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Locally bounded perturbations
and (odd) unbounded KK-theory

Koen van den Dungen

Abstract.A regular symmetric operator on aHilbert module is self-adjoint whenever there exists
a suitable approximate identity.We say an operator is “locally bounded” if the composition of the
operatorwith each element in the approximate identity is bounded.Weprove that the perturbation
of a regular self-adjoint operator by a locally bounded symmetric operator is again regular and
self-adjoint. We use this result to show that the Kasparov class represented by an unbounded
Kasparov module is stable under locally bounded perturbations. As an application, we show
that we obtain a converse to the “doubling up” procedure of odd unbounded Kasparov modules.
Finally, we discuss perturbations of unbounded Kasparov modules by unbounded multipliers.
In particular, we explicitly construct an unbounded multiplier such that (after doubling up the
module) the perturbed operator has compact resolvent.
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1. Introduction

It is a classical result by Chernoff [3] that any symmetric first-order differential
operator D with bounded propagation speed on a complete Riemannian manifold X
must be essentially self-adjoint. One way to prove this statement (following the
argument in [7, §1]) is by using the fact that there exist compactly supported functions
�k 2 C

1
c .X;R/ (for k 2 N), converging pointwise to 1, such that ŒD ; �k� ! 0,

along with the fact that �k � DomD� � DomD .
More abstractly, if D is a symmetric operator on a Hilbert space H , we say an

approximate identity f�kgk2N � B.H / is adequate [15] if �k �DomD� � DomD

and the commutators ŒD ; �k� are well-defined and uniformly bounded. We view the
existence of an adequate approximate identity forD as a generalisation of the classical
assumptions that D is first-order and has bounded propagation speed, and that the
underlying Riemannian manifold is complete. We prove in Section 2 that (as in
the classical case) the existence of such an approximate identity implies that D is
essentially self-adjoint. More generally, using the local-global principle [10, 16], we



1446 K. van den Dungen

can extend this result to Hilbert modules: given a regular symmetric operator D on
a Hilbert B-module E and an adequate approximate identity f�kgk2N � EndB.E/,
it follows that D is self-adjoint.

Let D again be a symmetric first-order differential operator with bounded
propagation speed on a complete Riemannian manifold, and let T be any symmetric
zeroth-order operator. Since the propagation speed of a differential operator depends
only on the principal symbol, we know that D C T is again essentially self-adjoint,
no matter how unbounded the perturbation T might be (for the case of smooth
perturbations (“potentials”) T , this situation was already dealt with by Chernoff [3]).
In Section 3we provide an abstract analogue of this statement. Note that the restriction
of T to a compact subset of the manifold is bounded.

Abstractly, for a densely defined operator M on a Hilbert module E, and for an
adequate approximate identity f�kgk2N , we say that M is locally bounded if M�k
is well-defined and bounded for each k 2 N. One of the main results of this article
is then that, given the existence of a suitable approximate identity f�kgk2N , the
perturbation of a regular self-adjoint operator D by a locally bounded symmetric
operatorM is again regular self-adjoint (Theorem 3.5). Though local boundedness
is of course a strong assumption on the perturbation M , the main novelty of this
result is that (unlike e.g. the well known Kato–Rellich theorem or Wüst’s theorem)
we do not assume any relative bound on the perturbation.

In Section 4 we apply our result to the framework of noncommutative geometry
and unbounded KK-theory. We prove that (again given the existence of a suitable
approximate identity) a spectral triple, or more generally an unbounded Kasparov
module, is stable under locally bounded perturbations. This provides an unbounded
analogue of the fact that the class of a bounded Kasparov module is stable under
locally compact perturbations (see [2, Proposition 17.2.5]).

As an application, we will have a look at the odd version(s) of unbounded KK-
theory in Section 5. For trivially graded C �-algebras A and B , we consider two
types of unbounded representatives for a class in the odd KK-theory KK1.A;B/ D
KK.A˝Cl1; B/:
(1) an odd unbounded Kasparov A-B-module .A; EB ;D/ (where the Hilbert

module E is trivially graded);
(2) an (even) unbounded Kasparov A˝Cl1-B-module .A˝Cl1; zEB ; zD/.
Any odd unbounded Kasparov A-B-module .A; �EB ;D/ can straightforwardly be
“doubled up” to an (even) unboundedKasparovA˝Cl1-B-module .A˝Cl1;z� zEB ; zD/

for which zD anti-commutes with the generator of the Clifford algebra Cl1 (see
Section 5). Conversely, however, given an arbitrary (even) unbounded Kasparov
A ˝ Cl1-B-module .A ˝ Cl1; z� zEB ; zD/, the operator zD does not need to anti-
commute with the Clifford generator (we only know that zD has bounded graded
commutators with the algebra). Thus, if we wish to reduce the even module
.A˝Cl1; z� zEB ; zD/ to an odd unbounded Kasparov A-B-module, we need to show
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that we can replace zD by zD 0 WD 1
2
. zD � e zDe/ (where e denotes the generator

of Cl1) without changing the underlying class in KK-theory. By observing that
zM WD

1
2
. zD C e zDe/ is locally bounded, it then follows from the stability of

unbounded Kasparov modules under locally bounded perturbations that (the closure
of) zD 0 D zD � zM indeed represents the same class as zD .

Finally, in Section 6 we consider the natural example of a locally bounded
perturbation of an unbounded Kasparov module .A; EB ;D/ arising from a
(symmetric) unbounded multiplier on the (typically non-unital) algebra A. If
.A; EB ;D/ is an unbounded Kasparov A-B-module for a non-unital C �-algebra A,
then in general the resolvent of D is only locally compact. In practice, it can
be much easier to deal with operators whose resolvent is in fact compact. In
Section 6.1 we give sufficient conditions which ensure that we can find a locally
bounded perturbation such that the perturbed operator has compact resolvent. In
fact, we will construct this locally bounded perturbation explicitly as an unbounded
multiplier built from a given adequate approximate identity. More precisely, we
show that for a given odd module .A; EB ;D/ we can explicitly construct an
unbounded multiplier on A such that the perturbation of the “doubled up” module
.A˝Cl1; zEB ; zD/ by this unbounded multiplier has compact resolvent. We provide
a similar statement in the even case, where the “doubling up” is based on the
isomorphism KK.A;B/ ' KK2.A;B/ D KK.A y̋ Cl2; B/.

Acknowledgements. Many thanks to Bram Mesland and Adam Rennie for inter-
esting discussions and helpful suggestions. Thanks also to Magnus Goffeng for
suggesting the question addressed in Section 6.1. Finally, thanks to the referee for
helpful comments and suggestions.

2. Approximate identities

Let B be a Z2-graded C �-algebra. Recall that a Z2-graded Hilbert B-module E is a
vector space equippedwith aZ2-graded right actionE�B ! E andwith aB-valued
inner product h�j�iWE �E ! B , such that E is complete in the corresponding norm.
The endomorphisms EndB.E/ are the adjointable linear operators E ! E, and the
set End0B.E/ of compact endomorphisms is given by the closure of the finite rank
operators. For an operator T on E we write degT D 0 if T is even and degT D 1

if T is odd. For a detailed introduction to Hilbert modules and Z2-gradings, we refer
to [2, 13].

