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Abstract. We prove that the modular operad of diffeomorphism classes of Riemann surfaces
with both “open” and “closed” boundary components, in the sense of string field theory, is the
modular completion of its genus O part quotiented by the Cardy condition. We also provide
a finitary presentation of a version of this modular two-colored operad and characterize its
algebras via morphisms of Frobenius algebras, recovering some previously known results of
Kaufmann, Penner and others. As an important auxiliary tool we characterize inclusions of
cyclic operads that induce inclusions of their modular completions.
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Introduction

History of the subject. Barton Zwiebach constructed in [30] “string products” on
the Hilbert space of closed string field theory satisfying the “master equation” which
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reflected the structure of the set @€ of diffeomorphism classes of Riemann surfaces
of arbitrary genera with labelled holes. As we proved in [22], the master equation
expresses that the string products form an algebra over the Feynman transform of Q€.
We moreover proved that Q€ is the modular completion! of its cyclic suboperad
€om C QT consisting of Riemann surfaces of genus 0, that is

Q€ = Mod(€om). (1a)

Later in [6] we proved a similar statement for open strings. Namely, we identified
the modular operad @ of diffeomorphism classes of Riemann surfaces with marked
“open” boundaries with the modular completion of its genus zero part As4, i.e. we
established an isomorphism

Q0O =~ Mod(Ass).

As a follow-up to [6] we argued in [24] that Q@ is the symmetrization of a more
elementary object @ @ bearing the structure of a non-X modular operad. The previous
isomorphism then follows from a more elementary

QO = Mod(Ass). (1b)

where #Ass is the non-X version of the associative cyclic operad and Mod(—) the
non-X% modular completion functor.

Aims. We complete the story and establish analogs of the results mentioned above
for the combined theory of open and closed strings. The central object will be the
set QQ€ of diffeomorphism classes of Riemann surfaces with both open and closed
inputs. It behaves as a non-X-modular operad in the open and as an ordinary modular
operad in the closed inputs; we call these structures modular hybrids. Contrary to
expectations, it turns out that Q@€ is not the modular completion of its genus 0
part @€, but the quotient of this completion by the Cardy conditions known to
physicists [4, 19] that is, symbolically,

QO€ =~ Mod(O€)/Cardy. (1c)

The unusual feature of the Cardy conditions is that they involve both the open and
closed interactions. The above isomorphism restricted to closed resp. open parts
gives (la) resp. (1b), so it is indeed the culmination of the development described
in the previous paragraph. As a bonus, we obtain a purely combinatorial proof of
aresult of [15] characterizing algebras over a version of @9 € in terms of morphisms
of Frobenius algebras. Our results concerning @ @€, namely its Kaufmann—Penner
variant recalled in Subsection 4.2, are explicit or implicit in [15].

'Often called a modular envelope in recent literature. We take the liberty to keep our original
terminology.
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Why is the paper so unbearably long? It is so because we establish three different
versions of (Ic): the “ordinary,” stable and the Kaufmann—Penner version, each
having its own merit — “ordinary” version involves everything that makes sense,
stability prevents the combinatorial explosion of the Feynman transform [25, I1.5.4],
while the Kaufmann—Penner version? admits a nice finitary presentation so its
algebras can be described easily. In more detail, the cyclic hybrid O€ contains
the stable and KP subhybrids Q€ and ) €xp such that

9€ 5 0€ O OCkp.

Since, as demonstrated in Example 43, the modular completion functor need not
preserve inclusions, it is not a priory clear whether

Mod(9€) > Mod(0€) D Mod(OCkp).

A substantial part of this paper is devoted to the proof that it is indeed the case,
therefore the stable and KP cases can be treated as the restricted versions of the
ordinary one.

Our approach. There are two approaches to the structures of (topological) string
field theory. The classical one of [1] interprets surfaces as cobordisms, with the
corresponding combinatorial structure being that of a PROP. The second one does
not discriminate between “outputs” and “inputs,” and the relevant combinatorial
structure is a modular operad. The difference on the algebra level is that, while in the
first approach the bilinear form on the underlying space forms a part of the structure,
in the second approach, adopted e.g. in [15] and this article, the bilinear form is
absorbed in the definition of the modular endomorphism operad.

Main results. The central technical result is Proposition 34 which, together with
Propositions 49 and 52, provides a combinatorial description of the modular
completion of the cyclic hybrid @€ and its versions. Our description enables one to
interpret, in Remark 35, elements of this completion as diffeomorphism classes of
certain Riemann surfaces with embedded loops.

Using the above propositions we obtain the main results of this paper — three
versions of the isomorphism (1c): the “ordinary” one in Theorem 38, stable one in
Theorem 51 and the Kaufmann—Penner in Theorem 54. An interesting byproduct
is Theorem 57 describing the KP version @O Ckp of @O in terms of generators
and relations, together with a characterization of algebras over @ Ckp as couples
of Frobenius algebras connected by a morphism satisfying the Cardy and centrality
conditions given in Theorem 59. Variants of these results are known, see e.g. [15]
whose approach is geometric and uses transitivity moves on generalized pair of pants
decompositions, or [19] working with 2-cobordisms and the standard forms of these.

2Abbreviated “KP” at some places in the sequel.
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Additional physics arguments can be found in [20]. Our approach however provides
purely combinatorial proofs.

It turns out that @€ and its versions are more than just cyclic hybrids as they admit
a partial modular hybrid structure - they are closed under contractions of open inputs
belonging to the same boundary component since this operation does not change the
geometric genus. We call structures of this type premodular hybrids and denote €
with this extended structure by Q€P™. In Theorem 41 we prove that @ Q€ can be
alternatively described as the modular completion of this premodular hybrid. Since
the Cardy condition already lives in Q€P™, no quotienting is necessary. Finally,
Proposition 44 characterizing inclusions of cyclic operads inducing inclusions of
their modular completions is interesting in its own right.

Plan of the paper. Section I begins with recalling the necessary facts about cyclic
and modular operads, and their non-% versions. We then introduce various versions
of hybrids as structures that combine ordinary and non-X operads. This section also
contains definitions of concrete operads featuring in this article. We believe that
Table 1 helps to navigate through them.

Section 2 is devoted to modular completions of cyclic hybrids and to their
quotients by the Cardy condition. It contains the main technical results of this
paper, Proposition 34 and Theorems 38 and 41.

Section 3 has an auxiliary character. Its Proposition 44 describes inclusions
B < € of cyclic operads that induce inclusions Mod(B) < Mod(€) of their
modular completions.

In Section 4 we use the results of Section 3 to derive the stable and Kaufmann—
Penner versions of the theorems in Section 2.

Theorem 57 of Section 5 provides a finitary presentation of the KP modular hybrid
Q0O Cp. As its application we obtain a result of Kaufmann and Penner describing
its algebras in terms of morphisms of Frobenius algebras.

Acknowledgements. We are indebted to Ralph Kaufmann for explaining to us what
the Cardy condition is, and to the referee for numerous useful remarks and suggestions
which we gladly followed.

Conventions. We will assume working knowledge of operads and their versions.
Suitable references are monographs [21,25] complemented with [23] and the original
sources [8—10]. Modular completions were introduced in [22] and non-% modular
operads in [24]. Sundry facts about operads relevant for string field theory can be
found e.g. in [2,3,5,7,11-15, 26, 29, 30]. Operads in this article will, with few
exceptions, live in the symmetric monoidal category Set of sets. We will denote
by 1x or simply by 1 when X is understood, the identity automorphism of an object X
(set, operad, vector space, etc.).
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We will denote by N the set {1,2,...} of positive integers, by N the
abelian semigroup {0, 1,2, ...} of non-negative integers, and by %N the semigroup
{n/2 | n € N} of half-integers. By Set we denote the category of sets, by Fin the
category of finite sets; |S| € N will denote the cardinality of S € Fin.

Operads considered in this article may have “inputs” of two types — open and
closed. We will tend to use O as the default notation for open inputs, and C for the
closed ones. The operations ,o, in cyclic operads will be termed ‘“o-operations,”
while the operations oy, 3 in modular operads will be called “contractions.”

We will use underlining to distinguish between ordinary (“symmetric”’) and non-X
(“nonsymmetric”) versions of operad-like objects. For instance, the ordinary cyclic
operad for associative algebras will be denoted by ~#Ass while its non-X version by
Ass. Likewise, the underlined “©@” in “Q@€” indicates that this object is a non-X
modular operad in its open sector, see Table 1 for more examples. We will apply the
same convention also to functors. Thus the underlined “M” in Mod(Q€) means that
Mod(—) acts as the non-X modular completion on the open part.

1. Participants in the game

Most of the material recalled in this section already appeared in the literature or is
an harmless modification of the existing notions. The only novel concept is that of
premodular operads and premodular hybrids introduced in Definition 15.

1.1. Standard versions. We start with the following innocuous generalization of
cyclic operads.

Definition 1. A genus-graded cyclic operad is a cyclic operad with an additional
grading by the “operadic genus” (or simply the genus) belonging to an abelian unital
semigroup S.

In other words, genus-graded cyclic operads are cyclic operads in the cartesian
monoidal category of S-graded sets. The components €(S), S € Fin, of a genus-
graded cyclic operad € are thus disjoint unions

€(S) = Ugest(S;G)

such that the structure maps ,0p: t’(Sl L{a}) x C’(Sz L{b}) — €(S1 U S,) restrict
to

a%p: E(Sl (] {a}; Gl) X B(Sz L {b}, Gz) —> B(Sl US,; Gy + Gz)

for arbitrary S1, S» € Fin and G, G € S. In this article, S will either be N or %N.

3In ancient times denoted &,,,,. Notation due to R. Kaufmann.
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Symbol Name Type Found in:
AsS associative operad cyclic operad Ex. 4
Assg  stable associative operad cyclic operad Ex. 24
Qo quantum open operad modular operad Ex. 5
Q04  stable quantum open operad modular operad Ex. 25
€om  commutative operad genus-graded cyclic operad Ex. 6
€omg  stable commutative operad genus-graded cyclic operad Ex. 26
Qe quantum closed operad modular operad Ex. 7
Q%€  stable quantum closed operad modular operad Ex. 27
@O¢€ quantum open-closed operad modular operad Ex. 8
QO€ stable quantum open-closed operad modular operad Ex. 28
oce open-closed operad genus-graded cyclic operad Ex. 10
O%€,  stable open-closed operad genus-graded cyclic operad Ex. 29
A non-% associative operad non-% cyclic operad Ex. 11
sAss stable non-X associative operad non-% cyclic operad Ex. 31
Qo non-X quantum open operad non-% modular operad Ex. 14
QQ,  stable non-¥ quantum open operad non-X modular operad Ex. 32
0] multiple boundary operad premodular operad Sec. 1.3
oe open-closed hybrid cyclic hybrid Ex. 20
QO¢€ quantum open-closed hybrid modular hybrid Ex. 19
O¢€r*  open-closed hybrid premodular hybrid Ex. 21
OF€,  stable open-closed hybrid cyclic hybrid Ex. 29
O%€kp K.-P. open-closed hybrid cyclic hybrid Ex. 30
QO%€kp K.-P. open-closed hybrid modular hybrid Def. 53
QO%€, stable quantum open-closed hybrid modular hybrid Ex. 28
Table 1. Operads and operad-like structures featuring in this article; see also diagrams (12)
and (18).

A morphism of genus-graded cyclic operads is a morphism of the underlying
cyclic operads preserving the genus. We let CycOp to denote the category of ordinary
cyclic operads (no genus grading) and CycOpg, the category of genus-graded ones.
Taking the genus 0 part and ignoring the remaining ones leads to the forgetful functor

CycOpy, —> CycOp.
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On the other hand, every cyclic operad can be viewed as a genus-graded cyclic one
concentrated in genus 0 € S with empty components in higher genera. This gives an
inclusion of categories

t:CycOp — Cchpgg

which is the left adjoint of the forgetful functor above.

We will modify the standard definition of modular operads as well, by allowing
the operadic genus G to belong to a semigroup S containing N. This is necessary
since we want our theory to accommodate the quantum open-closed operad QO€
recalled later in this section, cf. Example 8 and Remark 9. Let ModOp denote the
category of these S-graded modular operads. The concrete S will always be clear
from the context.

Forgetting the operadic contractions

ouy: M(S U{u,v}:G) - M(S.G +1), SeFin, G€S,

every modular operads M becomes a genus-graded cyclic operad. This gives rise to
the forgetful functor
Ugg: ModOp — CycOp,,.

Its left adjoint will be denoted Modg,: CycOpg, — ModOp. One also has the
“standard” forgetful functor [J: ModOp — CycOp, which replaces everything outside
genus 0 by the empty set @. Its left adjoint Mod: CycOp — ModOp is the standard
modular completion functor introduced in [22, p. 382].

The above functors fit into the following diagram of adjunctions in which the top
arrows are the left adjoints to the bottom ones:

CycOp,, ()

Mod
£ =

CycOp O
v

ModOp .

Orders. At this point we need to recall some notions of [24] used later in this article
in the definition of non-X modular and quantum open-closed operads.

Definition 2. A cycle on a finite set O = {01, ...,0,} € Finis an equivalence class
of total orders on O modulo the equivalence generated by

(01,02, ...,0,) = (02,...,04,01).

A cycle represented by (01, ..., 0,) will be denoted by (01, . .., 0,)). The empty set
has a unique cycle on it denoted (()). As in [24] we will sometimes call cycles the
pancakes, imagining them placed in the plane and oriented anticlockwise.
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To save the space, we will sometimes leave out the commas, i.e. write
e.g. (010203)) instead of (01, 02, 03)). The same simplification will be used also for
finite sets, i.e. we will write e.g. {abc} instead of {a, b, c}.

Definition 3. A multicycle O on a finite set O € Fin consists of

(i) a disjoint unordered decomposition O = 07 U --- Ul 0p of the underlying set O
into b > 0 possibly empty sets, and

(ii) acycleo; oneacho;, 1 <i <b.
In the above situation we write O = 071 - - - 0p.

V. Novik in [27] introduced (partial or total) cyclic orders on a set. It has the
property that the disjoint union of cyclically ordered sets bears an induced cyclic
order. In Novdk’s terminology, a cycle on a finite set O is the same as a total cyclic
order of O while a multicycle on O determines a partial cyclic order on O induced
from the total cyclic orders of its components. Since we allowed the sets 0; in (ii)
to be empty, his cyclic order on O does not determine the multicycle uniquely as
it cannot detect the trivial o;’s which are part of the structure. Notice that b = 0
in Definition 3 is possible only for O = @. We denote the corresponding trivial
multicycle by &.

