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1. Introduction

Many important examples of noncommutative spaces and quantum groups (from FRT
bialgebras and Woronowicz quantum groups, to Manin’s quantum plane, 6-planes and
spheres, and beyond . . . ) have a description as quadratic algebras, finitely generated
and finitely presented, or as quotients of quadratic algebras. In this paper we introduce
a multi-parametric family of noncommutative quadratic algebras A, , (over a ground
field K), depending on parameters £ = ({,,) and p = (pyv), with u,v =0,1,2,3,
that obey some minimal conditions (see Definition 2.1). The algebras A, , are
generated by degree-one elements x,, u = 0,1,2,3 with defining relations in
degree two given by

XpXy = LppXoXy + puvXv Xy, Yu,v €{0,1,2,3}

(see below for the notation used). The family of algebras Ay , have well-known sub-
families: with suitable choices of the parameters we can recover relevant algebras,
notably Sklyanin algebras, or (the algebras of) §-planes and Connes—Dubois-Violette
four-planes.

When all parameters p,, vanish and all £,, are equal to 1 the algebra A, ,
becomes the commutative algebra of polynomials in four coordinates xo,...,x3
and we recover the classical case of a commutative four-plane. Thus we may think
of Ay , asbeing Ay , =: A(Rz ,)» thatis the coordinate algebra of a noncommutative

four-plane R;} >
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The algebras Ay, can be endowed with a finite-dimensional differential calculus.
In §3 we construct a differential graded algebra 24 ,, with Ay , as degree-zero part,
together with a degree-one operator d (the differential) obeying the Leibniz rule. We
show that the calculus is finite and of order four. One of its peculiarity is that in the
top component Q‘g,p, in addition to “usual” forms dx,dx,dx.dx, with indices all
different, there are also “quantum” elements of the type dx,dx,dx,dx,, withv # L.
Nevertheless, the space of four-forms turns out to be one-dimensional, with a volume
form w which we explicitly determine.

The center of the algebra Ay, is in general difficult to determine completely (and
could be rather big for choices of parameters). We single out (in Proposition 4.2)
a condition on the parameters £ and p under which certain degree-two elements of
the type R := ZZ:O c Mxi, belong to the center of the algebra Ay ,, for polynomial
coefficients c;, € K[€,.,, puv]. One possibility is that all these coefficients are ¢;, = 1
for all indices (in Corollary 4.3) and using the corresponding central element
R = Zi:o xi we can introduce a family of noncommutative algebras,

3
A(S} ) = A,/ Y x% -

n=0

describing the algebra of coordinate functions of quantum three-spheres Sg > The

calculus (£2¢,,, d) descends to a differential calculus on S3

In the last part of the paper we focus on the study of quantum groups
of symmetries for the algebras A, ,. We construct a bialgebra My , with a
coaction §: Ay , — My , ® Ay, which endows Ay , with the structure of a left
My, ,-comodule algebra. The bialgebra My, is a quantum matrix algebra defined by
quadratic relations among its noncommutative coordinate functions. The coaction §
is required to be compatible with the differential d, that is it extends to a coaction
on the graded algebra Q2 ,. Thus, the differential calculus (£2¢ ,,d) on Ay , is
covariant. In the classical limit (with all parameters p,, vanishing and all £, = 1),
the bialgebra My , reduces, as expected, to the commutative coordinate bialgebra
of 4 x 4 matrices in Mat4(K). Future work will be devoted to the study of quotient
algebras of the bialgebra My , describing matrix quantum groups, and in particular
a quantum group of orthogonal matrices acting on S z’ »

Acknowledgements. We thank Michel Dubois-Violette for many useful discussions
and suggestions and Alessandro Logar for his extensive help with symbolic
computations. Paul Smith made useful remarks via email. GL acknowledges partial
support from INFN, Iniziativa Specifica GAST, and from INDAM - GNSAGA.

2. The quadratic algebras A; ,

We work over a field K of characteristic zero and denote by 1 its (multiplicative)
unit. Greek indices will run in {0, 1, 2, 3}; latin indices run in {1, 2, 3}. Having fixed
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two distinct indices pu,v € {0,1,2,3} with (say) u© > v, we denote by u’, v’ the
(uniquely defined) indices ', v’ € {0,1,2,3}\{u, v} with &’ > v'. When v = p,
we define v’ = u' = u = v. Clearly (u”,v") = (i, v). We sometimes write (@, v)’
to indicate (u’, v’). With this notation, in the following each identity which holds
for p, v, will also hold by replacing <> u' and v <> v/, provided the replacement
is done simultaneously.

2.1. Generators and relations. We study a family of quadratic algebras finitely
presented in terms of generators and relations and depending on a set of parameters.

Definition 2.1. Forall u,v € {0,1,2,3} let £,,, and p,, € K satisfy the conditions:
(a) eu,u =1, Zu,v = ev,u, eu/v/ = eu,v,
(b) Puv = —Pous
(©) Kiv + puvpvw = L.
We denote by Ay , the graded associative K-algebra (with K as degree zero com-
ponent) generated in degree one by algebra generators x,, u € {0,1,2,3} and
defining relations in degree two given by

XXy = Luw XXy + puvXw X, Yu,v e{0,1,2,3} 2.1

Due to the above conditions on the parameters £’s and p’s, one easily verifies that
there are no additional relations in degree two: when using the relations (2.1) in the
right hand side (for the proper pairs of indices) one obtains an identity,
XpXy = LuvXoXy + PuvXv Xy
= Ly (opXp Xy + popXwXv) + puv o XwXor + por XpXxy)
2
= (El/«v + P o) XXy + Lpw (Do + Puv) X Xor = XpXy.

We stress that indeed it is enough to consider equations (2.1) for . > v; those for
i < v are then implied. Indeed, assume (2.1) holds for indices > v fixed, then

LopXpuXy 4+ popXw Xy
= ﬁvu(zuvxvxu + puvxv’x///) + Pvu(gu’v’xv’xw + Pwv’xvxu)
= (elzw + PouPuwv)XvXp + CopPpv + Poplyw) X X = Xpxp
Generically, for the family of quadratic algebras A, , the number of independent
parameters is six. There are six parameters £ ;o and p o, with j = 1,2, 3, and three
parameters p i, with j > k € {1, 2, 3}. They are related by the three conditions (c)
of Definition 2.1.
Explicitly the relevant commutation relations are
x1X0 = £10X0X1 + prox2x3, X3xz = L10X2X3 + P32XoX1,
X2xg = £20X0X2 + p20X1X3, X3X1 = £20X1X3 + p31X0X2, (2.2)

x3x0 = €30X0X3 + p3oxX1X2, XoxX1 = {30X1X2 + P21XoX3.



1472 G. Landi and C. Pagani

One important aspect of the relations (2.1), as shown by their explicit form (2.2), is
that they are ordered so that the six ordered binomials x,x,, with u < v, together
with the four binomials xi, form a basis of degree-two polynomials. This fact will
turn out to be useful later on.

Remark 2.2. The quadratic relations (2.1) that define the algebras Ay , can be

expressed in the form
XpXy = Zeﬂug’xoxr, ﬁug’ = Lv08,t0v6 + Puvucbvo (2.3)
0,7

for all pair of indices (u,v). It is easy to see that the matrix R € Mat,2(K) is
invertible and involutive, that is R% = 1 ® 1, for 1 the identity matrix; indeed one
easily finds:

Z ﬁugﬂﬂagr = (efw + Puv Py )8pobve = 8o bve,
a,B

using condition (c) in the Definition 2.1. On the other hand, for generic parameters £,
and p,,, the matrix &R does not seem to satisfy the quantum Yang—Baxter equation.
An analysis of this equation for our algebras Ay , will be reported elsewhere.

2.2. Examples. The family of algebras A , comprises a few interesting subfamilies.

2.2.1. Extreme cases. There are some “extreme” families.

— All p,y = 0. Conditions (c) of Definition 2.1 reduce to £, = &1 and we have:
XXy = EXpXy.

In particular, if all £,, = 1, the algebra Ay , is the commutative K-algebra in
four-generators. We stress that £,,, = =£1 does not imply p,, = 0 but only that
DuvPv = 0.

- All £, = 1, but p,, not all zero. As mentioned, condition £,,, = 1 for all u, v
does not force the vanishing of all p,,. For conditions (c) in Definition 2.1 to
be satisfied, it is enough that p,, p,7,y = 0O for each pair of indices wu,v. We

shall mention examples of these occurrences in the next section §2.2.2 and later on
in §2.3.1.

— All £,, = 0. For conditions (c) of Definition 2.1 one needs p,, and p,/
different from zero with p,/,, = ( p,w)_l. The relations (2.2) for the corresponding
algebra A, , become:

X1Xo = proX2X3, X3xz =—(p10)”" Xox1.

X2Xg = p2oX1X3, X3X1 = —(p20)”" Xox2. (2.4)

—1
X3Xg = p30X1X2, X2X1 = —(p30)” XoX3.
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2.2.2. Sklyanin algebras. Another important subfamily is made by the Sklyanin alg-
ebras that we shall now briefly describe.
Leta,b,c € K witha,c # 1 and b # —1. Define parameters

1+a 2a 2
Loy := , Dol = =Wo1—1), pa3z:i=——=0+4Lo1),
1—a 1—a 1—a
1-b 2b -2
K ::—’ = —= l—z s :—:—l—l—e . 25
02 5o P02 56 ( 02), P13 5o ( 02), (2.5)
1+c 2c 2
Loz := , po3zi=——=Uoz—1), pi2:i=——=(144p3),
1—c¢ 1—c¢ 1—c¢
with £, = £,y = Ly, €y = 1 and py, = —py,. Then it is easy to show that

for all w, v, it holds that Elzw + puvpvw = 1, that is condition (c) in Definition 2.1.

