
J. Noncommut. Geom. 12 (2018), 1531–1549
DOI 10.4171/JNCG/317

Journal of Noncommutative Geometry
© European Mathematical Society

About von Neumann’s problem for locally compact groups
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Abstract. We note a generalization of Whyte’s geometric solution to the von Neumann problem
for locally compact groups in terms of Borel and clopen piecewise translations. This strengthens
a result of Paterson on the existence of Borel paradoxical decompositions for non-amenable
locally compact groups. Along the way, we study the connection between some geometric
properties of coarse spaces and certain algebraic characteristics of their wobbling groups.
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1. Introduction

In his seminal article [18] von Neumann introduced the concept of amenability for
groups in order to explain why the Banach–Tarski paradox occurs only for dimension
greater than two. He proved that a group containing an isomorphic copy of the free
group F2 on two generators is not amenable. The converse, i.e., the question whether
every non-amenable group would have a subgroup being isomorphic to F2, was
first posed in print by Day [5], but became known as the von Neumann problem (or
sometimes von Neumann–Day problem). The original question has been answered
in the negative by Ol’šanskiı̆ [20]. However, there are very interesting positive
solutions to variants of the von Neumann problem in different settings: a geometric
solution by Whyte [28], a measure-theoretic solution by Gaboriau and Lyons [9] and
its generalization to locally compact groups by Gheysens and Monod [10], as well
as a Baire category solution by Marks and Unger [17]. Whyte’s geometric version
reads as follows.

Theorem 1.1 ([28, Theorem 6.2]). A uniformly discrete, uniformly locally finite
metric space is non-amenable if and only if it admits a partition whose pieces are
uniformly Lipschitz embedded copies of the 4-regular tree.
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1431/3-1) as well as by funding of the Excellence Initiative by the German Federal and State Governments.
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In particular, the above applies to Cayley graphs of finitely generated groups and
in turn yields a geometric solution to the von Neumann problem.

The aim of the present note is to extend Whyte’s relaxed version of the von
Neumann conjecture to the realm of locally compact groups. For this purpose, we
need to view the result from a slightly different perspective. Given a uniformly
discrete metric space .X; d/, its wobbling group (or group of bounded displacement)
is defined as

W.X; d/ WD
˚
˛ 2 Sym.X/ j 9r � 08x 2 X W d.x; ˛.x// � r

	
:

Here and in the following, we denote by Sym.X/ the group of all permutations of a
set X . Wobbling groups have attracted growing attention in recent years [3, 15, 16].
Since the 4-regular tree is isomorphic to the standard Cayley graph of F2, one can
easily reformulate Whyte’s in terms of semi-regular subgroups. Let us recall that a
subgroup G � Sym.X/ is said to be semi-regular if no non-identity element of G
has a fixed point in X .
Corollary 1.2 ([28, Theorem 6.1]). A uniformly discrete, uniformly locally finite
metric space X is non-amenable if and only if F2 is isomorphic to a semi-regular
subgroup of W.X/.

For a finitely generated groupG, themetrics generated by any twofinite symmetric
generating sets containing the neutral element are equivalent and hence give rise to
the very same wobbling group W.G/. It is easy to see that W.G/ is just the group of
piecewise translations of G, i.e., a bijection ˛WG ! G belongs to W.G/ if and only
if there exists a finite partition P of G such that

8P 2 P 9g 2 GW ˛jP D �g jP :

Furthermore, we note that the semi-regularity requirement in the statement above
cannot be dropped: in fact, vanDouwen [6] showed thatW.Z/ contains an isomorphic
copy of F2, despite Z being amenable. As it turns out, F2 embeds into the wobbling
group of any coarse space of positive asymptotic dimension (see Proposition 4.3 and
Remark 4.4).

