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When Ext is a Batalin—Vilkovisky algebra

Niels Kowalzig

Abstract. We show under what conditions the complex computing general Ext-groups carries
the structure of a cyclic operad such that Ext becomes a Batalin—Vilkovisky algebra. This is
achieved by transferring cyclic cohomology theories for the dual of a (left) Hopf algebroid to
the complex in question, which asks for the notion of contramodules introduced along with
comodules by Eilenberg—Moore half a century ago. Another crucial ingredient is an explicit
formula for the inverse of the Hopf—Galois map on the dual, by which we illustrate recent
categorical results and answer a long-standing open question. As an application, we prove that
the Hochschild cohomology of an associative algebra A is Batalin—Vilkovisky if A itself is a
contramodule over its enveloping algebra A ® A°P. This is, for example, the case for symmetric
algebras and Frobenius algebras with semisimple Nakayama automorphism. We also recover
the construction for Hopf algebras.
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1. Introduction

The notion of higher structures on cohomology groups, more precisely, of
Gerstenhaber algebras (consisting of a graded commutative product together with
a graded Lie bracket that determines graded inner derivations of the product) and
the stronger notion of Batalin—Vilkovisky algebras (a Gerstenhaber algebra with a
degree —1 differential B that fails to be a graded derivation of the product exactly by
the graded Lie bracket), has attracted quite some attention recently; see, for example,
[1,8,22,23,27,33,35,36,40,44-46, 49, 53, 54, 62, 64, 65] and references therein.
A particular focus naturally lies on Hochschild theory: whereas it is a classical
result [24] that Hochschild cohomology H *(A, A) of an associative algebra A (over
a commutative ring k) always carries a Gerstenhaber algebra structure, this structure
is not necessarily that of a Batalin—Vilkovisky (BV) algebra: a counterexample of
an algebra the Hochschild cohomology of which is not BV can be easily constructed
by considering a free algebra in two generators [42]. However, it is known for the
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following classes of algebras that H*(A, A) does indeed admit the structure of a BV
algebra:

— symmetric algebras [53, 62];

— Frobenius algebras with semisimple Nakayama automorphism [45, 64];
— Calabi—Yau algebras [27];

— twisted Calabi—Yau algebras [40],

and probably more. These results were obtained by various different approaches,
for example, those in [27, 40, 45] by passing through a sort of Poincaré duality
[38,44,63] and using the notion of noncommutative differential calculus [61], or
more precisely, the notion of a BV module structure on the respective Hochschild
homology H,(A, A), see also [36] for a generalised treatment.

It would be desirable to have a more direct approach (i.e., one that does not use
Poincaré duality) and in particular one method that covers all cases and yields a
sufficient criterion to decide whether H*(A4, A) is a BV algebra.

1.1. Aims and objectives. The aim of this paper is threefold. First, this paper is a
continuation of preceding work in [35,36,40] in which we investigated Gerstenhaber
and BV algebra (as well as module) structures on derived functors over quite
general rings, or more precisely, on Exty; (4, M), Tor*(N, A), and Cotory, (A, M)
for a bialgebroid U over a in general noncommutative base algebra A and certain
coefficients M, N. Here, the question remained open in which circumstances the
canonical Gerstenhaber structure on Exty; (4, M) given in [35,40] (for certain
coefficients M) is indeed a BV algebra.

The question about the existence of these higher structures is related to the
structure of a cocyclic module (in the sense of Connes [15]) on the complexes
computing the respective (co)homology groups and, in particular, to the existence of
a (co)cyclic operator such that the respective complexes become a cyclic operad [26],
which implies a BV algebra structure on cohomology [53]: see §2 for all necessary
definitions and results we are going to use.

Hence, put differently, the first question we want to answer is: under which
conditions is there a cyclic structure on the complex computing Exty; (4, M)?

Observe that this question already appeared very early on a basic level [16]: as
discussed shortly in Remark 6.3, it is a priori not clear how to define a cocyclic
operator on the Hochschild complex C*(A4, A) (which computes Ext4.(A4, A) if A is
k-projective) for an arbitrary associative k-algebra A with coefficients in the algebra
itself.

As Hochschild theory is obtained from bialgebroid theory by considering the
bialgebroid (A°, A), an answer in the bialgebroid setting will give an answer to this
problem as well, which is the second goal of this article: for which associative
k-algebras A one can find a cocyclic operator on the Hochschild complex C*(4, A)
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making it into a cyclic operad and hence its Hochschild cohomology H*(A, A) into
a BV algebra?

On the other extreme, as for the cyclic cohomology of a Hopf algebra H over a
commutative ring k (see, e.g., [53, 54] for an overview), the cocyclic operator t for
a cochain of, say, degree one f € Homy (H, k) would be simply 7(f) := f o S,
where S is the antipode of H. This unfortunately cannot be so easily generalised to
a (left) Hopf algebroid (U, A) as usually there is no antipode in a proper sense, and
even if there were, this would not be of much help: here, the cochain space in degree
one is Hom 4o (U, A) and a possible antipode would turn the (various) A-module
structures around, that is, f o S would not land in Hom 4o (U, A) again.

A simple idea of how to possibly obtain a cocyclic structure on the complex
computing Exty; (4, M) goes by passing through the duals: if a left bialgebroid
(U, A) is finitely generated A-projective (in one of the possible four senses), then one
knows [30] that the (right) dual U* := Hom 40 (U, A) is a right bialgebroid.

On the other hand, in [35] we showed that the Cotor-groups over a (left) Hopf
algebroid carry the structure of a BV algebra, and via the k-module isomorphism
Cotoryy« (M, A) >~ Exty; (A, M), where on the left hand side M is considered as a
right U *-comodule and on the right hand side as a left U-module, there should be
one on the Ext-groups as well, arising from a cocyclic structure that, once obtained,
possibly makes sense even if one drops the finiteness assumption, which is needed
if one wants to include the Hochschild theory as A° usually is not finitely generated
over A.

Here, however, arise two difficulties, which lead us to the third goal in this paper:
for Cotorg;« (M, A) to be a BV algebra, the right bialgebroid U* needs to carry a
(right) Hopf algebroid structure, but until very recently it was not known whether
this is the case. The question was asked in [3] and probably earlier, some progress in
this direction was achieved in [13], but only in [57] an affirmative answer was given
by an elegant abstract categorical reasoning, which unfortunately lacked an explicit
formula for the translation map characterising the Hopf structure as a substitute for
the antipode, see §2.2.3 for all technical details. Hence, the third question we aim to
answer in this article is: what is the explicit Hopf structure on the dual U* of a left
Hopf algebroid U?

On top, there arise even more technical complications as the coefficient module M
in Cotory;« (M, A) needs to be a (stable) anti Yetter-Drinfel’d module over U™, which
means a left U *-module and right U *-comodule with action and coaction compatible
in a certain way. Now, right U *-comodules correspond to left U -modules, whereas
left U *-modules rather correspond to right U -contramodules which were introduced
by [19] half a century ago, but later somehow forgotten. Hence, another question we
wish to clarify is how the anti Yetter—Drinfel’d compatibility of a left U *-module
right U *-comodule transforms into a compatibility between a left U -module structure
and a right U -contramodule structure on the same underlying A-module.
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1.2. Mainresults. Withrespect to the three question just asked, let us list the answers
we found. Again, we refer to the main text for all details as well as notation.

1.2.1. Duals of (left) Hopf algebroids. In Theorem 3.1, we give an explicit expres-
sion for the translation map on the (right) dual of a left Hopf algebroid:

Theorem 1.1. Let (U, A) be a left Hopf algebroid with translation map u > u 4 Q@ 4op U —
foru € U, and let U be finitely generated projective as a right A-module via the target
map. Then the right dual (U™, A) carries the structure of a right Hopf algebroid
over a right bialgebroid. More precisely, the map B~1: U* — U* ® 40 U* given by

(B71@®))w,v) = (u > P)(v) := e(p(u_v) »uy)

yields a translation map on U*. Explicitly, if {e;}1<i<n € U, {€'}1<i<n € U* isa
dual basis, the translation map reads as

¢ Qo ¢+ = e’ Qo0 (€ > ).

If U happens to be not only a left Hopf algebroid but also a right Hopf algebroid
(still on the underlying structure of a left bialgebroid) in the sense mentioned, for
example, in [13, §2.3] or §2.2.3, then applying the above map for v = 1 leads to an
isomorphism between the right dual U™ and the left dual U, and one can then speak
of the only dual, which is by the above again a left and a right Hopf algebroid (over
the underlying structure of a right bialgebroid), see Remark 3.2. This should lead to
a possibly easier statement compared to the approach in [7, §5] about the dual(s) of
a full Hopf algebroid.

1.2.2. Contramodules. A (right) contramodule over a left bialgebroid (U, 4) is a
right A-module M together with a right A-module map

y:Hom 4o (U, M) - M

that fulfils a sort of associativity and unitality property, see Definition 2.6 for details.
As mentioned in §1.1, we are interested in the question of how anti Yetter—Drinfel’d
modules over the dual U™* of a finitely generated A-projective left Hopf algebroid U
transform into a module and contramodule over U with compatibility between the
action and the contraaction, leading to the notion of stable anti Yetter—Drinfel’d
contramodules for left Hopf algebroids in Definition 4.3. The main statement in
Lemma 4.6 is then that there is an equivalence

*
U* aYDU ~u aYDcomra—U

between the categories of (stable) aYD modules over U* and (stable) aYD
contramodules over U. None of the above categories appears to be monoidal but
both of them are module categories over the category of Yetter—Drinfel’d modules
(at least in the finite case), see Proposition 4.8.
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1.2.3. Cyclic and BV structures on Ext. In §4.1, we explicitly describe the structure
of a cocyclic k-module on the complex we are interested in, which allows us to prove
in Theorem 5.1 and its Corollary 5.3 the following central result:

Theorem 1.2. Let U be a left Hopf algebroid and let M be a stable anti Yetter—
Drinfel’d contramodule over U. Then the complex

C*(U, M) := Hom 4op (U®4™* M)
can be made into a cocyclic k-module with cocyclic operator

@H, .y =yl f@?, . ut e ul ().

In particular, choosing the base algebra itself as coefficient module, C (U, A) becomes
a cyclic operad with multiplication and therefore the cohomology groups H*(U, A)
(resp. Exty; (A, A) if U, is projective) form a Batalin—Vilkovisky algebra.

For a Hopf algebra H over a commutative ring k, the contraaction y that appears
in the above theorem is simply evaluation on the unit and one thereby recovers the
BV algebra structure on Exty; (k, k) that was given by Menichi [54].

We also give a version for more general coefficients in which A in the second
statement in the above theorem is replaced by a braided commutative Yetter—Drinfel’d
algebra (see the second part of Theorem 5.1), where we, however, have to assume a
certain finiteness condition again.

1.2.4. BV algebra structures on Hochschild cohomology of associative algebras.
The aforementioned Theorem 1.2 can then be applied to the case of the Hopf algebroid
(U, A) = (A®, A) which controls Hochschild theory, and therefore yields statements
on when the Hochschild cohomology of an associative algebra carries the structure
of a BV algebra. In §6.1, we give a sufficient condition for when this is the case:

Theorem 1.3. Let A be an associative k-algebra which is a contramodule over A°
with contraaction y. Then

(tf)ar.....an) = y(a1 f(az,....an,—))

defines a cocyclic operator on the Hochschild complex C*(A, A) := Homy (A%®*, A)
such that the respective endomorphism operad C (A, A) becomes a para-cyclic operad
with multiplication, which is cyclic if A is stable over A°. Hence, its Hochschild
cohomology groups H*(A, A) (resp. Ext’. (A, A) if A is k-projective) form a Batalin—
Vilkovisky algebra.

Asdiscussedin §6.1.1 and §6.1.2, examples of when such a contraaction exists are
given by symmetric algebras, or, more generally, by Frobenius algebras with semi-
simple (diagonalisable) Nakayama automorphism, recovering the aforementioned
results of Menichi [53], Tradler [62], Lambre—Zhou—-Zimmermann [45] as well
as [64].
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How to find a contraaction on (twisted) Calabi—Yau algebras so as to also recover
the results in [27] and [40] appears to be more intricate and will be deferred to a
separate publication, in which we also plan to find new examples and to include
further aspects like Koszul duals as in [14]. The most important question to clarify
would be whether one can classify contraactions y for a given algebra A, and in
particular whether the existence of such a map is implied by or even equivalent to
already known concepts on associative algebras, or whether this leads to a new class
of algebras instead.

Acknowledgements. With great pleasure, we would like to thank Tomasz Brzezifiski,
Domenico Fiorenza, Laiachi El Kaoutit, Ulrich Krdhmer, Boris Tsygan, and the
referee for stimulating discussions and precious comments.

2. Preliminaries

In this preliminary section, we gather most of the basic (algebraic) ideas we are going
to use, and also fix some notation. Let k be a commutative ground ring (most of the
time of characteristic zero), and as always let an unadorned tensor product be meant
over k.

2.1. Cyclic operads and Batalin—Vilkovisky algebras. The main point in this
subsection is given by Theorem 2.3 below, which establishes a relationship between
Gerstenhaber algebras and operads with multiplication resp. Batalin—Vilkovisky
algebras and cyclic operads with multiplication, which is the fundamental result
underlying our entire considerations. Let us define the required ingredients first.

Definition 2.1.

(i) A Gerstenhaber algebra over k is given by a triple (V,-,{-,-}), where
V=6 peN V? is a graded commutative k-algebra with multiplication

o~ B=(=1)PIBvacVPtd
fora € VP, 8 € V4, along with a graded Lie bracket
{" } Vp-H Rk Vq-H — Vp+q+l

on the desuspension V[1] := P ,en V7 +1_ for which all operators {y, -} satisfy
the graded Leibniz rule

ria~ By ={y.a} v B+ (Do~ {y. B},

fory e VPl anda € V4.



When Ext is a Batalin—Vilkovisky algebra 1087

(i) A Batalin—Vilkovisky algebra is a Gerstenhaber algebra V' with a k-linear
differential B: V" — V"~ ! of degree —1 such that foralla € V7,8 € V

{a. B} = (=1)?(B(a ~ B) — B(a) ~ B — (—=1)?a ~ B(B))
holds.

A Batalin—Vilkovisky algebra may also be called exact Gerstenhaber algebra
and B is sometimes said to generate the Gerstenhaber bracket.

Turning to the next ingredient we are going to use, note that in all what follows
the term “(cyclic) operad” always refers to a non-X (cyclic) operad in the category
of k-modules in the sense given right below. See, for example, [48, 50] for more
information on operads, and [26,51,53] for cyclic ones.

Definition 2.2.

(i) A (non-X) operad in the category of k-modules is a sequence {O(n)},>0 of
k-modules with an identity element 1 € O(1) together with k-bilinear operations

0;:0(p)® 0(q) > O(p+q—1)

subject to
po; =0 if p<iorp=0,
(poj ) Civr— ¥ if j <i,
(poi¥)ojx=¢poi (Yojit1y) ifi <j<q+i, 2.1)
(poj—qr1 Yoy ifj=q+i,
pojl=10;¢=¢ fori < p,

for any ¢ € O(p), ¥ € O(q), and y € O(r). The operad is called with
multiplication if there exists an operad multiplication @ € O(2) and a unit
e € O(0) such that st o7 4 = oy pand oy e = oz e = 1 holds.
(ii) A cyclic operad is a (non-X) operad O equipped with k-linear maps
7,: O(n) — O(n)

subject to

t(por1y) =1Yogtp, ifl=<p.q,

T(poj¥)=tpo;_1Y, if0<gand2 <i <p,

tl =1,

" =idow).

