any given $m \in \mathbb{Z}$. For any $F \in \mathcal{Q}_{\sigma(m)}(\Gamma)$ and any $\alpha \in GL_2^+(\mathbb{Q})$, we now check that:

$$
(ZX_n^m(F))_{\alpha} = (n+m)X_n^m(F)_{\alpha} + Y(X_n^m(F)_{\alpha})
$$

= $(n+m)X(F_{\alpha})\|\rho_n^{-1} + YX(F_{\alpha})\|\rho_n^{-1},$
 $(X_n^m Z(F))_{\alpha} = X(Z(F)_{\alpha})\|\rho_n^{-1} = mX(F_{\alpha})\|\rho_n^{-1} + XY(F_{\alpha})\|\rho_n^{-1}.$ (4.50)

Combining [\(4.50\)](#page-36-0) with the fact that $[Y, X] = X$, it follows that $[Z, X_n^m] = (n+1)X_n^m$ for each $m \in \mathbb{Z}$. Hence, the result follows.

We now consider the universal enveloping algebra $\mathfrak{h}_\mathbb{Z}$ of the Lie algebra $\mathfrak{l}_\mathbb{Z}$. Accordingly, the coproduct Δ on $\mathfrak{h}_\mathbb{Z}$ is given by:

$$
\Delta(X_n) = X_n \otimes 1 + 1 \otimes X_n, \quad \Delta(Z) = Z \otimes 1 + 1 \otimes Z, \quad \forall n \in \mathbb{Z}. \tag{4.51}
$$

It is clear that $\mathfrak{h}_\mathbb{Z}$ contains the Hopf algebra \mathfrak{h}_1 , the universal enveloping algebra of \mathfrak{l}_1 . From Proposition [4.3,](#page-28-2) we know that \mathfrak{h}_1 has a Hopf action on the pairing on $\mathcal{Q}_{\sigma}(\Gamma)$. We want to show that $\eta_{\mathbb{Z}}$ has a Hopf action on the pairing on $\mathbb{Q}_{\sigma}(\Gamma)$. For this, we prove the following lemma.

Lemma 4.9. *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *and let* $\sigma \in SL_2(\mathbb{Z})$. Let τ_1 , τ_2 , $\tau_3 \in SL_2(\mathbb{Z})$ be three matrices such that $\tau_i \tau_j = \tau_j \tau_i$, $\forall i$, $j \in \{1, 2, 3\}$. Then, for any $F^1 \in \mathcal{Q}_{\tau_1 \sigma}(\Gamma)$, $F^2 \in \mathcal{Q}_{\tau_2 \sigma}(\Gamma)$, we have:

$$
X_{\tau_3}(F^1, F^2) = (X_{\tau_3}(F^1), F^2) + (F^1, X_{\tau_3}(F^2)).
$$
 (4.52)

Proof. Consider any $\alpha \in GL_2^+(\mathbb{Q})$. Then, from the definition of X_{τ_3} , it follows that

$$
X_{\tau_3}(F^1, F^2)_{\alpha} = \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} X((F^1_{\beta \sigma} || \tau_2^{-1}) \cdot (F^2_{\alpha \sigma^{-1} \beta^{-1}} || \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1})) || \tau_3^{-1} \quad (4.53)
$$

$$
= \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} (X(F^1_{\beta \sigma}) || \tau_2^{-1} \tau_3^{-1}) \cdot (F^2_{\alpha \sigma^{-1} \beta^{-1}} || \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1} \tau_3^{-1})
$$

$$
+ \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} (F^1_{\beta \sigma} || \tau_2^{-1} \tau_3^{-1}) \cdot (X(F^2_{\alpha \sigma^{-1} \beta^{-1}}) || \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1} \tau_3^{-1}).
$$