We are going to present a natural counterpart of Corollary 1.2 for general locally
compact groups. Let G be a locally compact group. We call a bijection ˛WG ! G a
clopen piecewise translation of G if there exists a finite partition P of G into clopen
subsets such that

8P 2 P 9g 2 GW ˛jP D �g jP ;

i.e., on every member of P the map ˛ agrees with a left translation of G. It is
easy to see that the set C.G/ of all clopen piecewise translations of G constitutes
a subgroup of the homeomorphism group of the topological space G and that the
mapping ƒWG ! C.G/, g 7! �g embeds G into C.G/ as a regular, i.e., semi-
regular and transitive, subgroup. Similarly, a bijection ˛WG ! G is called a Borel
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piecewise translation of G if there exists a finite partition P of G into Borel subsets
with

8P 2 P 9g 2 GW ˛jP D �g jP :

Likewise, the set B.G/ of all Borel piecewise translations of G is a subgroup of the
automorphism group of the Borel space of G and contains C.G/ as a subgroup.

For a locally compact group G, both B.G/ and C.G/ are reasonable analogues
of the wobbling group. Yet, the mere existence of an embedding of F2 as a semi-
regular subgroup of B.G/, or even C.G/, does not prevent G from being amenable.
In fact, there are many examples of compact (thus amenable) groups that admit F2
as a (non-discrete) subgroup and hence as a semi-regular subgroup of C.G/. For
example, sinceF2 is residually finite, it embeds into the compact group formed by the
product of its finite quotients. Therefore, we have to seek for a topological analogue
of semi-regularity, which amounts to a short discussion.
Remark 1.3. Let X be a set. A subgroup G � Sym.X/ is semi-regular if and only
if there exists a (necessarily surjective) map  WX ! G such that  .gx/ D g .x/

for all g 2 G and x 2 X . Obviously, the latter implies the former. To see
the converse, let � WX ! X be any orbit cross-section for the action of G on X ,
i.e., �.X/\Gx D f�.x/g for every x 2 X . SinceG is semi-regular, for each x 2 X
there is a unique  .x/ 2 G such that  .x/�.x/ D x. For all g 2 G and x 2 X , we
have

g .x/�.gx/ D g .x/�.x/ D gx D  .gx/�.gx/;

which readily implies that  .gx/ D g .x/. So,  WX ! G is as desired.
The purpose of this note is to show the following.

Theorem 1.4. Let G be a locally compact group. The following are equivalent.
(1) G is not amenable.
(2) There exist a homomorphism 'WF2 ! C.G/ and a Borel measurable map

 WG ! F2 such that  ı '.g/ D �g ı  for all g 2 F2.
(3) There exist a homomorphism 'WF2 ! B.G/ and a Borel measurable map

 WG ! F2 such that  ı '.g/ D �g ı  for all g 2 F2.
We remark that any map ' as in (2) or (3) of Theorem 1.4 has to be injective.

In view of the discussion above, we also note that for finitely generated discrete
groups the statement of Theorem 1.4 reduces to Whyte’s geometric solution to the
von Neumann problem. More specifically, the existence of a map  as in (2) or (3)
above may be thought of as a Borel variant of the semi-regular embedding condition
in Corollary 1.2. In general, we cannot arrange for  to be continuous, as there exist
non-amenable connected locally compact groups

Both (2) and (3) of Theorem 1.4 may be considered relaxed versions of
containing F2 as a discrete subgroup: according to a result of Feldman and
Greenleaf [7], if H is a � -compact metrizable closed (e.g., countable discrete)



1534 F. M. Schneider

subgroup of a locally compact group G, then the right coset projection G ! H nG,
x 7! Hx admits a Borel measurable cross-section � WH nG ! G, and hence the
H -equivariant map

