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A regulator for smooth manifolds and an index theorem

Ulrich Bunke

Abstract. For a smooth manifold X and an integer d > dim.X/ we construct and investigate a
natural map

�d WKd .C
1.X//! kuC=Z�d�1.X/ :

Here Kd .C1.X// is the algebraic K-theory group of the algebra of complex valued smooth
functions onX , and kuC=Z� is the generalized cohomology theory called connective complex
K-theory with coefficients in C=Z.

If the manifold X is closed of odd dimension d � 1 and equipped with a Dirac operator =D,
then we state and partially prove the conjecture stating that the following two maps

Kd .C
1.X//! C=Z

coincide:

1. Pair the result of �d with the K-homology class of =D.

2. Compose the Connes–Karoubi multiplicative character with the classifying map of the
d -summable Fredholm module of =D.

Mathematics Subject Classification (2010). 19D55, 18F25.
Keywords.Regulators, differential cohomology, algebraicK-theory of smooth functions,Connes–
Karoubi character.

1. Introduction

The torsion subgroup of the algebraic K-theory of the field C of complex numbers
has been calculated by Suslin [36]. An important tool for this calculation was a
collection of homomorphisms

r2nC1WK2nC1.C/! C=Z (1)

for n 2 N which turned out to induce isomorphisms of torsion subgroups

K2nC1.C/tor
�
! Q=Z:
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One may interpret C as the algebra of complex-valued smooth functions C1.X/
on the one-point manifold X D �. The first goal of the present paper is to
generalize the construction of the homomorphism (1) to higher-dimensional smooth
manifolds X . In order to state the result we need the following notation:

1. We write ku WD K top.C/ for the connective topological complex K-theory
spectrum. Its homotopy groups are given by

�n.ku/ Š

�
0; n < 0;

Z; n � 0 even;
0; n � 0 odd:

(2)

2. In general, we write E�.X/ for the cohomology groups of the manifold X with
coefficients in the spectrum E.

3. If A is an abelian group, then we let MA denote the Moore spectrum of A and
write

EA WD E ^MA : (3)

For example, we can form the spectrum kuC=Z. In view of (2) and [5, Eq. (2.1)]
its homotopy groups are given by

�n.kuC=Z/ Š

�
0; n < 0;

C=Z; n � 0 even;
0; n � 0 odd:

(4)

Theorem 1.1. Let X be a smooth manifold and d 2 N. If d > dim.X/, then we
have a construction of a homomorphism

�d WKd .C
1.X//! kuC=Z�d�1.X/

which is natural in X and induces the map (1) in homotopy groups for X D �

Remark 1.2. The main point of the theorem is the assertion that there is some
interesting generalization of the homomorphism (1) to higher-dimensional manifolds.
In this paper we just give a construction of such a natural homomorphism. We do
not address the problem of characterizing it by a collection of natural properties.
Example 1.4 below shows that the map �d contains certain “higher information”. As
opposed to the case X D �, in the higher-dimensional case we do not understand its
kernel or cokernel.

Remark 1.3. The classical construction of the homomorphism (1) relies on the
observation by Quillen that the natural map K�.C/ ! K

top
� .C/ from the algebraic

to the topological K-theory of C vanishes rationally in positive degrees. In order to
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employ this fact for the construction of r2nC1 we work in the stable1-category Sp
of spectra. We consider the diagram

K.C/Œ1::1� //

��

  

†�1 kuC=Z

��
K.C/ // ku

��
kuC:

(5)

Here K.C/Œ1::1� ! K.C/ denotes the connected covering of the connective
algebraic K-theory spectrum K.C/. The right column is a segment of a Bockstein
fibre sequence for the topological K-theory spectrum ku. Finally, the middle
horizontal map is the canonical map from algebraic to topologicalK-theory. Now, by
Quillen’s observation, the dashed arrow induces the trivial map in homotopy groups.
Since its target is rational the dashed arrow actually vanishes as a map of spectra.
A choice of a zero homotopy of this arrow induces the dotted arrow which in turn
induces themap r2nC1 after applying�2nC1.�/ and identifying�2nC1.†�1 kuC=Z/
with C=Z using (4). Note that the restriction of r2nC1 to the torsion subgroup does
not depend on the choice of the zero homotopy. A reference for this construction
is [26, 7.19ff] where instead of †�1 kuC=Z� the periodic version †�1KUC=Z
(called multiplicative K-theory) is used. Another reference for the construction
of (1) formulated in a slightly different language is [39]. In the present paper we will
generalize the alternative construction [12, Ex. 6.9].
Example 1.4. For a unital algebra A let

�WA� ! K1.A/ (6)

be the natural homomorphism from the group A� of units of A to the first algebraic
K-theory group of A.

A complex-valued smooth function f 2 C1.S1/ gives rise to an invertible
function exp.f / 2 C1.S1/. If u 2 C1.S1/ is a second invertible function, then
we have two algebraic K-theory classes �.exp.f //, �.u/ 2 K1.C1.S1//. Using
the multiplicative structure of the algebraic K-theory for commutative algebras we
define the class

�.exp.f // [ �.u/ 2 K2.C1.S1// :
We use the identification

kuC=Z�3.S1/ Š kuC=Z�4.�/ Š C=Z

given by suspension and (4). With this identification we have

�2.�.exp.f // [ �.u// D
�

1

.2�i/2

Z
S1
f
du

u

�
C=Z

: (7)

The formula (7) is a special case of (57).
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In [12, Example 6.9] we explained how one can construct the map (1) using
techniques of differential cohomology. The differential cohomology approach in
particular provides a canonical choice for the dotted arrow in (5). The main idea for
the construction of �d is to apply the framework of differential cohomology to the
algebraic K-theory of the Fréchet algebra C1.X/. The details will be worked out
in Section 2. The final construction of �d will be given in Definition 2.36.

We now come to the second theme of this paper. Let us assume that X is a
closed manifold of odd dimension d which carries a generalized Dirac operator =D.
This Dirac operator gives rise to a K-homology class Œ =D� 2 KUd .X/ and a d C 1-
summable Fredholm module which we will describe in Subsection 3.2 in greater
detail. This Fredholm module is classified by a homomorphism

b =DWC
1.X/!Md ;

which is unique up to unitary equivalence, and where Md denotes the classifying
algebra for d C 1-summable Fredholm modules introduced in [19], see Remark 3.10
for an explicit description. In [19] Connes and Karoubi further introduced the
multiplicative character

ıWKdC1.Md /! C=Z :

Since KUC=Z is a KU-module spectrum we can define a map

r =DWkuC=Z�d�2.X/! KUC=Z�d�2.X/
h�;Œ =D�i
�! KUC=Z�2d�2.�/ Š C=Z

induced by the pairing with the K-homology class Œ =D�. An explicit construction of
this map using elements of local index theory will be given in (80). We now make
the following conjecture:

Conjecture 1.5. Assume thatX is a closed odd-dimensional manifold of dimension d
with a Dirac operator =D. Then the following diagram commutes:

kuC=Z�d�2.X/
r =D

''
KdC1.C

1.X//

�dC1
55

b =D

))

C=Z

KdC1.Md /:

ı

77

This conjecture is supported by our second main result which asserts that it holds
true if one replaces Kd .C1.X// by its subgroup of classes which are topologically
trivial. Note that we do not know any example of a topologically non-trivial class
in Kn.C1.X// for n > dim.X/, see Remark 1.10. In order to explain what
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topologically trivialmeanswe consider the homotopification fibre sequence in spectra
(see (34) for details)

K rel.C1.X//
@
! K.C1.X//! K top.C1.X//! †K rel.C1.X//

relating the algebraicK-theory spectrum of C1.X/ with its topological and relative
K-theory spectra. A class in KdC1.C1.X// is called topologically trivial if its
image inK top

dC1
.C1.X// vanishes, or equivalently, if this class belongs to the image

of @WK rel
dC1

.C1.X//! KdC1.C
1.X//. We have the following theorem:

Theorem 1.6. Assume that X is a closed odd-dimensional manifold of dimension d
with a Dirac operator =D. Then the following diagram commutes:

kuC=Z�d�2.X/
r =D

&&
K rel
dC1

.C1.X//

�dC1ı@
66

b =Dı@

((

C=Z

KdC1.Md /:

ı

88

In the remainder of this introductionwe describe how our constructions are related
with other results in the literature relating index and spectral theory of operators with
algebraic K-theory of smooth functions.

Since C1.X/ is a commutative algebra, the algebraic K-theory K�.C1.X// is
a graded commutative ring. As in Example 1.4 we can use the map

�WC1.X/�
(6)
! K1.C

1.X//

and the [-product in algebraic K-theory in order to construct higher algebraic K-
theory classes.
Example 1.7. Assume that X is a closed odd-dimensional manifold with a Dirac
operator =D. If f 2 C1.X/, then we can form the unit ef 2 C1.X/�, and we
can consider the class �.ef / 2 K1.C1.X//. Note that this element is topologically
trivial. Indeed, we can consider �.etf / 2 K1.C1.I �X//, where t is the coordinate
of the interval. This class restricts to zero at t D 0 and to �.ef / at t D 1.

Given a collection f1; : : : ; fd of such smooth functions we can form the
topologically trivial algebraic K-theory class

fef1 ; : : : ; efd g 2 �.ef1/ [ � � � [ �.efd / 2 Kd .C
1.X// :

The main result of [22] is an explicit formula [22, (1.2)] for the number

.ı ı b =D/
�
fef1 ; : : : ; efd g

�
2 C=Z :
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It involves the traces of algebraic expressions build from the fi and the positive
spectral projection of =D. Kaad’s formula can be considered as the analytical side of
an index formula. One can interpret our Conjecture 1.5 as providing the topological
counterpart. Indeed, since fef1 ; : : : ; efd g is topologically trivial, by Theorem 1.6
we have the equality

.ı ı b =D/
�
fef1 ; : : : ; efd g

�
D .� =D ı �d /

�
fef1 ; : : : ; efd g

�
;

where d � 1 D dim.X/.
Example 1.8. We consider the case X D S1 with the Dirac operator =D WD i@t
acting as an unbounded essentially selfadjoint operator with domain C1.S1/ on the
Hilbert space L2.S1/. Let u1; u2 2 C1.S1/� be two invertible complex-valued
functions. Then we form the algebraic K-theory class

fu1; u2g 2 K2.C
1.S1// :

Let P 2 B.L2.S1// be the projection onto the subspace of positive Fourier modes,
i.e. the positive spectral projection of =D. For f 2 C1.S1/ we consider the Toeplitz
operator

Tf WD PfP 2 B.L
2.S1// ;

where f acts as multiplication operator. For two functions f1; f2 2 C1.S1/ the
difference Tf1Tf2 � Tf1f2 is a trace class operator.