(2.2)

for every ¢ € O(p) and ¥ € O(g). In case the last equation is not fulfilled,
one also speaks (in analogy to cyclic homology) of a para-cyclic operad. A
cyclic operad with multiplication is both a cyclic operad and an operad with
multiplication w such that Tt = .
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The first part of the following well-known useful result is due to [24,25,52] and
possibly others, whereas its enhanced second part appeared in [53, Thm. 1.4]:

Theorem 2.3.

(i) Any operad with multiplication defines a cosimplicial k-module the cohomology
of which carries the structure of a Gerstenhaber algebra.

(ii) Any cyclic operad with multiplication defines a cocyclic k-module the (simplicial)
cohomology of which carries the structure of a Batalin—Vilkovisky algebra.

2.2. Left and right Hopf algebroids. The third fundamental concept on which
our results are based, is the surprisingly powerful notion of bialgebroids and Hopf
algebroids.

2.2.1. A®-rings. Let A and U be (unital associative) k-algebras. Assume that there
is a fixed k-algebra map 1: A° := A ® A°® — U. This map induces forgetful functors

U-Mod — A°-Mod, U°-Mod — A°-Mod

from the category of left resp. right U-modules to the category of A-bimodules, that
is, every N € U-Mod resp. M € U°P-Mod becomes an A-bimodule via

arn<b:=na®bn, arm<b:=mnba),

(2.3)
abe A, ne N meM.

This in particular applies to U itself, that is, left and right multiplication in U define
A-bimodule structures of both these types on U itself, and this defines two morphisms
s:A—> U, s(a):=nl@a®1),andt: A® — U, t(b) := n(1 ® b) fora,b € A, the
source resp. target map of the pair (U, A).

2.2.2. Left and right bialgebroids. Recall then from [60] that a left bialgebroid is a
sextuple (U, A, s%, 1, Ay, €), abbreviated (U, A), which adds to the data of the A®-ring
(U, A, s*, t%) introduced above two A-bimodule maps with respect to the A-bimodule
structure ,U. , the left coproduct Ay: U — U, ®@.4 .U, u = uq) ®4 Uz, where
we use the common Sweedler subscript notation (with summation understood), and
the left counit e:U — A such that (U, Ag, &) becomes a counital A-coring, which
means that one has a couple of compatibility conditions that need more technical
attention than those for bialgebras as the base ring A is in general noncommutative;
see, e.g., [3, Def. 3.3]. For example, the counitality axioms read as e(u(1)) > U =
u = u() < €(u(z)). As in the bialgebra case, one also wants the comultiplication
to be a morphism of the multiplication in the sense of A(uv) = A(u)A(v), and in
order to give this equation a well-defined sense, the coproduct has to corestrict to a



When Ext is a Batalin—Vilkovisky algebra 1089

map U — U x4 U, where U x4 U is the Sweedler—Takeuchi product, that is, the
A®-submodule of U ® 4 U defined by

Ux,U:i= {3 ui @u; €U, ®,.U |
Yilaru) Qu; =3 u; ® (u; «a), Va € A},
which in contrast to U ® 4 U becomes an A°-ring by factorwise multiplication. Also,

glaru)=ceu<a), euv)= g(u < 8(1))) (2.5)

2.4)

for the counit, for all u, v € U and a € A.

A right bialgebroid [30, §2] is again a sextuple (V, B,s",t", A, d) formed by
a BC-ring (V, B,s",t") together with two B-bimodule maps but this time with
respect to the B-bimodule structure , V., , the right coproduct A,:V — V. ®3 ,V,
v > v @5 v@, where we use the less common Sweedler superscript notation
(with summation understood), and the right counit 3:V — B, subject to certain
compatibility conditions which are opposite to those of a left bialgebroid. Indeed,
the opposite (UP, A, st Ay, €) of a left bialgebroid (U, 4, sttt Ay, €) is aright
bialgebroid, and from this one can easily deduce the explicit axioms for a right
bialgebroid.

Both notions of left and right bialgebroid generalise bialgebras (the case of which
isrecovered by taking A = k resp. B = k); see, for example, [37, §2] for an overview.

2.2.3. Left and right Hopf algebroids. Following Schauenburg’s definition [56],
we say that a left bialgebroid (U, A) is a left Hopf algebroid if the Hopf~Galois map

U@ U > U, Q4 .U U Qoo tt > Uy @4 uytt (2.6)

is bijective. In this case, one can define a so-called translation map for which we
introduce the Sweedler notation u4 ® 4op U_ = a[l(u ®41). Incase A = k is
central in U, the map ay is invertible if and only if U is a Hopf algebra, and one has
Uy @u_ = uqy ® S(ue)), where § is the antipode of the Hopf algebra.

Of course, (2.6) is not the only possible Hopf—Galois map that can be defined for
a left bialgebroid: the map a,: U, ® 4 .U — U, ® 4 .U, u @4 v = u)v @ 4 Uy is
another one, and if this map is invertible, the left bialgebroid (U, A) is called a right
Hopf algebroid.

We refer to, for example, [7, Prop. 4.2] and [13, §2.3] and references therein for
further details and an explanation of the terminology.

Of course, the notions of left and right Hopf algebroid also exist if the underlying
bialgebroid is a right instead of a left one. Since we are going to deal with the dual of
a left bialgebroid (which is a right bialgebroid), we will need (one of) these concepts
as well: we say that the right bialgebroid (V, B) is a right Hopf algebroid if the
Hopf-Galois map

BV Qg Ve > V. ®z.U, V ®gwvi> v @y 0v? 2.7
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is bijective. Similarly as before, we define the corresponding translation map by
- +._ p-1
VT Qpap v =87 (1 ®pv), (2.8)

and we abbreviate B‘l = B71(1 ®; —). Again, in case B = k is central
in V, the map B is invertible if and only if V' is a Hopf algebra, and one has
vT @ vt = S(v()) ® v(a).

Remark 2.4. This latter definition might now lead to slight confusion in terminology
as saying “left/right Hopf algebroid” does not specify whether the underlying
bialgebroid is left or right, whereas “left/right Hopf algebroid for a left/right
bialgebroid” appears way too clumsy. However, in the following we will always
mean by “left Hopf algebroid” as having an underlying left bialgebroid structure,
and by “right Hopf algebroid” an underlying right one. We also want to stress
that interchanging left and right here is more than a pure exercise in chirality yoga:
as mentioned before, this determines the monoidality of the respective category of
modules.

The following lemma collects some useful properties for the so-defined translation
maps for left and right bialgebroids (see [56, Prop. 3.7] for the first part and [6,
Lem. 2.14] for the second):

Lemma 2.5.

(i) Let (U, A) be a left Hopf algebroid over an underlying left bialgebroid. Then the
following relations hold:

Ut @ U_ € U X 0 U, 2.9)

Ur1) sy =u®41 €U, ®,4.U, (2.10)

U1)+ a0 U()—UR) = U Q40 1 € ,UR 400 U, (2.11)

Ut(1) Q4 U(2) Raor U— = U(1) B4 U©2)+ B 400 U(2)—, (2.12)

Uy Qaop U—(1) QpU_(2) = Uqq g0 U— @4 U, (2.13)

(UV)+ ® 00 (UV)— = UL V4 ® 40 V_U_, (2.14)

UtU_ = sz(s(u)), (2.15)

e(U_)rus =u, (2.16)

(s“@1' (1)), ®uw (s“@1(D))_ = s (a) @4 s°(D). (2.17)

where in (2.9) we mean the Takeuchi—Sweedler product

Uxyw U= {Ziui ®vi €,U Q40 U, |
diUi1a®@u =y u; ®arv;, VaeA}.
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(ii) Let (V, B) be a right Hopf algebroid over an underlying right bialgebroid. Then

one has:
V" @pw v €V Xpo V, (2.18)
v ot @, vt = 1Q,v e V®,,V. (2.19)
VDD~ R VPt = 1 Qpwv €, V@pa Vs, (2.20)
D ® o p W+ Q5 0@ — - ® pov pt® R v+(2)’ 2.21)
VDR, Qpp v =0t @z 0" Qpa v, (2.22)
(Ww)” Rz (VW)T =WV R v W™, (2.23)
v ot =57 (0®)), (2.24)
vT <« d(vT) = v, (2.25)
(s" )" (1)) ®gon (s" (D)™ (1)) = 5" (B') @ 5" (), (2.26)

where in (2.18) we mean the Sweedler—Takeuchi product

V xXgop V 1= {Zivi R w; €V Qpop V|
Yviab®w =) ;v @b ruw, VbeB}.

2.3. Modules, comodules, and contramodules.

2.3.1. Modules and comodules over bialgebroids. We shall not discuss all details
here of modules and comodules over bialgebroids as they have been written many
times in the literature, see, for example, [3] for an overview.

However, we want to repeat that — in contrast to bialgebras — the category
U°P-Mod of right modules over a left bialgebroid U is in general not monoidal,
whereas the category of left modules U-Mod is so; they same holds with left and
right interchanged for right bialgebroids.

In [13, Prop. 3.1.1], we listed a multitude of U-module structures over Hom-
spaces and tensor products of U-modules, two of which will be important in what
follows: first, for M € U°®-Mod and N € U-Mod, their tensor product M ® 400 N
is again a right U-module by means of a sort of adjoint action

(m & qop B)U 1= MUY Q 400 U_N (2.27)

form € M, n € N, u € U. Another crucial observation for our subsequent
considerations is that for M, M’ € U-Maod, the A°-module Hom 400 (M, M) carries
a sort of transposed adjoint action if U is a left Hopf algebroid, that is, by

(& £)(m) = uy (f@_m)) (2.28)
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one obtains a left U-module structure on Hom 400 (M, M’). In particular, if M = U
and M’ = A, then (2.28) reads

uc o)) = 8(¢(u_v) > u+) (2.29)

foru,v € U and ¢ € U* := Homyw (U, A); we will come back to this situation
in §2.4.

A (say) right comodule M over a (say) right bialgebroid (V, B, A, d) (which
is what we will need explicitly in the following) is a right B-module that is a right
comodule with coaction m > m©® ®z m™M of the coring underlying V, see [11]
for details; there is an induced left B-action on M given by bm := m©@3(b > m™),
hence M becomes a B-bimodule and the coaction a B-bimodule map.

The right coaction is then a B®-module morphism M — M X V, where

MxgV:={>mQ@pvieM V|
Y ibmi @puvi =Y ;mi Qpv; b, VbGB} (2.30)

is the Takeuchi—Sweedler product, similarly as for the bialgebroid coproduct, see (2.4).

Both the categories Comod-1" and V' -Comod of right resp. left I/-comodules are
monoidal, and one has forgetful functors 1'-Comod — Mod-B°¢ and Comod-V —
Mod-B¢. Same comments apply for a left bialgebroid (U, A) to the categories
U-Comod and Comod-U that have forgetful functors to A°-Mod.

2.3.2. Contramodules over bialgebroids. Contramodules over coalgebras were
introduced in [19] half a century ago and discussed along with comodules, but later
somehow neglected and are not overwhelmingly present in the literature. They are
dealt with in the direction we need, for example, in [9], and enlarged to corings and
further discussed in [4,55]. In case of a finite dimensional bialgebra (or bialgebroid),
one should think of a contramodule as a module over the dual (see Lemma 4.6).
However, contramodules pop up as natural coefficients in the cyclic theory of the
Ext-groups and in this sense are also hidden in the classical cyclic cohomology
theory in Connes [16], see §6.

Definition 2.6. A right contramodule over a left bialgebroid (U, A) is a right
A-module M together with a right A-module map

y:Hom o (U, M) —> M,
called the contraaction (not to be confused with contraction) subject to

Hom 40p (U,
Hom_gor (U, Hom g0 (U, M) a»©.y) Hom uor (U, M)

:j jy

Hoonp(Uq ®A DU,M) Hoonp(U,M)—y>M

_—
Hom 4op (A¢,M)
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and

H op(e,M
Hom or (A, M) 22240 CM) i omigon (U, M)

\ly

M.

The isomorphism of the left vertical arrow of the upper diagram is established by
the right A-module structure on Hom 40 (U.,, M) given by

fa:= fla>-) (2.31)

fora € A, u € U; the required right A-linearity of y then reads

y(fla>=) =y(fa, VaceA. (2.32)

One might be tempted to think that there always exists a trivial contraction simply
given by the evaluation f — f (1), which obviously is a map Hom 40 (U, M) — M,
but it is precisely this right A-linearity (2.32) which excludes this possibility in
general. However, in the situation that A = k, that is, for Hopf algebras, this problem
disappears, see §6.2.

We will denote the “free entry” in the structure map y by hyphens or dots
depending on whatever we think is more readable in a specific situation, i.e., for
f € Hom 4 (U, M) write y( f(—)) or y(f(-)) in explicit computations (see below).
As in [9], we explicitly write the condition given by the first diagram for
g € Hom 400 (U ® 4 U, M) as

Y(FEC®4) =v(g(—1) ®4—@)) (2.33)

where the dots match the map y with the respective argument, and where the
inner contraaction j has to be carried out first as evident from the first diagram
in Definition 2.6. The second diagram explicitly reads as

y(me(=)) =m (2.34)

for m € M. As mentioned in [5, §A.7] and similarly as for comodules, a right
U -contramodule additionally induces a left A-action given by

am = y(ms(— < a)) = y(me(a > —)) (2.35)
turning M into an A-bimodule, which defines a forgetful functor
Contramod-U — A°-Mod (2.36)

from the category of right U -contramodules to that of A-bimodules. In particular, y
this way becomes an A-bimodule map with respect to the right A-action (2.31) and
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the left A-action af := f(— < a) on Hom4o (U, M), as we see by computing
y(f(=<a) = y(f(e-a)«a) > ~))
(S (e a)»-))) (2.37)
DS« @) Day (1),

where we used counitality of U in the first step.

X ok ok

Similar definitions hold for left contramodules, or contramodules over right
bialgebroids, but none of the respective categories is known to be monoidal. Finally,
observe that whereas the base algebra A of a left bialgebroid U carries a canonical
U-module structure by the counit as well as a canonical left resp. right U -coaction
by the source resp. target map, there is no canonical U -contraaction on A.

2.3.3. Yetter—Drinfel’d algebras and anti Yetter—Drinfel’d modules. The follow-
ing standard concept (see, for example, [56, §4] for the first part, and [10, §4] for
the third) will be needed when establishing operadic structures on the complex in
question; since we shall also consider its dual version, we need various versions of it.
Definition 2.7.

(i) A Yetter-Drinfel’d (YD) module N over a left bialgebroid (U, A) is a left
U-module with action U, ® 4 N — N, u ® 4 n — un and left U-comodule
with coaction N — U, ® 4 N, n = n(_1) ® 4 n(g) such that the underlying
A-bimodule structures coincide and such that

U@ @) ®a Uan) o) = U1 & U@ o) (2.38)

forallu € U,n € N. The resulting monoidal category will be denoted by &, YD.

(i) A Yetter-Drinfel’d (YD) module M over a right bialgebroid (V, B) is a right
V-module with action M @ .V — M, m @ v — mv and right V' -comodule

with coaction M — M ®5 ,V, m = m©® ®,; m( such that the underlying
B-bimodule structures coincide and such that

mv@)© @, v @)D = Oy D) @ (1)@ (2.39)

forall v € V, m € M. We denote the resulting monoidal category by YDy, .
(ili) A Yetter-Drinfel'd algebra is an element N in [ YD (and mutatis mutandis in
YD“;) that is both a monoid in U-Mod as well as in U-Comod, and which
is called braided commutative if it is commutative with respect to the Yetter—
Drinfel’d braiding, that is
n-oyn = (”(—l)n/) ‘N 1(0)> (2.40)

forall n,n’ € N, where — - — indicates the monoid structure on N.
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Let us still mention that for a monoid N in U-Mod (as for example a Yetter—
Drinfel’d algebra), one has the following properties form,n € M,a,b € A,

av(m-yn)y<b=(@vm)p (nab), m-y(a@avrn)=m<a)yun 241

with respect to the induced A°-module structures from (2.3).