 WG ! H; x 7! x�.Hx/�1

is Borel measurable, too. This particularly applies ifH Š F2 is discrete.
The proof of Theorem 1.4 combines a result of Rickert resolving the original

von Neumann problem for almost connected locally compact groups (Theorem 3.3)
with a slight generalization of Whyte’s result for coarse spaces (Theorem 2.2) and
in turn refines an argument of Paterson proving the existence of Borel paradoxical
decompositions for non-amenable locally compact groups [22]. In fact, Theorem 1.4
implies Paterson’s result [22].
Corollary 1.5 (Paterson [22]). A locally compact group G is non-amenable if and
only if it admits a Borel paradoxical decomposition, i.e., there exist finite partitions
P and Q of G into Borel subsets and gP ; hQ 2 G .P 2 P ; Q 2 Q/ such that

G D
[
�

P2P

gPP [�
[
�

Q2Q

hQQ:

This note is organized as follows. Building on some preparatory work concerning
coarse spaces done in Section 2, we prove Theorem 1.4 in Section 3. Since our
approach to proving Theorem 1.4 involves wobbling groups, and there has been
recent interest in such groups, we furthermore include some complementary remarks
about finitely generated subgroups of wobbling groups in Section 4.

2. Revisiting Whyte’s result

Our proof of Theorem 1.4 will make use of Whyte’s argument [28] — in the form
of Corollary 2.3. More precisely, we will have to slightly generalize his result from
metric spaces to arbitrary coarse spaces. However, this will just require very minor
adjustments, and we only include a proof for the sake of completeness.

For convenience, let us recall some terminology from coarse geometry as it may
be found in [25]. For a relation E � X �X on a set X and x 2 X , A � X , let

EŒx� WD
˚
y 2 X j .x; y/ 2 E

	
; EŒA� WD

[˚
EŒz� j z 2 A

	
:

A coarse space is a pair .X;E/ consisting of a set X and a collection E of subsets of
X �X (called entourages) such that
� the diagonal �X D f.x; x/ j x 2 Xg belongs to E ,
� if F � E 2 E , then also F 2 E ,
� if E;F 2 E , then E [ F;E�1; E ı F 2 E .
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A coarse space .X;E/ is said to be locally finite if

8E 2 E 8x 2 X W EŒx� is finite,

and .X;E/ is called uniformly locally finite if

8E 2 E 9m � 0 8x 2 X W jEŒx�j � m:

For local finiteness and uniform local finiteness, different terminology may be found
in the literature, e.g., the work of Nowak and Yu [19].

Among the most important examples of coarse spaces are metric spaces: if X is
a metric space, then we obtain a coarse space .X;EX / by setting

EX WD
˚
E � X �X j supfd.x; y/ j .x; y/ 2 Eg <1

	
:

Another crucial source of examples of coarse spaces is given by group actions.
Indeed, if G is a group acting on a set X , then we obtain a uniformly locally finite
coarse space .X;EG/ by

EG WD
˚
R � X �X j 9E � G finiteW R � f.x; gx/ j x 2 X; g 2 Eg

	
:

Note that the coarse structure induced by a finitely generated group G acting on
itself by left translations coincides with the coarse structure on G generated by the
right-invariant metric associated with any finite symmetric generating subset of G
containing the neutral element.

Now we come to amenability. Adopting the notion from metric coarse geometry,
we call a locally finite coarse space .X;E/ amenable if

8� > 1 8E 2 E 9F � X finite F ¤ ;W jEŒF �j � � jF j;

which is (easily seen to be) equivalent to saying that

9� > 1 8E 2 E 9F � X finite F ¤ ;W jEŒF �j � � jF j:

This definition is compatible with the existing notion of amenability for group actions
(Proposition 2.1). Recall that an action of a group G on a set X is amenable if the
space `1.X/ of all bounded real-valued functions on X admits a G-invariant mean,
i.e., there exists a positive linear functional �W `1.X/ ! R with �.1/ D 1 and
�.f ı g/ D �.f / for all f 2 `1.X/ and g 2 G.
Proposition 2.1 (cf. Rosenblatt [26]). An action of a groupG on a setX is amenable
if and only if the coarse space .X;EG/ is amenable.