The family of algebras Ay , corresponding to this choice of the parameters were
introduced by Sklyanin in [6] in the context of quantum Yang-Baxter equations
and extensively studied in [7]. In fact for a proper Sklyanin algebra one needs the
additional condition

a+b+c+abc=0. (2.6)
This, or equivalently (1 4+ a)(1 +b)(1 +c¢) = (1 —a)(1 —b)(1 —¢), reads
Loz = Lo14o3, (2.7)

thus giving an additional constraint on the £’s. Originally, the algebra was introduced
as the quadratic algebra generated by degree-one elements x,, with relations

[xo.x1]- = a[xz,X3]4+,  [x2,X3]- = [x0. X1]+ .
[Xo0.X2]— = b[x3,x1]4, [X3,X1]- = [X0.X2]+, (2.8)
[xo.X3]- = c[x1, X2]4 . [X1,X2]- = [X0.X3]+,

where [, |- and [, ]+ stand for the commutator and anticommutator respectively.

Remark 2.3. Whena = b = ¢ = 0, one has £o; = {op = £o3 = 1 and po; =
Po2 = poz = 0 while pr3 = p31 = p12 = 2. In the corresponding algebra the
generator Xxg is central: [Xg,X1]— = [X0,X2]- = [X0,X3]— = 0, and the defining
relations reduce to

[x2,Xx3]- = 2x0x1, [X1,X3]- =2X0X2, [X1,X2]- =2X0x3. (2.9)
2.3. #-structures. LetK = C. The algebra Ay , is made into a *-algebra by taking
the generators to be hermitian ones:
* (X)) = xp - (2.10)
This requires that the deformation parameters obey the conditions
v = v and Py = pupc. 2.11)

Again we have important subfamilies that we describe next.
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2.3.1. Connes-Dubois-Violette four-planes ]Rl‘}. LetK = C. In[1, §2] the authors
introduce a three-parameter family R} of deformations of the four-dimensional
Euclidean space R* by solving some K-theoretic equations put forward in [3].
The noncommutative four-plane R} is the quantum space dual to an algebra
A, = Cue(RY), with parameters u = (e'¢1, ¢'%2,¢'%3) € T3. The unital *-algebra
A, is generated by elements z,, z; = *(zy), 0 = 0, 1,2, 3 satisfying the relations

ZkZy — ZoZy + Zeklmzlz;; =0,
TRy

20Zk — ZpZo + ZlemZI*Zm =0, Vk=1,2,3,
TRy

2.12)

where €, is completely antisymmetric in k,/,m € {1,2, 3}, with €13 = 1, and

3
Z(ZMZZ —z,7u) = 0.
n=0
Moreover, the generators satisfy
= Ay (2.13)
%

where A, are the entries of a symmetric unitary matrix

e—2i(p0
e—Zi(p]
202 (2.14)
e—2i(03

Due to an overall symmetry, z,, > Y, pSyuvzy, for peU(1) and S =(Sy,) € SO(4),
one can further assume one of the angles ¢, to vanish, say ¢o = 0, thus A, with
u € T3. Finally, by rescaling the generators z,, the algebra Ay, = Cy(R}) admits
hermitian generators as

Xp=e TPz, x(xy) = X% =Xy

The algebras A, belong to the family of quadratic algebras A, , introduced in
Definition 2.1 above, as we will now show.

Recall that for fixed two indices w,v € {0,1,2,3} with u > v, we denote
by i/, v’ the unique indices u’,v’ € {0,1,2,3}\{u,v} with u’ > v’; one has
(=W = (=1)**V, Let A, := e~2/% be the entries of the matrix A in (2.14).
For w,v € {0, 1,2, 3} consider then

Ay = Apdw + oA s buy = Apdp + Aydy

2.15
Cuv = (=12, —A2). 21
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Clearly ¢, is antisymmetric, while both a,,,, and b,,,, are symmetric with in addition
auy = a,y and by, = by, Alittle algebra also shows that:
(i) a}, = b}, + cuvCops
(i) Avayy — Aubuy = ()" THApcp .

Proposition 2.4. The generators z,, of the algebra A, satisfy the following relations
AuvZpzZy = buwzvzy + cpvzvz, Yu,v €{0,1,2,3}. (2.16)

In particular, for {A,,,u =0, ..., 3} such that a,, # 0 forall i, v, equations (2.16)
hold if and only if equations (2.12) hold, that is the generators z,, satisfy the commut-
ation relations (2.12) if and only if they satisfy relations (2.16).

Proof. Firstly note that for all pairs of indices i, v € {0, 1, 2, 3}, by using the notation
i, V', equations (2.12) can be rewritten respectively as:

* w+v’ * * w +v’ *
zvz, + (=1) 2wz = zpzy, +(=1) ZwZy,

Z4 2 — (—1)”“/+"/z;,z,,/ = z¥z, — (—D* 2z
or, using (2.13), as
AuzZvzy —Avzpzy = (—1)“/+”/(Au/zu/zv/ — AWz, (2.17)
AuZpzy —AvZyzy = (—1)"“/+"/(AM/ZM/ZV/ —AvzZwz). (2.18)

Since the A, never vanish, one can take the difference of A,/ times equation (2.17)
with A,/ times equation (2.18), thus obtaining

Aphvr + Aodp)zozn — Cowdv + Adu)zpzy = (D T2 = A2)z,0 2,

thatis ayzvzy, = byuzpzy + CopZw zv -

Conversely, suppose that (2.16) hold; then, by using the symmetry properties
of the parameters a,,, b,, and c,, given above and in particular (i), (ii), we
obtain (2.17):

ApGopZvZy = Apbvuzuzy + Aucouzu zy

= (vapy — (D" e n)zuz + (DR Quagns = Awbu) 202y

= AvapwZpzy + (—1)“/+”/)t,,/awzwz,,/ — (—1)”“+“)&M/(c,,/wzuzv + buvzwzv)
= AvauwZpZy + (—1)“/+”/)Lv/awzu/z,,/ - (—1)“+”)Luxawzvfzw),

that is, up to multiplication by a,, 7 0, just (2.17). With an analogous procedure,
starting from A ,a,,,2,,z,, we obtain (2.18) out of (2.16). ]
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Hence we have that the defining commutation relations for the generators of A,
can equivalently be rewritten as in (2.16) (for a,, # 0). In order to describe the
algebras A, as Ay , algebras, we need the following additional notation.

Let {A,,,u =0,...,3} be such that a,, # O for all , v. Define

Ly = a;&bw, Guv = a;liclw. (2.19)
Then the following identities hold:
(i) Lpv = Loy = L = Loy Ly = Lyrvs Quv = —Qops
(V) €2, + quuqu = 1,
V) Aplyw = Ay + (DA g
The above are easily obtained by using the symmetry properties of the parameters a,,,,

buv and ¢, and the relations (i), (ii). Thus for parameters A’s for which a,, # 0,
the relations (2.16) are equivalent to

ZuZv =L ivzy + Quzvzw  Yu,v €{0,1,2,3}. (2.20)

If we consider hermitian generators x,, = e %4z, the commutation relations
(2.20) read

XXy = LupXuXy + puvxvxy  Yp,v e{0,1,2,3} (2.21)

where

DPuv = C]uvei(_w“_(p” T teu),

From properties (iii)—(v) above, the parameters £,, and p,,, satisfy the conditions
in Definition 2.1. Moreover, from aWZMv = auvbyy it follows that Z;w = L.
And also, since @,y Cpuy A Ay = GyuyCopthv, one has that A AvAw Ay = qup
and in turn py, = py,. Thus conditions (2.11) are satisfied and the corresponding
algebra A, , is a x-algebra.

While equations (2.20) (or (2.21)) are equivalent to (2.12), they are easier to
handle, at least for the purposes of the present paper. In particular, if we use the
lexicographic order xo < x; < xp < x3 for the generators x,, of A, we canuse (2.21)
to rewrite elements of A, in terms of ordered monomials which are independent and
thus can be compared.

Remark 2.5. For those {A,,u = 0,...,3} (or u € T3 taking g = 0) such that
a,,v are non zero, the relations (2.20) or (2.21) give a different parametrization of the
x-algebra A, of the noncommutative four-plane R{. Let us have a closer look at the
number of actual parameters £ and p entering the construction for these algebras A,,.
Being a,, and b, symmetric with a,,, = a,, and by, = b, (see after (2.15)),
a priori there are only ag1, agz, agz and bg1, boa, bos (say) which are distinct. A
further direct computation shows that

apr = ap2, bor =ao3, box =bos. (2.22)
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This also says that a,, # 0 is just agi,ao3 7# 0. Moreover for each fixed pu,
Zv ¢y, = 0, so we may select co1, co2, €12 (say) with
€23 = Co2 +C12, €13 =Co1 —C12, €03 = —Co2 — Co1 - (2.23)

Next, by (iii) above, there are only three £,,,,, with £92 = £¢1£03 out of (2.22). Finally
thanks to (2.23) and (2.22), the six parameters ¢, are not all independent:

423 = qoz2 + q12fo1, 913 = qo1 — q12bo1,  qo2 = —qo1 — qo3lo1.  (2.24)
Summarizing we are left with 5 parameters
o1, Zo3. qdo1, 4o3, 412

subject to two conditions (obtained by taking quotients of (2.23) by suitable a,;,)
3 =1+qo3q12. L5 + 451 + Lo1g01(qo3 —q12) = 1. (2.25)

2.3.2. Example. Take the three angles in u € T3 to be equal. With notations as in
(2.14) we have that Ag = 1, A; = A, = A3 =: A # *1. Thenall £, = 1, while
qo1 = qo2 = ¢o3 = 0. The remaining ones ¢23, ¢13, ¢12 are non zero, and are each

proportional to A™1(1 — A). The generator z is central: [zg,z1]— = [z0,22]- =
[z0, z3]— = 0, while the remaining relations become
[22.23]- = =A7'(1 = A) 2021
[z1.23]- = =AY 1 = X) zz2 . (2.26)
[z1,22]- = A1 - A)zoz3.