Furthermore, to define cyclic modules, we will need the right bialgebroid version
of certain coefficient modules as defined in [6, Def. 2.15], which are in some sense
opposite to Yetter—Drinfel’d modules:

Definition 2.8. An anti Yetter—Drinfel’d (aYD) module M over a right bialgebroid
(V, B) is aleft V-module and right V'-comodule such that the underlying B-bimodule
structures arising from the forgetful functors coincide, that is,

avm<b=amb, meM, a,be B, (2.42)
and such that action followed by coaction is given as
(vm)(o) Rz (vm)(l) = 0@ @, v@MyW= " eV, me M. (243)

An anti Yetter—Drinfel’d module is called stable if coaction followed by action yields
the identity, that is, mWOm©® = .

Remark 2.9. In [56, Prop. 4.4], a monoidal equivalence between §, YD and the weak
centre of U-Mod is established, whereas in [36, Lem. 6.1] it was proven in the
bialgebroid context that aYD modules form a module category over |, YD, see the
comments below Remark 4.7. On the other hand, in [58, Prop. 2.7] it was shown that
at least for a Hopf algebra H the category of aYD modules can be identified with
the centre of the bimodule category given by the opposite category of H-comodules.
We presume that an analogous statement holds for bialgebroids when using the weak
centre of a bimodule category [34, Def. 2.1], see also Remark 4.17 at the end of
Section §4.3.

As we want to compare bialgebroids with their duals later on, we will finally
need the following concept of an anti Yetter—Drinfel’d contramodule but in order not
to swamp the reader with too many definitions in a row, we will postpone it until
Definition 4.3.

2.4. Duals. Inthissection we briefly recall how the right dual U™* :=Hom 4op (U., 4 4)
becomes a right bialgebroid if the right A-module U. for the left bialgebroid (U, A)
is finitely generated projective over A; a similar discussion also holds for the left
dual Uy := Hom,(,U, 4A ), which we omit. See [30] and [37, §3.1] for all notions
and conventions used here. In longer expressions, we will frequently write (¢, u) to
mean ¢ (u) for ¢ € U*, u € U as this increases readability (at least in our opinion).

The dualisation of the left bialgebroid structure (U, A, se, te, Ay, €) yields a right
bialgebroid (U™*, A, s",t", A,, 0) over the same base algebra if one imposes suitable
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finiteness and projectivity assumptions [30]: the monoid structure exists in full
generality and is given by

(@Y)(W) := (¥, (P uw)) >uw), (2.44)

where ¢, ¥ € U*, u € U. This product can be promoted to an A¢-ring structure if
one defines the source and target maps as

sA—>U* are(()<a), "A—->U* arelar())=as().

If we denote, exactly as in (2.3) for every bialgebroid (be it left or right), the four
A-module structures on U* as

avgab=s"(a)" (b)p, ardp<b=¢t (a)s"(b)
for¢p € U*, a,b € A, one can write down the identities

(puca)=(puya, (p.avu)={pa,u), (pu<a)={ard,u), (2.45)
(p.aru)=(peau), (ard.u)=alp.u), '

hence the pairing between the A°-rings U* and U corresponds to what was called a
right A®-pairing in [12].
In order to obtain an A-coring structure (U™, A, d), one sets

Ap:U* — Homuor (U @400 Ui, A), ¢ > {u ® 40 v > P (uv)},

2.46
0:U*" — A, ¢ — d(1y). (246)
When U, and hence also ,U* is finitely generated A-projective, the map
U*® ,U*—>H0mo ,U®qu,A,
<o wn (U @n ) (2.47)

¢ D4 w — {u & 400 U > (¢7 (‘/ﬂ U) >u)}v
is an isomorphism and A, given above defines a (right) coproduct, that is
(M. (6P . v) »u) = (p.uv). (248)

and 0 gives the (right) counit for this. Choosing a dual basis {e;}1<i<n € U,
{e’'}1<i<n € U™, one can decompose

u=>y e e, u, (2.49)

and from (2.45) follows that if U, is finitely generated A-projective, then ,U™ is so
as well with decomposition

(pu) =D (p.eia (e u)) = (hei) (el ou) =) ((¢,ei) > e’ u),

l l 1
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hence .
¢ =2 ;(p ei)re. (2.50)

We conclude by explicitly writing down the coproduct (2.46) by means of the left
U -module structure

(v = @)(u) == p(uv) (2.51)

on U™ as
AyU* 5> UF®R4,U . ¢ (e —~¢) @6l (2.52)

3. The Hopf structure on the dual

A question left open for years was whether the dual(s) of a bialgebroid carries a
(left or right) Hopf structure as well. A certain progress in this direction was made
in [13], where a map S*: U* — U, was defined that turns out to be an isomorphism
if U is both a left and a right Hopf algebroid (as a left bialgebroid). The ultimate
answer that the dual(s) do carry a Hopf structure as well was given in [57] by an
abstract categorical reasoning, but no explicit expression for the translation map was
given, a gap we are going to fill in this section. The idea is pretty simple: whereas
the coproduct on U* is somehow the transpose of the left U-module structure (2.51)
on U*, the translation map, which can be interpreted as the inverse of the coproduct,
results as the transpose of the left U-module structure (2.29) on U *. More precisely:

Theorem 3.1. Let (U, A) be a left bialgebroid which is additionally a left Hopf
algebroid, and let U, be finitely generated A-projective. Then the right dual (U™, A)
is a right bialgebroid which is additionally a right Hopf algebroid. More precisely,
the map B~1:U* — ,U* @400 U* given by

(B~ @)@ ®4v) = (e ) ) = e(p(u-v) »us) 3.1
vields a translation map which defines an inverse to the Hopf—Galois map
B:uU* @un US = UF®4,U" ., @y >y PV e,y® (32

on U*. Explicitly, if {e;}1<i<n € U, {€'}Y1<i<n € U* is a dual basis, the translation
map reads as

¢_ ®Aop ¢+ = Zi ei ®Aop (e,- (> ¢) (33)

Remark 3.2. Comparing the coproduct (2.52) with the translation map (3.3), we
notice that these expressions are built the same way and only (apart from using
different tensor products) differ by the way U acts on U*. Observe that for v = 1
this yields the map S*: U* — U, introduced in [13]; see there for a discussion of
this map. Of course, a similar statement also holds for the left dual U., that is,
if the left bialgebroid U additionally were a right Hopf algebroid and .U finitely
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generated A-projective, then the right bialgebroid U, became a left Hopf algebroid.
If U happens to be both a left and a right Hopf algebroid (and A-projective in two
senses), then the two duals are isomorphic via the map S*, see [13, Thm. 5.1.3].

Proof of Theorem 3.1. As the Hopf-Galois map is a morphism of right U *-modules,
it is enough to verify (2.19) and (2.20) with respect to (3.3) to show that (3.1) defines
the inverse to the Hopf-Galois map (3.2) for the right bialgebroid U *. One has

(0 0TV R, 0P U & 400 v)

(2é7) <¢ ¢+(1) (¢+(2) ) )
G st +@)
=" (oW (o7 u@) » (97, v) »uqy))
A L U1)) P U@R)V)
(33)

Yo lei &, (€ uq)) > u@v)
g,

i (8 (9. (i« (€' uq)))uyv) »eiy)

) (
2.14),2.17) ) (8’( ( _

(229)

q (ei,u(l)))_u(z)v) > (e,- 4 (ei,u(l)))+)
(2.49)

= (e {p.u@m—upv) »uqy+)
(&, (¢, v) »u)

(6 @40, u @40 V).

@11
247)
Hence, g ¢ TV ®,6T® = e® ,¢, whichis (2.19) for the right bialgebroid (U *, A).
Verifying also (2.20) along these lines is left to the reader. O

For convenience in later computations, note the following useful relation:

Lemma 3.3. For ¢ € U* and u € U, one can write
¢ (¢ u) =uc . (3.4)

Proof. As the desired identity lives in U*, we are going to prove it by pairing both
sides with an arbitrary element w € U. One has

(pF < (¢~ u), w)2 (9T, (67 u) b w)
=4 D (e,- o ¢, (ef,u) > w)
i el(g. (ei—« (e u))w) > i)

(2.29)

(2.14),
(2.17),(2.49)

e((p.u_w) »uy) = (e w).
forall w € U. O
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4. Cyclic structures on the complex computing Ext

The idea in this section is to obtain the structure of a cyclic module on the complex
that computes the Ext-groups as an application of the Hopf structure on the dual,
since we now know that (U*, A) is a right Hopf algebroid. To start with, consider
the following right bialgebroid version of [39, Thm. 3.6-3.7]:

Lemma 4.1. Let (V, B, A, d) be a right bialgebroid which is additionally a right
Hopf algebroid in the sense of Egs. (2.7)—(2.8). Let M be a left V-module right
V -comodule with compatible respective right B-actions mb = m < b form € M
and b € B. Then the quadruple (C2(V, M), 6., 0], t') defined as

Cc‘()(V’M) = M®B V®B"'®B V

with operations

mQ@pv g Qp Uy Bz I, ifi =0,
5;(’7’1@8“}): mQ@pv; Qp - Qp Ar(Vn—it1) ®p - Qp Uy, If1=<i=n,
m® @, mM @y v ®p - ®p vn, ifi =n+1,
mQgl, ifi =0,
Sm =130 0 o
me @pmt’, ifi =1,

0i(m®sw) =m@p 1 ®p -+ Qp dVp—j) ®p - ®pvn, 0=j<n-—1,

(m®p w) =v,;m® @ mVv; D @, 010, @ @y @5 va_1v, ™
4.1)
defines a para-cocyclic k-module (where we abbreviated w = v! ®p --- @ V™).
If M is a stable aYD module over the right bialgebroid V, then (C3(V, M), 8., 0., t')
is a cocyclic k-module.

Proof. The proof of this fact works along the lines of the corresponding result in
loc. cit., which is why we omit it. 0

The cosimplicial k-module in (4.1) only uses the right bialgebroid structure along
with the right V' -comodule structure of M. Putting 8’ := :’:01 (=1 87, we therefore

define:

Definition and Lemma4.2. The (simplicial) cohomology computed by (C5(V, M), B’)
for a right bialgebroid (V, B) and a right V -comodule M is denoted by H} (V, M)
and called the coHochschild cohomology of V' with values in M ; if \V is flat as a
B-module, then H3 (V, M) >~ Cotor}, (M, B), see [39].

We shall apply this lemma to the right bialgebroid (U*, A) given by the right dual
of a left bialgebroid (U, A) to obtain the structure of a cocylic k-module structure on

C*(U, M) := Hom 4op (U ®4* M), (4.2)

where the tensor product is formed with respect to the A-bimodule structure ,U,
and M is a right U-contramodule and left U-module.
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4.1. Contramodules as coefficients. To obtain cyclicity, we need to impose a
compatibility condition between the U-action and the U -contraaction, similar to
the case of aYD modules above, leading to so-called aYD contramodules, which is
the content of this subsection. In the context of Hopf algebras, the corresponding
definition is due to [9] again, but for noncommutative base rings, i.e., for (left) Hopf
algebroids we are not aware of any reference:

Definition 4.3. An anti Yetter-Drinfel’d (aYD) contramodule M over a left Hopf
algebroid (U, A) is simultaneously a left U -module and a right U -contramodule such
that both underlying A-bimodule structures from (2.3) and (2.36) coincide, that is

avm<ab=amb, meM, a,b e A, 4.3)
and such that action and contraaction are compatible in the sense that

u(y(f)) = y(u+(2)f(u_(—)u+(1))), Yu e U, f € Homyo(U, M). (4.4)

An anti Yetter—Drinfel’d contramodule is called stable if

y((—)m) =m (4.5)

for all m € M, where we denote (—)m:u — um as a map in Hom 4o (U, M).
Remark 4.4.

(i) The left U -action that appears in the argument of y on the right hand side of (4.4)
is of course that on M: the argument of y has therefore to be understood as the
element in Hom 4o (U, M) given by U > w — u(2) f(u—wu()), see below for
the issue of well-definedness. For a conceptually somewhat cleaner notation (but
with less similarity to aYD modules) one could rewrite the condition (4.4) as

u(y(f) =y((ue = H(uw)). (4.6)

using (2.12) and the left U-action (2.28) on Hom 4o (U, M).

(ii) That the right hand side from (4.4) or (4.6) is actually well-defined might appear,
at first glance, somewhat mysterious since on an arbitrary U-bimodule N over a
left Hopf algebroid U there is in general no well-defined adjoint action of the kind
n+— u_nuy forn € N, u € U. On the other hand, (4.4) does indeed make
sense: let us prove that the right hand side in (4.4) does not depend on the choice
of a representative for u ® 40 u_ rESP. U (1) @4 U2) INU Q00 U tesp. U ® 4 U.
Whereas for the first case this is obvious by the A°P-linearity of both f and the left
coproduct on U, the second case turns out to be slightly more tricky: first of all,

y(a > f(0) “EP 5 G(FOs@ > )

(2.33) 4.7)
= y(faear—@)) = v(f@r-).
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where we used counitality and the A°P-linearity of f in the last step. With this
identity, it is then simple to see that the right hand side of (4.6) does not differ for
two representatives ), u; <a ® u} and ) ; u; ® a > u/ of the coproduct Ay (u) for
an element u € U; hence, (4.6) is well-defined.

(iii) Anti Yetter—Drinfel’d contramodules over a (left or right) bialgebroid form a
category, which again is unlikely to be monoidal. To start with, the respective base
algebra of a (left or right) bialgebroid in general is not an aYD contramodule, and,
as said before, usually not even a contramodule at all.

Example 4.5. In case of the group Hopf algebra kG for an infinite discrete
group G, the concept of contramodules is illustrated in [58, §4.1]: the category
of kG-contramodules turns out to be equivalent to that of G-graded vector spaces,
whereas the category of aYD-contramodules over G is equivalent to that of G-graded
G-equivariant vector spaces, as is the category of aYD modules over kG. We refer to
loc. cit. for details as well as for a discussion about stability and cyclic cohomology
in this case.

To continue, we need to discuss how these coefficient modules transform if
passing to the dual. Most of the statements in the following lemma are well-known
but perhaps not explicitly written down (and proven) for the bialgebroid setting:

Lemma 4.6. Let (U, A) be a left bialgebroid.

(i) There is a functor U-Comod — Mod-U*, and if U. is finitely generated
A-projective, this functor is monoidal and has a quasi-inverse Mod-U* —
U-Comod giving a (strict) monoidal equivalence

U-Comod ~ Mod-U*

of categories.
(i) If U, is finitely generated A-projective, then there is a (strict) monoidal
equivalence
Comod-U™* ~ U-Mod
of categories.

(iii) If U, is finitely generated A-projective, then by means of the equivalences in (i)
and (ii) there is a braided (strict) monoidal equivalence
YD{. >~ [ YD.
(iv) There is a functor Contramod-U — U*-Mod, which, if U, is finitely generated
A-projective, has a quasi-inverse U*-Mod — Contramod-U giving an

equivalence
Contramod-U ~ U*-Mod

of categories.
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(v) Let U be additionally a left Hopf algebroid and let U, be finitely generated
A-projective. A left U*-module right U*-comodule (with compatible right
A-actions) is (stable) aYD if it is so as a left U-module right U -contramodule
by means of the equivalences in (ii) and (iv); hence one has an equivalence of
categories

U*aYDU* ~ UaYDcom:a—U

between the categories of (stable) aYD modules over the right bialgebroid U*
and (stable) aYD contramodules over U.

