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The Harish-Chandra isomorphism for quantum GL2
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Abstract.We construct an explicit Harish-Chandra isomorphism, from the quantum Hamilton-
ian reduction of the algebraDq.GL2/ of quantum differential operators onGL2, to the spherical
double affine Hecke algebra associated to GL2. The isomorphism holds for all deformation
parameters q 2 C� and t ¤ ˙i , such that q is not a non-trivial root of unity.
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1. Introduction

Afundamental construction in the geometric representation theory of a reductive alge-
braic group G is Harish-Chandra’s restriction homomorphism: given a conjugation-
invariant differential operator on the Lie algebra, g, of G, we consider its restriction
to the Cartan subalgebra h � g. The restricted differential operator is invariant for the
Weyl group W , but it may develop poles along hyperplanes stabilized by reflections
inW . Conjugating by the discriminant eliminates these poles, and produces a regular,
W -equivariant differential operator on h. This procedure leads to a homomorphism
of algebras,

HC WD.g/G ! D.h/W ;

from the algebra D.g/G of ad-invariant differential operators on g, to the algebra
D.h/W of W -invariant differential operators on the Cartan subalgebra h.

Levasseur and Stafford’s theorem [23] states that the restriction homomorphism
descends to an isomorphism, called the Harish-Chandra isomorphism,

HC WD.g/
..
ker.�/

G
Š
�! D.h/W :
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Here, �WU g ! C denotes the “co-unit” homomorphism, sending the generating
subspace g � U g to zero. More generally, for any ad-equivariant two-sided ideal
I � U g, we denote by

D.g/
..

I
G WD

�
D.g/

.
D.g/ � y�#.I/

�G
;

the quantumHamiltonian reduction along the quantummomentmap, y�#WU g! D.g/,
corresponding to the derivative of the adjoint action. The word “quantum” here refers
to the fact that D.g/ and U g quantize the standard symplectic structures on T �g
and g�, respectively, and that y�# quantizes a classical moment map �WT �g! g�.

Specializing to the case G D GLN , g D glN , h D CN , W D SN , the algebra
D.h/W admits a canonical deformation to the spherical rational Cherednik algebra,
denoted eHc.G/e, and depending on a parameter c 2 C. In [11], Etingof and
Ginzburg extended Levasseur–Stafford’s theorem, by defining a deformed Harish-
Chandra isomorphism,

HCc WD.g/
..

Ic

G
Š
�! eHc.G/e:

Here Ic � U g is a certain ad-invariant, two-sided ideal quantizing the orbit oc of
traceless matrices X 2 slN such that X C c � Id has rank at most one. The classical
Hamiltonian reduction of T �glN along oc gives rise to the celebrated Calogero–
Moser variety CMN .

Each of the ingredients of the deformed Harish-Chandra homomorphism HCc
admits a multiplicative deformation:
� The universal enveloping algebra U g q-deforms to a subalgebra Oq.G/ of the
quantized universal enveloping algebra Uqg. The algebra Oq.G/ is, moreover,
a quantization of G with its Semenov–Tian–Shansky Poisson bracket. On the
other hand, the spherical rational Cherednik algebra eHc.G/e q-deforms to the
spherical double affine Hecke algebra (spherical DAHA), denoted eHt;qe, which in
turn quantizes the Ruijsenaars-Schneider integrable system RSN . We can encode
these basic inputs and outputs in the following “diamonds of degenerations”:

Oq.G/
quasi-classical
limit q! 1

{{

classical
limit q! 1

##

U g

associated
graded ##

O.G/

rational
degeneration{{

S.g/

eHt;qe
quasi-classical
limit q! 1

||

classical
limit q! 1

""

eHc e

associated
graded ""

RSN

rational
degeneration||

CMN

(1.1)

The arrows “classical limit q ! 1” and “associated graded” on the right diagram are
theorems of Oblomkov [26] and Etingof–Ginzburg [11], respectively.



The Harish-Chandra isomorphism for quantum GL2 1163

Each of the elements of Hamiltonian reduction also q-deform: these basic inputs
to Hamiltonian reduction are organized into the left hand side of Figure 1. We have:
� The algebra D.g/ q-deforms to the algebra Dq.G/, of quantum differential
operators on G. The algebra Dq.G/ is, moreover, a quantization of the
“multiplicative cotangent bundle”, G �G.

� The map y�#. This is itself a q-deformation of a multiplicative moment map
z�WG �G ! G.

� Each ideal Ic � U g q-deforms to an ad-invariant, two-sided ideal It � Uqg,
for t 2 C�; each It , in turn, quantizes an orbit Ot , consisting of special linear
matrices X 2 SLN such that X C t � Id is rank at most one.

� The quantum Hamiltonian reduction Dq.G/
ıı

It
Uqg is constructed analogously,

both to the quantum Hamiltonian reduction of D.g/, and to the multiplicative
Hamiltonian reduction of G �G.
It is thus a natural and important problem to construct the q-analog of the Harish-

Chandra isomorphism,

HCq;t WDq.G/
..

It

Uqg
Š
�! eHt;qe;

which would give rise to the degenerations on the right hand-side of Figure 1:

It � Oq.G/

uu

��

�#
q

// Dq.G/

ww

��

Ic � U g

��

y�#
// D.g/

��

I.Ot / � O.G/

uu

z�#
// O.G �G/

ww

I.oc/ � S.g/
�#

// O.T �g/

Hamiltonian
HHHHH)
reduction

eHt;qe

xx

��

eHc e

��

RSN

xx

CMN

Figure 1. The elements of classical, multiplicative, quantum, and quantummultiplicative Hamil-
tonian reduction, and their degenerations.

Such quantum Harish-Chandra isomorphisms have been constructed for special
parameters, first in [30], when q is a root of unity, via quantum differential operators
on GLN � PN�1, and subsequently in [18], in the formal neighborhood of q D 1,
as a special case of a quantum multiplicative quiver variety.

Each of these approaches rely on being “close to” the classical setting: in [30]
Azumaya algebras are employed to reduce to a geometric problem on the spectrum
of the center, while [18] relies upon formal deformation arguments. Neither method
can be applied to arbitrary — or even generic — values of the parameter q 2 C.
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1.1. Main result. This paper is devoted to constructing aq-deformedHarish-Chandra
isomorphism “far from” the classical setting — when q is not a root of unity — in
the case N D 2. Our main result is Theorem 4.1, in which we construct an explicit
isomorphism of algebras:

HCq;t WDq.GL2/
..

It

Uqgl2
Š
�! eHt;q.GL2/e;

and which holds for any q 2 C� not a root of unity, and for all t ¤ ˙i .
Our construction ofHCq;t consists of giving explicit presentations andPBWbases

of both algebras (see Theorems 2.6 and 3.20), and directly defining and computing
HCq;t against these PBW bases. To this end, we exploit certain natural Z2-gradings
on each algebra; while the graded pieces are infinite-dimensional, we express each
algebra as an Ore localization of a certain auxiliary algebra with finite-dimensional
graded pieces, and show thatHCq;t is a graded isomorphism there, compatibly with
the localization.

Remark 1.1. In light of [30], [18], and the present paper, it is natural to conjecture
the existence of a q-deformed Harish-Chandra isomorphism for all N . The explicit
description of the Harish-Chandra isomorphism which we propose in this paper is
unfeasible for large finiteN , owing to the increasing complexity in a presentation for
the spherical double affine Hecke algebra as the rank N grows. However, Burban,
Schiffmann, and Vasserot have defined in [6, 28] a certain “N ! 1 limit” of the
positive parts of the sphericalDAHA,which embeds into theHall algebra of an elliptic
curve, and has many remarkable properties; in particular this limiting algebra can be
computed with more directly than its finite N constituents. A certain specialization
of Burban and Schiffmann’s algebra appears in [24], where it is related to the skein
algebra of the torus. It should be interesting, therefore, to consider theN !1 limit
of the Hamiltonian reduction procedure for Dq.GLN /; the present paper provides
an initial step in that direction.

In the paper [19], certain explicit formulas are given for elements c1; : : : ; cN
which q-deform the coefficients of the characteristic polynomial, thus generalizing trq
and detq of Lemma 3.9; these give natural generators for subalgebra of invariants in
Oq.G/. The formulas in Theorem4.1 suggest that such a q-deformedHarish-Chandra
homomorphism may be defined simply by sending the collection of generating
invariants, ci , in each Oq.G/-subalgebra of Dq.G/, to the elementary q-symmetric
polynomials Pi andQi , respectively.

Remark 1.2 (Roots of unity). When the quantum parameter q is a root of unity,
there is an interesting phenomenon, related to the quantum Frobenius Hamiltonian
reduction of [14]: the algebra Dq.G/ develops a large center, and many more
vectors become invariant for the quantum group action. Meanwhile, the functor of
taking invariants is no longer exact, so the simplification of Lemma 3.19 cannot be
made. It is interesting to note that, nevertheless, the isomorphismHCq;t is perfectly
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well-defined when q is a root of unity, only it identifies the spherical DAHA at a
root of unity with an abstract algebra which cannot in turn be identified with the
quantum Hamiltonian reduction. This suggests that, when q is a root of unity, the
notion of Hamiltonian reduction employed here should be replaced by one involving
divided powers quantum groups, so that the isomorphismHCq;t recovers its natural
interpretation.

Remark 1.3 (Other types). It is possible to apply the techniques of this paper to other
surfaces in place of the marked torus, and to other groups of small rank. For theGL3
case, see [29]. For the case of SL2 and the four-punctured sphere, one recovers the
.C_1 ; C1/ DAHA; this is work in progress of Juliet Cooke.

1.2. Relation to factorization homology. Let us briefly explain the connection of
the present work to [1,5] and to [2], where Theorem 4.1 has already been announced.
Since this relation is only motivational in the present paper, we will be informal,
refering to those papers for complete details. Let us fix the braided tensor category
A D Repq G of integrable modules for the quantum group, its factorization
homology defines an invariant of surfaces valued in “pointed” (a.k.a.E0-)categories,
i.e. categories endowed with a distinguished object:

Surfaces �! Pointed categories;

S 7!

� Z
S

A; OS

�
:

The algebra Oq.G/ arises naturally in this context: its representation theory,
the category Oq.G/-modA of Oq.G/-modules in A, computes the factorization
homology

R
Ann A, of A on the annulus, and we have OAnn Š Oq.G/ itself.