This is in analogy with the case in (2.9) for the Sklyanin algebra.

2.3.3. 0-deformations. The algebra of polynomial functions on the noncommut-
ative four-plane Rg defined in [3] corresponds to angles ¢9 = ¢3 = 0 and ¢; =
@2 = —6/2in (2.14). With complex coordinates {; = xo + ix3 and {, = x; + ixp
it has commutation relations:

Gl =200, Ll =A50, =00, =86,

together with the conjugated ones, with parameter A := ¢’?. These can be written
in the form of the present paper, that is as in (2.21) for appropriate parameters £’s
and p’s. A direct computation yields: g = A3 = land Ay = A, = el = ). In
turn:

21
bor =Lop = ——, Loz =1,
01 02 =12 03
o B 122 =0
Po1 = P13 = —po2 = —P23 = A2’ Po3 = P12 ="V,

which requires to take ) # 7.
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2.3.4. Skylanin algebras for K = C. Originally Sklyanin algebras were considered
for the case K = C. Let us return to the family of algebras addressed in §2.2.2 above
and consider the case K = C. If we set xz = Xy, for each u = 0, 1,2, 3, this
would not define a *-structure: the commutation relations (2.8), in particular those
in the right column, would not be preserved regardless of the choice of «, 8, y. This
problem can be overcome and a x-structure, compatible with the algebra structure,
can be introduced by taking the generator X to be anti-hermitian, that is X = —xo.
By renaming the generators as

Xg = —ixg, xx = xgfork =1,2,3, (2.27)

the relations (2.8) can be rewritten in terms of the x,, as (cf. [6, eq. (32)])

[0, X1]— = iat[x2, x3]4+, [x2,x3]- =i[x0, X1]+,
[x0, X2]- =iB[x3, x1]+, [x3,x1]- = i[xo, x2]+, (2.28)

[xo, x3]— =iy[x1, x2]+, [x1,x2]- =i[xo, x3]+ .,

with @ := —a, B := —b, and y := —c still satisfying condition (2.6):
a+B+y+aBy=0. (2.29)

With this different choice of generators x,, for the Sklyanin algebra, the parameters
£ and p, analogous to those for x,, in (2.5), are computed to be

l—«o 2ia 2i
Lo1 = , = =1i(l —4£p1), = =1i(l + 4o1),
0= Ty Pori= T i( 01), P23 T+ o i(1+4£o1)
1+ 8 2ip ] —2i )
Loy '= ——, = =il —1), = = —i(1 + £g3),
02 =8 Do2 1—§ i(lo2—1), pi13 1—§ i(1+£o2)
1—y 2iy . 2i .
Loz :i= ——, = =i(1 —4{p3), = =1i(l + £g3),
03 11y Po3 1ty ( 03) P12 1ty ( 03)

(2.30)
which now require &, y # —1 and 8 # 1. These new parameters £ and p still satisfy
the three conditions in Definition 2.1, as well as the constraint (2.7).

Taking o, 8, y to be real (in accordance with the original choice of [6]), one sees
that £,,,, = £,,, for all u, v and thus that p,,, = —pyy = pyy. Conditions (2.11) are
hence satisfied and the choice x; = x,,, for all i, defines a well-defined *-structure

w
on the algebra Ay , corresponding to the Sklyanin algebra.

Remark 2.6. There is quite an overlap between the family of Sklyanin algebras and
that of Connes—Dubois-Violette algebras described in §2.3.1. For “generic” values of
the deformation parameters u, both families depend only on two parameters [1, §3]
(cf. also [2]). The 6-deformations of §2.3.3 are not Sklyanin algebras.
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3. The exterior algebra of Ay ,

There is a natural calculus on the quadratic algebras Ay ,. This section is dedicated
to the construction of the Grassmann algebra (£2¢,,, d) of forms of Ay .

3.1. Differential calculus. We denote by 2 , = Q¢ ,(A¢,,) the unital associative
graded K-algebra €2¢ ) := @nen 2y p generated by elements x,,, i € {0,1,2,3}, of
degree O satisfying relations (2.1) and by elements dx,,, i € {0, 1,2, 3}, of degree 1
satisfying relations

dx,xy = Lyuxpdxy, + puvxvdxy, x,dx, = £ypdxyx, + podxyx,,  (3.1)

and dx,dx, = —€yydx,dx, — ppdx,dx, (3.2)

forall u, v € {0, 1,2, 3}. From the properties of the parameters £,,,,, p,.,, from (3.2)
one has that dx,dx;, = 0 for each u. Also, conditions (3.1) are consistent in that
by substituting the second one in the first one or vice-versa one gets an identity. The
same consideration applies to (3.2): when reusing (3.2) in the right hand side it yields
an identity. We observe that relation (3.2) follows by any-one of the relations in (3.1)
by applying d and using the graded Leibniz rule.

Remark 3.1. When writing the defining relation (2.1) via an R-matrix as in (2.3),
the relations for the forms in (3.1) and (3.2) can be written as

dx,x, = Z !R T xgdxg, xpdx, = Zﬁugrdxgxt, (3.3)

o,T

dox, dx, = —Z RS dxgdx, . (3.4)

Next we define the linear operator d: A, , — Qé’p by x,, — dx, and extend it to

a differential d on §2¢_, by imposing that d> = 0 and that it satisfies a graded Leibniz
rule. From this rule it also follows that each space €2  is an Ay, ,-bimodule.

ForK = C we further require §2¢, , to be a x-algebra with *(dx,,) = d(x};) = dx,,.
3.2. Higher order forms. Let us analyse the structure of higher order forms.

3.2.1. Three-forms. We fix indices w,v. By multiplying (3.2) on the left and on
the right by all possible one forms, dx,,, dx, dx, s and dx, (and using dx,dx, = 0),
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we obtain all the identities that three-forms have to satisfy. The eight equations we
obtain are respectively

0 = —{,vdx,dx,dx, — puvdx,dx,dx,, (3.5)
dxydx,dx, = —pyudx,dx,dx, (3.6)
dx,dx,dx, = —€,,dx,ydx,dx, — pyvdx,/dx,dx, . 3.7
dxydx,dx, = —£,,dx,dx,dx, , (3.8)

together with

dx,dx,dx, = —puvdxydx,dx, , (3.9

0 = —{,vdx,dx,dx, — pyvdx,rdx,dx, . (3.10)
dx,dx,dx,s = —£,vdx,dx,dx,/ , (3.11)
dx,dx,dxy = —£€,,dx,dx,dx, — pudx,dx,dx, . (3.12)

Lemma 3.2. Suppose that for each pair of indices (u,v), u,v = 0, 1,2, 3 identities
(3.6), (3.8), (3.9) and (3.11) hold, then the remaining identities follow.

Proof. First, by using (3.6) and then (3.8) we get (3.5):
Lwdxdxydxy, = € puvdxdxydxy = —pyydxdx,dxg, .
Next, by using first (3.8), property (c), and next (3.6) we get (3.7):

—Lypdxrdxydx, = Elzwdxwdxudxv = (1 4 puvpuv)dx,rdx,dx,

= dxdx,dxy, + ppuydxdxydx, .
Similarly, by using (3.9) and then (3.11) we promptly obtain (3.10):
Lywdxydxdxy = € puvdxdx, dx, = —puudx,rdx,dx, .
Finally, by using first (3.11), property (c), and then (3.9) we get:
—Lpdxydx,dx, = Efwdxudxvdxv/ = dxy dxydxy + puydxydx, dx, .
that is the last relation. 0
Summing up, three-forms should satisfy, for all pair of indices (7, o), the relations

dxpdxgdx; = —€rodxpdx.dx, , (3.13)
dx;dxedxy = —€redxgdx dxy (3.14)

together with

dx;dxsdx; = —prodxgrdxydx; = prodxdxydx, . (3.15)
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We stress that, despite being dx,dx; = 0, in general dx.dx,dx; # 0; of course
these vanish in the classical limit where p,, = 0.

The relations above, while not all independent (and this will lead to some
requirement on the parameters) allow one to find a basis of three-forms. To get
a grasp of how this work, let us write explicitly the relations (3.13) and (3.14) that do
not contain dxg:

d)C3d)C1dX2 = —603 dX3d)C2d)C1 s dxzdxldx3 = —603 dX]dXQd)Cy,,
dX2dxldX3 = —ﬁoz dXZdX3dX1 y dX3dxldX2 = —ﬁoz dxldX3de y
dxldXde:; = —601 dxldX3dX2 s dX3dX2dX1 = —601 dx2dX3dX1 .