Proof. The first four parts of this lemma are not too surprising results, some of them
well known, which is why we only give some hints and not discuss, for example, the
respective morphisms.

Part (i): this was proven, along with an analogous consideration for the left dual,
in [37, Thm. 3.1.11] and also appeared earlier in [56, §5]; see [13, Prop. 4.2.1]
as well. For later use, we mention that given an (A°P-balanced) right U *-module
structure m ® 400 ¢ — me on a left A-module M, then

me Y ;e ®,4me' (4.8)

defines a left U -comodule structure on M, where {e; }1<i<n € U, {ei}lsisn eU*
is a dual basis; vice versa, for a left U-comodule M, the assignment

me = (¢, m-1)) M) (4.9)
defines a right U *-module structure on M.

Part (ii): similarly to the first part, consider the map
M ®,4,U* - Hom(U, M), m®¢ > {ur>mip,u)}, (4.10)
which is an isomorphism if U, is finitely generated A-projective, with inverse
Hom oo (U, M) > M @ ,U*, f >3, flei)®a€, 4.11)

where {e; }1<i<n € U, {€'}1<i<n € U* is adual basis. As is a straightforward check
using (2.48) and the coassociativity of M, the map

U Q.M —- M, u@ ,mir>um:= m(o)(m(l),u) 4.12)

defines a left U-module structure on M. Conversely, if u ® 4 m — um is a left
U -module structure, then

M—->M®,U* m—=)>Y,em®,é (4.13)

defines a right U*-comodule structure on M, which is easily verified by means
of (2.48). That both constructions are mutually inverse is easily seen by the
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decomposition (2.49) as well as the forgetful functor (2.3). As for the claim
that the so-given functor F:Comod-U* — U-Mod is monoidal, recall that the
monoidal structure on U-Mod is given by the diagonal action, that is, the tensor
product M’ ® 4 N’ of two U-modules is a U-module by defining the left action
u(m' @, n') :=uqym’ ® 4 u@n’, whereas the tensor product M ® 4 N of two right
U *-comodules becomes a right U *-comodule by the codiagonal coaction, that is, by
the right coaction m ® 4 n — (M@ ® 4, n®) @ , mMn® . The prescription (4.12)
then defines on M ® 4 N the left U-action

u(m @4 n) = (m(o) R4 n(o))(m(l)n(l),u)

(2.44)
44 (0) ® . n(o)(n(l)’ <m(1)’u(1)) l>u(2))

(2.45)
2 m @ @, n @D < (mD ugy)ue)

(2.30)

= m(o)(m(l),u(l)) ® 4 I’l ( M u(z)) = Uuqnym X4 Up)n,
hence F(M @4 N) = FM ®4 FN, and that F(A) = A for the unit object in both
categories is also easy to see.

Part (iii): for this, use the first two parts of this lemma and show that under these
equivalences the (right bialgebroid) Yetter—Drinfel’d condition (2.39) follows if the
(left bialgebroid) Yetter—Drinfel’d condition (2.38) is fulfilled (and vice versa, but we
only show the first case). So, let M € YD and using the notation ¢ = (¢, -) for an
element in U™, the left hand side in (2.39) can then for any u € U be expressed as

(m¢(2))(0) .4 (¢(1)(m¢(2))(1), u)

A ()0 g ((m¢(2>)“),(¢“) u@)) > ue)
= ((¢() men)me)” @4 (0@ mn)mo) ™ (@D, uw) > ue)
CLEY 100 @ @4 (moy . (9D (9P m1y) > uq)) b ue)
48) (O)()®A (moy ™, (¢, u@ym1) > ue)
(230)(413)2 (. uaymn) > (eim)) Q4 (€', u))
= Xild.ummen) > ((ei < (e u@))me) ®a 1
C2 (g ummen) > (u@ymey) @41
(g, (ym) ) v (waym) g ®al
=D (6P u@) > (waym) ) > (waym) ) ®a1
= (6D, (uym) Ly )uaym) g ®a (6. 1)
4.9)

= (uaym)p® @4 (0@, uw)
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(4.12)
L (m(O)(m(l)’u(l)))¢(l) ®4 (¢(2),u(2)>

0.4
= m(0)¢(1) R4 (¢(2) < (m(l)’ u@)), u(z))

(2'4522'44)m(0)¢(1) Q.4 (m(1)¢(2)’ u>’

where in step three we additionally used the A-linearity of the right coaction, in
step six that the left and right A-actions on U commute, and in the tenth step the left
bialgebroid comodule version of the subspace property (2.30). Since this computation
holds for arbitrary u € U, Equation (2.39) follows for the right bialgebroid (U*, A),
as desired. As for the claim that the equivalence is braided, similar to the Hopf
algebra case (see, for example [2]) we have to show that the respective braidings oy
in YD and oy + in YDU* commute with the functor F': YDU* — VYD, that is, for
objects M, N € YYD one has Foy, = oy F: M ® 4 N — N ® 4 M. One computes

oyx(m @4 n) = n® &, mn PORY Z ein ® 4 me'

(49)
Diein ®y (e m(_1))m)

= Y (eia (e’ mc1))n ®.4m)

(2.49)
= mnh @4 m) = oy(m Q4 n),

where we wrote m® 4n for both an elementin M ® 4 N as well as for the corresponding
element in F(M) ® 4 F(N).

Part (iv): here, we simply make use of the map (4.10) along with (4.11) again: if
y:Hom 4o (U, M) — M is aright U-contramodule and m (¢, -) denotes the element
in Hom 4op (U, M) defined by u +> m(¢, u) for ¢ € U* and m € M, then

U Qo My — M, ¢-m:= y(m(¢,—)) (4.14)

yields a left U*-module structure on M. Indeed, for ¢, € U* and m € M, one
has

@y)-m = y(m(py.—)
Qf”y(m (¢, (— )(1)) (@)
233 y()/( b )))
@3 (7 (m ) )
(4.14)

= y((w~m)<¢,—>) =¢- (¥ -m).

Conversely, if U, is finitely generated A-projective and ,U* Q0 M — M,
¢ ® 400 m > ¢ - m aleft U*-action on M, then

y(f):=> ;¢ fle), [ €Homu(U, M) (4.15)

gives a right U-contraaction: we only verify (2.33) and leave the rest to the reader.



When Ext is a Batalin—Vilkovisky algebra 1105

To this end, first recall from, e.g., [37, §3] the isomorphism

U. ®4.U — Hom, (U™ ®40 U, A),
UR V> {¢ & 400 W = (W? <¢,M) > U)}

with inverse W Z ei®4ejaW(e/ ® 4ope’), which allows to write the coproduct
on U as
Agu = Zi’]- e @qej<(etel u).

We then have for g € Hom o (U. ® 4 .U, M)

r(g(—1) ®1—@)) = Ty ek - glexa) ®a ex2)
= Dk ek glei ®@aeja(elel, ex))
= Y xe(glei @aej)leel )
B 5w (leied e) v k) - glei @ae))
Zl,(e el)-glei ®ae))
T(r(glei ®4-) = 7(7 (g ®4 ),

@.50)

@.15)

that is, we showed (2.33).

Part (v): here, we only show that the condition (2.43) is transformed into (4.4) when
applying the functors Comod-U* — U-Mod and U *-Mod — Contramod-U (and
their quasi-inverses) from parts ((ii)) and ((iv)), and leave the missing details to the
reader. So, let M be an aYD module over U*, that is, a left U*-module and right
U*-comodule that fulfils (2.43), and let as before {e; }1<i<n € U, {ei}lsisn eU™
be a dual basis. We compute

u(y(N))'E Yiule - flen)
(e ) (e fen) )
Y (6 OF - (e @) (e @ flen)Mel D= u)
Yo (@ DF a (ff D7 (1D fen) D, ua)) pue)) - fe)®

@43)
(2.42),(2.44)

(2.45),
@.18).( (2 42)

2 (DT 4 (D7 u@)) - (f(e) (e @ fen® uqy))
(

(244) _ :
> (€ DF < (D= u))) - (Fle) O flen) D, ("D, uqy) v u))
(4.12) _ ;
Z ( i+ 4 z(l) ,u(3))) . ((e’(2),u(1)) DM(z)f(é’i))
4. 14) 3.4) :
> v(((ef® M(1)) > u) flei))ua = e'®, —))
= Yiv((e@uwy) v (ue) flei)(ua =W, -)))
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LY e fe)lue e D, (e um) » )

2 Yivlue flenlus & ¢ (Dua))

=Y (e e NHugen g o e (Duaw))

2 (e o H((ue < (el uw- () > u@s))ei))
(e & Nl (e (@ um ()

249 V(s & ) ur@u—(uim)))

2.10)

Y@ o H((Ouw)).

which is (4.6) resp. (4.4), hence M is also an aYD contramodule over U. As for
stability, if M is stable in U*aYDU*, one has

m = m® @ 010 D ) D (e,

hence it is stable in ;aYD“"™V (and vice versa). ]

Remark 4.7.

(i) The first two parts look exactly the way it would be for bialgebras and might
therefore appear somehow banal, but we do not want to deprive the reader of the
fact that starting with the left dual U, = Hom,(,U, A) one perhaps somewhat
unexpectedly obtains a functor Comod-U — Mod-U,, see [13, Prop. 4.2.1].

(ii) The functor Contramod-U — U *-Mod is not monoidal as in general U *-Mod
resp. Contramod-U is known not to be monoidal resp. not known to be monoidal,
as mentioned before.

The idea behind the subsequent proposition is as follows: as briefly mentioned
in Remark 2.9, whereas Yetter—Drinfel’d modules form a monoidal category gYD,
anti Yetter—Drinfel’d modules generally do not; on the other hand, they do constitute
a module category over ;, YD, that is to say, the tensor product of an aYD module
with a YD module yields an aYD module again, see [36, Lem. 6.1] in the bialgebroid
context. Here, along with the codiagonal left coaction on the tensor product, one
uses the right action from (2.27). If U, is finitely generated projective, in quite the
same way tensoring a left U*-module with a right U*-module gives a leff module
again, which in view of Lemma 4.6, parts (iv) and (i) amounts to tensoring a right
U -contramodule with a left U-comodule to obtain a right U-contramodule again.
Using again Lemma 4.6, parts (iii) and (v), the aYD property then translates by saying
that the aYD contramodules form a model category over &, YD as well (where the left
U -module structure on the tensor product is given by the diagonal left action):
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Proposition 4.8. Let (U, A) be a left Hopf algebroid with U, finitely generated

A-projective.

(i) Let M € Contramod-U and N € U-Comod. Then M ®4 N is a
right U -contramodule again.

(i) Let M € ,aYD™™ " and N € YYD. Then M ® 4 N with its diagonal left
U -action is an aYD contramodule again.

Remark 4.9. One might be tempted to think that this is somehow also true in the
non-finite case but at present we did not manage to prove this. Also, it is not clear
whether the possible stability of M implied stability of M ® 4 N.

Proof of Proposition 4.8. Let f € Homop(U,M ® 4 N). For u € U, one may
write this as ) ; f(u); ®4 f(u)] € M ®4 N, but to reduce the quantity of sub- or
superscripts in order to lighten notation, we will simply denote thisas f'(u)'® 4 f(u)”,
with summation understood.

Part (i): we claim that for M € Contramod-U and N € U-Comod,

v(f) =2 v (fe)) (flep){qy=el =) ®a flej) — (4.16)

defines a right U-contraaction on M ® 4 N, where y,, is the right U -contraaction
on M, and {e;}1<i<n € U, {€/}1<i<n € U* a dual basis. To prove this, we either
might directly verify the defining Eqs. (2.32)—(2.34), or show how this contraaction
can be obtained from Lemma 4.6 described right before the proposition. To this
end, consider the adjoint left action on M ® 4 N over the right Hopf algebroid U *
given by (¢, m ® 4 n) — ¢+tm ® 4 ng~. Using then the isomorphism (4.11) along
with (4.15), we see that the contraaction on M ® 4 N is given by

Y= X fle)) =" fles) ®a fleg)'el”

COL S v (e (€7 =) @ (17, ey py) fle))
DN v (fe et e, £ ) o) @4 f(e)iy,
(2.45;(3.4)

S 7 (FE) (e yy & e =) ®a fle)ly):
which is what was claimed.

Part (ii): we need to show that (4.4) holds for y from (4.16) under the condition
that (4.4) already holds for y,,, and likewise with respect to stability. On the one
hand, using the diagonal left U-action on M ® 4 N, one has foru € U:

u(y() = X ua(ra (£ ey & el . =) ®uuay fle)yy  @A17)

LS v (e (Fe) ey & e um—(—Day+my)))

®4 U@ f(€))(g)-
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On the other hand, one has
V(”+(2)f(”—(—)u+(1)))
Gy, VM((u(2)+(1)f(u(2)—ej“(1))/)

(U@+@) fue-ejum)”) ;) &€’ —)) ®4 U@+ fU@-ejum)”)
ik Vm ((u(2)+(1)f(€k)/)

(((ek(l), (ek(z)’ (ek(3)

(2.49),(2.48)

@) > ej) > u@)-) r U@+ f(en)”) e —))

®4 (U@ f(er)")
(2.49),(2.9)
=" Y kM ((u(z)+(1)f(ek)’)
(((ek(l)’ u(z)_) > U(2)+(2) < (ek(Z)’ ej)f(ek)”)(_l) c (ej < (ek(3), M(l))), _))

® 4 (u 2)+(2) f(ek)”) 0)
(238),(2.17)

Dk VM ((“(2)+(1)f(€k)/)

k(1) k@) ,

(v@+@+m fler) (e u@)-) »u@yr@- < (%, ¢)))

& (7 « (@ uqy)), —)) R4 U@+ (@) g)
(2.12),
@17)( (2 29)
Y v (M@ fle))e(u@ @+ @y (P ue)) P ue-e)+
1)

< ((ek(z),ej)(ej < (ek(3),u(l)),M(z)—(z)—f(ek)/(/_1)_”(2)+(2)—(_)»))

®a M(2)+(3)f(ek)/(/0)

(2.12),(2.45),
(2.48),(2.50)
Zk Ym ((M+(2)f(€k)')8(u+(3)+f(ek)'(/_l)Jr(ek(l), M—+(1)) PU—1(2)

< (@, u——f(ek)'(’_l)_u+(3)—(—)u+(1)))> ® .4 Uty f(ex) (o)

(2.4),
(25),248)
Dk Vm ((u+(2)f(ek),)g(u+(3)+f(ek)/(/_lH_
< (ek, M—+u——f(€k),('_1)_u+(3)—(—)”+(1)))) ® 4 M+(4)f(€k)/(/o)

(2.15),(2.30),
(2.3),2.16)

Dk VM ((“(2)f (ex)')

(s £ (@) 1ys < (€5 1@yt (um))) @t /()

(2.5),(2.17),
2.4),(2.12)

2k M((( (f(er)_yyz < €5, fler)_yy_um-(um+m))
> u(1)+(2))f(é’k)’)8(u(1)+(3))) ®4 U fex) ()
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(2.3),(2.29)
=" Dk vm (u(1)+(z) (f(ex) (f(ex)(_yy & ek, u(l)—(—)u(1)+(1))))

® 4 u(2) f(ex) (o)
@.17)

u(y(f)).

that is, we showed (4.4) for the contraaction (4.16). ]

Remark 4.10. In particular, if M = A, that is, if the base algebra itself is an aYD
contramodule over U and N € {J,YD, then

v(f) =2 va((flej)ny & el =) fle) (4.18)

defines a right U-contraaction on N which turns it into an aYD contramodule.