A densely defined operator S on E is called semi-regular if the adjoint S� is
densely defined. A semi-regular operator S is closable, and we denote its closure
by xS . A semi-regular operator S is called regular if S is closed and 1 C S�S has
dense range.
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If B D C, then a Hilbert C-module is just a Hilbert space H , and we write
B.H / D EndC.H /. In this case, any closed operator on H is regular.
Definition 2.1. A sequential approximate identity on a Hilbert B-module E is a
sequence of self-adjoint operators �k 2 EndB.E/ (for k 2 N) such that �k converges
strongly to the identity on E.

Since �k !  for each  2 E, we have in particular that supk2N k�k k<1

for each  2 E. The uniform boundedness principle then implies that
supk2N k�kk <1.

The assumption of self-adjointness is only imposed for convenience; in general,
one could consider an arbitrary sequence f�kgk2N which converges strictly to the
identity (i.e., �k !  and ��

k
 !  for all  2 E), and then 1

2
.�k C �

�
k
/ gives

a self-adjoint approximate identity.
For any endomorphism T 2 EndB.E/we have that �kT converges strongly to T .

If T is compact, we in fact have that �kT converges to T in norm (which can be
shown by first checking the norm convergence for finite rank operators). Hence,
if �k 2 End0B.E/ for each k 2 N, then f�kgk2N is also a sequential approximate
unit in the algebra End0B.E/.
Definition 2.2. LetD be an unbounded symmetric operator on aHilbertB-moduleE.
An adequate approximate identity forD is a sequential approximate identity f�kgk2N

on E such that �k � DomD� � Dom xD , Œ xD ; �k� is bounded on DomD for all k,
and supk2N kŒ

xD ; �k�k <1.
Remark 2.3. The term adequate approximate identity is borrowed from [15, §2].
This notion is weaker than the notion of a bounded approximate unit for the Lipschitz
algebra Lip.D/ (see [15] for details).

By the following lemma, the commutators Œ xD ; �k� on Dom xD and ŒD�; �k� on
DomD� are also bounded, and their closures equal the closure of Œ xD ; �k� defined
on DomD .
Lemma 2.4. Let D be a symmetric operator on a Hilbert B-module E, and let
� 2 EndB.E/ be a self-adjoint operator such that � �DomD � Dom xD and Œ xD ; ��

is bounded on DomD . Then
(1) � �Dom xD � Dom xD , Œ xD ; �� is bounded onDom xD and Œ xD ; �� D Œ xD ; ��jDomD ;

and
(2) � � DomD� � DomD� and ŒD�; �� D Œ xD ; ��.

Proof. The first statement is proven in [6, Proposition 2.1] for Hilbert spaces, but
the proof also works for (semi-regular) operators on Hilbert modules. The proof of
the second statement is similar and goes as follows. First, we observe that Œ xD ; �� is
adjointable (indeed, its adjoint is densely defined on DomD and equal to �Œ xD ; ��,
which is bounded). For  2 DomD and � 2 DomD� we have

h��jD i D h�j�D i D
˝
�j
�
xD� � Œ xD ; ��

�
 
˛
D
˝�
�D� � Œ xD ; ���

�
�j 

˛
;
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which shows that �� 2 DomD�, and hence that ŒD�; �� is well-defined on DomD�.
Restricted to Dom xD we have ŒD�; ��jDom xD D Œ xD ; ��. If ŒD�; �� is closable, this
means that ŒD�; �� � Œ xD ; �� and hence that ŒD�; �� is bounded and ŒD�; �� D
Œ xD ; ��. For  2 DomD and � 2 DomD� we have

h jŒD�; ���i D h j.D�� � �D�/�i D h.�D � xD�/ j�i D h�Œ xD ; �� j�i;

which means that DomŒD�; ��� � DomD , which is dense in E. Thus ŒD�; �� is
indeed closable, and its closure equals Œ xD ; ��.

If D is a regular self-adjoint operator, then f.1C 1
k

D2/�
1
2 gk2N is an adequate

approximate identity for D . The main reason for introducing the notion of an
adequate approximate identity for D is that a converse statement also holds: if there
exists an adequate approximate identity for a regular symmetric operator D , then D

is essentially self-adjoint. We will first prove this in the special case where D is an
operator on a Hilbert space, and for this purpose we recall the following lemma (a
proof can be found in e.g. [8, Lemma 1.8.1]).
Lemma 2.5. Let T be a closable operator on a Hilbert space H . Then  2 Dom xT
if and only if there exists a sequence f kgk2N in DomT such that  k !  while
kT kk remains bounded.

Proposition 2.6. Let D be a symmetric operator on a Hilbert space H , and suppose
we have an adequate approximate identity for D . Then D is essentially self-adjoint.

Proof. Let f�kgk2N 2 B.H / be an adequate approximate identity for D . From
Lemma 2.4 we know that ŒD�; �k� D Œ xD ; �k�, and in particular this shows that
ŒD�; �k� is uniformly bounded. For � 2 DomD� we have �k� 2 Dom xD , and we
find that

xD�k� D D��k� D �kD�� C ŒD�; �k��

is a bounded sequence in H . Since �k� ! � , we conclude from Lemma 2.5 that
� 2 Dom xD and hence that xD is self-adjoint.

The proof of Lemma 2.5 uses that every bounded sequence in H has a weakly
convergent subsequence, which relies on the fact that a Hilbert space is equal to its
own dual. Since a Hilbert B-module is in general not equal to its own dual, the proof
does not generalise to Hilbert modules. Instead, we will invoke the local-global
principle to prove the analogue of Proposition 2.6 for Hilbert modules.

Let us briefly recall the local-global principle from [16] (see also [10]). LetEB be
a right Hilbert B-module, and let � be a representation of B on a Hilbert space H� .
We then get an induced representation �E of EndB.E/ on the interior tensor product
E y̋B H� . This Hilbert spaceE y̋B H� is called the localisation ofE with respect
to the representation � .
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Now let T be a semi-regular operator on EB . We define the unbounded
operator T �0 on E y̋B H� as T �0 .e y̋ h/ WD .Te/ y̋ h with domain DomT y̌BH�

(where y̌ denotes the algebraic tensor product). Then T �0 is densely defined and
closable, and its closure T � is called the localisation of T with respect to � . We
have the inclusion .T �/� � .T �/�. In particular, if T is symmetric, then so is T � .
Theorem 2.7 (Local-global principle [16, Théorème 1.18]). For a closed, densely
defined and symmetric operator T on a Hilbert module EB , the following statements
are equivalent:
(1) the operator T is self-adjoint and regular;
(2) for every irreducible representation .�;H�/ of B the localisation T � is self-

adjoint.
Lemma 2.8. Let S and T be semi-regular operators on a Hilbert B-module E, and
let � WB ! B.H�/ be a �-representation of B .
(1) If S C T is semi-regular and S� C T � is closable, then .S C T /� � S� C T � .
(2) If ST is semi-regular and S�T � is closable, then .ST /� � S�T � .

Proof. (1) By definition we have Dom.S C T / WD DomS \ DomT , which yields
the inclusion Dom.S C T /�0 � DomS�0 \ DomT �0 . Taking closures then proves
the statement.