Since $F^1 \in \mathcal{Q}_{\tau_1 \sigma}(\Gamma)$, it follows that $X_{\tau_3}(F^1) \in \mathcal{Q}_{\tau_1 \tau_3 \sigma}(\Gamma)$. Similarly, we see that $X_{\tau_3}(F^2) \in \mathcal{Q}_{\tau_2\tau_3\sigma}(\Gamma)$. It follows that:

$$
(X_{\tau_3}(F^1), F^2)_{\alpha} = \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} (X_{\tau_3}(F^1)_{\beta \sigma} || \tau_2^{-1}) \cdot (F_{\alpha \sigma^{-1} \beta^{-1}}^2 || \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1} \tau_3^{-1})
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} (X(F_{\beta \sigma}^1) || \tau_2^{-1} \tau_3^{-1}) \cdot (F_{\alpha \sigma^{-1} \beta^{-1}}^2 || \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1} \tau_3^{-1})
$$

\n
$$
(F^1, X_{\tau_3}(F^2))_{\alpha} = \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} (F_{\beta \sigma}^1 || \tau_2^{-1} \tau_3^{-1}) \cdot (X_{\tau_3}(F^2)_{\alpha \sigma^{-1} \beta^{-1}} || \tau_2 \tau_3 \sigma \beta \tau_1^{-1} \tau_2^{-1} \tau_3^{-1})
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} (F_{\beta \sigma}^1 || \tau_2^{-1} \tau_3^{-1}) \cdot (X(F_{\alpha \sigma^{-1} \beta^{-1}}^2) || \tau_3^{-1} \tau_2 \tau_3 \sigma \beta \tau_1^{-1} \tau_2^{-1} \tau_3^{-1})
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus SL_2(\mathbb{Z})} (F_{\beta \sigma}^1 || \tau_2^{-1} \tau_3^{-1}) \cdot (X(F_{\alpha \sigma^{-1} \beta^{-1}}^2) || \tau_2 \sigma \beta \tau_1^{-1} \tau_2^{-1} \tau_3^{-1}).
$$

\nComparing (4.53) and (4.54), the result of (4.52) follows.

Comparing (4.53) and (4.54) , the result of (4.52) follows.

As a special case of Lemma [4.9,](#page-36-2) it follows that for any $F^1 \in \mathcal{Q}_{\sigma(m)}(\Gamma)$ and $F^2 \in \mathcal{Q}_{\sigma(m')}(\Gamma)$, we have:

$$
X_{\rho_n}(F^1, F^2) = X_n(F^1, F^2) = (X_n(F^1), F^2) + (F^1, X_n(F^2)), \quad \forall n \in \mathbb{Z}.
$$

(4.55)
We conclude by showing that $\mathfrak{h}_{\mathbb{Z}}$ has a Hopf action on the pairing on $\mathbb{Q}_{\sigma}(\Gamma)$.

Proposition 4.10. *Let* $\Gamma = \Gamma(N)$ *be a principal congruence subgroup of* $SL_2(\mathbb{Z})$ *and let* $\sigma \in SL_2(\mathbb{Z})$ *. Then, the Hopf algebra* $\natural_{\mathbb{Z}}$ *has a Hopf action on the pairing on* $\mathbb{Q}_{\sigma}(\Gamma)$ *. In other words, for* F^1 *,* $F^2 \in \mathbb{Q}_{\sigma}(\Gamma)$ *, we have*

$$
h(F1, F2) = \sum (h(1)(F1), h(2)(F2)),
$$
\n(4.56)

where the coproduct $\Delta: \mathfrak{h}_{\mathbb{Z}} \longrightarrow \mathfrak{h}_{\mathbb{Z}} \otimes \mathfrak{h}_{\mathbb{Z}}$ *is defined by setting* $\Delta(h) := \sum h_{(1)} \otimes h_{(2)}$ *for each* $h \in \mathfrak{h}_\mathbb{Z}$ *.*

Proof. It suffices to prove the result in the case where $F^1 \in \mathcal{Q}_{\sigma(m)}(\Gamma)$, $F^2 \in \mathcal{Q}_{\sigma(m')}(\Gamma)$ for some $m, m' \in \mathbb{Z}$. Further, it suffices to prove the relation [\(4.56\)](#page-37-2) for the generators $\{Z, X_n | n \in \mathbb{Z}\}\$ of the Hopf algebra $\natural_{\mathbb{Z}}\$. For the generators $X_n, n \in \mathbb{Z}$, this is already the result of [\(4.55\)](#page-37-3) which follows from Lemma [4.9.](#page-36-2) Since $\Delta(Z) = Z \otimes 1 + 1 \otimes Z$, it remains to show that

$$
Z(F^1, F^2) = (Z(F^1), F^2) + (F^1, Z(F^2)),
$$

\n
$$
\forall F^1 \in \mathcal{Q}_{\sigma(m)}(\Gamma), F^2 \in \mathcal{Q}_{\sigma(m')}(\Gamma). \quad (4.57)
$$