4.2. The cocyclic module. We are now in a position to define a set of operators
(6,0, 7) that will turn out to define a cocyclic module structure on the k-modules
C*(U, M) from (4.2). To this end, set

@, .. e s u), ifi =0,
G @, ooty = fl, iyt oyt if L < <o,
ul fu?, ... u"th), ifi =n+1,
(ajf)(ul,...,u”_l) = f(ul,...,u"_j,l,u”_jH,...,u”), 0<j=<n-—1,
@ uhy =yl @ u o ul () 4.19)

on C"(U,M). Zero cochains are identified with elements of M by means of
Hom 4op (A°P, M) >~ M, and the corresponding cofaces read

sy = "0 =0
um, ifi =1.

As always, set B := Zf:ol (=1)'8;. It is a straightforward check that
(C ‘UM ),8.,0.) defines a cosimplicial k-module, and only needs the left U-
bialgebroid structure of U along with the left U-module structure of M. We can
therefore make the following definition:

Lemma and Definition 4.11. The simplicial cohomology computedby (C*(U, M), B)
for a left bialgebroid (U, A) and a left U-module M is denoted by H*(U, M) and
called the Hochschild cohomology of U with valuesin M ; if U, is flat as an A-module,

then H*(U, M) ~ Exty; (A, M), see [40].
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To prove that (C*(U, M), 6., 0., T) also defines a cocyclic k-module, we will
pass through the dual: a higher degree version of (4.10) gives a map between the
complexes we are interested in. More precisely, define

ECLU*M)—C"U,M),
m®a b1 ®A"'®A¢n'_>{u1 ® 40+ @ 400 U" (4.20)
= m{pr, (P, (o (P u™) > > u?) »ul)}’

which, as before, is an isomorphism if U, is finitely generated A-projective in which
case the inverse reads

gh.cm(U, M) — C(U*, M),

(4]

o > f(en.iei,) ®aet @400 @€, 4.21)

i1 yeensin

Proposition 4.12. Let (U, A) be a left Hopf algebroid, let U, be finitely generated
A-projective, and M a left U*-module right U*-comodule with compatible left A-
actions. Then M can be seen as a right U -contramodule and left U-module with
compatible left A-actions and the operators (4.19) can be obtained as

Si=to8 ot
oj=§o00) 0,

Tzsot/og—l’

where £ is the isomorphism from (4.20) and 51’-,0},1/ are the para-cocyclic
operators on C5(U*, M) for the right bialgebroid (U*, A) and the left module
right comodule M as in (4.1).

Proof. We will only prove this for the most difficult case, that is, for the cyclic
operator, and leave the respective computations for cofaces and codegeneracies to the
reader; however, we even restrict to the case n = 2 for reasons of space and to avoid
too messy expressions (you will soon understand) as for example appear in (4.20),
the case for general n then being obvious (no induction needed).

So, let f € C*(U, M) and assume for a minute that U, is finitely generated
A-projective with dual basis {e; }1<i<n € U, {ei}liiﬁn € U™, and let - denote the
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left U *-action on M. One computes for u, v € U
(ot o0& (u,v)

(4.1),
(4'2%4'21)21',1' (ej+ - f(ei, ej)(o))(f(ei,ej)(l)ej_(l), (ele/=@ p)» u)
(2.44),(2.45)

= Zi,j (ej+ d (ej_(l) < (f(e,-,ej)(l), Uy, (eiej_(z), v) > M(z)))

- flei,e))®
i ((f(ei,ej)(l), u@y) »e/ta (ef‘(l), (elel=@ y)» u(z)))

- flei e))®

(2.18),(2.22)

W (et e (oW (eI D vy »ug))

(fei e) O flei e )M uay))
Y (/T (e ™M (el v) sug)) - (uqy fleire))),  (422)

that is, a certain element in U* acting on an element in M, and we proceed by
simplifying this element in U *: for u, v, w € U, one has

(ej-i- 4 (ej—(l)’ (eiej_(z), v) » u), w)

“12)

2.45) (e/F, (/=M (el =@ v) »u) o w)

= Yk fer o7 (kD (7K ) b u) o w)

2.29) Y (el exe ((eFDV (e7ek® vy »u) b w)) > gy )

O o(fer e ([eFV. (D (el o) > viay) > ) > w)) > )
O (el (enm < [k uttel, vay) v vy)))w) » exs)

(2.14),

CILD (7 (e’ vay) > vay)_w) > (u(e vay) > v@y)),)

(2'1442‘17)8((61', vay—u—w) » (us((e', va)) > v2)4)))

((u((ei, V(1)) > v(z))) o ej)(w).
Hence, we can resume our computation in (4.22) and continue by

ot ot N, v) = 2 (e, vw) » ve)) & e’) - (ua) flei.e;))

(2.4),
(2.3),(2:49)

(2.29)

> (weve) =e’) - (ua) fvay.e)))

> vy foay, e)) (@) = e’ -)),  (4.23)

where y: Hom oo (U, M) — M is the right U-contramodule structure on M that
corresponds to the left U*-action as in Lemma 4.6, Eq. (4.14). We proceed by

“.14)
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simplifying the element in Hom 40 (U, M) given by

w > (uay S0y, e))Ueve) & e’ w).

More precisely,

X (way Sy, e))(ueve) & e’ w)

(2.11) .
=3, (wy+ fu@-u@vay. ) {Ueve) & e/ w)

(2.28) .
=" (wq) & Hueva) < (Ue)ve) e/ w),e;))

Y (o v < e({e’ ve)-u@-w) > u@1ve)).e5)

(2.12) .
=% () & £)(ur@viq) < e(i@vie < e/ vu-w)).e)

2.4

= (1) & HUr@v+0) < £0EV+@) V)

2.28
DUy foy v_uw),

where in the fourth and in the last step we used the properties (2.5) of a left bialgebroid
counit. Putting this now back into (4.23), we obtain

(o070 5_1)(u, v) = )/(M+f(v+, v_u_(—))),

and this proves that for t (and likewise §; and o) in (4.19) the identity t = £ot' 0§ -1
holds under the given assumptions. O

Corollary 4.13. If U is a left Hopf algebroid and M is a left U-module right U -
contramodule with compatible left A-actions, then C*(U, M) with the operators
(b, 04, T) from (4.19) forms a para-cocyclic k-module, which is cocyclic if M is a
stable aYD contramodule.

Proof. The first statement follows from Lemma 4.1 and since the triple (§;, 07, ')
determines a para-cocyclic k-module, (§;,0;, ) do so as well. However, observe
at this point that now the para-cocyclic relations for the operators (4.19) hold in full
generality, whether U is finitely generated projective or not. The second statement
about cyclicity follows from Lemma 4.6 (iv) and (v). ]

+

For later use, note that the cyclicity condition 7”*! = id on elements of degree n

precisely amounts to the stability (4.5), that is

@O uh) =y () ft . u™), (4.24)

which is the identity if the contramodule is stable.
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4.3. Trace functors. In this subsection, we will briefly address the question of how
cyclic (co)homology with values in aYD contramodules is related to trace functors (in
the sense of [32, Def. 2.1], see also [31]); most details will be skipped and published
elsewhere. The following definition is due to [32, Def. 2.1]:

Definition 4.14. A trace functor consists of a functor 7:€ — & between a
(unital, associative) monoidal category (€, ®, 1) and a category &, together with
isomorphisms

xy: T(X®Y) >~ T ® X)

for all X,Y € € that are unital (that is, 77,y = id), functorial in X and Y, as well as
fulfil the property

TZ,X®Y ©Ty,Z®X © Tx,yoz = id
forall X,Y,Z € €.

We illustrate the above by looking at aYD contramodules, inspired by but slightly
generalising the approach given in [34, §7]. Let €°P denote the opposite category to
a given category €.

Theorem 4.15. If (U, A) is a left Hopf algebroid over an underlying left bialgebroid
and if M is a stable aYD contramodule over U with contraaction y, then T :=
Homy (—, M) yields a trace functor (U-Mod)°? — k-Mod, that is, we have

T:Homy (P ® 4 N,M) ~ Homy (N ® 4, P, M)
forany N, P € U-Mod, given by

Tf)n®4p):= V(f(P 4 ()”)), (4.25)

forne N,p e P.
In order to prove this theorem, we need the following lemma:
Lemma 4.16.

(i) For every left bialgebroid (U, A), the category U-Mod is left closed monoidal,
that is, has left internal Hom functors.

(ii) If the left bialgebroid (U, A) is a left Hopf algebroid, the category U-Mod is
right closed monoidal, that is, has right internal Hom functors.

(iii) Consequently, for a left Hopf algebroid (U, A) over an underlying left
bialgebroid, the category U-Mod is biclosed monoidal, that is, has both left
and right internal Hom functors.

Proof. The first part is, in a standard way, seen as follows: for M, N, P € U-Mod
over a left bialgebroid (U, A), the customary isomorphism N ® 4, P - (N ®,U)®y P,
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n®4pt> (n®41) Qy p, with inverse (n ® 4 u) @y p +— n ® 4 up, induces an
adjunction

g£:Homy (N ® 4 P, M) — Homy, (P, hom*(N, M)) (4.26)

by [(E/)(P)](n®4u):= f(n® 4up) andinverse (§ 7' g)(n ® 4 p):=[g(P)](n ®410),
where we set hom®(N, M) := Homy, (N ® 4, U, M) equipped with the left U -action

given by right multiplication on U in the argument.

As for the second part, let again M, N, P € U-Mod. The right internal
Homs are defined by hom” (M, N) := Homw(M, N) equipped with the left
U -action (2.28), along with the adjunction morphism ¢: Homy (P ® 4 N, M) —
Homy (P, hom” (N, M)) givenby (¢f)(p) := f(pR4—)for p € P. Toseethatf
indeed lands in Homy, (P, hom” (N, M)), we check the U -linearity:

Cf)up) = flup ®4—) = fus@yp @auru—(-)) =uy f(p ®4u—(-))
=uc((Ef)(p)),
using (2.10) and (2.28) and the diagonal action on P ® 4 N. In the other direction,

define n: Homy (P, hom” (N, M)) — Homy (P ®4 N, M) by (ng)(p ®4 n) :=
[g(p)](n), and that ng indeed lands in Homy (P ® 4 N, M) follows from

mg)(u@yp ®auyn) = [guwp)lueyn) = [ua) & (g(p)]ue)n)
= umy+([g(PI@y-uezn)) = u(lg(p)ln)),

for p € P, n € N, using (2.11) and (2.28) again. Finally, that { and 7 are indeed

mutual inverses follows as in the classical Hom-tensor adjunction, and we obtain
Hom,, (P ®4 N, M) ~ Hom,, (P,hom' (N, M)) 4.27)

The third part is an obvious consequence of the first two statements. O

Proof of Theorem 4.15. Comparing the two adjunctions (4.26) and (4.27) from
Lemma 4.16 if (U, A) is a left Hopf algebroid, one sees that it is enough to find
a U-module isomorphism from hom” (N, M) to hom*(N, M) to prove the statement.
Note first that for N,M € U-Mod and f € hom” (N, M), one obviously has
f((—)n) € Hom oo (U, M). Hence, if M is also a right U-contramodule, it makes
sense to define

ty:hom” (N, M) — hom*(N, M), f > {n®,ut> y((we f)((On))},

thatis, (tn f)(n ®4u) = y((uc f)((-)n)). Thatindeed 7y f lands in hom®(N, M)
follows if M fulfils the aYD condition (4.6): one has

v((en @4 u)) = y((vu) & H(vayn))
= (TNf)(U(l)” R4 U(z)“) = (tw f)(v(n ®a ”))
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for all v € U, and that this map is a morphism of left U-modules is also
straightforward: for v € V, we have

(v(en ) ® 4 u) = (ty f)(n @4 uv)
= 7((uv) & ) () = (tn (v & f))(n @4 1),

where we denoted the left U-action on hom*(N, M) just by juxtaposition. As for its
inverse, set

tV:hom*(N, M) — hom" (N, M), g+ {nr>y(gn ®4-))},
thatis, (tV g)(n) = y(g(n ® 4 —)), and by
ot g)m) = ur(cg)u—n)
= uty(gu-n ®,4—-))
Py y(u++(2)g(u_n &4 u+_(—)u++(1)))

2.13)
U8 U—(1) ® .4 U—_2)(—)U4(1)))

14
Y (utu—gn ®4 (—)utq)))
y(g(n ®.4 (—)u))

2.10)

for all u € U, we see that this is a map of U-modules as well. We then compute

(@ (en £))(0) = y((tn f) (1 ® 4 —))
= 7(H(O)+ F((O=(Im)))
= 7O+ /(Oa)-O@n)
= y((=) f(n)).

where we used the contraassociativity (2.33) in the third step and (2.11) in the fourth.
Hence, if the aYD contramodule M is stable, then y((—) f(n)) = f(n), and therefore
™ o Ty = id; likewise, one proves Ty o TV = id. These maps are therefore mutual
inverses and t is a U-module isomorphism if M is stable.

In total, we get a commutative diagram

Homy (P ® 4 N, M) ——— Homy (P, hom” (N, M))

: lﬂomU(PafN)
v

' -1
Homy (N ®4 P, M) d

Homy, (P, hom*(N, M)),

and we need to show that T given in (4.25) fits into this diagram at the dotted arrow,
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thatis, that T = £~ 'oHomy, (P, Ty )on. More precisely, for f € Homy (P® 4N, M),
we have

(5_1 o Homy (P, ty) 0 ﬂf)(n ®4p) = [(HomU(P» Ty) o nf)(p)](n ®4ly)
= y([(NH(P)](=)m)
=y(f(p®4(—)n))
=(T/)n®4 p).

The proof of the second displayed equation in the Definition 4.14 of a trace functor
is left to the reader. This concludes the proof of the theorem. O

We proceed by showing how to obtain from Theorem 4.15, that is, from a trace
functor the cyclic operator 7 in (4.19) on the complex C*(U, M).

Computing the homology of C*(U, M) could be achieved by considering the
homology of Hom,, (Bar,(U), M), where Bar,(U) := (,U,)®a®"+! ig the bar
resolution of A, which is a U-module by multiplication on the first factor. On the
other hand, Bar,(U) is not a monoidal product of two U -modules in U-Mod, which
is what we need in Theorem 4.15; but thanks to the Hopf—Galois map (or rather its
“higher” version [39, Lem. 4.10]), there is a U-module isomorphism

ap:Bary(U) = (LU, )®avntl =, ((y,)®ant]
Observe then that for any N, M € U-Mod, one has an isomorphism of k-modules
£ Hom (N, M) - Homy (U ®4 N. M), [ () f,

with inverse £7': g — g(1 ® 4 —). This follows from

(2.10)
gu®4n) ="gutq) ®4uyu-n) =u4g(1 @, u-n)

for g € Homy, (U ® 4 N, M). We then have for N = (,U, )®4" the isomorphisms

Homy (U ® 4 U®4", M) ~ Hom 4o (U®4", M)
~ Hom o (U®4*", M) = C"(U, M),

and can apply Theorem 4.15 on the left hand side to obtain (or rather reproduce) the
cyclic operator on the right hand side from Theorems 1.2 and 1.3; more precisely,
define for f € C*(U, M)

tf := (Hom (g, M) 0 7' 0 F 0 & o Hom4or (0t ', M) (f),

which will be shown to coincide with the cyclic operator in (4.19). For the sake of
readability, we will do this in degree one only (since the maps Hom 4op (g, M) are



When Ext is a Batalin—Vilkovisky algebra 1117

trivial in this case):

(TfHu) = ((HomAOp(ag, M) o 5—1 oTofo Hoonp(oz[l, M))(f))(u)
= ((T 0 & o Homuor (e ', M))(f))(1 ® .4 u)
= 7(((€ o Homer (e ', M)) () (4 ®4 (-)))

Y(( e ) = (Ut u-(-))),

which is 7 in (4.19) for n = 1. For higher degrees the computation is similar, but
much more technical due to the non-trivial maps Hom 4op (e, M ).