We let A � B.L2.S1// be the algebra generated by all Toeplitz operators Tf for
f 2 C1.S1/ and the algebra of trace class operators L1 WD L1.L2.S1//. We then
get the Toeplitz extension

0! L1
! A! C1.S1/! 0 : (8)

Associated to an extension of the trace class operators one has the determinant
invariant (see e.g. [6])

d WD det ı@WK2.C1.S1//! C� ;

where @WK2.C1.S1//! K1.A;L
1/ is the boundary operator in algebraicK-theory

associated to the sequence (8) and detWK1.A;L1/! C� is induced by the Fredholm
determinant. The diagram [23, (3)] states that

d
�
fu1; u2g

�
D exp

�
2�i ı

�
b =D
�
fu1; u2g

���
: (9)

The determinant invariant was identified by Carey–Pincus [16] with the joint torsion
�.A;B/ 2 C�which is defined for the pairA;B of Fredolmoperatorswhich commute
up to trace class operators. In the special case of the pair Tu1 ; Tu2 on im.P / we thus
have

d
�
fu1; u2g

�
D �.Tu1 ; Tu2/ :

We refer to [33] and [24] for a gentle introduction to joint torsion.
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The joint torsion �.Tu1 ; Tu2/ in turn has been calculated explicitly. In the special
case where u1 D ef1 we have

�.Tu1 ; Tu2/ D exp
�
1

2�i

Z
f1 d logu2

�
:

In order to state the result of the calculation in the general case in a comprehensive
waywewill use the cup product in Deligne cohomology. Using the isomorphism (11)
(to be explained below) the invertible functions ui can be interpreted as classes in
Deligne cohomologyH 1

Del.S
1;Z/. Their cup product is the class

u1 [ u2 2 H
2
Del.S

1;Z/ :

We have an isomorphism

h�; ŒS1�iWH 2
Del.S

1;Z/
Š
! C=Z

given by evaluation. In [16, (1.2), (1.3)] Carey–Pincus calculate the determinant
invariant and joint torsion:

d
�
fu1; u2g

�
D �.Tu1 ; Tu2/ D exp

�
2�ihu1 [ u2; ŒS

1�i
�
:

Combining this equality with (9) we get the equality

ı
�
b =D
�
fu1; u2g

��
D hu1 [ u2; ŒS

1�i : (10)

Using the multiplicative features of the differential regulator map OregX (see
Remark 2.30) one can also calculate r =D.�2.fu1; u2g// explicitly. The result is again
the right-hand side of (10) as expected by Conjecture 1.5. We will not give the
details of the multiplicative theory since it requires a set-up which is similar to [15]
but differs from the one used in the present paper.

Note that the class 2fu1; u2g 2 K2.C1.S1// is topologically trivial. In order to
see this let ni 2 Z denote the mapping degree of ui

jui j
WS1!S1 for iD1; 2. Then ui

can be deformed through invertible smooth functions to the invertible function
zni WS1 ! C�. So the difference �.ui /� �.zni / is topologically trivial. We now have
�.zn/ D n �.z/ and hence

�.zn1/ [ �.zn2/ D n1n2 �.z/ [ �.z/ :

Since the cup product on K�.C1.S1// is graded commutative the square of a class
in degree one is two-torsion. This implies the assertion. Moreover, if one of the
degrees ni is even, then fu1; u2g itself is topologically trivial. Thus Theorem 1.6
gives a proof of the equality

2ı
�
b =D
�
fu1; u2g

��
D 2r =D

�
�2
�
fu1; u2g

��
:

independently of the calculations of Kaad and Carey–Pincus and a multiplicative
version of the theory. If the degree of one of the maps ui is even then we can even
remove the factor 2 on both sides.
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Remark 1.9. In this remark we recall the basic features of Deligne cohomology used
above. For p 2 N the Deligne cohomology group Hp

Del.X;Z/ is defined as the pth
hypercohomology of the complex of sheaves

0! Z! �0 ! �1 ! � � � ! �p�1 ! 0 :

Werefer to [17] for a first definition and to [7], [8, Sec. 3], or [12, 4.3]) for introductions
to Deligne cohomology. In the original paper [17] Deligne cohomology classes are
called differential characters and a different grading convention was used. We have
a cup product

[WH
p
Del.X;Z/˝H

q
Del.X;Z/! H

pCq
Del .X;Z/;

which turns Deligne cohomology into a graded commutative ring. Moreover, we
have a natural isomorphism of groups

H 1
Del.X;Z/ Š C

1.X/� : (11)

Note that we get invertible complex-valued functions since �� is the de Rham
complex of complex-valued forms. Finally, for a closed connected and oriented
manifoldM of dimension n � 1 we have an evaluation isomorphism

h�; ŒM �iWHn
Del.M;Z/

Š
! C=Z :

Remark 1.10. We refer to [26, Appendix 4] for some information about the algebraic
K-theory of the algebra of smooth functions on a manifold.

LetX be a compact manifold and n 2 N be odd. By [26, Thm.A.4.6] the rank of

im
�
Kn.C

1.X//! K top
n .C1.X//

�
is at least dimHn.X IR/. By [26, Thm.A.4.6] this is true also if X is oriented and
n D dim.X/ (not necessarily odd).

We have a decomposition

K�.C
1.X// Š K�.C/˚ zK�.C

1.X// ;

where the first summand is induced by the inclusion C ! C1.X/ as constant
functions, and the second summand is the kernel of the restriction to some point
in X . There are non-trivial classes in Kd .C1.X// for arbitrary large odd d 2 N.
Note that classes coming from the summand Kd .C/ are topologically trivial.

Theorem [26, Thm.A.4.3] shows that the group zKn.C1.X// itself is huge for 1 �
n � dim.X/.

We do not know whether there exists topologically non-trivial classes in degrees
strictly larger than dim.X/.
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2. The construction of �d

2.1. Elements of sheaf theory on manifolds. Our main idea is to analyse the
algebraic K-theory spectrum K.C1.X// of the algebra of complex-valued smooth
functions on a manifoldX using the techniques of differential cohomology theory as
developed in [12]. In the following we recall some of the basic notions.

Let Mf denote the site of smooth manifolds with corners with the open covering
topology.
Remark 2.1. An n-dimensional manifold with corners is locally modeled by open
subsets of the subspace Œ0;1/n � Rn. The category of manifolds with corners
contains the unit interval Œ0; 1�, manifoldswith boundary, simplices�n. Furthermore,
the category of manifolds with corners is closed under taking products.

For a presentable1-categoryC (see [30, Ch. 5]) wewill consider the1-category
of presheaves PShC .Mf/ and its full subcategory of sheaves ShC .Mf/ with values
in C on the siteMf.
Definition 2.2. A presheaf G 2 PShC .Mf/ is a sheaf if for every manifold M and
every open covering U !M the natural map

G.M/! lim
�
G.U �/ (12)

is an equivalence.
In this definition the simplicial manifold U � 2 Mf�op

is the Čech nerve of the
open covering and themap (12) is induced from the natural mapU � !M , wereM is
considered as a constant simplicial manifold. By an application of the general theory
[30, 6.2.2.7] we get thatPShC .Mf/ and ShC .Mf/ are again presentable1-categories
and that there is an adjunction

LWPShC .Mf/ � ShC .Mf/W incl

between the inclusion of sheaves into presheaves and the sheafification functor L.
We use the unit interval I WD Œ0; 1� in order to define the notion of homotopy

invariance.
Definition 2.3. A sheaf or presheaf G on Mf is called homotopy invariant, if the
map

G.M/! G.I �M/

induced by the projection I � M ! M is an equivalence for every smooth
manifoldM .
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As in [12, Sec. 2] one argues that the full subcategories of homotopy invariant
sheaves ShhC .Mf/ or homotopy invariant presheaves PShhC .Mf/ are presentable.
Their inclusions into all sheaves or presheaves fit into adjunctions

H pre
WPShC .Mf/ � PShhC .Mf/W incl ; H WShC .Mf/ � ShhC .Mf/W incl : (13)

The left adjoints are called homotopification functors. The homotopification functors
for sheaves and presheaves are related by the equivalence

H ' L ıH pre
ı incl ; (14)

see [12, Prop. 2.6].
Let X be a smooth manifold. By iX WMf !Mf we denote the map of sites given

byM 7! X �M . It induces a pull-back

i�X WPShC .Mf/! PShC .Mf/ : (15)

The functor i�X has the following properties:

Lemma 2.4. 1. The functor i�X preserves sheaves.

2. The map i�X preserves homotopy invariant presheaves and sheaves.

3. For presheaves i�X commuteswith homotopification, i.e. the natural transformation
H pre ı i�X ! i�X ıH pre is an equivalence.

4. If X is compact, then the analogous statement holds true for sheaves, i.e. the
natural map H ı i�X ! i�X ıH is an equivalence.

Proof. If U ! M is an open covering covering ofM , then iX .U /! iX .M/ is an
open covering ofX�M . IfG is a presheaf, then the descent map of i�XG with respect
to U ! M is the same as the descent map of G with respect to iX .U / ! iX .M/.
This implies the first assertion.

A sheaf or presheaf G is homotopy invariant by definition if the natural
transformation G ! i�IG (induced by the map I ! �) is an equivalence. We
have equivalences of functors i�I i

�
X ' i

�
I�X ' i

�
X i
�
I . This implies that i�X preserves

homotopy invariant sheaves or presheaves.
In order to see that i�X commutes with homotopification of presheaves we use

the explicit formula for the homotopification given in [12, Section 7]. We define the
functor

sWPShC .Mf/! PShC .Mf/ ; s.G/ WD colim�op i���G ; (16)

where �� is the cosimplicial manifold of standard simplices. Then the homotopifi-
cation on presheaves H pre is given by

H pre
' s : (17)
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Since the colimit for presheaves is taken object wise and i��� i
�
X ' i

�
X i
�
�� we see that

the homotopification for presheaves commutes with i�X .
We now assume that X is compact and G is a sheaf. For n 2 N we let Sn 2 Mf

denote the n-dimensional sphere. For every n 2 N, using [12, Prop. 7.6] at the
marked places, we get the following chain of equivalences:

.i�XHG/.Sn/ ' .HG/.X � Sn/

Š
' .H preG/.X � Sn/

' .i�XH preG/.Sn/ ' .H prei�XG/.S
n/

Š
' .H i�XG/.S

n/ :

Assertion 4. now follows from [12, Lemma 7.3] which states that an equivalence
between objects of ShC .Mf/ can be detected on the collection of spheres Sn, n 2 N.

Remark 2.5. Since i�X preserves sheaves we have a natural transformation

L ı i�X ! i�X ı L : (18)

In general it is not an equivalence. For example, let C WD Ab and Zpre be the constant
presheaf with value Z and X consist of two points. Then we have

i�X .L.Z
pre//.�/ Š Z˚ Z;

but L.i�XZpre/.�/ Š Z and the map (18) is the diagonal inclusion.
In the present paper we will use the language of diffeological algebras.

Definition 2.6. A diffeological structure on an algebra A over C is a subsheaf of
algebras A1 of the sheaf of algebrasM 7! HomSet.M;A/ such that A1.�/ D A. A
diffeological algebra is an algebra equipped with a diffeological structure.
Remark 2.7. A sheaf F of sets onMf which is a subsheaf of the sheaf of set-valued
functions to F.�/ is also called a concrete sheaf. We refer to [35] for a discussion of
various variants of the definition of a diffeology. Our version is most similar to the
notion of a Chen space, but not equal. A Chen space is a concrete sheaf of sets on
the site of convex subsets with non-empty interior of euclidean spaces. In contrast,
our sheaves are defined on all manifolds with corners.
Example 2.8. In the following we list some examples of diffeological algebras.
1. The constant sheaf A generated by A is the minimal diffeological structure, while
the sheafM 7! HomSet.M;A/ is the maximal diffeological structure on A.

2. If A is a diffeological algebra and X is a smooth manifold, then we define the
algebra C1.X;A/ WD A1.X/. It has again a diffeological structure given by the
sheaf i�XA

1.
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3. The algebra C has a diffeological structure such that C1 is the sheaf M 7!

C1.M/ of smooth C-valued functions onMf.

4. For a manifold X we equip C1.X/ with the diffeological structure defined in 2.

5. If A is a locally convex algebra, then we have a natural notion of a smooth
function X ! A. The diffeological structure is given by A1.X/ WD C1.X;A/,
where C1.X;A/ denotes the algebra of smooth functions on X with values in A.
See Remark 2.9 for more details.
Remark 2.9. In this remark we fix our conventions about smooth functions on
manifolds with values in a locally convex algebra. A locally convex vector space is
a complex vector space whose topology is defined by a collection of seminorms. A
locally convex algebra is a locally convex vector space such that the product induces
a continuous bilinear map A � A! A.

