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Calabi–Yau deformations and negative cyclic homology
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Abstract. In this paper we relate the deformation theory of Ginzburg Calabi–Yau algebras
to negative cyclic homology. We do this by exhibiting a DG-Lie algebra that controls this
deformation theory and whose homology is negative cyclic homology. We show that the bracket
induced on negative cyclic homology coincides with Menichi’s string topology bracket. We
show in addition that the obstructions against deforming Calabi–Yau algebras are annihilated
by the map to periodic cyclic homology. In the commutative we show that our DG-Lie algebra
is homotopy equivalent to .T polyJuK;�u div/.
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1. Introduction

Throughout k is a field of characteristic zero. In this paper we discuss the
deformation theory of Calabi–Yau k-algebras in the sense of Ginzburg [13]. Recall
that a k-algebra A is d -Calabi–Yau if it is perfect as Ae-module and there is an
isomorphism1 inD.Ae/

�WRHomAe .A;Ae/ �! †�dA: (1.1)

In the rest of this introduction we fix a d -CY algebra A. Here and throughout the
paper we take the point of view that � is part of the structure of A.

The definition of a d -Calabi–Yau algebra can be “relativized” without any
difficulty. Hence there is an associated deformation theory. Our first result in
this paper is the construction of a DG-Lie algebra which controls this deformation
theory.

To be more precise: let Nilp be the category of commutative, finite dimensional,
local k-algebras .R;m/ such that R=m D k. For R 2 Nilp let DefA;�.R/ be the
�The second author is a senior researcher at the FWO.
1This isomorphism is sometimes required to satisfy a certain symmetry condition but this happens to

be automatically satisfied. See [29, App. C].
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category of R-algebras B which are d -Calabi–Yau (with respect to R) and which
are in addition equipped with an isomorphism B ˝R k Š A respecting �. We
view DefA;� as a pseudo-functor from Nilp to the category of groupoids Gd.

For a nilpotent DG-Lie algebra h let MC.h/ be the groupoid of solutions to the
Maurer–Cartan equation in h (see §5). For an arbitrary DG-Lie algebra g we have an
associated “deformation functor”

MC.g/WNilp �! GdW .R;m/ 7! MC.g˝k m/:

In this paper we introduce a DG-Lie algebra D�.A; �/ (see §6) which controls the
deformation theory of .A; �/:2

Theorem 1.1 (A combination of Prop. 4.2 and Thm. 6.1 below). There is a morphism
of pseudo-functors � WMC.D�.A; �// �! DefA;� which when evaluated on an
arbitrary R 2 Nilp is essentially surjective on objects and surjective on morphisms.

We obtain in particular for R 2 Nilp a bijection between MC.D�.A/˝k m/=Š
and DefA;�.R/=Š. In this sense the deformation theory of A is controlled by the
DG-Lie algebra D�.A; �/.

D�.A; �/ is constructed as a twisted semi-direct product of theHochschild cochain
complex with the negative cyclic chain complex of A. So the construction is similar
in spirit to [26] which treats finite dimensional A1-algebras with a non-degenerate
inner product. However our algebras are not finite dimensional and they do not carry
an inner product.

The construction of D�.A; �/ yields a morphism

�WD�.A; �/ �! xC�.A/;

where xC�.A/ is the (shifted) Hochschild cochain complex of A. As is well known,
xC�.A/ controls the deformation theory ofA as algebra. The morphism � corresponds
to “forgetting �” as is explained in §7.

The next result is the construction of an explicit quasi-isomorphism of complexes

D�.A; �/
Š
�! †�dC1 CC�� .A/ (1.2)

between D�.A; �/ and the shifted negative cyclic complex CC�� .A/. As a result
we obtain the following information about the deformation theory of Calabi–Yau
algebras.

Theorem 1.2. (1) The tangent space to the deformation space of a d -Calabi–Yau
algebra is HC�d�2.A/.

2In fact this is slightly imprecise as D�.A; �/ is only determined up to a non-unique isomorphism.
The actual definition of D�.A; �/ depends on the lift of � to an explicit cycle in a suitable complex but
we will ignore this subtlety in the introduction.
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(2) The obstructions against deforming a d -Calabi–Yau algebra are in

ker
�
HC�d�3.A/! HCper

d�3
.A/

�
:

The first statement is a formal consequence of (1.2). The second statement is
Theorem 10.1 below. It follows in particular that if HC�d�3.A/ ! HCper

d�3
.A/ is

injective then the deformation theory of A as Calabi–Yau algebra is unobstructed.
This happens for example if d � 3 (see Corollary 10.5 and Lemma 10.6 below).

Our next result is the description of the Lie bracket on HC�.A/ induced by (1.2):
Theorem 1.3 (Theorem 8.2 below). The Lie bracket on negative cyclic homology
induced by (1.2) is the “string topology” Lie bracket introduced in [20] by Menichi.

Let us now specialize to the case where A is commutative. Let T poly;�.A/ be the
Lie algebra of poly-vector fields onA. Then � in (1.1) may be interpreted as a volume
form (see §9 below). Let div be the divergence operator on T poly;�.A/ associated
to �. Using Willwacher’s “formality for cyclic chains” [32] (see also [7, 23, 28]) we
show that there is an isomorphism�

T poly;�JuK;�u div
� Š
�! D�.A; �/

�
juj D 2

�
in the homotopy category of DG-Lie algebras which fits in a commutative diagram�

T poly;�.A/JuK;�u div
� Š //

u7!0

��

D�.A/

�

��
T poly;�.A/

Š
// xC�.A/

(1.3)

The lower arrow is a globalized version of Kontsevich’s formality quasi-isomorphism
[16]. This diagram gives a conceptual explanation of Dolgushev’s result [8] that the
Kontsevich �-product associated to a divergence free Poisson bracket is Calabi–Yau.3

Acknowledgements. We would like to thank Damien Calaque and Boris Tsygan for
help with references.

Notation and conventions. All rings and ring homomorphisms are unital. We mix
homological and cohomological indices, using the convention Xi D X�i .

2. Preliminaries on the Hochschild and cyclic complexes

In this section remind the reader about the basic operations on the Hochschild and
cyclic complexes. The reason for putting this section first is that it also allows us to
introduce some notation. Readers vaguely familiar with the material may safely skip
to the next section.

3This is a special case Dolgushev’s result. Dolgushev does not restrict to the Calabi–Yau case.
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2.1. Notation. LetR be a commutative ring and assume thatB is anR-algebra. Let
C�.B/ and C�.B/ denote the usual relative Hochschild chain and cochain complexes
of B=R. Thus

C�.B/ D
M
n

HomR.†B˝n; B/

C�.B/ D
M
n

B ˝ .†B/˝n

where, here and below, all unadorned tensor products are over R. We also use

C�.B/ D †C�.B/

D

M
n

HomR.†B˝n; †B/:

We will also consider the normalized versions of these objects:

xC�.B/ D
M
n

HomR.†.B=R/˝n; B/;

xC�.B/ D
M
n

B ˝†.B=R/˝n;

and a similar definition for xC�.B/. It is well known that the obvious maps

xC�.B/ �! C�.B/ and C�.B/ �! xC�.B/

are quasi-isomorphisms [31, Thm. 8.3.8, Lem. 8.3.7].
If x 2 Cn.B/ then we write jxj D n � 1. Thus jxj refers to the cohomological

degree of x.

2.2. The Hochschild cochain complex. The standard algebraic structures on the
Hochschild cochain complex can all be deduced from its structure as a brace
algebra [11]. Recall that the braces are maps

C�.B/˝ � � � ˝ C�.B/ �! C�.B/W x ˝ x1 ˝ � � � ˝ xm 7! xfx1; : : : ; xmg

defined by

xfx1; : : : ; xmg.b1; : : : bn/

D

X
0�i1�����im�n

.�1/�x
�
b1; : : : bi1 ; x1.bi1C1; : : : bi1Cjx1jC1/; : : :

: : : ; bim ; xm.bimC1; : : : ; bimCjxmjC1/; : : : bn
�
;

where � D
Pm
1 jxkjik . The corresponding Gerstenhaber Lie bracket on C�.B/ is

Œx; y� D xfyg � .�1/jxjjyjyfxg:
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Let � 2 C1.B/ D Hom.†B ˝ †B;†B/ denote the “inverse” multiplication
�.b1; b2/ D �b1b2. Then Œ�; �� D 0 and hence

dx D Œ�; x� (2.1)

defines a differential of degree one on C�.B/.
The cupproduct on C�.B/ is defined by

x [ y D .�1/jxj�fx; yg:

This is an associative product of degree one on C�.B/, or equivalently an associative
product of degree zero on C�.B/. One has [11]
(1) .C�.B/; d; Œ ; �/ is a DG-Lie algebra;

(2) .C�.B/; d;[/ is a DG-algebra, commutative up to homotopy;

(3) More generally: (C�.B/; d; Œ ; �;[) is a so-called DG-“Gerstenhaber algebra” up
to homotopy.

2.3. The Hochschild chain complex. When combining the Hochschild cochain
complex with the Hochschild chain complex things becomes much more intricate [2,
24]. We will content ourselves by giving formulas for the basic operations and stating
some relations between them. We refer to [24] for more details.