By the definition of the pairing on $\mathbb{Q}_{\sigma}(\Gamma)$, we know that $(F^1, F^2) \in \mathcal{Q}_{\sigma(m+m')}(\Gamma)$. Then, for any $\alpha \in GL_2^+(\mathbb{Q})$, we have:

$$
Z(F^{1}, F^{2})_{\alpha} = (m + m')(F^{1}, F^{2})_{\alpha} + Y(F^{1}, F^{2})_{\alpha}
$$

\n
$$
= (m + m') \sum_{\beta \in \Gamma \setminus SL_{2}(\mathbb{Z})} ((F^{1}_{\beta\sigma} || \rho_{m'}^{-1}) \cdot (F^{2}_{\alpha\sigma^{-1}\beta^{-1}} || \rho_{m'}\sigma\beta\rho_{m}^{-1}\rho_{m'}^{-1}))
$$

\n
$$
+ \sum_{\beta \in \Gamma \setminus SL_{2}(\mathbb{Z})} Y((F^{1}_{\beta\sigma} || \rho_{m'}^{-1}) \cdot (F^{2}_{\alpha\sigma^{-1}\beta^{-1}} || \rho_{m'}\sigma\beta\rho_{m}^{-1}\rho_{m'}^{-1}))
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus SL_{2}(\mathbb{Z})} ((mF^{1}_{\beta\sigma} + Y(F^{1}_{\beta\sigma})) || \rho_{m'}^{-1}) \cdot (F^{2}_{\alpha\sigma^{-1}\beta^{-1}} || \rho_{m'}\sigma\beta\rho_{m}^{-1}\rho_{m'}^{-1})
$$

\n
$$
+ \sum_{\beta \in \Gamma \setminus SL_{2}(\mathbb{Z})} (F^{1}_{\beta\sigma} || \rho_{m'}^{-1}) \cdot ((m'F^{2}_{\alpha\sigma^{-1}\beta^{-1}} + Y(F^{2}_{\alpha\sigma^{-1}\beta^{-1}})) || \rho_{m'}\sigma\beta\rho_{m}^{-1}\rho_{m'}^{-1})
$$

\n
$$
= \sum_{\beta \in \Gamma \setminus SL_{2}(\mathbb{Z})} (Z(F^{1})_{\beta\sigma} || \rho_{m'}^{-1}) \cdot (F^{2}_{\alpha\sigma^{-1}\beta^{-1}} || \rho_{m'}\sigma\beta\rho_{m}^{-1}\rho_{m'}^{-1})
$$

\n
$$
+ \sum_{\beta \in \Gamma \setminus SL_{2}(\mathbb{Z})} (F^{1}_{\beta\sigma} || \rho_{m'}^{-1}) \cdot (Z(F^{2})_{\alpha\sigma^{-1}\beta^{-1}} || \rho_{m'}\sigma\beta\rho_{m}^{-1}\rho_{m'}^{-1})
$$

\n
$$
= (Z(F^{1}), F^{2})_{\alpha} + (F^{1}, Z(F^{2}))_{\alpha}.
$$

\n(4.58)