A locally convex vector space has a natural uniform structure. Therefore the
notions of completeness and completion are defined.

We now consider smooth functions with values in a locally convex vector spaceA
(see e.g. [37, Sec. 40]). Let U � Rn open and consider a continuous function
f WU ! A.
Definition 2.10. The function f continuously differentiable if there exists a
continuous function f 0WU ! Hom.Rn; A/ such that for every seminorm p on A
and every compact subset K � U we have

lim
D!0

sup
x2K

p

�
f .x CD/ � f .x/ � f 0.x/.D/

kDk

�
D 0 :

We call @if WD f 0.�/.ei / the partial derivative of f in the i th direction. We call f
smooth if it has all iterated continuous partial derivatives.

We denote the iterated partial derivatives byf .k/i1;:::;ik
. We equip the complex vector

space C1.U;A/ with the locally convex structure determined by the seminorms

f 7! sup
x2K

p.f
.k/
i1;:::;ik

.x// :

The set of seminorms which generates the topology of C1.U;A/ is thus indexed
by compact subsets K � U , tuples .i1; : : : ; ik/ of elements of f1; : : : ; ng, and
seminorms p of A. If A is complete, then so is C1.U;A/.

This definition of smooth A-valued functions extends to manifolds in a
straightforward manner.

Let X be a smooth manifold. Then the algebra C1.X;A/ has two diffeological
structures:
1. The first comes from the construction 2. in Example 2.8 above.
2. The second is induced from its locally convex structure.
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These two structures coincide in view of the exponential law:

C1.X; C1.Y; A// Š C1.X � Y;A/ :

Since C1.M;A/ is a subset of the set of all functions from M to A it is clear
that these spaces of smooth functions for varying M define a concrete sheaf, i.e. a
diffeological structure on A.

In the non-commutative geometry literature instead of C1.X;A/ one often uses
the projective tensor product C1.X/ ˝� A. If A is complete, then this gives an
equivalent structure as we will explain below. We have a natural map

C1.X/˝ A! C1.X;A/;

which is continuous with respect to projective topology on the algebraic tensor
product.

In general, for locally convex vector spaces V;W we let V ˝� W denote the
completion of the algebraic tensor product V ˝ W with respect to the projective
topology. IfA is a complete locally convex vector space, then we get an isomorphism

C1.X/˝� A
Š
! C1.X;A/ :

Here is a reference for this classical fact:
1. It follows from [37, Thm. 44.1] that for a complete A we have an isomorphism

C1.X/˝� A
Š
! C1.X;A/;

where˝� denotes the completion of the algebraic tensor product in the �-topology.
2. It follows from [37, Thm. 50.1] that the locally convex vector space C1.X/ is

nuclear.
3. If one of the tensor factors is nuclear, then the natural map from the �- to the
�-tensor product is an isomorphism by [37, Thm. 50.1].

Remark 2.11. In this remark we explain the relationship between the notions of
homotopy invariance according toDefinition 2.3 and diffeotopy invariance of functors
defined on locally convex algebras as considered e.g. in [21, Sec. 4.1].

Consider the category LocAlg1 of unital complete locally convex algebras. We
have a functor

LocAlg1 ! ShLocAlg1.Mf/ ; A 7! A1 WD .M 7! C1.M/˝� A/ :

Let C be a presentable1-category.
Lemma 2.12. A functor F WLocAlg1 ! C is a diffeotopy invariant functor in the
sense of [21, Sec. 4.1] if and only if the presheaf F.A1/ 2 PShC .Mf/ is homotopy
invariant in the sense of Definition 2.3.

Proof. This is immediate from the definitions if one uses the associativity of˝� and

C1.I �X/ Š C1.I /˝� C
1.X/ :
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2.2. Algebraic K -theory and cyclic homology of smooth functions.

2.2.1. Chain complexes and spectra. The purpose of this paragraph is to fix our
conventions concerning chain complexes and spectra. We fix some notation and
introduce some basic constructions.

Let Ch be the category of (in general unbounded) chain complexes of abelian
groups and chain morphisms. If R is a ring, then we use ChR in order to denote the
category of chain complexes of R-modules.

We identify chain complexes with cochain complexes such that the chain complex

� � � ! CnC1 ! Cn ! Cn�1 ! � � �

corresponds to the cochain complex

� � � ! C�n�1 ! C�n ! C�nC1 ! � � � :

For an integer p 2 N and a chain complex .C; d/ 2 Ch we define its shift by p
by C Œp�n WD C nCp . The differential of the shifted complex is given by .�1/pd .

For n 2 N we let HnWCh ! Ab denote the nth cohomology functor. A chain
map is a quasi-isomorphism if it induces an isomorphism in cohomology. If we
invert the quasi-isomorphisms in Ch, then we get a stable 1-category ChŒW �1�.
There are various ways to construct a model of this 1-category e.g. using model
categories or dg-enhancements. Since the constructions in the present paper are
model independent we will not discuss the details.

We have a natural functor �WCh ! ChŒW �1�. Our usual notation convention is
that the italic letter C denotes an object of Ch, and the corresponding roman letter C
denotes the object �.C / 2 ChŒW �1�. By the universal property of ChŒW �1� the
cohomology functors descent to functorsHnWChŒW �1�! Ab.

For an integer p 2 Z and a chain complex C 2 Ch

� � � ! Cp�1 ! Cp ! CpC1 ! � � �

we define its naive truncations ��pC and �<pC at p by

� � � ! 0! Cp ! CpC1 ! � � � ; � � � ! Cp�2 ! Cp�1 ! 0! � � � : (19)

We have natural inclusion and projection morphisms

��pC ! C ; C ! �<pC : (20)

Remark 2.13. Note that �.��pC/ is well-defined, but ��p�.C / does not make
sense.

By� 2 ShCh.Mf/we denote the sheaf of de Rham complexes onMf of complex-
valued differential forms. By [12, Lemma 7.12], for every p 2 Z its truncation
�.��p�/ is a sheaf, i.e.

�.��p�/ 2 ShChŒW�1�.Mf/ : (21)

Note thatHp.�.��p�// Š �
p

cl
2 ShAb.Mf/ is the sheaf of closed p-forms.
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Let Sp denote the stable1-category of spectra. Again wewill not discuss explicit
models. For every n 2 Z we have a functor �nWSp ! Ab which maps a spectrum
to its nth homotopy group. The collection of these functors for all n 2 Z detects
equivalences in Sp.

Wewill frequently use theEilenberg–MacLane correspondenceH WChŒW �1�!Sp
(see [31, 8.1.2.13]) whichmaps a chain complex to its associated Eilenberg–MacLane
spectrum. For C 2 ChŒW �1� we have the relations

�n.H.C// Š H�n.C/ ; H.CŒp�/ ' †pH.C/

between the homotopy groups ofH.C/ and the cohomology groups of C on the one
hand, and the shifts by p 2 Z in spectra and chain complexes, on the other.

The Eilenberg–MacLane equivalence preserves limits. Hence it induces a map

H WShChŒW�1�.Mf/! ShSp.Mf/

by objectwise application. For example, by (21) we have the sheaf

H.�.��p�// 2 ShSp.Mf/ : (22)

We have ��p.H.�.��p�/// Š �pcl .

2.2.2. Algebraic K -theory. In this paragraph we call some basic facts from alge-
braic K-theory. We let Alg denote the category of associative unital algebras. We
have a functor

KWAlg! Sp

which maps an associative unital algebra to its connective algebraic K-theory
spectrum K.A/.
Remark 2.14. One way to construct this functor is as the following composition:

K.A/ WD sp.GrCompl.N.Iso.Proj.A///// :

Here Proj.A/ is the symmetric monoidal category of finitely generated projective
A-modules with respect to the direct sum and Iso takes the underlying groupoid. The
functor N maps a symmetric monoidal category to its nerve which is a commutative
monoid in spaces. The group completion functor GrCompl turns this monoid into
a commutative group (i.e. an E1-space) or equivalently into an infinite loop space.
Finally, the functor sp maps the infinite loop space to the corresponding spectrum.
We refer to [12, Sec. 6] and [11, Sec. 6] for more details. In the present paper will
not need any explicit construction of the algebraic K-theory functor.

Let AlgC denote the category of unital algebras over C. We have a functor

CC�WAlgC ! Ch;
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which maps an associative unital algebra A over C to its negative cyclic homology
complex CC�.A/. We define the negative cyclic homology of A by

HC�� .A/ WD H�.CC
�.A// : (23)

Remark 2.15. For concreteness we will choose for CC�.A/ the standard negative
cyclic homology complex denoted by ToT BC� in [28, 5.1.7]. Some constructions
in the present paper will use this model explicitly.

We define the functor CC�WAlgC ! Sp as the composition

AlgC
CC�

! Ch �
! ChŒW �1� H! Sp :

We have a natural transformation of functors

chgj WK! CC� ; (24)

given by theGoodwillie–JonesChern character. For the construction of the Goodwillie
–Jones Chern character we refer to [32] and [29, Sec. 5].

2.2.3. Algebraic K -theory sheaves. The goal of this paragraph is to introduce
some basic notation which we will use throughout the rest of the paper. We consider
a diffeological algebra A (see Definition 2.6) and form the presheaf of spectra

LKA 2 PShSp.Mf/ ; M 7! K.A1.M// : (25)

Its sheafification is a sheaf of spectra and will be denoted by

KA WD L. LKA/ 2 ShSp.Mf/ : (26)

We apply these constructions to the diffeological algebra C. We then have the
equivalences

LKC1.X/ ' i�X LKC ; KC1.X/ ' Li�X LKC : (27)

The first follows from the definition of the diffeological structure on C1.X/, and the
second is then a reformulation of the definition above.

Applying the negative cyclic homology complex to the sheaf C1 we obtain the
presheaf of chain complexes

CC�.C1/ 2 PShCh.Mf/ ; M 7! CC�.C1.M// :

Remark 2.16. Note that we do not complete or sheafify the tensor products involved
in the definition of the negative cyclic homology complex, but see Remark 2.18.

In the following we define a differential geometric analog DD� of CC�.C1/
and a comparison map

��WCC�.C1/! DD� :



A regulator for smooth manifolds and an index theorem 1309

Definition 2.17. We define the sheaf of chain complexesDD� 2 ShCh.Mf/

DD� WD
Y
p2Z

DD�.p/ ; DD�.p/ WD .��p�/Œ2p� :

We further define a map of presheaves of chain complexes

��WCC�.C1/! DD� (28)

by

CC�.C1.X//q;p 3 f0 ˝ � � � ˝ fp�q 7!
1

.p � q/Š
f0df1 ^ � � � ^ dfp�q

2 F p�q�p�q.X/ � DD�.p/.X/�p�q :

Here the index .: : : /q;p refers to the component of the bicomplex BC� in [28,
5.1.7]. Using the formulas [28, Sec. 2.3.2] we conclude that �� is compatible with
the differentials.

Remark 2.18. For a manifold X let CC cont;�.C1.X// be the analog of
CC�.C1.X// defined using completed (but not sheafified) tensor products. Then
we have a factorization of ��:

CC�.C1.X//! CC cont;�.C1.X//
� cont;�

! DD�.X/ : (29)

The second map is quasi-isomorphism by the well-known calculation of the
continuous negative cyclic homology of the algebra of smooth functions on a smooth
manifold. We will use the continuous version of cyclic homology and � cont;� in
Subsection 3.5 below.

We further define the presheaves

CC�C WD H ı � ı CC
�.C1/ ; DD� WD �.DD�/ ; DD� WD H ı DD� : (30)

The ChŒW �1�-valued presheaf DD� is a sheaf by (22). As remarked above, the
Eilenberg–MacLane functor H preserves sheaves. Therefore DD� is a Sp-valued
sheaf.

