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Abstract. We prove that the modular operad of diffeomorphism classes of Riemann surfaces
with both “open” and “closed” boundary components, in the sense of string field theory, is the
modular completion of its genus 0 part quotiented by the Cardy condition. We also provide
a finitary presentation of a version of this modular two-colored operad and characterize its
algebras via morphisms of Frobenius algebras, recovering some previously known results of
Kaufmann, Penner and others. As an important auxiliary tool we characterize inclusions of
cyclic operads that induce inclusions of their modular completions.
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Introduction

History of the subject. Barton Zwiebach constructed in [30] “string products” on
the Hilbert space of closed string field theory satisfying the “master equation” which
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reflected the structure of the set QC of diffeomorphism classes of Riemann surfaces
of arbitrary genera with labelled holes. As we proved in [22], the master equation
expresses that the string products form an algebra over the Feynman transform of QC .
We moreover proved that QC is the modular completion1 of its cyclic suboperad
Com � QC consisting of Riemann surfaces of genus 0, that is

QC Š Mod.Com/: (1a)

Later in [6] we proved a similar statement for open strings. Namely, we identified
the modular operad QO of diffeomorphism classes of Riemann surfaces with marked
“open” boundaries with the modular completion of its genus zero part Ass, i.e. we
established an isomorphism

QO Š Mod.Ass/:

As a follow-up to [6] we argued in [24] that QO is the symmetrization of a more
elementary object QO bearing the structure of a non-† modular operad. The previous
isomorphism then follows from a more elementary

QO Š Mod.Ass/; (1b)

where Ass is the non-† version of the associative cyclic operad and Mod.�/ the
non-† modular completion functor.

Aims. We complete the story and establish analogs of the results mentioned above
for the combined theory of open and closed strings. The central object will be the
set QOC of diffeomorphism classes of Riemann surfaces with both open and closed
inputs. It behaves as a non-†-modular operad in the open and as an ordinary modular
operad in the closed inputs; we call these structures modular hybrids. Contrary to
expectations, it turns out that QOC is not the modular completion of its genus 0

part OC , but the quotient of this completion by the Cardy conditions known to
physicists [4,19] that is, symbolically,

QOC Š Mod.OC/=Cardy: (1c)

The unusual feature of the Cardy conditions is that they involve both the open and
closed interactions. The above isomorphism restricted to closed resp. open parts
gives (1a) resp. (1b), so it is indeed the culmination of the development described
in the previous paragraph. As a bonus, we obtain a purely combinatorial proof of
a result of [15] characterizing algebras over a version of QOC in terms of morphisms
of Frobenius algebras. Our results concerning QOC , namely its Kaufmann–Penner
variant recalled in Subsection 4.2, are explicit or implicit in [15].

1Often called a modular envelope in recent literature. We take the liberty to keep our original
terminology.
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Why is the paper so unbearably long? It is so because we establish three different
versions of (1c): the “ordinary,” stable and the Kaufmann–Penner version, each
having its own merit — “ordinary” version involves everything that makes sense,
stability prevents the combinatorial explosion of the Feynman transform [25, II.5.4],
while the Kaufmann–Penner version2 admits a nice finitary presentation so its
algebras can be described easily. In more detail, the cyclic hybrid OC contains
the stable and KP subhybrids OCst and OCKP such that

OC � OCst � OCKP:

Since, as demonstrated in Example 43, the modular completion functor need not
preserve inclusions, it is not a priory clear whether

Mod.OC/ � Mod.OCst/ � Mod.OCKP/:

A substantial part of this paper is devoted to the proof that it is indeed the case,
therefore the stable and KP cases can be treated as the restricted versions of the
ordinary one.

Our approach. There are two approaches to the structures of (topological) string
field theory. The classical one of [1] interprets surfaces as cobordisms, with the
corresponding combinatorial structure being that of a PROP. The second one does
not discriminate between “outputs” and “inputs,” and the relevant combinatorial
structure is a modular operad. The difference on the algebra level is that, while in the
first approach the bilinear form on the underlying space forms a part of the structure,
in the second approach, adopted e.g. in [15] and this article, the bilinear form is
absorbed in the definition of the modular endomorphism operad.

Main results. The central technical result is Proposition 34 which, together with
Propositions 49 and 52, provides a combinatorial description of the modular
completion of the cyclic hybrid OC and its versions. Our description enables one to
interpret, in Remark 35, elements of this completion as diffeomorphism classes of
certain Riemann surfaces with embedded loops.

Using the above propositions we obtain the main results of this paper — three
versions of the isomorphism (1c): the “ordinary” one in Theorem 38, stable one in
Theorem 51 and the Kaufmann–Penner in Theorem 54. An interesting byproduct
is Theorem 57 describing the KP version QOCKP of QOC in terms of generators
and relations, together with a characterization of algebras over QOCKP as couples
of Frobenius algebras connected by a morphism satisfying the Cardy and centrality
conditions given in Theorem 59. Variants of these results are known, see e.g. [15]
whose approach is geometric and uses transitivity moves on generalized pair of pants
decompositions, or [19] working with 2-cobordisms and the standard forms of these.

2Abbreviated “KP” at some places in the sequel.
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Additional physics arguments can be found in [20]. Our approach however provides
purely combinatorial proofs.

It turns out that OC and its versions are more than just cyclic hybrids as they admit
a partial modular hybrid structure - they are closed under contractions of open inputs
belonging to the same boundary component since this operation does not change the
geometric genus. We call structures of this type premodular hybrids and denote OC

with this extended structure by OCpre. In Theorem 41 we prove that QOC can be
alternatively described as the modular completion of this premodular hybrid. Since
the Cardy condition already lives in OCpre, no quotienting is necessary. Finally,
Proposition 44 characterizing inclusions of cyclic operads inducing inclusions of
their modular completions is interesting in its own right.

Plan of the paper. Section 1 begins with recalling the necessary facts about cyclic
and modular operads, and their non-† versions. We then introduce various versions
of hybrids as structures that combine ordinary and non-† operads. This section also
contains definitions of concrete operads featuring in this article. We believe that
Table 1 helps to navigate through them.

Section 2 is devoted to modular completions of cyclic hybrids and to their
quotients by the Cardy condition. It contains the main technical results of this
paper, Proposition 34 and Theorems 38 and 41.

Section 3 has an auxiliary character. Its Proposition 44 describes inclusions
B ,! C of cyclic operads that induce inclusions Mod.B/ ,! Mod.C/ of their
modular completions.

In Section 4 we use the results of Section 3 to derive the stable and Kaufmann–
Penner versions of the theorems in Section 2.

Theorem 57 of Section 5 provides a finitary presentation of the KP modular hybrid
QOCKP. As its application we obtain a result of Kaufmann and Penner describing
its algebras in terms of morphisms of Frobenius algebras.

Acknowledgements. We are indebted to Ralph Kaufmann for explaining to us what
the Cardy condition is, and to the referee for numerous useful remarks and suggestions
which we gladly followed.

Conventions. We will assume working knowledge of operads and their versions.
Suitable references are monographs [21,25] complemented with [23] and the original
sources [8–10]. Modular completions were introduced in [22] and non-† modular
operads in [24]. Sundry facts about operads relevant for string field theory can be
found e.g. in [2, 3, 5, 7, 11–15, 26, 29, 30]. Operads in this article will, with few
exceptions, live in the symmetric monoidal category Set of sets. We will denote
by 1X or simply by 1 when X is understood, the identity automorphism of an object X

(set, operad, vector space, etc.).
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We will denote by NC the set f1; 2; : : :g of positive integers, by N the
abelian semigroup f0; 1; 2; : : :g of non-negative integers, and by 1

2
N the semigroup

fn=2 j n 2 Ng of half-integers. By Set we denote the category of sets, by Fin the
category of finite sets; jS j 2 N will denote the cardinality of S 2 Fin.

Operads considered in this article may have “inputs” of two types — open and
closed. We will tend to use O as the default notation for open inputs, and C for the
closed ones. The operations uıv in cyclic operads will be termed “ı-operations,”
while the operations ıuv 3 in modular operads will be called “contractions.”

We will use underlining to distinguish between ordinary (“symmetric”) and non-†
(“nonsymmetric”) versions of operad-like objects. For instance, the ordinary cyclic
operad for associative algebras will be denoted by Ass while its non-† version by
Ass. Likewise, the underlined “O” in “QOC” indicates that this object is a non-†
modular operad in its open sector, see Table 1 for more examples. We will apply the
same convention also to functors. Thus the underlined “M” in Mod.OC/ means that
Mod.�/ acts as the non-† modular completion on the open part.

1. Participants in the game

Most of the material recalled in this section already appeared in the literature or is
an harmless modification of the existing notions. The only novel concept is that of
premodular operads and premodular hybrids introduced in Definition 15.

1.1. Standard versions. We start with the following innocuous generalization of
cyclic operads.

Definition 1. A genus-graded cyclic operad is a cyclic operad with an additional
grading by the “operadic genus” (or simply the genus) belonging to an abelian unital
semigroup S.

In other words, genus-graded cyclic operads are cyclic operads in the cartesian
monoidal category of S-graded sets. The components C.S/, S 2 Fin, of a genus-
graded cyclic operad C are thus disjoint unions

C.S/ D tG2SC.S I G/

such that the structure maps aıbW C
�
S1 t fag/ � C

�
S2 t fbg/ ! C.S1 t S2/ restrict

to

aıbW C
�
S1 t fagI G1

�
� C

�
S2 t fbgI G2

�
�! C

�
S1 t S2I G1 C G2

�

for arbitrary S1; S2 2 Fin and G1; G2 2 S. In this article, S will either be N or 1
2
N.

3In ancient times denoted �uv . Notation due to R. Kaufmann.
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Symbol Name Type Found in:

Ass associative operad cyclic operad Ex. 4

Assst stable associative operad cyclic operad Ex. 24

QO quantum open operad modular operad Ex. 5

QOst stable quantum open operad modular operad Ex. 25

Com commutative operad genus-graded cyclic operad Ex. 6

Comst stable commutative operad genus-graded cyclic operad Ex. 26

QC quantum closed operad modular operad Ex. 7

QC st stable quantum closed operad modular operad Ex. 27

QOC quantum open-closed operad modular operad Ex. 8

QOC st stable quantum open-closed operad modular operad Ex. 28

OC open-closed operad genus-graded cyclic operad Ex. 10

OC st stable open-closed operad genus-graded cyclic operad Ex. 29

Ass non-† associative operad non-† cyclic operad Ex. 11

Assst stable non-† associative operad non-† cyclic operad Ex. 31

QO non-† quantum open operad non-† modular operad Ex. 14

QOst stable non-† quantum open operad non-† modular operad Ex. 32

O multiple boundary operad premodular operad Sec. 1.3

OC open-closed hybrid cyclic hybrid Ex. 20

QOC quantum open-closed hybrid modular hybrid Ex. 19

OCpre open-closed hybrid premodular hybrid Ex. 21

OCst stable open-closed hybrid cyclic hybrid Ex. 29

OCKP K.-P. open-closed hybrid cyclic hybrid Ex. 30

QOCKP K.-P. open-closed hybrid modular hybrid Def. 53

QOCst stable quantum open-closed hybrid modular hybrid Ex. 28

Table 1. Operads and operad-like structures featuring in this article; see also diagrams (12)
and (18).

A morphism of genus-graded cyclic operads is a morphism of the underlying
cyclic operads preserving the genus. We let CycOp to denote the category of ordinary
cyclic operads (no genus grading) and CycOpgg the category of genus-graded ones.
Taking the genus 0 part and ignoring the remaining ones leads to the forgetful functor

CycOpgg �! CycOp :
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On the other hand, every cyclic operad can be viewed as a genus-graded cyclic one
concentrated in genus 0 2 S with empty components in higher genera. This gives an
inclusion of categories

�W CycOp ,! CycOpgg

which is the left adjoint of the forgetful functor above.
We will modify the standard definition of modular operads as well, by allowing

the operadic genus G to belong to a semigroup S containing N. This is necessary
since we want our theory to accommodate the quantum open-closed operad QOC

recalled later in this section, cf. Example 8 and Remark 9. Let ModOp denote the
category of these S-graded modular operads. The concrete S will always be clear
from the context.

Forgetting the operadic contractions

ıuvW M
�
S t fu; vgI G

�
! M.S; G C 1/; S 2 Fin; G 2 S;

every modular operads M becomes a genus-graded cyclic operad. This gives rise to
the forgetful functor

�ggW ModOp! CycOpgg:

Its left adjoint will be denoted ModggW CycOpgg ! ModOp. One also has the
“standard” forgetful functor �W ModOp! CycOp, which replaces everything outside
genus 0 by the empty set ;. Its left adjoint ModW CycOp ! ModOp is the standard
modular completion functor introduced in [22, p. 382].

The above functors fit into the following diagram of adjunctions in which the top
arrows are the left adjoints to the bottom ones:

CycOpgg

Modgg

��vv
CycOp

Mod
--1

�

�

66

ModOp :
�ll

�gg

]]
(2)

Orders. At this point we need to recall some notions of [24] used later in this article
in the definition of non-† modular and quantum open-closed operads.

Definition 2. A cycle on a finite set O D fo1; : : : ; ong 2 Fin is an equivalence class
of total orders on O modulo the equivalence generated by

.o1; o2; : : : ; on/ � .o2; : : : ; on; o1/:

A cycle represented by .o1; : : : ; on/ will be denoted by ..o1; : : : ; on//. The empty set
has a unique cycle on it denoted .. //. As in [24] we will sometimes call cycles the
pancakes, imagining them placed in the plane and oriented anticlockwise.
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To save the space, we will sometimes leave out the commas, i.e. write
e.g. ..o1o2o3// instead of ..o1; o2; o3//. The same simplification will be used also for
finite sets, i.e. we will write e.g. fabcg instead of fa; b; cg.

Definition 3. A multicycle O on a finite set O 2 Fin consists of

(i) a disjoint unordered decomposition O D o1 t � � � t ob of the underlying set O

into b � 0 possibly empty sets, and

(ii) a cycle oi on each oi , 1 � i � b.

In the above situation we write O D o1 � � � ob .

V. Novák in [27] introduced (partial or total) cyclic orders on a set. It has the
property that the disjoint union of cyclically ordered sets bears an induced cyclic
order. In Novák’s terminology, a cycle on a finite set O is the same as a total cyclic
order of O while a multicycle on O determines a partial cyclic order on O induced
from the total cyclic orders of its components. Since we allowed the sets oi in (ii)
to be empty, his cyclic order on O does not determine the multicycle uniquely as
it cannot detect the trivial oi ’s which are part of the structure. Notice that b D 0

in Definition 3 is possible only for O D ;. We denote the corresponding trivial
multicycle by ¿.

In [24] we introduced two operations on cycles. The merging of pancakes
..o0

1; : : : ; o0
m// and ..o00

1; : : : ; o00
n// is defined as

��
o0

1; : : : ; o0
m

��
o0

m
ıo00

1

��
o00

1; : : : ; o00
n

��
WD

��
o0

1; : : : ; o0
m�1; o00

2; : : : ; o00
n

��
: (3)

Invoking the invariance of cycles under cyclic permutations we see that (3) in fact
determines the merging

��
o0

1; : : : ; o0
m

��
o0

i
ıo00

j

��
o00

1; : : : ; o00
n

��

for arbitrary 1 � i � m, 1 � j � n. The following picture explains the terminology:

H)
o0

i
o00

j
bcbc

:

The second operation on cycles is the pancake cutting, defined by the formula

ıo1oi
..o1; : : : ; oi ; : : : ; on// WD ..o2; : : : ; oi�1//..oiC1; : : : ; on//; 1 < i � n;

whose result is a multicycle with two cycles. The invariance under the cyclic group
action determines ıoi oj

..o1; : : : ; oi ; : : : ; oj ; : : : ; on// for each 1 � i � j � n. The
intuition behind this operation is explained by the picture below.
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oi

oj H)
bc

bc

The pancake merging of cycles can be extended to multicycles as:

�
o

0
1 � � � o

0
i 0 � � � o

0
b0

�
aıb

�
o

00
1 � � � o

00
i 00 � � � o

00
b00

�

WD o
0
1 � � � yo0

i 0 � � � o
0
b0 o

00
1 � � � yo00

i 00 � � � o
00
b00

�
o

0
i 0 aıb o

00
i 00

�
; (4a)

where a and b belong to the underlying sets of o
0
i 0 resp. o

00
i 00 for some 1 � i 0 � b0,

1 � i 00 � b00, and the hat indicates the omission as usual. To extend the pancake
cutting, i.e. to define ıuv .o1 � � � ob/, we need to distinguish two cases. It might
happen that u and v belong to the same pancake, i.e. u; v 2 oi for some 1 � i � b.
Then we put

ıuv .o1 � � � oi � � � ob/ WD o1 � � � .ıuvoi / � � � ob: (4b)

The second possibility is that u 2 oi 0 and v 2 oi 00 for 1 � i 0 ¤ i 00 � b. Then

ıuv .o1 � � � oi 0 � � � oi 00 � � � ob/ WD o1 � � � yoi 0 � � � yoi 00 � � � ob .oi 0 uıv oi 00/: (4c)

We have therefore defined the multicycles

O
0

aıb O
00 resp. ıuvO

for arbitrary multicycles O
0; O

00 resp. O on finite sets O 0; O 00 resp. O , with elements
a 2 O 0, b 2 O 00 resp. u; v 2 O . Pancake merging offers an effective definition of
the cyclic associative operad Ass:

Example 4. The component Ass.O/ of the cyclic associative operad Ass is, for
O 2 Fin, the set cycles on O , that is

Ass.O/ WD
˚
o j o is a cycle on O

	
:

Clearly jAss.O/j D .jOj � 1/Š . The structure operations are given by the pancake
merging. An automorphism � 2 Aut.O/ acts on the set Ass.O/ by

�..o1; : : : ; on// WD
��

�.o1/; : : : ; �.on/
��

:

We will denote by Ass both the cyclic operad Ass and its genus-graded version
�.Ass/. The meaning will always be clear from the context.