The first basic operation is the contraction

ix.b0 ˝ � � � ˝ bn/ WD b0x.b1; : : : bd /˝ bdC1 ˝ � � � ˝ bn

for x 2 C�.B/ and b0 ˝ � � � ˝ bn 2 C�.B/. This is an action of C�.B/ on C�.B/
satisfying jixj D jxj C 1 and

ixiy D .�1/
.jxjC1/.jyjC1/iy[x : (2.2)

The contraction is often written as a capproduct: ix.�/ D x \ �.
The second basic operation is the Lie derivative

Lx.b0˝� � �˝bn/ WD

n�jxj�1X
iD0

.�1/jxjib0˝� � �˝bi ˝x.biC1; : : : ; biCjxjC1/˝� � �˝bn

C

nX
iDn�jxj

.�1/n.iC1/Cjxjx.biC1; : : : bn; b0; : : : ; bjxj�nCi /˝ � � � ˝ bi :

The Lie derivative defines a graded Lie action of C�.B/ on C�.B/. Explicitly:
jLxj D jxj and

ŒLx; Ly � D LŒx;y�: (2.3)
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The Hochschild differential on C�.B/ is defined as b D L�. From (2.1) and (2.3)
one obtains

Œb; Lx� D Ldx : (2.4)
Hence .C�.B/; b/ is a DG-Lie module over C�.B/. One also has compatibility with
the contraction:

Œb; ix�C idx D 0: (2.5)
The last basic operation we need is the Connes differential.

BWC�.B/ �! C�.B/

with formula

B.b0 ˝ � � � ˝ bn/ D
nX
iD0

.�1/ni1˝ bi ˝ � � � ˝ bn ˝ b0 ˝ � � � ˝ bi�1

C

nX
0

.�1/n.iC1/bi�1 ˝ 1˝ bi ˝ � � � ˝ bn ˝ b0 ˝ � � � ˝ bi�2:

It is well known that jBj D �1, bBC Bb D 0, B2 D 0.
Some of the following identies hold only for normalized chains/cochains. Note

that if x 2 xC�.B/ then ix; Lx are well-defined operations on xC�.B/.
Lemma 2.1. Assume x 2 xC�.B/. Then on C�.B/ we have

ŒB; Lx� D 0: (2.6)

The formula (2.6) does not hold for unnormalized cochains.

2.4. The negative cyclic complex. Let u be a variable of degree two and put

CC�� .B/ D xC�.B/JuK:

Equipped with the cyclic differential bC uB, this is the normalized negative cyclic
complex. In the sequel operations on NC�.B/ will be (tacitly) extended to CC�� .B/
by making them u-linear. This applies in particular to ix and Lx . Combining (2.4)
and (2.6) we obtain

ŒbC uB; Lx� D Ldx : (2.7)
The compatibility of ix with the cyclic differential is more subtle. In [24] (see
also [12]) Tamarkin and Tsygan define for x 2 xC�.B/ a graded endomorphism Sx
of xC�.B/ (depending linearly on x) such that jSxj D jxj � 1 and such that the
following identity holds

ŒbC uB; ix C uSx�C idx C uSdx D uLx (2.8)

on CC�� .B/. This identity will be important for us in the sequel. Note that it
implies (2.7).



Calabi–Yau deformations and negative cyclic homology 1261

The following is a special case of [24, Prop. 3.3.4].
Lemma 2.2. Let x; y 2 xC�.B/ be such that dx D dy D 0. Then ŒLx; iy C uSy � is
homotopic to .�1/jxj.iŒx;y� C uSŒx;y�/.

2.5. A comment on base change. If A is a k-algebra and R is a commutative k-
algebra then for B D A ˝k R it is clear that CR;�.B/ Š C�.A/ ˝k R (where
contrary to our usual conventions we have now made the base ring explicit in the
notation). Since the negative cyclic complex involves a product this is not true for
CC�R;�.B/. However it is true if R is finite dimensional. Similarly in that case we
have C�R.B/ Š C�.A/˝k R. In the sequel we will not mention these base change
isomorphisms explicitly.

2.6. Some comments on signs. In the previous sections the operations ix; Lx; Sx; b;B
of degree jxj C 1, jxj, jxj � 1, 1, �1 were defined as acting on xC�.B/. We define
corresponding operations on shifts †r xC�.B/ in the usual way:

ix.s
rb/ D .�1/r.jxjC1/sr ix.b/;

Lx.s
rb/ D .�1/rjxjsrLx.b/;

Sx.s
rb/ D .�1/r.jxj�1/srSx.b/;

b.srb/ D .�1/rsrb.b/;
B.srb/ D .�1/rsrb.B/;

where s is the degree change operator jsbj D jbj � 1.
The relations between ix; Lx; Sx; b;B stated in §2.3,§2.3 carry over to all shifts

†r xC�.B/ without any sign changes, since all terms in the identities (necessarily)
have the same degree.

3. Preliminaries on Calabi–Yau algebras

In this section we extend Ginzburg’s definition of Calabi–Yau algebras to the relative
case.

Let R be a commutative ring. For an R-algebra B we put Be D B ˝R B
ı. We

use without further comment the standard equivalences between the categories of left
Be-modules, right Be-modules and B-bimodules which are R-central.

A Be-module is called perfect if it has a finite resolution by finitely generated
projective Be-modules. If B is R-flat and B is a perfect Be-module then we say
that B is homologically smooth over R. The implicit flatness hypothesis ensures that
Be D B ˝R B

ı is the correct definition from a derived point of view. We could
have avoided this hypothesis by first replacing B by an R-flat DG-resolution but for
simplicity we have chosen not to do this.
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Definition 3.1 (Ginzburg [13]). An R-Calabi–Yau algebra of dimension d is a pair
.B; �/ where

(1) B is an R-algebra B which is homologically smooth over R;

(2) � is an isomorphism RHomBe .B;Be/ �! †�dB inD.Be/.

Remark 3.2. Note that the amount of freedom for � is quite limited. If .B; �/, .B; �0/
are Calabi–Yau then there exists z 2 Z.B/ such that �0 D z� (see [6]).

Recall that if M is a complex of Be-module then its Hochschild homology and
cohomology are respectively defined as

HHi .B;M/ D H�i .M ˝L B/;

HHi .B;M/ D H i
�
RHomBe .B;M/

�
:

As usual we write HHi .B/ D HHi .B;B/ and similarly HHi .B/ D HHi .B;B/. One
has

HHi .B/ D H�i
�
C�.B/

�
;

and if B is a projective R-module then

HHi .B/ D H i
�
C�.B/

�
:

The operations Œ ; �;[;\; L;B introduced in §2 descend to homology and make the
pair .HH�.B/;HH�.B// into a so-called calculus structure [24]. Up to suitable, and
for us irrelevant, signs [ is the Yoneda products on HH�.B/ D Ext�Be .B;B/ and \
is the action of HH�.B/ on HH�.B/ D H��.B ˝LBe B/ through its action on the
second factor (see e.g. [3, Prop. 11.1, 12.1]).

Lemma 3.3. Let B be a homologically smooth algebra. Then for M a perfect
Be-module there is a canonical isomorphism

HHi .B;M/ Š HomBe
�
†i RHomBe .M;Be/; B

�
(3.1)

inD.R/.

Proof. Since M is perfect we may replace it with a complex of finitely generated
projective Be-modules. In this way we reduce to M D Be which is an easy
verification.

Definition 3.4. Let B be a homologically smooth algebra R and � 2 HHd .B/. We
say that � is nondegenerate if its image under (3.1) is an isomorphism.

This allows us to redefine a d -Calabi–Yau algebra over R as a couple .B; �/
where B is a homologically smooth R-algebra and � is a non-degenerate element
of HHd .B/. Belowwewill massage this new definition further. Recall the following:
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Proposition 3.5 (“Poincare duality”). Assume that .B; �/ is a d -Calabi–Yau
R-algebra. Then for each i , the map

HHi .B/ �! HHd�i .B/W� 7! � \ � (3.2)

is an isomorphism.

Proof. The existence of the isomorphism was first stated in [30] without the explicit
formula (3.2). The formula (3.2) is folklore. For completeness we include a possible
proof.

The proof of Lemma 3.3 shows that there is a canonical isomorphism inD.R/

RHomBe
�
RHomBe .B;Be/;

#

B
�
Š B ˝LBe

#

B; (3.3)

which is compatible with the RHomBe .B;B/-actions on the marked copies of B .
By definition � 2 H�d .B ˝LBe B/ corresponds under (3.3) to an isomorphism

�CWRHomBe .B;Be/! †�dB . This yields an isomorphism

RHomBe .†�dB;
#

B/ �! RHomBe
�
RHomBe .B;Be/;

#

B
�
W � 7! � ı �C (3.4)

also compatible with themarked RHomBe .B;B/-actions. Composing (3.3) and (3.4)
gives us an isomorphism

�WRHomBe .†�dB;
#

B/ �! B ˝LBe
#

B;

which sends IdB to �.
According to the discussion preceding Lemma 3.3, the compatibility with

the RHomBe .B;B/-actions implies that � transforms [ into \ on the level of
cohomology. More precisely,

�.� [ �/ D ˙� \ �.�/:

The lemma now follows by taking � D IdB .