By its naturality the Goodwillie–Jones Chern character (24) provides a map

chgj W LKC ! CC�C :

between presheaves of spectra.
Definition 2.19. We define the regulator morphism Lreg of presheaves of spectra as
the composition

LregW LKC
chgj
! CC�C

��

! DD� : (31)
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Furthermore, for a smooth manifold X , we define the morphism of sheaves of
spectra

regX WKC1.X/
(27)
' Li�X

LKC

Li�
X
Lreg

! Li�X DD
�
' i�X DD

� : (32)

The last equivalence in (32) follows from the fact that DD� and therefore i�X DD
�

are sheaves.
Remark 2.20. In this paper we usually call transformations fromK-theory to cyclic
homology Chern characters, and transformations fromK-theory to differential forms
regulators. There is one exception, namely the usual Chern character from topological
K-theory to cohomology with complex coefficients calculated by the de Rham
cohomology.

2.3. Homotopification and regulator maps. For a sheaf G with values in a stable
1-category (e.g. ChŒW �1� or Sp) we have a functorial homotopification fibre
sequence of sheaves

A.G/! G ! H .G/! †A.G/ ; (33)

see [12, Def. 3.1]. ThemapG ! H .G/ is the unit of the homotopification functorH

introduced in (13), and A by definition takes the fibre of this unit. The sheaf G is
homotopy invariant if and only if A.G/ ' 0.

Let A be a diffeological algebra (Definition 2.6) and KA be as in (26).
Definition 2.21. We define the sheaves of spectra

K top
A WD H .KA/ ; K rel

A WD A.KA/ :

We call the evaluations K top.A/ WD K top
A .�/ and K rel.A/ WD K rel

A .�/ the topological
and relative K-theory spectra of A.

Note that the topological and relativeK-theory spectra depend on the diffeological
structure on A. They fit into the fibre sequence of spectra

K rel.A/! K.A/! K top.A/! †K rel.A/ (34)

derived from (33) by evaluation at �.
Remark2.22.AFréchet algebra has a natural diffeological structure such thatA1.M/

is the algebra of smooth maps M ! A. In this case our definition of K top.A/

coincides with that given in [19, Sec. 3.1]. Indeed, in this reference the
authors apply Quillen’s C-construction to the classifying space of the simplicial
group GL.C1.��; A//. Using (16) we can identify the resulting space with
�1.s.KA/.�//. We now use the equivalence s.KA/.�/ ' K top

A .�/ which follows
from the combination of (17) and (14). As a consequence, the relative K-theory of
a Fréchet algebra defined in [19, Sec. 3.1] is isomorphic to our version.
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More generally, if A is a complete locally convex algebra, then in [21, Def. 4.1.3]
the notion of the diffeotopy K-theory spectrum was defined. This definition is just
s.KA/.�/ written down in different symbols. Therefore our topological or relative
K-theory of a complete locally convex algebra also coincides with the diffeotopy or
relative K-theory of [21].

The homotopification of the sheaf DD� 2 ShChŒW�1�.Mf/ defined in (30) can be
calculated explicitly again in terms of differential forms. To this end we introduce
the two-periodic de Rham complex.

DD per
WD

Y
p2Z

�Œ2p� 2 ShCh.Mf/ : (35)

Its cohomology
HP �.X/ WD H�.DD per.X// (36)

is called the periodic cohomology of the manifoldX . The periodicity is implemented
by the shift isomorphism, which for k 2 Z is given by

�2k WHP
�.X/

Š
! HP �C2k.X/ ; �2k

�
Œ!.p/�

�
p2Z
D
�
Œ!.p � k/�

�
p2Z

: (37)

We further define

DD per
WD �.DD per/ 2 ShhChŒW�1�.Mf/ : (38)

A priori we have DD per
2 PShChŒW�1�.Mf/. In order to see that DD per is a sheaf

we use [12, Lemma 7.12]. Moreover, since � resolves the constant sheaf C, the
sheaf �.�/ is homotopy invariant. Consequently, the sheaf DD per is homotopy
invariant, too.

In view of Definition 2.17 ofDD� and (20) we have a natural inclusion of sheaves
of chain complexesDD� ! DD per.

Lemma 2.23. The induced map DD� ! DD per is equivalent to the homopification
morphisms of DD�. In particular we have an equivalence H .DD�/ ' DD per.

Proof. By [12, Lemma 7.15] we know that the inclusion �.��p�/ ! �.�/ is
equivalent to the homotopification map. This implies that the natural inclusion
DD� ! DD per is equivalent to the homotopification map DD� ! H .DD�/.

We now provide chain complex model for A.DD�/. We define the sheaf of chain
complexes

DD WD
Y
p2Z

DD.p/ 2 ShCh.Mf/ ; DD.p/ WD .��p�/Œ2p� : (39)
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It fits into exact sequence of sheaves of chain complexes

0! DD� ! DD per
! DDŒ2�! 0 : (40)

The second map in this sequence is induced by the family of maps of chain complexes

DD per.p/ Š �Œ2p�
(20)
! .�<p�/Œ2p� Š

�
.��p�1�/Œ2.p�1/�

�
Œ2� Š DD.p�1/Œ2� :

(41)
By [12, Lemma 7.12] the object DD WD �.DD/ is a sheaf with values in ChŒW �1�.
From (40) we get a fibre sequence

� � � ! DDŒ1�! DD� ! DD per
! DDŒ2�! � � � : (42)

Lemma 2.23 implies that this sequence is equivalent to the homotopification sequence
(33) applied to DD�.
Corollary 2.24. We have an equivalence A.DD�/ ' DDŒ1�.

We define the sheaves of spectra

DD per WD H.DD per/ ; DD WD H.DD/ :

If we applyH to the sequence (40), then we get the fibre sequence of spectra

† DD! DD� ! DD per ! †2 DD : (43)

Corollary 2.25. The fibre sequence of spectra (43) is equivalent to the homotopifi-
cation sequence (33) applied to DD�.

Let now X be a manifold. If we apply the homotopification sequence (33) to the
morphism regX WKC1 ! i�X DD

�, then we get the first two lines of the following
diagram:

K rel
C1.X/

reg rel
X

{{

��

@ // KC1.X/
regX

��

// K top
C1.X/

��
reg

top
X

{{

// †K rel
C1.X/

��
reg rel

X

||

A.i�X DD
�/

��

// i�X DD
� // H .i�X DD

�/ //

1

��

†A.i�X DD
�/

��
i�X† DD

// i�X DD
� // i�X DD

per // i�X†
2 DD :

(44)

Since i�X DD
per is homotopy invariant we obtain the dashed morphism denoted by 1

and the lower middle square from the universal property of the homotopification.
The lower part of the diagram is now defined by extension of the lower middle square
to a morphism of fibre sequences. We use the diagram in order to define the relative
and and topological regulator maps reg relX and reg topX as indicated.
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Remark 2.26. If X is a compact manifold, then by Lemma 2.4. 4. we have
equivalences

i�X ıA ' A ı i�X ; i�X ıH ' H ı i�X : (45)

If we apply i�X to (43), then the resulting sequence

i�X† DD! i�X DD
�
! i�X DD

per
! i�X†

2 DD (46)

is equivalent to the homotopification sequence of i�X DD
�. In particular, for a compact

manifold X the lower two lines in (44) are equivalent, and we have the equivalences
reg relX ' A.regX / and reg

top
X ' H .regX /.

By its definition (32) we have the following factorization of the regulator regX :

KC1.X/
def
D Li�X

LKC
(18)
! i�XL

LKC
def
D i�XKC ! i�X DD

� : (47)

Using the universal property of the homotopificationmorphismKC1.X/ ! K top
C1.X/

we get the factorization of reg topX :

K top
C1.X/

ŠŠŠ //

reg
top
X

##
i�XK

top
C

'

��

i�
X
reg top
// i�X DD

per

i�Xku:
i�
X

chgj

::
(48)

The identification of K top
C ' ku follows from [12, Lemma 6.3], where ku is the

constant sheaf of spectra generated by the connective topologicalK-theory spectrum
ku ' K top

C .�/ of C. We define chgj Wku! DD per so that the diagram commutes.
If we evaluate i�X reg

top at a point, identify .i�XK
top
C /.�/ ' ku.X/, and take

homotopy groups, then we get a homomorphism (natural in X )

chgj Wku�.X/! ���.DD
per.X//

(36)
Š HP �.X/ :

The origin of this map is the Goodwillie–Jones Chern character chgj , see (24). In
this situation we also have the usual Chern character defined by Chern–Weil theory

chcw Wku�.X/! HP �.X/ :

We refer to [12, Sec. 6.1] for a construction of the Chern character chcw using
differential cohomology methods. The following lemma is probably well known.
For completeness we sketch an argument.
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Lemma 2.27. We have the equality of Chern character maps

chgj D chcw Wku�.X/! HP �.X/:

Proof. Since both Chern characters arise from maps between homotopy invariant
sheaves of spectra they are characterized by their evaluation at the point. Since the
target is rational they are determined by their actions on homotopy groups. Hence it
suffices to check that

chgj D chcw Wku`.�/! HP `.�/

for all ` 2 Z. One can now use the fact that both Chern characters are multiplicative
(see [32] for the multiplicitivity of chgj ) in order to reduce to the case ` D 2. For
` D 2 we argue as follows. We know by an explicit calculation that

chgj WK1.C1.S1//! H1.CC
cont;�.C1.S1/// Š �1.S1/

maps the class �.u/ 2 K1.C1.S1// of a unit u 2 C1.S1/� to the form

1

2�i
d logu 2 �1.S1/ :

We now consider specifically the embedding uWS1 ! C�. The class �.u/ is then
mapped to the generator x 2 ku�1.S1/ Š Z under the composition

K1.C1.S1//! K top
1 .C1.S1//

(48);ŠŠŠ
����! �1.K top

C .S1// Š ku�1.S1/ :

Therefore chgj .x/ 2 HP�1.S1/ is given by the class .c.p//p2Z 2 H
�1.DD per.S1//

with

c.p/ WD

(
ŒvolS1 � 2 H�1.DD per.p/.S1//; p D 1;

0; else:

where volS1 D 1
2�i
d logu is the normalized volume form of S1. It follows by

suspension that chgj Wku�2.�/! HP�2.�/ maps the generator of ku�2.�/ Š Z to
the class .b.p//p2Z 2 H

�2.DD per.�// given by

b.p/ WD

(
Œ1� 2 H�2.DD per.p/.�//; p D 1;

0; else:

The same holds true for chcw .

2.4. The differential regulator map. In this subsection we introduce a version yku
of the Hopkins–Singer differential cohomology associated to ku and a differential
regulator map

OregX WK.C1.X//! yku.X/ :
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Definition 2.28. We define the Hopkins–Singer differential connective complex K-
theory yku 2 ShSp.Mf/ by

yku R //

I

��

DD�

��
ku chcw // DD per :

(49)

We further define the differential connective complex K-theory groups of a
manifold X by

yku
��
.X/ WD ��. yku.X// :

For a general discussion of Hopkins–Singer differential cohomology theories we
refer to [12, Sec. 4.4]. The map I takes the underlying ku-class, and the map R is
called the curvature morphism.

We fix a manifold X and recall the definition (32) of regX and the (Chern–Weil
version) of the Chern character chcw which is equivalent to chgj by Lemma 2.27.