In [24] we introduced two operations on cycles. The merging of pancakes
(0}.....0,,) and (0], ..., o)) is defined as

((0/1, e 0;,,)) R ((0/1/, el 0;;)) = ((0/1, ey Oy 1505 o;:)). 3)

Invoking the invariance of cycles under cyclic permutations we see that (3) in fact
determines the merging

(@0 o0 (07}

for arbitrary 1 <i <m, 1 < j < n. The following picture explains the terminology:

The second operation on cycles is the pancake cutting, defined by the formula

%010;(01,...,0i,...,0n) = (02,...,0i-1)(0it1,....00), 1<i=n,

whose result is a multicycle with two cycles. The invariance under the cyclic group
action determines 0., ; (o1,...,0i,...,0j,...,0p) foreach 1 <i < j < n. The
intuition behind this operation is explained by the picture below.
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The pancake merging of cycles can be extended to multicycles as:

() -0} +++0}) aop (0] +++0ll -+~ OLy)

e A ~/ / 4 11 1 / 4
:= 0+ 0 +++0}p, 0] -+-0}s -0}, (0} aop O}s), (4a)

where a and b belong to the underlying sets of o}, resp. o, for some 1 < i’ < b/,
1 <i” < b”, and the hat indicates the omission as usual. To extend the pancake
cutting, i.e. to define oy, (01 ---0p), we need to distinguish two cases. It might
happen that # and v belong to the same pancake, i.e. u,v € o; for some 1 <i < b.
Then we put

Oyy (0170 *++0p) := 01 *++ (0yp0;) -+ Op. (4b)
The second possibility is that u € 0;» and v € 0;» for 1 < i’ #i” < b. Then

Ouv (01 N 7RI AR .ob) =01 'ai’ .. 'ai” <. 0p (Oi’ uOv oi,,)_ (4C)
We have therefore defined the multicycles
O’ 40p O” resp. 0,,0

for arbitrary multicycles O’, O” resp. O on finite sets O’, O” resp. O, with elements
a € O',b € O"resp. u,v € 0. Pancake merging offers an effective definition of
the cyclic associative operad +Ass:

Example 4. The component 4As4(0) of the cyclic associative operad +A4s is, for
O € Fin, the set cycles on O, that is
As4(0) := {o | 0is acycle on 0}.

Clearly |As3(O)| = (JO| — 1)!. The structure operations are given by the pancake
merging. An automorphism p € Aut(Q) acts on the set #Ass(O) by

IO((017 e On)) = ((,0(01), IR p(on)))
We will denote by #Ass both the cyclic operad Ass and its genus-graded version
t(As4). The meaning will always be clear from the context.

Example 5. The (O; G)-component of the quantum open modular operad Q0 is,
for O € Finand G € N defined as

QO(0;G) := {[mg%] |beNy, geN,
G =2g+b—1, 01---0p is a multicycle on O} 5
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Figure 1. An oriented surface ¥ with b toothed boundaries and genus g.

while the other components are empty. In (5), [01 P ] is a formal symbol depending

on the multicycle o5 - - - 05 and on a non-negative integer g determined by the operadic
genus by the formula G = 2¢ + b — 1. Less formally, [°'g | specifies the
diffeomorphism class of a two-dimensional oriented genus g surface ¥ with b
“open” boundaries with teeth labelled by elements of O on boundaries portrayed
in Figure 1 taken from [24]. For this reason we call the number g the geometric genus
of [O‘gob] € Q0. The operadic structure is given by connecting the teeth with
ribbons so that the orientability is not violated. Notice that we assume that b > 1,
so X has at least one open boundary. The operadic genus G is related to the Euler
characteristics y of X by G =1 — y.

Notice that not all combinations of G and b are allowed, for instance G = b = 1

would imply g = % The assumption that g € N is precisely the geometricity
of [24].4
The ,o0p-0operations are given by the pancake merging as
ooy, oo, — (0} +0},,) aOp (0], ]
[ g ]aob[ g” ] ' [ g'+g” ’ (6a)

where g’, g’ € N and the meaning of the remaining symbols is the same as in (4a).
The contractions are given by the pancake cutting, i.e. in the notation of (4b)
resp. (4c¢),

[olm% ] [°"”(°g""°”)] if u and v belong to the same pancake, and
[0 =

[°"”;°_;_'i'°h)] if they belong to different pancakes.

(6b)
Automorphisms p € Aut(O) act according to the formula

p[ (01~0h, )0} 0h,) ] — [ (p@})~p} N~(p0])p0h, ) ] _
4 g

“Notice however that in [24] the symbols g and G are interchanged.
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Figure 2. Left: a surface representing the element of Eom({a, b,c,d,e}; 3). Right: the glue-
ing 40p.

The only solution of G = 2g+b—1withG =0forb e Ny andg € Nish =1,
g = 0. Therefore the genus 0 component of @O equals the associative operad Ass,
so the injection

Ass —> QO, o[ ¢ ]

defines an isomorphism #Ass = [(Q0O).
We proved in [6] that Mod(Ass) = @0O. By (2), Mod(Ass) = Modg, (L(Add)),
therefore, under the identification ((As4) = 44, one has

Modge (Ass) = Q0.

In the following example we introduce a genus-graded version of the cyclic operad
describing commutative Frobenius algebras. Its standard definition is modified in
such a way that it forms a genus-graded cyclic suboperad of the quantum open-closed
operad Q@O € recalled in Example 8 below.

Example 6. The component €om (C; G) of the cyclic genus-graded operad €om is,
for a finite nonempty set C € Fin and a non-negative half-integer G < %N satisfying

G=-1+]C|/2° (7

defined as
Com(C;G) :={C},

while €om(C; G) is empty for other pairs (C, G). So all non-empty components
of Com are one-point sets indexed by C € Fin. The operadic composition is the
only possible one and automorphisms from Aut(C) act trivially.

It is useful in some situations to represent the unique element of Com(C; G) as
the diffeomorphism class of genus-0 compact oriented surfaces with holes indexed
by C. In this visualization, the operadic composition is given by connecting these
holes by tubes, as indicated in Figure 2 taken from [24].

5Notice that G € %N implies |C| > 2.
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Example 7. The (C; G)-component of the quantum closed modular operad Q€ is,
for C € Finand G € %N given by

QE(C:G):={[{]lgeN,G=2¢—1+]C|/2},

while the other components are empty. Since all non-empty components of
Q%€ (C; G) are one-point sets, the modular operad structure is the unique one with
Aut(C) acting trivially. The symbol [é] represents the diffeomorphism class of
closed oriented surfaces of genus g with holes indexed by the elements of C. The
modular operadic structure is in this representation given by connecting the holes by
tubes as in Figure 2.

There is an obvious injection

ic:tom — Q€, Cw[2] ®)

which identifies €om with the cyclic genus-graded suboperad of Q€ consisting of
elements with g = 0. It is easy to verify directly that

Mod,e (Com) = QT.

A non-genus-graded version of this result appeared in [22, p. 382].

Finally, we recall a two-colored modular operad @€ containing QO in the
“open” color and Q€ in the “closed” one.

Example 8. The (O, C; G)-component @€ (0, C; G) of the quantum open-closed
modular operad is, for O,C € Finand G € %N, defined as the set

010
{[ é ]|beN,geN,
G=2g+b—1—I—|C|/2,01---obisamulticycleon0}. O]

Other components of @ 9€ are empty. The operadic compositions are
o] ...02], 0/1/...02]’” (0] ”’OZf)aOb (0/1/...02)’”)
g/ (lob g// = g/+g// s
C/ C// C/I_l C//
if a, b are open inputs, and

0’1...02] o’l’...og/, O,l ...0;7/ 0’1’...0Z//
g/ a©%p g// = g/+g//
c’ c” C’'uC"\{a,b}

ifa € C', b € C” are closed inputs. We believe that the meaning of the notation,
analogous to the one used in previous examples, is clear. The contractions are, for
open inputs u and v, given by

oup(01-+0p) .
g if u and v belong to the same pancake, and

o [ 01 'é’Ob ] — C
" c oup(01-+0p) X .
g+1 if they belong to different pancakes.
c
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The contractions for closed inputs u, v € C are defined by

01++0p 0] :i;()lh
g |:=1 ¢ .
Cuv [ c ] C\fu,v}
There is an obvious action of the group Aut(Q) x Aut(C) on the set QO€ (0, C; G)

extending the action of Aut(Q) described in Example 5 and the trivial action of
Aut(C). The symbol
01-0p
["e"]
c

in (9) represents the diffeomorphism class of closed oriented surfaces of genus g
with b “open” holes with teeth labelled by elements of O as portrayed in Figure 1,
and “closed” holes labelled by elements of C. The operad structure in the open
color is given by connecting the teeth via ribbons, the structure in the closed color by
connecting the holes via tubes.

There are natural injections Q9 — QOT€ and Q€ — QO given by

[Ol'g"ob] — [01%%] and [g] — [g]
which identify @ with the genus-graded suboperad of @9 € consisting of elements
with no closed inputs, and @€ with the genus-graded suboperad of @€ of elements
with b = 0 open boundaries.

The genus-graded cyclic operad €om from Example 6 clearly coincides with the
suboperad of Q@€ consisting of elements with g = b = 0, i.e. elements of the form

[‘3], C € Fin.
C

Such an element lives in the operadic genus G = |C|/2 — 1. This shall explain the
necessity of introducing genus-graded cyclic operads in this article. Notice that the
stability assumption |C| > 3 implies that G > %

Remark 9. One easily verifies that the Cardy condition

(uqa) @vr) ()] (€))
oun ([ 67 Jaos[ 57 ]) = {8 | cou] 0 (10)
2 ) {c} {d}

visualized in Figure 3 holds in @ @€. Notice that the Cardy condition involves both
“open,” in the left hand side, and “closed,” in the right hand side, structure operations.
Let us explain how it forces the operadic genus of QO€ to be half-integral. The

terms
[ (uqa) ] [ (bvr) ]
0 and 0
) )

in the left hand side are related by a bijection, hence they have the same operadic
genus, say G’. The terms
[ (a) } [ @) ]
0 0
{c} {d}

in the right hand side also have the same operadic genus, say G”, by the same reason.
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a v ¢ ¥
Ouv (qlﬁ a®b }Ir) = ‘II<) >COdO %):Ir
u b \ H

Figure 3. A pictorial form of the Cardy condition. A better picture can be found in [19, (3.44)].

-———

-

Since oy, is required to raise the operadic genus by 1, we have
2G' +1=2G"

which shows that G’ and G” cannot be simultaneously integral.

The authors of [15] view in Appendix A.3 objects like Q€ as c/o-structures,
i.e. objects bigraded by couples (g, y), behaving as modular operads with respect to
the grading by g in the closed, and as modular operads with respect to 1 — y in the
open structure operations. In our particular case, g would be the geometric genus
and y the Euler characteristic of the surface representing an object of @O€. The
above discussion shows that if one wants to replace c/o-structures by a single graded
ones, the combined grading has to be given by half-integers.

The modular operad @O€ contains the following important genus-graded cyclic
suboperad.

Example 10. The open-closed cyclic operad @€ is the genus-graded cyclic sub-
operad of QO€ consisting of diffeomorphism classes of all surfaces of geometric
genus 0, i.e.

©€(0,C;G) ::{["‘g%] e@@‘G(O,C;GHg:O}. )

The structures encountered so far and their inclusions are organized in the

following diagram:
\ (12)

0¢€C Qoce.

/

Ass—— Q0O

Com—— Q€

1.2. Non-X versions. Itturnsoutthatthe operad Q@€ from Example 8 is generated,
in the sense specified below, by a simpler object @9 € that behaves in the open color
as anon-X (non-symmetric) modular operad. Let us briefly recall what these objects
are.

Non-X¥ cyclic operads were introduced in [25, p.257]. The genus-graded
extension of their definition is so obvious that we can safely leave the details to
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the reader. We denote their category CycOp resp. CycOp,, in the genus-graded case.
The left adjoint

Sym: CycOp,, — CycOp,,
to the forgetful functor Des: CycOp,, — CycOp,, is called the symmetrization.

Example 11. The genus-graded cyclic operad +ss recalled in Example 4 is
the symmetrization of the non-X cyclic genus-graded operad #Ass whose (o0, G)-
component, for a cycle o on a finite set O and G € S, is defined by

o}, ifG =0,and
Ass(0;G) o= {00 O =0.an
Q, otherwise.
Since 444 (0; G) is either empty or a one-point set, the operadic composition is defined
in the only possible manner, and the subgroup Aut(o) C Aut(O) of automorphisms
preserving the cyclic order acts trivially. The isomorphism #Ass = Sym(Ass) is easy
to check.

Since non-X modular operads were introduced only very recently [24], we recall
their basic features in more detail. While the components of non-% cyclic genus-
graded operads are indexed by cycles and genera, components of modular non-%
operads are indexed by multicycles and genera. We start by recalling a suitable
groupoid of multicycles.

Definition 12. A isomorphism O" = 0] 0y, —> 0" =of- --0y,, of multicycles
consists of a bijection u: {1,...,b'} — {1,...,b"} and of a cyclic order-preserving
bijection 0;: 0] — o7/ @) specified foreach 1 <i < b’. The groupoid of all multicycles
and their isomorphisms will be denoted by MultCyc.

Definition 13. A non-X modular operad is a functor
M:MultCyc X%N — Set,
where %Nﬁ is viewed as a discrete category, together with operadic compositions
w0y M(0'; G') ® M(0"; G") —> M(Oy0, 0" G" + G”) (13)

defined for arbitrary disjoint multicycles O’ and O” with elements u € O’, v € O”
of their underlying sets, and contractions

Ouy = Opu: M(0; G) —> M(0,,0; G + 1) (14)

given for any multicycle O and distinct elements u, v € O of its underlying set. These
data are required to satisfy the expected associativity and equivariance axioms for
which we refer the reader to [24].

6In [24], M was a functor MultCyc XN — Set, but the difference is irrelevant.
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We will denote the category of non-% modular operads by ModOp. As for cyclic
operads, we have the forgetful functor Des: ModOp — ModOp and its left adjoint
Sym: ModOp — ModOp.

Example 14. The quantum open modular operad @ recalled in Example 5 is
the symmetrization of the non-X modular operad Q@ € ModOp whose (O; G)-
component is, for O = 01 ---0p € MultCyc and G € N defined as

QO©0:G):={[J]1geN,G=2¢g+b—1}

while the other components are empty. The structure operations are given by
formulas (6a) and (6b). There is a natural inclusion ip: Ass — QO given by

io(0) :==[g] (15)

The symbol [g] represents, for O = o;---0p, the diffeomorphism class of
surfaces X as in Figure 1 with b boundary components and teeth indexed by the
underlying set of O such that each 0;, 1 < i < b, corresponds to a specific boundary
component of X, with its total cyclic order induced by the orientation of X.