Corollary 3.6. Assume that .B; �/ is a d -Calabi–Yau R-algebra. Then

HHi .B/ D 0 for i 62 Œ0; d �;
HHi .B/ D 0 for i 62 Œ0; d �:

As before let CC�� .B/ D .C�.B/JuK; bCuB/ be the negative cyclic complex and
denote its corresponding homology by HC�� .B/.
Proposition 3.7. Let .B; �/ be a d -Calabi–Yau R-algebra. Then, HC�i .B/ D 0

for i > d and, furthermore, the map

� WCC�� .B/ �! C�.B/W
X

biu
i
7! b0

induces an isomorphism HC�d .B/ Š HHd .B/:
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Proof. We use a spectral sequence argument. We view CC�� .B/ as a double complex
with b pointing vertically upwards and uB pointing horizontally to the right. By
Corollary 3.6 we have HHi .B/ D 0 for i > d . Hence if we filter CC�� .B/ by column
degree then the E1 term of the resulting spectral sequence looks like

0 HHd�2.B/
uB // uHHd�1.B/

uB // u2HHd .B/

0 HHd�1.B/
uB // uHHd .B/ 0

0 HHd .B/ 0 0

0 0 0 0

From this the result follows.

Definition 3.8. LetB be a homologically smoothR-algebra. We say that an element
� 2 HC�d .B/ is non-degenerate if �.�/ is non-degenerate.

The leads to the following redefinition of a Ginzburg d -Calabi–Yau R-algebra,
which we use below.
Definition 3.9 (Restatement of Definition 3.1). ACalabi–Yau algebra of dimension d
over R is a couple .B; �/ where B is a homologically smooth R-algebra and � is a
non-degenerate element of HC�d .B/.

We have shown that this definition is equivalent to Ginzburg’s original definition.
In the more general setting of DG-algebras this is no longer the case. It is generally
believed that Definition 3.9 is the “correct” definition for a d -Calabi–Yau algebra in
the DG-case. This is the point of view of Kontsevich–Soibelman in [17] and also of
Keller [15].

4. Deformations of Calabi–Yau algebras

In this section we fix a d -Calabi–Yau k-algebra .A; �0/ as in Definition 3.9. We will
study the deformations of A as a Calabi–Yau algebra.

Let Nilp be the category of commutative, finite dimensional, local k-algebras
.R;m/ such that R=m D k. For .R;m/ 2 Nilp we define a groupoid DefA;�0.R/
as follows: the objects in DefA;�0.R/ are triples .B; s; �/ such that B is an R-flat
R-algebra, sWB ! A is an R-algebra map inducing an isomorphism B ˝R k ! A

and � is an element of HC�d .B/ such that s.�/ D �0.
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A morphism .B1; s1; �1/! .B2; s2; �2/ is a commutative diagram

B1
� //

s1   

B2

s2~~
A

such �2 D �.�1/. One sees that DefA;�0 becomes a pseudo-functor Nilp ! Gd in
the obvious way.

To be able to rightfully claim that DefA;�0 describes the Calabi–Yau deformations
of .A; �0/ we need the following elementary lemma.
Lemma 4.1. Assume that .B; s; �/ 2 DefA;�0.R/. Then .B; �/ is d -Calabi–Yau.

Proof. We have to show that B is a perfect Be-module and that � induces an
isomorphism �CWRHomBe .B;Be/! †�dB .

Since R is finite dimensional every flat R-module is R-projective. This applies
in particular to B and Be . Let

0! Pu ! � � � ! P0 ! A! 0

be a finite resolution of A by finitely generated projective Ae-modules. It is easy to
see that this resolution can be lifted step by step to a resolution

0! Qu ! � � � ! Q0 ! B ! 0;

where theQi are finitely generated projectiveBe-modules satisfyingQi˝R k Š Pi .
In particular B is perfect.

It also follows thatH D cone �C is perfect. It it easy to that �C˝L k Š �C0 , and
hence

.cone �C/˝L k Š cone.�C ˝L k/ Š cone �C0 D 0:
If now suffices to note that ifH is perfect andH ˝L k D 0 thenH D 0.

We now introduce a variant of the groupoid DefA;�0.R/ which is easier to
describe cohomologically. We remind the reader of the base change convention
exhibited in §2.5 which we will use throughout. As in §2.2 let ��0 2 C1.A/ be
the multiplication map on A and let O�0 be a lift of �0 to CC�d .A/. We define an
associated groupoid Def[

A; O�0
.R/ as follows. The objects are couples .�; �/ where

(1) � 2 C1.A/ ˝k R is such that �� defines a unital associative multiplication
on A˝k R;

(2) � mod m D �0;
(3) � 2 CC�d .A/˝k R;
(4) .L� C uB/.�/ D 0;
(5) � mod m D O�0.
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For (4), recall that L� C uB is the cyclic differential for the algebra .A˝k R;�/. A
morphism .�1; �1/! .�2; �2/ in Def[

A;�0; O�0
.R/ is a couple .�; �/ where

(1) � is a unital map of R-algebras �W .A˝k R;��1/ �! .A˝k R;��2/;
(2) � is the identity modulo m;
(3) � is an element of CC�dC1.A/˝k m;
(4) .L�2 C uB/.�/ D �.�1/ � �2.

The composition of morphisms

.�1; �1/
.�0;�0/
����! .�2; �2/

.�;�/
���! .�2; �2/

is defined by
.�; �/ ı .�0; � 0/ D .� ı �0; �.� 0/C �/: (4.1)

Below we will often use the notation N� for the cohomology class of a cocycle �.
Proposition 4.2. The morphism of groupoids

Ob
�
Def[A; O�0.R/

�
�! Ob

�
DefA;�0.R/

�
W .�; �/ 7!

�
.A˝k R;��/; “mod m”; N�

�
Mor

�
Def[A; O�0.R/

�
�! Mor

�
DefA;�0.R/

�
W .�; �/ 7! �

is essentially surjective on objects and surjective on morphisms.

Proof. We first prove essential surjectivity. Let .B; s;  / 2 DefA;�0.R/. Then,
since R is finite dimensional local and B is R-flat we have an isomorphism
B Š A˝k R as R-modules and it is easy to see that this isomorphism may be
chosen to make the following diagram commutative

B
� //

s
��

A˝k R

mod m
{{

A

We now transfer the multiplication on B to A ˝k R where it becomes an element
of �� 2 C1.A/˝k R which modulo m is equal to ��0. We do the same
with  2 HC�d .B/ and we choose an element � 2 CC�d .A/ ˝k R such that
.L� C uB/.�/ D 0, N� D �. /. Thus in DefA;�0.R/ we have

.B; s;  / Š
�
.A˝k R;��/;� mod m; N�

�
:

This proves essential surjectivity. Now we prove surjectivity on morphisms. Let
.�1; �1/, .�2; �2/ 2 Ob.Def[

A; O�0
.R// and let � be a unital algebra morphism

.A˝k R;��1/ �! .A˝k R;��2/

inducing the identity modulo m and satisfying �. N�1/ D N�2.
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It follows that �.�1/ � �2 is a boundary in the negative cyclic complex of
.A˝k R;��2/. In other words there exists � 2 CC�dC1.A/˝k R such that

�.�1/ � �2 D .L�2 C uB/.�/:

We have to show that we may choose � 2 CC�dC1.A/˝k m
Since � is the identity modulo m we have

�.�1/ � �2 mod m D �1 � �2 mod m
D O�0 � O�0

D 0:

It follows that �.�1/ � �2 2 CC�d .A/ ˝k m and hence d� mod m D 0. Since
HC�dC1.A/ D 0 by Proposition 3.7 we see that there exists 
 2 CC�dC2.A/ ˝k R
such that .L�2 C uB/.
/ Š � mod m. In other words

� 0 D � � .L�2 C uB/.
/ 2 CC�d .A/˝k m:

Then the couple .�; � 0/ is a pre-image for �.

For completeness we state the following.
Proposition 4.3. Let O�00 2 CC�0 .A/ be a different lift of �0. Then Def[

A; O�0
0
.R/ and

Def[
A; O�0

.R/ are isomorphic.
We could easily prove this here directly, however we will postpone the proof until

§6 where we reinterprete Def[
A; O�0

.R/ in terms of the Maurer–Cartan equation.

5. The Maurer–Cartan formalism

In this section we briefly recall the construction of the deformation functor associated
to a DG-Lie algebra.

Let h� be a DG-Lie algebra over k. The set

MC.h�/ def
D

n
y 2 h1

ˇ̌
dy C

1

2
Œy; y� D 0

o
is the set of solutions to theMaurer–Cartan equation in h�. It has a natural structure
of a groupoid which we now describe.

Assume that n is a nilpotent Lie algebra and let yU.n/ be the enveloping algebra
of n, completed at the augmentation ideal. Then the group exp.n/ is by definition the
set of group like elements in yU.n/. It is well known and easy to see that there is a
bijection

expW n �! exp.n/Wn 7! en

between the primitive and the group like elements in yU.n/.
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Now assume that h� is nilpotent. Then yU.h0/ acts on the graded Lie algebra h�

using the adjoint action and hence so does the gauge group G.h�/ def
D exp.h0/. This

action does not commute with the differential and in particular it does not preserve
MC.h�/. However the following modified gauge action does:

exp.x/ � y def
D eadx.y/ �

eadx � 1

ad x
.dx/

D eadx.y/ �

1X
nD0

1

.nC 1/Š
.ad x/n.dx/;

(5.1)

where x 2 h0, y 2 h1 and .ad x/.u/ D Œx; u�.
An elegant derivation of this action is given by Manetti [19, §V.4]. One first

formally adjoins an element ı of degree one to h� such that dx D Œı; x�, dı D 0 and
Œı; ı� D 0. Then (5.1) can be rewritten as:

exp.x/ � y D eadx.y C ı/ � ı: (5.2)

This action preserves MC.h�/ since for y 2 h1:

y 2 MC.h�/ ” Œy C ı; y C ı� D 0:

In the sequel we view MC.h�/ as a groupoid through the G.h�/-action.
If y 2 MC.h�/ then by definition h�y is the DG-Lie algebra which is h� as graded

Lie algebra but which has the deformed differential dy D d C Œy;��. Using (5.2)
one easily shows that for x 2 h0

eadx W h�y �! h�exp.x/�y (5.3)

is an isomorphism of DG-Lie algebras
Assume .R;m/ 2 Nilp. Given an arbitrary DG-Lie algebra g� over k, the

vector space g� ˝k m becomes a nilpotent DG-Lie algebra. We define MC.R/ as
MC.g� ˝k m/ equipped with the groupoid structure introduced above. In this way
we obtain a pseudo-functor MC WNilp �! Gd. This is the “deformation functor”
associated to g�.