The middle square of the diagram (44) together with (47) and Lemma 2.27 gives
a commutative square

KC1.X/

��

regX // i�X DD
�

��
i�Xku

i�
X

chcw
// i�X DD

per :

(50)

Definition 2.29. For a smooth manifold X we define the differential regulator map

OregX WKC1.X/ ! i�X
yku

as the map between sheaves of spectra naturally induced by the square (50) and the
universal property of the pull-back square (49). The evaluation of OregX at a point
gives a map of spectra

OregX WK.C1.X//! yku.X/ :

Remark 2.30. For commutative algebras it is possible to refine the Goodwillie–
Jones Chern character chgj to a morphism between commutative ring spectra. The
spectra occuring on the right corners of the diagrams (49) and (50) are obtained
by an application of H ı � to sheaves of commutative differential graded algebras
and therefore are commutative ring spectra, as well. Since the morphisms regX
and chcw and the diagram (50) have refinements to morphisms between sheaves of
commutative ring spectra, the differential regulator naturally becomes a morphism
between commutative ring spectra, too.
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The multiplicative structure is helpful if one wants to calculate �d of products
like

�.u1/ [ � � � [ �.ud / 2 Kd .C
1.X//

for a collection of invertible functions .ui /iD1;:::;d inC1.X/. Since our main results
do not use the multiplicative structure, in the present paper we will not discuss its
details further.
Remark 2.31. In general, for an algebraic K-theory class x 2 Kd .C1.X// the
differential K-theory class OregX .x/ 2 yku

�d
.X/ contains strictly more information

than just the underlying topological class

x top
WD I. OregX .x// 2 ku�d .X/

and the regulator
regX .x/ D R. OregX .x// 2 H

�d .DD�.X//:

It is essentially this additional secondary information which we detect by the map �d
in Theorem 1.1.

2.5. The construction of �d . We consider an integer d 2 N and a smooth mani-
fold X such that its dimension satisfies dim.X/ � d � 1. The goal of the present
subsection is to construct the homomorphism

�d WKd .C
1.X//! kuC=Z�d�1.X/

asserted in Theorem 1.1. The idea is to obtain this map by specializing the differential
regulator map OregX .

For the moment let X be an arbitrary smooth manifold. We fix an integer d 2 Z.
In the following definition the symbol R denotes the curvature map the differential
cohomology theory yku, see (49).
Definition 2.32. We define the subgroup of flat classes

yku
�d

flat .X/ WD ker
�
RW yku

�d
.X/! �d .DD

�.X//
�
:

The flat subgroup of a Hopkins–Singer differential cohomology theory can be
calculated explicitly.
Lemma 2.33. If dim.X/ � d , then we have a natural isomorphism

yku
�d

flat .X/ Š kuC=Z�d�1.X/ : (51)

Proof. The complex of sheaves of abelian groups � is a resolution of the constant
sheaf C. Consequently, DD per resolves the constant sheaf

Q
p2Z CŒ2p�. We thus

obtain an equivalence

DD per ' H
�
�
�Q

p2Z CŒ2p�
��
: (52)
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We have a fibre sequence of pull-back squares

� � � ! †�1 DD�

��

†�1 DD�

��
0 // 0

! F //

��

0

��
ku // DD per

! yku //

��

DD�

��
ku // DD per

! � � �

We calculate the fibre F of

chcw Wku! H
�
�
�Q

p2Z CŒ2p�
��
: (53)

Using the decompositionY
p2Z

CŒ2p� Š
Y
p2N

CŒ2p�˚
1Y
pD1

CŒ�2p�

and the fact that ku is connective we get the decomposition of F into the sum of the
fibres of the morphisms of spectra

ku! H
�
�
�Q

p2N CŒ2p�
��
; 0! H

�
�
�Q1

pD1 CŒ�2p�
��
:

The fibre of the first morphism is equivalent to †�1 kuC=Z, and the fibre of the
second is †�1H.�.

Q1
pD1 CŒ�2p�//. Consequently

F ' †�1 kuC=Z˚†�1H
�
�
�Q1

pD1 CŒ�2p�
��
:

We have a long exact sequence

� � � ! �dC1.DD
�.X//! F�d .X/! yku

�d
.X/

R
! �d .DD

�.X//! � � � :

Note that

H�k.DD�.X// Š
Y
p2Z

H�k
�
��p�.X/Œ2p�

�
Š

Y
p2Z

H 2p�k.��p�.X// :

If this group is non-zero, then for some p 2 Z we have the relations

2p � k � dim.X/ ; 2p � k � p :

This implies dim.X/ � k. Hence for dim.X/ � d we have

�dC1.DD
�.X// D H�d�1.DD�.X// D 0 :

Therefore yku
�d

flat .X/ Š F�d .X/. Since also

†�1H
�
�
�Q1

pD1 CŒ�2p�
���d

.X/ D
Q1
pD1H

�2p�d�1.X IC/ D 0

we have the isomorphism

F�d .X/ Š kuC=Z�d�1.X/ :
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We decompose the curvature morphism R in (49) into a product of components
R.p/, p 2 Z, according to the product decomposition ofDD�, see (2.17). Similary
we decompose regX into a product of components regX .p/ for p 2 Z. Note that
�d .DD

�.d/.X// Š �d
cl
.X/.

Lemma 2.34. If dim.X/ � d and x 2 Kd .C1.X//, then we have

R.p/. OregX .x// D

(
0; p ¤ d

regX .d/.x/ 2 �
d
cl
.X/; p D d

)
:

Proof. Let x 2 Kd .C1.X///. For p 2 Z the component R.p/.x/ of the curvature
of x is represented by the class regX .p/.x/ 2 H�d .DD�.p/.X//. By the
calculations in the proof ofLemma2.33 it can only be non-trivial ifp D d D dim.X/.
Note thatH�d .DD�.d/.X// Š �d

cl
.X/.

Corollary 2.35. If dim.X/ � d � 1, then OregX maps to the subgroup of flat classes.
In view of Lemma 2.33 we can make the following definition.

Definition 2.36. If dim.X/ � d � 1, then we define �d as the composition

�d WKd .C
1.X//

OregX
! yku

�d

flat .X/ Š kuC=Z�d�1.X/ : (54)

This finishes the proof of Theorem 1.1.
Remark 2.37. At the moment we have no example which shows that the map �d can
be non-trivial if dim.X/ < d � 1. We refer to Example 2.41, 7. and 8. for some
vanishing results in this direction.

2.6. Restriction to relativeK -theory and explicit calculations. In this subsection
we derive an explicit formula for the restriction of �d defined in 2.36 to topologically
trivial classes. The result will be formulated as Corollary 2.39. It will be used in the
proof of Theorem 1.6. The idea for the calculation of �d .x/ for a topologically trivial
class x 2 Kd .X1.X// is to use a deformation zx of x to zero. Using the homotopy
formula for yku the class �d .x/ can be expressed in terms of a transgression of the
curvature of OregX .zx/.

Let X be a manifold. From the definition of yku and the differential regulator
OregX we get the diagram

K rel
C1.X/

reg rel
X //

@

��

i�X† DD

a

��

i�X† DD

��
KC1.X/

OregX //

��

i�X
yku R //

I

��

i�X DD
�

��
K top
C1.X/

// i�Xku
chcw // i�X DD

per :

(55)
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The upper right square follows from the fibre sequence (43) and the fact that the lower
right square is a pull-back, namely the definition (49) of yku. The columns are fibre
sequences.
Remark 2.38. If X is a compact manifold, then the columns in (55) are instances of
the homotopification sequence (33). Indeed, the whole diagram can then be obtained
by applying the homotopification sequence to the middle raw. See Example 2.26.
Corollary 2.39. We have the equality

a ı reg relX D OregX ı @WKd .C
1.X//! yku

�d
.X/ :

We assume that X is a manifold of dimension dim.X/ D d � 1. We use the
homotopy formula for yku in order to provide a formula for �d .x/ for certain topolog-
ically trivial classes x 2 Kd .C1.X//. We consider a class zx 2 Kd .C1.I �X//
which has the property that zxjf0g�X D 0. We define

x WD zxjf1g�X 2 Kd .C
1.X// :

By construction the class x is topologically trivial, i.e. it belongs to the kernel of
Kd .C

1.X//! K
top
d
.C1.X//.

Since the degree of zx and the dimension of I � X match, by Lemma 2.34 the
only non-trivial component of the regulator of zx is

regI�X .d/.zx/ 2 �
d
cl.I �X/ :

Furthermore we have a map

id W�
d�1
cl .X/! Hd�1

�
�<d�.X/

�
! H�d�1

�
.�<d�.X//Œ2d �

�
! �d .† DD.X// :

Proposition 2.40. We have

OregX .x/ D a

�
id

Z
I

regI�X .d/.zx/

�
:

Proof. By the homotopy formula [12, (27)] we have

OregX .x/ D a

�Z
I

R
�
OregI�X .zx/

��
:

By Lemma 2.34 we have

R.d/
�
OregI�X .yx/

�
D regI�X .d/.zx/ ;

and all other factors of the curvature vanish. So our final formula is

OregX .x/ D a

�
id

Z
I

regI�X .d/.zx/

�
:
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Example 2.41. We now perform some explicit calculations:
1. We consider X D S1. Let uWS1 ! C be the inclusion. We consider u as a unit
in C1.S1/ and �.u/ 2 K1.C1.S1//. Note that

�1.DD
�.S1// Š �1.DD

�.1/.S1// Š �1.S1/ :

Under this identification have

regS1.1/.�.u// D
1

2�i

du

u
:

2. Next we consider the inclusion t WRC ! C as a unit in C1.RC/. We obtain

regRC.1/.�.t// D
1

2�i

dt

t
:

3. We now consider the inclusion zWC� ! C. We write z D u.z/t.z/ with
u WD z=jzj�1 and t WD jzj. Then we get by naturality and additivity of the regulator

regC�.1/.�.z// D
1

2�i

�
d.z=jzj�1/

z=jzj�1
C
d jzj

jzj

�
D

1

2�i

dz

z
:

4. We consider the unit exp.z/ D exp� z 2 C1.C/. We get

regC.1/.�.exp.z// D exp�.regC�.1/.�.z/// D
1

2�i
dz :

5. Let now X be a smooth manifold and f 2 C1.X/. Then we have

regX .1/.�.exp.f // D f �.regC.1/.�.exp.z/// D
1

2�i
df : (56)

6. The regulator regX WK�.C1.X// ! ��.DD
�.X// is given by the composition

of the Goodwillie–Jones Chern character and the map (28). Since C1.X/ is
commutative both maps are in fact multiplicative, where the ring structure on DD� is
induced by the obvious bigraded differential algebra structure on

Q
p2Z.�

�p�/Œ2p�.
Now assume that dim.X/ D d � 1. We consider a collection u2; : : : ; ud of units

in C1.X/. Let t 2 I be the coordinate. On I � X we consider the collection of d
units

exp.tf /; u2; : : : ; ud
and define

zx WD �.exp.tf // [ �.u2/ [ � � � [ �.ud / 2 Kd .C1.I �X// :

By multiplicativity of the regulator and (56) we have

regI�X .d/
�
�.exp.tf //[�.u2/[� � �[�.ud /

�
D

1

.2�i/d
.fdtCtdf /^

du2

u2
^� � �^

dud

ud
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(and this is the only non-trivial component). From Proposition 2.40 we conclude that

OregX
�
�.exp.f // [ �.u2/ [ � � � [ �.ud /

�
D a

�
id

�
1

.2�i/d
f
du2

u2
^ � � � ^

dud

ud

��
:

(57)

7. If we consider in 6. more than d factors, then we get a trivial result. Assume
that dim.X/ D d � 1 and u2; : : : ; udC1 are invertible smooth functions, and f is a
smooth function. Then we have

OregX
�
�.exp.f // [ �.u2/ [ � � � [ �.udC1/

�
D 0 :

To this end, using multiplicativity of OregX , we write the left-hand side as a product
in yku-theory

OregX
�
�.exp.f // [ �.u2/ [ � � � [ �.ud /

�
[ OregX .�.udC1// :

Using (57) and the rule a.!/ [ x D a.! ^ R.x// for the product in yku we rewrite
this as

a

�
id

�
1

.2�i/d
f
du2

u2
^ � � � ^

dud

ud

��
[ OregX .�.udC1//

D a

�
idC1

�
1

.2�i/dC1
f
du2

u2
^ � � � ^

dudC1

udC1

��
:

The argument of a on the right-hand side is a d -form on a manifold of dimension
d � 1 and therefore vanishes.