Remark 4.17. In [34, §6], the biclosedness of U-Mod is proven if U is assumed
to be a full Hopf algebroid with invertible antipode; Lemma 4.16 is slightly more
general inasmuch as there are left Hopf algebroids which are not full Hopf algebroids
(in particular, do not carry neither a right bialgebroid structure nor an antipode): an
example is given by the universal enveloping algebra of a Lie—Rinehart algebra [41].
Still in [34], it is shown that the category of aYD contramodules over a full Hopf
algebroid is equivalent to the (weak) center (in the sense of [21, §2.8]) of (U-Mod)°P
as a bimodule category over U-Mod. We guess that the proof carries over when
relaxing to left Hopf algebroids, but leave this to a future project.

* k%

Higher structures on the cohomology groups H*(U, M) resp. Exty; (A, M) will
be the main objects of study in the next section.

5. Operadic structures and Ext as a Batalin—Vilkovisky algebra

In [35], we showed that H*(U, M) resp. HS (U, M) (that is, Exty, (A, M) resp.
Cotory, (A, M) if U, is projective resp. flat over A) are Gerstenhaber algebras if M
is a braided commutative YD algebra over a left bialgebroid U. On top, if U were a
left Hopf algebroid, then H; (U, M) even is a Batalin—Vilkovisky algebra.

In this section, we want to add in which cases Ext;] (A, M) becomes a Batalin—
Vilkovisky algebra as well:

Theorem 5.1.

(i) Let (U, A) be a left Hopf algebroid and let A be a stable aYD contramodule
over U. Then C(U, A) becomes a cyclic operad with multiplication.

(ii) Let (U, A) be a left Hopf algebroid with U, finitely generated A-projective, and
let M be a braided commutative YD algebra. If A is a stable aYD contramodule,
C(U, M) becomes a cyclic operad with multiplication.
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Remark 5.2. We believe that the second part is true even if U, is not finitely generated
A-projective (the first part shows that there are instances of this situation), but for the
moment we were not able to prove this.

Proof of Theorem 5.1. Part (i): recall that the operadic composition on C(U, A) is
given by

- —i —i+1 +g—i —i+1
((poiw)(ul’“.,up-}—q 1) = w(ul""’up l’w(ufl)l "“’ufl)q I)Dué)l
NN T s R R T AE ) R CRY

see [36, Eq. (6.15)] (or [40] for the opposite composition) for further details. We
want to show that this composition together with the cyclic operator 7 from (4.19)
fulfils the criteria in Definition 2.1 (ii). With the multiplication element on C (U, A)
given by u = emy, where my is the product in U, the property Ty = u is a
straightforward check. We furthermore need to check Egs. (2.2), but we shall limit
ourselves to only show the first one. For ¢ € C*(U, A) and ¢ € C4(U, A), one has

T(¢ o1 lp)(ul7 LR up+q—1)

Ly (uh (¢ o1 Y03 PP PPy ()

(o v T T il Sy
T o (O)

Ly (g WOy W Tl ()
Lty e )

Qém)’(“hd’(uﬁ, oo @B T ey (o) gy

ull - ”i—(—)(z)))’

whereas, on the other hand,

(t¥ o4 )l ... uPtah

= Tw(fd)(ug]), ey M{l)) > 1,{22) ees uf’z)’ up+l’ o Mp+q—1)
(4.19),2.17) o (/1 5 » » . 1 )
= V()/(u(l)+¢(u(l)+, ey u(1)+, u(l)— .. -u(l)_(..)))g(u(2)+ e u(2)+

+1 +g-1 -
<1/f(ui 9-"*“1 a1, p+a 1...ug-l-lué)_...ugz)_(.))))
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N y (V (”%1)+¢(”%1)+’ e ”51)+’
W(”iﬂ, L ”frq_l’ ubta-1.. .u5+1u1(v2)_ .. ”%2)—(')) >
”51)— .. u(ll)_(..)))g(u(lz)_‘r .. ”é)ﬁ)
A (V (“%1)+¢(“%1)+’ R “1(1)1)+’
w(u_pﬁ—l’ o uiﬁ-q—l’ ubta-1.. -u€+1uf’2)_ . u(lz)_(-)) S
uy e uby (il - ufy ) o -))))
el y, (V (“5—+¢(“i+’ SN G

w(us)_-i-l’ 3 "ui+q—1’u£+q—l ...ul_(.)) DUf._"'”i—("))))’

where in the second step we additionally used the canonical left U -action on A given
by ua := e(u<a) along with the left A-linearity of . Now the two last lines in the two
respective computations above are equal by (2.33), and hence the first of Egs. (2.2)
defining a cyclic operad is proven. The remaining ones are left to the reader. Observe,
however, that the (stable) aYD contramodule condition from Definition 4.3 is only
needed for the property t”*! = id in (2.2), which has already been obtained by
Corollary 4.13.

Part (ii): in [35, §3.1], we showed that for a braided commutative YD algebra M
over any bialgebroid U (finitely generated or not), the map

0;:CP(UM)Q CI(UM)— CPTi YU M), i=1,...p,

given by

- i— i i+q—1 j
(f o1 @)oo u?P ) = f (udyye iy gy iy

i+q—1 i+ +q-1 1 i—1 i i+q—1
---ul(z) T uPTT) .y, (u(z)---u’(z) g(ul(l),...,ul(l) Yo). (5:2)
yields, together with y := (emy(,-)) > 15,, where my is the multiplication map

of U,and 1 := &(-) > 1,, as well as e := 1,, an operad with multiplication.

On the other hand, a straightforward right bialgebroid adaptation of the formulae
given in §3.2 of op. cit. yields that if U, is finitely generated A-projective and M
again a braided commutative YD algebra (over U* this time), even C.o(U*, M) by
means of the composition

o CHU™ M) ® CHU* M) > CLT 7 U M), i=1....p,
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given by

M, P1s s bn) O (Y1, Yn) = (s (1S, 1 (np)D,
o i1 (1) P s i $p), (5.3)

where we abbreviate (m,¢1,...,¢n) = M Q4 ¢1 4 -+ Q4 ¢Pn, along with the
multiplication element u = (ly=*, ly*, 1), 1 := (ly=,1y), and e = 1,
becomes an operad with multiplication. On top, in Theorem 3.10 in op. cit., this
operad was shown to be cyclic with respect to the cyclic operator T/ from (4.1):
for this, one requires an aYD module structure on the base algebra A over the
right bialgebroid U* to produce such a structure on the braided commutative YD
algebra A ® 40 M ~ M (see the comments right before Proposition 4.8 for a short
explanation of this construction), and if M is stable, C.o(U*, M) is a cyclic operad
with multiplication, indeed.

To now obtain from this that C(U, M) is a cyclic operad with multiplication
as well, one simply dualises the aforementioned construction: to start with, from
Lemma 4.6, part (iii) one obtains that a braided commutative YD algebra over the
right bialgebroid U™* corresponds to a braided commutative YD algebra over the
left bialgebroid U; the aYD contramodule structure on M over U was obtained by
Proposition 4.8, part (ii), along with Lemma 4.6, part (v), and is hence a construction
precisely dual to the one that gives M the structure of an aYD module over U™;
between the cyclic operators t’ on C2(U*, M) and t on C*(U, M) we established
in Proposition 4.12 the relation 7 = £ o 7/ 0 £~!, with respect to the isomorphism &
from (4.20); hence, the only thing that is left to show is

fojg=EE" ()P E (). for feCP(U M), geCIUM),

with respect to the composition operations (5.2) and (5.3) above; which is a messy,
but straightforward check, and fills a page or two. As an illustration, we will compute
the case for p = ¢ = j = 2 (in the opposite direction), which contains all important
steps; it is then immediately clear how to transfer this to the general case. So, let
Mm@y 4¢P € CCZO(U*,M) andn ® 4 V1 ®4 Vs € Cczo(U*,M). One has

ETNEM @41 ®aa) 02 E(n ® 4 Y1 R4 Y2))

(4.20),

(4.21),(5.2)
= Y i inia m(¢1’<¢2v”(—1)(‘ﬂ1, (V2. €31y ) > €irpy) >ei2(2)e,~3(2))
> iy 1y) m (€ 2)1(0) Ba €'l @42 ® 4 e
(2.48),
(2.4),(2.45)

0 1,2 3
Zil,iz,i3 m<¢1’( 2 ’( 2 ( 2 > <W2,ei3(1)) l>81.3(2)>
» (Y1, €i2(1)> > eiz(z)) > n(—l)) > e (1)) (e (2)n(0))

Q€' @4 e? Q@ e
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(2.44) 1 2) 3)
=y i (057 (1857 (12057, €i) v ein) » ) e 1)
‘M (eil (2)’1(0)) Q4 el X4 e R4 e’
(2,30,
(2.3),241)

(1
Zil,ig,i3 m:m (‘151» (7 )’"(—1)) > eil(l))”
((Wﬂﬁéz)’ (W2¢§3), eiy) > €iy) > €iy () 0) ®a e ®, e ®, e
“.9),
(2.44),(4.12) 1 1 2 3
S e 1S Q1 (5D (19D (Y29l ery)
>eiy) > e ) ®a el ®y 02 ®, e
1 1 2 3
Ziz,i3 m - p (n(pé ))(0) ®a ¢1 (l’l¢§ ))(1) < (Wﬂﬁé ) < <W2¢§ ), €i3),€i2)
Qe ®,eB
2.50)

2 e 15 @4 1 (1S D @ 4 Y1 6P @4 v16SY,

(2.50),(2.45)

which is (5.3) for this case. With this property, the statement that C (U, M) under the
given conditions defines a cyclic operad with multiplication now follows from the
respective property of Coo(U*, M). O

Although we already know that (C*(U, M),é,,0.,7) defines (under the
mentioned assumptions) a cocyclic k-module, we still want to apply Theorem 2.3,
that is, [53, Thm. 1.4] to add the statement about Batalin—Vilkovisky algebras:

Corollary 5.3.

(i) Under the assumptions given in Theorem 5.1 (i), the cohomology groups
H*(U, A) (resp. Exty; (A, A) if U. is projective) form a Batalin-Vilkovisky
algebra.

(ii) Under the assumptions given in Theorem 5.1 (ii), the cohomology groups
H*(U, M) (resp. Exty; (A, M) if U, is projective) form a Batalin-Vilkovisky
algebra.

6. Examples and applications

In this example section, we will first consider how to apply the results developed
so far in the specific case of a bialgebroid resp. left Hopf algebroid that leads to
the well-known Hochschild complex, and then treat some examples of algebras that
allow for a cyclic structure on the Hochschild complex and hence for a BV algebra
structure on Hochschild cohomology. In the last section, we shortly deal with Hopf
algebras and recover the results from Menichi in [54].
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6.1. Batalin—Vilkovisky algebra structures on Hochschild cohomology. Recall
the left Hopf algebroid (U, A) := (A°, A) for an associative k-algebra A with
structure maps (cf. [56])

sfay)=a®1, t‘(b)=1®b,

6.1
Apa®b)=(a®1)R,(1®D), e(a®b)=ab, ©.)

along with
@®b)+ ®an (a®D)-=(@ Q1) ®an (b®1) (6.2)

forall a,b € A.

In the subsequent examples, we are particularly interested in the case in which A
itself is a right A°-contramodule resp. an aYD contramodule over A°. Let us first
consider this specific situation: the aYD condition (4.4) in case M = A reads for
f € Hom 4o (A®, A) and a right A®-contraaction y: Hom 4op (A4°, A) — A:

@®b)(y(f) =y(f(b® DH(-)a® 1),

or, equivalently,

(2.37),2.32)

ary(f)eb=y(f(b>—a)

that is, coincides with Eq. (4.3). Observe here that Eq. (6.3) in this case does not
constitute a condition: whereas the right 4-action on M = A is fixed right from the
beginning and the contraaction, if it exists, is modelled according to right A-linearity,
simply define the left A-action so as to match (6.3): this does not necessarily coincide
with the canonical left action of the bialgebroid A® on its base algebra A, that is,
left and right multiplication (see below). It then follows that whenever A is a
right A®-contramodule, it is automatically an aYD contramodule. We obtain from
Corollary 5.3:

ay(f)b. (6.3)

Corollary 6.1. If for a k-algebra A there exists an A°-contraaction which is stable
with respect to the induced left A®-action in the sense of (4.5), then its Hochschild
cohomology groups H*(A, A) (resp. Ext’. (A, A) if A is k-projective) form a Batalin—
Vilkovisky algebra.

Remark 6.2. Observe that if A is not stable in the aforementioned sense, the
Hochschild cochain spaces still form a para-cyclic operad (with multiplication).

For more general coefficients M, it is convenient to simplify the contramodule
axioms in Definition 2.6 using the bialgebroid structure (6.1) of (A4, A): identifying
Hom 4o (A%, M) >~ Homy (A, M), we can rewrite the conditions (2.32)—(2.34) as
follows: a right A°-contramodule is a right A-module M together with a map

y:Homg (A, M) > M
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such that
y(f(a(=)) = y(f)a, V f € Homg (A, M),
y(7(g(-®+)) =y(g(-®14)), VgeHom(4® A M), (6.4)
y(mid,(—)) = m, VmeM,

where the first again simply expresses the fact that y be a right A-module morphism
with respect to the right A-action fa := f(a(—)) for f € Homg (A, M) anda € A,
and where again in the second line the dots over the maps are meant to match the
respective argument. As before, these conditions imply that by means of

am = y(midA(—)a), ac€ A, me M,

there is also a left A-module structure on M and then the analogue of Eq. (2.37)
reads

y(f(5)a)) =ay(f), [ €Homg(4, A),

that is, y is an A-bimodule map.
As above, the aYD conditions (4.3)—(4.4) are trivially fulfilled once a contraaction
is found. The stability (4.5) now becomes

y((—)m) = m, (6.5)

where as before we denote (—)m:a — am as a map in Homg (4, M).
With the formulae in (6.1), it is easy to see that one obtains

C*(A°, M) ~ Homy (A%, M) =: C*(A, M), (6.6)

that is, one obtains the conventional Hochschild complex for a left A°-module (resp.
A-bimodule) M. It is also quite straightforward to see that the cosimplicial structure
in (4.19) reduces to the well-known one from [29], up to the sign (—1)"T1. The
cocyclic operator from (4.19) in this case then reads

(tf)ai,....an) = y(a1 f(az, ... .an,—)) 6.7)
for f € C*(A, M), using (6.2) along with a contraaction as in (6.4).