Example 5. The .OI G/-component of the quantum open modular operad QO is,
for O 2 Fin and G 2 N defined as

QO.OI G/ WD
n�

o1���ob
g

�
j b 2 NC; g 2 N;

G D 2g C b � 1; o1 � � � ob is a multicycle on O
o

(5)
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Figure 1. An oriented surface † with b toothed boundaries and genus g.

while the other components are empty. In (5),
�

o1���ob
g

�
is a formal symbol depending

on the multicycle o1 � � � ob and on a non-negative integer g determined by the operadic
genus by the formula G D 2g C b � 1. Less formally,

�
o1���ob

g

�
specifies the

diffeomorphism class of a two-dimensional oriented genus g surface † with b

“open” boundaries with teeth labelled by elements of O on boundaries portrayed
in Figure 1 taken from [24]. For this reason we call the number g the geometric genus
of
�

o1���ob
g

�
2 QO. The operadic structure is given by connecting the teeth with

ribbons so that the orientability is not violated. Notice that we assume that b � 1,
so † has at least one open boundary. The operadic genus G is related to the Euler
characteristics � of † by G D 1 � �.

Notice that not all combinations of G and b are allowed, for instance G D b D 1

would imply g D 1
2
. The assumption that g 2 N is precisely the geometricity

of [24].4
The aıb-operations are given by the pancake merging as

h
o

0

1
���o0

b0

g0

i
aıb

h
o

00

1
���o00

b00

g00

i
WD

h
.o

0

1
���o0

b0
/ aıb.o

00

1
���o00

b00
/

g0Cg00

i
; (6a)

where g0; g00 2 N and the meaning of the remaining symbols is the same as in (4a).
The contractions are given by the pancake cutting, i.e. in the notation of (4b)
resp. (4c),

ıuv

h
o1���ob

g

i
WD

�h
ıuv.o1���ob/

g

i
if u and v belong to the same pancake, and

h
ıuv.o1���ob/

gC1

i
if they belong to different pancakes.

(6b)
Automorphisms � 2 Aut.O/ act according to the formula

�
h

..o1
1

���o1
n1

//���..ob
1

���ob
nb

//

g

i
WD

h
..�.o1

1
/����.o1

n1
///���..�.ob

1
/����.ob

nb
///

g

i
:

4Notice however that in [24] the symbols g and G are interchanged.
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a

b

c

d
e a

x

c

d

e
b y

z

u

Figure 2. Left: a surface representing the element of Com
�
fa; b; c; d; egI 3

�
. Right: the glue-

ing aıb .

The only solution of G D 2gCb�1 with G D 0 for b 2 NC and g 2 N is b D 1,
g D 0. Therefore the genus 0 component of QO equals the associative operad Ass,
so the injection

Ass ,! QO; o 7! Œ o

0 �

defines an isomorphism Ass Š �.QO/.
We proved in [6] that Mod.Ass/ Š QO. By (2), Mod.Ass/ Š Modgg

�
�.Ass/

�
,

therefore, under the identification �.Ass/ D Ass, one has

Modgg.Ass/ Š QO:

In the following example we introduce a genus-graded version of the cyclic operad
describing commutative Frobenius algebras. Its standard definition is modified in
such a way that it forms a genus-graded cyclic suboperad of the quantum open-closed
operad QOC recalled in Example 8 below.

Example 6. The component Com.C I G/ of the cyclic genus-graded operad Com is,
for a finite nonempty set C 2 Fin and a non-negative half-integer G 2 1

2
N satisfying

G D �1 C jC j=25 (7)

defined as

Com.C I G/ WD fC g;

while Com.C I G/ is empty for other pairs .C; G/. So all non-empty components
of Com are one-point sets indexed by C 2 Fin. The operadic composition is the
only possible one and automorphisms from Aut.C / act trivially.

It is useful in some situations to represent the unique element of Com.C I G/ as
the diffeomorphism class of genus-0 compact oriented surfaces with holes indexed
by C . In this visualization, the operadic composition is given by connecting these
holes by tubes, as indicated in Figure 2 taken from [24].

5Notice that G 2 1
2

N implies jC j � 2.
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Example 7. The .C I G/-component of the quantum closed modular operad QC is,
for C 2 Fin and G 2 1

2
N given by

QC .C I G/ WD
˚� g

C

�
j g 2 N; G D 2g � 1 C jC j=2

	
;

while the other components are empty. Since all non-empty components of
QC.C I G/ are one-point sets, the modular operad structure is the unique one with
Aut.C / acting trivially. The symbol

� g
C

�
represents the diffeomorphism class of

closed oriented surfaces of genus g with holes indexed by the elements of C . The
modular operadic structure is in this representation given by connecting the holes by
tubes as in Figure 2.

There is an obvious injection

iC W Com ,! QC ; C 7!
�

0
C

�
(8)

which identifies Com with the cyclic genus-graded suboperad of QC consisting of
elements with g D 0. It is easy to verify directly that

Modgg.Com/ Š QC :

A non-genus-graded version of this result appeared in [22, p. 382].

Finally, we recall a two-colored modular operad QOC containing QO in the
“open” color and QC in the “closed” one.

Example 8. The .O; C I G/-component QOC.O; C I G/ of the quantum open-closed
modular operad is, for O; C 2 Fin and G 2 1

2
N, defined as the set

nh
o1���ob

g

C

i
j b 2 N; g 2 N;

G D 2g C b � 1 C jC j=2; o1 � � � ob is a multicycle on O
o
: (9)

Other components of QOC are empty. The operadic compositions are
�

o
0

1
���o0

b0

g0

C 0

�
aıb

�
o

00

1
���o00

b00

g00

C 00

�
WD

�
.o

0

1
���o0

b0
/ aıb.o

00

1
���o00

b00
/

g0Cg00

C 0t C 00

�
;

if a; b are open inputs, and
�

o
0

1
���o0

b

g0

C 0

�
aıb

�
o

00

1
���o00

b00

g00

C 00

�
WD

�
o

0

1
���o0

b0
o

00

1
���o00

b00

g0Cg00

C 0t C 00nfa;bg

�

if a 2 C 0, b 2 C 00 are closed inputs. We believe that the meaning of the notation,
analogous to the one used in previous examples, is clear. The contractions are, for
open inputs u and v, given by

ıuv

h
o1���ob

g
C

i
WD

„�
ıuv.o1���ob/

g
C

�
if u and v belong to the same pancake, and

�
ıuv.o1���ob/

gC1
C

�
if they belong to different pancakes.
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The contractions for closed inputs u; v 2 C are defined by

ıuv

h
o1���ob

g
C

i
WD

�
o1���ob

gC1
Cnfu;vg

�
:

There is an obvious action of the group Aut.O/ � Aut.C / on the set QOC.O; C I G/

extending the action of Aut.O/ described in Example 5 and the trivial action of
Aut.C /. The symbol h

o1���ob
g
C

i

in (9) represents the diffeomorphism class of closed oriented surfaces of genus g

with b “open” holes with teeth labelled by elements of O as portrayed in Figure 1,
and “closed” holes labelled by elements of C . The operad structure in the open
color is given by connecting the teeth via ribbons, the structure in the closed color by
connecting the holes via tubes.

There are natural injections QO ,! QOC and QC ,! QOC given by
�

o1���ob
g

�
7!
h

o1���ob
g
;

i
and

h
g
C

i
7!
h

¿
g
C

i

which identify QO with the genus-graded suboperad of QOC consisting of elements
with no closed inputs, and QC with the genus-graded suboperad of QOC of elements
with b D 0 open boundaries.

The genus-graded cyclic operad Com from Example 6 clearly coincides with the
suboperad of QOC consisting of elements with g D b D 0, i.e. elements of the form

h
¿
0
C

i
; C 2 Fin :

Such an element lives in the operadic genus G D jC j=2 � 1. This shall explain the
necessity of introducing genus-graded cyclic operads in this article. Notice that the
stability assumption jC j � 3 implies that G � 1

2
.

Remark 9. One easily verifies that the Cardy condition

ıuv

�h
..uqa//

0
;

i
aıb

h
..bvr//

0
;

i�
D

�
..q//

0
fcg

�
cıd

�
..r//

0
fdg

�
(10)

visualized in Figure 3 holds in QOC . Notice that the Cardy condition involves both
“open,” in the left hand side, and “closed,” in the right hand side, structure operations.
Let us explain how it forces the operadic genus of QOC to be half-integral. The
terms h

..uqa//
0
;

i
and

h
..bvr//

0
;

i

in the left hand side are related by a bijection, hence they have the same operadic
genus, say G0. The terms �

..q//
0

fcg

�
and

�
..r//

0
fdg

�

in the right hand side also have the same operadic genus, say G00, by the same reason.
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ıuv cıdaıb

c d

q qr r

a

u b

v
 !

D

Figure 3. A pictorial form of the Cardy condition. A better picture can be found in [19, (3.44)].

Since ıuv is required to raise the operadic genus by 1, we have

2G0 C 1 D 2G00

which shows that G0 and G00 cannot be simultaneously integral.
The authors of [15] view in Appendix A.3 objects like QOC as c/o-structures,

i.e. objects bigraded by couples .g; �/, behaving as modular operads with respect to
the grading by g in the closed, and as modular operads with respect to 1 � � in the
open structure operations. In our particular case, g would be the geometric genus
and � the Euler characteristic of the surface representing an object of QOC . The
above discussion shows that if one wants to replace c/o-structures by a single graded
ones, the combined grading has to be given by half-integers.

The modular operad QOC contains the following important genus-graded cyclic
suboperad.

Example 10. The open-closed cyclic operad OC is the genus-graded cyclic sub-
operad of QOC consisting of diffeomorphism classes of all surfaces of geometric
genus 0, i.e.

OC.O; C I G/ WD
nh

o1���ob
g
C

i
2 QOC.O; C I G/ j g D 0

o
: (11)

The structures encountered so far and their inclusions are organized in the
following diagram:

Com
� � //

� _

��

QC � t

''❖❖
❖❖

❖❖
❖

OC
� � // QOC :

Ass
� � //

?�

OO

QO
*
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(12)

1.2. Non-† versions. It turns out that the operad QOC from Example 8 is generated,
in the sense specified below, by a simpler object QOC that behaves in the open color
as a non-† (non-symmetric) modular operad. Let us briefly recall what these objects
are.

Non-† cyclic operads were introduced in [25, p. 257]. The genus-graded
extension of their definition is so obvious that we can safely leave the details to
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the reader. We denote their category CycOp resp. CycOpgg in the genus-graded case.
The left adjoint

SymW CycOpgg ! CycOpgg

to the forgetful functor DesW CycOpgg ! CycOpgg is called the symmetrization.

Example 11. The genus-graded cyclic operad Ass recalled in Example 4 is
the symmetrization of the non-† cyclic genus-graded operad Ass whose .o; G/-
component, for a cycle o on a finite set O and G 2 S, is defined by

Ass.oI G/ WD

(
fog; if G D 0, and

;; otherwise.

Since Ass.oI G/ is either empty or a one-point set, the operadic composition is defined
in the only possible manner, and the subgroup Aut.o/ � Aut.O/ of automorphisms
preserving the cyclic order acts trivially. The isomorphism Ass Š Sym.Ass/ is easy
to check.

Since non-† modular operads were introduced only very recently [24], we recall
their basic features in more detail. While the components of non-† cyclic genus-
graded operads are indexed by cycles and genera, components of modular non-†
operads are indexed by multicycles and genera. We start by recalling a suitable
groupoid of multicycles.

Definition 12. A isomorphism O
0 D o

0
1 � � � o

0
b0 �! O

00 D o
00
1 � � � o

00
b00 of multicycles

consists of a bijection uW f1; : : : ; b0g ! f1; : : : ; b00g and of a cyclic order-preserving
bijection �i W o

0
i ! o

00
u.i/

specified for each 1 � i � b0. The groupoid of all multicycles
and their isomorphisms will be denoted by MultCyc.

Definition 13. A non-† modular operad is a functor

MW MultCyc�1
2
N �! Set;

where 1
2
N 6 is viewed as a discrete category, together with operadic compositions

uıvW M.O0I G0/ ˝ M.O00I G00/ �! M.O0
uıv O

00I G0 C G00/ (13)

defined for arbitrary disjoint multicycles O
0 and O

00 with elements u 2 O 0, v 2 O 00

of their underlying sets, and contractions

ıuv D ıvuW M.OI G/ �! M.ıuvOI G C 1/ (14)

given for any multicycle O and distinct elements u; v 2 O of its underlying set. These
data are required to satisfy the expected associativity and equivariance axioms for
which we refer the reader to [24].

6In [24], M was a functor MultCyc�N �! Set, but the difference is irrelevant.
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We will denote the category of non-† modular operads by ModOp. As for cyclic
operads, we have the forgetful functor DesW ModOp ! ModOp and its left adjoint
SymW ModOp! ModOp.

Example 14. The quantum open modular operad QO recalled in Example 5 is
the symmetrization of the non-† modular operad QO 2 ModOp whose .OI G/-
component is, for O D o1 � � � ob 2 MultCyc and G 2 N defined as

QO.OI G/ WD
˚�

O
g

�
j g 2 N; G D 2g C b � 1

	

while the other components are empty. The structure operations are given by
formulas (6a) and (6b). There is a natural inclusion iO W Ass ,! QO given by

iO.o/ WD
�

o

0

�
: (15)

The symbol
�

O
g

�
represents, for O D o1 � � � ob , the diffeomorphism class of

surfaces † as in Figure 1 with b boundary components and teeth indexed by the
underlying set of O such that each oi , 1 � i � b, corresponds to a specific boundary
component of †, with its total cyclic order induced by the orientation of †.

The forgetful functor ModOp! CycOpgg has the left adjoint

ModW CycOpgg ! ModOp:

The second author proved in [24] that

Mod.Ass/ Š QO:

1.3. Premodular operads. Consider the subcollection O of the non-† version of
the quantum open operad QO of Example 14 consisting of symbols

�
O

0

�
representing

surfaces with geometric genus g D 0. Inspecting formulas (6a) and (6b) defining the
operadic structure of QO we see that, while O is closed under the compositions aıb ,
i.e. it is a genus-graded non-† cyclic suboperad of QO, O.O/ is closed under
the contraction ıuv only if u and v belong to the same cycle of the multicycle
O D o1 � � � ob . The collection O is an example of the following structure.

Definition 15. A premodular operad P is a functor

P W MultCyc�1
2
N �! Set

together with operadic compositions

uıvW P .O0I G0/ ˝ P .O00I G00/ �! P .O0
uıv O

00I G0 C G00/

defined for arbitrary disjoint multicycles O
0 and O

00 and elements u 2 O 0, v 2 O 00 of
their underlying sets, and contractions

ıuv D ıvuW P .OI G/ �! P .ıuvOI G C 1/
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defined only for distinct elements u; v belonging to the same underlying set of a
cycle of the multicycle O. These data are required to satisfy the axioms analogous
to those for non-† modular operads. Premodular operads and their morphisms form
the category preModOp.

Premodular operads are thus specific partial non-† modular operads. Notice that
there is no analogue of premodular operads for the standard (†-) modular operads.

1.4. Hybrids. We will also need operad-like structures with two colors, “open”
and “closed,” which behave differently in each of its colors. Namely, we consider
structures that are

(i) genus-graded non-† cyclic operads in the open color and ordinary genus-graded
cyclic operads in the closed one,

(ii) non-† modular operads in the open color and ordinary modular operads in the
closed one, and

(iii) premodular operads in the open color and ordinary modular operads in the
closed one.

Definition 16. We call a structure of type (i), (ii) resp. (iii) a cyclic, modular
resp. premodular hybrid. Their categories will be denoted CycHyb, ModHyb and
PreHyb, respectively.