8. Let again dim.X/ � d � 1, x 2 Kd .C1.X// and y 2 Kd 0.C1.X// for some
d 0 2 N. Then

OregX .x [ y/ D OregX .x/ [ OregX .y/ D �d .x/ [ y
top ;

where y top WD I. OregX .y// 2 ku�d 0.X/, using the ku-module structure of kuC=Z
on the right-hand side.

Note thatku.X/ has amultiplicativeAtiyah–Hirzebruchfiltration .F p ku.X//p2Z,
where F p ku.X/ consists classes whose pull-backs to p � 1-dimensional CW -
complexes vanish. For an invertible function u we have �.u/ top 2 F 1 ku�1.X/. If
y D �.u1/ [ � � � [ �.ud /, then y top D 0. We conclude that

OregX
�
x [ �.u1/[ � � � [ �.ud /

�
D 0 :

3. An index theorem

3.1. The index pairing. In this subsection we introduce the pairing between Dirac
operators and the Hopkins–Singer version of differential periodic complexK-theory.
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This pairing refines the pairing between periodic complex K-theory and the
K-homology. If the Dirac operator comes from a Spinc-structure, then our pairing is
a special case of the integration in differential cohomology. In any case, the pairing
has a simple description in terms of standard constructions of local index theory.

First we introduce the Hopkins–Singer version �KU �.�/ of differential periodic
complex K-theory KU. By

chcwperWKU! H
�
�
�Q

p2Z CŒ2p�
��

we denote the usual Chern character. We will use the same symbol also in order to
denote the composition of morphisms of sheaves of spectra

chcwperWKU
chcwper
! H

�
�
�Q

p2Z CŒ2p�
�� (52)
' DD per :

Remark 3.1. The Chern character chcw discussed in Lemma 2.27 is equivalent to
the composition

ku! KU
chcwper
! H

�
�
�Q

p2Z CŒ2p�
��
;

where the first map
ku! KU (58)

is the connective covering map of KU.

We set
�0 DD per WD H

�
�
�
��0DD per�� :

The inclusion of sheaves of chain complexes ��0DD per ! DD per induces a
morphism of sheaves of spectra �0 DD per ! DD per.

Definition 3.2. We define the Hopkins–Singer differential cohomology theory
associated to KU as the sheaf of spectra �KU 2 ShSp.Mf/ given by the following
pull-back �KU R //

I

��

�0 DD per

��
KU

chcwper // DD per :

We further define the differential periodic complexK-theory groups of a manifoldX
by �KU �.X/ WD ���� �KU.X/

�
(compare with Definition 2.28).
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The differential periodic complex K-theory in degree zero fits into the exact
sequence

KU�1.X/
chcwper
! DD per.X/�1= im.d/

a �KU
! �KU 0.X/ I

! KU0.X/! 0 : (59)

This exact sequence is one of the basic features of differential periodic complex
K-theory, see e.g. [13, Prop. 2.20].

By [14] for a compact manifold X the group �KU 0.X/ is canonically isomorphic
to the differentialK-theory groups defined using geometric models [13,34]. In these
models geometric vector bundles are cycles for differential K-theory classes. Recall
that a geometric Z=2Z-graded vector bundle V WD .V; h;r/ is a triple consisting of
a Z=2Z-graded complex vector bundle V ! X , a hermitean metric h on V such that
the even and odd summands are orthogonal, and a connection r which preserves h
and the grading. In the geometric models for �KU 0.X/ a geometric Z=2Z-graded
vector bundle V WD .V; h;r/ tautologically represents a class

ŒV� 2 �KU 0.X/ :
We refer to [12, Sec. 6.1] for an alternative construction of this class in terms of a
cycle map.

We now assume thatX is a closed Riemannian manifold of odd dimension d . We
further assume that we are given a generalized Dirac operator =D onX . By definition,
=D is the Dirac operator associated to a Dirac bundle, see e.g. [9, Sec. 3.1].
Remark 3.3. A generalized Dirac operator provides aK-homology class which can
be paired withK-theory classes onX . The basic idea of the following Lemma is that
the Dirac operator as a geometric object provides a sort of differential refinement of
its K-homology class which can be paired with differential K-theory classes. The
map � =D defined in Proposition 3.4 below only captures the secondary information
contained in this pairing. Its value on a differentialK-theory class can be considered
as the reduced �-invariant of the Dirac operator twisted with this class. A very
similar construction has been used in order to define the intrinsic universal � invariant
in [10].
Proposition 3.4. We have a canonical evaluation map

� =DW �KU 0.X/! C=Z :

Proof. Let x 2 �KU 0.X/. In view of the sequence (59) we can choose a geometric
Z=2Z-graded vector bundle V WD .V; h;r/ and a form  2 DD per.X/�1= im.d/

such that the following identity holds true in �KU 0.X/:
x D ŒV�C a �KU./ :
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We need the following standard constructions from local index theory:

1. We form the twist =D ˝ V of the Dirac operator by V (see [9, Sec. 3.1] for details
if necessary).

2. We let �. =D ˝ V/ 2 R=Z denote the reduced �-invariant of =D ˝ V given by

�. =D ˝ V/ WD
�
�. =D ˝ V/C dim.ker. =D ˝ V//

2

�
; (60)

where �. =D ˝ V/ is the Atiyah–Patodi–Singer �-invariant introduced in [1].

3. We let yA. =D/ 2
Q
p2Z.�.X;ƒ/Œ2p�/

0
cl

denote the local index form associated
to =D, where ƒ denotes the orientation twist of X .
Remark 3.5. The local index form has the following explicit description. Locally
on X we can write =D D =Dspin˝E for the spin Dirac operator =Dspin and a geometric
Z=2Z-graded twisting bundle E D .E; hE ;rE /. If we can write =D in this way, then

yA. =D/ D
�
ŒyA.rLC / ^ ch.rE /�2p

�
p2Z
2

Y
p2Z

�
�.X;ƒ/Œ2p�

�0
cl
;

where rLC is the Levi-Civita connection of X , Œ!�2p denotes the degree-2p-
component of the inhomogeneous even form !, and yA.r/ and ch.r/ are the usual
characteristic forms defined in terms of the curvature of the connections (including
the 2�i -factors), see [9, Sec. 4.3] for explicit formulas.

The following observation will make it unnecessary to use the explicit formula for
the index density. This fact will be particularly helpful in the proof of Lemma 3.19
below. We define the integralZ

X

W

Y
p2Z

�.X;ƒ/Œ2p�! C ;

Z
X

.!.p//p2Z WD
X
p2Z

Z
X

�
!.p/

�
dim.X/ : (61)

It induces an evaluation of cohomology classes which we will denote by the same
symbol. By the Atiyah–Singer index theorem we can calculate for every class
u 2 KU�1.X/ the index pairing by

hŒu�; Œ =D�i D

Z
X

�
yA. =D/

�
[ �dC1 chcwper.u/ 2 Z ; (62)

where �dC1 is the shift isomorphism defined in (37).

Using the integral (61) we now define

� =D.x/ WD �. =D ˝ V/C
� Z

X

yA. =D/ ^ �dC1
�
2 C=Z : (63)

We must show that � =D is a well-defined homomorphism.
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1. First observe that the right-hand side of (63) does not depend on the choice of  .
Indeed, by (59) two choices differ by a closed form representing an element in the
image of chcwperWKU�1.X/ ! DD per.X/�1= im.d/, and the integral of the product
of those elements with yA. =D/ is an integer by the Atiyah–Singer index theorem, see
Remark 3.5.

2. We observe that the right-hand side of (63) is invariant under stabilization by
bundles which admit an odd Z=2Z symmetry.

3. Next we observe, using the variation formula for the classes ŒV� (the homotopy
formula for �KU 0) and �. =D ˝ V/, that the right-hand side of (63) does not depend
on the choice of the geometry of V .

4. If we choose a different bundle V0 and form  0, then after stabilization we can
assume that V Š V 0 as graded bundles. Therefore the right-hand side of (63) does
not depend on the choice of V.

5. Finally we observe that � =D is a homomorphism.

Remark 3.6. For any integer k 2 Z we can define a version �KU k;� of differential
K-theory by replacing the cut-off �0 in Definition 3.2 with �k . Assume that X
is a Riemannian spin manifold of odd dimension d . Then the map pWX ! � is
differentially K-oriented and we have an integration

ypŠW �KU 0;0.X/! �KU�d;�d .�/ Š C=Z :

We refer to [13, Sec. 3] and [8, Sec. 4.10 and 4.11] for details on the integration in
differential cohomology.

Let us now assume that =D D =Dspin ˝ E for some twist E D .E; hE ;rE /. From
[13, Cor. 5.5] we conclude that � =D can be expressed in terms of the integration ypŠ in
differential K-theory as follows

� =D.x/ D ypŠ
�
ŒE� [ x

�
; x 2 �KU 0.X/ :

The spin structure on X provides the underlying topological K-orientation of X
given by the fundamental class Œ =Dspin� 2 KUd .X/. The restriction of � =D to the flat
subgroup corresponds under the identification�KU 0flat.X/ Š KUC=Z�1.X/ (64)

(this is the analog of Lemma 2.33) to the evaluation pairing

h� [ ŒE�; Œ =Dspin�iWKUC=Z�1.X/
�[ŒE�
! KUC=Z�1.X/

h�;Œ =Dspin�i
! KUC=Z�d�1.�/ Š C=Z ;

where the first map uses the KU-module structure of KUC=Z.
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Remark 3.7. In this remark we explain the relation between the evaluation map � =D
and the index theorem for flat vector bundles by Atiyah–Patodi–Singer [2, Thm. 5.3].
LetV be aZ=2Z-graded flat geometric bundle of virtual dimension zero. It represents
a class ŒV� 2 �KU 0flat.X/ Š KUC=Z�1.X/. In this case

� =D
�
ŒV�
�
D �. =D ˝ V/

is exactly the analytic index of the flat bundle introduced by Atiyah–Patodi–Singer.
Their index theorem for flat bundles states that this analytic index is equal to the
pairing of the class ŒV� with the K-homology class of =D. This also follows from the
last assertion in Remark 3.6.
Example 3.8. We consider S1 as a spin manifold with the standard metric of length 1
and with the non-bounding spin structure. The spinor bundle is one-dimensional and
can be trivialized such that =Dspin D i@t . Assume now that L is a geometric line
bundle with holonomy v 2 U.1/. Then we can trivialize L such that its connection
is given by rL D d � log.v/dt . We get

=Dspin ˝ L D i.@t � log.v// :

Its spectrum is f2�n � log v j n 2 Zg with multiplicity 1. For v 6D 1 we get by an
explicit calculation

�. =Dspin ˝ L/ D 1 �
log.v/
�i

;

where the branch of the logarithm is chosen such that log.v/
�i
2 .0; 2/. Using (60)

and (63) we get

� =Dspin

�
ŒL�
�
D

�
1

2
�

log.v/
2�i

�
C=Z

because in this case we can take  D 0. This formula holds true also for v D 1.
If L is trivial, then ŒL� D 1 and we have � =Dspin.1/ D Œ

1
2
�. We have an isomorphism

�KU
0;0

flat .S
1/ Š C=Z ;

which maps ŒL� � 1 to logv
2�i

. With this identification the restriction of the evaluation
map to the flat subgroup is given by the homomorphism

� =Dspin WC=Z! C=Z ; Œz� 7! Œ�z� :

3.2. Fredholm modules. We consider a closed Riemannian manifold X of odd
dimension d with a generalized Dirac operator =D associated to a Dirac bundle E.
The Dirac operator =D gives rise to a d C1-summable Fredholm module .H;P / over
C1.X/ as follows (see [18]):
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1. The Hilbert space of the Fredholm module is H WD L2.X;E/. The algebra
C1.X/ acts onH in the usual way by multiplication operators.