Remark 6.3. As already remarked by Connes [16], itis a priori not clear how to define
a cocyclic operator on the Hochschild complex C*(A, A) for an arbitrary associative
algebra with coefficients in the algebra itself. To circumvent this problem, cyclic
cohomology was defined to be the cyclic cohomology of the complex C*(A4, A*),
where A* := Homy (4, k). One then has C*(A4, A*) ~ C**1(A, k) and the cocyclic
operator is essentially the pull-back of the cyclic operator on the Hochschild homology
complex, that is, cyclic permutation. See, e.g., [47, §2.1.0] and also §1.5.5 in
op. cit. for further comments on this with respect to functoriality. However, Eq. (6.7)
does define indeed a cocyclic operator on C*(A, A) in case the algebra in question is
equipped with an extra structure.
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6.1.1. Symmetric algebras. This subsection could be of course integrated in the
subsequent one about Frobenius algebras, but since in this case the argument is
notably simpler, we decided to present it separately: recall from, e.g., [43, §16F]
or [20] that an algebra is called symmetric (in the sense of representation theory)

if there is an isomorphism A — A* := Homg (A, k) of A-bimodules, where the
A-bimodule structure on A* is given by
avgp<ab:=¢b(—)a) = {(p,b(—)a) (6.8)

fora,b € A, ¢ € A*, where (., .) denotes the canonical pairing between A and A*
given by evaluation.
Hence, an A°-contramodule structure Homy (A4, A) — A on A amounts to a map

Homy (A, A*) ~ Homy (A ® A, k) — A*
subject to (6.4), and it is a simple check that the assignment
y:Homp (A ®@ A, k) > A*, g—g(—®1,) (6.9)

gives such a map such that A is stable over A° in the sense of (6.5). We therefore
have:

Corollary 6.4. The Hochschild cohomology of a symmetric algebra is a Batalin—
Vilkovisky algebra.

This was the result obtained in [62] and later in [53, §4] as well as [22].

6.1.2. Frobenius algebras. In this section, let k be a field, which, for simplicity,
we assume to be algebraically closed (if not, one can generalise the subsequent
considerations along the lines in [45, §4]).

For Frobenius algebras, there exists a considerable amount of equivalent
definitions, most of which are listed in, for example, [59]. We use here the following
formulation and give a few well-known details that are needed in the sequel:

Definition 6.5. A Frobenius algebra is an algebra A with a functional e: A — k such
that the map A — A™*, a — &, with g,(b) := e(ab) is bijective. The functional ¢ is
called a Frobenius functional.

One can show that not only A is finite-dimensional, but also that on any Frobenius
algebra there is a k-coalgebra structure the coproduct of which is an A-bimodule
map and the counit of which is given by the Frobenius functional: to this end,
let {€;}1<i<n € A be a basis and define another basis {e"}lfign € A by means
of e(ele;) = 8[.]. Set

A=Y, ¢,

and by A-bilinearity we have for all a € A:

Ala) =) ;ae; ® el = Yiea® ela. (6.10)
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Counitality amounts to

a=Y,elae)e’ =Y e(e'a)e; (6.11)

for all @ € A, and in particular

=Y slenel = ¥ eleer. (6.12)

The map a > &, is right A-linear, where the right action on A* is given by ¢ ® a >
¢<a = ¢(a(—)) and the right A-action on A is right multiplication; hence, A ~ A*
as right A-modules. This, in turn, implies that a — ¢, also becomes a map of left
A-modules, where the left action on A* is given by ¢ ® ¢ + a > ¢ = ¢((—)a),
whereas the left A-action on A is twisted by an automorphism o € Aut(A4), that is
a ® b+ a(a)b. Therefore, ;A >~ A* as A-bimodules resp. left A°-modules. The
automorphism o is determined up to inner automorphisms and called the Nakayama
automorphism. This leads to the identity e(ab) = e(o(b)a), and also £(e;a)e’ =

Y e(o(a)e)e’ =o(a) =Y, e(e'o(a))e;. Hence,
Alo(@) =Y ,ea®e =), e ®c(a)e’. (6.13)

Lemma 6.6. Let A be an arbitrary Frobenius algebra and let A be A as a k-module
but with the twisted left A°-action given by (a @ b)c = a >c < b := o(a)ch. Then
the assignment

V:Homk(AMTA) — oA, f = Zi 8(f(e,-))ei

defines a right A®-contraaction on 4 A.

Proof. We have to check the three identities

y(f@=))=r(fa, 7([FEC®-)=y(gt®1s)). y(aidi(-))=a,

foralla € A, where f € Homg (A, A) and g € Homg (A ® A, A). The first and the
third identity both follow from (6.10). As for the second, compute

7 (¢ ®-)) =3 v(e(g((—) ®ei))e’)
=2 e(e(gle; ® ei))ei)ej
=3 e(e')e(gle; ® ei))e’
= e(glej ®s(e)er))e’
= Zj s(g(ej ® lA))ej
=y(g(- ® 1)),
where we used the fact that e lands in k£ and is therefore central as well as (6.12) in
the penultimate step. O
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Let us repeat that the contraaction is by construction automatically left A°-linear
with respect to the twisted action on 4 A, as is also directly seen using (6.10) and (6.13).
Hence, the Hochschild cochain spaces for an arbitrary Frobenius algebra constitute
a para-cyclic operad with multiplication. However, using the same Eq. (6.13), one
immediately sees that

y((—)a) =o(a), VaceA, (6.14)

that is, the contramodule ;A in general is not stable. To obtain cyclicity and thereby
the desired Batalin—Vilkovisky algebra structure on Hochschild cohomology, one has
to restrict the class of Frobenius algebras under consideration.

6.1.3. The case of semisimple 0. In the following (similar to [40,45] but more direct
as the cocyclic operator T on the Hochschild cochain spaces is directly available
and we do not need to pass through duals), we restrict to the case in which o
is diagonalisable (semisimple), meaning that there is a subset ¥ C k\{0} and a
decomposition of k-vector spaces of the form

A=@PAr. Ay={acA|o(a)=2a}.
AEX

Note that 1 € X because (1) = 1 and that A3A, € A;,. Denote by (X) the
monoid generated by X. Extending Corollary 6.4, we obtain:

Corollary 6.7. For a Frobenius algebra over a field with diagonalisable Nakayama
automorphism, its Hochschild cohomology is a Batalin—Vilkovisky algebra.

Proof. As in [40, p. 57], write
CP(A,A)y = {p € CP(A, A) | ((A%%P),) C A;,.}

for the set of all A-homogeneous p-cochains, where

(A®kP)M = @ Am Rk ++ Qg Aup
Mls"'aﬂ‘ﬂe(g)a
R Rp=H
denotes the homogeneous component of elements of A% 7 of total degree y € ().
One has an isomorphism

C*(A, A) = C*(4, A)1 & (C*(A. A) N [Tzei 0.0y C* (A, A)2). (6.15)

which splits off the homogeneous degree 1 part. As in [45, Cor. 3.8], one can
show that the restriction 8, of the Hochschild differential 8 to the A-homogeneous
p-cochains maps them into the A-homogeneous (p + 1)-cochains; accordingly, set
H*(A, A)) := H(C*(A, A)y, B,). On the other hand, for a para-cocyclic object,
one has the general identity BB + BB = id — t"*! in degree n (see, for example,
[40, Eq. (2.18)]), and by means of (6.14), one observes that restricting this identity
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to C*(A4, A), reads BB + BB, = (1 — A)id. Hence, for A # 1 the operator B
is a contracting homotopy for C*(A4, A), and therefore H*(A, A); = 0. By the
splitting (6.15), we then obtain H*(A, A); >~ H*(A,sA) and since by Lemma 6.6
along with (6.14) we know that the cochain spaces C*(A4, A); yield a cyclic operad
with multiplication, the statement is proven using Corollary 6.1. O

This was the main result obtained in [45] and independently also in [64]. We
refer again to [45, §5] and in particular Proposition 5.7 in op. cit. for a large amount
of examples resp. classes of algebras where the semisimplicity condition for the
Nakayama automorphism is met, and also for a couple of examples where this is
not the case. However, up to our knowledge it is not proven (or disproven) whether
in the latter situation the existence of a BV structure on Hochschild cohomology is
automatically excluded for some reason.

6.2. Hopf algebras. If U := H is a Hopf algebra over A := k, then the theory
developed in §5 notably simplifies since there is a canonical contraaction on any
k-module M simply given by evaluation on 1 € H; remember that this is in general
not allowed, see the comment after (2.32) and is parallel to the fact that not every A-
module can be given the structure of a trivial comodule over a bialgebroid, in contrast
to the bialgebra case. In case the Hopf algebra possesses further grouplike elements
(apart from 1), that is, elements ¢ € H fulfilling A(¢) = ¢ ® ¢ and e(¢) = 1, one
can even make the following simple observation:

Lemma 6.8. Let H be a Hopf algebra over k. Then every k-module M carries a
trivial H-contraaction given by

y:Homg(H, M) - M, [+ f(c)

for a grouplike element ¢ € H.

This explains why when defining a cocyclic structure on C*(H, M) or C*(H, k)
as for example done in [54], the contraaction becomes somehow “invisible”. In fact,
the cocyclic operator from (4.19) now reads

)R L hY = f (R . S(hy) - S(hh) S (hY)s).

where we used 14 ® h— = h1) ® S(h(y)), the bialgebra counitality as well as the
left action (2.29) for A = k along with the k-linearity of the bialgebra counit.

In case M = k, as for the anti Yetter—Drinfel’d contramodule structure on k, the
condition (4.4) now reads

e() () = h(y(f)) = v(e(h@) f (S(h3)(Hhw)) = f(She)shw)).

and using S(¢c)¢ = 1 = S7'(¢)¢, one directly checks that k is a stable aYD
contramodule (relative to the grouplike element ¢, denoted by k. ) if S2(h) = chg L.
As a consequence, we recover Theorem 50 in [54]:
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Corollary 6.9. Let H be a Hopf algebra over k and ¢ a grouplike element such that
the antipode is a twisted involution, that is, S*(h) = chc™ forall h € H. Then
H*(H, k) resp. Exty (k. k) is a Batalin—Vilkovisky algebra.

References

[1] J. Alm, A universal Ao structure on BV algebras with multiple zeta value coefficients,
Int. Math. Res. Not. IMRN, (2016), no. 24, 7414-7470. MR 3632088

[2] N. Andruskiewitsch and M. Grafia, Braided Hopf algebras over non Abelian finite groups,
in Bol. Acad. Nac. Cienc., Cérdoba, 63 (1999), 45-78. Zbl 1007.17010 MR 1714540

[3] G. Bohm, Hopf algebroids, in Handbook of algebra. Vol. 6, 173-236, Handb. Algebr., 6,
Elsevier/North-Holland, Amsterdam, 2009. Zbl 1220.16022 MR 2553659

[4] G. Bohm, T. Brzeziniski, and R. Wisbauer, Monads and comonads on module categories,
J. Algebra, 322 (2009), no. 5, 1719-1747. Zbl 1208.18003 MR 2543632

[5] G.Bohm and D. Stefan, A categorical approach to cyclic duality, J. Noncommut. Geom.,
6 (2012), no. 3, 481-538. Zbl 1346.16003 MR 2956318

[6] G. Bohm and D. Stefan, (Co)cyclic (co)homology of bialgebroids: an approach
via (co)monads, Comm. Math. Phys., 282 (2008), no. 1, 239-286. Zbl 1153.18004
MR 2415479

[7] G. Bohm and K. Szlachanyi, Hopf algebroids with bijective antipodes: axioms, integrals,
and duals, J. Algebra, 274 (2004), no. 2, 708-750. Zbl 1080.16035 MR 2043373

[8] C. Braun and A. Lazarev, Homotopy BV algebras in Poisson geometry, Trans. Moscow
Math. Soc., (2013), 217-227. Zbl 1306.53068 MR 3235797

[9] T. Brzeziriski, Hopf-cyclic homology with contramodule coefficients, in Quantum groups
and noncommutative spaces, 1-8, Aspects Math., E41, Vieweg + Teubner, Wiesbaden,
2011. Zbl 1247.16004 MR 2798432

[10] T. Brzezinski and G. Militaru, Bialgebroids, x 4-bialgebras and duality, J. Algebra, 251
(2002), no. 1, 279-294. Zbl 1003.16033 MR 1900284

[11] T. Brzezinski and R. Wisbauer, Corings and comodules, London Mathematical Society
Lecture Note Series, 309, Cambridge University Press, Cambridge, 2003. Zbl 1035.16030
MR 2012570

[12] S. Chemla and F. Gavarini, Duality functors for quantum groupoids, J. Noncomm. Geom.,
9 (2015), no. 2, 287-358. Zbl 06464163 MR 3359014

[13] S. Chemla, F. Gavarini, and N. Kowalzig, Duality features of left Hopf algebroids, Algebr.
Represent. Theory, 19 (2016), no. 4, 913-941. Zbl 1362.16034 MR 3520054

[14] X. Chen, S. Yang, and G. Zhou, Batalin—Vilkovisky algebras and the noncommutative
Poincaré duality of Koszul Calabi—Yau algebras, J. Pure Appl. Algebra, 220 (2016), no. 7,
2500-2532. Zbl 06546716 MR 3457981

[15] A. Connes, Cohomologie cyclique et foncteurs Ext”, C. R. Acad. Sci. Paris Sér. I Math.,
296 (1983), no. 23, 953-958. Zbl 0534.18009 MR 777584

[16] A. Connes, Noncommutative differential geometry, Inst. Hautes Etudes Sci. Publ. Math.,
(1985), no. 62, 257-360. Zbl 0592.46056 MR 823176


http://www.ams.org/mathscinet-getitem?mr=3632088
https://zbmath.org/?q=an:1007.17010
http://www.ams.org/mathscinet-getitem?mr=1714540
https://zbmath.org/?q=an:1220.16022
http://www.ams.org/mathscinet-getitem?mr=2553659
https://zbmath.org/?q=an:1208.18003
http://www.ams.org/mathscinet-getitem?mr=2543632
https://zbmath.org/?q=an:1346.16003
http://www.ams.org/mathscinet-getitem?mr=2956318
https://zbmath.org/?q=an:1153.18004
http://www.ams.org/mathscinet-getitem?mr=2415479
https://zbmath.org/?q=an:1080.16035
http://www.ams.org/mathscinet-getitem?mr=2043373
https://zbmath.org/?q=an:1306.53068
http://www.ams.org/mathscinet-getitem?mr=3235797
https://zbmath.org/?q=an:1247.16004
http://www.ams.org/mathscinet-getitem?mr=2798432
https://zbmath.org/?q=an:1003.16033
http://www.ams.org/mathscinet-getitem?mr=1900284
https://zbmath.org/?q=an:1035.16030
http://www.ams.org/mathscinet-getitem?mr=2012570
https://zbmath.org/?q=an:06464163
http://www.ams.org/mathscinet-getitem?mr=3359014
https://zbmath.org/?q=an:1362.16034
http://www.ams.org/mathscinet-getitem?mr=3520054
https://zbmath.org/?q=an:06546716
http://www.ams.org/mathscinet-getitem?mr=3457981
https://zbmath.org/?q=an:0534.18009
http://www.ams.org/mathscinet-getitem?mr=777584
https://zbmath.org/?q=an:0592.46056
http://www.ams.org/mathscinet-getitem?mr=823176

[17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]
(28]
[29]

(30]

(31]

(32]

(33]

When Ext is a Batalin—Vilkovisky algebra 1129

W. Crawley-Boevey, P. Etingof, and V. Ginzburg, Noncommutative geometry and quiver
algebras, Adv. Math., 209 (2007), no. 1, 274-336. Zbl 1111.53066 MR 2294224

J. Cuntz and D. Quillen, Algebra extensions and nonsingularity, J. Amer. Math. Soc., 8
(1995), no. 2, 251-289. Zbl 0838.19001 MR 1303029