6. The DG-Lie algebra D�.A; �/

Below .A; N�0/ is a d -Calabi–Yau k-algebra where �0 2 CC�d .A/ satisfies

.L�0 C uB/.�0/ D 0;

with ��0 2 C1.A/ being the multiplication on A. In this section we associate a
DG-Lie algebra D�.A; �0/ to A and prove that its deformation functor (see §5) is
isomorphic to the functor Def[A;�0 introduced in §4.
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If g� is a DG-Lie algebra and M � a g�-module then the direct sum complex
g� ˚M � becomes a DG-Lie algebra when endowed with the following bracket:�

.g;m/; .g0; m0/
�
WD
�
Œg; g0�; gm0 � .�1/jg

0jjmjg0m
�

The resulting DG-Lie algebra is called the semi-direct product of g� andM � and is
denoted by g� ËM �

By (2.3) and (2.7) (see also §2.6) we have a DG-Lie action

xC�.A/ �†�d�1CC�� .A/ �! †�d�1CC�� .A/W .x; �/ 7! Lx�

and we can form the corresponding semi-direct product

D�.A/] D xC�.A/ Ë†�d�1CC�� .A/:

The element x D .0; s�d�1�0/ 2 D�.A/] satisfies dx D 0 and Œx; x� D 0. So
it satisfies the Maurer–Cartan equation. Put D�.A; �0/ D D�.A/]x , with notation as
in §5.

Theorem 6.1. Let .R;m/ 2 Nilp. There is an isomorphism of groupoids

ˆ.R/WMC.D�.A; �0/˝k m/ �! Def[A;�0.R/;

which on objects is given by

.�; s�d�1�/ 7! .�0 C �; �0 C �/: (6.1)

Corollary 6.2. There is a natural transformation of pseudo-functors

ˆWMC.D�.A; �0// �! Def[A;�0 ;

which, when evaluated on R 2 Nilp, is an isomorphism of groupoids.

We shall prove Theorem 6.1 by combining some lemmas. Throughout we fix
.R;m/ 2 Nilp. The following lemma says that ˆ.R/ behaves correctly on objects.

Lemma 6.3. Let � 2 xC�1.A/ ˝k m and � 2 CC�d .A/ ˝k m. The following are
equivalent:

(1) .�; s�d�1�/ 2 MC.D�.A; �0/˝k m/;

(2) .�0 C �; �0 C �/ 2 Def[A;�0.R/.
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Proof. Wewill work out what it means for .�; s�d�1�/ 2 D1.A; �0/˝km to satisfy
the Maurer–Cartan equation. To simplify the notations we write �00 D s�d�1�0,
�0 D s�d�1�. We compute

1

2

�
.�; �0/; .�; �0/

�
C dD.�; �

0/

D
1

2

�
Œ�; ��; 2L�.�

0/
�
C
�
Œ�0; ��; .L�0 C uB/.�0/

�
C
�
.0; �00/; .�; �

0/
�

D
1

2

�
Œ�; ��; 2L�.�

0/
�
C
�
Œ�0; ��; .L�0 C uB/.�0/

�
C
�
0;L�.�

0
0/
�

D

�1
2
Œ�; ��C Œ�0; ��; L�.�

0/C .L�0 C uB/.�0/C L�.�00/
�

D
�
Œ�0 C �;�0 C ��; .L�C�0 C uB/.�0 C �00/

�
;

where in the last line we have used Œ�0; �0� D 0, .L�0 C uB/.�00/ D 0. Thus if
.�0 C �; �0 C �/ 2 Def[A;�0.R/ then .�; s

�d�1�/ 2 MC.D�.A; �0/ ˝k m/. To
prove the converse the only thing we still need to check is that �.�0 C �/ defines a
unitalmultiplication on A˝k R. This follows immediately from the fact that ��0 is
unital and � is normalized.

The next two lemmas will help us describing the gauge group action of
G.D�.A; �//.

Lemma 6.4. Let n be a nilpotent Lie algebra over k and letM a representation of n.
Then there is an isomorphism of groups

exp.n/ ËM �! exp.n ËM/W .exp.n/;m/ 7! exp.n; 0/ exp.0;m/:

Proof. This is a straightforward verification from the definition of “exp” in §5 using
the fact that

U.h ËM/ Š U.h/ Ë Sym.M/:

Lemma 6.5. Let g� be a nilpotent DG-Lie algebra over k and M � a nilpotent
DG-module. Consider the DG-algebra h� which is g� Ë M � as graded Lie
algebras and which is equipped with a deformed differential .dg; dM / C d0 where
d0W g

� �!M is of the form g 7! .�1/jgjgm0 for suitable m0 2 M 1. Then for
g 2 g0, m 2M 0, and .g1; m1/ 2 h1 we have

exp.g; 0/ � .g1; m1/ D
�
exp.g/ � g1; eg.m1 �m0/Cm0

�
;

exp.0;m/ � .g1; m1/ D
�
g1; m1 � .g1 C dM /m

�
:
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Proof. We compute

exp.g; 0/ � .g1; m1/ D ead.g;0/.g1; m1/ �
X
n

1

.nC 1/Š
adn.g; 0/

�
dh.g; 0/

�
D .eadgg1; e

gm1/ �
X
n

1

.nC 1/Š
adn.g; 0/.dgg; d0g/

D .eadgg1; e
gm1/ �

X
n

1

.nC 1/Š

�
adn.g/.dgg/; gnC1m0

�
D
�
eg � g1; e

g.m1 �m0/Cm0
�
:

Similarly:

exp.0;m/ � .g1; m1/ D ead.0;m/.g1; m1/ �
X 1

.nC 1/Š
adn.0;m/

�
dh.0;m/

�
D .g1; m1/ � .0; g1m/ � .0; dMm/

D
�
g1; m1 � .g1 C dM /m

�
:

We will also use the following variant of (5.2)
Lemma6.6. Leth� be a nilpotentDG-Lie algebrawith inner differentiald D Œ�0;��.
Then for x 2 h0, y 2 h1 one has

exp.x/ � y D eadx.y C �0/ � �0:

Proof. Direct evaluation of the righthand side yields the formula (5.1) for exp.x/ � y.

Proof of Theorem 6.1. We start by verifying that (6.1) yields indeed a map of
groupoids. To this end we have to define ˆ.R/ on maps. Note that by
Lemma 6.4 each element of exp.D0.A; �0; �0/ ˝ m/ can be uniquely written as
exp.0; s�d�1�/ exp.f; 0/ for

f 2 xC0.A/˝k m D Hom.A=k;A/˝k m � Hom.A;A/˝k m
and � 2 CC�dC1.A/˝k m:

We put � D ef . Then � 2 Hom.A;A/˝k R is such that � mod m D IdA.
Assume that

exp.0; s�d�1�/ � exp.f; 0/ � .�1; s�d�1�1/ D .�2; s�d�1�2/: (6.2)

We define ˆ.R/ on maps as follows

ˆ.R/
�
exp.0; s�d�1�/ exp.f; 0/

�
D .ef ; .�1/d �/: (6.3)
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For this to be well defined we should have a morphism

.�; .�1/d �/W .�0 C �1; �0 C �1/ �! .�0 C �2; �0 C �2/

in Def[A;�0.R/. In other words:
(a) �W .A˝kR;�.�0C�1// �! .A˝kR;�.�0C�2// is anR-algebra morphism;
(b) �.�0 C �1/ D �0 C �2 C .�1/d .L�0C�2 C uB/.�/.
Put �0i D s�d�1�i for i D 0; 1; 2, � 0 D s�d�1� . We invoke Lemma 6.5 with
m0 D ��

0
0. Then (6.2) yields

.�2; �
0
2/ D

�
exp.f / � �1; ef .�00 C �

0
1/ � �

0
0 � Lexp.f /��1.�

0/ � .L�0 C uB/.� 0/
�
:

(6.4)
We may compute exp.f /��1 inside unnormalized cochains C�.A/ and then we may
invoke Lemma 6.6. We find

exp.f / � �1 D eadf .�0 C �1/ � �0:

Furthermore a direct computation shows that

eadf .�0 C �1/ D e
f
ı .�0 C �1/ ı .e

�f ; e�f /

D � ı .�0 C �1/ ı .�
�1; ��1/:

Hence (6.4) translates into

�0 C �2 D � ı .�0 C �1/ ı .�
�1; ��1/

�00 C �
0
2 D �.�

0
0 C �

0
1/ � .L�0C�2 C uB/.� 0/:

The first of these equations yields (a). The second yields (b) taking into account that
L�0C�2 C uB has degree one, which induces a sign change.