Modular hybrids should be compared with another formalization of the
combinatorial structure of surfaces with open and closed boundaries — c/o-structures
of [15, Appendix A], cf. also the last paragraph of Remark 9.

Example 17. Let ColHyb denote the category of hybrid collections which are, by
definition, functors

EW MultCyc� Fin�1
2
N �! Set

where 1
2
N is viewed as a discrete category. Informally, objects of ColHyb are what

remains from cyclic (or modular) hybrid when one forgets all ı-operations (and
contractions). We therefore have a commuting diagram

CycHyb

%%❑❑
❑❑

❑❑
❑❑

❑❑

ModHyb //

99ssssssssss
ColHyb

of forgetful functors and the associated commutative diagram

CycHyb

Mod.�/

yysss
ss
ss
ss
s

ModHyb ColHyb
Fmod.�/

oo

Fcyc.�/
ee❑❑❑❑❑❑❑❑❑❑

of their left adjoints. The functors Fcyc.�/, Fmod.�/ and Mod.�/ are the free cyclic,
free modular and modular hybrid completion functors, respectively.
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Example 18. Let k be a field, not necessarily of characteristic zero. Each (graded)
k-vector space A equipped with a non-degenerate symmetric bilinear form ˇA

has its modular endomorphism operad EndA, see e.g. [25, Example II.5.43], [23,
Example 52] or the original source [9, (2.25)]. Given another vector space B with a
non-degenerate symmetric bilinear form ˇB , one can, in the obvious manner, extend
the construction of EndA and create a modular endomorphism hybrid EndA;B with
components

EndA;B.O; C I G/ WD Lin
�N

o 2O Ao ˝
N

c 2C Bc ; k
�
: (16)

In the above display, O is the underlying set of the multicycle O, Ao resp. Bc are
the identical copies of the space A resp. B , and

N
is the unordered product in the

symmetric monoidal category of graded vector spaces [25, Definition II.1.58]. Due to
the presence of non-degenerate bilinear forms, both A and B are finite-dimensional,
canonically isomorphic to their duals via raising and lowering indexes. This allows
for several formally different but equivalent definitions of the endomorphism modular
hybrid. For instance, (16) can be replaced by

EndA;B.O; C I G/ WD
N

o 2O Ao ˝
N

c 2C Bc

which is more in the spirit of [9].

Having endomorphism hybrids, one can speak about algebras; an algebra for a
modular hybrid is, by definition, a morphism ˛W H ! EndA;B . Since EndA;B is
at the same time also a cyclic hybrid, we define in the same way algebras for cyclic
hybrids.

Example 19. The operad QOC of Example 8 is the symmetrization, in the open color,
of the modular hybrid QOC whose .O; C I G/-component is, for O D o1 � � � ob 2

MultCyc, C 2 Fin and G 2 1
2
N defined as the set of symbols

QOC.O; C I G/ WD
nh

O
g
C

i
j g 2 N; G D 2g C b � 1 C jC j=2

o
: (17)

Example 20. There two-colored genus-graded cyclic operad OC from Example 10
is the symmetrization, in the open color, of the cyclic hybrid OC defined as the
subcollection of QOC consisting of symbols (17) with g D 0. The hybrid OC

clearly contains both Com and Ass as graded cyclic (resp. non-† cyclic) suboperads.

Example 21. The cyclic hybrid OC from Example 20 is obviously stable under the
contractions ıuv for u and v belonging to the same pancake. It therefore forms a
premodular hybrid which we denote by OCpre.
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One clearly has the following non-† version of the diagram in (12) composed of
ordinary and non-† operads, and cyclic and modular hybrids:

Com
� � //

� _

��

QC � t

''◆◆
◆◆

◆◆
◆

OC
� � // QOC :

Ass
� � //

?�

OO

QO
*
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(18)

1.5. Stable versions. Let us slightly generalize the stability condition for modular
operads introduced in [9].

Definition 22. The stable part of a cyclic or modular operad P is the collection
defined as

Pst.S I G/ WD P .S I G/

if the stability

2.G � 1/ C jS j > 0 (19)

is satisfied, while Pst.S I G/ WD ; for the remaining .S I G/. The operad P is stable
if P D Pst.

Inequality (19) is equivalent to the absence of continuous families of automor-
phisms of a Riemann surface of genus G with jC j distinct marked points; whence
its name. Notice, that for genus-graded cyclic operads concentrated in genus 0, (19)
says that jS j � 3.

Definition 22 is easily modified to the non-† cases, while for hybrids we
replace (19) by

2.G � 1/ C jOj C jC j > 0: (20)

The statements in the following lemma can be verified directly.

Lemma 23. Inequalities (19) and (20) are preserved by the ı-operations and
contractions. If a contraction of x belongs to the stable part of a (non-†) modular
operad or of a modular hybrid, then x belongs to the stable part as well.

Thus the stable part of a (non-† ) cyclic, (non-† ) modular, or premodular operad,
or of a hybrid, is the structure of the same type, with the operations given by the
restrictions of the original ones.

Example 24. The stable version Assst of the associative cyclic operad Ass of
Example 4 is obtained by requiring that Assst.O/ D ; if jOj � 2, i.e.

Assst.O/ WD

(
Ass.O/; if jOj � 3, and

;; otherwise.
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The operad Assst governs associative algebras with a non-degenerate invariant
bilinear form.7

Example 25. The stable version of the quantum open modular operad QO from
Example 5 is defined by

QOst.OI G/ WD

(
QO.OI G/; if 2.G � 1/ C jOj > 0, and

;; otherwise.

The operadic structure is defined by the same formulas as for QO.

Example 26. The stable version of the genus-graded cyclic commutative operad
Com from Example 6 is defined by

Comst.C I G/ WD

(
Com.C I G/; if jC j � 3, and

;; otherwise.

It is easy to check that, since G is determined by jC j via (7), the condition jC j � 3

is equivalent to the stability 2.G � 1/ C jC j > 0 as expected. Algebras over Comst

are commutative Frobenius algebras.

Example 27. The stable variant QC st of the quantum closed operad QC recalled in
Example 7 is defined by

QC st.C I G/ WD

(
QC .C I G/; if 2.G � 1/ C jC j > 0, and

;; otherwise.

Example 28. The stable version QOC st of the quantum open-closed operad QOC

from Example 8 is defined by

QOC st.O; C I G/ WD

(
QOC.O; C I G/; if 2.G � 1/ C jOj C jC j > 0, and

;; otherwise.

The stability condition for the symbol in (9) in QOC.O; C I G/ expressed in terms
of its geometric genus and number of boundaries reads

4g C 2b C 2jC j C jOj > 4:

The stable subhybrid QOCst of the modular hybrid QOC from Example 19 is defined
similarly.

Example 29. The stable version OC st of the open-closed cyclic operad OC from
Example 10 is the genus-graded cyclic suboperad of QOC st consisting of all symbols
as in (11) satisfying

2b C 2jC j C jOj > 4:

7I.e. non-commutative Frobenius algebras.
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element b G jOj jC j element b G jOj jC j

1 1 0 0 0 2 1 0 1 0

3 1 0 2 0 4 2 1 0 0

5 1 1
2

0 1 6 0 0 0 2

Table 2. Unstable elements in OC .

Likewise, the stable cyclic hybrid OCst consists of all symbols (17) with g D 0

satisfying the same inequality. There are six unstable elements of OC , i.e. elements
of OC n OCst, namely

1 WD
h

.. //
0
;

i
; 2 WD

h
..p//

0
;

i
; 3 WD

h
..pq//

0
;

i
;

4 WD
h

.. //.. //
0
;

i
; 5 WD

�
.. //
0

fdg

�
; 6 WD

h
¿
0

fd;eg

i
:

(21)

Their operadic genera, number of boundaries, and the cardinalities of O and C are

listed in Table 2. The symbol
h

¿
0

fdg

i
is excluded since its operadic genus equals

G D �1=2.

The stable version of the diagram in (12) can be obtained by decorating everything
by the subscript “st.”

Example 30. We will consider also the Kaufmann–Penner cyclic subhybrid OCKP of
the stable cyclic hybrid OCst obtained by discarding the following types of elements
of OCst:

type (i):
h

.. //���.. //
0
;

i
; b � 3I type (ii):

h
.. //���.. // o

0
;

i
; b � 2; jsfoj � 1I

type (iii):

�
.. //���.. //

0
fdg

�
; b � 2:

The check that OCKP is closed under ı-operations is routine. In the proof of
Theorem 55 we will need an explicit list of elements

h
o1 ���ob

0
C

i
2 OC (22)

that do belong to OCKP. We distinguish three cases depending on the number of
boundaries.

– If b � 2, then (22) belongs to OCKP if and only if:

– jC j � 2, or

– jC j D 1 and at least one of o1; : : : ; ob is not empty, or

– C D ; and at least two of o1; : : : ; ob are not empty,
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– if b D 1, then (22) belongs to OCKP if and only if jOj C 2jC j > 2, and

– if b D 0, then (22) belongs to OCKP if and only if jC j � 3.

Example 31. The stable version Assst of the non-† associative cyclic operad Ass

from Example 11 is defined by

Assst.oI G/ WD

(
Ass.oI G/; if the cardinality of the underlying set of o is � 3, and

;; otherwise.

Example 32. The stable version QOst of the non-† associative modular operad QO

from Example 14 is defined by

QOst.OI G/ WD

(
QO.OI G/; if 2.G � 1/ C jOj > 0, and

;; otherwise.

Remark 33. Most of the objects and constructions discussed in this sections can
be interpreted in the language of Feynman categories, see e.g. [17]. In this setup,
operads appear as strong symmetric monoidal functors F ! C from a Feynman
category F into a symmetric monoidal category C, which is in our case the category
of sets. Various versions of operad-like objects can be obtained from the basic
Feynman category G of graphs [16, Example 1.8] via decorations [16, Sections 2
and 5] or by restriction to a subcategory. Modular envelopes and diagrams that
involve them then appear as particular cases of the push-forward construction and its
functoriality [16, Section 3].

2. Modular completion and the Cardy condition

This section forms the core of this article. Proposition 34 below explicitly describes
the modular completion of the cyclic hybrid OC and identifies it with the set of
diffeomorphism classes of suitable Riemann surfaces with embedded circles. Its
proof occupies nearly seven pages. Theorem 38 is the central result of this paper. It
describes QOC as the quotient of Mod.OC/ by the Cardy condition. Theorem 41 in
the last subsection characterizes QOC as the modular completion of the premodular
hybrid OCpre.

2.1. Modular completion of cyclic hybrids. In Example 17 we introduced the
modular hybrid completion functor ModW CycHyb ! ModHyb as the left adjoint to
the forgetful functor ModHyb ! CycHyb. It is clearly a combination of the non-†-
modular completion functor Mod [24, Section 5] in the open color and the ordinary
modular completion Mod [22, p. 382] in the closed one, as indicated by underlying
only the first letter of “Mod.” The aim of this subsection is to describe its value on
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the open-closed cyclic hybrid OC from Example 20. This auxiliary technical result
is the main step in proving Theorem 38.

We will need the following terminology. Let O D o1 � � � ob , b � 1, be a nontrivial
multicycle. A decomposition of O is a disjoint decomposition

f1; : : : ; bg D B1 [ � � � [ Ba

of the set indexing the cycles of O into nonempty subsets. When necessary, we will
identify it with a choice O1; : : : Oa of multicycles Oi WD foj j j 2 Big, 1 � i � a.
In this situation we denote bi WD jBi j; clearly b D b1 C � � � C ba.

Proposition 34. The component Mod.OC/.O; C I G/ of the modular hybrid
completion of OC is, for O 2 MultCyc, C 2 Fin and G 2 1

2
N, the set of all

symbols �
V.O1IG1/���V.OaIGa/

g

C

�
; abbreviated as

�
V1���Va

g

C

�
; (23)

where

(i) g 2 N,

(ii) O1; : : : Oa is a decomposition of O,

(iii) Gi 2 N, 1 � i � a, are such that QO.Oi I Gi / is non-empty, and

(iv) V.Oi I Gi/ is the unique nontrivial element of QO.Oi I Gi /, 1 � i � a.

We moreover assume that

G D
Pa

iD1 Gi C 2g C a � 1 C jC j=2:

For g 2 N satisfying G D 2g � 1 C jC j=2 we complete the definition by

Mod.OC/.¿; C I G/ WD
nh

¿
g

C

io
;

while Mod.OC/.O; C I G/ is empty in all remaining cases.

The modular operad compositions are defined as follows. If u is an open input
of V 0

i , 1 � i � a0, and v is an open input of V 00
j , 1 � i � a00, then

�
V 0

1
���V 0

a0

g0

C 0

�
uıv

�
V 00

1
���V 00

a00

g00

C 00

�
WD

"
.V 0

i uıv V 00

j
/V 0

1
���bV 0

i
���V 0

a0
V 00

1
���bV 00

j
���V 00

a00

g0Cg00

C 0tC 00

#
:

If u 2 C 0 and v 2 C 00 are closed inputs, then

�
V 0

1
���V 0

a0

g0

C 0

�
uıv

�
V 00

1
���V 00

a00

g00

C 00

�
WD

�
V 0

1
���V 0

a0
V 00

1
���V 0

a00

g0Cg00

C 0tC 00nfu;vg

�
:
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If u is an open input of Vi and v an open input of Vj , 1 � i; j � a, i ¤ j , then

ıuv

�
V1���Va

g

C

�
WD

�
.Vi uıv Vj /V1���bV i ���bV j ���Va

gC1

C

�
:

If both u; v are open inputs of the same Vi , 1 � i � a, then

ıuv

�
V1���Va

g

C

�
D

�
.ıuvVi /V1���bV i ���Va

g

C

�
:

Finally, if u; v 2 C are closed inputs, then

ıuv

�
V1���Va

g

C

�
WD

�
V1���Va

gC1

Cnfu;vg

�
:

The unit eW OC ! Mod.OC/ of the adjunction ModHyb
""
CycHybbb is given by

e
�h

o1���oa

0
C

i�
WD

� h
o1

0

i
���
h

oa

0

i

0
C

�
for a � 1; and e

�h
¿
0
C

i�
WD
h

¿
0
C

i
: (24)

We will use the inclusion e of (24) to view OC as a cyclic subhybrid of Mod.OC/.
A combinatorial characterization of pairs .Oi ; Gi/ for which the set QO.Oi I Gi/

in (iii) is non-empty was given in Example 14. Namely, there must exist gi 2 N such
that Gi D 2gi C bi � 1, Vi is then the symbol

�
Oi
gi

�
, 1 � i � a, and the element

in (23) takes the form " h
O1
g1

i
���
h

Oa
ga

i

g

C

#
:

The graphical form of the expression above suggests to call Vi D
�

Oi
gi

�
2 QO in (23)

a nest.

Remark 35. Symbols (23) can be represented by oriented surfaces † with holes
indexed by C , b teethed boundaries with teeth indexed by the multicycle O, and an
extra data consisting of a embedded non-intersecting circles dividing † into a C 1

regions, say R1; : : : ; Ra; RaC1, such that Ri contains teethed boundaries indexed
by Oi , 1 � i � a, and RaC1 all holes indexed by C .

Remark 36. We are going to offer another geometric counterpart of Theorem 34.
We are indebted to it to an anonymous referee whose suggestions we follow closely.

The open/closed duality presented in [15, Section 4] implies that any surface
of geometric genus g with b boundary components indexed by i D 1; : : : ; b, each
having ni marked points (teeth), and s punctures interpreted as open boundaries
without marked points, can be decomposed into more elementary pieces follows.

(a) One glues to a surface of genus g with b closed boundary components cylinders
C1; : : : ; Cb with one closed and one open boundary component with ni teeth, where
one cylinder, say C1, has moreover s punctures.
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(b1) One then further decomposes the cylinders C2; : : : ; Cb into a cylinder C with
one closed and one open boundary component, with the open boundary having only
one tooth to which a disk (“cogwheel”) with ni C 1 teeth is glued.

(b2) The exceptional cylinder C1 decomposes into a cylinder C as in (b1) to which
a disk D with n1 C 1 teeth and s open boundaries in the interior is glued.

(c) Finally, the punctured disk D appears as a disk with n1 C 1 C 2s teeth, where
the 2s teeth come in neighboring pairs. The interior punctures of D are obtained by
glueing the neighboring pairs.

Our new realizations are that (b1) and (b2) only need a non-† structure in the open
part, while (c) uses the premodular structure.