Given aUqg-equivariant two-sided ideal of Oq.G/, such as It , the category M of
modules for the algebra Oq.G/=It therefore defines a “braided A-module category”.
Braided A-module categories serve as the point defects in the associated topological
field theory (TFT): the factorization homology of the pair .Uqg; It / defines an
invariant of surfaces with marked points, again valued in pointed categories:

Marked surfaces �! Pointed categories;

.S; x/ 7!
� Z

.S;x/

.A;M/; O.S;x/

�
:

A theorem in [2] identifies the endomorphism algebra of the distinguished object
for a torus T 2, marked at a single point with the braided module category determined
by It , with the quantum Hamiltonian reduction algebra Dq.G/

ıı
It
Uqgl2.

Hence the results of this paper identify this endomorphism algebra, in the case
G D GL2, with the spherical double affine Hecke algebra eHt;qe. This points
to a new construction of the representation theory of the DAHA in topological
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terms. The factorization homology studied in [1] and [2] is expected to extend to
3-dimensional TFT: its values on suitably decorated knot complements therefore give
rise, functorially, to representations of eHt;qe.

Such an extension, combined with Theorem 4.1, may eventually provide a link
between factorization homology and several expected topological invariants valued
in the representation theory of the DAHA, such as the quantum A- [13, 17] and
DAHA-Jones [9] polynomials associated to knots in S3, and the DAHA modules
of [16,27] associated to plane singularities. Our results may be compared to [3], who
study appearances of the spherical DAHA as modified skein algebras: in particular,
at t D 1, both constructions recover [12], and both constructions are aimed at
restoring the lost parameter t .

1.3. Outline. An outline of the paper is as follows. In Section 2, we recall the def-
inition of the double affine Hecke algebra Ht;q of GL2 and its spherical
subalgebra eHt;qe, and we give an explicit presentation and a PBW basis for the
latter (Theorem 2.6). In Section 3 we recall the definition of Dq.GL2/ and its
Hamiltonian reduction Dq.GL2/

ıı
It
Uqg, and we give an explicit presentation and

a PBW basis for the latter (Theorem 3.20). Section 4 contains the main result,
Theorem 4.1, which constructs an isomorphism between the spherical DAHA and
the Hamiltonian reduction of Dq.GL2/. This result follows directly from the
presentations of these two algebras from Theorems 2.6 and 3.20, which constitute
the main technical contribution of the paper. The proofs of Theorems 2.6 and 3.20
are delayed until Section 5, and Section 6, respectively.

Acknowledgements. The authors would like to thank Pavel Etingof and Kobi
Kremnizer for several helpful conversations over the years, and the anonymous
referee for helpful remarks. The first author was supported by the EPSRC grant
EP/K025384/1. The research of the second author is supported by EuropeanResearch
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 637618).

2. Double affine Hecke algebra Ht;q of GL2 and its spherical subalgebra

2.1. Parameters. Let us fix a base ringRt;qDCŒt˙1; q˙1�Œ.t2C1/�1�, the commut-
ative ring of rational functions in variables t and q whose denominators are products
of powers of t; q and t2 C 1.

For any numbers q0; t 0 2 C� with .t 0/2 C 1 ¤ 0, the quotient of Rt;q by the
corresponding maximal ideal m D h.q � q0/; .t � t 0/i gives the evaluation map
Rt;q � Rt;q=m Š C. For any algebra A over Rt;q , the evaluation map gives its
specialization, an algebra A=mA over C.
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For the rest of the paper we will work with algebras depending on parameters q
and t ; we will treat the corresponding algebras over Rt;q and their specializations
simultaneously. Most arguments and results apply in both settings; we will point out
the distinction only when necessary. In particular, the condition “q is not a non-trivial
root of unity” means either that we work over Rt;q (so the condition is vacuously
true), or over C, but with the stated restriction.

2.2. The double affine Hecke algebra Ht;q .
Definition 2.1. The double affine Hecke algebra (DAHA) of type GL2 is the
associative algebra Ht;q with generators

T˙1; X˙11 ; X˙12 ; Y ˙11 ; Y ˙12

and relations

TX1T D X2; T �1Y1T
�1
D Y2; X1X2 D X2X1; Y1Y2 D Y2Y1;

Y1X1X2 D q
2X1X2Y1; X�11 Y2 D Y2X

�1
1 T �2; .T C t�1/.T � t / D 0:

(2.1)
Remark 2.2. This definition first appeared in [7]. There are several different
conventions in the literature for the presentation of DAHA and the choice of
parameters. Definition 2.1 follows the conventions of [15] (see also [7], [8], and [25])
up to replacing the parameters t by t2 and q by q2. This rescaling is not significant,
and it is dictated by the need to align the parameters for DAHA with the parameters
for Dq.GL2/ in the next section.
Remark 2.3. Let S2 be the symmetric group of order 2. The algebra H1;1 is
isomorphic to the semidirect product CŒS2� Ë CŒX˙11 ; X˙12 ; Y ˙11 ; Y ˙12 �, and the
algebra Ht;q is a flat deformation of H1;1.

The following proposition gives the reordering relations for any two genera-
tors Xi , Yj and the PBW basis. Similar relations can be written for any two
generators X˙1i , Y ˙1j .
Proposition 2.4. (1) The following relations are also satisfied in Ht;q:

T 2 D .t � t�1/T C 1; T �1 D T � .t � t�1/; (2.2)

X1Y1 D q
�2T �2Y1X1; X1Y2 D Y2X1 C .t � t

�1/T �1Y1X1;

X2Y1 D Y1X2 C .t � t
�1/q�2T �1Y1X1; X2Y2 D q

�2Y2X2T
�2:

(2.3)

(2) The set ˚
T �Y

a1

1 Y
a2

2 X
b1

1 X
b2

2 j � 2 f0; 1g; ai ; bi 2 Z
	

forms a basis of Ht;q .
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Proof. Part (1) is proved by direct computations. Part (2) was proved in [8]. For
illustration we prove the relations (2.3).

First, rewriting the relationX�11 Y2 D Y2X
�1
1 T �2 from (2.1) asY2T 2X1 D X1Y2,

we have

X1Y2 D Y2T
2X1

(2.2)
D Y2X1 C .t � t

�1/Y2TX1

(2.1)
D Y2X1 C .t � t

�1/T �1Y1X1: (2.4)

Conjugating the relation X�11 Y2 D Y2X
�1
1 T �2 by T �1 and rewriting, we have

T �1X�11 Y2T D T
�1Y2X

�1
1 T �1

X�12 Y1 D T
�2Y1X

�1
2 :

(2.5)

Next, we have

X1Y1 D X�12 X1X2Y1

(2.1)
D q�2X�12 Y1X1X2

(2.5)
D q�2T �2Y1X1: (2.6)

Conjugating (2.6) by T , we have

X2Y2
(2.1)
D TX1Y1T

�1

(2.6)
D q�2T �1Y1X1T

�1

(2.1)
D q�2Y2X2T

�2: (2.7)

Finally, combining (2.4) and (2.6), we get

X2Y1
(2.1)
D TX1T

2Y2T

(2.2)
D TX1Y2T C .t � t

�1/TX1T Y2T

(2.4)
D T Y2X1T C .t � t

�1/Y1X1T C .t � t
�1/TX1T Y2T

(2.1)
D Y1T

�1X1T C .t � t
�1/Y1X1T C .t � t

�1/TX1Y1

(2.2)
D Y1TX1T C .t � t

�1/TX1Y1

(2.6)
D Y1X2 C .t � t

�1/q�2T �1Y1X1: (2.8)
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The algebra Ht;q is Z2-graded by

degX1 D degX2 D .0; 1/; degY1 D degY2 D .1; 0/; degT D .0; 0/:

This grading is inner: it follows from (2.3) that any h 2 Ht;q with deg h D .M;N /
satisfies

Y1Y2 h D q
2NhY1Y2; X1X2 h D q

�2MhX1X2: (2.9)

2.3. The spherical double affine Hecke algebra eHt;qe. The subalgebra of the
double affine Hecke algebra generated by T and T �1 is the (finite) Hecke algebra of
the symmetric group S2. For t2 C 1 ¤ 0, this algebra is isomorphic to the group
algebra of S2. Denoting the only nontrivial element of the symmetric group by s, the
identification is given by

T D
t C t�1

2
s C

t � t�1

2
:

The trivial idempotent of S2 is

e D
1C s

2
D
1C tT

1C t2
2 Ht;q:

It satisfies
eT D Te D te; eT �1 D T �1e D t�1e: (2.10)

This action of this idempotent on any representation is the projection to the trivial
representation of S2, or equivalently to the representation of the Hecke algebra in
which T acts by the eigenvalue t .
Definition 2.5. The spherical double affine Hecke algebra is the subalgebra eHt;qe

of Ht;q .
We will give an explicit presentation of the spherical DAHA by generators and

relations, and the resulting PBW type basis for it.
Theorem 2.6. (1) The spherical double affine Hecke algebra eHt;qe is isomor-

phic to the algebra with generators P1; P˙12 ;Q1;Q
˙1
2 ; R and relations:

P2P1 D P1P2; (2.11)
Q2Q1 D Q1Q2; (2.12)
P2Q2 D q

�4Q2P2; (2.13)
P2Q1 D q

�2Q1P2; (2.14)
P1Q2 D q

�2Q2P1; (2.15)
P1Q1 D Q1P1 C .q

�2
� 1/R; (2.16)

P2R D q
�2RP2; (2.17)

RQ2 D q
�2Q2R; (2.18)

P1R D q
�2RP1 C .1 � q

�2/Q1P2;

(2.19)
RQ1 D q

�2Q1RC .1 � q
�2/Q2P1;

(2.20)
R2 D .1C t2/.q�2 C t�2/Q2P2

� q�2Q2P
2
1 � q

�2Q2
1P2 C q

�2Q1RP1:

(2.21)
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The isomorphism is given by

ˆ.P1/ D e.X1 CX2/e; ˆ.P2/ D e.X1X2/e; ˆ.R/ D e.t�2Y1X1 C Y2X2/e;

ˆ.Q1/ D e.Y1 C Y2/e; ˆ.Q2/ D e.Y1Y2/e: (2.22)

The Z2-grading is given on the generators by

degPi D .0; i/; degQi D .i; 0/; degR D .1; 1/;

and ˆ is a graded isomorphism.

(2) After the identification given by the isomorphism ˆ, the set˚
Q
a1

1 Q
a2

2 R
�P

b1

1 P
b2

2 j � 2 f0; 1g; a1; b1 2 N0; a2; b2 2 Z
	

forms a basis of the spherical double affine Hecke algebra eHt;qe.