2. The operator P 2 B.H/ is the orthogonal projection PC onto the positive
eigenspace of =D.

3. The condition that .H;P / is d C 1-summable means that

ŒP; f � 2 LdC1.H/ ;

for all f 2 C1.X/, where LdC1.H/ denotes the d C 1th Schatten class.
Remark 3.9. In some references odd Fredholm modules are denoted by .H; F /,
where F 2 B.H/ is a selfadjoint involution such that ŒF; f � 2 LdC1.H/. The
relation with our notation is given by the equation F D P � .1 � P /.

We let Md be the universal algebra for d C 1-summable Fredholm modules
introduced by Connes–Karoubi [19]. Then we get a homomorphism

b =DWC
1.X/!Md (65)

classifying the Fredholm module .H;P /. Note that b =D is uniquely determined up to
unitary equivalence.
Remark 3.10. In this remark we give an explicit description of b =D . The algebra Md

for odd d 2 N is a subalgebra of the algebra of 2� 2-matrices of bounded operators
on the standard separable Hilbert space `2 consisting of the matrices�

a11 a12
a21 a22

�
; a12; a21 2 LdC1.`2/ ; a11; a22 2 B.`

2/ : (66)

Let PC; P� be the positive and non-positive spectral projections of =D. Then
we choose identifications `2 Š im.PC/ Š im.P�/. The homomorphism
b =DWC

1.X/!Md is then given by

f 7!

�
PCfPC PCfP�

P�fPC P�fP�

�
: (67)

3.3. The multiplicative character. In [19, 4.10] Connes and Karoubi constructed
the “multiplicative” character

ıWKdC1.M
d /! C=Z : (68)

In this subsection we explain how the construction of the multiplicative character ı
fits into the framework of differential cohomology. The details of the construction
will be needed later in Subsection 3.6.
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We consider a unital locally convex algebra A. It has a natural diffeological
structure A1, see Example 2.8, 5. From the sheaf of algebras A1 we derive the
sheaves of spectra

CC�A WD L.H.�.CC�.A1//// ; KA
(26)
D L.K.A1// :

The Goodwillie–Jones Chern character (24) gives a morphism

chgj WKA ! CC�A : (69)

Remark 3.11. In principle we want to apply the homotopification sequence (33)
to chgj . This leads to the problem of understanding the homotopification
of CC�A. The known facts are contained e.g. in [21, Cor. 4.1.2]. In particular
the homotopification of CC�A is equivalent to the homotopification of its periodic
version CC per

A , and the homotopification of the cyclic homology CCA vanishes. The
problem is that CC per

A is not known to be homotopy invariant. We will get a better
theory if we use the continuous versions of cyclic homology. The main advantage is
that the continuous periodic cyclic homology for complete locally convex algebras is
known to be diffeotopy invariant, see Theorem 3.12.

If we define the cyclic bicomplex BC cont.A/ of a locally convex algebra A
similarly as in [28, 5.1.7] but using projective tensor products, then we get the
continuous versions of cyclic, negative cyclic and and periodic cyclic homology
complexes

CC cont.A/ ; CC cont;�.A/ ; CC cont; per.A/ : (70)

In the natural extension of the notation of [28, 5.1.7] to the continuous case these com-
plexes would have been denoted by TotBC cont, ToTBC cont;�, and ToTBC cont; per.
We have an exact sequence of chain complexes

0! CC cont;�.A/! CC cont; per.A/
q
! CC cont.A/Œ2�! 0 : (71)

Note that A1 is a presheaf of locally convex algebras by Remark 2.9. In (71) we can
thus replace A by A1 in order to get an exact sequence of presheaves with values
in Ch. Then we apply L ı H ı � in order to get the fibre sequence of sheaves of
spectra

†CC cont
A ! CC cont;�

A ! CC cont; per
A ! †2CC cont

A ; (72)

which is very similar to (43).
We now use the well-known fact that the continuous periodic cyclic homology is

diffeotopy invariant [27, Theoreme 2.7] (for Fréchet algebras) and [38] (for complete
locally convex algebras):
Theorem 3.12. Assume that A is a complete locally convex algebra. Then the
projection I �M !M induces a quasi-isomorphism

CC cont; per.C1.M;A//! CC cont; per.C1.I �M;A// :
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As a consequence, the sheaf CC cont; per
A is homotopy invariant in the sense of

Definition 2.3.

From now on we assume that A is complete. We apply the homotopification
sequence (33) to the morphism (69). Using the Definition 2.21 we obtain the upper
two columns of the following diagram:

K rel
A

//

A.chgj /
��

KA //

chgj
��

K top
A

H.chgj /
��

// †K rel
A

��
A.CC�A/ //

i i

��

CC�A
t

��

// H .CC�A/ //

i
��

A.CC�A/

i i

��
†CC cont

A
// CC cont;�

A

p // CC cont; per
A

// †2CC cont
A :

(73)

The lower sequence is (72). Themap t WCC�A ! CC cont;�
A is induced by the canonical

map from algebraic to projectively completed tensor products. The composition p ı t
maps to a homotopy invariant target. The dotted arrowmarked by i and the filler of the
lower middle square are obtained from the universal property of the homotopification
as a left adjoint in (13). The dashed arrows marked by i i and the corresponding
fillers are now induced naturally.

We now drop out the middle row and evaluate the diagram at �. We then get the
map of fibre sequences of spectra

K rel.A/ //

ch cont
rel

��

K.A/ //

ch cont

��

K top.A/

ch cont
per

��

// †K rel.A/

��
†CC cont.A/ // CC cont;�.A/

p // CC cont; per.A/
q // †2CC cont.A/;

(74)

which defines various versions of the continuous Chern character.

Remark 3.13. By [21, Lemma 4.2.2] the lower sequence in (74) can be identifiedwith
the homotopification sequence of CC cont;�.A/. The whole diagram is thus the result
of applying the homotopification sequence to themap tıchgj WK.A/! CC cont;�.A/.
The construction of the various versions of the continuous Chern characters above is
thus completely parallel to what is done in [21, Sec. 4.2]. The diagram (74) is exactly
the last diagram in [21, Sec. 4.2].
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We finally define the Chern character ch cont
top by the following diagram which

involves the factorization of q over the S -operator:

K top.A/

ch cont
per

��

ch cont
top

''

// †K rel.A/

ch cont
rel

��
CC cont; per.A/

q

88
// CC cont.A/

S // †2CC cont.A/:

(75)

For ] 2 f;;�; perg we let HC cont;]
� .A/ WD H�.CC

cont;].A// denote the
respective versions of continuous cyclic homology groups of A.

We can now explain the construction of Connes–Karoubi character [19], see also
[21, Sec. 7.3]. The algebra Md has a natural Fréchet structure so that the notions of
topological and relativeK-theory used in [19] or [21] coincide with our versions, see
Remark 2.22. We start with the diagram derived from the right part of (75) and the
upper sequence in (73) (see [19, 4.10])

K
top
dC2

.Md /

&&

ch cont
top

��

// K rel
dC1

.Md /

ch cont
rel

��

˛ // KdC1.M
d /

0 //

ı

��

K
top
dC1

.Md /

HC cont
dC2

.Md /
S // HC cont

d
.Md /

�d

��
Z // C // C=Z:

(76)

It is a theorem of Karoubi [25] that the right upper map (marked by 0) vanishes. The
map�d is given by the pairingwith an explicit continuous cocycle�d 2 HC dcont.Md /

which we will describe in (77) below. It has been verified in [19] that elements
coming fromZ Š K top

dC2
.Md / are mapped to integers under the obvious composition

indicated by the left dotted arrow. The right dotted arrow is the multiplicative
character. It is defined by the obvious diagram chase.
Remark 3.14. In this remark we describe the cocycle �d explicitly. The formula
will be used in the Remarks 3.15 and 3.20 below. Our description of �d employs
the chain complex C �; cont� .A/ given in [28, 2.1.4] in order to calculate HC cont

� .A/

for a unital locally convex algebra over C. In particular C �; contn .A/ is the space of
coinvariants for the action of the cyclic permutation group on A˝�nC1. We use the
notation Œa0 ˝ � � � ˝ an� in order to denote elements in C �; contn .A/.

Furthermore, for a locally convex algebra A we calculate the cyclic cohomology
HC dcont.A/ using the complex C �

�; cont.A/, where C
n
�; cont.A/ is the C-vector space

of continuous multilinear and cyclically invariant maps A�nC1 ! C. We have a
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natural pairing
C n�; cont.A/ � C

�; cont
n .A/! C

given by �
�; Œa0 ˝ � � � ˝ an�

�
! �.a0; : : : ; an/ :

Using these conventions the map �d WHC cont
d

.Md /! C in (76) is given for odd d
by the pairing with the cocycle (using the notation introduced in Remark 3.10)

�d .a
0; : : : ; ad / WD .�1/

d�1
2

dŠ

.2�i/
d�1
2 .d�1

2
/Š
Tr

�
z

�
0 a012
a021 0

�
: : :

�
0 ad12
ad21 0

��
;

(77)
where

z WD

�
1 0

0 �1

�
:

Remark 3.15. In this remark we approach an explicit formula for the composition

ı ıK.b =D/ ı @WK
rel
dC1.C

1.X//! C=Z :

Here for a homomorphism b between algebras we denote by K.b/ or HC.b/ the
induced maps in K-theory or cyclic homology. In view of (76) and the naturality
of ch cont

rel we have the equality

ı ıK.b =D/ ı @ D Œ��C=Z ı �d ı ch cont
rel ıK.b =D/ D Œ��C=Z ı �d ıHC.b =D/ ı ch cont

rel :

It is clearly complicated to write down an explicit formula for the relative Chern
character ch cont

rel . But we can give an explicit formula for the composition

�d ıHC.b =D/ W HCd .C
1.X//! HCd .M

d /! C :

We continue with the notation introduced in Remark 3.10. For f 2 C1.X/ we have�
.PC � P�/; f

�
D 2.PCfP� � P�fPC/ D 2

�
0 PCfP�

�P�fPC 0

�
:

Combining (77) with (67) we see that �d ıHC.b =D/ is represented by the cochain

.f0; : : : ; fd /

7!
�2dC1dŠ

.2�i/
d�1
2 .d�1

2
/Š
Tr
�
.PC � P�/

�
.PC � P�/; f0

�
� � �
�
.PC � P�/; fd

��
(78)

This formula is a first step in the direction of the main result of [22]. On the other
hand it is still a complicated non-local formula. By standard methods of local index
theory using e.g. the heat kernel and Getzler rescaling one can produce local cocyles
representing the same cohomology class, see e.g. [4, 20]. In Lemma 3.19 we avoid
complicated analysis and the struggle with normalizations by using theAtiyah–Singer
index theorem. The explicit local formula will be stated in Remark 3.20.
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3.4. The conjecture. The connective covering morphism of spectra (58) induces a
morphism of spectra

kuC=Z! KUC=Z : (79)

Let X be a closed Riemannian manifold of odd dimension d equipped with
a generalized Dirac operator =D. Then we define the map r =D as the following
composition:

r =DWkuC=Z�d�2.X/
(79)
! KUC=Z�d�2.X/

�dC1
Š KUC=Z�1.X/ Š �KU 0flat.X/ � =D! C=Z ; (80)

where �2k WKUC=Zp.X/
Š
! KUC=ZpC2k.X/ is again a periodicity operator. We

now consider the diagram:

kuC=Z�d�2.X/
r =D

''
KdC1.C

1.X//

�dC1
55

b =D

))

C=Z

KdC1.M
d /;

ı

77
(81)

where b =D is defined in (65) and classifies the Fredholm module of =D, ı is the
multiplicative character of Connes–Karoubi (68), and �dC1 is defined in Defin-
ition 2.36.

