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Abstract. In this paper, we study the relation between the extended Elliott invariant and the
Stevens invariant of C�-algebras. We show that in general the Stevens invariant can be derived
from the extended Elliott invariant in a functorial manner.We also show that these two invariants
are isomorphic for C�-algebras satisfying the ideal property. A C�-algebra is said to have the
ideal property if each of its closed two-sided ideals is generated by projections inside the ideal.
Both simple, unital C�-algebras and real rank zero C�-algebras have the ideal property. As a
consequence, many classes of non-simple C�-algebras can be classified by their extended Elliott
invariants, which is a generalization of Elliott’s conjecture.
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1. Introduction

George Elliott initiated the classification program of nuclear C�-algebras since his
classification of approximately finite-dimensional (AF) algebras via their scaled,
ordered K0-groups ([6]). Successful classification results have been obtained for
AH algebras (the inductive limits of matrix algebras over metric spaces) with slow
dimension growth for cases of real rank zero (see [2–5, 9, 10, 12, 13, 16, 17]) and
simple AH algebras (see [7, 8, 11, 18, 25]) by using the so called Elliott invariant,
which consists of the ordered K0-group, the K1-group, the simplex of tracial state
space and the natural pairing beween the tracial state space and the K0-group.

A C�-algebra is said to have the ideal property if each of its closed two-sided
ideals is generated (as a closed two-sided ideal) by projections inside the ideal. It
is obvious that both simple, unital C�-algebras and real rank zero C�-algebras have
the ideal property. There are many other examples of C�-algebras arising from
dynamical systems which have the ideal property (see [20, 28–32], etc.). In 1995,
K. Stevens classified all unital approximately divisible AI algebras with the ideal
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property ([39]). Conel Pasnicu studied C�-algebras with the ideal property and
obtained a characterization theorem for AH algebras with the ideal property which
are quite useful for classification theory (see [27]). In 2011, K. Ji and C. Jiang
improved Stevens’ result by dropping the conditions unital and approximate divisible
(see [21]). Subsequently, Jiang and the present author completely classified all
inductive limits of splitting interval algebras (ASI) with the ideal property ([22]).
AI algebra is a special case of ASI algebra. The invariant we used to classify ASI
algebras in our paper was first proposed by Stevens. We call it Stevens invariant.
Stevens invariant of a C�-algebraA consists of the K0-group ofA, the K1-group ofA
and the tracial state spaces of all hereditary C�-subalgebras of the form eAe with
certain compatibility conditions, where e is any projection in A. Stevens invariant is
also used to classify AH-algebras with the ideal property (see [19]).

We know that for simple C�-algebras, traces are assumed to be bounded in the
unital cases, and lower semicontinuous and densely defined in the non-unital case.
But these two kinds of traces will not suffice for the classification of non-simple
C�-algebras. That is, for non-simple C�-algebras, in many cases, all finite traces or
densely defined lower semi-continuous traces are identically zero on a proper ideal.
Therefore, neither finite traces nor densely defined traces can give information of the
ideals. In this paper, we propose to include the extended valued traces (the value
could be infinity) in the traditional Elliott invariant — called the Extended Elliott
Invariant. Another sign for considering the extended valued traces is that all lower
semicontinuous traces on a C�-algebra constitute a non-cancellative cone that in
particular determines the lattice of closed two-sided ideals, an important invariant in
its own right.

It is natural to ask what is the connection between the extended Elliott invariant
and the Stevens invariant? Does the extendedElliott invariant still work for classifying
C�-algebras with the ideal property? In this paper, we partially answered these two
questions. The following theorems are our main results in this paper:
Theorem 1.1. Let A be a C�-algebra with the ideal property. Then the Stevens
invariant of A is equivalent to the extended Elliott invariant of A.
Theorem 1.2. Let A; B be two C�-algebras with the ideal property. If A and B
have isomorphic extended Elliott Invariant, then A and B have isomorphic Stevens
Invariant — and vise versa.

The paper is organized as follows. In Section 2, we recall some definitions and
lemmas. In Section 3, we define two categories S and E corresponding to Stevens
invariant and extended Elliott invariant respectively. We show that there are canonical
non-trivial maps between the object set of E and the object set of S . Moreover, the
Stevens invariant of a C�-algebra can always be derived from its extended Elliott
invariant. The converse is true when the C�-algebra has the ideal property. In
Section 4, we extend the maps defined in Section 3 to be functors between two sub-
categories of S and E and prove Theorem 1.2. Finally, we show that there is a class
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of C�-algebras without the ideal property whose extended Elliott invariants cannot
be derived from their Stevens invariants.

Acknowledgements. The result of this paper is part of my thesis. I benefit a lot from
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2. Preliminaries

For convenience of the reader, we recall some definitions and lemmas (see [33] for
more details).
Definition 2.1. LetA be aC�-algebra. Aweight onA is a function�WAC ! Œ0;C1�

such that:
(i) �.˛x/ D ˛�.x/, if x 2 AC and ˛ 2 RC;
(ii) �.x C y/ D �.x/C �.y/, if x and y belong to AC.
Moreover, � is lower semi-continuous if for each ˛ 2 RC the set˚

x 2 AC j �.x/ � ˛
	

is closed.
Definition 2.2. Let A be a C�-algebra. A trace on A is a weight � such that
�.u�xu/ D �.x/ for all x 2 AC and all unitary u 2 zA, where zA is the unitization
of A.
Remark 2.3. In this paper, we denote by T.A/ the collection of all lower semi-
continuous traces on A. This set is a non-cancellative cone endowed with operations
of pointwise addition and pointwise scalar multiplication by strictly positive real
numbers (see [14] for details). Let TF.A/ denote the set of all finite traces on A.

The following two propositions are properties of traces quoted from [33].
Let A be a C�-algebra and � be a trace on A. Let A�C be a subset of AC defined by

A
�
C WD

˚
x 2 AC j �.x/ <1

	
:

Proposition 2.4 (see [33, 5.1.2]). For each trace � on a C�-algebra A the linear
span A� of A�C is a not necessary closed ideal of A with .A�/C D A�C, and there is
a unique extension of � to a positive linear functional on A� . Moreover, the set

A
�
2 D

˚
x 2 A j x�x 2 A

�
C

	
is an ideal of A such that y�x 2 A� for any x; y 2 A�2 .
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Proposition 2.5 (see [33, 5.2.2]). If � is a trace on a C�-algebra A, then

�.yx/ D �.xy/

for each x in A� and y in zA. Moreover, if � is lower semi-continuous, then

�.x�x/ D �.xx�/

for all x in A and �.xy/ D �.yx/ for all x and y in A�2 .