We see that on the left-hand side there do not appear neither the three-form dx;dxsdx,
nor dxpdxsdx;. This suggests using one of them as the independent one and express
the remaining forms as a multiple of the chosen one. With the former dx;dxs;dxs,
out of the above relations we get:

603 dX3dx2dx1 = Eoz dxldX3dX2 y dXdeldx:), = @01503 dxldx:;de s
602 dxde3dx1 = —£01K03 dxldx?,de , dX3dX1dX2 = —Eoz dxldX3dX2 .
d.X]dXZdX3 = —601 dxld.X3dX2 y €01€03 dXZdX3dX1 = —502 dxldX3de .

In fact, for the last one we need to assume that £o3 # 0. Next, comparing the second
relation in the first column with the last one in the second column we get a condition
on the parameters, that is £9, = ££¢1£03; thus the above become

Loz dxzdxadx; = +Lg1€03 dx1dxsdx,,
dxydx1dxs = £o1€o3 dx1dxsdxy ,
+01€03 dxadxsdx; = —€p1€o3 dx1dxzdxs ,
dxzdxidxy = FLo1£p3 dx1dxzdx,
dx1dxydxsz = —€o; dx1dxsdxs ,
£o1£03 dxpdx3dx; = Flo1€o3 dxidxzdx, .

Had we taken dx,dxs;dx; as a basis, we would have obtained an analogous and
compatible result (again requiring £o3 # 0). To proceed and simplify expressions,
we assume that also £ is different from zero. Then, the relations on three-forms not
containing dx are:

dx,dx3dx; = Fdxjdxzdxs;,

dxidxpdxs = —€g1 dx1dxsdx,,

dxsdxadx; = +£p dxjdxsdxs,, (3.16)
dxsdx;dxs = £g1€o3 dx1dxsdx, ,

dxzdxidxy = FLo1£p3 dxydxzdx, .
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Next, we list all relations (3.15) whose right hand side does not contain dxg:

d)C]dXodxl = Ppo1 dxde3dx1 = —Po1 dxldX3d)C2 s
dXQdX()dXZ = Po2 dxldXQ,de = —Po2 dX2dX3dX1 y
d)C3dX0d.XT3 = po3 dxld)C2dX3 = —Ppo3 dX3dedX1 y

and using (3.16) we arrive at

dxydxodx; = F po1 dx1dxzdxy; = —po1 dxidxszdx,,
dX2dX()de = Po2 dxldx3dxz = :I:p02 dxldX3de y (317)
dX3dX0dX3 = —601p03 dxldX3dX2 = :|:£()1p03 dxldX3dX2 .

From this, we see that the choice £y = —£1£¢3 Will lead to
Po1 = po2 = po3 =0,

while the choice £gp = £91£93 yields

dxldxodxl = —Po1 dxldX3dX2 ,
dededX2 = Po2 dxldx3dx2 s (318)
dX3dX()dX3 = —501])03 dxld)C3d)C2 .

Equations (3.16) and (3.18) list all three-forms that can be expressed in terms of
the three-form 6y := dx;dxzdx,. We can repeat the analysis above for each index
v € {0, 1,2, 3}. For this it is convenient to tabulate all possible values of the indices.
For each index v € {0, 1,2, 3} fixed, we define indices V, i, [t by

VoUW [y

0 1 2 3

1 0 3 2 (3.19)
2 3 0 1

3 2 1 0

These are such that for (v, u,) fixed, then (v, ) = (V, i&,,). This then gives:
o) =@, Fp) . () =@ ), and  (1,9) = (k. o). (3.20)
Furthermore, an explicit computation for each v € {0, 1,2, 3} fixed yields that
{1 bupn = Ao, V. 1), (B Vs ), (U, o, Bo) - (3.21)
Finally, using the table (3.19) again with a direct computation one finds

ZM\)V = 502 , Euvﬁv = £01 s ﬁuv‘f; = @03 s Vv = 0, 1,2,3 . (322)
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In the relations (3.13) and (3.14), the ones not containing dx,, are those for indices
0, T such that neither o nor 7 are equal to v and also such that 7’ # v. The first
assumption gives for the pair (z, o) that

(t.o) =, ), V. ), (o, Bv) s (o, V)5 (v, ) (s o)

but from (3.20) each of the first three cases gives t/ = v and so it has also to be
excluded. Thus, only the last three choices are possible and (3.13) and (3.14) give
the following six equations:

dxgz, dxgdxy, = —€,, 5dxg, dx,, dxs,  dxg,,dxsgdxg, = —€,, 5dxsdx,, dxz, ,
dx,, dxgdxg, = =€z, 5dx,, dxg, dxg,  dxg,dxgdx,, = —Lz sdxsdxg, dx,, ,
dxgdx,, dxg, = €z, 0, dxsdxg, dx,, ,  dxg,dx,, dxg = —€z, ., dx,, dxg, dxg .

Now on the left-hand side there do not appear neither the three-form dxydxj, dx,,
nor dx,,dxj,dxy and we can use one of them as the independent one. With the
former, if we denote 0, := dxydxg, dx,, , the above become

dx,jgv dxgdxy, = _Zﬂvgdxﬁu dxy,dxs, dxg, dxgdx;gu = Kuuﬁﬁﬁuu«u 0,,
dxy, dxsdxg, = €z, 5dx,, dxg, dxs, dxg,dxsdx,, = —L5,50,,
dxﬁdxllvdxﬁv = _Zﬁ\)ﬂv 9\) ’ dxﬁv dva dx“; = _eﬁvﬂvdxﬂvdxﬁvdx"; ’
and next
Eozev = @03dxﬂudxuudxg s dXMUdX‘ngﬂU = 6036010,) s
603({0191) = —Zozdxm, dXﬁU dx; s dxl‘):v dxgdxm = —60201, s
dxgdxy, dxz, = —{o10, , dxg, dxy, dxy = —Lordxy, dxz, dxs .

Again we need £y3 # 0 and thus £9; = ££¢1€03. Then, with £y different from zero
we get

dxgdxg,dx,, = 0,,

dx,, dxz, dxs = F0,,

dxz dx, dxz = ££010,,

My My v 01% (323)

dxgdxy, dxz, = —Lo16,,

dxuv dx',;dxp;v = 6016030,, s

d'xﬁv dx’gdx,u/v = :FZOIEO:;@V .

Next, the relations in (3.15) not containing dx,, in the right hand side are
dxydx,dxy = pyydx,, dxg, dxy = —pyy dxpdxg, dx,, ,
dx,u«v de dva = Pvuy dx;dxl’lv dva = —Pvuy dxMU dxﬁu d)CTj ’

d‘xlau d‘xvd'xﬁv = pvﬂv dx;dxllv dxﬂv = _pvlau dxﬁv dXMVdX‘{j .
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And using (3.23) we arrive at
dxydx,dxy = F py5 6y = —pus Ob
dxy, dxydxy, = po, Ov = £ pop, Oy,
dxz,dx,dxz, = —Lo1pv, O = FLo1pv, Ov -

As before the choice £go = —€p1£03 leads to

Pvs = Pouy = Pofi, =0, (3.24)
while the choice £gp = £91£93 yields
dxydxydxy = —puy by .
dxy, dxydx,, = puu, Oy, (3.25)
dxg,dx,dxz, = —Llo1pu, O -

We may conclude that the space Qz of three-forms is generated as a bi-module by
the four elements 0, = dxydxg,dx,,, forv € {0,1,2,3}.

3.2.2. Four-forms. We move to the analysis of the bi-module Q‘l} of four-forms.
In this section we take all £,,, to be non zero, o1, o2, £o3 7# 0 and (avoiding the
case where all p,,, vanish, see (3.24) above)

Loz = Lo1bo3 . (3.26)

These are the natural assumptions in order to include the classical commutative case
(where £, = 1forall u, v) and they, in particular (3.26), are satisfied by the Connes—
Dubois-Violette four-planes (cf. after (2.23)) and Sklyanin algebras (cf. (2.7)).

Firstly, since for a fixed index v all three-forms that do not contain dx, are
proportional to 6,, we observe that

dx.6, =0=0,dx,, forallt #v.

Hence, a priori, as candidates for basis elements we need to analyse only the four-
forms
wy :=dx,6, and o] :=6,dx,, forallv=0,1,2,3.

We show that all these forms are proportional and, as a consequence, the bi-module
Qz} » of four-forms is one-dimensional. Out of (3.23), we observe that

dx,dx.dxs = —dxgsdx;dx, for all distinct indices i, 7, 0 . (3.27)
Using this result twice, we promptly obtain

w3 = dX3(93 = dX3(dX2dX0dX1) = —(dX3dX1dX())dX2 = dX()dxldX3dX2 = g,

wy = dX202 = dXQ(d)Cg,d)C]de) = —(deded)C])dx?, = dX]d)Coddex:), = w1 .
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Moreover, by using (3.2), we compute

w1 = (dx1dxo)(dx2dx3) = (Lo1dxodx 4+ prodx2dxz)(£o1dxsdxs + pr3dxidxo)
= K%IdX()dxld)QdXz — p01p23dX2dX3dX1dX0
= %1600 — P01 P23W3.