The presentation of the spherical DAHA by generators and relations given in
Theorem 2.6 is one of the main technical steps of the paper and is used in the proof
of the main result, Theorem 4.1. Section 5 is dedicated to the proof of its proof.

3. The algebra Dq.GL2/ of quantum differential operators
and its Hamiltonian reduction

In this section, we recall the definitions quantum enveloping algebra Uqgl2, the
quantum coordinate algebraOq.GL2/, the algebraDq.GL2/ of polynomial quantum
differential operators, and the Hamiltonian reduction Dq.GL2/

ıı
It
U of Dq.GL2/.

We will follow the conventions of [21] and [18].

3.1. Thequantumenveloping algebraUDUqgl2.Weuse the conventions from [21].

Definition 3.1. The quantum enveloping algebra U D Uqgl2 is the Hopf algebra
with:
� generators

E; F; K˙11 ; K˙12 I

� relations

K1EK
�1
1 D qE; K2EK

�1
2 D q

�1E;

K1FK
�1
1 D q

�1F; K2FK
�1
2 D qF;

K1K2 D K2K1; EF � FE D
K1K

�1
2 �K

�1
1 K2

q � q�1
I
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� the Hopf structure:

�.E/ D E ˝K1K
�1
2 C 1˝E; S.E/ D �EK�11 K2; ".E/ D 0;

�.F / D F ˝ 1CK�11 K2 ˝ F; S.F / D �K1K
�1
2 F; ".F / D 0;

�.Ki / D Ki ˝Ki ; S.Ki / D K
�1
i ; ".Ki / D 1:

The vector representation V of U has ordered basis fe�1; e1g, with action:

�V .K1/ D

�
q�1 0

0 1

�
; �V .K2/ D

�
1 0

0 q�1

�
;

�V .E/ D

�
0 0

1 0

�
; �V .F / D

�
0 1

0 0

�
:

The Hopf algebra U is quasi-triangular, with the R-matrix

R D qH˝H �
X
n�0

qn.n�1/=2.q � q�1/n
1

Œn�qŠ
En ˝ F n:

Here qH˝H is the operator which acts by a scalar on the tensor product of any two
weight spaces. More precisely, for V1, V2 representations ofU , and v1 2 V1, v2 2 V2
vectors such that Ki B vj D q˛ij vj , the action of qH˝H on their tensor product is
given by qH˝H B .v1 ˝ v2/ D q˛11˛12C˛21˛22.v1 ˝ v2/.

3.2. A presentation ofU via L-matrices. We recall an alternative presentation ofU
which uses the R-matrix R, its inverse R�1 and the vector representation �V
(see [21]). Define R, LC, L� by

R D .�V ˝ �V /.R/ 2 Mat2�2 ˝Mat2�2;
LC D .id˝ �V /.R/ 2 Mat2�2.U /;
L� D .�V ˝ id/.R�1/ 2 Mat2�2.U /;

where Mat2�2 denotes the set of 2� 2 matrices with entries in the ground ring (Rt;q
or C), and Mat2�2.U / denotes the set of 2�2matrices with entries in the algebra U .
Let L˙1 D L˙ ˝ id, L˙2 D id˝ L˙.
Proposition 3.2 ([21, Theorem 8.33]). The Hopf algebra U is isomorphic to the
Hopf algebra with:
� generators given by the entires of the matrices

LC D

"
lC11 lC12

0 lC22

#
; L� D

"
l�11 0

l�21 l�22

#
I
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� relations given by the entries of the matrix equations

L˙1 L
˙
2 R D RL

˙
2 L
˙
1 ; L�1L

C
2 R D RL

C
2 L
�
1 ; and l�ii D .l

i
i /
�1
I

� which may be written explicitly as:

lC11 l�11 D l
C2
2 l�22 D 1; l˙11 l˙22 D l˙22 l˙11 ;

lC11 lC12 D q�1lC12 lC11 ; lC22 lC12 D qlC12 lC22 ;

lC11 l�21 D ql
�2
1 lC11 ; lC22 l�21 D q

�1l�21 lC22 ;

l�21 lC12 � l
C1
2 l�21 D .q � q

�1/
�
lC22 l�11 � l

C1
1 l�22

�
I

� the Hopf structure given by:

S.L˙/ D .L˙/�1; �.l˙ij / D
X
k

l˙ik ˝ l
˙k
j ; ".l˙ij / D ıij :

The isomorphism is given by:

l˙ii D K
�1
i ; lC12 D .q � q�1/K�11 E; l�21 D �.q � q

�1/FK1:

3.3. The adjoint action and the quantum coordinate algebra Oq.GL2/. The
Hopf algebra U acts on itself by the adjoint action, defined as

x B y D x.1/yS.x.2// for �.x/ D
X

x.1/ ˝ x.2/:

The locally finite subspace with respect to this action is the subalgebra generated
by the entries of the matrix LCS.L�/, and by .lC11 lC22 /�1: This subspace has
another interpretation, as the quantum algebra of functions on the group GL2 (see
Proposition 3.6:
Definition 3.3. Let OCq .GL2/ be the algebra with
� generators l ij , organized in a matrix

L D

"
`11 `12

`21 `22

#
I

� relations given by the entries of the matrix equation

R21L1RL2 D L2R21L1R;

� which may be written explicitly as:

`12`
1
1 D `

1
1`
1
2 C .1 � q

�2/`12`
2
2; `22`

1
1 D `

1
1`
2
2;

`21`
1
1 D `

1
1`
2
1 � .1 � q

�2/`22`
2
1; `22`

1
2 D q

2`12`
2
2;

`21`
1
2 D `

1
2`
2
1 C .1 � q

�2/
�
`11`

2
2 � `

2
2`
2
2

�
; `22`

2
1 D q

�2`21`
2
2:

(3.1)
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Proposition 3.4. The element detq.L/ WD `11`22 � q2`12`21 is central in OCq .GL2/.
Definition 3.5. Let

Oq.GL2/ D OCq .GL2/Œdetq.L/
�1�

denote the algebra obtained fromOCq .GL2/ localizing at the central element detq.L/.
We call Oq.GL2/ the quantum coordinate algebra of GL2. 1
Proposition 3.6 ([21]). There is a unique algebra homomorphism,�WOq.GL2/ ,! U ,
defined on generators by L 7! LCS.L�/, i.e.

�W `ij 7!
X
k

lCi
k
S.l�kj /:

Moreover, this is an algebra embedding, whose image is contained in the locally finite
part of U with respect to the adjoint action.
Remark 3.7. It was proved in [20] (see also [21, 6.2.7]) that the analogous map �
for sl2 (more generally, for a simply connected semi-simple group) is an isomorphism
onto the locally finite part. A straightforward computation gives that �.detq.L// D
.lC11 lC22 /2. Hence, while the image of � does not contain the central element,

K1K2 D l
C1
1 lC22 D

q
detq.L/;

comparison with Rosso’s isomorphism for sl2 gives that the locally finite part is
generated by the image of � and this central element. The entire quantum group is
furthermore generated by adjoining K1.

Using this embedding, we can pull back the restriction of the adjoint action of U
on the locally finite part of U , and get an action of U on Oq.GL2/. Unpacking these
definitions and identifications, we have the following:
Lemma 3.8. The embedding Oq.GL2/ ,! U of the quantum coordinate algebra
into the quantum enveloping algebra and the resulting restriction of the adjoint action
are given on generators by the following formulas.
� The embedding:

`11 D K
�2
1 C q

�1.q � q�1/2K�11 K�12 EF; `12 D q
�1.q � q�1/K�11 K�12 E;

`21 D .q � q
�1/K�22 F; `22 D K

�2
2 :

� The action:

Km B `ij D q
ıim�ıjm`ij ;

E B `ij D ıjD1`
i
2 � ıiD2q

2ıjD2`1j ;

F B `ij D ıjD2q
2ıiD2�1ai1 � ıiD1q

�1`2j :

1In fact there are two candidates for this name, and for the notation Oq.G/, the other being the
restricted dual toUq , also known as the Fadeev–Reshetikhin–Takhtajan (FRT) algebra. We will not make
use of the FRT algebra in this paper.
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Lemma 3.9. The center of Oq.GL2/ is equal to the space Oq.GL2/
U of U -invar-

iants. It is the subalgebra generated by the q-trace trq.L/, the q-determinant detq.L/,
and its inverse, where the q-trace and the q-determinant are defined as:

trq.L/ D `11 C q
�2`22;

detq.L/ D `11`
2
2 � q

2`12`
2
1:

(3.2)

Proof. BecauseOq.GL2/ is a flat deformation ofO.G/, it follows that the subalgebra
of invariants is generated by a unique element in degree one, and two. The formulas
here follow by direct computation.

Remark 3.10. Up to changes in convention, these formulas first appeared in [22].
For N > 2, the description of the center of Oq.GLN /, and hence UqglN , in terms
of q-deformed minors is taken up in [19].

3.4. The algebra Dq.GL2/ of quantum differential operators. Next, we recall
the definition of the algebra of polynomial quantum differential operators on GL2.

All the conventions follow [18], and correspond to the quiver v�
e ˚
in their notation.