Proof of Proposition 34. We need to verify the universal property saying that for
each modular hybrid H and morphism of cyclic hybrids F W OC ! H there is a
unique morphism zF W Mod.OC/ ! H of modular hybrids such that the following
diagram commutes:

OC
� � e //

F
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

Mod.OC/

zF
��✤
✤

✤

H :

Uniqueness. Assume that zF exists and prove its uniqueness. We have the diagram:

Com
� � //G g

iC

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐

FiC

❏❏
❏❏

$$❏
❏❏

❏❏
❏❏

❏❏
❏

QC

F 00

��

gG�C
tt✐✐✐✐

✐✐✐
✐✐✐

OC
� � //

F

❑❑
❑

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑

Mod.OC/

zF

��

Ass

FiO

$$❍
❍❍

❍❍
❍❍

❍❍
❍❍

❍❍

�� //
( �

iO
55❦❦❦❦❦❦❦❦❦❦
QO

F 0

��

' �

�O 44❥❥❥❥❥❥❥❥❥❥
H :

H

✐✐✐✐✐✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐✐✐✐✐✐

H

✐✐✐✐✐✐✐✐✐✐✐✐✐✐

✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(25)

In this diagram, the inclusion �O W QO ,! Mod.OC/ is the dotted arrow in

Ass
� _

��

� � iO // QO

�O

��✤
✤

✤

OC
� � e // Mod.OC/;

where e is the unit of the adjunction (24) and iO the inclusion (15). The dotted arrow
exists as Mod.Ass/ Š QO by [24]. Likewise, the inclusion �C W QC ,! Mod.OC/
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is the dotted arrow in

Com� _

��

� � iC //// QC

�C

��✤
✤

✤

OC
� � e // Mod.OC/;

where iC is the inclusion (8). It exists since, by [22, p. 382], QC Š Mod .Com/. It
is easy to show that

�O .V / D
h

V
0
;

i
resp. �C

� g
C

�
D
h

¿
g

C

i

so the maps �O and �C are indeed inclusions. To simplify the notation, we use these
injections to interpret QC and QO as suboperads of Mod.OC/.

Further, F 0W QO ! H in (25) is the dotted arrow in

Ass� _

��

� � iO // QO

F 0

��✤
✤

✤

OC
� � F // Mod.OC/

and F 00W QC ! H the dotted arrow in

Com� _

��

� � iC // // QC

F 00

��✤
✤

✤

OC
� � F // Mod.OC/:

By the uniqueness of F 0 resp. F 00,

zF ı �O D zF jQO D F 0 and zF ı �C D zF jQC D F 00: (26)

Before we proceed, we need to introduce the following terminology. Let o be a
cycle with underlying set O and p an independent symbol. We will call, only for the
purposes of this proof, by an extension of o a cycle po whose underlying set is fpgtO

such that the induced cyclic order on O coincides with o. It is clear that extensions
exist; if O D ..o1; o2; : : : ; on//, then ..p; o1; o2; : : : ; on// is an extension. On the other
hand, extensions are not unique. Although ..o1; o2; : : : ; on// D ..o2; : : : ; on; o1//;

��
p; o1; o2; : : : ; on

��
¤
��

p; o2; : : : ; on; o1

��

if n � 2. Extensions can be generalized to multicycles. If O is a multicycle, then
an extension of O by p is a multicycle pO some of whose cycles has been extended
by p.
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Using the definition of the hybrid modular structure of Mod.QOC/ we get the
following expression for its general element:

" h
O1
g1

i
���
h

Oa
ga

i

g
C

#
D

" �
p0

1
O1

g1

�

0
;

#

p0

1
ıp00

1
� � �

" h
p0

aOa
ga

i

0
;

#

p0

a
ıp00

a

" �
..p00

1
//

0

�
���

�
..p00

a//
0

�

g
C

#
(27)

where we may further express

" �
..p00

1
//

0

�
���

�
..p00

a//
0

�

g
C

#
D ıu0

1
u00

1
� � � ıu0

gu00

g

2
4

�
..p00

1
//

0

�
���

�
..p00

a//
0

�

0
Ctfu0

1
;u00

1
;:::;u0

g ;u00

gg

3
5 (28)

with some independent variables u0
1; u00

1; : : : ; u0
g ; u00

g . Notice that the elements

" �
p0

1
O1

g1

�

0
;

#
; : : : ;

" h
p0

aOa
ga

i

0
;

#

in the right hand side of (27) belong to the image of �O and therefore are identified
with h

p0

1
O1

g1

i
; : : : ;

h
p0

aOa

ga

i
2 QO;

while the term 2
4

�
..p00

1
//

0

�
���

�
..p00

a//
0

�

0
Ctfu0

1
;u00

1
;:::;u0

g ;u00

gg

3
5

in the right hand side of (28) belongs to the image of eW OC ! Mod.OC/ and
therefore is identified with

�
..p00

1
//���..p00

a//

0
Ctfu0

1
;u00

1
;:::;u0

g;u00

gg

�
2 OC :

Combining these observations we see that

zF

" h
O1
g1

i
���
h

Oa
ga

i

g

C

#
D F 0

h
p0

1
O1

g1

i
p0

1
ıp00

1
���F 0

h
p0

aOa

ga

i
p0

a
ıp00

a
ıu0

1
u00

1
� � �

� � � ıu0

gu00

g
F

�
..p00

1
//���..p00

a//

0
Ctfu0

1
;u00

1
;:::;u0

g;u00

gg

�
: (29)

Since F 0 is unique, (29) determines zF uniquely on elements as the one in the left
hand side of (27). The proof of the uniqueness is finished by observing that

zF
h

¿
g
C

i
D F 00

�
g

C

�
: (30)
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Independence on the choices. The aim of this part is to show that the value of
the right hand side of (29) does not depend on the choices of the extensions
p0

1O1; : : : ; p0
aOa. It will be convenient to rewrite it as

zF

" h
O1
g1

i
���
h

Oa
ga

i

g
C

#
D ıu0

1
u00

1
� � �

� � � ıu0

gu00

g

�
F 0
h

p0

1
O1

g1

i
p0

1
ıp00

1
� � � F 0

h
p0

aOa

ga

i
p0

a
ıp00

a
F

�
..p00

1
//���..p00

a//

0
S

��

with S WD C tfu0
1; u00

1; : : : ; u0
g ; u00

gg. To prove the independence of the right hand side
of (29) on the choices, it clearly suffices to show the independence of the expression

F 0
h

p0

1
O1

g1

i
p0

1
ıp00

1
� � � F 0

h
p0

aOa

ga

i
p0

a
ıp00

a
F

�
..p00

1
//���..p00

a//

0
S

�
: (31)

Since (31) does not depend on the order of O1; : : : ; Oa, it suffices to prove that it does
not depend on the choice of the extension p0

1O1.
Assume that O1 D o1o2 � � � ob , p0

1O1 D p0
1o1 o2 � � � ob , and prove that (31) does

not depend on the choice of the extension p0
1o1 of the cycle o1. One has

F 0
h

p0

1
o1 o2 ��� ob

g1

i
p0

1
ıp00

1
� � � F 0

h
p0

aOa

ga

i
p0

a
ıp00

a
F

�
..p00

1
//���..p00

a//

0
S

�

D F 0
�h

..r 0// o2 ��� ob
g1

i
r 0ır 00

h
r 00p0

1
o1

0

i�
p0

1
ıp00

1
� � � F 0

h
p0

aOa

ga

i
p0

a
ıp00

a
F

�
..p00

1
//���..p00

a//

0
S

�

D F 0
h

..r 0// o2 ��� ob
g1

i
r 0ır 00 F 0

h
r 00p0

1
o1

0

i
p0

1
ıp00

1
� � � F 0

h
p0

aOa

ga

i
p0

a
ıp00

a
F

�
..p00

1
//���..p00

a//

0
S

�

D F 0
h

..r 0// o2 ��� ob
g1

i
r 0ır 00 F

�
r 00p0

1
o1

0
;

�
p0

1
ıp00

1
� � � F 0

h
p0

aOa

ga

i
p0

a
ıp00

a
F

�
..p00

1
//���..p00

a//

0
S

�

D F 0
h

..r 0// o2 ��� ob
g1

i
r 0ır 00 F 0

h
p0

2
O2

g2

i
p0

2
ıp00

2
� � �

� � � F 0
h

p0

aOa

ga

i
p0

a
ıp00

a
F

�
r 00p0

1
o1

0
;

�
p0

1
ıp00

1
F

�
..p00

1
//���..p00

a//

0
S

�

D F 0
h

..r 0// o2 ��� ob
g1

i
r 0ır 00F 0

h
p0

2
O2

ga

i
p0

2
ıp00

2
� � �F 0

h
p0

aOa

ga

i
p0

a
ıp00

a
F

�
r 00

o1 ..p00

2
//���..p00

a//

0
S

�
:

The expression in the last line is clearly independent of the position at which p0
1 was

inserted into the cycle o1.
It remains to show that (31) is independent of the order of o1; : : : ; ob , i.e. that,

choosing p0
1O1 D p0

1oi � � � o1 � � � yoi � � � ob , the value of (31) does not depend on i ,
1 � i � b. Before we do so, we warn the reader that while

F 0Œ o

0 � D F
h

o

0
;

i
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for any cycle o, it is not necessarily true that

F 0
�

O

0

�
D F

h
O

0
;

i

for a multicycle O D o1o2 � � � .8 The reason is that in general

�O
�

O

0

�
¤ e

h
O

0
;

i
:

One can however still express F 0
�

O

0

�
very explicitly as follows.

For a totally ordered finite set A denote, as in Definition 2, by ..A// the induced
cycle. Each cycle o is of this form for some (non-unique) totally ordered A. So,
let o1 D ..A1// and o2 D ..A2// be cycles, x0; x00 independent symbols and o WD

..A1x0A2x00//. Then, in QO, one has the identity
�

o1o2

0

�
D ıx0x00

�
o

0

�
, therefore,

since F 0W QO ! H is a morphism,

F 0
�

o1o2

0

�
D ıx0x00F 0

�
o

0

�
in H : (32)

It is easy to extend (32) to an arbitrary number of cycles, i.e. to an arbitrary multicycle.
With (32) at hand, we are ready to prove that (31) is independent of the order of

o1; : : : ; ob . To keep the size of formulas within reasonable limits, we assume that
a D 2, the general case is analogous. One has

F 0
h

p0

1
o1 o2 o3 ��� ob

g1

i
p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D F 0
h

..s0//..r 0// o3��� ob
g1

i
s0ıs00 r 0ır 00 F 0

h
s00p0

1
o1 r 00

o2

0

i

p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D F 0
h

..s0//..r 0// o3��� ob
g1

i
s0ıs00 r 0ır 00 ıx0x00F 0

h
s00p0

1
r 00

o

0

i

p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D ıx0x00F 0
h

..s0//..r 0// o3��� ob
g1

i
s0ıs00 r 0ır 00 F

�
s00p0

1
r 00

o

0
;

�

p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D ıx0x00F 0
h

..s0//..r 0// o3��� ob
g1

i
s0ıs00 r 0ır 00 F 0

h
p0

2
O2

g2

i
p0

2
ıp00

2
F

�
s00r 00

o ..p00

2
//

0
S

�
;

where the relation between o1, o2 in the second and o in the third line is as in (32).
The term in the last line clearly does not see whether p0

1 was inserted into o1 or o2.
This shows that (31) is invariant under the transposition o1 $ o2. The transpositions
o1 $ oi for arbitrary 1 < i � b can be discussed similarly.

8This become true under some additional conditions discussed in Proposition 38 below.
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Morphism property. Let us define zF W Mod.OC/ ! H by formulas (29) and (30).
It is simple to show that such an zF extends F , i.e. that zF ı e D F ; we leave this as an
exercise. It is also clear that zF defined in this way is equivariant with respect of the
automorphisms of the indexing (multicyclic) sets, and is genus-preserving. To finish
the proof of Proposition 34 we need to show that this zF commutes with the structure
operations of modular hybrids. The commutation with the modular operad structure
in the “closed” color is simple and we leave it as an exercise.

Let us show that zF commutes with the uıv-operations in the “open” color. To
save the space, we prove it in the simplest nontrivial case. It will be clear that the
general case can be attended analogously. We are therefore going to prove that

zF

" h
O1
g1

i

g0

C1

#
uıv

zF

" h
O2
g1

i

g00

C2

#
D zF

 " h
O1
g1

i

g0

C1

#
uıv

" h
O2
g1

i

g00

C2

#!
D zF

" h
O1 uıv O2

g1Cg2

i

g0Cg00

C1tC2

#
: (33)

From the definition of zF we get
�

F 0
h

p0

1
O1

g1

i
p0

1
ıp00

1
F

�
..p00

1
//

0
S1

��
uıv

�
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

2
//

0
S2

��

D F 0
h

p0

1
O1

g1

i
uıv F 0

h
p0

2
O2

g2

i
p0

1
ıp00

1
F

�
..p00

1
//

0
S1

�
p0

2
ıp00

2
F

�
..p00

2
//

0
S2

�

D F 0
h

p0

1
p0

2
.O1 uıv O2/

g1Cg2

i
p0

1
ıp00

1
F

�
..p00

1
//

0
S1

�
p0

2
ıp00

2
F

�
..p00

2
//

0
S2

�
:

Assume that O1 uıv O2 D o1o2 � � � ob and p0
1p0

2.O1 uıv O2/ D p0
1p0

2o1 o2 � � � ob .
Then

F 0
h

p0

1
p0

2
.O1 uıv O2/

g1Cg2

i
p0

1
ıp00

1
F

�
..p00

1
//

0
S1

�
p0

2
ıp00

2
F

�
..p00

2
//

0
S2

�

D F 0
h

p0

1
p0

2
o1 o2��� ob

g1Cg2

i
p0

1
ıp00

1
F

�
..p00

1
//

0
S1

�
p0

2
ıp00

2
F

�
..p00

2
//

0
S2

�

D F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 F 0

h
r 00p0

1
p0

2
o1

0

i
p0

1
ıp00

1
F

�
..p00

1
//

0
S1

�
p0

2
ıp00

2
F

�
..p00

2
//

0
S2

�

D F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 F

�
r 00p0

2
o1

0
S1

�
p0

2
ıp00

2
F

�
..p00

2
//

0
S2

�

D F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 F

�
r 00

o1

0
S1t S2

�

D F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 F

h
r 00p0

o1

0
;

i
p0ıp00 F

�
..p00//

0
S1t S2

�

D F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 F 0

�
r 00p0

o1

0

�
p0ıp00 F

�
..p00//

0
S1t S2

�

D F 0
h

p0
o1 o2��� ob

g1Cg2

i
p0ıp00 F

�
..p00//

0
S1t S2

�
D F 0

h
p0.O1 uıv O2

g1Cg2

i
p0ıp00 F

�
..p00//

0
S1t S2

�
:
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The last term of the above display equals the right hand side of (33) evaluated
using (29).

Let us prove that zF commutes with the “open” contractions ıuv . Again we discuss
only the simplest nontrivial case, the general one can be treated similarly. We will
verify that

ıuv
zF

" h
O1
g1

ih
O2
g2

i

g

C

#
D zF

 
ıuv

" h
O1
g1

ih
O2
g2

i

g

C

#!
: (34)

Assume that u; v belongs to the same multicycle, say to O1. Then (34) boils to

ıuv
zF

" h
O1
g1

ih
O2
g2

i

g

C

#
D zF

"
ıuv

h
O1
g1

ih
O2
g2

i

g

C

#
(35)

in which, by definition,

ıuv

�
O1
g1

�
D
h

ıuvO1

g0

1

i
;

where g0
1 equals g1 or g1 C 1 depending on whether u and v belong to the same

cycle or the different cycles of O1. We therefore rewrite (35) as

ıuv
zF

" h
O1
g1

ih
O2
g2

i

g

C

#
D zF

" �
ıuvO1

g0

1

��
O2

g2

�

g

C

#
: (36)

The left hand side of (36) equals

ıuv

�
F 0
h

p0

1
O1

g1

i
p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

��

D ıuvF 0
h

p0

1
O1

g1

i
p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D F 0
h

p0

1
ıuvO1

g0

1

i
p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�
;

which is the right hand side of (36) expressed via (29). Before we go further, we
need to prove an auxiliary

Sublemma 37. Let o1 and o2 be cycles, S a finite set and u; v; p0 and p00 independent
symbols. Then

ıuvF
h o1 o2

0
Stfu;vg

i
D ıp0p00F

�
p0

o1 p00
o2

0
S

�
: (37)

Proof of the sublemma. It follows from the axioms of modular operads that

ıuv

�
F
h o1

0
Stfug

i
p0ıp00 F

h o2

0
fvg

i�
D ıp0p00

�
F
h o1

0
Stfug

i
uıv F

h o2

0
fvg

i�
:

Equation (37) is then a consequence of the fact that F is a morphism of cyclic hybrids
and of the definition of the structure operations in OC .
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If u 2 O1 and v 2 O2, (34) boils to

ıuv
zF

" h
O1
g1

ih
O2
g2

i

g
C

#
D zF

" h
O1 uıv O2

g1Cg2

i

gC1

C

#
: (38)

The left hand side of the above display equals

ıuv

�
F 0
h

p0

1
O1

g1

i
p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

��

D ıuv

�
F 0
h

p0

1
O1

g1

i
p0

1
ıp00

1
F 0
h

p0

2
O2

g2

i�
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D F 0
h

p0

1
p0

2
.O1 uıv O2/

g1Cg2

i
p0

1
ıp00

1
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�
:

Assume that O1 uıv O2 D o1o2 � � � ob and p0
1p0

2.O1 uıv O2/ D p0
1p0

2o1 o2 � � � ob .
Then

F 0
h

p0

1
p0

2
.O1 uıv O2/

g1Cg2

i
p0

1
ıp00

1
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D F 0
h

p0

1
p0

2
o1 o2��� ob

g1Cg2

i
p0

1
ıp00

1
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 F 0

h
r 00p0

1
p0

2
o1

0

i
p0

1
ıp00

1
p0

2
ıp00

2
F

�
..p00

1
//..p00

2
//

0
S

�

D F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 ıp0

2
p00

2
F

�
r 00p0

2
o1 ..p00

2
//

0
S

�

D F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 ıx0;x00F

�
r 00

o1

0
Stfx0;x00g

�

D ıx0;x00F 0
h

..r 0// o2��� ob

g1Cg2

i
r 0ır 00 F 0

�
r 00p0

o1

0

�
p0ıp00 F

�
..p00//

0
Stfx0;x00g

�

D ıx0;x00F 0
h

p0
o1 o2��� ob

g1Cg2

i
p0ıp00 F

�
..p00//

0
Stfx0;x00g

�

D ıx0;x00F 0
h

p0.O1 uıv O2/
g1Cg2

i
p0ıp00 F

�
..p00//

0
Stfx0;x00g

�
;

where in the 4th line we used Sublemma 37. It is clear that the last term equals the right
hand side of (38) evaluated via (29). This finishes the proof of Proposition 34.