Thus, £3,00 = (1 + po1p23)wr = L3 w1 (being (1 4+ po1 p23) = £, from con-
dition (c) of Definition 2.1) giving the further identity £3,w; = £3,wo and hence,
being £9; # 0, w1 = wo. Summarizing we have found that

Wy = w1 = Wy = w3 =: w = dxgdx;dxsdx, . (3.28)

We next show that for each index v, the form w], = 6,dx, is proportional to @ too.
By using (3.27) we easily compute

eodX() = dx1 (dX3dX2dX()) = —d.xl(dX()dX2d.X3) = -] = —w,
f1dxy = dxo(dxpdxzdx;) = —dxo(dx1dx3dx;) = —wo = —w,
92(1)(2 = dX3(dX1dX()dX2) = —dX3(dX2dX()dxl) = —w3 = —w,
93(1)(3 = dXz(d)C()dxldX3) = —dxz(dx3dx1dx0) = —W) = —Ww,
as desired. This also shows that 6, dx, = —dx, 0, for each v. We can thus conclude

that the bi-module of four-forms is one-dimensional, generated by the form w (say).
This top form w will be shown to be not zero in §3.3 by identifying it with the
(differential calculus representation of the) volume form of a pre-regular multilinear
form for our family of algebras A .

As a final remark, it is worth stressing that in Q?’ » in addition to “usual” forms
dx,dx,dx.dxs with v # u # v # o, there are also “quantum” elements of the
form dx,dx;dx,dx,, with v # . Nevertheless these forms are proportional to w,
accordingly to the following relations deduced from (3.25):

dxydxpdx,dxy = —pyy oy,
dxydxy,, dxydxy, = pyu, oy,

dxvdxﬁudxvdxﬁv = _EOIPVﬁv Wy .

Thus they vanish in the “classical” commutative case, all p,, being zero then.

3.3. The volume form. In this section we shall make contact with the theory of pre-
regular multilinear forms of [4,5]. Let W be the linear form on K* with components
Wieq, €g,€p, eg) =: Waﬂpa = Locﬂpagaﬂpo + Paﬂ(sapgﬂagaﬂa’ﬂ’ (3.29)

in the canonical basis {e,,u = 0,1,2,3} of K*, where EaBpo i8S the completely
antisymmetric tensor with e9123 = 1 and where, for distinct indices «, 8, p, o, the
components Lyg,s and Pyg are determined (uniquely) by the properties:

(D Lozﬂpa = Laaﬂp’ Lozﬂpa = Lﬂaap’
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(2) Loparpr =4Lpror Lapprars
() Pop = pprarLappra’,
and by setting Lo132 := 1. One easily shows that
Ppo = Pa'p'Lpaa'p’ = —Ppra’Lapprar = —Pap - (3.30)
In relation to [5, Def. 2] we have the following result
Lemma 3.3. The linear form W is pre-regular (without twist), that is
(D) Woapp = —Wappo for all indices o, B, p, o,
(D) Ifv € K* is such that W (v, eg,ep.eqg) = 0 for all indices B, p, o, then v = 0.

Proof. By using the defining properties (1), (2), and (3) and in particular (3.30), for
all indices «, B, p, o one verifies that

Woaﬂp = Loaﬂpeaaﬂp + Paa(gaﬂgpagaao’oc’
= _Laﬂpasaﬂpa - Paﬂgapgﬂasaﬂa’ﬂ’ = _Waﬂpa )

showing that W is cyclic. Next, suppose there is a vector v = (vy) € K* such that
for all indices B, p, o it holds that

0=W(,eg,ep.e5) = Z Vo Wagps = Z Vg (La/gpgeaﬂpg—i—Palg(gap(slgoea/ga/ﬁ/).
o o

Then, from the properties of the L’s and P’s before one gets that v = 0; thus W
is 1-site non-degenerate. The two properties (I) and (II) say that W is pre-regular. [J

Lemma 3.4. Let A(W,2) be the quadratic algebra generated by elements x,, |1 =
0,1,2,3, with relations

> Wapoo XpXo =0, V. f=0,123. (3.31)
0,0
Then A(W,2) coincides with the algebra Ay p.

Proof. By the antisymmetry of eqp,4, fixing a, B, the only possibilities for the last
pair of indices in Lg,s are (p,0) = (B’,a’) or (p,0) = (&', B’). Moreover, taking
£o1,€o2 # 0 one has that Loggr # 0 for all o, B. Then, for «, B (arbitrary but)
fixed we have

Z WapBooXpXs =0

po
> Capap (LapaprXeXpr = LapprarXpXa’ + PapXaxp) =0

> eopa’p'Lappa’ (Zﬂ’a’xa’xﬁ’ — Xg' X' + pﬁ/a/xaxﬂ) 0
= xpXor = Lgrg/XarXp + PR/ XaXB

showing that the generators elements x,, satisfy conditions (3.31) if and only if they
satisfy (2.1). Thus the algebras A(W, 2) and Ay , are the same. 0
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By the theory of pre-regular forms the element 1 ® W is a nontrivial Hochschild
cycle on A(W,2) (see e.g. [5, Prop. 10]). We are lead to define as a volume form the
four-form

vol := Z Wappodxadxgdx,dxs

a,B.p,0
= Z Logpo €apoodxadxgdxpdxs + Z Py aporprdxgdxgdxgdxg .
a,B,0,0 a,B

(3.32)

Remark 3.5. The family Rﬁ of nocommutative four-planes introduced in [1] and
described briefly in §2.3.1 was obtained in connection with a problem in K-homology.
In particular, out of the top Chern class of a unitary there was defined a Hochschild
cycle playing the role of the volume form of Rf;. This cycle is of the form (cf. [1,

eq. (2.14)]).

vV = Zgaﬂpgsaﬂpgl®xd®xﬂ ®Xp®xU_ZTaﬁ l®xa®xﬂ ®xa®xﬂ9
a,B,p,0 o,B

with explicit tensors Sqg,s and T,g which depend on the deformation parameters
u € T3 A comparison with the volume form in (3.32) (for the algebras A¢p
of §2.3.1) shows that the latter is a differential calculi representation of the homology
class v.

3.3.1. Explicit expression of the volume form. Let us have a closer look at the
components Wyg,, of vol. Firstly, by the properties Logps = Loagpe = Lgacps
we have that
Lo132 = L2013 = L3201 = L1320 = L1023 = L3102 = L2310 = L0231,
Lo123 = L3o12 = L2301 = L1230 = L1032 = Lo321 = L3210 = L2103, (3.33)
Lo312 = L2031 = L1203 = L3120 = L3021 = L1302 = L2130 = Lo213,
with
Loiz2 =1, Loi2z =401, Loziz =4{o1los = Loz
from the properties Lygo’gr = £g/a’ Lapp’e’ and the condition Loizp = 1.
Next, being Pyg = pgros Lapp’a’, We have
Po1 = p32, Pox = p31. Poz =4o1p21, (3.34)
P13 = pao, P23 =pio. P12 ="Lo1p30,

with Pyg = —Pgg.
On the other hand, we have shown in §3.2.2 that all 4-forms are proportional. In
particular, for distinct indices «, 8, p, o we have found that

dxedxgdx,dxs = Neges @ ,
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where w is the generator of 522 » introduced in (3.28) and explicitly:

Moy uy = 10132 = 11023 = 2310 = N3201 = | = —€,57, ., » (3.35)
Nvpy iy = N0231 = 11320 = 712013 = 13102 = -1 = —€ouy iy >

Moty e = M0321 = N1230 = N2103 = N3012 = Lo1 = —Lo1€v77, 1,7 »

MTuy iy = M0123 = 11032 = 712301 = 713210 = —Lo1 = —eoﬁﬁuuﬁu )

Nou, ¥y, = N0213 = N1302 = 12031 = 713120 = Lo1los = —50150361;“”5;2,, )
Moty oy = M0312 = 11203 = N2130 = 3021 = —Lo1fo3 = —Lo1los€vi,5u,, »

with, as above, €4, the completely antisymmetric tensor with €g123 = 1. Moreover,
for all @ # B we have found

dxedxgdxedxg = Nggeg® ,

where now

Musvs = —Pvs = o101 = —N1010 = —Po1, 72323 = —13232=— P23, (3.36)
Ny vy = Py, = 10202 = —172020 = Po2 , N1313 =—N3131 = P13,
Moiiyviiy = —L01 Pvii, = M0303 =—73030 = —Lo1 P03, Ni212=-"N2121=—Lo1P12.

Hence the volume form vol in (3.32) is proportional to the generator w too. We
next determine the explicit coefficient of proportionality. By a comparison between
(3.33) with (3.35) and between (3.34) with (3.36), we observe that

NaBpc = —Lapo €appo+ MNapap = —Ppra’ Eapa’p’ (3.37)

for all distinct indices «, B, p, 0. We thus compute

vol = 3 Lappo £appodradxpdxpdxs + Y Pup faporprdxadxpdxydxp

o,B,p,0 a,B
2 2 2
== Z Lo €appo @ Z Pop Ppror 4porpr @
a,B,p,0 a,B
2 2
= Z (Laﬁa’ﬁ’ + Laﬂﬂ’a’ + Paﬂ Pﬁ’a/)w
a#p
2 2
== Z Laﬂﬂ’a’(eaﬁ +1+ pﬂ’ﬁt’pﬂlﬂ)w
a#p
=2 Llgp,0=-208+4) 0,
a#p

where in the last equality we have used (3.33) and the relation 62 g+ Ppa’Pap = 1.
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4. The quantum spheres Sf’p

In this section we introduce quantum three-spheres as quotients of the algebras Ay .
To do that we study the center of the algebras Ay , and show that, under suitable
conditions for the parameters £, and p,,, the quadratic element R := in is
central in Ay ,.