Next we want to discuss how to extend traces.

Definition 2.6. We define an equivalence relation in AC by setting x � y if there
is a finite set fzng in A such that x D

P
z�nzn and y D

P
znz
�
n . And we use the

notation y 4 x to mean y � x1, x1 � x.

Theorem2.7 (see [33, 5.2.7]). LetB be a hereditaryC�-subalgebra of aC�-algebraA,
and let � be a lower semi-continuous weight on B . For each x in AC define

z�.x/ D sup
˚
�.y/ j y 2 BC; y 4 x

	
:

Then z� is a lower semi-continuous trace on A and z�jBC is the smallest trace
dominating �.

The following two definitions are some usual notations.

Definition 2.8. Let A be a C�-algebra. Let P .A/ be the set of all projections in A.
Let K0.A/ be the K0-group of A andK0.A/C � K0.A/ be the semigroup ofK0.A/
generated by Œp� 2 K0.A/, where p 2 P1.A/. Define

†A D
˚
Œp� 2 K0.A/

C
W p is a projection in A

	
:

Then .K0.A/;K0.A/C; †A/ is a scaled ordered group.

Definition 2.9. Let X be any convex set.

(1) Let Aff.X/C be the collection of all affine maps from X to Œ0;1�.

(2) Let Affb.X/ be the collection of all affine maps from X to R.

(3) Let Affb.X/C be the subset of Affb.X/ consisting of all nonnegative affine
functions.

Any affine map �WX ! Y induces a linear map ��WAff.Y /! Aff.X/ by

��.f /.�/ D f .�.�//;

for all f 2 Aff.Y / and � 2 X .
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3. Two invariants and their relevant categories

In this section, we construct two categories E and S in which the extended Elliott
invariant and Stevens invariant sit, respectively. We show that there is a canonical
non-trivial map from the object set of E to the object set of S , which induces a
map from the extended Elliott invariant of a stably finite C�-algebra to its Stevens
invariant. We also construct a canonical map from the object set of S to the object set
of E , which induces a map from the Stevens invariant to the extended Elliott invariant
for a stably finite C�-algebra with the ideal property.

Let E denote the category whose objects are four-tuples

..G0; G
C
0 /; †G;G1; X/;

where .G0; GC0 / is a partially ordered abelian group; G1 is a countable abelian
group; †G is a subset of GC0 ; X is a cone closed under addition and positive scalar
multiplication such that there exists a positive linear map sG from GC0 to Aff.X/C.
AndX is also a complete lattice cone when endowed with the order structure induced
by its addition operation (i.e., �1 � �2 if there exists �3 2 X such that �1C �3 D �2).

A morphism

‚W ..G0; G
C
0 /; †G;G1; X/! ..H0;H

C
0 /; †H;H1; Y /

in E is a three-tuple
‚ D .�0; �1; �/;

where �0W .G0; GC0 ; †G/! .H0;H
C
0 ; †H/ is an order-preserving homomorphism

satisfying �0.†G/ � †H ; �1WG1 ! H1 is any homomorphism and �WY ! X is a
continuous affine map that makes the diagram below commutative:

GC0

sG

��

�0 // HC0

sH

��
Aff.X/ �� // Aff.Y /:

Definition 3.1. For a C�-algebra A, the extended Elliott invariant of A is

..K0.A/;K0.A/C/; †A;K1.A/;T.A//;

with the natural pairing between K0.A/C and T.A/, i.e., let

sAWK0.A/C ! Aff.T.A//

be defined by evaluating a given trace at a K0-class.
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Obviously, if A is a stably finite C�-algebra, then the extended Elliott invariant
of A is an object in the category E (see [14] for more details). Given a class of stably
finite C�-algebras, say A, let EA denote the subcategory of E whose objects can be
realised as the extended Elliott invariant of a member of A.

Definition 3.2. A preordered cone .F;�/ is said to have the Riesz property if for
f; g; h 2 F with f � g C h there are always yg; yh 2F with yg � g, yh � h such that
f D yg C yh.

Proposition 3.3 (see [15, Theorem 2.6.8]). Let .F;�/ be a lattice cone. Then its
positive dual cone F �C has the Riesz property and it is a complete lattice cone.

Let S denote the category whose objects are four-tuples�
.G0; G

C
0 /; †G;G1;

˚
�Gp

	
p2G

C

0

�
;

where .G0; GC0 / is a partially ordered abelian group;G1 is a countable abelian group;
†G is a subset of GC0 ; for each p 2 G

C
0 , there is a positive cone �Gp with a base of

a simplex, and a positive linear map

sGp WG
p
0 �! Affb.�Gp /;

where Gp0 is the subgroup of G0 generated by the set˚
e 2 G0 W 0 � e � np for some n 2 Z

	
:

For any p0 2 GC0 with p0 � p, there is an affine map �Gp;p0 W�
G
p ! �Gp0 satisfying

the following conditions:

(1) If p00 � p0 � p, then �Gp;p00 D �
G
p0;p00 ı �

G
p;p0 .

(2) sGp .e/.�/ D sGp0.e/.�p;p0.�// for all � 2 �
G
p , e 2 G

p0

0 .

(3) The map .�Gp;p0/
�WAffb.�Gp0/! Affb.�Gp / induced by �Gp;p0 is hereditary, i.e., if

f 2 Affb.�Gp0/ and g 2 Affb.�Gp / satisfying .�Gp;p0/
�.f / � g, then there exists

h 2 Affb.�Gp0/ such that
g D .�Gp;p0/

�.h/:

(4) For each f 2 Affb.�pCq/, there exist f1 2 Affb.�p/; f2 2 Affb.�q/ such that

f D ��pCq;p.f1/C �
�
pCq;q.f2/;

where p; q 2 GC0 .