2.2. Modular completion modulo Cardy conditions. In this subsection we iden-
tify QOC with the quotient of Mod.OC/ by the Cardy conditions.
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Theorem 38. Let us consider the ideal I9 in the modular hybrid Mod.OC/ generated
by the single relation � h

..q//
0

ih
..r//

0

i

0
;

�
D

� h
..q//..r//

0

i

0
;

�
:

Then
QOC Š Mod.OC/= I: (39)

Consequently, for any modular hybrid H and any morphism F W OC ! H of cyclic
hybrids satisfying the relation

ıuvF
h

..uqvr//
0
;

i
D F

h
..q//..r//

0
;

i
; (40)

there is a unique morphism yF W QOC ! H of modular hybrids for which the diagram

OC
� � //

F
&&▼▼

▼▼
▼▼

▼▼
▼▼

▼▼
QOC

yF
��✤
✤

✤

H

commutes.

Remark 39. Equation (40) is equivalent to

ıuv

�
F

�
..uqa//

0
;

�
aıb F

�
..bvr//

0
;

��
D F

�
..q//

0
fcg

�
cıd F

�
..r//

0
fdg

�

which says that F preserves the Cardy condition (10). To see it, use that F , as
a morphism of cyclic hybrids, commutes with aıb and cıd , and then invoke the
definition of the ı-operations in QOC . The necessity to quotient by the Cardy
condition follows, in the light of Remark 36, from [15, Theorem 4.1] and the
transitivity of the necessary moves described there.

Remark 40. Isomorphism (39) together with the description of QOC given in
Example 19 indicates that QOC might be the terminal object in the conjectural
category of modular hybrids satisfying the Cardy condition. The rôle of terminality
for objects featuring in string theory was observed in [24], cf. the Principle in the
introduction of that article. The terminality was then in [16, Definition 4.5] related
to minimal extensions of Feynman categories. To prove the terminality of QOC and
interpret it in terms of Feynman categories seems to be an intriguing problem.

Proof of Theorem 38. Let us consider a map ˛W Mod.OC/= I ! QOC given by10
" h

O1
g1

i
���
h

Oa
ga

i

g

C

#
7�!

�
O1���Oa

gC
Pa

iD1 gi

C

�
and

h
¿
g

C

i
7!
h

¿
g

C

i
;

9The term congruence instead of “ideal” might be more appropriate in the context of sets, but we take
the liberty to stick to the terminology we are used to.

10We use the same notation for an element of Mod.OC/ and its equivalence class. The meaning will
always be clear from the context.
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and a map ˇW QOC ! Mod.OC/=I given by

h
o1��� ob

g

C

i
7�!

" h
o1��� ob

g

i

0
C

#
and

h
¿
g

C

i
7�!

h
¿
g

C

i
:

It is easy to check that ˛ and ˇ are well-defined morphisms of modular hybrids and
that ˛ˇ D 1. To verify ˇ˛ D 1, we have to check that

" h
O1
g1

i
���
h

Oa
ga

i

g

C

#
D

" �
O1��� Oa

gC
Pa

iD1 gi

�

0
C

#
in Mod.OC/= I (41)

for a � 1; for a D 0 is the claim trivial. We start by showing that
" h

..p//
0

ih
..qr//

0

i

0
C

#
D

" h
..p//..qr//

0

i

0
C

#
: (42)

To this end, we rewrite the left hand side as
" h

..p//
0

ih
..s0//

0

i

0
;

#
s0ıs00

" h
..qrs00//

0

i

0
C

#
(43a)

and apply the generating relation of I on the first term. We obtain
" h

..p//..s0//
0

i

0
;

#
s0ıs00

" �
..qrs00//

0

�

0
C

#
(43b)

which equals the right hand side of (42).
As the second step of the proof we verify that

� h
O1
g1

ih
O2
g2

i
���
h

Oa
ga

i

g
C

�
D

" h
O1 O2

g1Cg2

i
���
h

Oa
ga

i

g
C

#
: (44)

Assume that O1 D o
0
1o

0
2 � � � o

0
b0

, O2 D o
00
1o

00
2 � � � o

00
b00

and rewrite the left hand side as

" �
p0

o
0

1
o

0

2
��� o

0

b0

g1

�

0
;

#
p0ıp00

" �
q0

o
00

1
o

00

2
��� o

00

b00

g2

�

0
;

#

q0ıq00

" �
..p00//

0

�h
..q00r 0//

0

i

0
;

#
r 0ır 00

" �
..r 00//

0

�h
O3
g3

i
���
h

Oa
ga

i

g
C

#
: (45)

Applying (42) to the third term, we get
" �

p0
o

0

1
o

0

2
��� o

0

b0

g1

�

0
;

#
p0ıp00

" �
q0

o
00

1
o

00

2
��� o

00

b00

g2

�

0
;

#

q0ıq00

" h
..p00//..q00r//

0

i

0
;

#
r 0ır 00

" h
..r 00//

0

ih
O3
g3

i
���
h

Oa
ga

i

g
C

#
;
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which is easily seen to be the right hand side of (44). Using (44) inductively we
conclude that the left hand side of (41) equals

" �
O1��� OaPa

iD1 gi

�

g

C

#
: (46)

The last step we need to prove that ˇ˛ D 1 is the equality

� h
o1��� ob

g1

i

g
C

�
D

" h
o1��� ob

g1C1

i

g�1
C

#
: (47)

By the definition of the contractions in Mod.OC/ its left hand side equals

ıp0p00

" h
..p0//

0

ih
p0

o1 o2��� ob
g1

i

g�1

C

#
; (48)

which, by (44), is the same as

ıpp0

" h
..p// p0

o1 o2��� ob
g1

i

g�1

C

#
;

which is the right hand side of (47). Applying (47) inductively, we see that (46) equals
the right hand side of (41). This finishes the proof of ˇ˛ D 1 and establishes (39).

Let us prove the second part of the theorem. Denote by � W Mod.OC/ � QOC

the natural projection and by zF W Mod.OC/ ! H the unique extension of F

guaranteed by the universal property of the modular completion. Such an zF descends
to yF in the diagram

OC
� � //

F

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
Mod.OC/

zF

��✤
✤

✤

✤

� // // QOC

yF
xxq q

q
q
q
q
q

H

if and only if zF preserves the generating relation of I. But this is indeed so, since

zF

� h
..q//

0

ih
..r//

0

i

0
;

�
D F

h
..q//..r//

0
;

i
D ıuvF

h
..uqvr//

0
;

i

D ıuv
zF

� h
..uqvr//

0

i

0
;

�
D zF

� h
..q//..r//

0

i

0
;

�
;

where the second equality used (40). The uniqueness of yF follows from the
uniqueness of zF and the surjectivity of � . This finishes the proof of Theorem 38.
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2.3. Modular completion of premodular hybrids. One has the functor

�preW ModHyb! PreHyb (49)

from the category of modular hybrids to the category of premodular hybrids which
forgets all contractions in the “closed” color and contractions ıuv in the “open” color
for which u and v belong to different cycles. In this situation there is another version
of the modular completion functor, namely the left adjoint

ModpreW PreHyb! ModHyb

to (49). We have

Theorem 41. For the premodular hybrid OCpre from Example 21 one has the
isomorphism

Modpre.OCpre/ Š QOC (50)

of modular hybrids.

Remark 42. Notice that the Cardy condition (10) is already built in OCpre, so we do
not need to take in (50) the quotient by it.

Proof of Theorem 41. We need to verify that for a arbitrary modular hybrid H and
for any morphism F W OCpre ! �pre.H / of premodular hybrids, there is a unique

morphism zF W QOC ! H of modular hybrids such that the diagram

OCpre � � //

F
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
QOC

yF
��✤
✤

✤

H

commutes. Since F is a morphism of premodular hybrids, it automatically satisfies
relation (40), because

ıuvF
h

..uqvr//
0
;

i
D F

�
ıpp0

h
..uqvr//

0
;

i�
D F

h
..q//..r//

0
;

i
:

If we forget the partially defined contractions in OCpre, F becomes a morphism of
cyclic hybrids so it extends, by Theorem 38, into a unique morphism zF of modular
hybrids that makes the above diagram commutative.

3. Modular completion of a suboperad

The central technical result of this article, Proposition 34 of the previous section,
describes the modular completion Mod.OC/ of the modular hybrid OC . We need a
similar result also for the KP and stable subhybrids

OCKP ,! OCst ,! OC ; (51)
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but we do not want to repeat the long technical proof of Proposition 34 for them. We
prove instead that the morphisms

Mod.OCKP/ ! Mod.OCst/ ! Mod.OC/

of modular hybrids induced by the inclusions (51) are injective and describe explicitly
the modular completions Mod.OCKP/ and Mod.OCst/ as subhybrids of Mod.OC/.

The content of this section will therefore be some results about the induced maps
between modular completions. To save the reader from unnecessary technicalities, we
formulate and prove them only for the “classical” cyclic operads and the “classical”
modular completion functor ModW CycOp! ModOp of [22, p. 382]. It will be clear
that obvious analogs of these results hold also for non-† cyclic operads and cyclic
hybrids.

Let thus C be a cyclic operad and B � C its cyclic suboperad. We are going to
investigate the induced map $ W Mod.B/ ! Mod.C/. The following example shows
that, in some situations, $ need not be a monomorphism.

Example 43. Let C be the free cyclic operad generated by the two-point set
˚
.u; v/; .v; u/

	
� C

�
fu; vg

�

with the obvious action of the group Aut.fu; vg/. Denote by and B � C the cyclic
suboperad consisting of ı-compositions of at least two elements of C . Let finally

a WD .u; x0/ x0ıx00.v; x00/ 2 B
�
fu; vg

�
and b WD .x0; u/ x0ıx00.x00; v/ 2 B

�
fu; vg

�
:

It follows from the axioms of cyclic operads that

ıuv.a/ D ıuv

�
.u; x0/ x0ıx00.v; x00/

�

D ıx0x00

�
.u; x0/ uıv.v; x00/

�

D ıuv

�
.x0; u/ x0ıx00.x00; v/

�
D ıuv.b/

in Mod.C/, while it is simple to check that ıuv.a/ 6D ıuv.b/ in Mod.B/. So the
induced map $ W Mod.B/ ! Mod.C/ is not a monomorphism.

The main idea of the example can be illustrated as follows. Represent the generator
of C by the arrow

u v

pointing from v to u. In this graphical representation,

u v ;a D b D u v ;

so we have in Mod.B/

ıuv.a/ D , .ıuv.b/ D
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The dashed ovals indicate that the arrows representing the generators cannot be
separated in Mod.B/. The ovals however can be erased in Mod.C/ and the
arrowheads moved around bringing both pictures in the above display into

.

The central technical result of this section reads

Proposition 44. Let B �C be cyclic operads. Assume that for every w02C.fp0; q0gtR/

and w002 C.fp00; q00g t S/ such that w0
q0ıq00 w002 B.fp0; p00g t R t S/ either

(i) there is a bijection �W fp0; p00g t R t S ! fq0; q00g t R t S fixing R t S such
that

w0
p0ıp00 w00 D �.w0

q0ıq00 w00/;

(ii) or there are w0
1 2 B.fp0; q0g t R/ and w00

1 2 B.fp00; q00g t S/ such that

w0
p0ıp00 w00 D w0

1 p0ıp00 w00
1 and w0

q0ıq00 w00 D w0
1 q0ıq00 w00

1 :

Then the induced map $ W Mod.B/ ! Mod.C/ is injective.

The assumption of Proposition 44 is in Example 43 violated by w0 WD .p0; q0/ 2

C.fp0; q0g/ and w00 WD .p00; q00/ 2 C.fp00; q00g/, S D R WD ;. Proposition 44
will follow from Proposition 47 whose formulation and proof we postpone to the
end of this section. It would be interesting to investigate how is the injectivity of
Proposition 44 related to the notion of minimal extensions of Feynman categories in
the sense of [16, Definition 4.5]. We will also need

Definition 45. Let B be a cyclic suboperad of a modular operad C . The �-closure
of B in C is defined as

�C .B/ WD
˚
ıp0

1
p00

1
� � � ıp0

np00

n
.x/ 2 C j n 2 N, x 2 B,

p0
1; p00

1 ; : : : ; p0
n; p00

n are some inputs of x
	
:

The terminology is inspired by the old-fashioned notation �uv for ıuv. Notice
that �C .B/ is the smallest modular suboperad of C containing B, so it is a modular
completion of B in C or relative to C . From this point of view, Mod.B/ is the
absolute modular completion of B. The following statement describes a situation
when absolute and relative completions agree.

Proposition 46. If B � C are cyclic operads such that the map $ W Mod.B/ !

Mod.C/ is injective, then

Mod.B/ Š �Mod.C/.B/:

In particular, Mod.B/ Š �Mod.B/.B/.
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Proof. By the universal property of Mod.B/ applied to the inclusions B ,!

�Mod.C/.B/ and B ,! Mod.C/, there is a modular operad morphism i W Mod.B/ !

�Mod.C/.B/ such that the diagram

Mod.B/
$ //

i

%%❏❏
❏❏

❏❏
❏❏

❏❏
Mod.C/

�Mod.C/.B/
,
�

99ttttttttt

commutes. Since $ W Mod.B/ ! Mod.C/ is injective by assumption, so is i . As
�Mod.C/.B/ is the smallest modular suboperad of Mod.C/ containing B, i must be
an isomorphism. The second isomorphism of the proposition is the particular case
when $ is the identity morphism 1W B ! B.

Proposition 44 is a consequence of

Proposition 47. Every element x 2 Mod.C/ in the modular completion of a cyclic
operad C is of the form

x D ıp0

1
p00

1
� � � ıp0

np00

n
.y/ (52)

where y 2 C and p0
1; p00

1; : : : ; p0
n; p00

n, n 2 N, are some of its inputs. On elements in
this form, consider the following “moves:”

(i) Let w0 2 C.fp0; q0g t R/ and w00 2 C.fp00; q00g t S/. Then replace

ıp0

1
p00

1
� � � ıp0

n�1
p00

n�1
ıp0p00

�
w0

q0ıq00 w00
�

by ıp0

1
p00

1
� � � ıp0

n�1
p00

n�1
ıq0q00

�
w0

p0ıp00 w00
�
:

(ii) Let p0; p00; q0; q00 be some of the inputs of y and � a bijection mapping p0; p00 to
q0; q00 in this order which restricts to the identity on the remaining inputs of y.
Then replace

ıp0

1
p00

1
� � � ıp0

n�1
p00

n�1
ıp0p00.y/

by ıp0

1
p00

1
� � � ıp0

n�1
p00

n�1
ıq0q00.�y/:

(iii) For an arbitrary permutation � 2 †n replace

ıp0

1
p00

1
� � � ıp0

np00

n
.y/

by ıp0

�.1/
p00

�.1/
� � � ıp0

�.n/
p00

�.n/
.y/:

Two expressions (52) represent the same element of Mod.C/ if and only if they are
related by a finite numbers of the above moves.
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Proof. The modular completion Mod.C/ is isomorphic to the quotient M.C/= �,
where M.C/ is the free modular operad generated by C and � is the equivalence that
identifies ı-operations inside C with the formal ones in M.C/.