(2) We have Dom.ST / D f 2 E W T 2 DomSg. If � D
P
n  n y̋ hn 2

Dom.ST /�0 WD Dom.ST /ˇH� , then

T �� D
X
n

.T  n/ y̋ hn 2 DomS y̌ H�
D DomS�0 � DomS� :

Hence we have Dom.ST /�0 � Dom.S�T �/. Taking closures then proves the
statement.

Lemma 2.9. Let D be a regular symmetric operator on a Hilbert B-module E,
and let � WB ! B.H�/ be a �-representation of B . If f�kgk2N � EndB.E/ is
an adequate approximate identity for D , then f��

k
gk2N is an adequate approximate

identity for D� .

Proof. By Lemma 2.8 we have ŒD ; �k�
� � ŒD� ; ��

k
�. But ŒD ; �k� is bounded,

so we must have ŒD ; �k�
� D ŒD� ; ��

k
�, and therefore supk2N kŒD

� ; ��
k
�k < 1.

Lastly, we observe that ��
k
�Dom.D�/�0 � DomD� , but it remains to check that ��

k
�

Dom.D�/� � DomD� .
So, let  2 Dom.D�/� , and take  n 2 Dom.D�/�0 such that  n !  in the

graph norm of .D�/� . Since D is regular, we know from the local-global principle
that .D�/� D .D�/�. We then have the equality

D���k  n D .D
�/���k  n D �

�
k .D

�/� n C
�
.D�/�; ��k

�
 n:
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From Lemma 2.4 we know that Œ.D�/�; ��
k
� D ŒD� ; ��

k
�, which is bounded. By

assumption, .D�/� n converges to .D�/� . Hence D���
k
 n also converges,

which shows that ��
k
 lies in the domain of D� .

Theorem 2.10. Let D be a regular symmetric operator on a Hilbert B-module E.
Then D is self-adjoint if and only if there exists an adequate approximate identity
for D .

Proof. If D is self-adjoint, then �k WD .1 C 1
k

D2/�
1
2 (for 0 < k 2 N) gives

an adequate approximate identity for D . Conversely, suppose there exists an
adequate approximate identity for D . For any representation .�;H�/ of B , we
obtain by Lemma 2.9 an adequate approximate identity for the localisation D� . By
Proposition 2.6, this implies that the operator D� is self-adjoint. The local-global
principle (Theorem 2.7) then shows that D is self-adjoint.

Remark 2.11. We emphasise that the existence of an adequate approximate identity
cannot be used to show that a symmetric operatormust be regular, because Lemma 2.9
relies on the assumption of regularity. In practice, if one does not (yet) know if a
symmetric operator is regular, it can be more fruitful to try to apply Proposition 2.6
to the localisations of the symmetric operator, and then employ the local-global
principle. Indeed, this is the approach we will use in the following section.

3. Locally bounded perturbations

Definition 3.1. Let M be a densely defined operator on E and let f�kgk2N �

EndB.E/ be a sequential approximate identity. We say that M is locally bounded
(with respect to f�kg) if �k � DomM ! DomM andM�k is bounded on DomM
(for all k 2 N).
Lemma 3.2. LetM be a semi-regular operator on E, and let � D �� 2 EndB.E/
be such that � � DomM � DomM andM� is bounded on DomM . Then:
(1) � �E � Dom xM andM� D xM�;
(2) xM� is adjointable, and its adjoint equals the closure of �M �;
(3) ifM is symmetric, then the commutator ŒM; �� is bounded and its closure equals

M� � .M�/�.

Proof. (1) Let � 2 E. Since DomM is dense in E, there exist �n 2 DomM such
that �n ! �. Then we have ��n ! �� and

M.��n/ D .M�/�n DM��n !M��;

where we used thatM� is bounded on DomM and hence its closureM� is bounded
on E. This shows that �� lies in the domain of the closure of M , and we have
xM�� DM��.
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(2) For 2 E and � 2 DomM � we see that h�j xM� i D h�M ��j i, which shows
that xM� has a densely defined adjoint �M �. Since

k�M ��k D sup
k kD1

˚
kh�M ��j ik

	
D sup
k kD1

˚
kh�j xM� ik

	
� k�kk xM�k;

we also see that �M � is bounded, and hence that �M � extends to a bounded operator
which is the adjoint of xM� (in particular, xM� is adjointable).

(3) The commutator ŒM; �� is densely defined on DomM , and for  2 DomM we
have

ŒM; �� DM� � �M DM� � �M � D
�
M� � .M�/�

�
 ;

where we have used the symmetry ofM . SinceM� is bounded, so is ŒM; ��.

We will be considering perturbations of a self-adjoint operator D by a locally
bounded operatorM . We start with a lemma which allows us to control the domain
of the adjoint of the perturbed operator.

Lemma 3.3. LetD andM be symmetric operators onE such thatDomD\DomM
is dense. Let � 2 EndB.E/ be a self-adjoint operator such that

(1) � � DomD � Dom xD and Œ xD ; �� is bounded on DomD;

(2) � � DomM � DomM , andM� is bounded on DomM .

Then � � Dom. xD C xM/� � DomD� \ Dom xM .

Proof. Let � 2 Dom. xD C xM/�. We know from Lemma 3.2 that �� 2 Dom xM and
M� D xM�. For  2 DomD , we calculate

h��jD i D h�j�D i D h�j. xD C xM/� i � h�jM� i � h�jŒ xD ; �� i

D h�. xD C xM/��j i � h.M�/��j i � hŒ xD ; ����j i:

Since these equalities hold for all  2 DomD , we conclude that �� lies in the
domain of D�.

Similarly to Lemma 2.9, we prove next that an adequate approximate identity
forM also yields an adequate approximate identity for the localisationM� . In this
case however, thanks to the local boundedness of M , we do not need to assume
thatM is regular.

Lemma 3.4. Let M be a symmetric operator on a Hilbert B-module E, and let
� WB ! B.H�/ be a �-representation ofB . If f�kgk2N � EndB.E/ is an adequate
approximate identity for M and M is locally bounded w.r.t. f�kg, then f��k gk2N is
an adequate approximate identity forM� andM� is locally bounded w.r.t. f��

k
g.
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Proof. First, we note that ��
k
� DomM�

0 � DomM�
0 . Next, for  2 DomM�

there exist  n 2 DomM�
0 such that  n !  in the graph norm of M� . Then

��
k
 n ! ��

k
 in norm (because ��

k
is bounded) and

M���k  n D .M�k/
� n ! .M�k/

� ;

because .M�k/� is bounded. Hence ��
k
 2 DomM� , and we have the equality

M���
k
 D .M�k/

� , which shows that M� is locally bounded w.r.t. f��
k
g.

By Lemma 3.2 this implies that ��
k
� Dom.M�/� � DomM� . Lastly, from

Lemma 2.8 we know that ŒM; �k�� � ŒM� ; ��
k
�. Since ŒM; �k�� is bounded,

we have ŒM; �k�� D ŒM� ; ��
k
� and hence that

sup
k2N
kŒM� ; ��

k
�k � sup

k2N
kŒM; �k�k <1:

Thus f��
k
gk2N is an adequate approximate identity forM� .