Remark 3.4. By the definition of �Gp in the Stevens invariant, we know that �Gp is
a lattice cone for each p.
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A morphism

‚W
�
.G0; G

C
0 /; †G;G1;

˚
�Gp

	
p2G

C

0

�
!
�
.H0;H

C
0 /; †H;H1;

˚
�He

	
e2H

C

0

�
in S is a three-tuple

‚ D
�
�0; �1;

˚
�p
	
p2G

C

0

�
;

where �0W .G0; GC0 ; †G/! .H0;H
C
0 ; †H/ is an order-preserving homomorphism

satisfying �0.†G/ � †H I �1WG1 ! H1 is any homomorphism; for each p 2 GC0 ,
there is a continuous affine map �pW�H

�0.p/
! �Gp that makes the diagram below

commutative:
�Hq

�H
q;q0

��

�p

// �Gp

�G
p;p0

��
�Hq0

�p0

// �Gp0 ;

where q D �0.p/, q0 D �0.p0/, p; p0 2 GC0 satisfying p0 � p.
Definition 3.5. For a C�-algebra A, the Stevens invariant is�

.K0.A/;K0.A/C/; †A;K1.A/;
˚
TF. pAp /

	
p2K0.A/C

�
;

with a natural pairing sAp between K0.A/p and TF. pAp / given by evaluating a given
trace at a K0-class and �Ap;qWTF. pAp /! TF. qAq / defined by restriction. That is,

�Ap;q.�/ D � jqAq:

It is easy to see that the Stevens invariant of A is an object in the category S

when A is stably finite. Given a class A of stably finite C�-algebras, let SA denote
the subcategory of S whose objects can be realised as the Stevens invariant of a
member of A.
Lemma 3.6 (see [35, Lemma 10.4]). If P is a lattice and P1 is a hereditary subcone
of P , then P1 is a lattice.
Lemma 3.7. Let ..G0; GC0 /; †G;G1; X/ be an object in E . For any p 2 GC0 , let

�0p D
˚
� 2 X W 0 � sG.p/.�/ <1

	
;

�Gp D �
0
p= �;

where �1 � �2 if and only if f .�1/ D f .�2/ for all f 2 Aff.X/ satisfying f is
bounded on �0p . Then �Gp is a positive cone with a base of a simplex.

Proof. For � 2 �0p , let Œ� � represent the equivalent class of � in �Gp . It’s easy to see
that for all ˛ 2 RC and � 2 �0p ,

˛Œ�� D Œ˛�� 2 �Gp :
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If Œ�1�, Œ�2� 2 �Gp and t 2 Œ0; 1�, then

t Œ�1�C .1 � t /Œ�2� D Œt�1 C .1 � t /�2� 2 �
G
p :

Therefore, �Gp is a positive cone. Similarly, �0p is a positive subcone of X .
Claim. �0p is a hereditary subcone of X . If �1 2 �0p , �2 2 X satisfying �2 � �1,
then by the definition of the order on X there exists �3 2 X such that

�1 D �2 C �3:

Thus,

sG.p/
�1
2
�1

�
D sG.p/

�1
2
�2 C

1

2
�3

�
D
1

2
sG.p/.�2/C

1

2
sG.p/.�3/:

Since sG.p/.�1/ <1, we have sG.p/.�2/ <1. Thus, �2 2 �0p and the claim
is true. By Lemma 3.6, �0p is a lattice.

Define k�k D sG.p/.�/ for all � 2 �0p . It is easy to see that k � k is a norm
on �0p . Therefore, �0p can be embedded into a norm space. Let

T 0p D
˚
� 2 �0p W s

G.p/.�/ D 1
	
:

Then T 0p is a convex base of the cone �0p with �0p a lattice. Therefore, T 0p is a
simplex (see the second paragraph of page 52 in [35]).

Let T Gp D T 0p= �, which is a simplex base of �Gp .

Theorem 3.8. There is a natural nontrivial transformation G that maps the objects
in E to the objects in S .

Proof. Let ..G0; GC0 /; †G;G1; X/ be any object in E . For any p 2 GC0 , define �0p
and �Gp as in the Lemma 3.7. Then �Gp is a positive cone with a base of a simplex.

Let
G
pC
0 D G

p
0 \G

C
0

and sGp WG
pC
0 ! Affb.�Gp /C be defined by

sGp .q/
�
Œ� �
�
D sG.q/.�/

for q 2 GpC0 and � 2 �0p . Since sGp .q/.�/ < 1 for all q 2 GpC0 , � 2 �0p , we can
extend sGp to be a map (still denote it by sGp ) from G

p
0 to Affb.�Gp / by

sGp .q1 � q2/
�
Œ� �
�
D sGp .q1/.�/ � s

G
p .q2/.�/

for q1; q2 2 GpC0 and � 2 �0p . It is easy to see that sGp is a well-defined linear map.
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For q 2 GC0 with q � p, let �Gp;qW�Gp ! �Gq be the map induced by the inclusion
map from �0p to �0q . It is easy to see that �Gp;q is well-defined and moreover,

(1) If p00 � p0 � p, then �Gp;p00 D �
G
p0;p00 ı �

G
p;p0 .

(2) sGp .e/.Œ� �/ D sGp0.e/.�p;p0.Œ� �// for all � 2 �
0
p , e 2 G

p0

0 .

(3) If f 2 Affb.�Gq / and g 2 Affb.�Gp / satisfying .�Gp;q/�.f / � g, let T 0q be a
simplex base of�0q and let E 0q be the set of extreme points of T 0q . Define hWE 0q ! R
by the following

h.�/ D

(
g.�/; if � 2 �0p \E 0q ,
f .�/; otherwise.

Then h can be extended to an affine map from�0q to R (still denoted by h). Since any
element in �0p can not be written as a linear combination of elements in �0q n�0p , h
induces a map from �Gq to R satisfying

g D ��p;q.h/ and h � f:

Thus, the map .�Gp;p0/
�WAff.�Gq /! Aff.�Gp / is hereditary.

(4) Let p; q be any two elements in GC0 . Since �0pCq is a lattice cone, by Prop-
osition 3.3, Affb.�0pCq/ has the Riesz property. For each f 2 Affb.�pCq/, there
exists a constantM such that

f �M
�
sG.p/C sG.q/

�
:

By the Riesz property, there exist f1 2 Affb.�p/; f2 2 Affb.�q/ such that

f D ��pCq;p.f1/C �
�
pCq;q.f2/:

Therefore, ..G0; GC0 /; †G;G1; f�Gp gp2GC
0

/ is an object in S . Finally let

G W
˚
Objects in E

	
!
˚
Objects in S

	
be the map defined by sending�

.G0; G
C
0 /; †G;G1; X

�
7!
�
.G0; G

C
0 /; †G;G1;

˚
�Gp

	
p2G

C

0

�
;

which completes the proof.