They first appeared in this formulation in [30].
Definition 3.11. We let DCq .GL2/ denote the algebra with:
� generators aij and @

i
j , i; j D 1; 2, organized in matrices

A D

"
a11 a12

a21 a22

#
and D D

"
@11 @12

@21 @22

#
I

� relations given by the entries of the following matrix equations

R21A1RA2 D A2R21A1R; (3.3)
R21D1RD2 D D2R21D1R; (3.4)
R21D1RA2 D A2R21D1R

�1
21 I (3.5)

� which may be written out explicitly as follows:

a12a
1
1 D a

1
1a
1
2 C .1 � q

�2/a12a
2
2 a22a

1
1 D a

1
1a
2
2

a21a
1
1 D a

1
1a
2
1 � .1 � q

�2/a22a
2
1 a22a

1
2 D q

2a12a
2
2

a21a
1
2 D a

1
2a
2
1 C .1 � q

�2/
�
a11a

2
2 � a

2
2a
2
2

�
a22a

2
1 D q

�2a21a
2
2

(3.6)

@12@
1
1 D @

1
1@
1
2 C .1 � q

�2/@12@
2
2 @22@

1
1 D @

1
1@
2
2

@21@
1
1 D @

1
1@
2
1 � .1 � q

�2/@22@
2
1 @22@

1
2 D q

2@12@
2
2

@21@
1
2 D @

1
2@
2
1 C .1 � q

�2/
�
@11@

2
2 � @

2
2@
2
2

�
@22@

2
1 D q

�2@21@
2
2

(3.7)
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@11 � a
1
1 D �.1 � q

�2/ � @12 � a
2
1 C q

�2
� a11 � @

1
1 C .q

�2
� q�4/ � a12 � @

2
1

@11 � a
1
2 D .q

�2
� 1/ � @12 � a

2
2 C q

�2
� a12 � @

1
1

@11 � a
2
1 D .1 � q

2/ � @21 � a
1
1 � .q � q

�1/2 � @22 � a
2
1 C a

2
1 � @

1
1 C .1 � q

�2/ � a22 � @
2
1

@11 � a
2
2 D .1 � q

2/ � @21 � a
1
2 � .q � q

�1/2 � @22 � a
2
2 C a

2
2 � @

1
1

@12 � a
1
1 D a

1
1 � @

1
2 C .1 � q

�2/ � a12 � @
2
2 C .q

�2
� 1/ � a12 � @

1
1

@12 � a
1
2 D q

�2
� a12 � @

1
2

@12 � a
2
1 D .q

�2
� 1/ � @22 � a

1
1 C a

2
1 � @

1
2 C .q

�2
� 1/ � a22 � @

1
1 C .1 � q

�2/ � a22 � @
2
2

@12 � a
2
2 D .q

�2
� 1/ � @22 � a

1
2 C q

�2
� a22 � @

1
2

@21 � a
1
1 D q

�2
� a11 � @

2
1 � .1 � q

�2/ � @22 � a
2
1

@21 � a
1
2 D .q

�2
� 1/ � @22 � a

2
2 C a

1
2 � @

2
1

@21 � a
2
1 D q

�2
� a21 � @

2
1

@21 � a
2
2 D a

2
2 � @

2
1

@22 � a
1
1 D a

1
1 � @

2
2 C .1 � q

2/ � a12 � @
2
1

@22 � a
1
2 D a

1
2 � @

2
2

@22 � a
2
1 D q

�2
� a21 � @

2
2 C .q

�2
� 1/ � a22 � @

2
1

@22 � a
2
2 D q

�2
� a22 � @

2
2: (3.8)

Proposition 3.12. (1) The elements

detq.A/ WD a11a
2
2 � q

2a12a
2
1; detq.D/ WD @11@

2
2 � q

2@12@
2
1

satisfy:

detq.A/aij D a
i
j detq.A/; detq.D/aij D q

�2aij detq.D/;

@ij detq.A/ D q
�2detq.A/@ij ; @ij detq.D/ D detq.D/@ij :

In particular, the multiplicative set fdetq.A/mdetq.D/njm; n 2 Ng satisfies the
Ore condition.

(2) The set of elements
a
i1
j1
a
i2
j2
: : : a

im
jm
@
k1

l1
@
k2

l2
: : : a

kn

ln

with n;m 2 N0, ip; jp; kp; lp 2 f1; 2g, subject to the conditions

8p .ip < ipC1/ or .ip D ipC1 and jp � jpC1/;
8p .kp < kpC1/ or .kp D kpC1 and lp � lpC1/

forms a basis of DCq .GL2/.
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Proof. Claim (1) is a straightforward computation; claim (2) is Theorem 5.3 in [18].

Definition 3.13. We let Dq.GL2/ denote the algebra,

Dq.GL2/ WD DCq .GL2/
�
detq.A/�1detq.D/�1

�
;

obtained by localizing DCq .GL2/ at the element detq.A/detq.D/. We call this the
algebra of polynomial quantum differential operators on GL2.
Remark 3.14. The two evident copies of Oq.GL2/ inside Dq.GL2/, embedded by
L 7! A and L 7! D, carry an action of U as described in Lemma 3.8. This extends
to the action of U on the algebra Dq.GL2/, a consequence of the construction
of Dq.GL2/ via a U -linear map, see Section 3 in [18].

The algebra Dq.GL2/ is Z2-graded by

deg.aij / D .1; 0/; deg.@ij / D .0; 1/: (3.9)

This grading is inner, in the sense that for any h 2 Dq.GL2/ with deg.h/ D .M;N /
we have

detq.A/ � h D q2Nh � detq.A/; detq.D/ � h D q�2Mh � detq.D/: (3.10)

3.5. The quantum Hamiltonian reduction Dq.GL2/
ıı

It
U . In addition to the

two embeddings of Oq.GL2/ into Dq.GL2/ given by L 7! A and L 7! D, we will
use a third, more involved embedding, given by the “quantum moment map”. We
will make use of the following quantum cofactor matrices zD and zA, and the quantum
inverse matrices,D�1 and A�1:

zA D

"
a22 �q2a12

�q2a21 q2a22 C .1 � q
2/a22

#
; zD D

"
@22 �q2@12

�q2@21 q2@22 C .1 � q
2/@22

#
;

A�1 D
�
detq.A/

��1 zA; D�1 D
�
detq.D/

��1 zD: (3.11)

The notation A�1 and D�1 is justified by the fact that AA�1 D A�1A D I and
DD�1 D D�1D D I .
Definition/Proposition 3.15 ([18, Proposition 7.20, Definition 7.24]). We have a
homomorphism of algebras,

�qWOq.GL2/! Dq.GL2/ defined on generators by �q.L/ D DA�1D�1A:

The homomorphism �q is called the quantum moment map.
For t 2 C�, let Xt 2 GL2 denote the matrix,

Xt WD

�
t�2 0

0 t2

�
;
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and let Ot denote its conjugacy class in GL2. The multiplicative Calogero–Moser
variety is the set

Ct WD
˚
.A;B/ 2 GL2 �GL2; such that AB�1A�1B 2 Ot

	
:

The GL2-varieties Ot and Ct admit canonical equivariant q-deformations,
constructed as follows.
Definition 3.16. For t 2C�, letIt�Oq.GL2/denote the two-sided ideal inOq.GL2/

generated by the central elements:

Zt WD trq.L � q4 �Xt / D trq.L/ � q4 � .t�2 C q�2t2/; and detq.L/ � q8:

Consider also the left Dq.GL2/ ideal Dq.GL2/ � �q.It /.
Remark 3.17. The two-sided ideal It and the left ideal Dq.GL2/ � �q.It / are
ad-equivariant q-deformations of the defining ideals of Ot and Ct , respectively.

We note that �q.detq.L/ � q8/ D 0, so that

Dq.GL2/ � �q.It / D Dq.GL2/ � �q.Zt /

is in fact a principal left ideal. Since the principal generator

�q.Zt / D trq
�
�q.L/

�
� q4 � .t�2 C q�2t2/

is U -invariant by Lemma 3.9, it follows that Dq.GL2/ � �q.Zt / is preserved by U ,
and the action of U descends to the quotient,

M WD Dq.GL2/
.

Dq.GL2/ � �q.Zt /:

Definition 3.18. The quantum Hamiltonian reduction of Dq.GL2/ by the moment
map �q along the orbit Ot is defined to be the subspace

Dq.GL2/
..

It

U WD
�
Dq.GL2/

.
Dq.GL2/ � �q.Zt /

�U
of U -invariants in the quotient of Dq.GL2/ by the left ideal generated by �q.It /.

Any endomorphism � of the cyclic Dq.GL2/-moduleM is uniquely determined
by �.1/, which should be invariant for the U -action, and should have the property
that It ��.1/ � It . The quantummoment map condition, �.x/:y D .x.1/ �y/�.x.2//
ensures that the former property implies the latter, as it implies that It commutes
with �.1/. Hence we have an isomorphism,

Dq.GL2/
..

It

U Š End
�
Dq.GL2/

.
Dq.GL2/ � �q.Zt /

�
:

We therefore regard the quantum Hamiltonian reduction as an algebra, with this
multiplication. This algebra structure can be understood more directly, as follows:
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Lemma 3.19. When q is not a nontrivial root of unity, we have a natural isomorphism
of algebras:

Dq.GL2/
..

It

U Š Dq.GL2/
U
.

Dq.GL2/
U
� �q.Zt /:

Proof. Locally finite representations of U are semisimple, so taking invariants is
exact and we have

Dq.GL2/
..

It

U D
�
Dq.GL2/

.
Dq.GL2/ � �q.Zt /

�U
Š Dq.GL2/

U
.�

Dq.GL2/ � �q.Zt /
�U
:

As the generator �q.Zt / of the ideal is U -invariant, we also have�
Dq.GL2/ � �q.Zt /

�U
D Dq.GL2/

U
� �q.Zt /:

The usefulness of this lemma is that it reduces the problem of finding the
presentation of Dq.GL2/

ıı
It
U to the problem of finding the presentation of

Dq.GL2/
U . This is employed in Section 6.

The ideal Dq.GL2/ ��q.Zt / is only a one-sided ideal in Dq.GL2/. However, its
sub-space of invariants, .Dq.GL2/ � �q.Zt //

U , is a two-sided ideal in Dq.GL2/
U .

This equips Dq.GL2/
ıı

It
U with an algebra structure, which coincides with the

above description of it as the algebra of endomorphisms of the module M . The
following theorem gives a presentation of this algebra by generators and relations,
and the corresponding PBW basis for it.
Theorem 3.20. Assume that q; t ¤ 0, and that q is not a nontrivial root of unity.
(1) The quantumHamiltonian reductionDq.GL2/

ıı
It
U is isomorphic to the algebra

with generators c1, c˙12 , d1, d˙12 , r and relations:

c2c1 D c1c2; (3.12)
d2d1 D d1d2; (3.13)
d2c2 D q

�4c2d2; (3.14)
d2c1 D q

�2c1d2; (3.15)
d1c2 D q

�2c2d1; (3.16)

d2r D q
�2rd2; (3.17)

rc2 D q
�2c2r; (3.18)

d1r D q
�2rd1 C

�
1 � q�2

�
q�2c1d2; (3.19)

rc1 D q
�2c1r C

�
1 � q�2

�
q�2c2d1; (3.20)

d1c1 D c1d1 C
�
q�2 � 1

�
r; (3.21)

r2 D q�4.1C t2/
�
q�2C t�2

�
c2d2�q

�4c2d
2
1 �q

�4c21d2Cq
�2c1rd1: (3.22)

The isomorphism is given by

‰.c1/ D trq.A/; ‰.c2/ D detq.A/; ‰.r/ D q2 trq.DA/;
‰.d1/ D trq.D/; ‰.d2/ D detq.D/:

(3.23)
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The Z2 grading is given by

deg ci D .i; 0/; deg di D .0; i/; deg r D .1; 1/;

and ‰ is a graded isomorphism.