We start with the following preliminary result.

Lemma 4.1. For all u,v € {0, 1,2, 3} fixed, it holds that:
XX Xy + XXXy = Ly (XX X + XX Xy,) . “4.1)

Proof. For this statement we use (2.1), thatis x,x, = €, X,X, + puv Xy X, . Firstly,
multiply it on the left by x,, thus getting

XXXy = Lpp X Xo Xy 4+ Puv Xy Xv Xy .
Then, exchange © <> v and multiply it by x,- on the right, thus getting
XXXy = LopXpuXoXw + PopXp X Xy .
By summing these two equalities, and using the antisymmetry of p,, we obtain
XXXy + Xp XX = L (X Xp Xy + XpX0X,)

or equivalently, by the simultaneous exchange p <> ' and v <> v/, equation (4.1).
O

Proposition 4.2. Let £,, and p,., be parameters as in Definition 2.1. With the
notation of the table (3.19), suppose that for each v € {0, 1,2,3} the parameters
satisfy the relation

Cuy Puwy + €ty Pty + S5l v ps0 =0 4.2)

for some c; € K[lyy, puv], 0 € {0,1,2,3}. Then, the element R, := Zi:o Cuxi
belongs to the center of the algebra Ay p.

Proof. For each v we need to show that
Zcuxix,, — Xy Zcuxi =0.
% 1%

Let us start with (2.1) for fixed indices w, v. Multiplying it from the left by x, we get

2
XXy = v X Xo Xy + Puv XX/ Xy -

Then exchange @ <> v in (2.1) and multiply the result by x,, on the right to obtain:

2 __
XyX, = CopXu XXy + PopXp Xv/ Xy, .



1490 G. Landi and C. Pagani
When comparing these two expressions we have:
cu(xixv - xvxi) = CuPuv (XpuXu X 4+ XXy Xy) .
Thus for each index v, by using Lemma 3.21 on the possible values of the indices

(and recalling that p,,,, = 0), we arrive at:

2 2\
E CM(xMx,, — x,,xu) = E CpPuv (XX Xy + X X0 X))
7 WF#Y

= C,U«U pll'v\’(xll'vx;xizu + Xﬁ‘)X’ﬁX“U) + Cﬁv pﬂvV(xﬂuxﬁxﬂv + XMUX‘gXﬁV)
+ 5 Pov (x’ijxl’l/v xﬂv + xﬂv xﬂ«vxi)

= (CllfvavU + Cﬁv pﬁuV)(xl/«vx;xﬁv + )C'ZZUX‘{;XMU)
+ Cy Pov (XTJ'XMU XLy + XLy xﬂvxﬁ) .

Formula (4.1) for v = v and u = [i, leads to:
Xy X, X5+ X5 X0, Xy, = Lo (X, X5 X0, + Xpu, X5X7, )

having used that if (i, v) = (iiy, v), then (1, v') = (uy, V), as from relations (3.20).
Hence,

Z Cu (xixv — xvxi)
w
= (CM\)pMuV + Cﬁv pﬂvv + CGZEUVPGV)(XMUXEXIZU + xﬁuxeMu) =0
due to the hypothesis (4.2) on the parameters. O

Notice that for fixed parameters {,, and py,, there might be different
coefficients ¢, for which (4.2) is satisfied. This is the case for instance for Sklyanin
algebras (and Connes—Dubois-Violette planes), as shown in Lemma 4.8 below. In
particular, as a direct consequence of the above Proposition, we have

Corollary 4.3. Let the parameters £, and p, satisfy the relation
Puyv + Piyv + ﬁﬁuvpﬁv =0. 4.3)

Then, the quadratic element R := ZZ=O xi belongs to the center of the algebra Ay .
Suppose in addition there exist coefficients c; € K[{,,, puv], for o € {0,1,2,3}
such that

(Cuy = C5)Puyv + (€, —5) P, =0, Vv e{0,1,2,3}. 4.4)

Then, the quadratic element R, := ZZ=O cuxi belongs to the center of the alge-
bra Ay p.



Quadratic algebras and their symmetries 1491

Definition 4.4. Let £, and p,, as in Definition 2.1 be constrained by the rela-
tion (4.3), so that the element R := ZZ=O xi is central. We denote by

A(S} ) :=Agp/(R—1) (4.5)

the quotient of the algebra Ay , by the two-sided ideal generated by R — 1.

We refer to 83 tp as a quantum three-sphere with coordinate algebra A(Sg’, p). In
the “classical limit”, where for each u, v we take £, = 1 and p,, = 0, the algebra
A(S3 ) reduces to the algebra of polynomial functions on a three-sphere.

Usmg the result in (3.22), conditions (4.3) read, with €39 = €21 = £12 = {03,

D20 + p3o + o3 pio =0, p31+ p21 + Loz por =0

4.6)
Po2 + p12 + 4oz p32 =0, pi13+ poz + Loz p23 =0.

Only three of these conditions are necessary, the fourth one p13 + po3z +£o3p23 = 0
(say), follows from the other three identities by simple substitutions.

Conditions (4.3) are verified for parameters £’s and p’s of the quantum planes A,
of [1] that we have described in §2.3.1:

Lemma 4.5. Let the parameters £, and p,, be as in §2.3.1 for the four-planes
of [1]. Then condition (4.3) is satisfied for each v € {0, 1,2, 3}.

Proof. First observe that for each v fixed, condition py,,» + pg,v + £z, v Prv = 0is
equivalent to Ay, G, v + A, 9w + A5€g,vqsy = 0. The proof is then by explicit
computation for each of the three cases v = 0, 1, 2. For instance, for v = 0, using
(2.19) and (2.22),

P20 + P30 +4L30p10 =0 < Azrg20 + A3q30 + A1€30q10 =0
< A2a03¢20 + Azaoic30 + A1boscio =0

and this latter can be proved with some algebra after substituting (2.15). O

For the sub-family in Example 2.3.3 it is even easier to see that (4.3) is verified.
By Proposition 4.2, the above lemma gives that the element R = Zi=0 xﬁ is
central in the algebra A,. The corresponding quantum three-spheres Sg, p are the
noncommutative spherical manifolds Sﬁ introduced in [1]. The centrality of the
element R was there deduced directly from the relations (2.12).

The centrality of the quadratic element Q = —(x¢)?+(x1)?+(x2)?+(x3)? for the
Sklyanin algebras in §2.2.2 was originally mentioned in [6, Thm. 2], (c.f. [7, p. 276]).
In our setting, condition (4.3) is verified for parameters £,, and p,, as in (2.30)
characterizing the Sklyanin algebras over C described in §2.3.4. Indeed, by direct
computation one shows that:
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Lemma 4.6. The parameters £, and py, in (2.30) satisfy condition (4.3) and
thus " " xi is central in the corresponding algebra Ay ,. In particular for each
v = 0,1,2,3, condition (4.3) is equivalent to the Sklyanin condition £y = £o1£93
(or the equivalent one in (2.29)).

Remark 4.7. It is worth noticing that the parameters £, and p,,, for the Sklyanin
algebras as in (2.5) do not satisfy condition (4.3). Indeed the above lemma shows that
in terms of the generators x,, of §2.2.2, the central element is rather —x3 +x7 +x3 +x3.

Finally, as shown in [6, Thm. 2] for the Sklyanin algebras there is a second central
element. In parallel with this we also have the following result:

Lemmad4.8. Let Ay |, be the algebra defined by the parameters £ ., and p,,, in (2.30).
Set

co: =0, c1:=4Los(1+4Lo1), ca:=(1+4o2), c3:=(1+4o3).
Then condition (4.4) is satisfied for each index v = 0, 1,2, 3 and thus the element

Lo3(1 + Lo1)x? + (14 Loz)x2 + (1 + £g3)x2

2

belongs to the center of the algebra Ay p, in addition to the element ZZ=0 Xy -

Proof. The proof reduces to an explicit computation for each index v =0, 1,2, 3:

v =0:(1—"%o3)p20 + (1 —¥o2) p30 = —ipo3p20 + ipo2p3o =0,
v=1:(1+4%o3)p31 + (1 +Lo2)p21 = —ip12p31 +ip13p21=0,
v=2:—(1+£o3) po2 — (1 —€o2) p12 = ip12p02 — ipo2p12 = 0,
v=3:—(1—4%o3)p13 — (1 + €o2) po3 = ipo3p13 —ip13po3 =0,

showing that condition (4.4) is satisfied. ]

The differential calculi €2, , = Q¢ ,(Ag,,) constructed in §3 can be restricted
to the noncommutative spheres SE’ > The differential graded algebra Q(Sg’ p) of the

calculus on the sphere Sg » 18 defined to be the quotient of €2, , by the differential
ideal generated by R — 1, equipped with the induced differential d. Explicitly, at first
order,

QUS;,) =AS] ) =0, /(Y xh—1). QS = ,/(D> xudx).
I I

with x,,dx,, = dx,x, for each i, as from the relations (3.1).



Quadratic algebras and their symmetries 1493
S. Symmetries of Ay,

In Definition 2.1 we have introduced a class of quadratic algebras Ay ,, associated
to parameters £, and p,, satisfying some suitable conditions, and in §3 we have
constructed their exterior algebras (£2¢, ,, d). In the present section we continue with
the study of the quadratic differential algebras Ay , and construct transformation
bialgebras for them.