It remains to show that our assignment respects compositions. By Lemma 6.4
we have for f; g; h 2 xC0.A/ ˝k m such that exp.h/ D exp.g/ exp.f /; �; � 2
CC��d�1.A/˝k m:

ˆ.R/
�
exp.0; s�d�1�/ exp.g; 0/ ı exp.0; s�d�1�/ exp.f; 0/

�
Dˆ.R/

�
exp.0; s�d�1�/ exp.0; s�d�1eg�/ exp.g; 0/ exp.f; 0/

�
Dˆ.R/

�
exp.0; s�d�1.� C eg�// exp.h; 0/

�
D
�
eh; .�1/d .� C eg�/

�
D
�
egef ; .�1/d .� C eg�/

�
and

ˆ.R/
�
exp.0; s�d�1�/ exp.g; 0/

�
ıˆ.R/

�
exp.0; s�d�1�/ exp.f; 0/

�
D
�
eg ; .�1/d�

��
ef ; .�1/d �

�
D
�
egef ; .�1/d .� C eg�/

�
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by (4.1). We conclude that ˆ.R/ is indeed a map of groupoids. By Lemma 6.3
it is bijective on objects, and running the above computation backwards, starting
from (6.3), we see that it also bijective on maps. Thus ˆ.R/ is an isomorphism of
groupoids.

The following result implies Propositon 4.3.
Proposition 6.7. Assume that �0; �00 2 CC�d .A/ induce the same element inHC

�
d .A/.

Then D�.A; �0/ Š D�.A; �00/.

Proof. From (5.3) one sees that it is sufficient to show that .0; s�s�1�0/; .0; s�d�1�00/
are in the same G.D�.A/]/ orbit. Pick � 2 CC�dC1.A/ such that

�00 D �0 C .�1/
d .L�0 C uB/�:

We compute using (5.1)

exp.0; s�d�1�/ � .0; s�d�1�0/ D .0; s�d�1�0/ � .0; .L�0 C uB/.s�d�1�//

D .0; s�d�1�00/:

7. Relation with Hochschild cohomology

Let .A; N�0/ be a d -Calabi–Yau k-algebra and let ��0 be the multiplication of A. Let
.R;m/ 2 Nilp. We may define pseudo-functors DefA, Def[AWNilp �! Gd in the
same way as DefA;�0 , Def

[
A;�0

, ignoring �0. The induced morphism

Def[A.R/ �! DefA.R/

is essentially surjective on objects and surjective on morphisms. Furthermore there
is an isomorphism of groupoids

ˆ.R/WMC.xC�.A/˝k m/ �! Def[A.R/W� 7! �0 C �:

The obvious morphism of DG-Lie algebras

�WD�.A; �0/ �! xC
�.A/W .�; �/ 7! �

makes the following diagram commutative:

MC.D�.A; �0//

ˆ

��

� //MC.xC�.A//

ˆ

��
DefA;� forget �

// DefA
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8. Homology of D�.A; �/

Let .A; N�0/ be a d -Calabi–Yau algebra as before with multiplication ��0. In this
section we prove that the homology of D�.A; �0/ is isomorphic to HC�

�+
¯
d�1.A/.

Furthermorewe show that the inducedLie bracket onHC�
�+
¯
d�1.A/ is givenMenichi’s

string topology bracket [20].
In our statements and computations we will use the following conventions:

� Taking homology classes is indicated by overlining.

� Depending on context Š will mean either “up to homotopy” (when discussing
maps) or “up to addition of a coboundary” (when discussing elements).

Theorem 8.1. The map

‰WD�.A; �0/ �! †�dC1CC�� .A/W .�; s
�d�1�/

7! .�1/j�j�1.i� C uS�/.s
�dC1�0/C us

�dC1�

is a quasi-isomorphism of complexes.

Proof. To simplify the notation we put

I� D i� C uS�:

We first check that ‰ does indeed commute with differentials. Write �00 D s�d�1�0,
�0 D s�d�1�. Then

‰.�; �0/ D s2
�
.�1/j�j�1I��

0
0 C u�

0
�
; (8.1)

and hence

.d ı‰/.�; �0/

D .bC uB/s2
�
.�1/j�j�1I��

0
0 C u�

0
�

D s2
�
.�1/j�j�1.bC uB/I��00 C u.bC uB/�0

�
D s2

�
.�1/j�j�1ŒbC uB; I��.�00/C u.bC uB/�0

�
.since .bC uB/�00 D 0)

D s2
�
.�1/j�j�1.uL� � Id�/�

0
0 C u.bC uB/�0

�
.by (2.8)/

D s2
�
.�1/j�jId��

0
0 C u..bC uB/�0 � .�1/j�jL��00/

�
D ‰

�
d�; .bC uB/�0 � .�1/j�jL��00

�
.by (8.1)/

D .‰ ı d/.�; �0/:
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To see that ‰ is indeed a quasi-isomorphism, consider the following commutative
diagram

0 // †�d�1CC�� .A/ //

‰
��

D�.A; �0/ //

��
‰
��

xC�.A/ //

‰
��

0

0 // u†�dC1CC�� .A/ // †�dC1CC�� .A/ // †�dC1xC�.A/ // 0

The map on the left is multiplication by u which is an isomorphism. The map ‰ is
given on cohomology by

� 7! ˙I��0 mod u D ˙i��.�0/;

where � is as in Proposition 3.7. Hence ‰ is an isomorphism by Proposition 3.5.
From the five lemma we conclude that the middle arrow is an isomorphism on
cohomology as well.

Wenowdescribe theLie bracket onHC�� .A/ induced by the quasi-isomorphism‰.
As already used in the above proof the map

� \ �. N�0/WHHi .A/ �! HHd�i .A/

is invertible by Proposition 3.5. Let us denote its inverse by j . Using j , one can
transport the cup product on HH�.A/ to a product on HH�.A/

� W HHi .A/ � HHj .A/ �! HHiCj�d .A/

with explicit formula
a � b D

�
j.a/ [ j.b/

�
\ �. N�0/

or in a form more suitable for us below

i�1�. N�0/ � i�2�. N�0/ D i�1[�2�. N�0/: (8.2)

Theorem 8.2. The Lie bracket induced on

H �
�
†�dC1CC�� .A/

�
D HC�Cd�1.A/

by the quasi-isomorphism ‰ is given by

Œ�;��WHC�n .A/ � HC�m.A/ �! HC�nCm�dC1.A/W .�1; �2/

7! .�1/j�1jCdB
�
�.�1/ � �.�2/

�
;

where B is given by

BWHHq.A/ �! HC�qC1.A/W N� 7! B�:
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We first need the following technical lemma.
Lemma 8.3. Let � 2 xC�.A/ and � 2 CC�� .A/ be cocycles. Then L�� and Bi��.�/
are both cocycles in CC�� .A/ and Bi��.�/ D L�� in HC�� .A/.

Proof. L�� is a cocycle by (2.7). Bi��.�/ is a cocycle since �.�/ is a cocycle
in xC�.A/ and

.bC uB/.Bi��.�// D bBi��.�/ D �Bbi��.�/ D 0;

where the last equality follows from (2.5).
For the second claim, we first multiply by u:

u
�
L�� � Bi��.�/

�
D ŒbC uB; I��� � uBi��.�/ .by (2.8)/
D .bC uB/I�� � uBi��.�/ .since .bC uB/� D 0/
D .bC uB/

�
I�� � i��.�/

�
.since bi��.�/ D 0/:

Now, �.I��� i�.�.�// D i��.�/� i��.�/ D 0, which means that I��� i��.�/
is divisible by u. Thus it follows that

L�� � Bi��.�/ D .bC uB/
�
u�1.I�� � i��.�//

�
;

hence the claim.

Proof of Theorem 8.2. Let .�1; s�d�1�1/ and .�2; s�d�1�2/ be two cocycles in
D�.A; �0/. We must prove for �0i D s

�d�1�i

sd�1‰
��
.�1; �

0
1/; .�2; �

0
2/
��
D
�
sd�1‰.�1; �

0
1/; s

d�1‰.�2; �
0
2/
�
: (8.3)

We will first compute the lefthand side of (8.3). Writing out the differential in
D�.A; �00/ explicitly, the fact that .�1; �01/, .�2; �02/ are cocycles implies

d�1 D d�2 D 0;

.bC uB/�01 � .�1/
j�1jL�1�

0
0 D .bC uB/�02 � .�1/

j�2jL�2�
0
0 D 0;

(8.4)

where �00 D s�d�1�00. We compute

x
def
D sd�1‰

��
.�1; �

0
1/; .�2�

0
2/
��

D sd�1‰
�
Œ�1; �2�; L�1�

0
2 � .�1/

j�1jj�
0
2
jL�2�

0
1

�
D sdC1

�
.�1/j�1jCj�2j�1IŒ�1;�2��

0
0 C u.L�1�

0
2 � .�1/

j�1jj�2jL�2�
0
1/
�
;

(8.5)

where we have used (8.1) and the fact that j�02j D j�2j.
We now consider the boundary element .bC uB/I�1�02. By (2.8), we have

.bC uB/I�1�
0
2 � .�1/

j�1jC1I�1.bC uB/�02 C Id�1�
0
2 D uL�1�

0
2:
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Taking into account (8.4) this becomes

.bC uB/I�1�
0
2 D .�1/

j�1j�1I�1.bC uB/�02 C uL�1�
0
2

D .�1/j�1j�1Cj�2jI�1L�2�
0
0 C uL�1�

0
2

and similarly

.bC uB/I�2�
0
1 D .�1/

j�2j�1Cj�1jI�2L�1�
0
0 C uL�2�

0
1:

We now subtract both boundaries with appropriate sign from (8.5) to obtain the
following homologous cocycle

x Š .�1/j�1jCj�2j�1sdC1
�
IŒ�1;�2��

0
0 � I�1L�2�

0
0 C .�1/

j�1jj�2jI�2L�1�
0
0

�
D .�1/j�1jCj�2j�1sdC1

�
IŒ�1;�2� � I�1L�2 C .�1/

j�1jj�2jI�2L�1
�
�00:

(8.6)

By Lemma 2.2 and (8.4):

ŒL�1 ; I�2 � � .�1/
j�1jIŒ�1;�2� Š 0:

Thus

IŒ�1;�2� Š .�1/
j�1j

�
L�1I�2 � .�1/

jL�1 jjI�2 jI�2L�1
�

D .�1/j�1j
�
L�1I�2 � .�1/

j�1j.j�2jC1/I�2L�1
�

D .�1/j�1jL�1I�2 � .�1/
j�1jj�2jI�2L�1 :

Substituting this in (8.6) we obtain

x Š .�1/j�1jCj�2j�1sdC1
�
.�1/j�1jL�1I�2�

0
0 � I�1L�2�

0
0

�
: (8.7)

Next we observe, using (2.8)�
bC uB; I�1I�2 � .�1/

.j�1jC1/.j�2jC1/I�2[�1
�

D ŒbC uB; I�1 �I�2 C .�1/
j�1jC1I�1 ŒbC uB; I�2 �

� .�1/.j�1jC1/.j�2jC1/ŒbC uB; I�2[�1 �

D u
�
L�1I�2 C .�1/

j�1jC1I�1L�2 � .�1/
.j�1jC1/.j�2jC1/L�2[�1

�
;

(8.8)
and also using (2.2):

I�1I�2 � .�1/
.j�1jC1/.j�2jC1/I�2[�1 mod u D i�1 i�2 � .�1/

.j�1jC1/.j�2jC1/i�2[�1

D 0:

In other words I�1I�2 � .�1/.j�1jC1/.j�2jC1/I�2[�1 is divisible by u and we obtain
from (8.8)

L�1I�2 C .�1/
j�1jC1I�1L�2 Š .�1/

.j�1jC1/.j�2jC1/L�2[�1 :
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Substituting this back in (8.7) we find

x Š .�1/j�1j.j�2jC1/sdC1L�2[�1�
0
0

D .�1/j�1j.j�2jC1/sdC1Bi�2[�1�.�
0
0/ .by Lemma 8.3/

Š .�1/j�2jC1sdC1Bi�1[�2�.�
0
0/ .by §2.2/

Š .�1/j�2jC1.�1/.j�1jCj�2jC1/.dC1/Bi�1[�2�.�0/;

and hence by (8.2)

Nx D .�1/j�2jC1.�1/.j�1jCj�2jC1/.dC1/B
�
i�1�. N�0/ � i�2�. N�0/

�
:

To compute the righthand side of (8.3) we note

�
�
sd�1‰.�i ; �

0
i /
�
D �

�
sdC1..�1/j�i j�1I�i�

0
0 C u�

0
i /
�

.by (8.1)/

D .�1/j�i j�1.�1/.j�i jC1/.dC1/i�i�.�0/;

so that�
sd�1‰.�1; �

0
1/; s

d�1‰.�2; �
0
2/
�

D .�1/j�1jCdB
�
sd�1‰.�1; �

0
1/ � s

d�1‰.�1; �
0
1/
�

D .�1/j�1jCdCj�1jCj�2j.�1/.j�1jCj�2j/.dC1/B
�
i�1�.�0/ � i�2�.�0/

�
D .�1/j�2jC1.�1/.j�1jCj�2jC1/.dC1/B

�
i�1�. N�0/ � i�2�. N�0/

�
;

finishing the proof.

9. The commutative case

In this section we will use formality results from [7,16,23,28,32] so we will assume
that the ground field k contains R. It is likely that this condition can be removed by
using the methods from [9,10] but we have not checked it.

Let A D O.X/ where X is a smooth affine d -dimensional Calabi–Yau variety
over k. Let T poly;�.A/ be the Lie algebra of poly-vector fields on X . We assume that
T poly;�.A/ is shifted in such a way that the Lie bracket has degree zero. Similarly
let ��.A/ be the differential forms on X (not shifted).

We fix a volume form � 2 �d .A/. The Hochschild–Kostant–Rosenberg map
furnishes an isomorphism HHd .A/ Š �d .A/. So we may consider � as an element
in HHd .A/ and hence by Proposition 3.7 as a cycle (still denoted by �) in CC�d .A/.
It is well known and easy to see that .A; �/ is a Calabi–Yau algebra in the sense of
Ginzburg. Let

divWT poly;�.A/ �! T poly;��1.A/

be the divergence operator corresponding to � (see §9.4 below). The divergence is a
differential which acts as a derivation with respect to the Lie bracket on T poly;�.A/.
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In this section we will prove the following result.

Theorem 9.1. There exists an isomorphism�
T poly;�.A/JuK;�u div

�
Š D�.A; �/

in the homotopy category of DG-Lie algebras which fits in a diagram like (1.3).

Recall that the homotopy category of DG-Lie algebras is the category of DG-Lie
algebras with quasi-isomorphisms formally inverted.

9.1. Semi-direct products for L1-algebras. We remind the reader of a few basic
definition regarding L1-algebras and modules. Let h� be a graded k-vector space.
Recall that an L1-structure on h� is a square zero, degree one coderivationQ on the
symmetric coalgebra Sc.†h�/. Such an L1-structure is determined by its Taylor
coefficients @nQ which are maps Sn.†h�/ �! †h�. Here and in related situations
below we always assume that zeroth order Taylor coefficient are zero.

A DG-Lie algebra can be made into an L1-algebra by putting

@1Q.sg/ D �sdg; @2Q.sg; sh/ D .�1/jgjsŒg; h�; @nQ D 0 for n � 3:

A morphism of L1-algebras  W .g�;Q/ ! .h�;Q/ is a coalgebra morphism
 WSc.†g�/ �! Sc.†h�/ commuting with Q. It is also determined by its Taylor
coefficients @n WSn.†g�/ �! †h�.

If V � is a graded k-vector space then an L1-h�-module structure on V � is a
square zero, degree one differential RWSc.†h�/˝ V � ! Sc.†h�/˝ V � satisfying

.Q˝ IdSch˝ IdV C IdSch˝R/ ı .�˝ IdV / D .�˝ IdV / ıR

as maps from Sc.†h�/ ˝ V � to Sc.†h�/ ˝ Sc.†h�/ ˝ V � An L1-h�-module
structureR on V � is entirely determined by themaps @nC1RWSn.†h�/˝V � �! V �.
If h� is a DG-Lie algebra and V � is a DG-module over it then V � can be made into
an L1-module over h by putting

@1R.v/ D dv; @2R.sg; v/ D g � v; @nR D 0 for n � 3:

If V � is an L1-h�-module then so are †mV � for all m using the obvious sign
convention

@nC1R.sg1; : : : ; sgn; s
mv/ D .�1/m.nCjg1jC���Cjgnj/@nC1R.sg1; : : : ; sgn; v/:

We may combine the L1-structures on h� and†V � to make the direct sum h�˚V �

into an L1-algebra. We will denote the resulting L1-algebra by h� Ë V � and call
it the semi-direct product of h�. This is an obvious generalization of the semi-direct
product of a DG-Lie algebra with a DG-module which was used in §6.



1280 L. de Thanhoffer de Völcsey and M. Van den Bergh

Assume that .V �; R/, .W �; R/ areL1-h�-modules. AnL1morphism�WV ��!W �
is a comodule map �WSc.†g/˝ V � �! Sc.†g/˝W �. commuting with R. It is
determined by its Taylor coefficients @n�WSn.†h�/˝ V � �! W �.

Given in addition an L1-morphism  W g� �! h� the pullback V � of V � is
defined as follows:

@nC1R .sg1; : : : ; sgn; v/

D

X
t;1�m1<���<mt�1<n

˙@tC1R
�
@m1 .sgi1 ; : : : ; sgim1 /; @

m2�m1 .sgim1C1 ; : : : ; sgim2 /; : : :

: : : ; @n�mt�1 .sgimt�1C1 ; : : : ; sgn/; v
�
;

where for all j : imjC1 < � � � < imjC1 and the sign is the Koszul sign of the corre-
sponding shuffle of the .sgi /i . By construction we have a canonical L1-morphism

 V W g
� Ë V � �! h� Ë V �;

which restricted to Sn.†g/ coincides with @n .

9.2. Twisting. Assume that W g� �! h� is aL1-morphism betweenL1-algebras
equipped with some type of topology and let ! 2 g1 be a Maurer–Cartan element
in g1, i.e. a solution of the L1-Maurer–Cartan equationX

i�1

1

iŠ
.@iQ/.! � � �!„ƒ‚…

i

/ D 0:

One has to assume that one is in a situation where all occurring series are convergent
and standard series manipulations are allowed. In our application below the series
are in fact finite.