Corollary 3.9. Let A be the class of stably finite C�-algebras. Then

G .E.A// Š S.A/

for all A 2 A.
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Proof. Let A 2 A. We know that

E.A/ D ..K0.A/;K0.A/C/; †A;K1.A/;T.A//:

Let G .E.A// D ..K0.A/;K0.A/C/; †A;K1.A/; f�Gp gp2K0.A/C
/. By the definition

of G , for each p 2 K0.A/C,

�0p D
˚
� 2 T.A/ W 0 � �.p/ <1

	
;

�Ap D �
0
p= �;

where �1 � �2 if and only if f .�1/ D f .�2/ for all f 2 Aff.T.A// satisfying f is
bounded on �0p . It is enough to show that

�Ap Š TF. pAp /

for each p 2 K0.A/C.
For any � 2 �0p , � jpAp is a finite trace on pAp. Define

 W�Ap ! TF. pAp /

by
.Œ��/ D � jpAp:

Thus  is a positive affine map and it is easy to see that  is well-defined.
Notice that any element in AffT. pAp / can be realized by self-adjoint element in

pAp. Thus, if Œ�1� ¤ Œ�2� in �Ap , then there exists an element f 2 AffT. pAp / and
a self-adjoint element a 2 pAp such that

�1.a/ D f .�1/ ¤ f .�2/ D �2.a/:

Therefore, .Œ�1�/ ¤ .Œ�2�/.  is injective.
What’s left is to show that  is a surjection. Let � be any finite trace on pAp. By

Theorem 2.7, there is a lower semi-continuous trace z� on A such that z�jpAp D �.
Thus,

.z�/ D �:

Therefore,  is a one-to-one and onto affine map. Thus, we have

G .E.A// Š S.A/:

Theorem 3.10. There is a natural nontrivial transformation F that maps the objects
in S to the objects in E .
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Proof. Let ..G0; GC0 /; †G;G1; f�Gp gp2GC
0

/ be any object in S . We say that ƒ is
an ideal of GC0 if it is a hereditary sub-semigroup of GC0 . Let X be the collection of
all sets of the form f�pgp2ƒ satisfying
(1) ƒ is an ideal of GC0 ;
(2) �p 2 �p for each p 2 ƒ and �p;q.�p/ D �q whenever q < p.
The multiplication in X is the usual multiplication and the addition operation in X
is defined as follows:˚

�p
	
p2ƒ1

C
˚
�p
	
p2ƒ2

D
˚
�p C �p

	
p2ƒ1\ƒ2

:

We define an order relation � on X by the following:˚
�p
	
p2ƒ1

�
˚
�p
	
p2ƒ2

if and only if ƒ1 � ƒ2 and �p � �p for p 2 ƒ2:

Then X naturally has a lattice structure induced by the lattice structures of �p’s.
That is, ˚

�p
	
p2ƒ1

_
˚
�p
	
p2ƒ2

D
˚
�p _ �p

	
p2ƒ1\ƒ2

;˚
�p
	
p2ƒ1

^
˚
�p
	
p2ƒ2

D
˚
 p
	
p2Sfƒ1;ƒ2g

;

where Sfƒ1; ƒ2g is the ideal ofGC0 generated byƒ1 andƒ2, and p will be defined
later.

Let ƒ D ƒ1 \ƒ2. Now let’s define a map

y̨W
˚
Affb.�p/C

	
p2S.ƒ1;ƒ2/

! RC

by the following:
– If f 2 Affb.�p/C for some p 2 ƒ1, let

y̨.f / D inf
˚
f1.�p1

/C f2.�p2
^ �p2

/ W f D ��p;p1
.f1/C �

�
p;p2

.f2/;

fi 2 Aff.�pi
/C; p2 2 ƒ

	
:

– If f 2 Affb.�p/C for some p 2 ƒ2, let

y̨.f / D inf
˚
f1.�p1

/C f2.�p2
^ �p2

/ W f D ��p;p1
.f1/C �

�
p;p2

.f2/;

fi 2 Aff.�pi
/C; p2 2 ƒ

	
:

– If f 2 Aff.�p/C for some p 2 S.ƒ1; ƒ2/, let

y̨.f / D inf
˚
y̨.f1/C y̨.f2/ W f D �

�
p;p1

.f1/C �
�
p;p2

.f2/;

fi 2 Aff.�pi
/C; pi 2 ƒi ; i D 1; 2

	
:
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Claim. y̨.��p;q.g// D y̨.g/, for all q � p 2 S.ƒ1; ƒ2/ and g 2 Affb.�q/.
It is enough to prove the above equation for p 2 ƒ1. We know that:

y̨.g/ D inf
˚
f1.�q0/C f2.�e ^ �e/ W g D �

�
q;q0.f1/C �

�
q;e.f2/;

f2 2 Aff.�e/C; e 2 ƒ; f1 2 Aff.�q0/C; q0 � q
	

and

y̨.��p;q.g// D inf
˚
g1.�p0/C g2.�e0 ^ �e0/ W �

�
p;q.g/ D �

�
p;p0.g1/C �

�
p;e0.g2/;

e0 2 ƒ; g1 2 Aff.�p0/C; g2 2 Aff.�e0/C; p0 � p
	
:

For any g D ��q;q0.f1/C �
�
q;e.f2/, we have ��p;q.g/ D ��p;q0.f1/C �

�
p;e.f2/. Thus,

y̨.��p;q.g// � y̨.g/:

On the other hand, if ��p;q.g/ D ��p;p0.g1/C �
�
p;e0.g2/, then

��p;q.g/ � �
�
p;p0.g1/ and ��p;q.g/ � �

�
p;e0.g1/:

By the hereditary property, there exist h1; h2 2 Affb.�q/ such that

��p;p0.g1/ D �
�
p;q.h1/ and ��p;e0.g2/ D �

�
p;q.h2/:

That is,
��p;q.g/ D �

�
p;q.h1/C �

�
p;q.h2/:

Therefore, g�h1�h2 2 ker.��p;q/. Since any element in ker.��p;q/ can be written as
a difference of two elements in ker.��p;q/\Aff.�q/C, there are j1; j2 2 ker.��p;q/\
Aff.�q/C such that

g C j2 D h1 C h2 C j1:

By redefining h1 as h1 C j1, we have g � h1 C h2. Therefore, y̨.��p;q.g// � y̨.g/
and the claim is true.