S. Eilenberg and J. Moore, Foundations of relative homological algebra, Mem. Amer.
Math. Soc., (1965), no. 55, 39pp. Zbl 0129.01101 MR 178036

S. Eilenberg and T. Nakayama, On the dimension of modules and algebras. II. Frobenius
algebras and quasi-Frobenius rings, Nagoya Math. J., 9 (1955), 1-16. Zbl 0068.26503
MR 73577

P. Etingof, D. Nikshych, and V. Ostrik, Fusion categories and homotopy theory. With
an appendix by Ehud Meir, Quantum Topol., 1 (2010), no. 3, 209-273. Zbl 1214.18007
MR 2677836

Ch.-H. Eu and T. Schedler, Calabi-Yau Frobenius algebras, J. Algebra, 321 (2009), no. 3,
774-815. Zbl 1230.16009 MR 2488552

I. Gélvez-Carrillo, A. Tonks, and B. Vallette, Homotopy Batalin-Vilkovisky algebras, J.
Noncommut. Geom., 6 (2012), no. 3, 539-602. Zbl 1258.18005 MR 2956319

M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2), 78
(1963), no. 2, 267-288. Zb1 0131.27302 MR 161898

M. Gerstenhaber and S. Schack, Algebras, bialgebras, quantum groups, and algebraic
deformations, in Deformation theory and quantum groups with applications to
mathematical physics (Amherst, MA, 1990), 51-92, Contemp. Math., 134, Amer. Math.
Soc., Providence, RI, 1992. Zbl 0788.17009 MR 1187279

E. Getzler and M. Kapranov, Cyclic operads and cyclic homology, in Geometry, topology,
& physics, 167-201, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge,
MA, 1995. Zbl 0883.18013 MR 1358617

V. Ginzburg, Calabi-Yau algebras, preprint, 2006. arXiv:math/0612139

M. Hassanzadeh, M. Khalkhali, and I. Shapiro, Monoidal Categories, 2-Traces, and Cyclic
Cohomology, preprint, 2016. arXiv:1602.05441

G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2),
46 (1945), no. 1, 58-67. Zbl 0063.02029 MR 11076

L. Kadison and K. Szlachanyi, Bialgebroid actions on depth two extensions and duality,
Adv. Math., 179 (2003), no. 1, 75-121. Zbl 1049.16022 MR 2004729

D. Kaledin, Cyclic homology with coefficients, in Algebra, arithmetic, and geometry. In
honor of Y. I. Manin on the occasion of his 70th birthday. Vol. II, 23—47, Boston, MA,
Birkhéuser, 2009. Zbl 1200.19002 MR 2641186

D. Kaledin, Trace theories and localization, in Stacks and categories in geometry, topology,
and algebra, 227-262, Contemp. Math., 643, Amer. Math. Soc., Providence, RI, 2015.
7Zbl 1346.18027 MR 3381474

R. Kaufmann, B. Ward, and J. Zifiiga, The odd origin of Gerstenhaber brackets, Batalin—
Vilkovisky operators, and master equations, J. Math. Phys., 56 (2015), no. 10, 103504,
40pp. Zbl 1327.81268 MR 3412702


https://zbmath.org/?q=an:1111.53066
http://www.ams.org/mathscinet-getitem?mr=2294224
https://zbmath.org/?q=an:0838.19001
http://www.ams.org/mathscinet-getitem?mr=1303029
https://zbmath.org/?q=an:0129.01101
http://www.ams.org/mathscinet-getitem?mr=178036
https://zbmath.org/?q=an:0068.26503
http://www.ams.org/mathscinet-getitem?mr=73577
https://zbmath.org/?q=an:1214.18007
http://www.ams.org/mathscinet-getitem?mr=2677836
https://zbmath.org/?q=an:1230.16009
http://www.ams.org/mathscinet-getitem?mr=2488552
https://zbmath.org/?q=an:1258.18005
http://www.ams.org/mathscinet-getitem?mr=2956319
https://zbmath.org/?q=an:0131.27302
http://www.ams.org/mathscinet-getitem?mr=161898
https://zbmath.org/?q=an:0788.17009
http://www.ams.org/mathscinet-getitem?mr=1187279
https://zbmath.org/?q=an:0883.18013
http://www.ams.org/mathscinet-getitem?mr=1358617
https://arxiv.org/abs/math/0612139
https://arxiv.org/abs/1602.05441
https://zbmath.org/?q=an:0063.02029
http://www.ams.org/mathscinet-getitem?mr=11076
https://zbmath.org/?q=an:1049.16022
http://www.ams.org/mathscinet-getitem?mr=2004729
https://zbmath.org/?q=an:1200.19002
http://www.ams.org/mathscinet-getitem?mr=2641186
https://zbmath.org/?q=an:1346.18027
http://www.ams.org/mathscinet-getitem?mr=3381474
https://zbmath.org/?q=an:1327.81268
http://www.ams.org/mathscinet-getitem?mr=3412702

1130 N. Kowalzig

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

I. Kobyzev and 1. Shapiro, A categorical approach to cyclic cohomology of quasi-Hopf
algebras and Hopf algebroids, preprint, 2018. arXiv:1803.09194

N. Kowalzig, Batalin—Vilkovisky algebra structures on (Co)Tor and Poisson bialgebroids,
J. Pure Appl. Algebra, 219 (2015), no. 9, 3781-3822. Zbl 1350.16012 MR 3335983

N. Kowalzig, Gerstenhaber and Batalin—Vilkovisky structures on modules over operads,
Int. Math. Res. Not. IMRN, (2015), no. 22, 11694-11744. Zbl 1330.18024 MR 3456700

N. Kowalzig, Hopf algebroids and their cyclic theory, Ph.D. thesis, Universiteit Utrecht
and Universiteit van Amsterdam, 2009.

N. Kowalzig and U. Kridhmer, Duality and products in algebraic (co)homology theories,
J. Algebra, 323 (2010), no. 7, 2063-2081. Zbl 1268.16008 MR 2594665

N. Kowalzig and U. Krihmer, Cyclic structures in algebraic (co)homology theories,
Homology Homotopy Appl., 13 (2011), no. 1, 297-318. Zbl 1245.16009 MR 2803876

N. Kowalzig and U. Kridhmer, Batalin-Vilkovisky structures on Ext and Tor, J. Reine
Angew. Math., 697 (2014), 159-219. Zbl 1352.16013 MR 3281654

N. Kowalzig and H. Posthuma, The cyclic theory of Hopf algebroids, J. Noncomm. Geom.,
5(2011), no. 3, 423-476. Zbl 1262.16030 MR 2817646

U. Krdhmer, private communication.

T. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-
Verlag, New York, 1999. Zbl 0911.16001 MR 1653294

T. Lambre, Dualité¢ de Van den Bergh et structure de Batalin—Vilkoviskii sur les algebres
de Calabi—Yau (French), J. Noncommut. Geom., 4 (2010), no. 3, 441-457. Zbl 1267.16009
MR 2670971

Th. Lambre, G. Zhou, and A. Zimmermann, The Hochschild cohomology ring of a
Frobenius algebra with semisimple Nakayama automorphism is a Batalin—Vilkovisky
algebra, J. Algebra, 446 (2016), 103—131. Zbl 1344.16009 MR 3421088

Y.-M. Liu and G. Zhou, The Batalin-Vilkovisky structure over the Hochschild cohomology
ring of a group algebra, J. Noncommut. Geom., 10 (2016), no. 3, 811-858. Zbl 1376.16008
MR 3554837

J.-L. Loday, Cyclic homology, Appendix E by Maria O. Ronco. Second edition. Chapter
13 by the author in collaboration with Teimuraz Pirashvili, Grundlehren Math. Wiss., 301,
Springer-Verlag, Berlin, 1998. Zbl 0885.18007 MR 1600246

J.-L. Loday and B. Vallette, Algebraic operads, Grundlehren Math. Wiss., 346, Springer-
Verlag, Berlin, 2012. Zbl 1260.18001 MR 2954392

J. Lodder, A comparison of products in Hochschild cohomology, Comm. Algebra, 44
(2016), no. 11, 4874-4891. Zbl 1376.16009 MR 3512549

M. Markl, Models for operads, Comm. Algebra, 24 (1996), no. 4, 1471-1500.
7Zbl 0848.18003 MR 1380606

M. Markl, S. Shnider, and J. Stasheff, Operads in algebra, topology and physics,
Mathematical Surveys and Monographs, 96, Amer. Math. Soc., Providence, RI, 2002.
Zbl 1017.18001 MR 1898414


https://arxiv.org/abs/1803.09194
https://zbmath.org/?q=an:1350.16012
http://www.ams.org/mathscinet-getitem?mr=3335983
https://zbmath.org/?q=an:1330.18024
http://www.ams.org/mathscinet-getitem?mr=3456700
https://zbmath.org/?q=an:1268.16008
http://www.ams.org/mathscinet-getitem?mr=2594665
https://zbmath.org/?q=an:1245.16009
http://www.ams.org/mathscinet-getitem?mr=2803876
https://zbmath.org/?q=an:1352.16013
http://www.ams.org/mathscinet-getitem?mr=3281654
https://zbmath.org/?q=an:1262.16030
http://www.ams.org/mathscinet-getitem?mr=2817646
https://zbmath.org/?q=an:0911.16001
http://www.ams.org/mathscinet-getitem?mr=1653294
https://zbmath.org/?q=an:1267.16009
http://www.ams.org/mathscinet-getitem?mr=2670971
https://zbmath.org/?q=an:1344.16009
http://www.ams.org/mathscinet-getitem?mr=3421088
https://zbmath.org/?q=an:1376.16008
http://www.ams.org/mathscinet-getitem?mr=3554837
https://zbmath.org/?q=an:0885.18007
http://www.ams.org/mathscinet-getitem?mr=1600246
https://zbmath.org/?q=an:1260.18001
http://www.ams.org/mathscinet-getitem?mr=2954392
https://zbmath.org/?q=an:1376.16009
http://www.ams.org/mathscinet-getitem?mr=3512549
https://zbmath.org/?q=an:0848.18003
http://www.ams.org/mathscinet-getitem?mr=1380606
https://zbmath.org/?q=an:1017.18001
http://www.ams.org/mathscinet-getitem?mr=1898414

[52]

[53]

[54]

[55]

[56]

[57]

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

When Ext is a Batalin—Vilkovisky algebra 1131

J. McClure and J. Smith, A solution of Deligne’s Hochschild cohomology conjecture, in
Recent progress in homotopy theory (Baltimore, MD, 2000), 153—193, Contemp. Math.,
293, Amer. Math. Soc., Providence, RI, 2002. Zbl 1009.18009 MR 1890736

L. Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-
Theory, 32 (2004), no. 3,231-251. Zbl 1101.19003 MR 2114167

L. Menichi, Connes-Moscovici characteristic map is a Lie algebra morphism, J. Algebra,
331 (2011), no. 1, 311-337. Zbl 1256.16010 MR 2774661

L. Positselski, Homological algebra of semimodules and semicontramodules. Semi-infinite
homological algebra of associative algebraic structures. Appendix C in collaboration
with Dmitriy Rumynin; Appendix D in collaboration with Sergey Arkhipov, Instytut
Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), 70,
Birkhduser/Springer Basel AG, Basel, 2010. Zbl 1202.18001 MR 2723021

P. Schauenburg, Duals and doubles of quantum groupoids (x g-Hopf algebras), in New
trends in Hopf algebra theory (La Falda, 1999), 273-299, Contemp. Math., 267, Amer.
Math. Soc., Providence, RI, 2000. Zbl 0974.16036 MR 1800718

P. Schauenburg, The dual and the double of a Hopf algebroid are Hopf algebroids, App!.
Categ. Structures, 25 (2017), no. 1, 147-154. Zbl 1384.16023 MR 3606499

I. Shapiro, On the anti-Yetter-Drinfeld module-contramodule correspondence, preprint,
2017. arXiv:1704.06552

R. Street, Frobenius monads and pseudomonoids, J. Math. Phys., 45 (2004), no. 10,
3930-3948. Zbl 1071.18006 MR 2095680

M. Takeuchi, Groups of algebras over A ® A, J. Math. Soc. Japan, 29 (1977), no. 3,
459-492. 7Zbl 0349.16012 MR 506407

D. Tamarkin and B. Tsygan, Noncommutative differential calculus, homotopy BV algebras
and formality conjectures, Methods Funct. Anal. Topology, 6 (2000), no. 2, 85-100.
Zbl 0965.58010 MR 1783778

Th. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by
infinity inner products, Ann. Inst. Fourier (Grenoble), 58 (2008), no. 7, 2351-2379.
Zbl 1218.16004 MR 2498354

M. Van den Bergh, A relation between Hochschild homology and cohomology for
Gorenstein rings, Proc. Amer. Math. Soc., 126 (1998), no. 5, 1345-1348. Zbl 0894.16005
MR 1443171 [Erratum: Proc. Amer. Math. Soc., 130 (2002), no. 9, 2809-2810 (electronic).
MR 1900889]

Y. Volkov, BV differential on Hochschild cohomology of Frobenius algebras, J. Pure Appl.
Algebra, 220 (2016), no. 10, 3384-3402. Zbl 1362.16009 MR 3497967

Zh. Wang, Singular Hochschild Cohomology and Gerstenhaber Algebra Structure,
preprint, 2015. arXiv:1508.00190

Received 03 November, 2016

N. Kowalzig, Dipartimento di Matematica, Universita degli Studi di Roma La Sapienza,
Piazzale Aldo Moro 5, 00185 Roma, Italy

E-mail: niels.kowalzig@uniromal..it


https://zbmath.org/?q=an:1009.18009
http://www.ams.org/mathscinet-getitem?mr=1890736
https://zbmath.org/?q=an:1101.19003
http://www.ams.org/mathscinet-getitem?mr=2114167
https://zbmath.org/?q=an:1256.16010
http://www.ams.org/mathscinet-getitem?mr=2774661
https://zbmath.org/?q=an:1202.18001
http://www.ams.org/mathscinet-getitem?mr=2723021
https://zbmath.org/?q=an:0974.16036
http://www.ams.org/mathscinet-getitem?mr=1800718
https://zbmath.org/?q=an:1384.16023
http://www.ams.org/mathscinet-getitem?mr=3606499
https://arxiv.org/abs/1704.06552
https://zbmath.org/?q=an:1071.18006
http://www.ams.org/mathscinet-getitem?mr=2095680
https://zbmath.org/?q=an:0349.16012
http://www.ams.org/mathscinet-getitem?mr=506407
https://zbmath.org/?q=an:0965.58010
http://www.ams.org/mathscinet-getitem?mr=1783778
https://zbmath.org/?q=an:1218.16004
http://www.ams.org/mathscinet-getitem?mr=2498354
https://zbmath.org/?q=an:0894.16005
http://www.ams.org/mathscinet-getitem?mr=1443171
http://www.ams.org/mathscinet-getitem?mr=1900889
https://zbmath.org/?q=an:1362.16009
http://www.ams.org/mathscinet-getitem?mr=3497967
https://arxiv.org/abs/1508.00190
mailto:niels.kowalzig@uniroma1.it

	Introduction
	Aims and objectives
	Main results

	Preliminaries
	Cyclic operads and Batalin–Vilkovisky algebras
	Left and right Hopf algebroids
	Modules, comodules, and contramodules
	Duals

	The Hopf structure on the dual
	Cyclic structures on the complex computing Ext
	Contramodules as coefficients
	The cocyclic module
	Trace functors

	Operadic structures and Ext as a Batalin–Vilkovisky algebra
	Examples and applications
	Batalin–Vilkovisky algebra structures on Hochschild cohomology
	Hopf algebras