(2) After the identification given by ‰, the set˚
c
a1

1 c
a2

2 r
�d
b1

1 d
b2

2 j � 2 f0; 1g; a1; b1 2 N0; a2; b2 2 Z
	

forms a basis of the algebra Dq.GL2/
ıı

It
U .

Section 6 is dedicated to the proof of this theorem.

4. The quantum Harish-Chandra isomorphism

Theorem 4.1. Assume that q; t ¤ 0, t2 C 1 ¤ 0, and q is not a nontrivial root of 1.
There exists a unique graded isomorphism of algebras,

HCt;qWDq.GL2/
..

It

U
Š
�! eHt;qe

such that:

HCt;q.d1/ D P1; HCt;q.d2/ D q
2P2; HCt;q.r/ D R;

HCt;q.c1/ D Q1; HCt;q.c2/ D q
2Q2:

Proof. This follows directly by comparing the presentation of eHt;qe given in
Theorem 2.6 and the presentation of Dq.GL2/

ıı
It
U given in Theorem 3.20.

Remark 4.2. We note that the isomorphism HCt;q extends, even for q a root of
unity, to give an isomorphism:

HCt;qWB
.

B �
�
w � .t�2 C q�2t2/c2d2

� Š
�! eHt;qe;

where B is an explicitly given algebra with generators and relations (see Prop. 6.1),
which recovers the Hamiltonian reduction when q is not a root of unity. In the
case the q is a non-trivial root of unity, one should take more care with defining
the Hamiltonian reduction, so that the isomorphism will still hold. It should be
interesting to compare this directly to [30].
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5. Proof of Theorem 2.6

This section contains the proof of Theorem 2.6. The aim is to give a presentation of
the spherical DAHA by generators and relations (Theorem 2.6 (1)), and at the same
time to find a PBW type basis for it (Theorem 2.6 (2)).

Throughout this section, let A be the algebra with generatorsP1, P˙12 ,Q1,Q˙12 ,
R and relations (2.11)–(2.21). It is Z2-graded by

deg.P1/ D .0; 1/; deg.P2/ D .0; 2/;
deg.Q1/ D .1; 0/; deg.Q2/ D .2; 0/; deg.R/ D .1; 1/:

We first describe a PBW basis of this algebra.

Lemma 5.1. The set˚
Q
a1

1 Q
a2

2 R
�P

b1

1 P
b2

2 j � 2 f0; 1g; a1; b1 2 N0; a2; b2 2 Z
	

forms a basis of the algebra A.

Proof. We will use the Diamond Lemma from [4]. In the language of that paper, the
defining relations (2.11)–(2.21) of A are straightening relations, prescribing how to
replace (straighten) certain monomials by linear combinations of other, simpler (with
respect to some ordering), monomials.

For a monomials ABC such that AB can be straightened and BC can be
straightened, we say that the straightening diamond holds if the two resulting
straightenings of ABC can be further straightened to a common value: in other
words, the results of straightening ABC should be independent on the choice to first
straightenAB or to first straightenBC . As proved in [4], the necessary and sufficient
condition for such a straightening algorithm to be well defined, and for the resulting
set of straightened monomials to be a basis, is that the straightening diamonds hold
for all monomials ABC .

To apply this theorem to the algebra A, we must establish the straightening
diamonds for all of the following monomials:

P2P1R; P2P1Q2; P2P1Q1; P2RQ2; P2RQ1;

P2Q2Q1; P1RQ2; R
2Q2; P1Q2Q1; RQ2Q1;

P2R
2; P1RQ1; P1R

2; R2Q1; R
3:

This is done by direct computation. Because P2 and Q2 each q-commute with
all other generators, the only non-trivial checks involve the final four monomials. For
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illustration, we prove that the straightening diamond forP1RQ1 holds. Straightening
P1R first, we get

.P1R/Q1
(2.19)
D q�2RP1Q1 C

�
1 � q�2

�
Q1P2Q1

(2.16);(2.14)
D q�2RQ1P1 C q

�2
�
q�2 � 1

�
R2 C

�
1 � q�2

�
q�2Q2

1P2

(2.20)
D q�4Q1RP1 C q

�2
�
1 � q�2

�
Q2P

2
1 C q

�2
�
q�2 � 1

�
R2

C q�2
�
1 � q�2

�
Q2
1P2:

Straightening RQ1 first instead, we get

P1.RQ1/
(2.20)
D q�2P1Q1RC

�
1 � q�2

�
P1Q2P1

(2.16);(2.15)
D q�2Q1P1RC q

�2
�
q�2 � 1

�
R2 C q�2

�
1 � q�2

�
Q2P

2
1

(2.19)
D q�4Q1RP1 C q

�2
�
1 � q�2

�
Q2
1P2 C q

�2
�
q�2 � 1

�
R2

C q�2
�
1 � q�2

�
Q2P

2
1 :

By inspection, these two expressions agree.
This proves the corresponding claim for the subalgebra AC generated by P1, P2,

Q1,Q2, R. The claim for A follows by localization at P2Q2.

Next, we show that the defining relations ofA are satisfied in the spherical DAHA.

Lemma 5.2. The map ˆWA ! eHt;qe given by (2.22) is a graded algebra homo-
morphism.

Proof. The images of P1, P2, R, Q1, Q2 under the proposed map ˆ lie in the
spherical subalgebra of Ht;q , and the images of P2 and Q2 are invertible. It
remains to show that ˆ.P1/, ˆ.P2/, ˆ.Q1/, ˆ.Q2/, and ˆ.R/ satisfy the relations
(2.11)–(2.21). This is a straightforward, if lengthy computation, using relations from
Definition 2.1 and Proposition 2.4.

First, notice that in ˆ.P1/, ˆ.P2/, ˆ.Q1/, ˆ.Q2/, ˆ.R/, it is enough to write e
on the left:

ˆ.P1/ D e.X1 CX2/e D .X1 CX2/e D e.X1 CX2/;

ˆ.Q1/ D e.Y1 C Y2/e D .Y1 C Y2/e D e.Y1 C Y2/;

ˆ.P2/ D e.X1X2/e D .X1X2/e D e.X1X2/;

ˆ.Q2/ D e.Y1Y2/e D .Y1Y2/e D e.Y1Y2/;

ˆ.R/ D e.t�2Y1X1 C Y2X2/e D e.t
�2Y1X1 C Y2X2/:

(5.1)

This simplifies some computations by allowing us to calculate in the subalgebra
generated by X1, X2, Y1, Y2.
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For example, using the relation X1X2 D X2X1 from Definition 2.1, we have that

ˆ.P2P1/ D e.X1X2/e � e.X1 CX2/e

D e.X1X2/.X1 CX2/e

D e.X1 CX2/.X1X2/e

D ˆ.P1P2/;

proving (2.11). In a similar way, the relation (2.12) follows from Y1Y2 D Y2Y1, and
relations (2.13), (2.14), (2.15), (2.17), and (2.18) follow from (2.9). For illustration
we include the slightly more involved proof of relation (2.16); relations (2.19), (2.20),
and (2.21) are proved analogously.

ˆ.P1Q1/ D e.X1 CX2/e � e.Y1 C Y2/e

(5.1)
D e.X1Y1 CX1Y2 CX2Y1 CX2Y2/e

(2.3)
D e

�
q�2T �2Y1X1 C Y2X1 C .t � t

�1/T �1Y1X1

C Y1X2 C .t � t
�1/q�2T �1Y1X1 C q

�2Y2X2T
�2
�
e

(2.2)
D e

�
q�2T �2Y1X1 C Y2X1 C .t � t

�1/T �1Y1X1

C Y1X2 C .t � t
�1/q�2T �1Y1X1 C q

�2Y2X2

� .t � t�1/q�2T �1Y1X1
�
e

(2.10)
D e

�
.1 � t�2 C q�2t�2/Y1X1 C Y1X2 C Y2X1 C q

�2Y2X2
�
e

D e
�
.Y1 C Y2/.X1 CX2/C .q

�2
� 1/.t�2Y1X1 C Y2X2/

�
e

D ˆ.Q1P1 C .q
�2
� 1/R/:

This proves thatˆ.P1/,ˆ.P2/,ˆ.Q1/,ˆ.Q2/,ˆ.R/ really satisfy the relations
(2.11)–(2.21) (i.e. that ˆ is a homomorphism). It remains to show that they generate
the whole spherical double affine Hecke algebra (i.e. that ˆ is surjective), and that
the stated relations are exhaustive (i.e. thatˆ is injective). We tackle injectivity first.
Lemma 5.3. The set˚

ˆ
�
Q
a1

1 Q
a2

2 R
�P

b1

1 P
b2

2

�
j � 2 f0; 1g; a1; b1 2 N0; a2; b2 2 Z

	
is linearly independent in eHt;qe. The homomorphism ˆ is injective.

Proof. We will use the PBW theorem for Ht;q (Proposition 2.4 (2)) to prove that the
above set is linearly independent in eHt;qe � Ht;q .

Assume that for some finite indexing set I , some collection of nonzero scalars
˛i , i 2 I , and some �i 2 f0; 1g, ai;1; bi;1 2 N0, ai;2; bi;2 2 Z, i 2 I , we haveX

i2I

˛iˆ
�
Q
ai;1

1 Q
ai;2

2 R�iP
bi;1

1 P
bi;2

2

�
D 0:
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Using the definition of the map ˆ and the observation (5.1), we can write this asX
i2I

˛i e .Y1CY2/
ai;1.Y1Y2/

ai;2.t�2Y1X1CY2X2/
�i .X1CX2/

bi;1.X1X2/
bi;2 D 0:

Using e D .1C tT /=.1C t2/ and the PBW theorem for DAHA, it follows that alsoX
i2I

˛i .Y1 C Y2/
ai;1.Y1Y2/

ai;2.t�2Y1X1 C Y2X2/
�i .X1 CX2/

bi;1.X1X2/
bi;2 D 0:

(5.2)
The subalgebra generated by Y ˙11 ; Y ˙12 is commutative. After multiplying (5.2) on
the left by some power of Y1Y2 if necessary, we can assume that ai;2 � 0 for all
i 2 I , and that there exists at least one i 2 I for which ai;2 D 0. Similarly, by
multiplying (5.2) on the right by some power of X1X2, we can assume that bi;2 � 0
for all i 2 I .