References

- [1] A. Banerjee, Hopf action and Rankin–Cohen brackets on an Archimedean complex, *J. Noncommut. Geom.*, **5** (2011), no. 3, 401–421. [Zbl 1263.11051](https://zbmath.org/?q=an:1263.11051) [MR 2817645](http://www.ams.org/mathscinet-getitem?mr=2817645)
- [2] A. Banerjee, Hecke operators on line bundles over modular curves, *J. Number Theory*, **132** (2012), no. 4, 714–734. [Zbl 1277.11036](https://zbmath.org/?q=an:1277.11036) [MR 2887615](http://www.ams.org/mathscinet-getitem?mr=2887615)
- [3] A. Banerjee, Action de Hopf sur les opérateurs de Hecke modulaires tordus (French), *J. Noncommut. Geom.*, **9** (2015), no. 4, 1155–1173. [Zbl 1388.11015](https://zbmath.org/?q=an:1388.11015) [MR 3448332](http://www.ams.org/mathscinet-getitem?mr=3448332)
- [4] P. Bieliavsky, X. Tang, and Y. Yao, Rankin–Cohen brackets and formal quantization, *Adv. Math.*, **212** (2007), no. 1, 293–314. [Zbl 1123.53049](https://zbmath.org/?q=an:1123.53049) [MR 2319770](http://www.ams.org/mathscinet-getitem?mr=2319770)
- [5] A. Connes and H. Moscovici, Hopf algebras, cyclic cohomology and the transverse index theorem, *Comm. Math. Phys.*, **198** (1998), no. 1, 199–246. [Zbl 0940.58005](https://zbmath.org/?q=an:0940.58005) [MR 1657389](http://www.ams.org/mathscinet-getitem?mr=1657389)

- [6] A. Connes and H. Moscovici, Modular Hecke algebras and their Hopf symmetry, *Mosc. Math. J.*, **4** (2004), no. 1, 67–109. [Zbl 1122.11023](https://zbmath.org/?q=an:1122.11023) [MR 2074984](http://www.ams.org/mathscinet-getitem?mr=2074984)
- [7] A. Connes and H. Moscovici, Rankin–Cohen brackets and the Hopf algebra of transverse geometry, *Mosc. Math. J.*, **4** (2004), no. 1, 111–130. [Zbl 1122.11024](https://zbmath.org/?q=an:1122.11024) [MR 2074985](http://www.ams.org/mathscinet-getitem?mr=2074985)
- [8] C. Consani, Double complexes and Euler L-factors, *Compositio Math.*, **111** (1998), no. 3, 323–358. [Zbl 0932.14011](https://zbmath.org/?q=an:0932.14011) [MR 1617133](http://www.ams.org/mathscinet-getitem?mr=1617133)
- [9] F. Guillén and V. Navarro Aznar, Sur le théorème local des cycles invariants (French), *Duke Math. J.*, **61** (1990), no. 1, 133–155. [Zbl 0722.14002](https://zbmath.org/?q=an:0722.14002) [MR 1068383](http://www.ams.org/mathscinet-getitem?mr=1068383)
- [10] M. Kaneko and D. Zagier, A generalized Jacobi theta function and quasimodular forms, in *The moduli space of curves (Texel Island, 1994)*, 165–172, Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995. [Zbl 0892.11015](https://zbmath.org/?q=an:0892.11015) [MR 1363056](http://www.ams.org/mathscinet-getitem?mr=1363056)
- [11] H. Movasati, Quasi-modular forms attached to elliptic curves. I, *Ann. Math. Blaise Pascal*, **19** (2012), no. 2, 307–377. [Zbl 1264.11031](https://zbmath.org/?q=an:1264.11031) [MR 3025138](http://www.ams.org/mathscinet-getitem?mr=3025138)
- [12] E. Royer, Quasimodular forms: an introduction, *Ann. Math. Blaise Pascal*, **19** (2012), no. 2, 297–306. [Zbl 1268.11055](https://zbmath.org/?q=an:1268.11055) [MR 3025137](http://www.ams.org/mathscinet-getitem?mr=3025137)
- [13] X. Tang and Y.-J. Yao, A universal deformation formula for \mathcal{H}_1 without projectivity assumption, *J. Noncommut. Geom.*, **3** (2009), no. 2, 151–179. [Zbl 1166.58006](https://zbmath.org/?q=an:1166.58006) [MR 2486792](http://www.ams.org/mathscinet-getitem?mr=2486792)
- [14] D. Zagier, Elliptic modular forms and their applications, in *The 1-2-3 of modular forms*, 1–103, Universitext, Springer, Berlin, 2008. [Zbl 1259.11042](https://zbmath.org/?q=an:1259.11042) [MR 2409678](http://www.ams.org/mathscinet-getitem?mr=2409678)

Received 01 November, 2016

A. Banerjee, Department of Mathematics, Indian Institute of Science, Bangalore 560012, India E-mail: abhishekbanerjee1313@gmail.com