As explained e.g. in [25, II.1.9], M.C/ can be constructed as an explicit colimit
whose elements are represented by decorated graphs. Since we are working in Set,
every x 2 M.C/ has well-defined underlying graph G.x/. Choose a contractible, not
necessary connected, subgraph T in G.x/ and contract x along T using the cyclic
operad structure of C . Denote the result by CT .x/; clearly

CT .x/ � x:

If T is in particular a maximal subtree of G.x/, then the underlying graph of CT .x/

has one vertex, call such a graph a brouček.11 The element CT .x/ is obtained by
iterated contractions of some y 2 C . To describe it in such a way explicitly, i.e. as

ıp0

1
p00

1
� � � ıp0

np00

n
.y/; n 2 N;

with some specific symbols p0
1; p00

1 ; : : : p0
n; p00

n, one needs to label the half-edges of
brouček and choose their order. The ambiguity of these choices is reflected by moves
(ii) and (iii) of Proposition 47.

Another ambiguity comes from different choices of a maximal subtree of G.x/.
Let us analyze this situation. Assume that T1 and T2 are different maximal subtrees
of G.x/ By [28, Chapter 6], T1 and T2 are related by a “singular cyclic interchange.”
This means that there exists a subgraph H � G.x/ with precisely one cycle, and two
edges e1; e2 belonging to this cycle, such that

H n fe2g D T1 and H n fe1g D T2:

In this situation, H n fe1; e2g is the disjoint union of two (non-maximal) trees U

and V . Let z WD CU tV .x/. Obviously, G.z/ is a graph with two vertices decorated
by some a; b 2 C . Let u1; : : : ; uk are the edges of G.x/ that do not belong to
H n fe1; e2g. We then have, due to the interchange law between contractions and
ı-operations,

z D ıu1
� � � ıuk

ıe1
.a ıe2

b/ D ıu1
� � � ıuk

ıe2
.a ıe1

b/

modulo the relations defining Mod.C/. In the above display, ıe denotes the
contraction along e. Finally, we observe that

ıu1
� � � ıuk

ıe1
.a ıe2

b/ represents CT1
.x/

while

ıu1
� � � ıuk

ıe2
.a ıe1

b/ represents CT2
.x/:

Equality CT1
.x/ D CT2

.x/ is therefore reflected by move (i) of Proposition 47.

11Czech for little beetle.
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The above proof shows that move (i) is the relevant one, the remaining moves
only account for different choices of labels.

Proof of Proposition 44. Recall that each element of Mod.B/ is of the form (52).
So assume that y; z 2 B and that

ıp0

1
p00

1
� � � ıp0

np00

n
.y/ D ıq0

1
q00

1
� � � ıq0

nq00

n
.z/ in Mod.C/: (53)

All we need is to show that the same equality holds also in Mod.B/. By
Proposition 47, (53) holds if and only if there is a finite sequence of moves (i)–(iii)
transforming its left hand side into its right hand side. Each move is a replacement
of the form

ır 0

1
r 00

1
� � � ır 0

nr 00

n
.u/ 7�! ıs0

1
s00

1
� � � ıs0

ns00

n
.v/ (54)

with some u; v 2 C . The proof will thus be finished if we show that u 2 B in (54)
implies that v 2 B.

This is obvious if (54) is move (ii) or (iii). Let us analyze move (i), that is, see
what happens if we replace

ıp0

1
p00

1
� � � ıp0

n�1
p00

n�1
ıp0p00 .u/ by ıp0

1
p00

1
� � � ıp0

n�1
p00

n�1
ıq0q00.v/; (55)

where u D w0
q0ıq00 w00 and v D w0

p0ıp00 w00 with some

w0 2 C
�
fp0; q0g t R

�
and w00 2 C

�
fp00; q00g t S

�

such that u D w0
q0ıq00 w00 2 B.fp0; p00g t R t S/.

In case (i) of Proposition 44, w0
p0ıp00 w0 D �

�
w q0ıq00 w0

�
; i.e.

v D �.u/ 2 B
�
fq0; q00g t R t S

�

as required. In case (ii),

v D w0
1 p0ıp00 w00

1

for some w0
1 2 B.fp0; q0g t R/ and w00

1 2 B.fp00; q00g t S/, thus again

v 2 B
�
fq0; q00g t R t S

�

and we are done as well.

4. Modular completions of the stable and Kaufmann–Penner parts

In this section we use the results of Section 3 and derive the stable and Kaufmann–
Penner versions of Theorem 38.
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4.1. Stable version. Proposition 49 below guarantees that one may use Proposi-
tion 34 to describe explicitly the modular completion of the stable part OCst � OC ,
as done in Remark 50. The main result of this subsection is Theorem 51.

Lemma 48. Let Cst be the stable part of a cyclic operad C as in Definition 22. Then
one has the isomorphism

�Mod.C/.Cst/ Š Mod.C/st:

Consequently, if the induced map $ W Mod .Cst/ ! Mod .C/ is a monomorphism,
then

Mod.Cst/ Š Mod.C/st:

Proof. By Proposition 47, every x 2 Mod .C/ is of the form

x D ıp0

1
p00

1
� � � ıp0

np00

n
.y/ (56)

for some y 2 C and n 2 N. If x 2 �Mod.C/.Cst/, we may assume that y 2 Cst �

Mod.C/st. Since contractions preserve stable parts of modular operads by Lemma 23,
x 2 Mod.C/st, which shows that

�Mod.C/.Cst/ � Mod.C/st:

If x 2 Mod.C/st, then y 2 Mod.C/st \ C D Cst by the second part of Lemma 23,
hence x 2 �Mod.C/.Cst/, thus

Mod.C/st � �Mod.C/.Cst/:

Having this established, the second part of the lemma follows from Proposition 46.

Let us turn our attention to the cyclic hybrid OC from Example 20 and its stable
version OCst analyzed in Example 29.

Proposition 49. One has an isomorphism Mod.OCst/ Š Mod.OC/st.

Remark 50. An explicit description of Mod .OC/st and therefore, by Proposition 49,
also of Mod.OCst/, is provided by imposing the stability assumption on the
expressions in (23) of Proposition 34. Explicitly, the symbol

" h
O1
g1

i
���
h

Oa
ga

i

g

C

#
(57)

is stable if and only if

4
�
g C

Pa
iD1 gi

�
C 2b C 2jC j C jOj > 4 (58)

where b WD
Pa

iD1 bi is the total number of cycles in O1; : : : ; Oa.
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Proof of Proposition 49. We verify that the inclusion OCst � OC satisfies
condition (i) of Proposition 44. The proof will then follow from Proposition 46
and Lemma 48.

Let w0; w00 2 OC be such that w0
q0ıq00 w00 2 OCst. It easily follows from the

definition of the stable part if w0; w00 62 OCst, then also w0
q0ıq00 w00 62 OC , so we

may assume e.g. that w0 2 OCst while w00 62 OCst. Since w00 has at least 2 inputs,
according to (21) it must be either

3 D
h

..p00q00//
0
;

i
or 6 D

h
¿
0

fp00;q00g

i
:

In both cases, w0
q0ıq00 w00 “replaces q0 by p00” and w0

p0ıp00 w00 “replaces p0 by q00”
in w0.

Let us explain what we mean by this when w00 D 6 . Then p0; p00; q0 and q00

must be “closed” inputs and one has, by definition,
�

O
g

Rtfp0 ;q0g

�
q0ıq00

h
¿
0

fp00;q00g

i
D

�
O
g

Rtfp0 ;p00g

�

and

�
O
g

Rtfp0 ;q0g

�
p0 ıp00

h
¿
0

fp00;q00g

i
D

�
O
g

Rtfq0;q00g

�
:

Clearly w0
q0ıq00 w0 D �.w0

p0ıp00 w00/ for a bijection � mapping fp0; p00g to fq0; q00g

and restricting to the identity on R. The case when w00 D 3 can be discussed
similarly. We leave the details to the reader.

We have the following stable analog of Theorem 38.

Theorem 51. Let I be the ideal in the stable modular hybrid Mod.OCst/ Š

Mod.OC/st generated by the relations
" h

..q//
0

ih
..r//

0

i

0
;

#
D

" h
..q//..r//

0

i

0
;

#
and

" h
..q//

0

ih
.. //
0

i

0
;

#
D

" h
..q//.. //

0

i

0
;

#
: (59)

Then one has an isomorphism of stable modular hybrids

QOCst Š Mod.OCst/=I:

Therefore for any, not necessarily stable, modular hybrid H and a morphism
F W OCst ! H of cyclic hybrids satisfying

ıuvF
h

..uqvr//
0
;

i
D F

h
..q//..r//

0
;

i
and ıuvF

h
..uqv//

0
;

i
D F

h
..q//.. //

0
;

i

there is a unique morphism yF W QOCst ! H of modular hybrids making the diagram

OCst
� � //

F
''◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
QOCst

yF
��✤
✤

✤

H

commutative.
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The reader may wonder why we have two relations in (59) while the “unstable”
Theorem 38 has only one. The explanation is that, in the unstable case, the second
relation in (59) is the same as

" h
..q//

0

ih
..r//

0

i

0
;

#
rıs

" h
..s//

0

i

0
;

#
D

" h
..q//..r//

0

i

0
;

#
rıs

" h
..s//

0

i

0
;

#
;

so it belongs to the ideal generated by the first relation. Since
" h

..s//
0

i

0
;

#

is not stable, the same reasoning does not apply to Mod.OCst/.

Proof of Theorem 51. The proof is a modification of the proof of Theorem 38 so we
mention only the differences. First of all, in addition to (42), we also need to prove
that " h

.. //
0

ih
..qr//

0

i

0
C

#
D

" h
.. //..qr//

0

i

0
C

#

modulo I. This equality can easily be obtained by replacing, in (43a) and (43b), ..p//

by .. //.
It might also happen that some terms in (45) which we used to prove (44) are

unstable. Let us denote the terms constituting (45) by

A WD

" �
p0

o
0

1
o

0

2
��� o

0

b0

g1

�

0
;

#
; B WD

" �
q0

o
00

1
o

00

2
��� o

00

b00

g2

�

0
;

#
; C WD

" �
..p00//

0

�h
..q00r 0//

0

i

0
;

#

and D WD

" �
..r 00//

0

�h
O3
g3

i
���
h

Oa
ga

i

g
C

#
:

Term C is always stable. Term A is unstable if and only if g1 D 0 and O
0
1 D

o
0
1 D ..p0// or ..p0s// for some symbol s, in which case

A WD

" h
..p0//

0

i

0
;

#
or

" h
..p0s//

0

i

0
;

#
:

Likewise, B is unstable if and only if

B WD

" h
..q0//

0

i

0
;

#
or

" h
..q0t//

0

i

0
;

#

for a symbol t . Finally, D is unstable if and only if a D 2, in which case

D WD

" h
..r 00//

0

i

0
;

#
:
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Let us analyze all possible situations.

Term A is unstable but B is stable. The left hand side of (44) takes the form

" �
o

0

1

0

�h
O2

0

i
���
h

Oa
ga

i

g
C

#

with o
0
1 D .. // or o1 D ..s//. We then instead of (45) take

" �
q0

o
00

1
o

00

2
��� o

00

b00

g2

�

0
;

#
q0ıq00

" �
o

0

1

0

�h
..q00r 0//

0

i

0
;

#
r 0ır 00

" �
..r 00//

0

�h
O3
g3

i
���
h

Oa
ga

i

g
C

#

and proceed as before. The situation when B is unstable but A is stable is similar.

Both A and B are unstable. The left hand side of (44) is of the form

" �
o

0

1

0

��
o

00

1

0

�
���
h

Oa
ga

i

g

C

#

where o
0
1 D .. // or ..s// and o

00
1 D .. // or ..t //. We then instead of (45) take

" �
o

0

1

0

��
o

00

1
r 0

0

�

0
;

#
r 0ır 00

" �
..r 00//

0

�h
O3
g3

i
���
h

Oa
ga

i

g

C

#

and proceed as in the proof of Theorem 38.

Term D is unstable. Then the left hand side of (44) takes the form

" h
O1
g1

ih
O2
g2

i

g

C

#

In this case, instead of (45), we simply take

" �
p0

o
0

1
o

0

2
��� o

0

b0

g1

�

0
;

#
p0 ıp00

" �
q0

o
00

1
o

00

2
��� o

00

b00

g2

�

0
;

#
q0ıq00

" �
..p00//

0

�h
..q00//

0

i

0
;

#
:

This finishes the proof.

4.2. Kaufmann–Penner variant. The first result of this subsection explains how
to modify Proposition 34 for the modular completion of the KP cyclic hybrid OCKP.
Theorem 54 then describes QOCKP as the quotient of this modular completion by
the Cardy condition.
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Proposition 52. The modular completion Mod.OCKP/ is the modular subhybrid
of the modular completion Mod.OCst/ obtained by imposing the stability assump-
tion (58) on symbols in (23) resp. in (57), and further discarding

(i) symbols

" h
.. //
0

i
���
h

.. //
0

i

0
;

#
with a � 3,12

(ii) symbols

" h
.. //
0

i
���
h

.. //
0

i
V

0
;

#
, a � 2, where V 2 QO has at least one input, and

(iii) symbols

" h
.. //
0

i
���
h

.. //
0

i

0
fdg

#
, a � 2, where d is a single closed input.

Proof. Denote by M the subcollection of Mod.OCst/ specified in the proposition.
We need to prove that M Š Mod.OCKP/. Our strategy will be first to show
that M is indeed a modular subhybrid of Mod.OCst/, then verify the assumptions
of Proposition 44, apply Proposition 46 and finally check directly that the �-closure
of OCKP is M.

Verification that M is a modular subhybrid of Mod.OCst/. Let us check first that M

is closed under the ı-operations. Assume that x D y p0ıp00 z for some x; y; z 2

Mod.OCst/. We must show that, if x 62 M, then either y 62 M or z 62 M. Denote
by ax , ay and az the number of nests in x, y and z, respectively. We distinguish
three cases.

The element x is of type (i). If p0; p00 are open inputs, then clearly the only possibility
is that

y D

" h
.. //
0

i
���
h

.. //
0

ih
..p0//

0

i

0
;

#
and z D

" h
.. //
0

i
���
h

.. //
0

ih
..p00//

0

i

0
;

#
:

The numbers of nests are related by ax D ay Caz �1, therefore x 62 M if and only if

ay C az � 4: (60)

On the other hand, y 62 M (resp. z 62 M) if and only if ay � 2 (resp. az � 2), so (60)
implies that at least one of y, z does not belong to M. If p0; p00 are closed, then
obviously

y D

" h
.. //
0

i
���
h

.. //
0

i

0
fp0g

#
and z D

" h
.. //
0

i
���
h

.. //
0

i

0
fp00g

#
:

Now ax D ay C az , so x 62 M if and only if ay C az � 3 and we conclude as in the
open case that either ay � 2 or az � 2.

12Recall that a is the number of nests.
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The element x is of type (ii). If p0, p00 are open inputs, one has two possibilities. The
first one is that

y D

" h
.. //
0

i
���
h

.. //
0

ih
..p0//

0

i
V

0
;

#
and z D

" h
.. //
0

i
���
h

.. //
0

ih
..p00//

0

i

0
;

#

(or the rôles of y and z interchanged). Then z 62 M and we are done. The second
option is

y D

" h
.. //
0

i
���
h

.. //
0

i
Vy

0
;

#
and z D

" h
.. //
0

i
���
h

.. //
0

i
Vz

0
;

#

for some Vy; Vz 2 QO, both having at least one input, such that Vy p0ıp00 Vz D V .
We easily verify that x 62 M if and only if (60) holds which implies, as before, that
either y or z does not belong to M. In case of closed inputs, the only possibility is

y D

" h
.. //
0

i
���
h

.. //
0

i
V

0
fp0g

#
and z D

" h
.. //
0

i
���
h

.. //
0

i

0
fp00g

#

(or y and z interchanged). We see right away that z 62 M.