As explained after Definition 2.1, the algebra Ht;q is Z2 graded. We may assume
that all terms in the expression (5.2) are of the same bigraded degree .M;N /. This
means that for all i 2 I we have

ai;1 C 2ai;2 C �i DM;

bi;1 C 2bi;2 C �i D N:

The PBW theorem for DAHA (Proposition 2.4 (2)) implies that, as a vector space,
Ht;q is also Z4 graded by .deg.Y1/; deg.Y2/; deg.X1/; deg.X2//. The highest power
of Y1 in the term

˛i .Y1 C Y2/
ai;1.Y1Y2/

ai;2.t�2Y1X1 C Y2X2/
�i .X1 CX2/

bi;1.X1X2/
bi;2

of the expression (5.2) is equal to

ai;1 C ai;2 C �i DM � ai;2:

Using the assumption that there exists an i 2 I with ai;2 D 0 and the PBW theorem
for Ht;q , we get that the coefficient of YM1 in (5.2) isX

i2I;
ai;2D0; �iD0

˛i .X1CX2/
bi;1.X1X2/

bi;2C

X
i2I;

ai;2D0; �iD1

˛i t
�2X1.X1CX2/

bi;1.X1X2/
bi;2 D 0;

(5.3)
while at least one of the coefficients ˛i in (5.3) is nonzero. Let

f D
X
i2I;

ai;2D0; �iD0

˛i .X1CX2/
bi;1.X1X2/

bi;2 ; g D
X
i2I;

ai;2D0; �iD1

˛i t
�2.X1CX2/

bi;1.X1X2/
bi;2 :

(5.4)



1184 M. Balagovic and D. Jordan

Formula (5.3) states that
f CX1g D 0: (5.5)

Polynomials f and g are symmetric in X1; X2, so symmetrizing (5.5) we get that

f C
X1 CX2

2
g D 0:

Subtracting this from (5.5) we get that

.X1 �X2/g D 0:

This and the PBW basis imply that g D 0, and so also f D 0.
At least one of the coefficients ˛i in at least one of the expressions in (5.4) is

nonzero. On the other hand, another use of the PBW theorem for DAHA implies that
the set f.X1CX2/bi;1.X1X2/

bi;2g is linearly independent. This is a contradiction.

To show that the injective graded homomorphism ˆWA! eHt;qe is surjective,
we would like to employ a dimension argument. However, these algebras are infinite
dimensional, and bigradedwith infinite dimensional bigraded pieces. Towork around
this problem, we introduce the following auxilary algebras.
Definition 5.4. Let HCt;q denote the subalgebra of Ht;q generated by T˙1, X1, X2,
Y1, Y2. Let AC denote the subalgebra of A generated by P1; P2;Q1;Q2 and R.

These subalgebras are also Z2 graded, and have finite dimensional bigraded
pieces. The homomorphism ˆ restricts to a graded homomorphism AC ! eHCt;qe.
By the next lemma, we can easily recover information about Ht;q , eHt;qe and A

from the information about HCt;q , eHCt;qe and AC.

Lemma 5.5. (1) The multiplicative set f.Y1Y2/a.X1X2/bg in Ht;q satisfies the Ore
condition, and the multiplicative set fQa

2P
b
2 g in A satisfies the Ore condition.

(2) The algebra Ht;q is the localization of HCt;q by .Y1Y2/�1.X1X2/�1, and the
algebra A is the localization of AC byQ�12 P�12 .
Wewill first prove that the restriction of the homomorphismˆ toAC ! eHCt;qe is

an isomorphism, and then use this lemma to deduce the same aboutˆWA! eHt;qe.
Let A be any algebra over C or over Rt;q with a Z2 grading. If working over

the ground ring C, assume that every bigraded piece AŒM;N � is a finite dimensional
C-vector space with dimension dim.AŒM;N �/. If working over the ground ringRt;q ,
assume that every bigraded piece AŒM;N � is a free Rt;q-modules of finite rank
dim.AŒM;N �/. In either case, we record the dimensions of the bigraded pieces as a
Hilbert series in two variables given by

HilbA.u; v/ D
X
.M;N/

dim
�
AŒM;N �

�
uMvN :

Let us compute the Hilbert series of the algebras AC and eHCt;qe.
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Lemma 5.6. The set˚
Q
a1

1 Q
a2

2 R
�P

b1

1 P
b2

2 j � 2 f0; 1g; ai ; bi 2 N0

	
is a basis of the algebra AC. The Hilbert series of this bigraded algebra is given by

HilbAC.u; v/ D
1

1 � u
�

1

1 � u2
�

1

1 � v
�

1

1 � v2
� .1C uv/:

Proof. The first assertion follows directly from Lemma 5.1. To calculate the Hilbert
series, note that deg.Qa1

1 Q
a2

2 R
�P

b1

1 P
b2

2 / D .a1 C 2a2 C �; b1 C 2b2 C �/, so

HilbAC.u; v/ D
X

a1;a2�0; b1;b2�0
�D0;1

ua1C2a2C�vb1C2b2C�

D
1

1 � u
�

1

1 � u2
�

1

1 � v
�

1

1 � v2
� .1C uv/:

Lemma 5.7. The Hilbert series of the bigraded algebra eHCt;qe is given by

Hilb
eHCt;qe

.u; v/ D
1

1 � u
�

1

1 � u2
�

1

1 � v
�

1

1 � v2
� .1C uv/:

Proof. Consider eHCt;q , as a vector space over C or as a free module over Rt;q . By
Proposition 2.4 (2), a basis of eHCt;q is the set feY a1

1 Y
a2

2 X
b1

1 X
b2

2 j ai ; bi 2 N0g.
The group S2 acts on eHCt;q by right multiplication, and the space of invariants is
precisely the spherical subalgebra eHCt;qe.

This S2 action depends polynomially on t˙1, does not depend on q, and it
preserves the finite dimensional bigraded pieces eHCt;qŒN;M�. The dimension of the
space of invariants in every bigraded piece can be calculated using group characters
as

dim
�
eHCt;qŒN;M�e

�
D
1

2
�
�
Tr
�
ideHCt;qŒN;M�

�
C Tr

�
seHCt;qŒN;M�

��
:

This expression takes values in N0, does not depend on q, and the only term which
depends on t is Tr.s

.eHCt;qŒN;M�
/, which is in CŒt˙1�Œ.t2 C 1/�1�. Thus, the above

formula gives a polynomial function from ft 2 C�jt2 ¤ 1g to Z. The only such
functions are constants. This proves that dim.eHCt;qŒN;M�e/ does not depend on t
and q.

We will calculate the Hilbert series of eHCt;qe by calculating it at t D 1; q D 1.
The graded action of S2 on eHC1;1 can be identified with the usual permutation action
of S2 on the space CŒX1; X2; Y1; Y2�. Denoting the trivial character of the group S2
by �C and the sign character by ��, we see that the two dimensional permutation
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representation spanned by X1; X2 has graded character .�C C ��/u. Consequently,
the bigraded characters of CŒX1; X2� and CŒX1; X2; Y1; Y2� can be computed as

�CŒX1;X2�.u; v/ D
1

1 � v�C
�

1

1 � v��
� �C;

�CŒX1;X2;Y1;Y2�.u; v/ D
1

1 � u�C
�

1

1 � u��
�

1

1 � v�C
�

1

1 � v��
� �C

D
�C

1 � u
�
�C C u��

1 � u2
�
�C

1 � v
�
�C C v��

1 � v2

D
.1C uv/�C C .uC v/��

.1 � u/.1 � u2/.1 � v/.1 � v2/
:

Reading off the �C coefficient, we get that the bigraded Hilbert series of the spherical
DAHA equals

Hilb
eHCt;qe

.u; v/ D Hilb
eHC

1;1
e
.u; v/

D
1

1 � u
�

1

1 � u2
�

1

1 � v
�

1

1 � v2
� .1C uv/:

We are now ready to prove the main Theorem of section 2, Theorem 2.6, which
describes the spherical DAHA by generators and relations and gives a PBW basis for
it.

Proof of Theorem 2.6. Let us prove that the map ˆWA ! eHt;qe, defined on
generators by (2.22), is an isomorphism.

It is a Z2 graded algebra homomorphism by Lemma 5.2, and injective by
Lemma 5.3. Its restriction ˆjAC WA

C ! eHCt;qe to the algebra AC from
Definition 5.4 is thus also a graded injective homomorphism. By Lemma 5.6 and
Lemma 5.7, the algebras AC and eHCt;qe have the same Hilbert series, so ˆjAC
is an isomorphism. By Lemma 5.5, the homomorphism ˆ is a localization of the
isomorphism ˆjAC , and thus it is also an isomorphism.

In particular, the image under ˆ of the basis given in Lemma 5.1 is a basis of the
spherical DAHA eHt;qe.

6. Proof of Theorem 3.20

This section contains the proof of Theorem 3.20, which gives the presentation of the
quantum Hamiltonian reduction

Dq.GL2/
..

It

U D
�
Dq.GL2/

.
Dq.GL2/ � �q.It /

�U
Š Dq.GL2/

U
.

Dq.GL2/
U
� �q.Zt /

by generators and relations, and a PBW type basis for it. To this end, we first give a
presentation of Dq.GL2/

U , in Proposition 6.1.
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For most of this section we allow q; t formal, or q; t 2 C� arbitrary. Lemma 6.5
requires the additional assumption that q is not a nontrivial root of 1. The spirit of
the proof is very similar to the proof of Theorem 2.6 given in Section 5.