5.1. Thesymmetry bialgebraM, ,. We aim at the construction of a bialgebra My ,,
and an algebra map 6: Ay , — My , ® Ay , which defines a coaction of My_, on the
quadratic differential algebra A, ,. Recall that A , is the N-graded algebra, finitely
presented with degree-one generators x,, x4 = 0,1,2,3 and finite homogeneous
relations (2.1) of degree two:

Az’p = @Az,p == K<x0,xl,x27x3)/1 )
neN

where [ is the ideal of relations generated by all quadratic relations (2.1), and Ag = K.
We determine the bialgebra My , and the algebra map §: Ay , — My, , ® Ay , by
requiring:

(I) § is an algebra map that preserves the N-grading: §: AZ"p M, ® A’Z’p,

(IT) & extends to a coaction on the differential algebra (2, ,, d) of A¢, , by requiring

§od=(ld®d)§ . (5.1)

Firstly, since § should be an algebra map, it is determined by its value on the
algebra generators of Ay ,. And since it has to respect the N-grading of A, ,, thatis
condition (I), it has to be of the form

8:App > My, ®Ar,. Xu> Y My ®x, (5.2)
v

for elements M,,,, in My ,, u,v = 0,1,2,3. We wish My, to be an algebra which
is finitely generated by these elements M, and determine the minimal algebra
properties they have to satisfy in order for §:x,, — > M, ® x, to preserve the
ideal of relations: (/) = 0. For this, fix indices u,v € {0, 1,2, 3} and apply the
algebra map § to the corresponding defining relation (2.1) to compute:

5()6“)6,) _Zp,vxvxu_Puvxv/x,u’) = 8(xu)8(xv)_euva(xv)(s(xu)_Pu,vg(xv/)g(xu/)

=Y (MuaMyg — Ly MyaMyp — puvMya M) ® XoXp
o.B
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= Z (M;thva - gp,vaaM;ux - puva’utMp/a) ® Xﬁ
«

+ Z (M;Lanﬂ _Ep,vaaM,u,B - vaMv/aMM’,B) & XaXp

a<p

+ ) (MupMya — Ly Mo Mg — puvMygMyra) ® Lapxaxs
a<B

+ Z (M;Lﬂ/Mvot’ - Euvaﬂ/M/wc’ - p,u,va’,B/Mu,’oc’) Q Ppra’XaXp (5.3)
a<p

where the last two summands have been obtained by expressing xoxg for @ > B in
terms of xgxq and xg/ x4 via (2.1) and then renaming the indices.

As observed after (2.2) the monomials x4xg, @ < B form a vector space basis
for A%’p. Thus, the map § preserves the algebra relations, that is the right hand side

of the expression in (5.3) vanishes if and only if the coefficients of x2 and of xyxg
for @ < f vanish, that is the elements M, satisfy
M;uvaa = ZuvaaM;ux + p,uva’aM/L’a (54)

for all «, w, v, and for all @ < B, and for all w, v:

0= MManﬂ - guvavaMy,ﬂ - puva’aM,u’ﬂ + EaﬂMpLBMva
—LapluvMopMyua — Lap PuvMyg Myva + pprar Myup My
- pﬂ’a’ZMvaﬁ’Mu,a’ - pﬁ’a’vaMv’ﬂ’Mu’a’ . (55)
In fact, we could equally have expressed (5.3) in terms of xqxg for o > B and the
expression would have been the same. Thus, condition (5.5) should hold for all «, 8,

in particular also for « = B since in this case it reduces to (5.4).
We next require that § satisfies condition (I). Property (5.1) yields § on one-forms:

§:dx, > Y My, ®dx, forallp=0,1,.2,3.
%

Extending § to an algebra map on €2; , which now preserves conditions (3.2) on
basis one-forms, by proceeding as before, we compute
0 = 8(dx,)8(dxy) + Luv8(dr)3(dx) + prund(dxy)S(dr,)

= Z (MManﬂ + Ly Mya Mg + Puva’aMu’ﬂ) ® dxodxg

a<p
=2 (MyupMoa + L MupMyua + prvMyg Myra) ® Lapdxadxg

a<p

=2 (Mup My + £y Mup My + pruv My Myver) ® pprardadivg .

a<p
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That is, for each u,v,a # B (again with either the condition @ < f or @ > f),
we get

0=MuoMypg + LyyMyoMup + puvMyoaMyg —LogMpgM,q
—Lopluw Mg Mo — LogprvMygMrg — ppror Mg Myo
- Pﬂ’a’zuvaﬂ’Mua’ - Pﬂ’a’vaMv’ﬂ’Mu’a’- (5.6)
Comparing (5.6) with equation (5.5) obtained for the zero-forms part, we have that in
order for these equations to be satisfied the elements M,,, have to fulfil the conditions
MyoM,p — Koc/Se,umIMu/.‘}IM;wt - eaﬂpuva’ﬂMu’a

— ppraliwMup Myor — pprar P Mg Myper =0, (5.7)

Mo Mg — puvMyag Mg + LogMugMyg + pgroMyup My = 0.
In Proposition 5.2 below, we will show that these two conditions are equivalent,

that is, it is enough that one of them is satisfied for the other to be satisfied as well.
We are hence led to give the following definition.

Definition 5.1. Let My , be the associative N-graded algebra generated in degree-
one by elements Mo, 1, = 0, 1,2, 3 and defining relations in degree-two

MuaMyp = CunlgaMupMyua + pruvlpa My Mo
+ Zuvpﬁ’a’Mvﬁ’MMa’ + Puvpﬂ’a’Mv’ﬂ’Mu’a’ (5.8)

forall u,v,a, B €{0,1,2,3}, and where (u’,v') = (u,v)" and (¢/, 8) = («, B)’.

In the spirit of quantized algebras of coordinate functions on matrix groups, we
can think at My , as the algebra generated by the entries (coordinate functions) of a
matrix M = (My,, n.v = 0,1,2,3) subject to the commutation relations (5.8).

The relations (5.8) do not generate additional relations in degree-two in the sense
that by applying them twice we return to the monomial we started from. Using the
defining conditions on the parameters: £,,, = €y, = £,/ = £y and puy = —poy
we compute

Muanﬂ
= Lulga(lunlaMuaMyop + poulpaMuwaMyp + €y Porpr My Myyg:
+ pvupa’ﬂ’Mu’a’Mv’ﬂ’)
+ puvlpa (Cuvlpa MuwaMyg + puvwlpaMuaMyp + Ly porpr Myurar My g/
+ Pv’u’Pa’ﬂ’MMa’Mvﬂ’)
+ euvpﬂ/a/ (ZuvzﬂocMuoc’Mvﬂ/ + pv,uzﬂocMu/oc’Mv/,B/ + Zu,vpoz,B]‘4“0(]‘4\1,6
+ PvupaﬂMu/an’ﬂ)
+ Puv DB’ (Zu,vzﬂaMu/a’Mv’ﬂ’ + pv’u’zﬁaMu,a’Mvﬂ’ + KuvpotﬂMlL’an’ﬂ
+ Pv Pap MuaMyp)
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= (oo lgq + Pulie Py + Loy Pprar Pap + Puv Pprar Do/’ Pap) Myua Mg
+ (ﬁwffgapm + f%aﬁwpw + Ly Ppra Pop Pap
+ puvpﬂ’a’ng’Paﬂ)MwaMu’ﬂ
+ (6, 08a Parpr + PuvlpaPvw Parpr + Loy Pprarlpa
+ Puv P Py lBa) My Mg
+ (CpvlBaPopParg’ + Puvlpalin Parp + Luv Ppras Punlpa
+ PuvPprarluvlpa) Muwa My g/

= (E;zwgza + puve;zqapv’u/ + Eivpﬂ’a’paﬂ + ppwpﬂ’a’pv’,u/paf})Mp,anﬁ )

where in the last step we have simply used the properties of the £’s and the p’s to
conclude that all coefficients vanish, but for the first one. Finally, by using (c) in
Definition 2.1, the coefficient in parenthesis is worked out to be just

0 G + PuvlioPviw + Lhy Dprar Pap + Puv PBrar P’ Pap
= 3o (L + PrvDvir) + Pprar Pap (€ + Prv P
=3, + PprarPap = 1.
This gives again M, M, for the right hand side.
We next show that the two conditions in (5.7) are equivalent.