The forgetful functor ModOp — CycOp,, has the left adjoint
Mod: CycOp,, — ModOp.
The second author proved in [24] that

Mod(Ass) =~ Q0.

1.3. Premodular operads. Consider the subcollection @ of the non-X version of
the quantum open operad @@ of Example 14 consisting of symbols [ 8] representing
surfaces with geometric genus g = 0. Inspecting formulas (6a) and (6b) defining the
operadic structure of @@ we see that, while (@ is closed under the compositions 404,
i.e. it is a genus-graded non-X cyclic suboperad of @@, @ (O) is closed under
the contraction oy, only if ¥ and v belong to the same cycle of the multicycle
O = 07 - -+ 0p. The collection O is an example of the following structure.

Definition 15. A premodular operad & is a functor
P:MultCyc X%N — Set
together with operadic compositions
w0 PO G)® PO, G") — PO 40, O";G' + G")

defined for arbitrary disjoint multicycles O" and O” and elements u € O’, v € 0" of
their underlying sets, and contractions

ouy = Opy: P(0; G) —> P(0,y0; G + 1)
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defined only for distinct elements u, v belonging to the same underlying set of a
cycle of the multicycle O. These data are required to satisfy the axioms analogous
to those for non-% modular operads. Premodular operads and their morphisms form
the category prelModOp.

Premodular operads are thus specific partial non-% modular operads. Notice that
there is no analogue of premodular operads for the standard (X-) modular operads.

1.4. Hybrids. We will also need operad-like structures with two colors, “open”
and “closed,” which behave differently in each of its colors. Namely, we consider
structures that are

(i) genus-graded non-X cyclic operads in the open color and ordinary genus-graded
cyclic operads in the closed one,

(ii) non-X modular operads in the open color and ordinary modular operads in the
closed one, and

(iii) premodular operads in the open color and ordinary modular operads in the
closed one.

Definition 16. We call a structure of type (i), (ii) resp. (iii) a cyclic, modular
resp. premodular hybrid. Their categories will be denoted CycHyb, ModHyb and
PreHyb, respectively.

Modular hybrids should be compared with another formalization of the
combinatorial structure of surfaces with open and closed boundaries — c/o-structures
of [15, Appendix A], cf. also the last paragraph of Remark 9.

Example 17. Let ColHyb denote the category of hybrid collections which are, by
definition, functors
E:MultCyc x FinxiN —> Set

where %N is viewed as a discrete category. Informally, objects of ColHyb are what
remains from cyclic (or modular) hybrid when one forgets all o-operations (and
contractions). We therefore have a commuting diagram

CycHyb

N

ModHyb ColHyb

of forgetful functors and the associated commutative diagram

CycHyb
]Fmod (_)
ModHyb ColHyb

of their left adjoints. The functors Feye(—), Fnoa(—) and Mod(—) are the free cyclic,
free modular and modular hybrid completion functors, respectively.
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Example 18. Let k be a field, not necessarily of characteristic zero. Each (graded)
k-vector space A equipped with a non-degenerate symmetric bilinear form f4
has its modular endomorphism operad &nd 4, see e.g. [25, Example 11.5.43], [23,
Example 52] or the original source [9, (2.25)]. Given another vector space B with a
non-degenerate symmetric bilinear form 5, one can, in the obvious manner, extend
the construction of &nd 4 and create a modular endomorphism hybrid &nd 4, p with
components

&nd 4,5(0,C;G) 1= Lin (®,co 4o ® Q. cc Be k). (16)

In the above display, O is the underlying set of the multicycle O, A, resp. B, are
the identical copies of the space A resp. B, and ) is the unordered product in the
symmetric monoidal category of graded vector spaces [25, Definition I1.1.58]. Due to
the presence of non-degenerate bilinear forms, both A and B are finite-dimensional,
canonically isomorphic to their duals via raising and lowering indexes. This allows
for several formally different but equivalent definitions of the endomorphism modular
hybrid. For instance, (16) can be replaced by

End4,8(0,C;G) == Q,co Ao ® Q. cc Be

which is more in the spirit of [9].

Having endomorphism hybrids, one can speak about algebras; an algebra for a
modular hybrid is, by definition, a morphism «: H — &nd 4,p. Since &nd 4, is
at the same time also a cyclic hybrid, we define in the same way algebras for cyclic
hybrids.

Example 19. The operad @ O€ of Example 8 is the symmetrization, in the open color,
of the modular hybrid @€ whose (O, C; G)-component is, for O = 0y-:-0p €
MultCyc,C € Finand G € %N defined as the set of symbols

QO€(O,C:G) = {[g] lgeN,G=204+b—1+ |C|/2}. a7)

Example 20. There two-colored genus-graded cyclic operad O€ from Example 10
is the symmetrization, in the open color, of the cyclic hybrid @€ defined as the
subcollection of @O€ consisting of symbols (17) with g = 0. The hybrid €
clearly contains both €om and Ass as graded cyclic (resp. non-X cyclic) suboperads.

Example 21. The cyclic hybrid @€ from Example 20 is obviously stable under the
contractions oy, for u and v belonging to the same pancake. It therefore forms a
premodular hybrid which we denote by @€P™.
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One clearly has the following non-% version of the diagram in (12) composed of
ordinary and non-X operads, and cyclic and modular hybrids:

Com—— Q€

[ ~.

o) Qoe.

J

Ass—— Q0

(18)

1.5. Stable versions. Let us slightly generalize the stability condition for modular
operads introduced in [9].

Definition 22. The stable part of a cyclic or modular operad & is the collection
defined as

Pa(S;G) == P(S;G6)

if the stability
2(G-1)+|S|>0 (19)

is satisfied, while $«(S; G) := @ for the remaining (S; G). The operad P is stable
if P = Py.

Inequality (19) is equivalent to the absence of continuous families of automor-
phisms of a Riemann surface of genus G with |C| distinct marked points; whence
its name. Notice, that for genus-graded cyclic operads concentrated in genus 0, (19)
says that | S| > 3.

Definition 22 is easily modified to the non-X cases, while for hybrids we
replace (19) by

26 -1 +[0]+]C|>0. (20)

The statements in the following lemma can be verified directly.

Lemma 23. Inequalities (19) and (20) are preserved by the o-operations and
contractions. If a contraction of x belongs to the stable part of a (non-X) modular
operad or of a modular hybrid, then x belongs to the stable part as well.

Thus the stable part of a (non-X ) cyclic, (non-X ) modular, or premodular operad,
or of a hybrid, is the structure of the same type, with the operations given by the
restrictions of the original ones.

Example 24. The stable version #ssy of the associative cyclic operad Ass of
Example 4 is obtained by requiring that Ass4(0) = @ if |O] < 2, i.e.

As4(0), if |0O] > 3, and

Ass(0) 1=
(0) @, otherwise.
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The operad Assy governs associative algebras with a non-degenerate invariant
bilinear form.”

Example 25. The stable version of the quantum open modular operad @@ from
Example 5 is defined by

QO(0;G), if2(G—-1)+ 10| > 0,and

, otherwise.

QO04(0;G) =

The operadic structure is defined by the same formulas as for Q0.

Example 26. The stable version of the genus-graded cyclic commutative operad
€om from Example 6 is defined by

Com(C;G), if|C|> 3,and

Comyu(C;G) =
(( ) @, otherwise.

It is easy to check that, since G is determined by |C| via (7), the condition |C| > 3
is equivalent to the stability 2(G — 1) 4+ |C| > 0 as expected. Algebras over Com
are commutative Frobenius algebras.

Example 27. The stable variant @€ of the quantum closed operad @€ recalled in
Example 7 is defined by

Q€ (C;G), if2(G-1)+1|C|>0,and

, otherwise.

QEL(C;G) =

Example 28. The stable version Q@€ of the quantum open-closed operad QO€
from Example 8 is defined by

QO€(0,C:G), if2(G—1)+|0|+|C|>0,and

, otherwise.

QO€4(0,C;G) =

The stability condition for the symbol in (9) in QO€ (0, C; G) expressed in terms
of its geometric genus and number of boundaries reads

4g +2b +2|C| + |O| > 4.

The stable subhybrid @ 9 €, of the modular hybrid @ 9€ from Example 19 is defined
similarly.
Example 29. The stable version Q€ of the open-closed cyclic operad O€ from
Example 10 is the genus-graded cyclic suboperad of @ O€ i consisting of all symbols
as in (11) satisfying

2b +2|C| + |0]| > 4.

7I.e. non-commutative Frobenius algebras.
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element » G |0O| |C| element b G |0| |C|
1 0 O 0 1 0
10 2 0 2 1
0

[

5 0 1 [¢ O

Table 2. Unstable elements in Q€.

Likewise, the stable cyclic hybrid Q€ consists of all symbols (17) with g = 0
satisfying the same inequality. There are six unstable elements of O€, i.e. elements
of O€ \ O€, namely

- [((0))]’ - [((g))]’ — [((poq))]’

% % %
OO

2n
2=[V] @8] @=[3]

? {d}
Their operadic genera, number of boundaries, and the cardinalities of O and C are
listed in Table 2. The symbol [{?}] is excluded since its operadic genus equals
G=-1/2.
The stable version of the diagram in (12) can be obtained by decorating everything
by the subscript “st.”

Example 30. We will consider also the Kaufmann—Penner cyclic subhybrid @ €xp of
the stable cyclic hybrid O € obtained by discarding the following types of elements
of OC:

woe @ [V ] bz wpedn: [970] bz 2 lsfolz
OO
type (iii): 0 , b>2.
ype (iii) [ o } >
The check that @€kp is closed under o-operations is routine. In the proof of
Theorem 55 we will need an explicit list of elements

[‘g”] c 0€ 22)

that do belong to @€kp. We distinguish three cases depending on the number of
boundaries.

— If b > 2, then (22) belongs to @ €xp if and only if:
- [C|=2,0r
— |C| = 1 and at least one of 01, ..., 0p is not empty, or

— C = () and at least two of 0y, ..., 0p are not empty,
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— if b = 1, then (22) belongs to O €xp if and only if |O| + 2|C| > 2, and
— if b = 0, then (22) belongs to O €xp if and only if |C| > 3.

Example 31. The stable version 4Ass . of the non-X associative cyclic operad Ass
from Example 11 is defined by

Ass(0; G), if the cardinality of the underlying set of 0 is > 3, and

@, otherwise.

Ads(0:G) 1= §

Example 32. The stable version @@ of the non-X associative modular operad @9
from Example 14 is defined by

QO(0:G), if2(G—1)+|0|>0,and

Q0 ,(0;G) :=
@, otherwise.

Remark 33. Most of the objects and constructions discussed in this sections can
be interpreted in the language of Feynman categories, see e.g. [17]. In this setup,
operads appear as strong symmetric monoidal functors ¥ — C from a Feynman
category ¥ into a symmetric monoidal category C, which is in our case the category
of sets. Various versions of operad-like objects can be obtained from the basic
Feynman category & of graphs [16, Example 1.8] via decorations [16, Sections 2
and 5] or by restriction to a subcategory. Modular envelopes and diagrams that
involve them then appear as particular cases of the push-forward construction and its
functoriality [16, Section 3].

2. Modular completion and the Cardy condition

This section forms the core of this article. Proposition 34 below explicitly describes
the modular completion of the cyclic hybrid @€ and identifies it with the set of
diffeomorphism classes of suitable Riemann surfaces with embedded circles. Its
proof occupies nearly seven pages. Theorem 38 is the central result of this paper. It
describes @O € as the quotient of Mod((€) by the Cardy condition. Theorem 41 in
the last subsection characterizes @€ as the modular completion of the premodular
hybrid @€P™e.

2.1. Modular completion of cyclic hybrids. In Example 17 we introduced the
modular hybrid completion functor Mod: CycHyb — ModHyb as the left adjoint to
the forgetful functor ModHyb — CycHyb. It is clearly a combination of the non-3-
modular completion functor Mod [24, Section 5] in the open color and the ordinary
modular completion Mod [22, p. 382] in the closed one, as indicated by underlying
only the first letter of “Mod.” The aim of this subsection is to describe its value on
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the open-closed cyclic hybrid @€ from Example 20. This auxiliary technical result
is the main step in proving Theorem 38.

We will need the following terminology. Let O = 01 ---0p, b > 1, be a nontrivial
multicycle. A decomposition of O is a disjoint decomposition

{(1,....,bY =B, U---U B,

of the set indexing the cycles of O into nonempty subsets. When necessary, we will
identify it with a choice Oy, ...O, of multicycles O; :={o; | j € B;},1 <i < a.
In this situation we denote b; := | B;|; clearly b = by + --- + b,.

Proposition 34. The component Mod(Q€)(O,C;G) of the modular hybrid
completion of Q€ is, for O € MultCyc, C € Finand G € %N, the set of all

symbols
V(01;G1)+V(0a;Ga) Vi-Va
|: g ], abbreviated as [ g i|, (23)
C C
where
(i) g €N,

(ii) Oz, ...0Oq, is a decomposition of O,

(iii) G; € N, 1 <i < a, are such that QO (O;; G;) is non-empty, and

(iv) V(O;; Gy) is the unique nontrivial element of QO (0;; G;), 1 <i < a.
We moreover assume that

G=>{,G +2¢g+a—1+]|C|/2.

For g € N satisfying G = 2g — 1 + |C|/2 we complete the definition by
1%
Mod(@€)(2.C:6) = {[ £ |}.

while Mod(Q€)(O, C; G) is empty in all remaining cases.