6.1. A presentation of Dq.GL2/U . The main result of this subsection, and the
only part of it which is used in the rest of the paper, is the following proposition.
Proposition 6.1. Assume that q is not a non-trivial root of unity.
(1) Let B be the algebra with generators:

c1; c
˙1
2 ; d1; d

˙1
2 ; r; w

and relations:

c2c1 D c1c2; (6.1)
d2d1 D d1d2; (6.2)
d2c2 D q

�4c2d2; (6.3)
d2c1 D q

�2c1d2; (6.4)
d1c2 D q

�2c2d1; (6.5)
d1c1 D c1d1 C .q

�2
� 1/r; (6.6)

wr D rw; (6.12)
wc1 D q

�2c1w; (6.13)
wc2 D q

�4c2w; (6.14)
wd1 D q

2d1w; (6.15)
wd2 D q

4d2w: (6.16)

d2r D q
�2rd2; (6.7)

rc2 D q
�2c2r; (6.8)

d1r D q
�2rd1 C .1 � q

�2/q�2c1d2; (6.9)
rc1 D q

�2c1r C .1 � q
�2q�2c2d1; (6.10)

r2 D q�4w C .q�4 C q�6/c2d2

� q�4c2d
2
1 � q

�4c21d2 C q
�2c1rd1;

(6.11)

There is an isomorphism of algebras

S‰WB !
�
Dq.GL2/

�U
given on the generators by

S‰.c1/ D trq.A/; S‰.c2/ D detq.A/;
S‰.d1/ D trq.D/; S‰.d2/ D detq.D/;
S‰.r/ D q2 trq.DA/; S‰.w/ D trq.D zA zDA/:

(6.12)

(2) Let BC be the subalgebra of B generated by c1, c2, d1, d2, r , w. The isomorph-
ism S‰ restricts to the isomorphism of algebras

S‰jBC WB
C
!
�
DCq .GL2/

�U
:
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The algebras B and BC are Z2-graded by

deg.c1/ D .1; 0/; deg.d1/ D .0; 1/; deg.w/ D .2; 2/;
deg.c2/ D .2; 0/; deg.d2/ D .0; 2/; deg.r/ D .1; 1/:

(6.13)

The multiplicative set generated by c2d2 andw is q-central, and therefore Ore in BC,
and B is a noncommutative localization of BC by this set.

Let us first show that the map S‰ is indeed a homomorphism.
Lemma 6.2. The elements

trq.A/; detq.A/; trq.D/; detq.D/; q2 trq.DA/; trq.D zA zDA/;

which appear on the right hand sides of formulas (6.12), are U -invariant and satisfy
defining relations (6.1)–(6.16) of the algebra B. Therefore, (6.12) defines a graded
algebra homomorphism S‰WB ! .Dq.GL2//

U .

Proof. The maps L 7! A, L 7! D, L 7! DA and L 7! �q.L/ are all homomorph-
isms of U -modules, so the U -invariance of these elements follows from Lemma 3.9.

Seeing that these elements satisfy relations (6.1)–(6.16) is also a direct
computation, using the explicit form of defining relations of Dq.GL2/ given by
(3.6), (3.7), and (3.8). For instance, (3.10) immediately implies (6.1), (6.2), (6.3),
(6.4), (6.5), (6.7), (6.8), (6.14), (6.16).

For illustration, let us also prove (6.6). We claim that
S‰.d1/S‰.c1/ � S‰.c1/S‰.d1/ D

�
q�2 � 1

�
S‰.r/:

The left hand side is equal to

S‰.d1/S‰.c1/ � S‰.c1/S‰.d1/

D trq.D/ trq.A/ � trq.A/ trq.D/

D .@11 C q
�2@22/ .a

1
1 C q

�2a22/ � .a
1
1 C q

�2a22/ .@
1
1 C q

�2@22/

(3.8)
D .q�2 � 1/

�
a11@

1
1 C .q

�2
� 1/a11@

2
2 C q

2a12@
2
1 C a

2
1@
1
2 C .q

�2
� 1/a22@

1
1

C .1 � q�2 C q�4/a22@
2
2

�
:

On the other hand,

S‰.r/ D q2 trq.DA/

D q2.@11a
1
1 C @

1
2a
2
1/C .@

2
1a
1
2 C @

2
2a
2
2/

(3.8)
D a11@

1
1 C .q

�2
� 1/a11@

2
2 C q

2a12@
2
1 C q

2a12@
2
1 C a

2
1@
1
2

C .q�2 � 1/a22@
1
1 C .1 � q

�2
C q�4/a22@

2
2:

(6.14)

Comparing these two expressions proves (6.6). Relations (6.9), (6.10), (6.11), (6.12),
(6.13) and (6.15) are proved by similar direct computations.
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We now describe a PBW basis of the algebra B and the Hilbert series of BC.
Lemma 6.3. (1) The set˚

c
a1

1 c
a2

2 r
�d
b1

1 d
b2

2 w
c
j a1; b1; c 2 N0; a2; b2 2 Z; � 2 f0; 1g

	
is a basis of B.

(2) The set ˚
c
a1

1 c
a2

2 r
�d
b1

1 d
b2

2 w
c
j a1; b1; a2; b2; c 2 N0; � 2 f0; 1g

	
is a basis of BC.

(3) The Hilbert series of the algebra BC is given by

HilbBC.u; v/ D
1

.1 � u/.1 � v/.1 � u2/.1 � v2/.1 � uv/
:

Proof. (1) The first claim follows from the second by localization at c2 and d2.

(2) The second claim is an application of the Diamond Lemma from [4], similar to
the proof of Lemma 5.1. Relations (6.1)–(6.11) are straightening relations, describing
how to reorder monomials. In order to apply the Diamond Lemma, it remains to
establish the straightening diamonds for the following 26 monomials:
wd2d1; wd2r; wd2c2; wd2c1; wd1r; wd1c2; wd1c1; wrc2; wrc1; wc2c1;

d2d1r; d2d1c2; d2d1c1; d2rc2; d2rc1; d2c2c1; d1rc2; r
2c2; d1c2c1; rc2c1;

wr2; d2r
2; d1r

2; d1rc1; r
2c1; r

3:

This is a direct calculation, very similar to that in the proof of Lemma 5.1. As
there, all but the final four monomials follow immediately from the fact that c2; d2
and w q-commute with all generators. For illustration, we include a proof that the
straightening diamond for r2c1 holds. Straightening r2 first, we find:

.r2/c1
(6.11)
D

�
q�2c1rd1 � q

�4c21d2 � q
�4c2d

2
1 C q

�4w C .q�4 C q�6/c2d2
�
c1

(6.6);
(6.13);(6.4)
D q�2c1rc1d1 C .q

�4
� q�2/c1r

2
� q�6c31d2 � q

�4c2d1c1d1

� .q�6 � q�4/c2d1r C q
�6c1w C .q

�6
C q�8/c2c1d2

(6.10);(6.11)
(6.6);(6.9)
D q�4c21rd1 C .q

�4
� q�6/c1c2d

2
1

C .q�6 � q�4/c21rd1

� .q�8 � q�6/c31d2 � .q
�8
� q�6/c1c2d

2
1 C .q

�8
� q�6/c1w

C .q�4 � q�2/.q�4 C q�6/c1c2d2 � q
�6c31d2 � q

�4c1c2d
2
1

� .q�6 � q�4/c2rd1 � .q
�8
� q�6/c2rd1

� .q�6 � q�4/.q�2 � q�4/c1c2d2 C q
�6c1w C .q

�6
C q�8/c1c2d2

D q�6c21rd1 � q
�8c1c2d

2
1 � q

�8c31d2 C q
�8c1w C .q

�4
� q�8/c2rd1

C .2q�10 � q�8 C q�6/c1c2d2:
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Straightening rc1 first, we find:

r.rc1/
(6.10)
D q�2rc1r C .q

�2
� q�4/rc2d1

(6.10);(6.8)
D q�4c1r

2
C .q�4 � q�6/c2d1r C .q

�4
� q�6/c2rd1

(6.11);(6.9)
D q�6c21rd1 � q

�8c31d2 � q
�8c1c2d

2
1 C q

�8c1w C .q
�8
C q�10/c1c2d2

C .q�6 � q�8/c2rd1 C .q
�4
� q�6/.q�2 � q�4/c1c2d2

C .q�4 � q�6/c2rd1

(6.11);(6.9)
D q�6c21rd1 � q

�8c31d2 � q
�8c1c2d

2
1 C q

�8c1w C .q
�4
� q�8/c2rd1

C .2q�10 � q�8 C q�6/c1c2d2:

By inspection, these two expressions agree. Similar computations show that
straightening diamonds hold for the remaining expression; hence, by the Diamond
Lemma, the given set of straightened monomials is indeed a PBW basis for BC.

(3) Using (2), we calculate the Hilbert series of BC as

HilbBC.u; v/ D
X

a1;b1;a2;b2;c�0

�2f0;1g

ua1C2a2C�C2c vb1C2b2C�C2c

D
1C uv

.1 � u/.1 � u2/.1 � v/.1 � v2/.1 � u2v2/

D
1

.1 � u/.1 � v/.1 � u2/.1 � v2/.1 � uv/
:

Next, we show that S‰jBC is injective.
Lemma 6.4. The image of the set˚

c
a1

1 c
a2

2 r
�d
b1

1 d
b2

2 w
c
j a1; b1; c 2 N0; ; a2; b2 2 Z; � 2 f0; 1g

	
(6.15)

under the map S‰ is linearly independent in .Dq.GL2//
U . The map S‰WB !

.Dq.GL2//
U is injective.

Proof. Let us consider the set˚
c
a1

1 c
a2

2 r
dd

b1

1 d
b2

2 j a1; b1; d 2 N0; a2; b2 2 Z
	

(6.16)

with a partial order on it given by the degree d of r . Looking at the defining relations
(6.1)–(6.11) of the algebra B, we see that

c
a1

1 c
a2

2 r
�d
b1

1 d
b2

2 w
c
D q�2b1�4b2C4cc

a1

1 c
a2

2 r
2cC�d

b1

1 d
b2

2 C lower order terms:

In other words, the set (6.16) is also a basis of B, and the change of basis matrix
between (6.15) and (6.16) (in some order) is upper triangular with powers of q on the
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diagonal. So, it is enough to prove that the image under S‰ of the set (6.16) is linearly
independent in .Dq.GL2//

U .
Suppose, for the sake of contradiction, that there is a nontrivial linear combination

of the images under S‰ of some elements of (6.16).X
a1;b1;d2N0;
a2;b22Z

˛a1;a2;d;b1;b2
S‰
�
c
a1

1 c
a2

2 r
dd

b1

1 d
b2

2

�
D 0: (6.17)

By this assumption, the set

E D
˚
e D .a1; a2; d; b1; b2/ j a1; b1; d 2 N0; a2; b2 2 Z; ˛a1;a2;d;b1;b2

¤ 0
	

is not empty. After multiplying (6.17) on the left by some power of S‰.c2/ and on the
right by some power of S‰.d2/, we may assume that

E D E \N5
0 ;

meaning that all exponents a2; b2 are nonnegative integers. Let p1; : : : ; p5WE ! N0

be projections from E to the coordinates of E. We haveX
e2E

˛e trq.A/a1 detq.A/a2
�
q2trq.DA/

�d trq.D/b1 detq.D/b2 D 0: (6.18)