Then y̨ is well-defined. It is well-known that there is a one-to-one correspondence
between the elements in�p and the affinemaps fromAffb.�p/C toRC. If the image
of y̨ is finite when restricted on Affb.�p/C for some p, then there exists an element
in �p (we denote it by ˛p) such that y̨.f / D f .˛p/ for all f 2 Aff.�p/C.

It is routine to check

y̨.f / D t y̨.g1/C .1 � t /y̨.g2/;

for all t 2 Œ0; 1�, f; gi 2 Affb.�p/C and p 2 GC0 satisfying f D tg1 C .1 � t /g2.
Finally, for p 2 S.ƒ1; ƒ2/, let  p D ˛p . If q � p, then

g. q/ D g.˛q/ D �
�
p;q.g/.˛p/ D �

�
p;q.g/. p/ D g.�p;q. p//
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for all g 2 Aff.�q/C. That is,  q and �p;q. p/ correspond to the same map from
Aff.�q/ to RC. Therefore,  q D �p;q. p/. Thus, f pgp2S.ƒ1;ƒ2/ is an element
in X .

Define sG WGC0 ! Aff.X/C as follows:

sG.q/
�
f�p

	
p2ƒ

�
D

(
sGq .q/.�q/; if q 2 ƒ,
1; otherwise.

for all q 2 GC0 .
It is easy to see that ..G0; GC0 /; †G;G1; X/ is an object in E . Let

F W
˚
Objects in S

	
!
˚
Objects in E

	
be the map defined by sending�

.G0; G
C
0 /; †G;G1;

˚
�Gp

	
p2G

C

0

�
7! ..G0; G

C
0 /; †G;G1; X/;

which completes the proof.

Lemma 3.11. Let a; b 2 AC be such that ka � bk < ". Then .a � "/C 4 b.

Proof. By Lemma 2.2 of [24], there is d 2 A with kdk � 1 and .a � "/C D dbd�.
Hence, .a � "/C � b1=2d�db1=2 � b.

Lemma 3.12. Let A be a C�-algebra and � be a lower semicontinuous trace on A.
Let A� be the ideal of A defined in Proposition 2.4. If p 2 SA� (the closure of A� ) is
a projection, then �.p/ <1.

Proof. If p 2 A� , then �.p/ <1 by definition. If p 2 SA� n A� , then there exists a
sequence fxig1iD1 � A

�
C with lim

i!1
xi D p. For any " > 0, there exists k 2 N such

that:
kxk � pk < ":

By Lemma 3.11 .p � "/C 4 xk . Since .p � "/C D .1 � "/p,

�..1 � "/p/ D �..p � "/C/ � �.xk/ <1:

Therefore, �.p/ <1.

Lemma 3.13. Let � and �0 be two lower semi-continuous traces on a C�-algebra A
and e be a projection in A. Suppose that both � and �0 are finite when restricted on
. eAe /C and

�.x/ D �0.x/ for all x 2 . eAe /C:

Then
�.x/ D �0.x/ for all x 2 . AeA /C;

where AeA stands for the closed two-sided ideal generated by e.
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Proof. For x 2 AC, let

 .x/ D sup
˚
�.y/ W y 4 x; y 2 . eAe /C

	
:

By Theorem 2.7,  is a lower semi-continuous trace on A and �.x/ D  .x/ for
all x 2 . eAe /C. We only need to show that �.x/ D  .x/ for all x 2 . AeA /C.

For any x 2 . AeA /C, y 2 . eAe /C satisfying y 4 x, we have

 .y/ D �.y/ � �.x/:

Taking supremum on both sides for all such y we get

 .x/ � �.x/ for all x 2 . AeA /C: (3.1)

Let
� D

˚Pn
kD1 akebk W ak; bk 2 A; n 2 Z

	
be a subset of AeA.
Claim. �.x/ D  .x/ for all x 2 �C.

In fact, for x D aeb 2 AC with a; b 2 A, we have

�..ae/�.ae// D �.ea�ae/ <1

and �..eb/�.eb// D �..eb/.eb/�/ D �.ebb�e/ <1:

Similarly,

 ..ae/�.ae// D  .ea�ae/ <1;

 ..eb/�.eb// D  ..eb/.eb/�/ D  .ebb�e/ <1:

Therefore, by Proposition 2.5,

�.x/ D �.aeeb/ D �.ebae/ D  .ebae/ D  .aeb/ D  .x/:

Thus, the claim is true.
Let x be a positive element in AeA and fyng be an increasing sequence in �C

with lim
n!1

yn D x. Then by the above claim

�.x/ � lim�.yn/ D lim .yn/ �  .x/;

where the first inequality is due to � being lower semi-continuous.
Therefore, combined with the inequality (3.1), we get �.x/ D  .x/ for all

x 2 . AeA /C. That is,

�.x/ D sup
˚
�.y/ W y 4 x; y 2 .eAe/C

	
for all x 2 . AeA /C:

Similarly,

�0.x/ D sup
˚
�0.y/ W y 4 x; y 2 .eAe/C

	
for all x 2 . AeA /C:

Therefore,
�0.x/ D �.x/ for all x 2 . AeA /C:
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Lemma 3.14. Let A be a C�-algebra with the ideal property. Suppose that for any
projection e 2 A, there is a lower semi-continuous trace �e on AeA satisfying

�e1
.x/ D �e2

.x/ for all x 2 . Ae1A /C \ . Ae2A /C;

where e1; e2 are two projections in A. Then there is a lower semi-continuous trace �
on A such that

�.x/ D �e.x/

for any x 2 . AeA /C and any projection e 2 A.

Proof. If A is generated by a single projection, say e, then let � D �e . In this case,
if e0 is any projection in A, then

�.x/ D �e.x/ D �e0.x/ for all x 2 Ae0A:

If A is not generated by a single projection, let J be an ideal of A and �J be a
lower semi-coutinuous trace on J satisfying desired properties, i.e.

�J .x/ D �e.x/ for all x 2 . AeA /C;

where e is any projection in J . Let p be a projection outside J and J 0 be the closed
ideal generated by J and p. Let �J 0 be an extension of �J on J 0 defined as follows.