Conjecture 3.16. Let X be a closed Riemannian manifold of odd dimension d
equipped with a generalized Dirac operator =D. Then the diagram (81) commutes.

In the present paper we show this conjecture for topologically trivial classes in
KdC1.C

1.X//. The precise formulation of this result is Theorem 1.6.

3.5. Comparison of certain cocycles. In this subsection we prepare the proof of
Theorem 1.6 by providing a differential geometric formula for the composition
ı ıHC.b =D/. The main result of this subsection is Lemma 3.19.

In the following we define the cyclic homology HC�.A/ of an associative unital
algebraA overC as the homology of the standard cyclic complexCC�.A/. For details
we refer to [28, 2.1.9] where this complex is denoted by Tot B.A/. Explicitly, we
define

CCn.A/ WD

˚Ln=2

kD0
A˝2kC1; n even;L.n�1/=2

kD0
A˝2k; n odd:
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As in Subsection 3.3, for a unital locally convex algebra we define the continuous
cyclic homology complex CC cont.A/ and its homology HC cont

� .A/ similarly but
using projective tensor products˝� instead of algebraic ones, see Remark (2.9).

Remark 3.17. As shown in [28, 2.1.4] there is a natural quasi-isomorphism

CC.A/! C �.A/; (82)

which we use in order to compare the present definition of cyclic homology with the
one used in Remark 3.14. The quasi-isomorphism (82) is induced by a chain-complex
level projection map, which in degree n is the homomorphism CCn.A/ ! C �n .A/

given by (we write the formula for odd n)

˚
.n�1/=2

kD0
ak0 ˝ � � � ˝ a

k
2kC1 7!

�
a
.n�1/=2
0 ˝ � � � ˝ a.n�1/=2n

�
: (83)

There is a similar quasi-isomorphism in the continuous case.

We define a morphism of graded groups (see (39) for the definition ofDD.X/)

� WCC cont.C1.X//! DD.X/ (84)

by the following prescription:

1. If n is odd, then we define CC cont
n .C1.X//!

Q
p2Z.�

�p�/Œ2p��n.X/ by

.n�1/=2M
kD0

f k0 ˝ � � � ˝ f
k
2kC1 7!

.n�1/=2X
kD0

b
nC1
2 Ck

.2k C 1/Š
f k0 df

k
1 ^ � � � ^ df

k
2kC1 : (85)

2. If n is even, then we define CC cont
n .C1.X//!

Q
p2Z.�

�p�/Œ2p��n.X/ by

n=2M
kD0

f k0 ˝ � � � ˝ f
k
2k 7!

n=2X
kD0

b
n
2Ck

.2k/Š
f k0 df

k
1 ^ � � � ^ df

k
2k :

In these formulas we use the variable b of degree �2 and the identificationY
p2Z

�Œ2p�.X/ Š �Œb; b�1�.X/ :

Under this identification the series
P
p2Z b

p!.p/ 2 �Œb; b�1�.X/ corresponds to
the family .!.p//p2Z 2

Q
p2Z�Œ2p�.X/. By [28, 2.3.6] the map � is a morphism

of chain complexes. By the calculation of the continuous cyclic homology ofC1.X/
by Connes � is actually a quasi-isomorphism.
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We have a projection

 WDD per.X/! DD.X/ (86)

induced by the projections in the components

DD per.p/! DD.p/ ; �Œ2p�! .��p�/Œ2p�

for all p 2 Z.
Remark 3.18. This projection (86) must not be confused with the projection (41).
The latter is given by

DD per.X/
(86)
! DD.X/

S
! DD.X/Œ2� ;

where S..!.p//p2Z/ D .!.p C 1//p2Z.
We now use that d 2 N is odd and that dim.X/ D d . Under these assumptions

the map  in (86) induces an isomorphism

 d WHP
�d .X/

def
D H�d .DD per.X//

 
! H�d .DD.X// : (87)

We consider the isomorphism �d defined as the following composition of
isomorphisms

�d WHC
cont
d .C1.X//

�
�! H�d .DD.X//

 �1
d
! HP�d .X/

�d�1
�! HP�1.X/ : (88)

Let =D be a generalized Dirac operator onX . Using the local index density yA. =D/
(see Remark 3.5) we define the map

z� =DWHP
�1.X/! C ; z� =D

�
Œ�
�
WD

Z
X

yA. =D/ ^ �dC1 : (89)

Lemma 3.19. LetX be a closed manifold of odd dimension d and =D be a generalized
Dirac operator on X . Then the square

HC cont
d

.C1.X//
HC.b =D/ //

�d

��

HC cont
d

.Md /

�d

��
HP�1.X/

z� =D // C

commutes.

Proof. Our task is to compare the composition of the quasi-isomorphism (82) with
the map (78) on the one hand, and the map z� =D defined in (89) on the other. It
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seems to be difficult to do this by an explicit calculation. Therefore we give an
indirect argument based on the Atiyah–Singer index theorem. Our argument will
not use explicit formulas. The convention for fixing normalizations described in
Remark 3.5 automatically takes care of the correct normalizations of yA. =D/ and �d
in Remark 3.14.

We consider the composition of the map marked by ŠŠŠ in (48) with the Chern
character given by the third column in (73) in the case A D C:

K top
C1.X/

ŠŠŠ
! i�XK

top
C

ch cont
per
! i�X CC cont; per

C :

By evaluation at � and taking the .dC2/th homotopy groupwe obtain the left triangle
in the following diagram:

K
top
dC2

.C1.X//

$$

// �dC2.K top
C .X//

�dC1ıchcwper

%%

Š //

��

HC cont
d

.C1.X//
HC.b =D/ //

�d

��

HC cont
d

.Md /

�d

��
HC

cont; per
dC2

.C1.X//

q

99

// HP�1.X/
z� =D // C

:

(90)
The map marked by q is induced by the map marked by this symbol in (71). By
construction the three solid triangles on the left of (90) commute.

Let KC�.�/ denote the usual K-theory for C �-algebras [3]. Since �d � 2 < 0

the connective covering (58) induces an isomorphism marked by � in the following
chain of isomorphisms:

�dC2.K top
C .X// Š ku�d�2.X/

�

Š KU�d�2.X/ Š KC�dC2.C.X// : (91)

Under this identification the map

KU�d�2.X/! HP�1.X/

induced by the dotted arrow in (90) is the composition �dC1 ı chcwper of the usual
Chern character and the shift, use Lemma 2.27. In particular, its image is a lattice
of full rank in HP�1.X/. Since �d is an isomorphism, in order to show that the
right square in (90) commutes is suffices to verify that the right hexagon (omit the
left upper corner) commutes.
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We consider the map

KC
�

dC2.C.X//
(91)
Š �dC2.K top

C .X//
Š
! HC cont

d .C1.X// (92)

in the upper line of (90). The cocycle �d is normalized exactly such that the
composition of (92) with �d ı HC.b =D/ is the integer-valued function obtained by
the pairing of KC�

dC2
.C.X// with the Fredholm module of =D.

The down-right-composition in the right hexagon of (90) maps theK-theory class
x 2 KC

�

dC2
.C.X// to Z

X

�
yA. =D/

�
[ �dC1 chcwper.x/ ; (93)

which is apriori a complex number. The Atiyah–Singer index theorem encoded in
equation (62) shows that (93) is an integer and equal to the index pairing. So the
down-right-composition coincides with the right-down-composition.

Remark 3.20. This is a continuation of Remark 3.15. The following two cocycles
(a) and (b) on CC cont

d
.C1.X// represent the same map HC cont

d
.C1.X// ! C.

We describe result of the application of the two cocyles to the chain

.d�1/=2M
kD0

f k0 ˝ � � � ˝ f
k
2kC1 2 CC

cont
d .C1.X// W

(a)
�2dC1dŠ

.2�i/
d�1
2 .d�1

2
/Š
Tr
�
.PC � P�/

�
.PC � P�/; f

.d�1/=2
0

�
� � �

� � �
�
.PC � P�/; f

.d�1/=2

d

��
;

(b)
.d�1/=2X
kD0

1

.2k C 1/Š

Z
X

ŒyA. =D/�d�2k�1 ^ f k0 df k1 ^ � � � ^ df k2kC1 :

The formula (a) is one for �d ı CC.b =D/ obtained by combining (83) and (78). The
formula (b) gives z� =D ı �d and is derived from a combination of (89) and (85). The
equality of the cohomology classes of (a) and (b) is the assertion of Lemma 3.19.

3.6. Proof of the conjecture for topologically trivial classes. In this subsection
we prove Theorem 1.6. We must show the equality of homomorphisms

r =D ı �dC1 ı @ D ı ıK.b =D/ ı @WK
rel
dC1.C

1.X//! C=Z :
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This goal is achieved by the following chain of equalities:

r =D ı �dC1 ı @ D r =D ı a ı reg
rel
X (94)

D r =D ı a ı  d ı  
�1
d ı reg

rel
X (95)

D r =D ı a ı  d ı ��dC1 ı �d�1 ı  
�1
d ı reg

rel
X (96)

D � =D ı a �KU ı �d�1 ı  
�1
d ı reg

rel
X (97)

D Œ � � � �C=Z ı z� =D ı �d�1 ı  
�1
d ı reg

rel
X (98)

D Œ � � � �C=Z ı z� =D ı �d�1 ı  
�1
ı � ı ��1 ı reg relX (99)

D Œ � � � �C=Z ı z� =D ı �d ı �
�1
ı reg relX (100)

D Œ � � � �C=Z ı �d ıHC.b =D/ ı �
�1
ı reg relX (101)

D Œ � � � �C=Z ı �d ıHC.b =D/ ı �
�1
ı � ı ch cont

rel (102)
D Œ � � � �C=Z ı �d ıHC.b =D/ ı ch cont

rel (103)
D Œ � � � �C=Z ı �d ı ch cont

rel ıK
rel.b =D/ (104)

D ı ıK.b =D/ ı @ : (105)

In the following we explain the steps in detail:
1. For (94) we use Corollary 2.39 and the Definition 2.36 of �dC1 in terms of OregX .

2. At (95) we insert id D  �1
d
ı  d , where  d is defined in (87).

3. At (96) we insert ��dC1 ı �d�1 D id, where �k is the periodicity operator
introduced in (37) for every k 2 2Z. Note that d � 1 is even.

4. At (97) we use the commutative diagram

HP�1.X/

��dC1

��

a �KU // �KU 0flat.X/
� =D

**Š // KUC=Z�1.X/
��d�1

Š // KUC=Z�d�2.X/ C=Z :

HP�d .X/
 d // �dC1.† DD.X//

a // yku
�d�1

flat .X/
Š // kuC=Z�d�2.X/

(79)

OO
r =D

88

5. At (98) we use the definition (89) of z� =D and the observation based on formula
(63) that its composition with Œ � � � �C=Z coincides with the composition � =D ı a �KU.

6. At (99) we insert � ı ��1 D id, where the isomorphism � is defined in (84).

7. At (100) we insert the definition (88) of �d .

8. At (101) we use Lemma 3.19.

9. At (102) we use the equality reg relX D � ı ch
cont
rel .

10. At (103) we delete ��1 ı � .
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11. At (104) we use the naturality of ch cont
rel expressed by the commutative diagram:

K rel
dC1

.C1.X//
ch cont

rel //

K rel.b =D/

��

HC cont
d

.C1.X//

HC.b =D/

��
K rel
dC1

.Md /
ch cont

rel // HC cont
d

.Md /:

12. Finally, at (105) we use the definition of ı in terms of the commutative
diagram (76).
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