We are now ready to prove that, if we have a suitable approximate identity
f�kgk2N , then the perturbation of a regular self-adjoint operator D by a locally
bounded symmetric operator M is again regular self-adjoint. Apart from local
boundedness, the only additional assumption is that the commutators ŒM; �k� are
uniformly bounded.
Theorem3.5. LetE be aHilbertB-module. LetD be a regular self-adjoint operator
on E and letM be a symmetric operator on E such that DomD \DomM is dense.
Let f�kgk2N � EndB.E/ be an adequate approximate identity for D , such thatM is
locally bounded (w.r.t. f�kg) and supk2N kŒM; �k�k <1. Then D C xM is regular
and self-adjoint.

Furthermore, if �k � DomD � DomM for each k 2 N, then in fact D CM is
regular and self-adjoint (and therefore equal to D C xM ).

Proof. Consider a representation .�;H�/ of B . We will first show that f��
k
gk2N

is an adequate approximate identity for the symmetric operator D� CM� , so that
D� CM� is essentially self-adjoint.

By Lemmas 2.9 and 3.4, f��
k
gk2N is an adequate approximate identity for both

D� andM� . It then follows immediately that ŒD�CM� ; �k� is uniformly bounded
on Dom.D� CM�/. We know from Lemma 2.4 that then ŒD� CM� ; �k� is also
bounded on DomD� CM� , and that

ŒD� CM� ; �k� D ŒD� CM� ; �k�:

Since .D�/� D D� , it follows from Lemma 3.3 that

��k � Dom.D
�
CM�/� � DomD�

\ DomM�
� DomD� CM� :

Hence D� CM� is essentially self-adjoint by Proposition 2.6.
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Suppose that we have the inclusion �k �DomD � DomM . In order to conclude
from the local-global principle that D CM is regular and self-adjoint, we need to
know that the localisations .D CM/� are self-adjoint. Therefore it remains to show
that

.D CM/� D D� CM� :

By Lemma 2.8, it is sufficient to show that D� CM� � .D CM/� .
Let � 2 Dom.D� CM�/ D DomD� \ DomM� . Since DomD y̌B H� is

a core for D� , there exists a sequence �n 2 DomD y̌B H� such that �n ! � and
.D y̋ 1/�n ! D��. First, we will check that ��

k
� 2 Dom.D CM/� . Since

�k � DomD � DomD \ DomM;

we have

.D CM/���k �n D
�
.D CM/�k y̋ 1

�
�n D

�
.�kD C ŒD ; �k�CM�k/ y̋ 1

�
�n

D ��k .D y̋ 1/�n C ŒD ; �k�
��n C .M�k/

��n
n!1
����! ��k D��C ŒD ; �k�

��C .M�k/
�� D .D�

CM�/��k �;

where on the last line we used the equalities ŒD ; �k�
� D ŒD� ; ��

k
� (from the proof of

Lemma 2.9) and .M�k/� DM���
k
. Hence ��

k
� is an element in Dom.D CM/� .

Second, we observe that we have the convergences ��
k
�! � and

.D CM/���k � D .D
�
CM�/��k � D �

�
k .D

�
CM�/�C ŒD�

CM� ; ��k ��:

Since f��
k
gk2N is an adequate approximate identity for both D� and M� ,

.D CM/���
k
� is a bounded sequence, and therefore � 2 Dom.D C M/� by

Lemma 2.5. Thus we have shown that .D CM/� D D� CM� is self-adjoint,
and the local-global principle (Theorem 2.7) then tells us that D CM is regular and
self-adjoint.

If we do not have the inclusion �k �DomD � DomM , then we nevertheless have
�k � DomD � Dom xM by Lemma 3.2. Hence the proof given above applies to xM
instead ofM , and we conclude that D C xM is regular and self-adjoint.

Example 3.6. (1) Let V be a hermitian vector bundle over a complete Riemannian
manifoldX . LetD be a symmetric first-order differential operator with initial domain
�1c .V /, and suppose that D has bounded propagation speed. Since the manifold is
complete, there exist functions �k 2 C0.X;R/ (for k 2 N), converging pointwise
to 1, such that supx2X kd�k.x/k ! 0.1 Since D has bounded propagation speed,
the sequence f�kgk2N forms an adequate approximate identity for D . Hence D is
essentially self-adjoint.

1For instance, given a smooth proper function �WX ! R with uniformly bounded gradient (e.g. a
smooth approximation of the distance functionx 7! d.x; x0/ for somex0 2 X ), choose a cutoff function
� 2 C10 .R/ such that 0 � � � 1, � D 1 near 0, and j�0j � 1, and then define �k.x/ WD �.

1
k
�.x//.
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Any (continuous) symmetric endomorphism T 2 �.EndV / is locally bounded
and we have ŒT; �k� D 0. Hence D C T is also self-adjoint. In fact, it is not
even necessary for T to be continuous, as long as it is locally bounded; the same
result therefore holds for a symmetric endomorphism T 2 L1loc.EndV /, i.e. if
ess supx2K kT .x/k <1 for any compact subset K � X .

(2) In the above example, it is not necessary that the vector bundle V has finite rank.
Consider for instance the following setup. Let E be a countably generated Hilbert
module over a � -unital C �-algebra B , and let T 2 C.X;EndB.E// be a symmetric
operator on the Hilbert C0.X;B/-module C0.X;E/, which is densely defined on the
domain Cc.X;E/. Then T is locally bounded, and commutes with any approximate
identity �k 2 C0.X;R/.

Given D on V ! X as above, we consider the Hilbert B-module

L2.X;E ˝ V / WD C0.X;E/˝C0.X/ L
2.X; V /:

The operator D on L2.X; V / extends to a regular self-adjoint operator 1˝d D on
L2.X;E ˝ V / given by

.1˝d D/.� ˝  / WD � ˝D C .1˝ �/.d�/ ;

for any � 2 C1c .X;E/ and  2 �1c .X; V /, where � denotes the principal symbol
of D (for more details, see [11], where this operator is called 1 ˝rGr D). By
Theorem 3.5, given any adequate approximate identity �k 2 Cc.X;R/ for D , the
closure of the operator 1˝d D C T ˝ 1 is also regular self-adjoint.

4. Stability of unbounded Kasparov modules

In the previous section, we proved that perturbations of regular self-adjoint operators
by “locally bounded” operators are again regular self-adjoint. In this section we apply
this result to noncommutative geometry [4] and unbounded KK-theory [1, 9]. More
precisely, we will show that the class of an unbounded Kasparov module is stable
under locally bounded perturbations. Throughout the remainder of this article, we
will assume that A and B are Z2-graded C �-algebras such that A is separable and B
is � -unital.

Definition 4.1 ([1]). An (even) unbounded Kasparov A-B-module .A; �EB ;D/ is
given by a Z2-graded, countably generated, right Hilbert B-module E, a Z2-graded
�-homomorphism � WA! EndB.E/, a separable dense �-subalgebra A � A, and a
regular self-adjoint odd operator D WDomD � E ! E such that

(1) we have the inclusion �.A/ � DomD � DomD , and the graded commutator
ŒD ; �.a/�˙ is bounded on DomD for each a 2 A;
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(2) the resolvent of D is locally compact, i.e. �.a/.D ˙ i/�1 is compact for each
a 2 A.