Since .J 0/CDJCC. ApA /C for anyx2.J 0/C, there existx12JC andx22. ApA /C
such that x D x1 C x2. Define

�J 0.x/ D �J .x1/C �p.x2/:

If there exist y1 2 JC and y2 2 . ApA /C such that x1 C x2 D x D y1 C y2, then

x1 � y1 D y2 � x2 2 JC \ . ApA /C:

For any projection e 2 J \ . ApA /, we have

�J .z/ D �e.z/ D �p.z/

for all z 2 AeA. Since A has the ideal property, J \ . ApA / is generated by
projections. Therefore, �J .x1 � y1/ D �p.y2 � x2/. That is

�J .x1/C �p.x2/ D �J .y1/C �p.y2/:

Thus, �J 0 is well-defined. It is obvious that �J 0 is lower semi-continuous trace on J 0
satisfying desired properties.
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To complete the proof, we apply Zorn’s lemma. Let X be the set of all pairs

.J; �J /;

where J is a sub-ideal of I and �J is a lower semi-continuous trace satisfying the
desired properties. Define the relation < on X by

.J1; �J1
/ < .J2; �J2

/ if and only if J1 � J2 and �J2
jJ1
D �J1

:

This is a partial ordering with the property that any totally ordered subset has a
maximal element. Zorn’s lemma says that X has a maximal element, say . yJ ; � yJ /.
If yJ is a proper subspace of A, i.e., yJ ¤ A, then the argument given before produces
an extension of � yJ to a larger ideal, contradicting the maximality of . yJ ; � yJ /.

Corollary 3.15. Let I be the class of all stably finite C�-algebras satisfying the ideal
property. Then

E.A/ Š F .S.A//

for all A 2 I.

Proof. Let A be any stably finite C�-algebra satisfying the ideal property. We have

S.A/ D
�
.K0.A/;K0.A/C/; †A;K1.A/;

˚
TF. pAp /

	
p2K0.A/C

�
:

Let
F .S.A// D

�
.K0.A/;K0.A/C/; †A;K1.A/;X

�
;

where X is the collection of all sets of the form f�pgp2ƒ defined as in the proof of
Theorem 3.10. We will show that TA is isomorphic to X .

For any � 2 T.A/, let

A�C D
˚
x 2 A W �.x/ <1

	
and A� be the linear span of A�C, which is an ideal of A by Lemma 2.4. Let

P� WD
˚
p 2 A�C W p is a projection

	
;

By Lemma 3.12, P� � A
�
C. Since A is a C�-algebra with the ideal property, A�C is

generated by P� . Thus, P� is not empty. For any f 2 P� , we have

� jfAf , �f

is a finite trace on fAf . Let ƒ� be the sub-semigroup of K0.A/C generated by P� .
For each p 2 K0.A/C, we can define �p by extending of �f ’s for f 2 P� to matrix
algebra. Therefore, f�f gf 2K0.A/C

is an element in X .
Define ˇWT.A/ ! X by sending � to f�f gf 2K0.A/C

. It is obvious to see that ˇ
is injective since A has the ideal property.

Let f�pgp2ƒ be any element in X . By the definition of X , �p is a finite trace
on pAp for each p. By Theorem 2.7, for each p, we can extend �p to be a lower
semi-continuous trace on the ideal ApA, still denoted by �p .
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Claim. �p1
.x/ D �p2

.x/ for all x 2 . Ap1A / \ . Ap2A /, where p1; p2 are in ƒ.
In fact, since A has the ideal property, it is enough to show

�p1
.x/ D �p2

.x/ for all x 2 AqA;

where q is any projection in . Ap1A /\ . Ap2A /. By Lemma 4.4, there are integers
m; n such that q � np1 and q � mp2. Thus,

�p1
.x/ D �np1

.x/ D �q.x/ D �mp2
.x/ D �p2

.x/:

Therefore, the claim is true.
Applying Lemma 3.14, we know that there is a lower semi-continuous trace y� on

the ideal of A generated by ƒ \ A. Let

�.x/ D

(
y�.x/; if x is in the ideal generated by ƒ,
1; otherwise:

Then � is a lower semi-continuous trace on A satisfying

ˇ.�/ D
˚
�p
	
p2ƒ

:

Therefore, ˇ is also surjective. Thus, TA is isomorphic to X .

Remark 3.16. Theorem 1.1 follows from Corollaries 3.9 and 3.15 immediately.

4. Main theorem

In this section, we extend the maps defined in Section 3 to be functors between two
sub-categories of S and E and prove Theorem 1.2. Finally, we show that there are
C�-algebras without the ideal property whose Elliott invariant cannot be derived from
the Stevens invariant.
Definition 4.1. Let A;B be two C�-algebras. Let ˛ from K0.A/ to K0.B/ be a
homomorphism, and �WTB ! TA be an affine map. We say that ˛ and � are
compatible if

�.˛.x// D .�.�//.x/

for all x 2 K0.A/C and � 2 TB .
Proposition 4.2. Let A;B be two C�-algebras. If there is a morphism

‚ D
�
�0; �1;

˚
�p
	
p2K0.A/C

�
WS.A/! S.B/;

then �0 and �e are compatible for all e 2 K0.A/C.

Proof. See 1.11 in [21].



1212 K. Wang

Lemma 4.3. Let A be a C�-algebra with the ideal property and B be a C�-algebra
satisfying:

(1) There exists a scaled ordered isomorphism ˛WK0A! K0B;

(2) There is an isomorphism �WTB ! TA which is compatible with ˛.

Let � 2 TB and I be the closed ideal of A generated by the set˚
e 2 P .A/ W �.˛.e// <1

	
:

Then
�.�/.x/ D C1 for all x 2 ACnIC:

Proof. Let � D �.�/. For any projection p 2 SA� , by Lemma 3.12, �.p/ < C1.
Since � is compatible with ˛,

�.˛.p// D �.�/.p/ D �.p/ < C1:

That is ˛.p/ 2 B�C and p 2 I . Therefore P . SA�/ � P .I /. Since A is a C�-algebra
with the ideal property, SA� � I . So

A n I � A n SA� :

Hence �.x/ D C1 for all x 2 AC n IC.

The following lemma is well known (see [26, Lemma 3.3.6]).

Lemma 4.4. If p is a projection in A, b 2 AC and p is in the ideal generated by b,
then there are x1; x2; : : : ; xk 2 A such that p D

Pk
iD1 xibx

�
i .

The following theorem is the main theorem of this section.

Theorem 4.5. Let EI and SI be two sub-categories of E and S , respectively, where I

is the class of C�-algebras with the ideal property. Then EI and SI are isomorphic.
That is, there are canonical functors

F WSI ! EI; G WEI ! SI

such that
G ı F D IdSI

; F ı G D IdEI
:

Proof. We divide the proof into three steps.