The modular operad compositions are defined as follows. If u is an open input
of V/, 1 <i <a’,and v is an open input of V]f’, 1 <i <a”,then

[ vi-v/, ] |: V-V, (V! w0y V}’)V{W/V\;----V;,V{’W/I/\’jf---V[;’,,
g’ u v g” = I g .
c’ c g,ug,,

Ifu € C’ and v € C” are closed inputs, then

V{"'V;/ V{'...VL;/” Vl/"'VL;/V{/'"V;//
g/ uOv g// = g/+g// .
c’ c’ C'UC"\{u,v}
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If u is an open input of V; and v an open input of V;, 1 <i,j <a,i # j, then
Vi-Va (Vi uOy V)V ...f/\l....f/\j...va
Ouv g = g+1 .

c c

If both u, v are open inputs of the same V;, 1 <i < a, then

Vi-Va [ 0w Vi) V1V Ve

Ouv g = g .

c c

Finally, if u, v € C are closed inputs, then

Vi-Va ] Vi-Va
Oyy g = g+1 |,
c | C\{u,v}

27N
The unit e: 9€ — Mod(O€) of the adjunction ModHyb  CycHyb is given by
~_

0] Oq

(5D =[O orazn o (8] =[5 oo

C

We will use the inclusion e of (24) to view € as a cyclic subhybrid of Mod(OQ€).
A combinatorial characterization of pairs (O;, G;) for which the set @O (O;; G;)
in (iii) is non-empty was given in Example 14. Namely, there must exist g; € N such
that G; = 2g; + b; — 1, V; is then the symbol [g;ﬁ ], 1 <i < a, and the element

in (23) takes the form
[ HigkA }
< .
C

The graphical form of the expression above suggests to call V; = [%f ] € Q0 in (23)
a nest.

Remark 35. Symbols (23) can be represented by oriented surfaces X with holes
indexed by C, b teethed boundaries with teeth indexed by the multicycle O, and an
extra data consisting of @ embedded non-intersecting circles dividing ¥ into a + 1
regions, say Ry,..., Rs, Rg+1, such that R; contains teethed boundaries indexed
by O;, 1 <i < a,and R,4; all holes indexed by C.

Remark 36. We are going to offer another geometric counterpart of Theorem 34.
We are indebted to it to an anonymous referee whose suggestions we follow closely.
The open/closed duality presented in [15, Section 4] implies that any surface
of geometric genus g with b boundary components indexed by i = 1,...,b, each
having n; marked points (teeth), and s punctures interpreted as open boundaries
without marked points, can be decomposed into more elementary pieces follows.

(a) One glues to a surface of genus g with b closed boundary components cylinders
Cy, ..., Cp with one closed and one open boundary component with n; teeth, where
one cylinder, say C, has moreover s punctures.
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(b1) One then further decomposes the cylinders Cs, . .., Cp into a cylinder C with
one closed and one open boundary component, with the open boundary having only
one tooth to which a disk (“cogwheel”) with n; + 1 teeth is glued.

(b2) The exceptional cylinder C; decomposes into a cylinder C as in (b1l) to which
adisk D with n; + 1 teeth and s open boundaries in the interior is glued.

(c) Finally, the punctured disk D appears as a disk with n; + 1 + 2s teeth, where
the 2s teeth come in neighboring pairs. The interior punctures of D are obtained by
glueing the neighboring pairs.

Our new realizations are that (b1) and (b2) only need a non-% structure in the open
part, while (c) uses the premodular structure.

Proof of Proposition 34. We need to verify the universal property saying that for
each modular hybrid # and morphism of cyclic hybrids F: € — JC there is a
unique morphism F:Mod(Q€) — H of modular hybrids such that the following
diagram commutes:
0€ —*— Mod(9F)
|
B
F ¥

H.

Uniqueness. Assume that F exists and prove its uniqueness. We have the diagram:

i Com—— Q€ (25)

0€ ——— Mod(97) Fic | Fr

MC—E>@Q \IF/%.

In this diagram, the inclusion tp: @@ — Mod(O¥€) is the dotted arrow in

Mci—0>@g

I
Ito
Y

Q€ ——— Mod(9¥),

where e is the unit of the adjunction (24) and i p the inclusion (15). The dotted arrow
exists as Mod(+Ass) =~ Q0 by [24]. Likewise, the inclusion (c: @€ — Mod(9¥)
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is the dotted arrow in
Com ——C > Q€
\
\[ ltc
Y
9€ ———— Mod(0¥),

where ic is the inclusion (8). It exists since, by [22, p. 382], Q€ = Mod (€Com). It
is easy to show that

o(V) = [g] resp. ic[ & ] = [g]

so the maps tp and (¢ are indeed inclusions. To simplify the notation, we use these
injections to interpret @€ and @@ as suboperads of Mod(9).
Further, F/: @0 — J in (25) is the dotted arrow in

Mci—")(gg

[ .

y
0€ ——L—~ Mod(0¥)
and F”: Q€ — H the dotted arrow in

Com—C . @ge
|

[ | F
Y

ve —Lf . Mod(©¥).
By the uniqueness of F' resp. F”,
f010=ﬁ|@Q=F’ and Fou = F|ge = F". (26)

Before we proceed, we need to introduce the following terminology. Let o be a
cycle with underlying set O and p an independent symbol. We will call, only for the
purposes of this proof, by an extension of o a cycle po whose underlying setis { p}LI O
such that the induced cyclic order on O coincides with o. It is clear that extensions
exist; if O = (01,02, ...,0n)),then (p, 01,02, ...,0,)) is an extension. On the other
hand, extensions are not unique. Although (01,02, ...,0,)) = (02,...,04,01)),

((p,ol,oz, . ..,on)) #* ((p,oz, . ..,on,ol))

if n > 2. Extensions can be generalized to multicycles. If O is a multicycle, then
an extension of O by p is a multicycle pO some of whose cycles has been extended

by p.
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Using the definition of the hybrid modular structure of Mod(QO€) we get the
following expression for its general element:

[[gi];[gﬁ]} _ [[pﬁg?lqpq oy [[p:é;”]}pzopg[[«pg»}'g{«pog»q @7)

C 8 9 C
where we may further express
[«pa’» H «pg»} [«%;’»]...[ ((1:)2]))]
0 2 0 = Ou/l u/l/ e Ou‘/qug 0 (28)
C Cu{u ull,... .ugu}
with some independent variables ', uf, ..., u/g, ug. Notice that the elements

(1) 157

in the right hand side of (27) belong to the image of tp and therefore are identified

with
[1’501] [p;,oa] € Q0
PECICIErY g ’

81 a

[((pob)]..[(@o’a'))}

0
7 14 / 14
Cu{u uf,...ug,uy

in the right hand side of (28) belongs to the image of e: O€ — Mod(O€) and

therefore is identified with
(9 R@:19)]
0 € @¢€.

4 14
Cufu’ ull,...uguy

while the term

Combining these observations we see that

ﬁ [gll ][gg] _ F/ p/lol F/ p;ou
g - g [ PPV e | PaCpa Cuiu T
C
[ ) (p)
e O, 1

UgUg

i| . (29)

0
Cufuuf,.. . ug

Since F’ is unique, (29) determines F uniquely on elements as the one in the left
hand side of (27). The proof of the uniqueness is finished by observing that

Flg]=r1g) (30)
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Independence on the choices. The aim of this part is to show that the value of
the right hand side of (29) does not depend on the choices of the extensions
PiO1, ..., psOq. It will be convenient to rewrite it as

011]...[ Ca
(B o

C
4 / (Z9 (029
F (6] F 2 Qa F
”O“'gug( ,[p}gll]l"lol’i"” ,[pga ]P&op&’ [ g ])

with § := CU{u}, uf, ..., uj, ug}. Toprove the independence of the right hand side
of (29) on the choices, it clearly suffices to show the independence of the expression
/ / (CLOECA))
¢} 2Oa 1 a
F[ 70 ] propy -+ FI[ S ]p’aong[ 9 ] (31)
Since (31) does not depend on the order of Oy, . . ., Og, it suffices to prove that it does
not depend on the choice of the extension p{O;.

Assume that Oy = 0705 --0p, pjO1 = p{0;1 02 - 0p, and prove that (31) does
not depend on the choice of the extension pjo; of the cycle o;. One has

/ / (CLOECA))
F/[plmoz Oh]Pﬁop”"'F/[pgga]p&oplfF[ o ]

/
r”p101

g1 S
= F, (I:((r/))‘;zl ob]r/or//[r plol]) 70 ”.“Fll:péga]p&opgF[((pl))s((p ))}
_ F/_((r,))i)g2l v op | 1/ Opr F/[r//p'lol ] (A F/[péaoa T ey F|:((171))'g'((17a))

/O //-..F,I:pl/zoa- ' 0 ”F ((p )) ((P ))

_ [ @Vo2 -+ op
= F I 21 r/Or//F 2a | P, °pl S

[/
= F/ (G ))‘;21 ) 7/ Op1 F/|:p2o2:|p/0p//---

82 2 2

[r"p;ol i o F'«p’{»---«pg»

"F,[pééf?a]pézopz F 9 Py °p] 9
’ / o1 (P} )) (py ))
F/[«r % Ob]”or”F/[péSz]p’zopz F/[p‘éga]plzopZF[ 0 :|

The expression in the last line is clearly independent of the position at which p} was

inserted into the cycle 0.

It remains to show that (31) is independent of the order of oy, ..., 0p, i.e. that,
choosing pjO; = pjo;---0;1---0; ---0p, the value of (31) does not depend on i,
1 <i < b. Before we do so, we warn the reader that while

ra) =[]
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for any cycle o, it is not necessarily true that
o}
FI3]= 3]
for a multicycle O = 0705 ---.8 The reason is that in general
o}
ol81# <[]
One can however still express F’ [ 8] very explicitly as follows.
For a totally ordered finite set A denote, as in Definition 2, by (A4)) the induced
cycle. Each cycle o is of this form for some (non-unique) totally ordered A. So,
let o1 = (A1) and 0, = ((A>)) be cycles, x’, x” independent symbols and o :=

(A1x’'A2x")). Then, in @O, one has the identity [ °\7? ] = o[ § ], therefore,
since F': QO — J is a morphism,

F'[%2] = opxr F'[3] in . (32)

Itis easy to extend (32) to an arbitrary number of cycles, i.e. to an arbitrary multicycle.

With (32) at hand, we are ready to prove that (31) is independent of the order of
01,...,0p. To keep the size of formulas within reasonable limits, we assume that
a = 2, the general case is analogous. One has

/ / (291029
F/ D701 02030 F/pO F 1 2
[ e b]piop’{ [ ﬁrzz]P’zop’z’ [ 9 }

S
e F/|: ((s/))((ré?oii"'ob ] S/Os// rror// F/[S//Pq 001 r”02i|
/ (029)1029)
/ o 1 2
ron F [1222] P5°p4 F[ 9 ]
= F/|: ((S,))((r;’)? 03 0p ] §/Og/ p1Op1r Oyl x1t F/[S,/Pér,/o]
; KCRLZ9N
/ 7 71 P02 , ,, 1 2
P, °p] F [ éz ]P2°p2 F g
= Ox/x//F/[ ((S’))((ré)?o;;---ob ] §/Og p/Opr F|:s pgr 0:|
; [ (@) ]
/ 7 1 P202 , ,, 1 2
P, °p] F [ éz ]P2°p2 F g
/ 4 / s"r"o ((p//)) .
- Ox/x//F/[ « ))((rg?% % ] s/ Os” /Ol F/[pégz] 17/2017/2/ F|: g‘ ’ ,

where the relation between 01, 0, in the second and o in the third line is as in (32).
The term in the last line clearly does not see whether p/1 was inserted into 0o; or 0,.
This shows that (31) is invariant under the transposition 07 <> 0. The transpositions
01 <> 0; for arbitrary 1 < i < b can be discussed similarly.

8This become true under some additional conditions discussed in Proposition 38 below.
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Morphism property. Let us define : Mod(Q€) — H by formulas (29) and (30).
It is simple to show that such an F extends F ,1.e. that Foe=F ; we leave this as an
exercise. It is also clear that F defined in this way is equivariant with respect of the
automorphisms of the indexing (multicyclic) sets, and is genus-preserving. To finish
the proof of Proposition 34 we need to show that this F commutes with the structure
operations of modular hybrids. The commutation with the modular operad structure
in the “closed” color is simple and we leave it as an exercise.

Let us show that F commutes with the uOp-operations in the “open” color. To
save the space, we prove it in the simplest nontrivial case. It will be clear that the
general case can be attended analogously. We are therefore going to prove that

91 AT 2 AT T80 = Ao
~ 1 ~ 1 ~ 1 1 ~
F g/ u%v F g// =F g/ u%v g// =F §}+§/2/ . (33)
C] Cz C1 Cz C]LIC2
From the definition of F we get
F/|:p/loli| 7 O //F ((p/)) e} F/I:p/202:| /e) //F ((17
g1 | P S1 u-v g |P2 52
/ / (629) (029)
O O 2
:F’[Péll]uovF/[Pézz]p,lo //F|: Sl i|p/20p//F|: 592 :|

_ [ P} p5(01 40y 02) ) ((p
F|: 1 2g11|-1/;2v 2 :Iprlo //F|: S p/20 n F S .
1 2

Assume that Oq 4,0, Oz = 0102---0p and p) p5(01 40, O2) = pjp501 02+ Op.
Then

F’[p1p2(oluov02)] o ”F|:((P )):| o /,F|:((p0/2,))i|

g1t+g2 P s, |P27® S5
= F/ p,l p,201 027 0p ] p/ O // F ((p p/ O // F ((p
L g1+82 1 Sl 2 S2
r ((17 ") »5)
— Fl ((r/)) 02"'0b 1Ot F/ r//p’l onl , O // F e F 02
| 81182 | 0 Py Sl Py " P2 S
- - "
_ /[ @)orop [ 721 2>
= F I g1tgs | r/ Op// F bs) pfzo v F Sz

~

@) oz 0p opn F

:F_ g1+82 | Sll—lsz

g1+82

I
k|

— p!'[ @Yooy o F[ r po1:|p, } F[ @" }
- - SlLISz

[0 Lo FT5 o 7| 0 |

, (¢70)] (¢29)]
— /| Ploroaop | o | P'©OCr1u%02 | o .
_F_ g1+82 _pop F|:Sl|_|S2:| F[ glig; ]pop F|:SH.ISzj|
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The last term of the above display equals the right hand side of (33) evaluated
using (29).