An odd unbounded Kasparov A-B-module .A; �EB ;D/ is defined in the same way,
except that A, B , and E are assumed to be trivially graded, and D is not required to
be odd.

The �-homomorphism � WA! EndB.E/ is called non-degenerate (or essential)
if �.A/ � E is dense in E. If no confusion arises, we will usually write .A; EB ;D/

instead of .A; �EB ;D/ and a instead of �.a/. If B D C and A is trivially graded,
we will write E D H and refer to .A;H ;D/ as an (even or odd) spectral triple
over A (see [4]).

Given a Kasparov module .A; EB ;D/, we will consider an approximate identity
f�kgk2N � A. As in the previous section, we will consider a perturbation of D by
a locally bounded symmetric operator M on E. In fact, we will assume a slightly
stronger version of local boundedness: we require not only thatM�k is bounded but
also thatMa is bounded for all a 2 A.

The following theorem only applies to unbounded Kasparov modules for which
there exists an adequate approximate identity which lies in the algebra. We note that
every Kasparov class can be represented by such a module [15, Proposition 4.18].
However, not every (naturally occurring) unbounded Kasparov module admits such
an approximate identity (consider, for instance, a Dirac-type operator on a manifold
with boundary).
Theorem 4.2. Let .A; EB ;D/ be an (even or odd) unbounded Kasparov A-B-
module, such that the �-homomorphism � WA! EndB.E/ is non-degenerate. LetM
be a closed symmetric operator on E with degM D degD such that a � DomM �
DomM and Ma is a bounded operator for all a 2 A. Let f�kgk2N � A be
an adequate approximate identity for D such that supk2N kŒM; �k�k < 1. Then
.A; EB ;D CM/ is also an unbounded Kasparov A-B-module, and it represents
the same class as .A; EB ;D/.

Proof. The assumptions onM imply thatM is locally bounded w.r.t. f�kg. SinceM
is closed, we know by Lemma 3.2 thatA �E � DomM , so the intersection DomD\

DomM contains the dense subset A �DomD . Thus D CM is densely defined, and
we know from Theorem 3.5 thatD CM is regular and self-adjoint. The commutator
ŒM; a� DMa�aM equalsMa� .Ma�/� (cf. Lemma 3.2) and is therefore bounded
for all a 2 A. It is then immediate that D CM has bounded commutators with
a 2 A, and by Lemma 2.4 this implies that D CM also has bounded commutators
with a 2 A. We will show the local compactness of the resolvent of D CM . Let
us write E WD DomD \DomM for the (initial) domain of D CM . Since D CM

is essentially self-adjoint, we know that .D CM ˙ i/E is dense in E. For any
 2 .D CM ˙ i/E we have

.D CM ˙ i/�1 2 E � DomD :
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For a1; a2 2 A, we can then rewrite

a1a2.D CM ˙ i/
�1 D a1a2.D ˙ i/

�1.D ˙ i/.D CM ˙ i/�1 

D a1.D ˙ i/
�1a2.D ˙ i/.D CM ˙ i/

�1 

� a1
�
.D ˙ i/�1; a2

�
.D ˙ i/.D CM ˙ i/�1 

D a1.D ˙ i/
�1
�
a2 � a2M.D CM ˙ i/

�1
�
 

C a1.D ˙ i/
�1ŒD ; a2�.D CM ˙ i/

�1 :

Since we assumed that a1.D ˙ i/�1 is compact and since such  are dense in E,
it follows that a1a2.D CM ˙ i/�1 is compact. Because products a1a2 are dense
in A, it then follows that a.D CM ˙ i/�1 is compact for all a 2 A. Thus we have
shown that .A; EB ;D CM/ is also an unbounded Kasparov A-B-module.

To prove that .A; EB ;D CM/ represents the same class as .A; EB ;D/, we will
show that .A; EB ;D CM/ represents the Kasparov product of 1A D Œ.A; 0/� 2

KK.A;A/ with Œ.A; EB ;D/� 2 KK.A;B/. For this purpose we need to check the
three conditions inKucerovsky’s theorem [12, Theorem13]. Sincewe are considering
the zero operator on A, the second and third of Kucerovsky’s conditions are trivial.
For the first condition we need to show that the commutator��

D CM 0

0 D

�
;

�
0 Ta
T �a 0

��
is bounded on DomD CM ˚ DomD for all a in a dense subset of A.

We have the isomorphismA˝AE ' E. For e 2 E, the operator TaW e 7! a˝e is
then simply given by left multiplicationwith a, and its adjointT �a is left multiplication
by a�. We have

a � DomD � DomD \ DomM � DomD CM

and

a� � .DomD \ DomM/ � DomD ;

so that the following commutator is well-defined and equal to��
D CM 0

0 D

�
;

�
0 a

a� 0

��
D

�
0 ŒD ; a�CMa

ŒD ; a�� � a�M 0

�
;

which is bounded on .DomD \ DomM/ ˚ DomD for all a 2 A � A. Since
DomD\DomM is a core forD CM , this commutator in fact extends to a bounded
operator on DomD CM ˚ DomD (see Lemma 2.4). Hence Kucerovsky’s first
condition holds.
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Example 4.3. Let D be as in Example 3.6. If D is furthermore elliptic, then
.C1c .X/; L

2.V /; xD/ is a spectral triple. Then for any symmetric T 2 L1loc.EndV /
we have that .C1c .X/; L2.V /;D C T / is also a spectral triple which represents the
same K-homology class.

More concretely, consider the standard odd spectral triple .C1c .R/; L2.R/; i@x/
over the real line. For any real-valued f 2 L1loc.R/, denote by Mf the operator of
multiplication by f on the Hilbert space L2.R/. We then find that the odd spectral
triple .C1c .R/; L2.R/; i@x CMf / represents the same K-homology class as the
standard odd spectral triple .C1c .R/; L2.R/; i@x/. This generalises a previous result
in [5, §5.3], where the equivalence of these spectral triples was shown for the special
case f .x/ D x.

5. Odd KK-theory

In this section we will apply Theorem 4.2 to the odd version(s) of unbounded KK-
theory, but first we shall have a look at the bounded case. For trivially graded
C �-algebras A and B , there are two types of (bounded) representatives for a class in
the odd KK-theory KK1.A;B/ D KK.A˝Cl1; B/:
(1) an odd Kasparov A-B-module .A; EB ; F / (where the Hilbert module E is

trivially graded);
(2) an (even) Kasparov A˝Cl1-B-module .A˝Cl1; zEB ; zF /.2
These two perspectives are equivalent (see [4, Prop. IV.A.13]), which can be shown
as follows. Given an oddmodule .A; �EB ; F /, one can construct an (even) Kasparov
A˝Cl1-B-module .A˝Cl1; z� zEB ; zF / by setting

zE D E ˚E; z� D � ˚ �;

zF D

�
0 �iF

iF 0

�
; 
 D

�
1 0

0 �1

�
; e D

�
0 1

1 0

�
;