Proposition 5.2. The generators M, of My, satisfy conditions (5.8) if and only if,
Jorall w,v,a, B € {0,1,2,3}, with (u',v') = (u,v) and (&', ') = (a, B), they
satisfy

Zozﬁ]‘/l;uxj‘/lvﬁ + pa’ﬁ’M;wt/Mvﬁ’ = euvaﬂMua + p;va’ﬂMp/a . (5.9
Proof. Firstly we show that equations (5.8) imply that
—buwMyaMyp — puvMyra Mg + LapMyup Mo + pprorMyup Myor

is zero for all u,v,a, B. Indeed, by applying (5.8) to the first two addends of the
above expression, this is modified to

— Ly (Lavlap Myup Moo + poplpa Mg Mya + Lo pprar Myup My
+ pvu,pﬂ/a/Mu/ﬁ’Mv’oc’)
— Puv (ﬁvuzﬂaMu’BMv’a + pv’weﬂaMuﬂMva + Evupﬂ’a’MM’ﬂ’Mv’a’
+ pv’u’pﬂ/a/Muﬂ/Mva’)
+lagMugMyo + ppror Mg My
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= —(C,Lap + PuvPvilpa — Lap) Mg Mg
- (evupvueﬂa + Puvgv’u/gﬂa)MM’ﬂ My
— (2 pprar + Puv Py PBrar — Pprar) My Mo
— (Lo poppprar + Puvlow Pprar) Mg Myre

which vanishes since all coefficients are zero.
We are left to prove the converse: relations (5.9) imply (5.8), that is that

guvgﬂanBMua + p;wgﬁan’,BM;L’a
+ Zu,vP/f}/oc’]Mvﬂ/]‘4/1,04’ + p,uvpﬂ’a/Mv/ﬂ’Mwa’ = M;wavﬁ-

By using (5.9) twice we can rewrite the left hand side as

Lo (v Mg Mg + puvMygMyva) + pgrar (Luw Mg Myuar + prvMyg M)

= Lpa(LgaMuaMyp + porp Mua Mypgr) + pprar (Lga Myua Mygr + pag My M)

= (Cpalpa + Ppra Pap) MyuaMyp

which is indeed equal to M, M, g because of condition (c) in Definition 2.1. O
Before to proceed and introduce a coalgebra structure for My, let us observe the

following. By comparing (2.1) with (5.8), we can immediately conclude that

Lemma 5.3. For each a € {0, 1,2, 3} fixed, the map

Mg,p —)A[,p , le, = X (510)
is an algebra isomorphism between the subalgebra of My, generated by the elements

{IM o} et0,1,2,3) in the a-th column of the matrix M and the algebra Ay .

Next we introduce coproduct and counit for the matrix algebra My _,, compatible
with its algebra structure.

Proposition 5.4. The linear maps defined on the generators by

3
A:Mg, > Mg, ®My . My > > Mg ® Moy .
a=0

eMy, - K, My = v 1,

(5.11)

and extended as algebra morphisms, endow My_, with a bialgebra structure.

Proof. We need to show that the maps A and ¢ preserve the commutation relations
(5.8) and thus are well-defined algebra maps. As for the counit, it is well-defined if
and only if

Sua5vﬂ = Z/szﬂozfsvﬂ 8mx +Puv£ﬁa8v’ﬂ Su’a +£uvpﬂ’a’5vﬁ’8ua’ +puvpﬂ’a’8v’ﬂ’5wa’
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that is, if and only if
Spabup = (euveﬁa + Puvpﬂ’a’)‘gl)ﬂ‘sw + (Puvﬁﬂa + Zuvl’%‘l’ot’)‘glﬂﬁ‘gu’or .

By using the conditions in Definition (2.1) one directly verifies that this is the case:

Luvlga + Puvppar =1, whenv =8, u =a,
Puvlpe +Luvppar =0, whenv =p,u=ca

For the coproduct we compute

A(Mu,oz)A(Mvﬂ) - euveﬁaA(Mvﬂ)A(Mua) + PuvzﬂaA(Mv’ﬂ)A(Mu/a)
+ ﬁuvpﬂ’a’A(Mvﬂ’)A(Mua’) + P,uvpﬂ’a’A(Mv’ﬂ’)A(MM’a’)

= Z [MWMW@MWMTB _(elweﬁaner +Puv5ﬂaMV’rMu/V) QMg Myq

V,T
- (Zuvpﬂ/a’Mver + Puvpﬂ’a/Mv/ery) ® Mrﬂ/MVO/] )

We now use equations (5.8) to rewrite the first factor of the tensor product in the first
addend and the second factors in the second and third addends:

Z [(prervarMMy + puvztva’tMu’y + Euvpr’y’Mvr’Mp,y’
»r + Puvpr/V/Mv/r/Mu/y/) Q Mya Mg

- (legﬁaMVTMM)’ + PuvgﬁaMV’rMM’V)
® (LrylapMyaMop + poylapMyaMyg
+ Loy Parp Mya Mg + pry Parp Myror Mg
— (LuvPprar Mye My + puvpgrar My Myury)
® (Zwﬁa/ﬂ/Mya/Mfﬂ/ + peylargr Myrg My
+ ErypotﬂMJ/aMrﬂ + prypaﬂMy’aMr/ﬂ)]

thus obtaining

Z {(ﬁuv My My + puv Mv’rMu/y) ® [(ew _E%}(xeﬂ’ _Pﬁ’a’eryl’aﬂ)Merﬂ
Y,T

~ ((3oPry + PprarPry Pap) My aMup — (Lgaley Parpr + Pprarlarprley) Myar Mo
_ (eﬁapr)/pa’ﬁ’ + pﬂ’a’ea’ﬂ’pty)MJ//OZ’M‘L"ﬂ’]

+ (Euvpr’y’ v Muy + PMVPT’V’MV’r’MM’V’) ® MyaMfﬂ} )

Now in the squared parenthesis, the coefficient (6)25 o Pty T PBra’ Pey Pap) = Pry
is the only one which does not vanish. Thus the above reduces to:
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D[ = per(Cur MucMoiy + Py M Myry) @ My Mg
" (CuvPery Mow My + Py pery Mure Muryr) @ MyaMeg |
=Y (= Poyluw Mo Muy = pory DMy Myuryr + Ly oy Myer My
" + Puv ey Myre Myry) ® MyaMeg =0,
after a replacement y <> y’ and 7 <> t/ (on summed indices) in the first addend. [

Summarizing, the algebra My , of Definition 5.1 is a bialgebra with coproduct
and counit in (5.11) and it is a transformation bialgebra for A; ,,. In particular we
have:

Theorem 5.5. The algebra Ay ,, is a left My ,-comodule algebra with coaction

§:ALp > My ®Ar,. Xy Y My ®x, (5.12)
v

defined on the generators of Ay, ,, and extended to the whole of Ay, as an algebra
morphism. The map § extends to a coaction on the differential algebra (2¢,,,d) by
requiring

dod =({d®d)s . (5.13)
Also, the bialgebra My, is universal among the bialgebras with these properties.

The fact that the bialgebra My, is universal (the initial object) in the category of
graded bialgebras coacting on the graded differential algebra A, , follows from the
fact that we have determined My, by imposing the minimal conditions under which
the requirements (I) and (II) are satisfied.

5.2. The *-bialgebra structure of My, ,. We conclude this section by showing that
when K = C, the bialgebra My , can further be endowed with a *-structure, and
that all maps constructed above in §5 are compatible with it.

Let hence K = C and Z,w = Lyvs Dpv = Py asin (2.11), (cf. §2.3).

Lemma 5.6. The antilinear map * on My _,, defined on generators as
« Mg, > Mg, My, (My)" = My, (5.14)

and extended as an anti-algebra map, endows My _, with a well-defined -structure.
Furthermore, the coproduct A and counit € of My p, givenin (5.11), are *x-morphisms
forit. Thus, My_, is a x-bialgebra.

Proof. We have to show that the commutation relations (5.8) defining My , are
preserved by the map *, that is that

* (Muanﬁ —buvlpaMup My — puvlpa My pM o
— by ppror My Myor — puvpﬂ’a’Mv’B’MM’a’) =0. (515
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By using Z,w = {uv and py, = pyy, we see that this is just (5.8) for indices pu, v
exchanged:

MyaMyp = LoplpaMypMya + poplpa Mg My
+ zvupﬁ’a’MMﬂ/Mva’ + pvup,B’a’Mu’ﬂ/Mv’a’ .

One easily shows, in a similar way, the statement concerning the coalgebra structures.
O

It is a direct observation that for My , endowed with the above *-structure and
Ay, p with (2.10), the isomorphism in Lemma 5.3 is an isomorphism of *-algebras.
Finally,

Proposition 5.7. The coaction

§:ALp > My @Ay, Xur> Y My ®x,
v

given in (5.2) is a x-map with respect to the x-structures of Ay , and My_, defined
respectively in (2.10) and (5.14).

6. On symmetries of Sg »

In the previous section we have constructed a family of matrix bialgebras My ,
coacting on the quantum spaces represented by Ay ,. When all parameters p,,
vanish and all £, are equal to 1 we recover the classical case: the algebra Ay ,
becomes the commutative algebra of polynomials in four coordinates xo, . .., x3 and
the bialgebra My, reduces to the commutative coordinate bialgebra of 4 x 4 matrices
Maty (K).

We expect it is possible to determine conditions on the parameters £, p,.
under which the corresponding bialgebra My, admits suitable ideals that allow one
to define quotient algebras (of My_,) describing matrix quantum groups, as for the
classical case.

In particular we would like to determine conditions under which it is possible to
define a quantum group of orthogonal matrices acting on S 2 > For this we need to

assume at least that conditions (4.3) are satisfied (so that Sg,p is defined), but we do
not know whether these conditions are enough in general. One needs to show that
I:=(M'M—1, MM"—1) is a well-defined ideal, for 1 the identity matrix, i.e. that
the diagonal entries of M*M and MM?" are central in the algebra My ,. Then one
would define Oy, ,(4) to be the quotient of My, by the ideal /. Since / is a bialgebra
ideal, Oy, ,(4) would inherit a bialgebra structure and become a Hopf algebra with
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antipode S(M) := M. Moreover, the coaction § in (5.2) would restrict to a coaction
on Sg p» being the sphere relation preserved by the coaction:

S(quxu) = Z MuoM, g @ xqxpg = 280,5 ® XeXxg =1® quxa
%

e, B a.B o

(indeed for this we only need M'M = 1).
As shown in [1] this construction can be carried out for the 6-family described
in §2.3.3. A similar analysis for the more general families will be reported elsewhere.
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