Let us prove that F commutes with the “open” contractions o,,,,. Again we discuss
only the simplest nontrivial case, the general one can be treated similarly. We will

verify that
1][ 02 0110277
Oqu|:[gl}g[g2]j| =F<ouv[|:gl:L|:g2] ) (34)
C C
Assume that u, v belongs to the same multicycle, say to O;. Then (34) boils to

Ouvﬁ[[;’:]g[?;]} _ ﬁ-[m[?i][;’ﬂ' 35)

g
C C

in which, by definition,
o) _ °uv01
onl21=["2]
where g} equals g; or g; + 1 depending on whether u and v belong to the same
cycle or the different cycles of O;. We therefore rewrite (35) as

o[ IR 5T

c ¢

The left hand side of (36) equals

/| pio /[ pLo (0Z9)10:229)
O“U(F[péll]Pﬁopﬁ’F[pézz]p’zop’z’F[ 0

/ ! (@@
:°qu'[’”°1]#%1’F'[”zoz]paopﬂ[ kN }

81 1 82 S
4 4
T Phewor T .05 @)
_F[ g ]PSOP’{F[ A A R

which is the right hand side of (36) expressed via (29). Before we go further, we
need to prove an auxiliary

Sublemma 37. Let 01 and 05 be cycles, S a finite set and u, v, p’ and p” independent
symbols. Then

01 02 plot p'oy ]
0 = vy
OMUF[ Sl_l{u,v}] °r'p F[ g‘ ] ' S

Proof of the sublemma. 1t follows from the axioms of modular operads that

01 02 01 7 02
Ouv (F[SI_I(?{“}] p'Op” Fl:{g}:l) = op/p”(F[Sl_lq{u}_ uOvp F[{g}])

Equation (37) is then a consequence of the fact that F is a morphism of cyclic hybrids
and of the definition of the structure operations in Q€. O
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(34) boils to
] _ [01 uiv Oz
_ g1tg
=F é+12
C

(38)

l

The left hand side of the above display equals

Plol
g1

(#7015

1 P

Assume that Oq 4,0, O3 = 0105

Then

dl

P} p5(01 40y 02)
g1+82

/

P

]

p\rs

~

=F_

/

:F-

~

=F_

/

:F-

/
= Ox/’x//F
_ /
= Ox/,x//F

/
= Ox/’x//F

where in the 4th line we us

hand side of (38) evaluated via (29). This finishes the proof of Proposition 34.

2.2. Modular completion modulo Cardy conditions.

7 O //F/

g1+82

") oz+op |
g1+82

") o2op |
g1+82

") oz+0p |
g1+82

(@)
0
S

502
82

n F

/ p2

2

| )

Jogons |

((pﬁ')) (»y)

1| pio1 Lo, F'| P502 oo
O“”(F[ g1 ]plopi F[ P ]) pzop’zF[ 0 ]
/ / ( //) ( //)
F'| PiP2©1u%p0) | o O & (171{.(172) ‘
g1+8&2 Py 7Py Py Py g

-0p and p| p5(01 40y O2) = pp,0102-+-0p.

s[4

]/O// /O//F|:
p| p5°p5

Py Py Py P
7' Or ”F|:rpp201i|
ol«p }

iy
]
(7%

] 7/ Op// F r” ,0 ]pIOp// F|:
(029)
0

’ n F
]pop |:SI_I{x’x”}:|

(020)
]prop// F|: (17 )

SI_I{x’ x"}
ed Sublemma 37. Itis clear that the last term equals the right
O

(P (»3)
S

7 O //F

o
Dy

(24 )) %)
S

0] 02+ 0p

|

R F (€4 ))((p )

S

)

r”p’
2
r/Or//O / //

r/Or// Ox/ x//F

@
0

Su{x’,x"}

[ (") 02 0p
g1+82

)

p'o1 02 0p
g1+82

P’ (01 4Oy 02)
g1+8&2

In this subsection we iden-

tifty @O € with the quotient of Mod(Q€) by the Cardy conditions.
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Theorem 38. Let us consider the ideal J ° in the modular hybrid Mod(Q€) generated

by the single relation
[ [((g)) ]0[ (((r)))] i| B |: [((q))o((r))] i|

0
@ @
Then
QO€ =~ Mod(9¥€)/d. (39)

Consequently, for any modular hybrid # and any morphism F: Q€ — H of cyclic
hybrids satisfying the relation

Oqu[((quvr»] _ F[((q))gf(r))], (40)

there is a unique morphism F:Q O€ — H of modular hybrids for which the diagram
0e ——s Qote

|
PN
\ |
H
commutes.
Remark 39. Equation (40) is equivalent to

b @) ()
ouv(F[«uga»}aoz,F[« gr»D _ F[ (g)}wd F[(S)}
@ @ {c} {d}

which says that F' preserves the Cardy condition (10). To see it, use that F, as
a morphism of cyclic hybrids, commutes with 505 and .oy, and then invoke the
definition of the o-operations in @O€. The necessity to quotient by the Cardy
condition follows, in the light of Remark 36, from [15, Theorem 4.1] and the
transitivity of the necessary moves described there.

Remark 40. Isomorphism (39) together with the description of @(OQ€ given in
Example 19 indicates that @€ might be the terminal object in the conjectural
category of modular hybrids satisfying the Cardy condition. The r6le of terminality
for objects featuring in string theory was observed in [24], cf. the Principle in the
introduction of that article. The terminality was then in [16, Definition 4.5] related
to minimal extensions of Feynman categories. To prove the terminality of @ 9€ and
interpret it in terms of Feynman categories seems to be an intriguing problem.

Proof of Theorem 38. Let us consider a map o: Mod(O€)/ d — QO€ given by!0

[[2}];[23]}H[gfg;jjgi] amd [7]-[5]

C c ¢

9The term congruence instead of “ideal” might be more appropriate in the context of sets, but we take
the liberty to stick to the terminology we are used to.

10We use the same notation for an element of Mod((€) and its equivalence class. The meaning will
always be clear from the context.
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and a map B: Q€ — Mod(O€)/d given by
)= Y] e (2] )

It is easy to check that « and § are well-defined morphisms of modular hybrids and
that ¢f = 1. To verify Ba = 1, we have to check that

01]...[ Ca O1-Oa
[bUQ}{b%mqmmwa 1)
C C

for a > 1; for a = 0 is the claim trivial. We start by showing that

|: [((g))][ ((qor))] } _ |: [((p))(()(qr)) ] :| ‘ @

0 0
C C

To this end, we rewrite the left hand side as

[ |: ((g)) ] [ ((%)) ] s/ Og” [ |: ((qr(;g”)) ] } (433)

0 0
@ C

and apply the generating relation of 4 on the first term. We obtain

(02](&9) (ars")
|:[ d 8S :Ii|s/os//|:|: qros :|i| (43b)

o ¢
which equals the right hand side of (42).
As the second step of the proof we verify that

[ H ] [R5 a

Assume that O; = 0/0} - -- o;),, O, = 0ofoj--- og,, and rewrite the left hand side as

|: [ profl 0’2...027/] :| |: |:q/0/1/ 0’2/...02”] :|
81 10O pt/ 82
p-p

0 0
[/ /]
o [ [«poﬂ»} ([) ) } o [ [«r(;/»}[gg ][9] } us)
/] C

Applying (42) to the third term, we get

[75isheol ] [aoies=op]
81 p'Op” 82

0 0
(/] [}

o [ [«p"»é(q"r»] } o [ [«r(;'»“% ]"'[?Z } }
q'"q r’Or g )

0
[ C
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which is easily seen to be the right hand side of (44). Using (44) inductively we
conclude that the left hand side of (41) equals

[ 01+ 0q ]
|: Yicig j| _ (46)
g
c

The last step we need to prove that o = 1 is the equality

]

C

By the definition of the contractions in Mod(Q€) its left hand side equals

@)1[ p'oroz0
op’p”|:|: 0 ][ lgl2 b:|i|’ (48)

g—1
C

which, by (44), is the same as

|: [((p)) plog 02---%] i|
o, g1
pp g—1 ’

C

which is the right hand side of (47). Applying (47) inductively, we see that (46) equals
the right hand side of (41). This finishes the proof of Sa = 1 and establishes (39).

Let us prove the second part of the theorem. Denote by 7: Mod(9€) —» QO €
the natural projection and by F:Mod(Q€) — J the unique extension of F
guaranteed by the universal property of the modular completion. Such an F descends
to F in the diagram

0€ ——— Mod(Q€) —~ Qoe

‘ -~
-
7 .
F | -
Y e
A

H

if and only if F preserves the generating relation of 4. But this is indeed so, since
f|: [((:1))) ]0[ ((6))] :| _ F[ ((q)g(r)) ] — oy F [ ((quvr))]
)

~[[« ) [ @)
=Oqu|:[ quvr ]i| :F|:[ qgr ]:|a

[ )

where the second equality used (40). The uniqueness of F follows from the
uniqueness of F and the surjectivity of . This finishes the proof of Theorem 38. [
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2.3. Modular completion of premodular hybrids. One has the functor
Opre: ModHyb — PreHyb (49)

from the category of modular hybrids to the category of premodular hybrids which
forgets all contractions in the “closed” color and contractions o, in the “open” color
for which u and v belong to different cycles. In this situation there is another version
of the modular completion functor, namely the left adjoint

Mod,.: PreHyb — ModHyb

to (49). We have
Theorem 41. For the premodular hybrid Q€P* from Example 21 one has the
isomorphism

Modye (O€™) = QO (50)
of modular hybrids.

Remark 42. Notice that the Cardy condition (10) is already built in @ €P™, so we do
not need to take in (50) the quotient by it.

Proof of Theorem 41. We need to verify that for a arbitrary modular hybrid # and
for any morphism F: Q€P* — O,.(H#) of premodular hybrids, there is a unique
morphism F: QO€ — J of modular hybrids such that the diagram

[} ol — Y Y

|
| F
\\V

H

commutes. Since F' is a morphism of premodular hybrids, it automatically satisfies
relation (40), because

Oqu[((quvr))] _ F(opp/[«quvr» ]) _ F[«q»gf(r»]-

If we forget the partially defined contractions in 9€P™, F' becomes a morphism of
cyclic hybrids so it extends, by Theorem 38, into a unique morphism F of modular
hybrids that makes the above diagram commutative. O

3. Modular completion of a suboperad

The central technical result of this article, Proposition 34 of the previous section,
describes the modular completion Mod(@€) of the modular hybrid @€. We need a
similar result also for the KP and stable subhybrids

OCp — O€; — OF, 1)
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but we do not want to repeat the long technical proof of Proposition 34 for them. We
prove instead that the morphisms

Mod(OCkp) — Mod(OE€) — Mod(OC)

of modular hybrids induced by the inclusions (51) are injective and describe explicitly
the modular completions Mod (@ €xp) and Mod(OQ€) as subhybrids of Mod(9€).

The content of this section will therefore be some results about the induced maps
between modular completions. To save the reader from unnecessary technicalities, we
formulate and prove them only for the “classical” cyclic operads and the “classical”
modular completion functor Mod: CycOp — ModOp of [22, p.382]. It will be clear
that obvious analogs of these results hold also for non-% cyclic operads and cyclic
hybrids.

Let thus € be a cyclic operad and 8 C € its cyclic suboperad. We are going to
investigate the induced map w: Mod(8) — Mod(€). The following example shows
that, in some situations, @ need not be a monomorphism.

Example 43. Let € be the free cyclic operad generated by the two-point set

{(u,v), (v,u)} C€({u,v})

with the obvious action of the group Aut({u, v}). Denote by and B C € the cyclic
suboperad consisting of o-compositions of at least two elements of €. Let finally

a:= (u,x") yoxr(v,x") € B({u,v}) and b:= (X', u)wor(x",v) € B({u,v}).
It follows from the axioms of cyclic operads that

ouy(a) = oyy ((u, X’) x0x7 (v, X”))
= Ox/x” ((u, x") uou (v, X”))

= oy ((x/’ u) X/ Ox/ (x”, U)) = Ouv(b)

in Mod(€), while it is simple to check that o,y (a) # oyy(b) in Mod(B). So the
induced map @: Mod(B) — Mod(€) is not a monomorphism.
The main idea of the example can be illustrated as follows. Represent the generator
of € by the arrow
U 4————V0

pointing from v to u. In this graphical representation,

a= U 4—py b= U —pea——:7,

’

so we have in Mod(8B)

- - o - -

— :—_><_—:
oup(a) = o ; oun (b) = C - - )
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The dashed ovals indicate that the arrows representing the generators cannot be
separated in Mod(8B). The ovals however can be erased in Mod(€) and the
arrowheads moved around bringing both pictures in the above display into

D

The central technical result of this section reads

Proposition44. Let B C € be cyclic operads. Assume thatforeveryw’'e €({p’,q'}UR)
and w"e €({p”,q"} U S) such that w' yrogr w"e B p’, p”"} U R U S) either
(i) there is a bijection p:{p’, p"} URU S — {q¢’,q”"} U R U S fixing R U S such
that
u)/ propu w// = Io(u)/qroqu w//),

ii) or there are w, € B{p’,qg"} U R) and w! € B{p”,q"} U S) such that
1 P4 1 P9
w/p/op// U)// = w/l p/Op// w/l/ and U)/ q/oq// U)// = U)/l q/Oq// w/l/‘

Then the induced map w:Mod(8B) — Mod(€) is injective.

The assumption of Proposition 44 is in Example 43 violated by w’ := (p’,¢’) €
Ce{p’.q'}) and w" := (p”,q") € €{p”,q"}), S = R := @. Proposition 44
will follow from Proposition 47 whose formulation and proof we postpone to the
end of this section. It would be interesting to investigate how is the injectivity of
Proposition 44 related to the notion of minimal extensions of Feynman categories in
the sense of [16, Definition 4.5]. We will also need

Definition 45. Let B be a cyclic suboperad of a modular operad €. The &-closure
of B in € is defined as

S‘C’(:B) = {Opflpqr---op;lp;l/(x) et | neN,x e 8,

pi.pY.....py. p, are some inputs of x}.

The terminology is inspired by the old-fashioned notation &, for o,,. Notice
that &e (B) is the smallest modular suboperad of € containing 8B, so it is a modular
completion of B in € or relative to €. From this point of view, Mod(8) is the
absolute modular completion of 8. The following statement describes a situation
when absolute and relative completions agree.