(5.1)

where 
 is the grading operator on zE, and e denotes the generator ofCl1. We observe
that the operator F anti-commutes with e. Conversely, given an (even) Kasparov
A˝Cl1-B-module .A˝Cl1; z� zEB ; zF /, the graded Hilbert module zE decomposes
as zEC ˚ zE�, and we may identify E WD zEC with zE� using the Clifford generator
e 2 Cl1. Thus, up to unitary equivalence, this Kasparov module is of the form

zE D E ˚E; z� D � ˚ �;

zF D

�
0 F�
FC 0

�
; 
 D

�
1 0

0 �1

�
; e D

�
0 1

1 0

�
;

(5.2)

2In fact, a third option is to consider a Kasparov A-B ˝ Cl1-module, which is equivalent by the
periodicity of the KK-groups.
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where E is a Hilbert B-module with a �-homomorphism � WA ! EndB.E/, 
 is
the grading operator on zE, and e is the generator of Cl1. We point out that the
operator zF in general does not commute with the Clifford generator. Since the
graded commutators of zF with the algebra A ˝ Cl1 are compact, one finds that
ŒF˙; a� and a.FC C F�/ are compact for all a 2 A. In particular, this implies
that 1

2
a. zF C e zF e/ is compact. Since a. zF � zF �/ is compact, we also know that

a.F˙�F
�
�/ is compact. Using these properties, one can check that zF 0 WD 1

2
. zF�e zF e/

also yields a Kasparov module which is a locally compact perturbation of zF , and
therefore (see [2, Proposition 17.2.5]) zF 0 is operator-homotopic to zF . Then the
operator F WD � i

2
.FC � F�/ yields an odd Kasparov A-B-module .A; �EB ; F /

which represents the same class.
Let us now consider the case of unbounded representatives. Again, we

consider two types of unbounded representatives for a class in the odd KK-theory
KK1.A;B/ D KK.A˝Cl1; B/:
(1) an odd unbounded Kasparov A-B-module .A; EB ;D/ (where the Hilbert

module E is trivially graded);
(2) an (even) unbounded Kasparov A˝Cl1-B-module .A˝Cl1; zEB ; zD/.
Of course, these two perspectives are again equivalent, because their bounded
transforms are equivalent. However, the question remains whether there is a natural,
canonical way of implementing this equivalencewhileworking only in the unbounded
picture (i.e. without using the bounded transform). From an odd unboundedKasparov
A-B-module one constructs an (even) unbounded Kasparov A˝ Cl1-B-module as
in Equation (5.1). Conversely, given an unbounded Kasparov A ˝ Cl1-B-module
.A ˝ Cl1; zEB ; zD/, one would need to show that zD 0 WD 1

2
. zD � e zDe/ represents

the same Kasparov class. However, in general it is not even clear if zD 0 is regular
self-adjoint. In this section wewill prove that zD 0 is regular self-adjoint and represents
the same class as zD whenever there exists an adequate approximate identity.

Let us fix our notation. Let .A˝Cl1; zEB ; zD/ be an (even) unbounded Kasparov
A ˝ Cl1-B-module, such that the �-homomorphism z� WA ! EndB. zE/ is non-
degenerate and commutes with the action of Cl1. As in Equation (5.2), this Kasparov
module is (up to unitary equivalence) of the form

zE D E ˚E; z� D � ˚ �;

zD D

�
0 D�

DC 0

�
; 
 D

�
1 0

0 �1

�
; e D

�
0 1

1 0

�
;

where Dom zD D DomDC ˚ DomD� and D�
˙
D D�. The operator zD does not

need to anti-commute with e (we only know that zD has bounded graded commutators
with the algebra). On the domain DomDC \ DomD� we define the operators

D WD �
i

2
.DC �D�/; M WD

1

2
.DC CD�/: (5.3)
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On E WD .DomDC \ DomD�/
˚2 we define symmetric operators zD 0 and zM by

zD 0 WD

�
0 �iD

iD 0

�
; zM WD

�
0 M

M 0

�
;

zD jE D zD
0
C zM D

�
0 �iD CM

iD CM 0

�
:

(5.4)

If we wish to reduce this module to an odd unbounded Kasparov A-B-module
.A; EB ;D/, we need to show that we can remove the operatorM , without changing
the underlying class in KK-theory. If the algebra A is unital, then the assumption that
the anti-commutator Œ zD ; 1˝e�˙ is bounded implies that zM is bounded. Hence zD 0 is
only a bounded perturbation of zD , and we know that unbounded Kasparov modules
are stable under bounded perturbations. However, if A is non-unital, the operator zM
can be unbounded. Nevertheless, similar reasoning shows that zM must be locally
bounded. With this observation, the following result is a straightforward consequence
of Theorem 4.2.
Theorem 5.1. Let A and B be trivially graded C �-algebras. Consider an
(even) unbounded Kasparov A ˝ Cl1-B-module .A ˝ Cl1; zEB ; zD/, such that the
�-homomorphism z� WA! EndB. zE/ is non-degenerate and commutes with the action
of Cl1. Suppose that A contains an adequate approximate identity for zD . Then the
operator zD 0 defined in Equation (5.4) also yields an unbounded Kasparov module
.A˝Cl1; zEB ; zD 0/ which represents the same Kasparov class as .A˝Cl1; zEB ; zD/.

Proof. First note that for all a in a dense subalgebra A � A we have

.a˝ 1/ � Dom zD � Dom zD and .a˝ e/ � Dom zD � Dom zD ;

which implies that a � DomD˙ � DomDC \ DomD�. Since we assumed that the
�-homomorphism � WA ! EndB.E/ is non-degenerate, the subset A � DomD˙ is
dense in E, and it follows that DomDC \DomD� is also dense. Hence zD 0 and zM
are densely defined on the domain .DomDC\DomD�/

˚2, and they are symmetric
because D�

˙
D D�.

The graded commutators Œ zD ; a˝1�˙ and Œ zD ; a˝e�˙ are bounded for all a 2 A.
The first commutator equals

Œ zD ; a˝ 1�˙ D

��
0 D�

DC 0

�
;

�
a 0

0 a

��
D

�
0 ŒD�; a�

ŒDC; a� 0

�
;

which shows that the commutators ŒD˙; a� are bounded for all a 2 A. Next, we have
the anti-commutator

Œ zD ; a˝ e�˙ D

��
0 D�

DC 0

�
;

�
0 a

a 0

��
D

�
D�aC aDC 0

0 DCaC aD�

�
D

�
2Ma � ŒDC; a� 0

0 2Ma � ŒD�; a�

�
;
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which shows that furthermoreMa is bounded for all a 2 A, and hence zMa is also
bounded for all a 2 A.

By assumption there exists an adequate approximate identity f�kgk2N � A for zD .
The uniform bound supk2N kŒ

zD ; �k�k < 1 implies that supk2N kŒD˙; �k�k < 1

and hence that supk2N kŒ
zM;�k�k < 1. From Theorem 4.2 we then know that we

have an unbounded Kasparov module

.A˝Cl1; zEB ; zD � zM/;

which represents the same Kasparov class as .A ˝ Cl1; zEB ; zD/. Finally, since
�k � DomD˙ � DomDC \ DomD�, we have �k � Dom zD � Dom zM , so from
Theorem 3.5 we know that

zD � zM D zD � zM D zD 0;

which completes the proof.