DefineQ! ,  ! and !0 by [33]

.@iQ!/.
/ D
X
j�0

1

j Š
.@iCjQ/.! � � �!„ƒ‚…

j


/ (for i > 0) (9.1)

.@i !/.
/ D
X
j�0

1

j Š
.@iCj /.! � � �!„ƒ‚…

j


/ (for i > 0) (9.2)

!0 D
X
j�1

1

j Š
.@j /.! � � �!„ƒ‚…

j

/ (9.3)

for 
 2 S i .†g�/. Then e.g. by [33] !0 is a solution of the Maurer–Cartan equation
on h� and furthermore g�, h�, when equipped withQ! ,Q!0 are again L1-algebras.
Let us denote these by g�! and h�!0 . Finally  ! is an L1 map g�! �! h�!0 .
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9.3. Applying formality to D.A; �/. By [4, 16, 33] there is an L1-quasi-iso-
morphism

UWT poly;�.A/! xC�.A/

such that @1U is the standard Hochschild–Kostant–Rosenberg quasi-isomorphism.
View .CC�� .A/; b C uB/ as an L1-module over T poly;�.A/ via U as in §9.1.

We also view .��.A/JuK; ud/ as a DG-Lie module over T poly;�.A/ via the Lie
derivative. Then by [7, 23, 28, 32] there is an L1-quasi-morphism of L1-modules
over T poly;�.A/

SW
�
CC�� .A/; bC uB

�
�!

�
��.A/JuK; ud

�
;

where @1S is again the HKR quasi-isomorphism. Thus we get a roof of L1-quasi-
morphisms of graded DG-Lie algebras

T poly;�.A/ Ë†�d�1CC�� .A/
S

ss

U

**
T poly;�.A/ Ë†�d�1��.A/JuK xC�.A/ Ë†�d�1CC�� .A/

(9.4)
We obtain a new roof by twisting with .0; �0/ where �0 D s�d�1�.�

T poly;�.A/ Ë†�d�1CC�� .A/
�
.0;�0/

S.0;�0/

tt

U.0;�0/

**
T�.A; �/ D�.A; �/

(9.5)

where
T�.A; �/ D

�
T poly;�.A/ Ë†�d�1��.A/JuK

�
.0;�0/

:

The complexes here are are 2-step filtered. The arrows are quasi-isomorphisms since
if we take the associated graded complexes for the 2-step filtrations we find the same
arrows as in (9.4).

9.4. Divergence etc. . . . The divergence operator is defined by

divWT �;poly.A/ �! T ��1;poly.A/

via the following identity
d.
 \ �/ D div 
 \ �:

We conclude immediately
div2 D 0

and furthermore the following is true [21]:

.�1/j
1jŒ
1; 
2� D div.
1
2/ � div.
1/
2 � .�1/j
1jC1
1 div 
2:

So .T poly;�.A/;� div;[/ is a BV-algebra (see App. A).
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Proposition 9.2. There is an L1-isomorphism of DG-Lie algebras

ıW
�
T poly;�.A/JuK;�u div

�
�! T�.A/:

Proof. According to Proposition A.4 there exists an L1-isomorphism�
T poly;�.A/JuK;�u div

�
�!

�
T poly;�.A/ Ë a;�u div

�
;

where a is the abelian graded Lie algebra on the vector space uT poly;�.A/JuK. The
action of T poly;�.A/ on a is given by


 ? a D Œ
; a�C .�1/j
 j div 
 [ a:

To finish the proof it is sufficient to show that the following map

ı0W
�
T poly;�.A/ Ë a;�u div

�
�! T�.A; �/

D
�
T poly;�.A/ Ë†�d�1��.A/JuK

�
.0;�0/
W .
; a/ 7! .
; .�1/jaju�1a \ �0/

is an isomorphism of DG-Lie algebras. First we show that

ı0W a �! †�d�1��.A/JuKW a 7! .�1/jaju�1.a \ �0/

is compatible with the action of T poly;�.A/. We compute for 
 2 T poly;�.A/ and
a 2 a.

ı0.
 ? a/ D ı0
�
Œ
; a�C .�1/j
 j div 
 [ a

�
D .�1/j
 jCjaju�1

�
Œ
; a�C .�1/j
 j div 
 [ a

�
\ �0

D .�1/j
 jCjaju�1
�
.�1/j
 j div.
 [ a/ � .�1/j
 j div.
/ [ a
C 
 [ div.a/C .�1/j
 j div.
/ [ a

�
\ �0

D .�1/j
 jCjaju�1
�
.�1/j
 j div.
 [ a/C 
 [ div a

�
\ �0

D .�1/j
 jCjaju�1
�
.�1/j
 jd.
 \ .a \ �0//C 
 \ d.a \ �0/

�
D L
 .ı

0.a//:

Now we check compatibility with the differential of ı0 on an element a 2 a.

ı0.�u div a/ D �.�1/jajC1 div a \ �0

D .�1/jajd.a \ �0/

D d.ı0.a//:

Finally we check compatibility with the differential of ı0 on 
 2 T poly;�.A/.

ı0.�u div 
/ D �.�1/j
 jC1 div 
 \ �0

D .�1/j
 jd.
 \ �0/

D .�1/j
 jLa�
0

D
�
.0; �0/; .
; 0/

�
:
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Proof of Theorem 9.1. It suffices to combine diagram (9.5) with Proposition 9.2,
taking into account that an L1-quasi-isomorphism yields an isomorphism in the
homotopy category of DG-Lie algebras via the bar cobar construction.

10. Obstructions

Let g� be a DG-Lie algebra and let .S; n/ ! .R;m/ be a surjective morphism
in Nilp with one-dimensional kernel ks � n. Let x 2 g1 ˝ m be a solution to the
Maurer–Cartan equation. Lift x to an arbitrary element Ox of g1˝n and let p. Ox/ 2 g2

be such that p. Ox/s D d Ox C 1
2
Œ Ox; Ox�. Then clearly dp. Ox/ D 0 and furthermore the

cohomology class
o.x/

def
D p. Ox/ 2 H 1.g�/

does not depend on the chosen lift Ox of x. It is easy to see that o.x/ D 0 if and
only if x can be lifted to an element of MC.g�˝ n/. Consequently o.x/ is called the
obstruction class of x.

The obstruction spaceO.g�/ is the linear span in g2 of all o.x/ for all morphisms
.S; n/! .R;m/ with one-dimensional kernel and all x 2 MC.g� ˝m/ as above.

Clearly o.x/ and hence O.g�/ is functorial under DG-Lie algebra morphisms. It
is well known and easy to see that this functoriality extends to L1-morphisms.

Recall that the periodic cyclic complex CCper
� .A/ of a k-algebra A is obtained by

inverting u in CC�� .A/. Its homology will be denoted by HCper
� .A/. The following is

the main result of this section.

Theorem 10.1. Let .A; N�/ be a d -Calabi–Yau algebra. Then the composition

O.D�.A; �// ,! H 2.D�.A; �//
Thm 8.1
Š HC�d�3.A/! HCper

d�3
.A/

is zero.

The proof depends on the following beautiful result by Tsygan and Daletskii
[27, Thm. 1] (see also [5]).

Theorem 10.2. The Lie action of C�.A/ on CC�� .A/ can be extended to a u-linear
L1-action of the DG-Lie algebra .C�.A/Œu; ��; d C u@=@�/, with j�j D 1, �2 D 0

and such that

@1R.
/ D d


@2R.s�; 
/ D L�


@2R.s.��/; 
/ D I�


for � 2 C�.A/, 
 2 CC�� .A/.
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The statement about @2R.s.��/; 
/ does not occur in [28, Thm. 1] but it follows
easily from the proof.

In the rest of this section .A; N�/ is a d -Calabi–Yau algebra.
Lemma 10.3. There is a commutative diagram of complexes

.C�.A/ Ë†�d�1 CC�� .A//.0;�0/ //

‰ **

.C�.A/Œu; �� Ë†�d�1 CC�� .A//.0;�0/

‰0tt
†�dC1 CC�� .A//

(10.1)
where
� ‰ was introduced in Theorem 8.1;
� � D s�d�1�0;
� the horizontal map is a twist (see §9.2) of the map obtained from the obvious
inclusion of DG-Lie algebras

.C�.A/; d/ ,! .C�.A/Œu; ��; d C @=@�/;

� ‰0 restricted to C�.A/Œu; �� is u-linear and satisfies

‰0.�/ D .�1/j� jC1I��
0

‰0.��/ D 0
(10.2)

for � 2 C�.A/;
� ‰0 restricted to †�d�1 CC�� .A/ is multiplication by u.

Proof. The commutativity of the diagram is clear. We only have to show that ‰0
commutes with the differential. For ‰0 restricted to †�d�1 CC�� .A/ this is obvious.
As far as the restriction of ‰0 to C�.A/Œu; �� is concerned: the only non-trivial case
(given that‰ already commutes with the differential) is the evaluation on an element
of �g.