Proposition 46. If B C € are cyclic operads such that the map w:Mod(B) —
Mod(€) is injective, then

Mod(B) = &moace)(B).
In particular, Mod(B) = &voa(8)(B).
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Proof. By the universal property of Mod(8) applied to the inclusions 8 <
EMod(e)(B) and B — Mod(€), there is a modular operad morphism i: Mod(8) —
EMode) (B) such that the diagram

Mod(B) @ Mod(€)

Emoa(e) (B)

commutes. Since @w:Mod(B) — Mod(€) is injective by assumption, so is i. As
EModce) (B) is the smallest modular suboperad of Mod(€) containing $, i must be
an isomorphism. The second isomorphism of the proposition is the particular case
when @ is the identity morphism 1: 8 — B. O

Proposition 44 is a consequence of

Proposition 47. Every element x € Mod(€) in the modular completion of a cyclic
operad € is of the form

X = 0ppr e Op pr (V) (52)
where 'y € € and py, p{...., p,. pn, n € N, are some of its inputs. On elements in

this form, consider the following “moves:”

(i) Letw' € €{p',q¢'} UR) and w" € €({p”,q"} U S). Then replace
Op/lp/l/ e OP,LlP,'Ll Op’p” (u)/q/oqu u)”)
by Op/1 pfl/ s 017;/17117;,1/71 Oq/q// (w, p/Op// 'LUN).
(ii) Let p’, p”,q’,q" be some of the inputs of y and p a bijection mapping p’, p” to

q’.q" in this order which restricts to the identity on the remaining inputs of y.
Then replace

°oip oy o7 p ()

by °pl plf ---op;_lp;{_loqrqn(py),
(iii) For an arbitrary permutation o € X, replace

opi ol Ol pi (V)
l’) o,/ 7 «+c0, 7/ 1 .
Y Po1)Po(1) pcr(n)pam)(y)

Two expressions (52) represent the same element of Mod(€) if and only if they are
related by a finite numbers of the above moves.
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Proof. The modular completion Mod(¥€) is isomorphic to the quotient M (€)/ ~,
where M(€) is the free modular operad generated by € and ~ is the equivalence that
identifies o-operations inside € with the formal ones in M ().

As explained e.g. in [25, I1.1.9], M(€) can be constructed as an explicit colimit
whose elements are represented by decorated graphs. Since we are working in Set,
every x € M(€) has well-defined underlying graph G (x). Choose a contractible, not
necessary connected, subgraph 7 in G(x) and contract x along T using the cyclic
operad structure of €. Denote the result by Cr (x); clearly

Cr(x) ~ x.

If T is in particular a maximal subtree of G(x), then the underlying graph of Cr (x)
has one vertex, call such a graph a broucek.!! The element C7(x) is obtained by
iterated contractions of some y € €. To describe it in such a way explicitly, i.e. as

opip) oy (¥), mEN,

with some specific symbols p/, p7,... p,, p,, one needs to label the half-edges of
broucek and choose their order. The ambiguity of these choices is reflected by moves
(i) and (iii) of Proposition 47.

Another ambiguity comes from different choices of a maximal subtree of G(x).
Let us analyze this situation. Assume that 77 and 7T, are different maximal subtrees
of G(x) By [28, Chapter 6], T and T are related by a “singular cyclic interchange.”
This means that there exists a subgraph H C G(x) with precisely one cycle, and two
edges ey, e; belonging to this cycle, such that

H\{ex} =T, and H\{e1} =T>.

In this situation, H \ {e;, e5} is the disjoint union of two (non-maximal) trees U
and V. Let z := Cypyy(x). Obviously, G(z) is a graph with two vertices decorated
by some a,b € €. Let uy,...,u; are the edges of G(x) that do not belong to
H \ {e1,e2}. We then have, due to the interchange law between contractions and
o-operations,

Z = Oy, ”’Oukoel(a O¢s b) = Ou, "'Oukoez(a O¢; b)

modulo the relations defining Mod(€). In the above display, o, denotes the
contraction along e. Finally, we observe that

Oy; Oy O, (@ 0¢, b) represents Cr, (x)
while

Oy *** Ouy Oe, (@ 0¢, D) represents Cr, (x).

Equality Cr, (x) = Cr,(x) is therefore reflected by move (i) of Proposition 47. [

11 Czech for little beetle.
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The above proof shows that move (i) is the relevant one, the remaining moves
only account for different choices of labels.

Proof of Proposition 44. Recall that each element of Mod(8) is of the form (52).
So assume that y, z € B and that

Opq pll/ oo Op;l p’/{ (y) = Oqa qar o Oq;zq’/{ (Z) in MOd('e) (53)

All we need is to show that the same equality holds also in Mod(8B). By
Proposition 47, (53) holds if and only if there is a finite sequence of moves (i)—(iii)
transforming its left hand side into its right hand side. Each move is a replacement
of the form

oriri/ e or,/lr,'{ (u) > Os/l S/I/ e Os,'ls,'{ (U) (54)

with some u, v € €. The proof will thus be finished if we show that u € B in (54)
implies that v € 8.

This is obvious if (54) is move (ii) or (iii). Let us analyze move (i), that is, see
what happens if we replace

°pip{ " Opy oy Orp ) BV piprop g Cggr (V) (55)
where ¥ = w’ yrog7 w” and v = W’ o, w” with some
w' e€({p.¢tUR) and w”e€({p”".q"}uS)

such that u = w’ yogr w” € B({p’, p"} URUS).
In case (i) of Proposition 44, w’ 0,y w' = p(w q'%q" w/), ie.

v=pu)eB({q . q"yLRLYS)

as required. In case (ii),
v =Wy propr Wy

for some w| € B({p’,¢'} U R) and w{ € B({p”.q"} U S), thus again

veB({g.q"}URUS)

and we are done as well. O

4. Modular completions of the stable and Kaufmann-Penner parts

In this section we use the results of Section 3 and derive the stable and Kaufmann—
Penner versions of Theorem 38.
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4.1. Stable version. Proposition 49 below guarantees that one may use Proposi-
tion 34 to describe explicitly the modular completion of the stable part O€y C O€,
as done in Remark 50. The main result of this subsection is Theorem 51.

Lemma 48. Let € be the stable part of a cyclic operad € as in Definition 22. Then
one has the isomorphism

EMod(‘(f) (€st) = MOd(t))st-

Consequently, if the induced map @:Mod (€y) — Mod (€) is a monomorphism,
then
Mod(€y) == Mod(€).

Proof. By Proposition 47, every x € Mod (€) is of the form

X = 0p i Opppn () (56)

for some y € € andn € N. If x € &voace) (Cst), we may assume that y € € C
Mod(€)y. Since contractions preserve stable parts of modular operads by Lemma 23,
X € Mod(€)y, which shows that

EMod(‘(f) (€st) C MOd(€)St'

If x € Mod(€), then y € Mod(€)y N € = € by the second part of Lemma 23,
hence x € &voqce) (Co), thus

Mod(€)s C Emoace)(€s)-

Having this established, the second part of the lemma follows from Proposition 46.

O

Let us turn our attention to the cyclic hybrid @€ from Example 20 and its stable
version (9€ analyzed in Example 29.

Proposition 49. One has an isomorphism Mod(Q€) = Mod(9€).

Remark 50. An explicit description of Mod (Q €),, and therefore, by Proposition 49,
also of Mod(Q¥€y), is provided by imposing the stability assumption on the
expressions in (23) of Proposition 34. Explicitly, the symbol

011..[ Oa
|:[gl:|g[ga:|j| (57)
C
is stable if and only if

4(g+ Y71 g)+2b+2[C|+]0] >4 (58)

where b := Zle b; is the total number of cycles in Oy, ..., Og4.
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Proof of Proposition 49. We verify that the inclusion Q€ C (OF€ satisfies
condition (i) of Proposition 44. The proof will then follow from Proposition 46
and Lemma 48.

Let w’, w” € Q€ be such that w’ o7 w” € Q€. It easily follows from the
definition of the stable part if w’, w” & @€, then also w’ gr0,7 " & O€, so we
may assume e.g. that w’ € Q€ while w” ¢ Q€. Since w” has at least 2 inputs,
according to (21) it must be either

:[((p”gq”))] or E=[ ‘03 ]

{p// q//

/T 1133 1 <« 119

In both cases, w’ ;7047 w"” “replaces ¢’ by p
inw'.

Let us explain what we mean by this when w” = [s]. Then p’, p”,q" and q”
must be “closed” inputs and one has, by definition,

o ] o
g q/Oq//[ ,0 , ] = g
RU{p .4’} {r".q"} Ru{p’.p"}

o %) o
and g p'Op [ 0 ] = g .
Ru{p’.q’} {r".q"} Ru{q’.q"}

Clearly w’ 47047 w' = p(w’ ,r0,7 w”) for a bijection p mapping {p’, p”} to {q’,q"}
and restricting to the identity on R. The case when w” = can be discussed
similarly. We leave the details to the reader. O

and w’ o, w” “replaces p’ by g

We have the following stable analog of Theorem 38.

Theorem 51. Let d be the ideal in the stable modular hybrid Mod(O€y) =~
Mod(O€)y generated by the relations

[[«g»][«g»]} _ [[«q»o«r»q - [[«g»][«o»q _ [[«q)())«»]} 59)

Then one has an isomorphism of stable modular hybrids

QOC; =~ Mod(OC)/d.

Therefore for any, not necessarily stable, modular hybrid H and a morphism
F:0€ — HK of cyclic hybrids satisfying

Oqu[((quvr))] _ F[((q)g(r))] and Oqu[((uév))] _ F[((q)é(())]

there is a unique morphism F: QO€y — H of modular hybrids making the diagram
Q'est > C‘ZQESt
!
S
Tl
H

commutative.
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The reader may wonder why we have two relations in (59) while the “unstable”
Theorem 38 has only one. The explanation is that, in the unstable case, the second
relation in (59) is the same as

|:[((g))][(((r)))]:| ros|:[(((S)))]i| _ |:[((q))0((r))]i| ros[[((a))]:|7

so it belongs to the ideal generated by the first relation. Since

[ [©] }

is not stable, the same reasoning does not apply to Mod(OQ€y,).

Proof of Theorem 51. The proof is a modification of the proof of Theorem 38 so we
mention only the differences. First of all, in addition to (42), we also need to prove

that
|: [((()))][((qor))] j| _ |: [(())((()qr))] j|
0 0
C C
modulo J. This equality can easily be obtained by replacing, in (43a) and (43b), (p))
by ().

It might also happen that some terms in (45) which we used to prove (44) are
unstable. Let us denote the terms constituting (45) by

= [[ploﬁzjmo;”q, — [[‘”1‘%%]} _ [[((13”))}([)((4'3'))]}

) [ 1%

and 5] = [[«f;’»][gs]---[g;q_

Term is always stable. Term is unstable if and only if g; = 0 and O] =
o} = (p') or ((p's)) for some symbol s, in which case

= |:|:((17§/))]:| o [[«pgs»]}

Likewise, is unstable if and only if

5] = [[«g»]} o [[«qu»]}

for a symbol 7. Finally, [p] is unstable if and only if @ = 2, in which case

5 = [[«rg'»]}
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Let us analyze all possible situations.

Term|[a| is unstable but [ 8] is stable. The left hand side of (44) takes the form
[ [ 0% 12 1]
g
C

with 0] = (()) or oy = ((5)). We then instead of (45) take

"o 050y IR @) ][937..[
(1951 o [ 1410 o [ 73 51]
¢ 0 c
and proceed as before. The situation when is unstable but is stable is similar.
Both[a| and [ B are unstable. The left hand side of (44) is of the form
/ 4 oa
[ Kl EIEEd }
g

o

where 0] = () or ((s)) and o] = (()) or (z)). We then instead of (45) take

[ Hikd } [ [ T%1-%] }
0 g
o c

and proceed as in the proof of Theorem 38.

Term @ is unstable. Then the left hand side of (44) takes the form

[[% ]g[‘;%]}

In this case, instead of (45), we simply take

[ [ o ;%...0;7, } } o [ [ 4’ gob } } o [ [«%"»M(<q(;’)>} }

0 0 0
[ % 1%

This finishes the proof. O

4.2. Kaufmann-Penner variant. The first result of this subsection explains how
to modify Proposition 34 for the modular completion of the KP cyclic hybrid O €xp.
Theorem 54 then describes @@ €kp as the quotient of this modular completion by
the Cardy condition.



1404 M. Doubek and M. Markl

Proposition 52. The modular completion Mod(Q€kp) is the modular subhybrid
of the modular completion Mod(Q€y) obtained by imposing the stability assump-
tion (58) on symbols in (23) resp. in (57), and further discarding

. |:[((0))]...[((0))]:| .

(i) symbols witha > 3,12
[/

(@)

%) v
L9 j|, a > 2, where V. € Q0 has at least one input, and

(ii) symbols |:

(@)

: [
0
)

[(())]..[ ]

(iii) symbols 0 0 041, a > 2 where d is a single closed input.

{d}

Proof. Denote by M the subcollection of Mod(Q€) specified in the proposition.
We need to prove that M =~ Mod(OQ€xp). Our strategy will be first to show
that M is indeed a modular subhybrid of Mod((€), then verify the assumptions
of Proposition 44, apply Proposition 46 and finally check directly that the &-closure
of Qf](p is M.

Verification that M is a modular subhybrid of Mod(Q€y). Letus check first that M
is closed under the o-operations. Assume that x = y ,ro,r z for some x,y,z €
Mod(Q€,). We must show that, if x ¢ M, then either y ¢ M or z & M. Denote
by ax, a, and a, the number of nests in x, y and z, respectively. We distinguish
three cases.

The element x is of type (i). If p’, p” are open inputs, then clearly the only possibility
is that

~
=

. [[((3)]...[())][((%’))]} ind s — |:[((0))]...[(()][((po”))]:|‘

[SESRS
SRS

The numbers of nests are related by ay = a, +a, — 1, therefore x ¢ M if and only if
ay+a; > 4. (60)

On the other hand, y & M (resp. z & M) if and only if ay, > 2 (resp. a; > 2), 50 (60)
implies that at least one of y, z does not belong to M. If p’, p” are closed, then

obviously
OD1.J]O O1.]O
yz[mo[oq » _[[010[01}_
{r'} "}
Now ay = ay +a;,sox ¢ M if and only if a), + a, > 3 and we conclude as in the
open case that either a, > 2 ora, > 2.

12Recall that a is the number of nests.
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The element x is of type (ii). If p’, p” are open inputs, one has two possibilities. The
first one is that

. [[«0»]...[«0»0]“(%'))}1,} d - — [[«0»]...[((»][(<p0”>)]}

(or the roles of y and z interchanged). Then z ¢ M and we are done. The second

option is
. [[((0»]...[0((0»]%} N [[«0»]...[)«0»”2}
] ]

for some Vy, V; € @0, both having at least one input, such that V), o,/ V, = V.
We easily verify that x ¢ M if and only if (60) holds which implies, as before, that
either y or z does not belong to M. In case of closed inputs, the only possibility is

1. 7. O
y=|:[0] ([)O]V} and Z:[[O]O[o]}
{r'} {r"}
(or y and z interchanged). We see right away that z & M.
The element x is of type (iii). If p’ and p” are open inputs, then
. [[((3)]...[(9)][((%’))]_ [((0))]...[(())][((170”))]}

0
{d}

and z =

ISY=1

(or vice versa). If they are closed, the only possibility is

. |:[((0))]...[((0))]_ d - — _[((0))]...[(%))]:|

0 0
{ap’y B {r"}

(or vice versa). In both cases z & M.