Corollary 5.2. With the same assumptions as in Theorem 5.1, and with the
operators D and M defined as in Equation (5.3), we obtain two odd unbounded
Kasparov A-B-modules .A; EB ; xD/ and .A; EB ;D CM/, which both represent
the same Kasparov class as .A˝Cl1; zEB ; zD/.

Proof. For .A; EB ; xD/ the statement follows from Theorem 5.1 by observing that
zD 0 anti-commutes with the Clifford generator, so we can restrict the even module
.A ˝ Cl1; zEB ; zD 0/ to the odd module .A; EB ; xD/. For .A; EB ;D CM/ the
statement follows again from Theorem 4.2.

Example 5.3. Let f 2 L1loc.R/ (see also Example 4.3). We then find that�
C1c .R/˝Cl1; L2.R/˚ L2.R/; xD D

�
0 @x CMf

�@x CMf 0

��
is an even spectral triple which represents the same K-homology class as the equiva-
lent odd spectral triples .C1c .R/; L2.R/; i@x CMf / and .C1c .R/; L2.R/; i@x/.

6. Unbounded multipliers

A typical example of a locally bounded operator on E would be an unbounded
multiplier on a non-unital C �-algebra A � EndB.E/. In this section we will study
this typical example inmore detail. Wewill show that, given the existence of a suitable
approximate identity, an unbounded Kasparov module is stable under perturbations
by unbounded multipliers. In Section 6.1 we will apply this result to obtain an
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explicit construction of an unbounded multiplier such that the perturbed operator has
compact resolvent.

The typical case we have in mind is when the unbounded multiplier is even
(e.g. if A is trivially graded), which means we cannot use the unbounded multiplier
as a perturbation of an odd operator (i.e., in an even unbounded Kasparov module).
For this reason, we (initially) consider only odd unbounded Kasparov modules.

Definition 6.1. Let A be a C �-algebra. An unbounded multiplier on A is a linear
map mWDomm ! A, where Domm is a dense right ideal in A, which satisfies
m.ab/ D .ma/b for all a 2 Domm and b 2 A. An unbounded multiplierm is called
symmetric if .ma/�b D a�.mb/ for all a; b 2 Domm.

Let EB be a Hilbert B-module, and suppose we have a non-degenerate �-homo-
morphism A! EndB.E/. Then an unbounded multiplier m on A defines a densely
defined operatorM onEB with initial domain DomM WD Domm �E byM.a / WD
.ma/ (see [13, Proposition 10.7 & Lemma 10.8]). If m is symmetric, then M is
also symmetric. By construction,Ma is bounded for any a 2 Domm. The following
statement is then an immediate consequence of Theorem 4.2.

Corollary 6.2. Let .A; EB ;D/ be an odd unbounded Kasparov A-B-module, such
that the �-homomorphism A! EndB.E/ is non-degenerate. Let m be a symmetric
unbounded multiplier with A � Domm, and denote by M the corresponding
operator on E. Suppose that A contains an adequate approximate identity f�kgk2N

for D , such that supk2N kŒm; �k�k < 1. Then .A; EB ;D CM/ is also an
unbounded Kasparov A-B-module, and it represents the same class as .A; EB ;D/.

Remark 6.3. In the above corollary, the only compatibility assumption between
the approximate identity f�kgk2N � A and the unbounded multiplier m is that
supk2N kŒm; �k�k < 1. We note that if A is unital, every multiplier is in fact
bounded and this assumption holds automatically. Furthermore, if A is non-unital
but commutative, these commutators equal zero and the assumption therefore also
holds automatically. Hence, this assumption is only relevant when the algebra A is
both non-unital and non-commutative.

Let us provide an examplewhere this compatibility assumption fails. Consider the
C �-algebra C0.R/. Let m 2 C.R/ be an unbounded multiplier, and let f�kgk2N �

Domm be an approximate identity. We consider the algebra of 2 � 2-matrices
over C0.R/ with unbounded multiplier and approximate identity given by

zm WD

�
0 im

�im 0

�
; z�k WD

�
1 1

k
1
k

1

�
�k :

The commutator is then given by

Œ zm; z�k� D
2i

k

�
m 0

0 �m

�
�k :
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By choosing m to approach infinity sufficiently fast, we can ensure that there is no
uniform bound on f 1

k
m�kgk2N . Hence we see that the sequence fŒ zm; z�k�gk2N in

general need not be uniformly bounded in k.

6.1. Compactness of the resolvent. If .A; EB ;D/ is an unbounded Kasparov
A-B-module for a non-unital C �-algebra A, then in general the resolvent of D is
only locally compact. In practice, it can be much easier to deal with operators whose
resolvent is in fact compact. In this section we address the following question: under
which conditions can we find a locally bounded perturbation such that the perturbed
operator has compact resolvent? In fact, we will construct this locally bounded
perturbation explicitly as an unbounded multiplier built from a given approximate
identity.

Standing assumptions. Let A and B be trivially graded C �-algebras, and suppose
that A is separable. Let .A; EB ;D/ be an odd unbounded Kasparov A-B-module,
such that the representation A! EndB.E/ is non-degenerate. Let f�kgk2N � A be
a commutative3 approximate unit for A and an adequate approximate identity for D .
Without loss of generality, we assume we are given a countable total subset faj gj2N

of A such that �k 2 spanfaj gj2N and k.�kC1 � �k/aj k < 4�k for all j < k.

Lemma 6.4. The seriesm WD
P
k2N 2

k.�kC1 � �k/ gives a well-defined symmetric
unbounded multiplier on A such that A \ Domm is dense in A, Œm; �k� D 0 (for
all k 2 N), and . xm˙ i/�1 lies in A.

Proof. Our argument roughly follows (part of) the proof of [15, Theorem 1.25], to
which we refer for more details. The unbounded multiplier m is defined on

Domm WD
n
a 2 A W

X
k2N

2k.�kC1 � �k/a is norm-convergent in A
o
:

First one checks that aj 2 Domm, which shows that m is densely defined, and
in particular that A \ Domm is dense in A. Since �k D ��

k
, we know that m is

symmetric, and since f�kgk2N is commutative, we have Œm; �k� D 0.
Consider the truncations mn WD

Pn
kD1 2

k.�kC1 � �k/ 2 A. Let B be the
commutative C �-algebra generated by f�kgk2N . Since mn 2 B , we also have
.mn ˙ i/

�1 2 B . Furthermore, the sequence .mn ˙ i/�1 is strictly Cauchy, and
therefore its limit . xm˙ i/�1 lies inM.B/. By Gelfand–Naimark duality, there exists
a locally compact Hausdorff space X such that B D C0.X/. Fix 0 < t < 1, and
consider the increasing sequence of compact sets Xk WD fx 2 X W �k.x/ � tg

3I.e. Œ�k; �m� D 0 for all k;m 2 N.
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such that X D
S
Xk . For x 2 XnXk we have the inequality (see the proof of [15,

Theorem 1.25])
1X
nD0

2n.�nC1.x/ � �n.x// � .1 � t /2
k;

which shows that . xm˙ i/�1 2 C0.X/ � A.