Let
N D max

˚
.p2 C p3/.e/ j e 2 E

	
:

The set .p2Cp3/�1.N / � E is nonempty. Putting (6.18) in PBW order using (3.2),
(6.14), and (3.6), we read off that the leading nonzero term of a12 is equal toX
e2.p2Cp3/�1.N/

˛e .a
1
1 C q

�2a22/
a1.�q2/N .a12/

N .a21/
a2.@21/

d trq.D/b1 detq.D/b2 D 0:

This can be rewritten asX
e2.p2Cp3/�1.N/

a1X
iD0

˛e

 
a1

i

!
q�2iC2di .a11/

a1�i .a12/
N .a21/

a2.a22/
i .@21/

d

trq.D/b1 detq.D/b2 D 0: (6.19)

Fix any .a1; a2; d; b1; b2/ 2 .p2 C p3/�1.N /. Then the set

p�11 .a1/ \ p
�1
2 .a2/ \ p

�1
3 .d/

is not empty. Using the PBW theorem for Dq.GL2/, (Proposition 3.12) and equation
(6.19), we see that X

e2p�1
1
.a1/\p

�1
2
.a2/\p

�1
3
.d/

˛e trq.D/p4.e/ detq.D/p5.e/ D 0: (6.20)
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Let
M D max

˚
p5.e/ j e 2 p�11 .a1/ \ p

�1
2 .a2/ \ p

�1
3 .d/

	
:

The set
p�11 .a1/ \ p

�1
2 .a2/ \ p

�1
3 .d/ \ p�15 .M/

is nonempty. The leading @12 term in (6.20) is thenX
e2p�1

1
.a1/\p

�1
2
.a2/\p

�1
3
.d/\p�1

5
.M/

˛e trq.D/p4.e/ .@12/
M .@21/

M
D 0: (6.21)

From this it follows that

˛e D 0 for all e 2 p�11 .a1/ \ p
�1
2 .a2/ \ p

�1
3 .d/ \ p�15 .M/ � E;

which contradicts the definition of the set E.
So, the assumption that there exists a nontrivial linear combination of the images

under S‰ of some elements of (6.16) is wrong. This proves the lemma.

We have now shown that the map S‰ from the statement of Proposition 6.1 is a
graded injective homomorphism of algebras. To see that it is an isomorphism, we em-
ploy a dimension argument. The algebras B and Dq.GL2/ have infinite dimensional
bigraded pieces, so we first deal with their subalgebras BC and DCq .GL2/.
Lemma 6.5. Assume that q is not a nontrivial root of unity. Then the Hilbert series
of the algebra DCq .GL2/

U is

Hilb
D
C
q .GL2/U

.u; v/ D
1

.1 � u/.1 � v/.1 � u2/.1 � v2/.1 � uv/
:

Proof. As a bigradedU -module,DCq .GL2/ is isomorphic toOCq .GL2/˝OCq .GL2/.
In order to find the invariants, we will decompose the representation OCq .GL2/ of U
into irreducible direct summands. The multiplicities of irreducible modules in this
decomposition is the same for a variable q, for all q 2 C� which are not roots of
unity, and for q D 1. (For q ¤ 1 such that qn D 1, there are genuinely more
invariants.) In particular,

Hilb
D
C
q .GL2/U

.u; v/ D Hilb
D
C

1
.GL2/

U.gl2/.u; v/:

We will calculate this Hilbert series at q D 1.
At q D 1, the algebra U D U.gl2/ is the universal enveloping algebra of gl2.

Let Vn denote the irreducible representation of U.gl2/ which factors through the
quotient U.gl2/! U.sl2/ and whose highest weight is n. We have dimVn D nC 1.
Then

span
˚
aij j i; j 2 f1; 2g

	
Š V0 ˚ V2
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asU.gl2/modules. For anyU.gl2/module V , let S.V / denote the symmetric algebra
on V with the obvious grading. There is an isomorphism of graded U.gl2/ modules

OC1 .GL2/ D C
�
aij j i; j 2 f1; 2g

�
Š S.V0 ˚ V2/ Š S.V0/˝ S.V2/: (6.22)

Let us record the decomposition of graded pieces into irreducible direct summands
as a one-variable Grothendieck group expression. In that language,

ŒS.V0/� D
X
k�0

ŒV0�u
k : (6.23)

Using weights, we decompose the symmetric algebra on V2 as a direct sum of
irreducible representations, and similarly get that

ŒS.V2/� D
X
n�0

�
˚i�0 V2n�4i

�
un D

X
n�0

X
i�0

�
V2n�4i

�
un: (6.24)

Combining (6.22), (6.23) and (6.24), we get

�
OC1 .GL2/

�
D

�X
k�0

ŒV0�u
k

��X
n�0

X
i�0

�
V2n�4i

�
un
�
D

X
k�0

X
n�0

X
i�0

�
V2n�4i

�
unCk :

(6.25)
We are interested in the multiplicity of ŒV0� in OC1 .GL2/˝ OC1 .GL2/. For that

purpose, recall that

Vm ˝ Vn Š VmCn ˚ VmCn�2 ˚ � � � ˚ Vjm�nj:

The trivial representation V0 appears as a summand in the decomposition of Vm˝Vn
if and only if m D n, and in that case it appears with multiplicity 1. So,�
OC1 .GL2/˝OC1 .GL2/

�
D

X
k�0

X
n�0

X
i�0

�
V2n�4i

�
unCk �

X
l�0

X
m�0

X
j�0

�
V2m�4j

�
vmCl

and��
OC1 .GL2/˝OC1 .GL2/

�U.gl2/�
D

X
k�0; n�0;
0�i�n=2

X
l�0;m�0;
0�j�m=2

��
V2n�4i ˝ V2m�4j

�U.gl2/�unCkvmCl
D ŒV0�

X
k�0; n�0;
0�i�n=2

X
l�0;m�0;
0�j�m=2

ı2n�4iD2m�4ju
nCkvmCl :
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The Hilbert series of the space of invariants is thus

Hilb
D
C

1
.GL2/

U.gl2/.u; v/ D
X

k�0; n�0;
0�i�n=2

X
l�0;m�0;
0�j�m=2

ı2n�4iD2m�4ju
nCkvmCl

D
1

.1 � u/.1 � v/

X
i�0

X
j�0

X
n�2i

X
m�2j

ı2n�4iD2m�4ju
nvm

D
1

.1 � u/.1 � v/

X
i�0

X
j�0

X
n�2i

unvn�2iC2j

D
1

.1 � u/.1 � v/

X
i�0

X
j�0

X
n�0

unC2ivnC2j

D
1

.1 � u/.1 � v/.1 � u2/.1 � v2/.1 � uv/
:

We are now ready to prove the main statement of this subsection.

Proof of Proposition 6.1. Assume that q; t ¤ 0; and that q is not a nontrivial root of
unity.

The map S‰, defined on generators of B in (6.12) extends uniquely to a graded
homomorphism of algebras S‰WB ! .Dq.GL2//

U by Lemma 6.2. By Lemma 6.3
and Lemma 6.4, the image of a basis in B is linearly independent in .Dq.GL2//

U ,
so the map S‰ is injective. The restriction of S‰ to BC is thus also a graded injective
homomorphism of algebras S‰jBC WBC ! .DCq .GL2//

U . The Hilbert series of BC

and .DCq .GL2//U given in Lemmas 6.3 and 6.5 coincide, soS‰jBC ! .DCq .GL2//
U

is an isomorphism. The algebra B is a localization of BC by the Ore set generated
by c2d2, the algebra .Dq.GL2//

U is a localization of .DCq .GL2//U by the Ore set
generated by detq.A/detq.D/ D S‰.c2d2/, and the map S‰ is a localization of the
map S‰jBC . So, S‰WB ! .Dq.GL2//

U is an isomorphism of algebras.

6.2. A presentation of Dq.GL2/
ıı

It
U . We now combine Lemma 3.19 and Prop-

osition 6.1, to prove Theorem 3.20.

Proof of Theorem 3.20. By Lemma 3.19 and Proposition 6.1, we have

Dq.GL2/
..

It

U Š Dq.GL2/
U
.

Dq.GL2/
U
� �q.Zt / Š B

.
B � S‰�1

�
�q.Zt /

�
Let us first calculate the generator S‰�1.�q.Zt // of this principal B ideal.

S‰�1
�
�q.Zt /

� Def. 3:16
D S‰�1

�
�q
�
trq.L � q4Xt /

��
Def. 3:15
D S‰�1

�
trq.DA�1D�1A � q4Xt /

�
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(3.11)
D S‰�1

�
trq.D detq.A/�1 zA detq.D/�1 zDA � q4Xt /

�
D S‰�1

�
detq.A/�1detq.D/�1trq.D zA zDA/ � q4trq.Xt /

�
(6.12)
D c�12 d�12 w � q4.t�2 C q�2t2/

D c�12 d�12
�
w � q4.t�2 C q�2t2/d2c2

�
(6.3)
D c�12 d�12

�
w � .t�2 C q�2t2/c2d2

�
:

Thus B � S‰�1.�q.Zt // is the principal left ideal in B generated by the element

c�12 d�12
�
w � .t�2 C q�2t2/c2d2

�
;

or equivalently, by the element

w � .t�2 C q�2t2/c2d2:

A presentation of the quotient,

B
.

B �
�
w � .t�2 C q�2t2/c2d2

�
can be deduced from the presentation of the algebra B given in Proposition 6.1, as
follows:
� Generators are: c1, c˙12 , d1, d˙12 , r .
� Relations are (6.1)–(6.10), and an extra relation obtained from (6.11) as

r2 D q�4w C .q�4 C q�6/c2d2 � q
�4c2d

2
1 � q

�4c21d2 C q
�2c1rd1

D q�4.t�2 C q�2t2/c2d2 C .q
�4
C q�6/c2d2

� q�4c2d
2
1 � q

�4c21d2 C q
�2c1rd1

D q�4.1C t2/.q�2 C t�2/c2d2 � q
�4c2d

2
1 � q

�4c21d2 C q
�2c1rd1: (6.26)

This proves that Dq.GL2/
ıı

It
U is isomorphic to the algebra

B
.

B �
�
w � .t�2 C q�2t2/c2d2

�
;

whose presentation is stated in Theorem 3.20, with the isomorphism ‰ induced
by S‰.
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