It remains to verify that M is closed under contractions. Let x = o,/ ,ry for
some elements x, y € Mod(QO€). We must show that x ¢ M implies y & M. If x
is of type (i), there are only three thinkable candidates for y, namely

|: [((0))]...[((0))][((%’))][((1:)”))] :| |: [((0))]...[ ((()))][((p’))é(p”))] j| o |: [((0))].(.).[((0))] j| |
8 8 r'.p"}
The respective values of the contraction o,/ ,~y are
]..[O ]..[O) ][O
(W] (WL [IWI9]
o o o

which excludes this possibility. The situation when x is of type (iii) is similar.
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Assume finally that x is of type (ii). Besides the candidates for y similar to the
ones above, there are also

(OAMKO)
|:[ 0 ] [00 ]Vl V2:| with Vi pro,n Vo =V,
[}
(OAMK©)]
and |:[0] ([)O]W:| Withop/p//WZV.
[
For the first candidate
OOy
oo =[]
[9)

while the second candidate does not belong to M. This finishes the verification
that M is a modular subhybrid of Mod(O€y).

Verifying assumptions of Proposition 44. Letw’, w” € Q€4 besuchthatw’ ;057 w”

€ OCxp. If both w’, w” € O€xp, there is nothing to verify. If both w’, w” & O€kp,
then it is easy to check that also w’ 7047 w” & O€xp, so the only interesting case is
when precisely one of w’ and w” does not belong to @ €xp.

Assume therefore that w’ € @ €xp but w” ¢ @Cxp. Since w” has to have at least
two inputs p” and ¢”, it must be of type (ii) in the classification of Example 30. This
leaves us with two possibilities.

Case 1: w' = [0102003 ...Oh], W' = |:°(0)(-)--(())
?

o ],p’eol,q’eoz and p”,q” € 0. If

it is so, then

, ” |: 01(02 g/ Og7 0) 03 0p () - () :|
w q/Oq// w 0

C
" [ €1 pr0p79)0203-9, 0~ ]

C

and w’ proprw

If |o| > 3, then the assumption (ii) of Proposition 44 is satisfied with

W, = [010203’“817 (())...(())] and w! = [8]
C [

where w/ absorbed all empty cycles of w”. If o = (p”¢")), such w{ is not stable.

We however have
/ I |: 01(02 ¢g/0g” (" q")) 03+ 0p O~ () ]
w q/Oq/’ w = 0 ’
C

/ "_ [ (01 p O p(P"q")) 0203 +0p () () ]
w p/ Op// w = 0
C
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so we notice, as in the proof of Proposition 49, that w’ 4 0, w"” replaces ¢’ by p” and
w’ propr w” replaces p’ by ¢” in w’. Therefore w’ yro,7 w' = p(w’ propr w”) for
a bijection p mapping {p’, p”} to {¢’, q"’} and restricting to the identity elsewhere.
Assumption (i) of Proposition 44 is thus satisfied.

0105 0
Case2: w' = [ o ], w” = |:0(0)0 (()):|, p'.q' € o1, and p”,q" € o. Then we
¢

Cc
calculate
p " (01 ¢70g7 0) 0205 (O) - ()
w q/oquu) = 0
Cc
(01 p’©p7 0) 02 =0p () ()
and w' poprw” = [ PP i|
C

If o # (p”q")), the assumption (ii) of Proposition 44 is satisfied with
Wl = [0102---03 <0>---<(>)} and w! = [8]
C %

If o = (p"q")), we argue precisely as in the first case.
This finishes the verification of assumptions of Proposition 44. Proposition 46
now implies
Mod(9Cxkp) = Emoa@e,) (OCkp).
Since we already know that M is a modular subhybrid of Mod((Q €y,), the minimality
of the &-closure implies the inclusions
Mod(9Cp) = Emoa(@e,) (OCkp) C M C Mod(OCy).

It therefore remains to:

Verify that M C émoa(@e,) (O Ckp). We know by [24] that QO =~ Mod(#4ss). For
any V € Q0O therefore exists a (non-unique) oy € #Ass such that

V = Oqflq/l/ .. .oqt/qt//(oV) (61)
for some ¢.q7,...,q;,q] € oy. To save space, we will denote the iterated

contraction in (61) by &y; (61) will then read V = £y (oy). With this notation,
we have in Mod(Q€) the equality

5= 7]

Vi-Va B 62
A Il AR A A o (©2)
CU{Plapla---,Pg,Pg

along with the identification
%)= (%]
0

Cu{p|,py,..rg P4

ov, ~ove
Mod(@E) > =[ " ]ege 63)
CU{p|.p} DD}

provided by the unit (24).
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Denote the left hand side of (62) and the element in (63) by y. If x is stable, then
so is y by Lemma 23, so (62) in fact holds in Mod(9€). We need to show that if
x € M, then y € OCkp.

If g > 1, then y has at least two closed inputs, thus y € Q€xp. Suppose that
g=0and |C| > 1. If y & OCkp, then |C| = land 0y = -+- = 0, = [ ],
soVi =---=V, = [((0))], hence x & (O€xp, which contradicts the assumption.
The last case to be analyzed is g = 0 and |C| = 0. Then at least two V;’s, say V3
and V>, have at least one input, otherwise x ¢ M. So the same is true for oy, and oy,
thus y € O€kp. O

To sum up, at this moment we know that the sequence of inclusions (51) induce
inclusions

Mod(O€xp) > Mod(O€y) < Mod(OF).
We also know that

Emoa@e,) (OCkp) = Mod(OCkp) and &moaee) (O Ckp) = Mod(9T)

while the isomorphism &yoa(@e,) (O Ckp) = Emod@e) (O Ckp) is immediate.

Definition 53. The Kaufinann—Penner modular hybrid Q@ €xp is the modular
subhybrid of QO € generated by O Ckp, i.e. RO Cxkp := Egoe, (O Ckp).

A more intelligent description of @9 €xp will be given in Theorem 57 below. The
linearization of the Kaufmann—Penner hybrid @O €xp is in fact isomorphic to the
degree 0 homology Hy of the arc operad;\\rz of [15, p. 346], whence its name. Notice
that @ 9 Ckp contains the genus-graded stable cyclic operad Comyg, from Example 26
as a suboperad of elements with g = b = 0, i.e. elements of the form

[?] C € Fin. (64)

The following variant of Theorems 38 and 51 for @ O Ckp is implicit in [15, Theo-
rem 4.1].

Theorem 54. Let J denote the ideal in the modular hybrid Mod(Q€xp) generated

by the relation
|:[((g))}[(((r)))]:| _ |:[((q))0((r))]:|' ©5)

0 0
[ %

Then
QO0Ckp = Mod(OCkp)/ d.

Therefore, for any modular hybrid # and a morphism F: Q€gp — H such that

Oqu[«quvr»] _ F[((q))gf(r))],
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there is a unique morphism F:qQ OC€xp — H of modular hybrids making the diagram

commutative.

An immediate consequence of this theorem combined with Proposition 52 is that
the symbol (17) with g > 1 belongs to @9 €xp if and only if it is stable, i.e. if either
of b, |O] or |C]| is nonzero.

Proof of Theorem 54. 1t is clear that @ €xp is isomorphic to the £-closure of @ €xp
in QO €, therefore the isomorphism (39) identifies Mod(Q €kp) with QO €xp. The
proof therefore goes along the similar lines as the proof of Theorem 38, so we only
highlight the differences.

We must again be aware that some terms in (45) which we used to prove (44)
may not belong to Mod(¢9€xp). In the proof of Theorem 51 we explained how to
avoid appearances of unstable terms. The remaining terms outside Mod(( €xp) will
be eliminated by absorbing trivial nests [ ((0)) ]

By this we mean that, for arbitrary nontrivial nests Vi, ..., V, # [ ((0)) ], we prove
the following equality modulo

O[Oy, v, T
[[OH Jn ]:[VVgV], (66)

AR o

where
T//l = [(())(())01 "'Oh]

g1
if 1 = [°1 e ? ] Assuming this, it suffices to prove (44) for elements not containing
a trivial nest [ (%)) ] which proceeds as in the proof of Theorem 51. To verify (66), it
suffices to prove that

[ ((0)) ] Vi-Va ViVaVa
. = 2 modulo J (67)
C C

for arbitrary V1, ..., V, such that the left hand side of (67), which we denote by x,
belongs to Mod((€xp). In the following calculation we denote, for V = [g] € QO
and an independent symbol p, by pV a nest of the form V = [ng]’ where p O
is an extension of the multicycle O introduced in the proof of Proposition 34. We
distinguish four cases.
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Case 1: g > 1. If x has exactly two nests, we use the decomposition

|:[((0))]Vi| . ,([[((g))][((%’))]} . ,|:[((P0”))][((GO’))]:| . ,|:q’r_”Vj|)
g rr! 0 p'°p 0 q’%q"| &-1 :
C g ¢ c
(63)
Applying relation (65) to the middle term of the right hand side, we get
(0] @@y @M Iyt
|:[0g]Vj| =or’r”<|:[ 0 ]0[ 0 ]:|p’op”|:[ 0 }:|qloq”|:qgr_lV:|)
C g g c
] =

o[BI [
= Op/y7 g—1 g |-
Cc C

The only term in the right hand side of (68) that might not belong to Mod(9€xp) is
the rightmost one. This happens ifandonlyifg =1,C =0,V = [((0)) ], in which
case we verify directly that

|: [((0)) ]1[ ((()))}i| oy (|: [((1(7)’))][((%’))]:| o |: [((16”))][((40”))] i|)
0
[ ]
(1CP)] (€201(C49)
[T )
[ [

[(( ))((11’))((4”))] [(( N( ))]
= Oq/q// [ 8 :| = [ ? :| .
]

(/]

O

If x has at least three nests, we use the decomposition

[[(%»}:1.%} _ Orw([ [«ro'»]o[«%/))]}
C ?

@[ @) o
p’op”|:[ pO 1[ qO }j|q’0q”|:q Vi rg‘:21V3 Va :|>7

7 C

apply (65) to the middle term in the right hand side and proceed as before. In this
case all terms clearly belong to Mod(Q€kp).

Case2: g =0and|C|>2. Letd € C and C' := C \ {d}. Then we use the
decomposition

[ (O ]V } [ [@)] } [ (@[] } [ SV Vo Vi ]
0 = 0 p’ Op// 0 q/Oq// ()/ .
o {d} 9 ¢

All terms in the right hand side obviously belong to Mod(( €xp).
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Case 3: g = 0and C = {d}. We want to decompose

Oy, ... (€9 (CONKCR) ’
[[ o Vu} _ [[ f q,,,o,,”[[ (8 ' qq,oq,,[‘”"g V“] (69)

0 0
{d} {d} ]

While the first two terms in the right hand side always belong to Mod(( €kp), the
last one may be problematic. Let us discuss the case when a > 2 first. Since
x € Mod(O¢€xp), at least one of its nests must differ from [((0)) ]; we may assume
without loss of generality it is V>. Then the rightmost term in (69) belongs to
Mod(OCkp).

The same is true if a = 1 and if ¢’V is stable. If it is not stable, then V; must be
of the form [ (((’)))] and we verify directly that

|:[(%))][(((r)))]:| _ [[((%’))][((6))]} p/op”|:[((1:)”))]:|

0
{d} o {d}

_ |:[((p’)())((r))]:| p,op”|:[((p0”))]:| _ |:[(())é(r))]i|'
0 0 0
@ {d} @

Case4: g =0and C = (. Since x € Mod(O€xp), at least two of its nests are
nontrivial, so we may assume that

o [[«o»]"l Vz...va]’

0
)

where V1, V, # [((0)) ] If pV; is stable, we decompose x as

|:[((0))]V1 Vz...vu} _ [pfovl] - N[[«%"»][((%’)q} B ”[[«q(;»)}yz...va}
0 p'°p 0 a'%4q 0
@ o 9 9

and apply (65) to the middle term in the right hand side as before. If pV; is not stable,
then V; has to be of the form [«6» ] and we use instead the decomposition

[((0))][((6))]1/2...110 _ [(((r)))][((%’))] o [((qo”))]vz...ya
) A o

This finishes our verification of (66). O

5. Finitary presentations

The aim of this section is to give an explicit finitary presentation of the Kaufmann—
Penner modular hybrid @ @ €xp and derive from it a description of its algebras. As
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the first step we express () Ckp in terms of generators and relations. Recall that the
components of a cyclic hybrid J# are indexed by couples consisting of a multicycle O
and a finite set C. We will call the symbol (8) the biarity of elements in # (O, C).

Theorem 55. The cyclic hybrid O €xp has the following presentation. The generators
are:

(gl) an “open pair of pants” . = ;Lgpqr» of biarity (((pgr))) with G = 0, with the
trivial action of cyclic order-preserving automorphisms of (pqr)),

(g2) a “closed pair of pants” w = a){gdef} of biarity ({dff}) with G = 3, and the

trivial action of the group of automorphisms of {d, e, f}, and

(g3) a “morphism” ¢ = ¢{(%)) with G = % of biarity ((g;)),

1
2’

subject to the axioms:

(al) associativity in open inputs:

(pqr) Gstu) _ | (pru) (qts)
) r ) = MKy r /A

124 Os Os

(a2) associativity in closed inputs:
%) 1% %) %)
Didefy £8 Pighiy = Pdfiy £ g Plengy
(a3) morphism property:
(») s _ (,par) (s) @)
Ber 05 Ofaery = (g 405 biay) rot byey » and

(ad) centrality:
Mgpqr)) 4Os ‘P{(S;) — Mgprq)) 405 ¢{(S§)'

In other words, O €kp is the quotient

QEKP = Ingc(E)/g (70)

of the free cyclic hybrid generated by the collection E consisting of i, o and ¢ as
above, modulo the ideal § generated by the relations (al )-(a4).