The element x is of type (iii). If p0 and p00 are open inputs, then

y D

" h
.. //
0

i
���
h

.. //
0

ih
..p0//

0

i

0
fdg

#
and z D

" h
.. //
0

i
���
h

.. //
0

ih
..p00//

0

i

0
;

#

(or vice versa). If they are closed, the only possibility is

y D

" h
.. //
0

i
���
h

.. //
0

i

0
fdp0g

#
and z D

" h
.. //
0

i
���
h

.. //
0

i

0
fp00g

#

(or vice versa). In both cases z 62 M.
It remains to verify that M is closed under contractions. Let x D ıp0p00y for

some elements x; y 2 Mod.OCst/. We must show that x 62 M implies y 62 M. If x

is of type (i), there are only three thinkable candidates for y, namely
" h

.. //
0

i
���
h

.. //
0

ih
..p0//

0

ih
..p00//

0

i

0
;

#
;

" h
.. //
0

i
���
h

.. //
0

ih
..p0//..p00//

0

i

0
;

#
or

" h
.. //
0

i
���
h

.. //
0

i

0
fp0;p00g

#
:

The respective values of the contraction ıp0p00y are
" h

.. //
0

i
���
h

.. //
0

i

1
;

#
;

" h
.. //
0

i
���
h

.. //
1

i

0
;

#
; and

" h
.. //
0

i
���
h

.. //
0

i

1
;

#

which excludes this possibility. The situation when x is of type (iii) is similar.
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Assume finally that x is of type (ii). Besides the candidates for y similar to the
ones above, there are also

" h
.. //
0

i
���
h

.. //
0

i
V1 V2

0
;

#
with V1 p0ıp00 V2 D V ;

and

" h
.. //
0

i
���
h

.. //
0

i
W

0
;

#
with ıp0p00W D V :

For the first candidate

ıp0p00y D

" h
.. //
0

i
���
h

.. //
0

i
V

1
;

#

while the second candidate does not belong to M. This finishes the verification
that M is a modular subhybrid of Mod.OCst/.

Verifying assumptions of Proposition 44. Let w0; w00 2 OCst be such that w0
q0ıq00 w00

2 OCKP. If both w0; w00 2 OCKP, there is nothing to verify. If both w0; w00 62 OCKP,
then it is easy to check that also w0

q0ıq00 w00 62 OCKP, so the only interesting case is
when precisely one of w0 and w00 does not belong to OCKP.

Assume therefore that w0 2 OCKP but w00 62 OCKP. Since w00 has to have at least
two inputs p00 and q00, it must be of type (ii) in the classification of Example 30. This
leaves us with two possibilities.

Case 1: w0 D
h

o1o2o3 ��� ob

0
C

i
, w00 D

�
o ..// ��� .. //

0
;

�
, p0 2 o1, q0 2 o2 and p00; q00 2 o. If

it is so, then

w0
q0ıq00 w00 D

�
o1.o2 q0ıq00 o/ o3 ��� ob ..// ��� .. //

0
C

�

and w0
p0ıp00 w00 D

�
.o1 p0ıp00 o/ o2o3 ��� ob ..// ��� .. //

0
C

�
:

If joj � 3, then the assumption (ii) of Proposition 44 is satisfied with

w0
1 D

h
o1o2 o3���ob ..//���.. //

0
C

i
and w00

1 D
h

o

0
;

i

where w0
1 absorbed all empty cycles of w00. If o D ..p00q00//, such w00

1 is not stable.
We however have

w0
q0ıq00 w00 D

�
o1.o2 q0ıq00 ..p00q00/// o3 ��� ob ..// ��� .. //

0
C

�
;

w0
p0ıp00 w00 D

�
.o1 p0ıp00 ..p00q00/// o2o3 ��� ob ..// ��� .. //

0
C

�
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so we notice, as in the proof of Proposition 49, that w0
q0ıq00 w00 replaces q0 by p00 and

w0
p0 ıp00 w00 replaces p0 by q00 in w0. Therefore w0

q0ıq00 w0 D �.w0
p0 ıp00 w00/ for

a bijection � mapping fp0; p00g to fq0; q00g and restricting to the identity elsewhere.
Assumption (i) of Proposition 44 is thus satisfied.

Case 2: w0 D
h

o1o2 ��� ob

0
C

i
, w00 D

�
o ..// ��� .. //

0
;

�
, p0; q0 2 o1, and p00; q00 2 o. Then we

calculate

w0
q0ıq00 w00 D

�
.o1 q0ıq00 o/ o2 ��� ob ..// ��� .. //

0
C

�

and w0
p0ıp00 w00 D

�
.o1 p0ıp00 o/ o2 ��� ob ..// ��� .. //

0
C

�
:

If o 6D ..p00q00//, the assumption (ii) of Proposition 44 is satisfied with

w0
1 D

�
o1 o2���ob ..//���.. //

0
C

�
and w00

1 D
h

o

0
;

i
:

If o D ..p00q00//, we argue precisely as in the first case.

This finishes the verification of assumptions of Proposition 44. Proposition 46
now implies

Mod.OCKP/ D �Mod.OCst/.OCKP/:

Since we already know that M is a modular subhybrid of Mod.OCst/, the minimality
of the �-closure implies the inclusions

Mod.OCKP/ D �Mod.OCst/.OCKP/ � M � Mod.OCst/:

It therefore remains to:

Verify that M � �Mod.OCst/.OCKP/. We know by [24] that QO Š Mod.Ass/. For
any V 2 QO therefore exists a (non-unique) oV 2 Ass such that

V D ıq0

1
q00

1
� � � ıq0

t q00

t
.oV / (61)

for some q0
1; q00

1 ; : : : ; q0
t ; q00

t 2 oV . To save space, we will denote the iterated
contraction in (61) by �V ; (61) will then read V D �V .oV /. With this notation,
we have in Mod.OC/ the equality

�
V1���Va

g

C

�
D ıp0

1
p00

1
� � � ıp0

gp00

g
�V1

� � � �Va

" h
oV1

0

i
���
h

oVa

0

i

0
Ctfp0

1
;p00

1
;:::;p0

g ;p00

gg

#
(62)

along with the identification

Mod.OC/ 3

" h
oV1

0

i
���
h

oVa

0

i

0
C t fp0

1
;p00

1
;:::;p0

g;p00

gg

#
D

�
oV1

��� oVa

0
C t fp0

1
;p00

1
;:::;p0

g;p00

gg

�
2 OC (63)

provided by the unit (24).
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Denote the left hand side of (62) and the element in (63) by y. If x is stable, then
so is y by Lemma 23, so (62) in fact holds in Mod.OCst/. We need to show that if
x 2 M, then y 2 OCKP.

If g � 1, then y has at least two closed inputs, thus y 2 OCKP. Suppose that
g D 0 and jC j � 1. If y 62 OCKP, then jC j D 1 and o1 D � � � D oa D

�
.. //
0

�
,

so V1 D � � � D Va D
�

.. //
0

�
, hence x 62 OCKP, which contradicts the assumption.

The last case to be analyzed is g D 0 and jC j D 0. Then at least two Vi ’s, say V1

and V2, have at least one input, otherwise x 62 M. So the same is true for oV1
and oV1

,
thus y 2 OCKP.

To sum up, at this moment we know that the sequence of inclusions (51) induce
inclusions

Mod.OCKP/ ,! Mod.OCst/ ,! Mod.OC/:

We also know that

�Mod.OCst/.OCKP/ Š Mod.OCKP/ and �Mod.OC/.OCKP/ Š Mod.OC/

while the isomorphism �Mod.OCst/.OCKP/ Š �Mod.OC/.OCKP/ is immediate.

Definition 53. The Kaufmann–Penner modular hybrid QOCKP is the modular
subhybrid of QOCst generated by OCKP, i.e. QOCKP WD �QOCst.OCKP/.

A more intelligent description of QOCKP will be given in Theorem 57 below. The
linearization of the Kaufmann–Penner hybrid QOCKP is in fact isomorphic to the
degree 0 homology H0 of the arc operad eArc of [15, p. 346], whence its name. Notice
that QOCKP contains the genus-graded stable cyclic operad Comst from Example 26
as a suboperad of elements with g D b D 0, i.e. elements of the form

h
¿
0
C

i
; C 2 Fin : (64)

The following variant of Theorems 38 and 51 for QOCKP is implicit in [15, Theo-
rem 4.1].

Theorem 54. Let I denote the ideal in the modular hybrid Mod.OCKP/ generated
by the relation " h

..q//
0

ih
..r//

0

i

0
;

#
D

" h
..q//..r//

0

i

0
;

#
: (65)

Then
QOCKP Š Mod.OCKP/= I:

Therefore, for any modular hybrid H and a morphism F W OCKP ! H such that

ıuvF
h

..uqvr//
0
;

i
D F

h
..q//..r//

0
;

i
;
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there is a unique morphism yF W QOCKP ! H of modular hybrids making the diagram

OCKP
� � //

F
''❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

QOCKP

yF
��✤
✤

✤

H

commutative.

An immediate consequence of this theorem combined with Proposition 52 is that
the symbol (17) with g � 1 belongs to QOCKP if and only if it is stable, i.e. if either
of b, jOj or jC j is nonzero.

Proof of Theorem 54. It is clear that QOCKP is isomorphic to the �-closure of OCKP

in QOC , therefore the isomorphism (39) identifies Mod.OCKP/ with QOCKP. The
proof therefore goes along the similar lines as the proof of Theorem 38, so we only
highlight the differences.

We must again be aware that some terms in (45) which we used to prove (44)
may not belong to Mod.OCKP/. In the proof of Theorem 51 we explained how to
avoid appearances of unstable terms. The remaining terms outside Mod.OCKP/ will
be eliminated by absorbing trivial nests

�
.. //
0

�
.

By this we mean that, for arbitrary nontrivial nests V1; : : : ; Va ¤
�

.. //
0

�
, we prove

the following equality modulo I

" h
.. //
0

i
���
h

.. //
0

i
V1���Va

g

C

#
D

�
zV1V2���Va

g

C

�
; (66)

where
eV 1 WD

h
.. //���.. // o1 ��� ob

g1

i

if V1 D
�

o1 ��� ob
g1

�
. Assuming this, it suffices to prove (44) for elements not containing

a trivial nest
�

.. //
0

�
, which proceeds as in the proof of Theorem 51. To verify (66), it

suffices to prove that

" h
.. //
0

i
V1���Va

g

C

#
D

�
zV1V2���Va

g

C

�
modulo I (67)

for arbitrary V1; : : : ; Va such that the left hand side of (67), which we denote by x,
belongs to Mod.OCKP/. In the following calculation we denote, for V D

�
O
g

�
2 QO

and an independent symbol p, by pV a nest of the form V D
�

p O

g

�
, where p O

is an extension of the multicycle O introduced in the proof of Proposition 34. We
distinguish four cases.
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Case 1: g � 1. If x has exactly two nests, we use the decomposition
" h

.. //
0

i
V

g

C

#
D ır 0r 00

 " h
..r 0//

0

ih
..p0//

0

i

0
;

#
p0ıp00

" h
..p00//

0

ih
..q0//

0

i

0
;

#
q0ıq00

�
q0r 00V

g�1

C

�!
:

(68)
Applying relation (65) to the middle term of the right hand side, we get

" h
.. //
0

i
V

g

C

#
D ır 0r 00

 " h
..r 0//

0

ih
..p0//

0

i

0
;

#
p0ıp00

" h
..p00//..q0//

0

i

0
;

#
q0ıq00

�
q0r 00V

g�1

C

�!

D ır 0r 00

" h
..r 0//.. //

0

ih
r 00V

0

i

g�1

C

#
D

�
zV
g

C

�
:

The only term in the right hand side of (68) that might not belong to Mod.OCKP/ is
the rightmost one. This happens if and only if g D 1, C D ;, V D

�
.. //
0

�
, in which

case we verify directly that
" h

.. //
0

ih
.. //
0

i

1
;

#
D ıq0q00

 " h
..p0//

0

ih
..q0//

0

i

0
;

#
p0ıp00

" h
..p00//

0

ih
..q00//

0

i

0
;

#!

D ıq0q00

 " h
..p0//..q0//

0

i

0
;

#
p0ıp00

" h
..p00//..q00//

0

i

0
;

#!

D ıq0q00

" h
.. //..q0//..q00//

0

i

0
;

#
D

" h
.. //.. //

0

i

1
;

#
:

If x has at least three nests, we use the decomposition

" h
.. //
0

i
V1���Va

g

C

#
D ır 0r 00

 " h
..r 0//

0

ih
..p0//

0

i

0
;

#

p0ıp00

" h
..p00//

0

ih
..q0//

0

i

0
;

#
q0ıq00

�
q00V1 r 00V2 V3���Va

g�1

C

�!
;

apply (65) to the middle term in the right hand side and proceed as before. In this
case all terms clearly belong to Mod.OCKP/.

Case 2: g D 0 and jC j � 2. Let d 2 C and C 0 WD C n fdg. Then we use the
decomposition

" h
.. //
0

i
V1���Va

0
C

#
D

" h
..p0//

0

i

0
fdg

#
p0ıp00

" h
..p00//

0

ih
..q0//

0

i

0
;

#
q0ıq00

�
q0V1 V2��� Va

0
C 0

�
:

All terms in the right hand side obviously belong to Mod.OCKP/.
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Case 3: g D 0 and C D fdg. We want to decompose
" h

.. //
0

i
V1���Va

0
fdg

#
D

" h
..p0//

0

i

0
fdg

#
p0 ıp00

" h
..p00//

0

ih
..q0//

0

i

0
;

#
q0ıq00

�
q0V1 V2��� Va

0
;

�
: (69)

While the first two terms in the right hand side always belong to Mod.OCKP/, the
last one may be problematic. Let us discuss the case when a � 2 first. Since
x 2 Mod.OCKP/, at least one of its nests must differ from

�
.. //
0

�
; we may assume

without loss of generality it is V2. Then the rightmost term in (69) belongs to
Mod.OCKP/.

The same is true if a D 1 and if q0V1 is stable. If it is not stable, then V1 must be
of the form

�
..r//

0

�
and we verify directly that

" h
.. //
0

ih
..r//

0

i

0
fdg

#
D

" h
..p0//

0

ih
..r//

0

i

0
;

#
p0ıp00

" h
..p00//

0

i

0
fdg

#

D

" h
..p0//..r//

0

i

0
;

#
p0ıp00

" h
..p00//

0

i

0
fdg

#
D

" h
.. // ..r//

0

i

0
;

#
:

Case 4: g D 0 and C D ;. Since x 2 Mod.OCKP/, at least two of its nests are
nontrivial, so we may assume that

x D

" h
.. //
0

i
V1V2���Va

0
;

#
;

where V1; V2 ¤
�

.. //
0

�
. If pV1 is stable, we decompose x as

" h
.. //
0

i
V1V2���Va

0
;

#
D

�
p0V1

0
;

�
p0ıp00

" h
..p00//

0

ih
..q0//

0

i

0
;

#
q0ıq00

" h
..q00//

0

i
V2���Va

0
;

#

and apply (65) to the middle term in the right hand side as before. If pV1 is not stable,
then V1 has to be of the form

�
..r//

0

�
and we use instead the decomposition

" h
.. //
0

ih
..r//

0

i
V2���Va

0
;

#
D

" h
..r//

0

ih
..q0//

0

i

0
;

#
q0ıq00

" h
..q00//

0

i
V2���Va

0
;

#
:

This finishes our verification of (66).

5. Finitary presentations

The aim of this section is to give an explicit finitary presentation of the Kaufmann–
Penner modular hybrid QOCKP and derive from it a description of its algebras. As
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the first step we express OCKP in terms of generators and relations. Recall that the
components of a cyclic hybrid H are indexed by couples consisting of a multicycle O

and a finite set C . We will call the symbol
�

O

C

�
the biarity of elements in H .O; C /.

Theorem 55. The cyclic hybrid OCKP has the following presentation. The generators
are:

(g1) an “open pair of pants” � D �
..pqr//
; of biarity

�
..pqr//

;

�
with G D 0, with the

trivial action of cyclic order-preserving automorphisms of ..pqr//,

(g2) a “closed pair of pants” ! D !¿

fdef g
of biarity

�
¿

fdef g

�
with G D 1

2
, and the

trivial action of the group of automorphisms of fd; e; f g, and

(g3) a “morphism” � D �
..p//

fdg
with G D 1

2
of biarity

�
..p//
fdg

�
,

subject to the axioms:

(a1) associativity in open inputs:

�
..pqr//
; rıs �

..stu//
; D �

..pru//
; rıs �

..qts//
; ;

(a2) associativity in closed inputs:

!¿

fdef g f ıg !¿

fghig D !¿

fdf ig f ıg !¿

fehgg;

(a3) morphism property:

�
..p//

fgg gıf !¿

fdef g D
�
�

..pqr//
; qıs �

..s//

fdg

�
rıt �

..t//

feg
; and

(a4) centrality:

�
..pqr//
; qıs �

..s//

fdg
D �

..prq//
; qıs �

..s//

fdg
:

In other words, OCKP is the quotient

OCKP Š Fcyc.E/= J (70)

of the free cyclic hybrid generated by the collection E consisting of �, ! and � as
above, modulo the ideal J generated by the relations (a1)-(a4).