Step I. Construction of the functor F WSI ! EI .
Let F map the objects in SI to the objects in EI be defined by

F .S. �// D E. �/:
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By Corollary 3.15, this map is well-defined. LetA;B 2 I such that there is an arrow

ˆ D
�
�0; �1;

˚
�e
	
e2K0.A/C

�
from S.A/ to S.B/. We need to construct an affine map � from TB to TA which is
compatible with �0.

For � 2 TB , let
B�C D

˚
x 2 B W �.x/ <1

	
and B� be the linear span of B�C, which is an ideal of B by Lemma 2.4. Let

P� WD
˚
p 2 B�C W p is a projection

	
;

ƒ� D
˚
f 2 P� W f is in the image of �0

	
:

Then ƒ� � P� � B
�
C, where the last inclusion is by Lemma 3.12.

For any f 2 ƒ� , we have �.f / <1 and

� jfBf , �f

is a finite trace on fBf . Let e 2 A be a pre-image of f under �0. Define
�e D �e.�f /. Since �e and �0jeAe are compatible, �e is a finite trace on eAe. We
can extend �e to a lower semi-continuous trace (still denoted by �e) on AeA by

�e.x/ WD sup
˚
�e.y/ W y 4 x; y 2 . eAe /C

	
; for all x 2 . AeA /C:

Claim. If x 2 J0 WD . Ae1A /\ . Ae2A / is a positive element, where e1; e2 are two
projections in A satisfying �0.ei / D fi for some fi 2 ƒ� , i D 1; 2, then

�e1
.x/ D �e2

.x/:

In fact, since A is a C�-algebra with the ideal property, J0 is generated by
projections inside it. Let I0 be a closed ideal of B generated by the set˚

q W q D �0.p/ for some p in J0
	
:

Then we have

I0 D . Bf1B / \ . Bf2B / and �f1
jI0
D �f2

jI0
:

Let p be any projection in J0 and let q D �0.p/. By Lemma 4.4, there exist natural
numbers n1; n2 such that p � niei for i D 1; 2. Therefore, by the compatible
condition, the following diagrams are commutative:

TF. zf1B zf1 /

i

��

�ze1 // TF. ze1Aze1 /

i

��
TF. qBq /

�p

// TF. pAp /;
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TF. zf2B zf2 /

i

��

�ze2 // TF. ze2Aze2 /

i

��
TF. qBq /

�p

// TF. pAp /;

where zfi D nif and zei D niei for i D 1; 2. Since

TF. zfiB zfi / D TF.Mni
. fiBfi / / D TF. fiBfi /;

TF. zeiAzei / D TF.Mni
. eiAei / / D TF. eiAei /;

we can get the following commutative diagrams:

TF. f1Bf1 /

i
��

�e1 // TF. e1Ae1 /

i
��

TF. qBq /
�p

// TF. pAp /;

TF. f2Bf2 /

i
��

�e2 // TF. e2Ae2 /

i
��

TF. qBq /
�p

// TF. pAp /:

Therefore,

i ı �e1.�f1
/ D �p ı i.�f1

/; i ı �e2.�f2
/ D �p ı i.�f2

/:

That is
�e1
jpAp D �

p
�
�f1
jqBq

�
; �e2

jpAp D �
p
�
�f2
jqBq

�
:

Since
�f1
jqBq D �f2

jqBq; �e1
jpAp D �e2

jpAp:

By Theorem 3.13, we have

�e1
jApA D �e2

jApA:

Therefore, �e1
jJ0
D �e2

jJ0
since J0 is generated by projections inside it. Thus, we

have proved the claim.
Let I be the ideal generated by ��10 .ƒ� / (the preimage of ƒ� ). Applying

Lemma 3.14, there is a lower semi-continuous trace �0 on I satisfying certain
properties. Extend �0 to a lower semi-continuous trace on A (denoted by �) as
follows:

�.x/ D

(
�0.x/; if x 2 I ;
1; otherwise:
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Let �.�/ D �. Then it remains to check that � is an affine map compatible with �0.
For any � 2 TB , e 2 K0.A/C, let f D �0.e/ and �.�/ D �. If �.f / <1, then

�.�/.e/ D �.e/ D �e.e/ D �
�.�f /.e/ D �f .�0.e// D �.�0.e//:

If �.f / D1, then e is not in the preimage of ƒ� under �0. Thus,

�.�/.e/ D �.e/ D1 D �.f /:

Therefore, �.�/.e/ D �.�0.e// for all � 2 TB and e 2 K0.A/C. That is, � is com-
patible with �0.

Let �0; �00 2 TB and � D t�0C.1� t /�00 for t 2 .0; 1/. Let� D �.�/,�0 D �.�0/,
�00 D �.�00/. If x is a positive element in the ideal generated by the preimage of ƒ�
under �0, (without loss of generality, we can assume x 2 AeA and �0.e/ D f ), then
by the above construction, we have

�.�/.x/ D �.x/ D �jAeA.x/ WD �e.x/ D �
e.�f /.x/:

Since �e is an affine map, we have

�e.�f /.x/ D �
e.t�0f C .1 � t /�

00
f /.x/

D t�e.�0f /.x/C .1 � t /�
e.�00f /.x/

D t�0e.x/C .1 � t /�
00
e.x/

D
�
t�.�0/C .1 � t /�.�00/

�
.x/:

If x 2 AC is not in the ideal generated by the preimage of ƒ�, by Lemma 4.3,

�.�/.x/ D �.x/ D1:

Since ƒ� D ƒ�0 \ ƒ�00 , x is not in the ideal generated by ��10 .ƒ�0/ \ �
�1
0 .ƒ�00/,

where ��10 .�/ means the preimage set under �0. Thus,

�.�0/.x/ D1 or �.�00/.x/ D1:

Therefore,
�.�/.x/ D t�.�0/.x/C .1 � t /�.�00/.x/

for all x 2 AC and all t 2 .0; 1/. As a consequence, ‰ D .�0; �1; �/ is a morphism
from E.A/ to E.B/ in E . Define

F .ˆ/ D ‰:

(1) It is obvious that F maps objects to objects and morphisms to morphisms.
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(2) Let A be a C�-algebra with the ideal property. For any � 2 TA, let J be the
ideal generated by projections in ƒ�. Let �0 be a lower semi-continuous trace on A
defined by

�0.x/ D

(
�.x/; if x 2 J ;
1; otherwise:

By Lemma 4.3, �0.x/ D �.x/ for all x in A. Therefore,

F
�
idS.A//

�
D idE.A/ D idF .S.A// :

(3) Let A1, A2, A3 be C�-algebras with the ideal property. Suppose

‰1WS.A1//! S.A2/; ‰2WS.A2/! S.A3/

are two morphisms. By the functoriality of K0 and T, we can get

F .‰2 ı‰1/ D F .‰2/ ı F .‰1/:

Therefore, F is a functor from the SI to EI .