Generators (g1)—(g3) will be depicted as

r

f p
I
7 , w: i , b l . (71)
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The pictorial forms of the associativities (al) and (a2) are the “fusion rules”

p u D u d i d i
\ /I So PR
\ 2
U
= and > - = I
I/ \\ - ‘ ~
/ \ -~ SS
q t q t e h e d
while the morphism property (a3) and the centrality (a4) are depicted as
p p P p
I I
| I I
A . A
= and 7 \\ = // N
A N\ 7/
AN r r
’ AN I I
d e d e d d

Proof of Theorem 55. We define a morphism 7: Fey.(E) — O €kp of cyclic hybrids
by

(par)\ ._ | @ar) z _| @ )y ._ | @
ﬂ(uﬂpqr )_|: 0 (@G e py) = {d(;f} and n(d){dp}).— {2} )

Let us verify that 7 descends to a morphism

a:Feye(E)/ & — OCkp (72)

of cyclic hybrids. The compatibility with (al) means,

[ ((pqr))i| |:((stu)) 1T ((pru))i| [ (ats) ]

0 rOs 0 = 0 rOs 0 >

| 0 o | L o o |
the compatibility with (a2) leads to

[ o g ] [ o z ]

_{dgf}] fog[{g(f)n}_ B _{d}i}] 7o ey |
the compatibility with (a3) amounts to verifying

@) 2 [ (par) ©) [ (@)
[ @ } gof[{d(e)f}} - ( 0 }"Os[{g}D e ]

and, finally, the compatibility with (a4) translates to

[ (pgr) ] |: QN |: (prq) ] [ (@) ]
0 qC%s 0 = 0 qO%s 0 .
7] {d} | 9 {d}

All the above equations follow directly from the definition of the o-operations in Q€.
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We are going to prove that (72) is an isomorphism. Let us start with a couple
of preliminary remarks. Free operads and operad-like structures are represented by
decorated graphs, as explained at several places, see e.g. [23, Sections 6 and 9],
[24, Section 4]. We assume that the reader is familiar with this description. In
our case, elements of [ (E) are connected, simply connected graphs with three
types of vertices as in (71), and two types of (half)-edges: solid ones representing
“open” propagators, and dashed ones representing “closed” propagators. Moreover,
half-edges adjacent to a vertex representing the open pair of pants are cyclically
ordered.

The associativities (al) and (a2) enable one to contract propagators connecting
two p-vertices or two w-vertices. The result will be a graph I" with vertices

N : e
) --3¥-- and , (73)

which represents an element in the quotient [.y.(£) modulo the ideal generated by
(al) and (a2). We will call the vertices in (73) the w- , w- and ¢-vertices, respectively.
The half-edges adjacent to a p-vertex are cyclically ordered. When drawn in the plane,
we assume they have the implicit anti-clockwise cyclic order.

The case when I" has only p-vertices is very special, I' then must be a corolla
formed by an w-vertex whose all adjacent half-edges are legs!3 labelled by a finite
set C. The equivalence class of T" in Fyc(E)/ & is then an element of biarity (£).

So assume that I" has at least one w- or ¢-vertex, which happens if and only if it
has at least one solid half-edge. Cutting all its internal dashed edges in the middle
produces b connected graphs I'y, ..., I'p; the non-negative integer b € N can easily
be seen to be the number of boundaries of the equivalence class of T" in Fyo(E)/ &.
The open legs of I are cyclically ordered and their labels form foreach 1 <i <ba
cycle o;. Denoting by C the set of labels of closed legs, the equivalence class of "
in Feyc(E)/ ¢ has biarity (g) with O := 0y ---0p.

In both cases, we explicitly assigned to elements of F.,.(E)/ & a biarity (g)
preserved by the map « in (72). We denote by a(g) the restriction of this map to
subsets of elements with the indicated biarity.

Let [y (@) be the free cyclic operad generated by w, + the ideal generated by the
associativity (a2), and €omy the cyclic stable commutative operad from Example 26
identified with the cyclic suboperad of @ €xp consisting of elements as in (64). It is
clear that o ({) can be identified with the morphism

C
Feye (@) /A — Comg

that sends w to the generator of €omg. This map map is an isomorphism
since F.yc(w)/# is the standard presentation of the cyclic commutative op-
erad [25, Example I1.3.33], so the O = & case of Theorem 55 is proven. Therefore,

13].e., by definition, external half-edges.
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from now on we assume that O # @. Notice that for each biarity (8) there is either

precisely one element in @Cxkp of that biarity, or none. To prove that a(g) is an
isomorphism, it is therefore enough to establish

Lemma 56. Let us denote by (IngC(E) / 3’) (8) resp. (QO€xp) (g) the subsets of
elements of the indicated biarity. Then

@) (ngC(E )/ g) (g) is either empty or a one-point set, and
(i) (OCxp) (2) # 0 implies that (Fue(E)/ &) (2) # 0.

Our strategy of the proof will be to modify the graph I', bringing it in a “canonical”
form (81), and show that this form is uniquely determined by the biarity. Let us start
the process of modification of T".

Since I" has at least one solid (half)-edge, we may use the morphism property (a3)
to eliminate all its w-vertices. The only dashed internal edges will then be of the
form

-—- , (74)

where the two gray cycles indicate (possibly empty) subgraphs. The only dashed legs
are of the form
-——u

’

with the label u belonging to the set C of closed inputs. The local structure of I"
around a p-vertex looks as in

u
/
01 /
b 02 v
~ ~
O O
Qo
04

Here the solid legs represent open inputs in the boundary cycle (01, .. ., 05)), dashed
legs closed inputs labelled by u, a, b, v € C, and the gray circles are some subgraphs.
The graph I may also have open inputs appearing e.g. as

p —4————@ (76)

that corresponds to the open boundary component ((p)). Finally, empty boundary
components are introduced by solid edges connecting two ¢-vertices:

O—--*—*--O . )

The centrality (a4) implies that the position of an edge connecting a pu-vertex
with a ¢-vertex, call it a (i, ¢)-edge, and the positions of other half-edges adjacent to
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the same p-vertex can be interchanged, so the (i, ¢)-edges are not subjected to the
cyclic order. What we mean should be clear from the following particular example
of four half-edges adjacent to w:

ST il

where the numbered cycles are arbitrary possibly empty subgraphs. The above
equalities can be proved by successive applications of the associativity (al) and
centrality (a4). For instance, the middle equality follows from

SO O It

We leave the formulation and proof for an arbitrary number of (half)edges adjacent to
a p-vertex as an exercise. In particular, all (i, ¢)-edges can be mutually interchanged.
Consequently, the half edges adjacent to the vertex in (75) can be rearranged as in
the left picture in

S
n
S
iy
o

: : ~u
O ’ ( ) ®
\ a
u
O a

o:= (01,...,05)
The only half-edges subject to the cyclic order are those labelled by oy,...,0s.

The local structure around the above p-vertex can therefore be encoded by a “fat”
vertex @ labelled by the corresponding cycle, as shown in the right picture of (78).
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We therefore have a graph with the local structure around fat vertices as show below:

QQOO

with no order imposed on the adjacent half-edges. All edges adjacent to these fat
vertices are connected to a ¢-vertex. The labelling cycle o might be arbitrary except
for the case when @ has only one adjacent half-edge; we then require o to be

non-empty, i.e. we exclude
VoD 79

We also exclude the fat vertex @O standing alone when |o| < 3. Finally, we absorb
open boundary components in (76) and (77) into this notation by identifying

O—0
y Q)

Another tool which we use will be the sliding rule claiming that the configuration

O~e-O

(p)
and [
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Figure 4. Proof of the sliding rule: subsequent use of axioms (al) and (a3).

is, modulo ¢, the same as

0/ 0//
AT -0

o @

In words, the sliding rule claims that an arbitrary half-edge adjacent to a fat vertex
can be amputated, moved along the graph, and attached to another fat vertex. The
only restriction is that in doing so we must not create a forbidden fat vertex (79). The
proof of the sliding rule is given in Figure 4. It is clear that, using the sliding rule,
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the graph I' can be brought, modulo ¢, to the following linear form:

Og (1) Og(2) O (b-1) O (b)

/7 e N /7 e N /7 e N /7 eee N\
/ / /

/

81)
where the open legs are labelled by elements of C and o is a permutation of the set
{1,...,b}. As the next step we show that the order of cycles is (81) is not substantial.
Concretely, we show that

o/ 0//
Op A0 o
/ SN s, RN
/ /

is, modulo ¢, the same as

0// O/
Ofr O
7 N /7 eee N\
/ /

Using the associativity (al) of u we modify (82a) into
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while the associativity (a2) of the “open” multiplication w together with its commut-
ativity shows that the above graph is, modulo ¢, the same as the graphs

Backtracking the above modifications we convert the graph in the right hand side of
the above equality into (82b).

We are finally ready to prove Lemma 56. As before, b denotes the number of
boundaries of O and we assume that b > 1. Let 05 - - - 05/ be all nontrivial cycles in O
sothat O = oy ---0p/ () - () with b” := b — b’ trivial cycles (()). We distinguish
four cases.

Case b’ > 2. Using the commutativity (82a)—(82b) we can rearrange (81) so that the
labels of the fat vertices read from the left to the right are

olv(())’""(())7027---50b’-

Since both o; and o/ are nontrivial, the forbidden vertices (79) cannot occur so
that, according to the sliding rule (80a)—(80b), the positions of closed legs are not
constrained. In other words, for each biarity (8) with at least two nontrivial cycles
in O there exists exactly one isomorphism class of graphs in F.,.(E)/ ¢ with that
biarity.

Case b’ = 1, b” > 1. With the aid of commutativity (82a)—(82b) we order the fat
vertices of (81) from the left to the right into

o1, (). .... ().

To avoid the forbidden ones, the rightmost fat vertex must be adjacent to at least one
open leg, which may happen only when C # @. All remaining open legs can be then,
using the sliding rule (80a)—(80b), transferred to the rightmost fat vertex, so their
positions are irrelevant. We conclude that if C # @, F.,.(E)/ ¢ contains exactly one
element of biarity (g) while there are no elements of this biarity if C = @.

Case b’ = 1, b” = 0. The graph T is a corolla around a fat vertex which is clearly
an allowed one if and only if the stability 2|C| 4+ |O| > 2 is satisfied.

Case b’ = 0. Since b = b’ +b"” # 0, b” > 1 and all fat vertices in (81) are
labelled by the trivial cycle (()). To avoid forbidden fat vertices at both extremities,



Modular operads, the Cardy condition and SFT 1421

we need |C| > 2 otherwise there will be no graphs of biarity (8) If |C| = 2,
there is precisely one open leg at both sides of (81) and, due to the obvious left-right
symmetry of the graph, the labels of these legs can be interchanges. If |C| > 3, the
sliding rule applies so the positions of open legs are irrelevant as well.

We see that in all four cases, (i) of Lemma 56 is satisfied. The second part can
be verified easily by comparing the list of elements belonging to @Ckp given in
Example 30 with the above calculations. This finishes the proof of the lemma and
therefore also of the theorem. O

Theorems 54 and 55 together give:

Theorem 57. The modular hybrid QO C€xp has the following presentation. It is
generators are (g1)—(g3) of Theorem 55 and the relations are (al)—(a4) of Theorem 55,
together with the Cardy condition
o (4 4 ) = 4D 412 &
Theorem 55 as well as the previous one are explicit as the degree O part in
[15, Proposition 5.3].

Proof of Theorem 57. It follows from the commutativity of diagrams in Example 17
combined with (70) that

Mod(O€kp) = Mod(Fyc(E)/ &) = Mod(Feye(E))/ & = Fnoa(E)/ &, (84)

where Fy,oq(—) is the free modular hybrid functor, and the collection E and the ideal
have the same generators as in Theorem 55.

Theorem 54 combined with (84) implies that the modular hybrid @O Ckp is
isomorphic to the quotient of F,0q(E) by ¢ and relation (65). The proof is finished
by observing that the isomorphisms (84) translates (65) into (83). ]

In Example 18 we defined algebras over cyclic hybrids. The finitary presentation
of @€xp given in Theorem 55 offers an explicit description of its algebras. Recall that
a Frobenius algebra on a vector space A equipped with a non-degenerate symmetric
bilinear form B4 has an associative multiplication 4: A ® A — A such that the
expression

Ba(palar.az), az) € k (85)

is cyclically invariantinay, a,, as € A. A Frobenius algebra is commutative if (85) is
invariant under all permutations of a;, a, and as; this forces © 4 to be commutative.
The following theorem is explicit in the degree O part of [15, Theorem 5.4].

Theorem 58. An algebra over the Kaufimann—Penner cyclic hybrid Q€xp on a pair
A, B of finite dimensional vector spaces equipped with symmetric non-degenerate
bilinear forms B 4, Bp is the same as

(1) a Frobenius algebra on A with the associated form B 4,
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(ii) a commutative Frobenius algebra on B with the associated form B g, and

(iii) an associative algebra morphism B — A with values in the center of A.

Proof of Theorem 55. By definition, an ()Ckp-algebra is a morphism of cyclic
hybrids a: O€xp — &nda,p. Let u,w and ¢ be the generators of OCxkp as in
(g1)—(g3) of Theorem 55. Since the bilinear forms 4 and Sp are non-degenerate,
the equations

,BA(MA(al,az),a3) =oa(u) (a1 ® ax ® as),

86
,BB(wB(Cl,Cz),Q) = a(w)(c1 ® c2 ® ¢3), (50

aj €A, cieB,i=1,2,3, define bilinear maps u4: A®A— A and wp: BQ B— B
while f := a(¢) is a linear map B — A.

It is easy to show that (al) of Theorem 55 translates to the associativity of 4
and (a2) to the associativity of wp. The symmetry, i.e. the commutativity of wp,
follows from the invariance of w under the group of automorphisms of its inputs.
Likewise, the morphism property (a3) implies that f: B — A is an algebra morphism
while the centrality (a4) implies (iii) of the theorem. Finally, the symmetry of the
expressions (85) for (4 resp. wp follows from the defining equations (86) and the
cyclic symmetry of u resp. . O

Theorem 57 offers the following description of algebras for the modular hybrid
Q0OCp in the spirit of the classical result about 2-dimensional topological field
theories [18], see also [15, Theorem 5.4] and [19, Section 4].

Theorem 59. An algebra for the KP modular hybrid Q(Q €xp on a pair A, B of vector
spaces with symmetric nondegenerate bilinear forms 8 4, Bp is the same as

(i) a Frobenius algebra (A, L4, B4),
(ii) a commutative Frobenius algebra (B, wp, Bp), and
(iii) an associative algebra morphism f: B — A with values in the center of A,

satisfying the Cardy condition

Ba(a®@pn)1®t@)IA®1®A,") = (B4®B)(LR(f ® f)B5' ®1), (87)

where T is the standard symmetry in the monoidal category of graded vector spaces.

In (87), ,8;1 is the inverse of S4: A ® A — k, i.e. the unique linear map
B!k - A® A satisfying

Ba@DA®B) =A@ BB ®1) = Ly

the inverse f3':k — B ® B is defined similarly.
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Proof of Theorem 59. It follows the pattern of the proof of Theorem 58 and we leave
the details to the reader. A pictorial form of the Cardy condition (87) is

Ba Ba Ba

I &
|\ %
\
\~——
O
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