Generators (g1)–(g3) will be depicted as

b b

r

p

f

d e

p

dq

� : ! : � :, , . (71)
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The pictorial forms of the associativities (a1) and (a2) are the “fusion rules”

b b
b

b
bb b

b

b

p u

q t

p u

q t

D and

d i

e h

d i

e d

D

while the morphism property (a3) and the centrality (a4) are depicted as

p

d e

p

d e

p

d

r r

p

d

b

b b b
= =and

Proof of Theorem 55. We define a morphism � W Fcyc.E/ ! OCKP of cyclic hybrids
by

�
�
�

..pqr//
;

�
WD

�
..pqr//

0
;

�
; �

�
!¿

fd ef g

�
WD

�
¿

0
fd ef g

�
and �

�
�

..p//

fdg

�
WD

�
..p//

0
fdg

�
:

Let us verify that � descends to a morphism

˛W Fcyc.E/= J ! OCKP (72)

of cyclic hybrids. The compatibility with (a1) means,
�

..pqr//

0
;

�
rıs

�
..stu//

0
;

�
D

�
..pru//

0
;

�
rıs

�
..qts//

0
;

�
;

the compatibility with (a2) leads to
�

¿

0
fdef g

�
f ıg

�
¿

0
fghig

�
D

�
¿

0
fdf ig

�
f ıg

�
¿

0
fehgg

�
;

the compatibility with (a3) amounts to verifying
�

..p//

0
fgg

�
gıf

�
¿

0
fdef g

�
D

��
..pqr//

0
;

�
qıs

�
..s//

0
fdg

��
rıt

�
..t//

0
feg

�

and, finally, the compatibility with (a4) translates to
�

..pqr//

0
;

�
qıs

�
..s//

0
fdg

�
D

�
..prq//

0
;

�
qıs

�
..s//

0
fdg

�
:

All the above equations follow directly from the definition of the ı-operations in OC .



1414 M. Doubek and M. Markl

We are going to prove that (72) is an isomorphism. Let us start with a couple
of preliminary remarks. Free operads and operad-like structures are represented by
decorated graphs, as explained at several places, see e.g. [23, Sections 6 and 9],
[24, Section 4]. We assume that the reader is familiar with this description. In
our case, elements of Fcyc.E/ are connected, simply connected graphs with three
types of vertices as in (71), and two types of (half)-edges: solid ones representing
“open” propagators, and dashed ones representing “closed” propagators. Moreover,
half-edges adjacent to a vertex representing the open pair of pants are cyclically
ordered.

The associativities (a1) and (a2) enable one to contract propagators connecting
two �-vertices or two !-vertices. The result will be a graph � with vertices

and ,,

� � �

b b

� � �

(73)

which represents an element in the quotient Fcyc.E/ modulo the ideal generated by
(a1) and (a2). We will call the vertices in (73) the �- , !- and �-vertices, respectively.
The half-edges adjacent to a �-vertex are cyclically ordered. When drawn in the plane,
we assume they have the implicit anti-clockwise cyclic order.

The case when � has only �-vertices is very special, � then must be a corolla
formed by an !-vertex whose all adjacent half-edges are legs13 labelled by a finite
set C . The equivalence class of � in Fcyc.E/= J is then an element of biarity

�
¿

C

�
.

So assume that � has at least one !- or �-vertex, which happens if and only if it
has at least one solid half-edge. Cutting all its internal dashed edges in the middle
produces b connected graphs �1; : : : ; �b; the non-negative integer b 2 NC can easily
be seen to be the number of boundaries of the equivalence class of � in Fcyc.E/= J.
The open legs of �i are cyclically ordered and their labels form for each 1 � i � b a
cycle oi . Denoting by C the set of labels of closed legs, the equivalence class of �

in Fcyc.E/= J has biarity
�

O

C

�
with O WD o1 � � � ob .

In both cases, we explicitly assigned to elements of Fcyc.E/= J a biarity
�

O

C

�

preserved by the map ˛ in (72). We denote by ˛
�

O

C

�
the restriction of this map to

subsets of elements with the indicated biarity.
Let Fcyc.!/ be the free cyclic operad generated by !, A the ideal generated by the

associativity (a2), and Comst the cyclic stable commutative operad from Example 26
identified with the cyclic suboperad of OCKP consisting of elements as in (64). It is
clear that ˛

�
¿

C

�
can be identified with the morphism

Fcyc.!/=A ! Comst

that sends ! to the generator of Comst. This map map is an isomorphism
since Fcyc.!/=A is the standard presentation of the cyclic commutative op-
erad [25, Example II.3.33], so the O D ¿ case of Theorem 55 is proven. Therefore,

13I.e., by definition, external half-edges.
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from now on we assume that O ¤ ¿. Notice that for each biarity
�

O

C

�
there is either

precisely one element in OCKP of that biarity, or none. To prove that ˛
�

O

C

�
is an

isomorphism, it is therefore enough to establish

Lemma 56. Let us denote by
�
Fcyc.E/= J

� �
O

C

�
resp. .OCKP/

�
O

C

�
the subsets of

elements of the indicated biarity. Then

(i)
�
Fcyc.E/= J

� �
O

C

�
is either empty or a one-point set, and

(ii) .OCKP/
�

O

C

�
¤ ; implies that

�
Fcyc.E/= J

� �
O

C

�
¤ ;.

Our strategy of the proof will be to modify the graph � , bringing it in a “canonical”
form (81), and show that this form is uniquely determined by the biarity. Let us start
the process of modification of � .

Since � has at least one solid (half)-edge, we may use the morphism property (a3)
to eliminate all its !-vertices. The only dashed internal edges will then be of the
form

, (74)

where the two gray cycles indicate (possibly empty) subgraphs. The only dashed legs
are of the form

,u

with the label u belonging to the set C of closed inputs. The local structure of �

around a �-vertex looks as in

:

o1
o2

o4

o5o3

u

b v

a

b (75)

Here the solid legs represent open inputs in the boundary cycle ..o1; : : : ; o5//, dashed
legs closed inputs labelled by u; a; b; v 2 C , and the gray circles are some subgraphs.
The graph � may also have open inputs appearing e.g. as

p (76)

that corresponds to the open boundary component ..p//. Finally, empty boundary
components are introduced by solid edges connecting two �-vertices:

: (77)

The centrality (a4) implies that the position of an edge connecting a �-vertex
with a �-vertex, call it a .�; �/-edge, and the positions of other half-edges adjacent to
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the same �-vertex can be interchanged, so the .�; �/-edges are not subjected to the
cyclic order. What we mean should be clear from the following particular example
of four half-edges adjacent to �:

b bD D b b

1 1 1

12 2 2 2

3 3 3

3

=

where the numbered cycles are arbitrary possibly empty subgraphs. The above
equalities can be proved by successive applications of the associativity (a1) and
centrality (a4). For instance, the middle equality follows from

b b
D

(a1)
b

b D
(a4) :

b
b D

(a1)

1111

2

22
2

3 333

We leave the formulation and proof for an arbitrary number of (half)edges adjacent to
a �-vertex as an exercise. In particular, all .�; �/-edges can be mutually interchanged.
Consequently, the half edges adjacent to the vertex in (75) can be rearranged as in
the left picture in

b

u
a

b

v :

o1

o2
o3o4

o5

b
o

o WD ..o1; : : : ; o5//

a

u

b

v

(78)

The only half-edges subject to the cyclic order are those labelled by o1; : : : ; o5.
The local structure around the above �-vertex can therefore be encoded by a “fat”
vertex b labelled by the corresponding cycle, as shown in the right picture of (78).
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We therefore have a graph with the local structure around fat vertices as show below:

b
o

� � �

with no order imposed on the adjacent half-edges. All edges adjacent to these fat
vertices are connected to a �-vertex. The labelling cycle o might be arbitrary except
for the case when b has only one adjacent half-edge; we then require o to be
non-empty, i.e. we exclude

b.. // . (79)

We also exclude the fat vertex b o standing alone when joj � 3. Finally, we absorb
open boundary components in (76) and (77) into this notation by identifying

b

b
..p//

p

.. //

.and

:=

:=

Another tool which we use will be the sliding rule claiming that the configuration

b b

� � � � � �

o
0

o
00

(80a)
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� � � � � � � � � � � �

bD

� � � � � �

b

� � � � � �

bD

D

D

� � �� � �

b b b b

b b b b

b b

o
0

o
0

o
0

o
0

o
0

o
00

o
00

o
00

o
00

o
00

(a1)

(a1)

(a3)

(a3)

Figure 4. Proof of the sliding rule: subsequent use of axioms (a1) and (a3).

is, modulo J, the same as

b b

� � � � � �

o
0

o
00

. (80b)

In words, the sliding rule claims that an arbitrary half-edge adjacent to a fat vertex
can be amputated, moved along the graph, and attached to another fat vertex. The
only restriction is that in doing so we must not create a forbidden fat vertex (79). The
proof of the sliding rule is given in Figure 4. It is clear that, using the sliding rule,
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the graph � can be brought, modulo J, to the following linear form:

b
� � �

b
� � �

b
� � �

� � �

o�.1/ o�.b/o�.2/ b
� � �

o�.b�1/

(81)
where the open legs are labelled by elements of C and � is a permutation of the set
f1; : : : ; bg. As the next step we show that the order of cycles is (81) is not substantial.
Concretely, we show that

b
� � �

b
� � �

o
0

o
00

(82a)

is, modulo J, the same as

b
� � �

b
� � �

o
00

.
o

0

(82b)

Using the associativity (a1) of � we modify (82a) into

b
� � �

o
0

o
00 ,

b
� � �

b b

the morphism property (a4) turns it into

,

b
� � �

o
0

b b

b
� � �

o
00



1420 M. Doubek and M. Markl

while the associativity (a2) of the “open” multiplication ! together with its commut-
ativity shows that the above graph is, modulo J, the same as the graphs

b
� � �

o
0

b

b

b
� � �

o
00 b

� � �

b

b

b
� � �

D .

o
00

o
0

Backtracking the above modifications we convert the graph in the right hand side of
the above equality into (82b).

We are finally ready to prove Lemma 56. As before, b denotes the number of
boundaries of O and we assume that b � 1. Let o1 � � � ob0 be all nontrivial cycles in O

so that O D o1 � � � ob0.. // � � � .. // with b00 WD b � b0 trivial cycles .. //. We distinguish
four cases.

Case b0 � 2. Using the commutativity (82a)–(82b) we can rearrange (81) so that the
labels of the fat vertices read from the left to the right are

o1; .. //; : : : ; .. //; o2; : : : ; ob0 :

Since both o1 and ob0 are nontrivial, the forbidden vertices (79) cannot occur so
that, according to the sliding rule (80a)–(80b), the positions of closed legs are not
constrained. In other words, for each biarity

�
O

C

�
with at least two nontrivial cycles

in O there exists exactly one isomorphism class of graphs in Fcyc.E/= J with that
biarity.

Case b0 D 1, b00 � 1. With the aid of commutativity (82a)–(82b) we order the fat
vertices of (81) from the left to the right into

o1; .. //; : : : ; .. //:

To avoid the forbidden ones, the rightmost fat vertex must be adjacent to at least one
open leg, which may happen only when C ¤ ;. All remaining open legs can be then,
using the sliding rule (80a)–(80b), transferred to the rightmost fat vertex, so their
positions are irrelevant. We conclude that if C ¤ ;, Fcyc.E/= J contains exactly one
element of biarity

�
O

C

�
while there are no elements of this biarity if C D ;.

Case b0 D 1, b00 D 0. The graph � is a corolla around a fat vertex which is clearly
an allowed one if and only if the stability 2jC j C jOj > 2 is satisfied.

Case b0 D 0. Since b D b0 C b00 ¤ 0, b00 � 1 and all fat vertices in (81) are
labelled by the trivial cycle .. //. To avoid forbidden fat vertices at both extremities,
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we need jC j � 2 otherwise there will be no graphs of biarity
�

O

C

�
. If jC j D 2,

there is precisely one open leg at both sides of (81) and, due to the obvious left-right
symmetry of the graph, the labels of these legs can be interchanges. If jC j � 3, the
sliding rule applies so the positions of open legs are irrelevant as well.

We see that in all four cases, (i) of Lemma 56 is satisfied. The second part can
be verified easily by comparing the list of elements belonging to OCKP given in
Example 30 with the above calculations. This finishes the proof of the lemma and
therefore also of the theorem.

Theorems 54 and 55 together give:

Theorem 57. The modular hybrid QOCKP has the following presentation. It is
generators are (g1)–(g3) of Theorem 55 and the relations are (a1)–(a4) of Theorem 55,
together with the Cardy condition

ıuv

�
!

..uqa//
; aıb !

..bvr//
;

�
D �

..q//

fcg cıd �
..r//

fdg
: (83)

Theorem 55 as well as the previous one are explicit as the degree 0 part in
[15, Proposition 5.3].

Proof of Theorem 57. It follows from the commutativity of diagrams in Example 17
combined with (70) that

Mod.OCKP/ Š Mod
�
Fcyc.E/=J

�
Š Mod

�
Fcyc.E/

�
=J Š Fmod.E/=J; (84)

where Fmod.�/ is the free modular hybrid functor, and the collection E and the ideal J

have the same generators as in Theorem 55.
Theorem 54 combined with (84) implies that the modular hybrid QOCKP is

isomorphic to the quotient of Fmod.E/ by J and relation (65). The proof is finished
by observing that the isomorphisms (84) translates (65) into (83).

In Example 18 we defined algebras over cyclic hybrids. The finitary presentation
of OCKP given in Theorem 55 offers an explicit description of its algebras. Recall that
a Frobenius algebra on a vector space A equipped with a non-degenerate symmetric
bilinear form ˇA has an associative multiplication �AW A ˝ A ! A such that the
expression

ˇA

�
�A.a1; a2/; a3

�
2 k (85)

is cyclically invariant in a1; a2; a3 2 A. A Frobenius algebra is commutative if (85) is
invariant under all permutations of a1; a2 and a3; this forces �A to be commutative.
The following theorem is explicit in the degree 0 part of [15, Theorem 5.4].

Theorem 58. An algebra over the Kaufmann–Penner cyclic hybrid OCKP on a pair
A; B of finite dimensional vector spaces equipped with symmetric non-degenerate
bilinear forms ˇA; ˇB is the same as

(i) a Frobenius algebra on A with the associated form ˇA,
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(ii) a commutative Frobenius algebra on B with the associated form ˇB , and

(iii) an associative algebra morphism B ! A with values in the center of A.

Proof of Theorem 55. By definition, an OCKP-algebra is a morphism of cyclic
hybrids ˛W OCKP ! EndA;B . Let �; ! and � be the generators of OCKP as in
(g1)–(g3) of Theorem 55. Since the bilinear forms ˇA and ˇB are non-degenerate,
the equations

ˇA

�
�A.a1; a2/; a3

�
D ˛.�/.a1 ˝ a2 ˝ a3/;

ˇB

�
!B.c1; c2/; c3

�
D ˛.!/.c1 ˝ c2 ˝ c3/;

(86)

ai 2A, ci 2B , i D 1; 2; 3, define bilinear maps �AW A˝A !A and !B W B˝B !B

while f WD ˛.�/ is a linear map B ! A.
It is easy to show that (a1) of Theorem 55 translates to the associativity of �A

and (a2) to the associativity of !B . The symmetry, i.e. the commutativity of !B ,
follows from the invariance of ! under the group of automorphisms of its inputs.
Likewise, the morphism property (a3) implies that f W B ! A is an algebra morphism
while the centrality (a4) implies (iii) of the theorem. Finally, the symmetry of the
expressions (85) for �A resp. !B follows from the defining equations (86) and the
cyclic symmetry of � resp. !.

Theorem 57 offers the following description of algebras for the modular hybrid
QOCKP in the spirit of the classical result about 2-dimensional topological field
theories [18], see also [15, Theorem 5.4] and [19, Section 4].

Theorem 59. An algebra for the KP modular hybrid QOCKP on a pair A; B of vector
spaces with symmetric nondegenerate bilinear forms ˇA; ˇB is the same as

(i) a Frobenius algebra .A; �A; ˇA/,

(ii) a commutative Frobenius algebra .B; !B ; ˇB/, and

(iii) an associative algebra morphism f W B ! A with values in the center of A,

satisfying the Cardy condition

ˇA.�A ˝ �A/.1˝ � ˝ 1/.1˝ 1˝ ˇ�1
A / D .ˇA ˝ ˇA/

�
1˝ .f ˝ f /ˇ�1

B ˝ 1
�
; (87)

where � is the standard symmetry in the monoidal category of graded vector spaces.

In (87), ˇ�1
A is the inverse of ˇAW A ˝ A ! k, i.e. the unique linear map

ˇ�1
A W k ! A ˝ A satisfying

.ˇA ˝ 1/.1 ˝ ˇ�1
A / D .1 ˝ ˇA/.ˇ�1

A ˝ 1/ D 1AI

the inverse ˇ�1
B W k ! B ˝ B is defined similarly.
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Proof of Theorem 59. It follows the pattern of the proof of Theorem 58 and we leave
the details to the reader. A pictorial form of the Cardy condition (87) is

b b

ˇA ˇA ˇA

��

��

ˇB

D .
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