Step II. Construction of the map G WEI ! SI .
Let G map the objects in EI to the objects in SI be defined by

G .E. �// D S. �/:

By Corollary 3.9, this map is well-defined. Let A;B 2 I such that there is an arrow
‰ D .�0; �1; �/ from E.A/ to E.B/. We need to construct an arrow from S.A/

to S.B/. Let e be any projection in A. First we want to construct an affine map �e
from TF. �0.e/B�0.e/ / to TF. eAe /.

Let f D �0.e/. For �f 2 TF. fBf /, define a trace � 0f on the closed ideal BfB
by

� 0f .x/ D sup
˚
�f .y/ W y 4 x; y 2 . fBf /C

	
; for all x 2 BfB:

Then by Theorem 2.7, � 0
f
is lower semi-continuous. Let � be a trace on B defined by

�.x/ D

(
� 0
f
.x/; if x 2 BfB;

1; otherwise:

Then � is a lower semi-continuous trace on B . Let � D �.�/. By Lemma 4.3,

�.x/ D1 for any x 2 A n . AeA /:

Let �0e D �jAeA and �e D �jeAe . Then

�e.e/ D �.e/ D �.�/.e/ D �.�0.e// D �.f / <1:
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Thus �e is a finite trace on eAe. Define �e.�f / D �e . Then it is routine to check
that �e is an affine map.

Let e0 2 P .A/ and f 0 2 P .B/ be such that e0 � e; f 0 � f and �0.e0/ D f 0.
Let �f 2 TF. fBf / be any finite trace. We need to show the following diagram
commutes:

TF. fBf /

i
��

�e

// TF. eAe /

i
��

TF. f 0Bf 0 /
�e0

// TF. e0Ae0 /:

That is, we need to show

i ı �e.�f / D �
e0
ı i.�f /:

Let i.�f / D �f 0 and let �; � 0 2 TB be extensions of �f and �f 0 respectively defined
as above. Let � D �.�/ and �0 D �.� 0/. By the definition of �f 0 , we know that
�f 0 D �f jf 0Bf 0 . By Theorem 3.13, � 0 D � on Bf 0B . Thus,

t�.x/C .1 � t /� 0.x/ D � 0.x/; for all x 2 Bf 0B and 0 � t � 1:

If x … Bf 0B , then � 0.x/ D1. Thus,

t�.x/C .1 � t /� 0.x/ D � 0.x/; for all x … Bf 0B and 0 � t < 1:

Therefore, we have the following equality

t� C .1 � t /� 0 D � 0; for any 0 � t < 1:

Taking t D 1=2 and since � is an affine map, we get

1

2
�.�/C

1

2
�.� 0/ D �.� 0/:

So
1

2
�je0Ae0 C

1

2
�0je0Ae0 D �

0
je0Ae0 :

Since both �je0Ae0 and �
0je0Ae0 are finite,

i ı �e.�f / D �je0Ae0 D �
0
je0Ae0 D �

e0
ı i.�f /:

Thus �e and �e0 are compatible. Therefore, ˆ D .�0; �1; f�ege2†.A// is a morphism
from S.A/ to S.B/ in SI . Define

G .‰/ D ˆ:



1218 K. Wang

The following properties of G are obvious:
(1) G maps objects to objects and morphisms to morphisms by the above con-
struction.

(2) For every C�-algebra A with the ideal property

G
�
idE.A//

�
D idS.A/ :

(3) Let A1, A2, A3 be C�-algebras. Suppose that

ˆ1WE.A1/! E.A2/; ˆ2WE.A2/! E.A3/

are two morphisms. Then

G .ˆ2 ıˆ1/ D G .ˆ2/ ı G .ˆ1/:

Therefore, G is a functor from the EI to SI .

Step III. Check the identity of the theorem.
(1) LetA; B be C�-algebras with the ideal property. Suppose we have the following
maps

S.A/

ˆD.�0;�1;�/

��

F // E.A/

‰D.�0;�1;�/

��

G // S.A/

ŷD.�0;�1;y�/
��

S.B/
F // E.B/

G // S.B/;

where � D f�pgp2†.A/, y� D fy�pgp2†.A/, F .ˆ/ D ‰ and G .‰/ D ŷ . We need to
show ŷ D ˆ.

Let �f 2 TF. fBf / be any finite trace, where f is a projection in B with
�0.e/ D f . By the construction of Steps II and I, we have

y�e.�f / D �.�/jeAe D �
e.�f /:

Therefore, � D y� and ˆ D ŷ . That is G ı F D idS.I/.

(2) To prove F ı G D idE.I/, assume we have the following maps

E.A/

‰D.�0;�1;�/

��

G // S.A/

ˆD.�0;�1;�/

��

F // E.A/

y‰D.�0;�1;y�/
��

E.B/
G // S.B/

F // E.B/;

where � D f�pgp2†.A/, G .‰/ D ˆ and F .ˆ/ D y‰. We need to show that y‰ D ‰.
Let � 2 TB , �.�/ D � and y�.�/ D ŷ . Then

ŷ jeAe D
y�.�/jeAe D �

e.�f / D �.�/jeAe D �jeAe



On invariants of C�-algebras with the ideal property 1219

for all pairs e2P .A/, f 2P .B/with �0.e/Df and f 2B� . Therefore, y�.x/D�.x/
for all x in the ideal I which is generated by projections in the set of ��10 .B� /. By
Lemma 4.3, �.x/ D C1 for all x 2 A n I . By our construction of ŷ , we know
ŷ .x/ D C1 for all x 2 A n I . Therefore, ŷ D �, which completes the proof.

Remark 4.6. Theorem 1.2 follows from the above theorem.

Example 4.7 (Counter-Example). In [36], Shaloub Razak classified a class of
C�-algebras which are inductive limits of certain specified building blocks by
using their Elliott invariants. Those C�-algebras Razak classified are simple, stably
projectionless and with trivial K-theory. Their Elliott invariants cannot be derived
from their Stevens invariants since their Stevens invariants are all trivial.
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