The following lemma is a consequence of the closed graph theorem. A proof of
this statement for Hilbert spaces can be found for instance in [17, Lemma 8.4].
Lemma 6.5. Let S be a closed operator on a Hilbert B-module E, and let T be a
closable operator such that DomS � DomT . Then T is relatively bounded by S .

Proof. We consider DomS as a Hilbert module equipped with the graph norm of S ,
and we denote by xT the closure of T . We will show that T jDomS WDomS ! E is
closed. Consider a sequence  n 2 DomS which converges to  2 DomS (with
respect to the graph norm of S ) such that T n converges in E. Since T is closable
(and  n !  in E), we know that T n converges to xT . But  2 DomS �
DomT , so xT D T . Hence T jDomS WDomS ! E is a closed everywhere defined
operator. The closed graph theorem then implies that T jDomS is bounded.

Theorem 6.6. Let .A; EB ;D/ and f�kgk2N � A be as in the Standing assumptions.
Suppose that kŒD ; �k�k < 4�k for all k. Let M be the unbounded operator on E
corresponding to the unbounded multiplier m WD

P
k2N 2

k.�kC1 � �k/. Write
Am WD A \ Domm. Then the operator

zD 0 WD

�
0 �iD C xM

iD C xM 0

�
yields an unbounded Kasparov A˝Cl1-B-module

.Am ˝Cl1; .E ˚E/B ; zD 0/

representing the same class as .A; EB ;D/, and furthermore zD 0 has compact
resolvent.

Proof. FromLemma 6.4 we know thatAm is dense inA, Œm; �k� D 0 (for all k 2 N),
and . xm ˙ i/�1 lies in A. In particular, we can replace A by Am without affecting
the underlying Kasparov class. Define the closed operators

zD WD

�
0 �iD

iD 0

�
; zM WD

�
0 xM
xM 0

�
:

The first statement then follows from Theorem 4.2. We need to check that zD 0 has
compact resolvent. We will first show that

Dom. zD C zM/ � Dom zM:
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By assumption, we have kŒD ; �k�k < 4
�k . Using the same argument as in the proof

of [15, Theorem 1.25], one shows that the commutator ŒD ; xM� is well-defined and
bounded on Ran.D ˙ i/�1. xM ˙ i/�1. It then follows from [14, Theorem 6.1.8]
(see also [10, Proposition 7.7]) that .˙iD C xM/� D �iD C xM , and in particular
˙iD C xM is closed on the domain DomD \Dom xM . Hence the operator zD C zM
is closed on Dom zD \ Dom zM , which implies that

Dom. zD C zM/ � Dom zM;

as desired.
We know that zDC zM has locally compact resolvent, so in particular the operator

�k. zD C zM ˙ i/
�1 is compact. Consider the inequality

k.1 � �k/. zD C zM ˙ i/
�1
k

� k.1 � �k/. xm˙ i/
�1
k k. xM ˙ i/. zM ˙ i/�1k k. zM ˙ i/. zD C zM ˙ i/�1k:

Since . xm ˙ i/�1 lies in A and �k is an approximate unit in A, the first factor
on the right-hand-side converges to zero (as k ! 1). By Lemma 6.5, the domain
inclusion Dom. zD C zM/ � Dom zM implies that zM is relatively bounded by zDC zM ,
so the third factor is bounded. Similarly, the second factor is bounded because
Dom zM D Dom xM ˚Dom xM . It then follows that the resolvent . zD C zM ˙ i/�1 is
the norm limit of the compact operators �k. zD C zM ˙ i/�1, and therefore zD C zM
has compact resolvent.

Remark 6.7. With the assumptions of the above theorem, consider (the closure of)
the operator D CM . If we have the domain inclusion DomD CM � Dom xM ,
then the same argument as in the above theorem shows that .A; EB ;D CM/ is an
odd unbounded Kasparov A-B-module representing the same class as .A; EB ;D/,
and that D CM has compact resolvent. However, in general the domain inclusion
DomD CM � Dom xM might not hold.

We prove a similar result for the case of even unbounded Kasparov modules.
Again, we need to “double up” the module (although this is somewhat less natural
in the even case) to obtain the aforementioned domain inclusion. So, let A and B
now be Z2-graded C �-algebras, and consider an (even) unbounded Kasparov A-B-
module .A; EB ;D/. Consider the unbounded Kasparov module .M2.C/;C2; 0/,
where the Z2-grading on C2 D C ˚ C is such that the first summand is
even and the second summand is odd. Then the (external) Kasparov product
with ˛2 WD Œ.M2.C/;C2; 0/� 2 KK.M2.C/;C/ implements the isomorphism [9, §5,
Theorem 1]

y̋˛2WKK.A;B/
'
�! KK2.A;B/ ' KK.M2.C/ y̋ A;B/;
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where we have identified Cl2 D M2.C/. In other words, the unbounded Kasparov
product of .A; EB ;D/ with .M2.C/;C2; 0/, given by

.A y̋ M2.C/; EB y̋ C2;D y̋ 1/

(where y̋ denotes the Z2-graded tensor product), represents the same class as
.A; EB ;D/. This procedure provides us with a similar doubling trick as in the
odd case, and we can prove the following.
Theorem 6.8. Let .A; EB ;D/ be an (even) unbounded Kasparov A-B-module.
Suppose that the representationA! EndB.E/ is non-degenerate. Let f�kgk2N � A

be as in the Standing Assumptions, and assume that each �k is even. Suppose that
kŒD ; �k�k < 4

�k for all k. LetM be the unbounded operator onE corresponding to
the unbounded multiplier m WD

P
k2N 2

k.�kC1 � �k/. Write Am WD A \ Domm.
Then the operator

zD 0 WD D y̋ 1C xM y̋ e; e D

�
0 1

1 0

�
;

yields an unbounded Kasparov A y̋ M2.C/-B-module

.Am y̋ M2.C/; EB y̋ C2; zD 0/

representing the same class as .A; EB ;D/, and furthermore zD 0 has compact
resolvent.

Proof. The idea is similar to Theorem 6.6; the main difference is the presence of
Z2-gradings. The anti-commutator of zD WD D y̋ 1 and zM WD xM y̋ e is given by
fD y̋ 1; xM y̋ eg D ŒD ; xM� y̋ e. We know from the proof of Theorem 6.6 that ŒD ; xM�

is bounded. Hence f zD ; zM g is bounded, which by [14, Theorem 6.1.8] (see also
[10, Proposition 7.7]) implies that zD 0 D zD C zM is closed on Dom zD \Dom zM . In
particular, we have the domain inclusion Dom. zD C zM/ � Dom zM . The remainder
of the argument is as in the proof of Theorem 6.6.

Remark6.9. As in Section 5, we can obtain a converse to the “doubling up” procedure
which replaces .A; EB ;D/ by .A y̋ M2.C/; EB y̋ C2;D y̋ 1/. More precisely,
given any unbounded Kasparov A y̋ M2.C/-B-module .A y̋ M2.C/; EB y̋ C2; zD/

(where A acts non-degenerately andM2.C/ acts via the standard representation) and
an adequate approximate identity for zD , one can show that zD is equal to the sum of
a self-adjoint operator D y̋ 1 and a locally bounded symmetric operator. We leave
the details to the reader.
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