Using (9.1) we find for � 2 C�.A/

d.0;�0/.��/ D
�
d.��/; .�1/jgjI��

0
�
:

Given (10.2) we have to show

‰0
�
d.0;�0/.��/

�
D 0:

We compute

‰0
�
d.0;�0/.��/

�
D ‰0

�
d.��/; .�1/j� jI��

0
�

D ‰0
�
� �d� C u�; .�1/j� jI��

0
�

D .�1/j� jC1uI��
0
C .�1/j� juI��

0

D 0:
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Lemma 10.4. Consider †�dC1 CCper
� .A/ as an abelian DG-Lie algeba. Then there

exists an L1-morphism

�WD�.A; �/! †�dC1 CCper
� .A/

such that the following diagram is commutative

H �.D�.A; �//

H�.�/ **

H�.‰/ // H �.†�dC1 CC�� .A//

canonical
��

H �.†�dC1 CCper
� .A//

Proof. To simplify the notations put

g� D C�.A/; V � D †�d�1 CC�� .A/; V per
D †�d�1 CC�� .A/:

Thus we get L1-morphisms (see §§9.1, 9.2)

.g� Ë V �/.0;�0/ !
�
g�Œu; �� Ë V �

�
.0;�0/

!
�
g�Œu; u�1; �� Ë V per�

.0;�0/

c
 � .0 Ë V per/.0;�0/ Š V

per �u
Š †2V per: (10.3)

Here c goes in the wrong direction but it is easy to see that .g�Œu; u�1; ��; dCu@=@�/
is acyclic. Hence c is an quasi-isomorphism. This means that there is an L1-quasi-
isomorphism c0 which goes in the opposite direction and which inverts c on the level
of cohomology. Taking the composition of everything we obtain an L1-morphism

.g� Ë V �/.0;�0/ �! †2V per;

which is the desired �.
It remains to show that� and‰ are compatible on the level of cohomology. This

follows from the following commutative diagram whose upper row is a compressed
version of (10.3) and whose lower row we obtain from (10.1).

.g� Ë V �/.0;�0/

�

++//

‰
��

.g�Œu; u�1; �� Ë V per/.0;�0/

‰0

��

c0 //
Š V per

c
oo �u

// †2V per

†2V � //

canonical

33†2V per V per
�u

oo �u // †2V per
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Proof of Theorem 10.1. The theorem follows from Lemma 10.4 together with the
functoriality of obstruction spaces under L1-morphisms and the fact that the
obstruction space of an abelian Lie algebra is trivial.

Corollary 10.5. If the map HC�d�3.A/ �! HCper
d�3

.A/ is injective then the
deformation theory of A is unobstructed.

This corollary applies for example in the case d � 3 by the following well-known
lemma.

Lemma 10.6. HC�n .A/ �! HCper
n .A/ is an isomorphism for n � 0.

Proof. There is an exact sequence

HCn�1.A/ �! HC�n .A/ �! HCper
n .A/ �! HCn�2.A/

(e.g. [18, Prop. 5.1.5]) where HC�.A/ denotes ordinary cyclic homology. The
complex computing ordinary cyclic homology is concentrated in homological
degrees � 0. Hence HCn.A/ D 0 for n < 0. This finishes the proof.

Remark 10.7. Many 3-dimensional Calabi–Yau algebras are obtained from superpo-
tentials (see [1,29]). For those it is is not very surprising that the deformation theory is
unobstructed (the deformations come from deforming the superpotential). However
there are examples of 3-dimensional Calabi–Yau algebras which are not obtained
from superpotentials. See e.g. [6]. Simple examples are given by 3-dimensional
smooth commutative Calabi–Yau algebras with no exact volume form.

A. A technical result on BV-algebras

Recall that a DG-BV-algebra is a quadruple .g�; d;�;[/where .g�; d / is a complex,
[ is a commutative, associative product of degree4 1 on g� compatible with d ,� is a
differential of degree �1, .g�; d; Œ�;��/ is a DG-Lie algebra with Œ�;�� defined by:

Œg; h� D .�1/jgjC1
�
�.g [ h/ ��g [ h � .�1/jgjC1g [�h

�
and [, Œ�;�� are related by the Leibniz rule:

Œg; h1 [ h2� D Œg; h1� [ h2 C .�1/
jgj.jh1jC1/h1 [ Œg; h2�

It is shown in [14, 25] that if h� is a DG-BV-algebra then .h�..u//; d C u�/

is homotopy abelian. The same proof works for uh�JuK; d C u�/ but not
for .h�JuK; d C u�/. Our aim in this section is to make .h�JuK; d C u�/ as

4As always our grading conventions are such that Lie brackets have degree zero.
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“commutative as possible” (see Proposition A.4 below) by making at least its sub-
DG-Lie algebra .uh�JuK; d C u�/ abelian. This is not completely straightforward
since in order to do this we have to twist the action of h� on uh�JuK.

The fact that .h�..u//; d C u�/ and .uh�JuK; d C u�/ are homotopy abelian is
in fact a special case of a general result in [22]. For the benefit of the reader we repeat
the proof of this result. Afterwards we will reuse the proof to treat .h�JuK; d C u�/.

It is convenient to use the following adhoc definition.
Definition A.1. ABV� algebra is a DG-Lie algebra g� equipped with a commutative,
associative product [ of degree �1, compatible with d , such that

Œg; h� D .�1/jgjC1
�
d.g [ h/ � dg [ h � .�1/jgjC1g [ dh

�
(A.1)

and
Œg; h1 [ h2� D Œg; h1� [ h2 C .�1/

jgj.jh1jC1/h1 [ Œg; h2�: (A.2)
Lemma A.2 ([22]). Let g� be a BV�-algebra and let a� be the same as g� but with
the Lie bracket set to zero. Then there is a L1-morphism  W g� �! a� such @1 is
the identity. In other words g� is homotopy abelian.
Example A.3. Let .h�; d;�;[/ be a DG-BV-algebra. Then�

uh�JuK; d C u�; Œ�;��; u�1.� [ �/
�

is a BV�-algebra and hence by the previous lemma .uh�JuK; d C u�/ is homotopy
abelian. The same reasoning applies to .h�..u//; d C u�/.

Proof of Lemma A.2. Put V � D †g�. The coderivation Q on ScV � corresponding
to the DG-Lie structure is given by

@1QWV � �! V �W sg 7! �s dg

@2QWS2V � �! V �W .sg; sh/ 7! .�1/jgjsŒg; h�

and all other @nQ are zero.
For simplicity of notation we put

sg1 � sg2 � � � sgn D s.g1 [ � � � [ gn/:

From (A.1) and (A.2) we obtain:

@1Q.v1 � v2 � � � vn/ D
X
i

�i@
1Q.vi /v1 � � � Ovi � � � vn

C

X
i<j

�i;j @
2Q.vi ; vj /v1 � � � Ovi � � � Ovj � � � vn; (A.3)

where the signs are determined by

v1 � v2 � � � vn D �ivi � v1 � � � Ovi � � � vn

D �i;j vi � vj � v1 � � � Ovi � � � Ovj � � � vn:
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Consider @1Q as a coderivation ofScV � and let WScV � �! ScV � be the coalgebra
automorphism determined by

@n .v1; : : : ; vn/ D v1 � v2 � � � vn:

Then (A.3) becomes
@1Q ı  D  ıQ;

which finishes the proof.

Proposition A.4. Let .h�; d;�;[/ be a DG-BV-algebra. Let a� be the graded vector
space uh�JuK. The following operation

h ? a D Œh; a�C .�1/jhjC1�.h/ [ a (A.4)

for h 2 h�, a 2 a� makes a� into a graded h�-representation. Furthermore d C u�
defines a derivation on the Lie algebra h�Ëa� and finally there is anL1-isomorphism

�W h�JuK �! .h� Ë a�; d C u�/

such that @1� is the identity.

Proof. In the proof below we identify the underlying vector spaces of h�JuK and
h� Ë a in the obvious way. The fact that (A.4) defines indeed a representation as well
as compatibility with differentials is an easy direct verification: Now put V � D †a�,
W � D †h�. Let Q be the coderivation on Sc.W � ˚ V �/ corresponding to h�JuK.
We observe that @1QjW � D @1Q1 C @2Q2 where @1Q1 D �d and @1Q2 D �u�.
Let Q0 be the coderivation on Sc.W � ˚ V �/ corresponding to .h� Ë a�; d C u�/.
We have @1Q0 D @1Q. Furthermore

@2Q0.w1; w2/ D @
2Q.w1; w2/ for w1; w2 2 W �;

@2Q0.v1; v2/ D 0 for v1; v2 2 V �;

and for h 2 h�, a 2 a�

@2Q0.sh; sa/ D .�1/jhjs.h ? a/

D .�1/jhjsŒh; a� � s.�h [ a/

D @2Q.sh; sa/C @1Q2.sh/ � sa;

where as above x � y D u�1.x [ y/. In other words

@2Q0.w; v/ D @2Q.w; v/C @1Q2.w/ � v for w 2 W �, v 2 V �: (A.5)

We now construct the desired L1-morphism. By definition @n D Id for n D 1.
For n > 1, i � 1, w1; : : : ; wi 2 W �, v1; : : : ; vj 2 V � we put

@n .w1; : : : ; wi ; v1; : : : ; vj / D 0

and
@n .v1; : : : ; vj / D v1 � v2 � � � vn:
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We now verify
 ıQ D Q0 ı  

We must evaluate both sides on S iW � ˝ SjV �. If i D 0 then the desired equality
follows from the proof of Lemma A.2. If i > 2 then both sides are zero so this case
is trivial as well. If i D 2 then both sides are zero unless j D 0 in which case we
reduce to @2QjS2W � D @2Q0jS2W �.

We concentrate on the case i D 1. We find

.Q0 ı  /.w1; v1; : : : ; vj / D @
2Q0.w1; v1 � v2 � � � vn/

and

. ıQ/.w1; v1; : : : ; vj / D @
1Q2.w1/ � v1 � � � vj C

X
l

˙@2Q.w1; vl/ � v1 � � � Ovl � � � vj

D @1Q2.w1/ � v1 � � � vj C @
2Q.w1; v1 � v2 � � � vj /:

We conclude by (A.5).
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