Proof. Generalizing Følner’s work [8] on amenable groups, Rosenblatt [26] showed
that an action of a group G on a set X is amenable if and only if

8� > 1 8E � G finite 9F � X finite F ¤ ;W jEF j � � jF j;

which is easily seen to be equivalent to the amenability of .X;EG/.
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Let us turn our attention towards Theorem 1.1. A straightforward adaptation of
Whyte’s original argument readily provides us with the following only very slight
generalization (Theorem 2.2). For a binary relation E � X �X , we will denote the
associated undirected graph by

�.E/ WD
�
X; ffx; yg j .x; y/ 2 Eg

�
:

Furthermore, let gr.f / WD f.x; f .x// j x 2 Xg for any map f WX ! Y . Our
proof of Theorem 2.2 will utilize the simple observation that, for a map f WX ! X ,
the graph �.gr.f // is a forest, i.e., it contains no cycles, if and only if f has no
periodic points, which means thatP.f / WD fx 2 X j 9n � 1W f n.x/ D xg is empty.
Henceforth, we denote by N the set of all non-negative integers.
Theorem 2.2. Let d � 3. A locally finite coarse space .X;E/ is non-amenable if
and only if there is E 2 E such that �.E/ is a d -regular forest.

Proof. ((H) Due to a very standard fact about isoperimetric constants for regular
trees [2, Example 47], if E � X � X is symmetric and �.E/ is a d -regular tree,
then jEŒF �j � .d � 1/jF j for every finite subset F � X . Of course, this property
passes to d -regular forests, which readily settles the desired implication.

(H)) Suppose that .X;E/ is not amenable. Then there is a symmetric entourage
E 2 E such that jEŒF �j � d jF j for every finite F � X . Consider the symmetric
relation R WD E n�X � X �X . Since jRŒx�j <1 for every x 2 X and

jRŒF �j � jEŒF � n F j � jEŒF �j � jF j � .d � 1/jF j

for every finite subset F � X , the Hall harem theorem [1, Theorem H.4.2] asserts
that there exists a function f WX ! X with gr.f / � R and jf �1.x/j D d �1 for all
x 2 X . Notice that f does not have any fixed points as R \�X D ;. Since for any
two x; y 2 P.f / the sets ff n.x/ j n 2 Ng and ff n.y/ j n 2 Ng are either equal or
disjoint, wemay choose a subsetP0 � P.f /withP.f / D

S
� x2P0

ff n.x/ j n 2 Ng.
Furthermore, choose maps g; hWP0 �N ! X such that, for all x 2 P0 and n � 1,
� g.x; 0/ D x and h.x; 0/ D f .x/,
� fg.x; n/; h.x; n/g \ P.f / D ;,
� f .g.x; n// D g.x; n � 1/ and f .h.x; n// D h.x; n � 1/.
It follows that g and h are injective functions with disjoint ranges. Now we define
f�WX ! X by setting

f�.x/ WD

†
g.z; nC 2/; if x D g.z; n/ for z 2 P0 and even n � 0;
g.z; n � 2/; if x D g.z; n/ for z 2 P0 and odd n � 3;
f 2.x/; if x D h.z; n/ for z 2 P0 and n � 2;
f .x/; otherwise;
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for x 2 X . We observe that

gr.f�/ � gr.f 2/�1 [ gr.f 2/ [ gr.f /:

In particular, gr.f�/ � E ı E and therefore gr.f�/ 2 E . Moreover, it follows that
P.f�/ � P.f /. However, for every x 2 P.f /, there exists a smallest m 2 N such
that f m.x/ 2 P0, and we conclude that

f mC1� .x/ D f�
�
f m.x/

�
D g

�
f m.x/; 2

�
… P.f /

and hencef mC1� .x/…P.f�/, which readily implies thatx…P.f�/. Thus,P.f�/D;.
In particular, f� has no fixed points. Furthermore,

f �1� .x/D

†�
f �1.x/ [ fg.z; n � 2/g

�
n fg.z; nC 1/g; if x D g.z; n/ for z 2 P0

and even n � 2;�
f �1.x/ [ fg.z; nC 2/g

�
n fg.z; nC 1/g; if x D g.z; n/ for z 2 P0

and odd n � 1;�
f �1.x/ [ fh.z; nC 2/g

�
n fh.z; nC 1/g; if x D h.z; n/ for z 2 P0

and n � 1;�
f �1.x/ [ fh.z; 2/g

�
n fzg; if x D f .z/ for z 2 P0;

f �1.x/ otherwise;

and thus jf �1� .x/j D d � 1 for each x 2 X . Hence, �.gr.f�// is a d -regular
forest.

Just as Theorem 1.1 corresponds to Corollary 1.2, we can translate Theorem 2.2
into an equivalent statement about wobbling groups. Given a coarse space .X;E/,
we define its wobbling group (or group of bounded displacement) as

W.X;E/ WD
˚
˛ 2 Sym.X/ j gr.˛/ 2 E

	
:

Since the 4-regular tree is isomorphic to the standard Cayley graph of the free group
on two generators, we now obtain the following consequence of Theorem 2.2.
Corollary 2.3. A locally finite coarse space X is non-amenable if and only if F2 is
isomorphic to a semi-regular subgroup of W.X/.

We note that Corollary 2.3 for group actions has been applied already (though
without proof) in the recent work of the author and Thom [27, Corollary 5.12],
where a topological version of Whyte’s result for general (i.e., not necessarily locally
compact) topological groups in terms of perturbed translations is established. In the
present note, Corollary 2.3 will be used to prove Theorem 1.4, which generalizes
Whyte’s result to locally compact groups by means of clopen and Borel piecewise
translations and is in turn quite different to [27, Corollary 5.12].
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3. Proving the main result

In this section we prove Theorem 1.4. For the sake of clarity, recall that a locally
compact group G is said to be amenable if there is a G-invariant1 mean on the
spaceCb.G/ of bounded continuous real-valued functions onG, i.e., a positive linear
map �WCb.G/ ! R with �.1/ D 1 and �.f ı �g/ D �.f / for all f 2 Cb.G/
and g 2 G. In preparation of the proof of Theorem 1.4, we note the following
standard fact, whose straightforward proof we omit.

Lemma 3.1. LetH be a closed subgroup of a locally compact groupG and consider
the usual action ofG on the setG=H of left cosets ofH inG. If�W `1.G=H/! R is
aG-invariant mean and �WCb.H/! R is anH -invariant mean, then aG-invariant
mean �WCb.G/! R is given by

�.f / WD �
�
xH 7! �..f ı �x/jH /

�
.f 2 Cb.G//:

It is a well-known fact (see [11, Section 2]) that a locally compact group G
(considered together with a left Haar measure) is amenable if and only if there exists
a G-invariant mean on L1.G/, i.e., a positive linear map �WL1.G/! R such that
�.1/ D 1 and�.f ı�g/ D �.f / for all f 2 Cb.G/ and g 2 G. An easy calculation
now provides us with the following.

Lemma 3.2. Let G be a locally compact group.

(1) A mean �WL1.G/! R is G-invariant if and only if � is B.G/-invariant.

(2) Let H be a locally compact group, let 'WH ! B.G/ be a homomorphism and
 WG ! H be Borel measurable with  ı '.g/ D �g ı  for all g 2 H . If G
is amenable, then so isH .

Proof. (1) Clearly, B.G/-invariance implies G-invariance. To prove the converse,
suppose that � is G-invariant. Let ˛ 2 B.G/ and let P be a finite partition of G
into Borel subsets and gP 2 G (P 2 P ) with ˛jP D �gP

jP for each P 2 P . Now,

�.f ı ˛/ D
X
P2P

�
�
.f ı ˛/ � 1P

�
D

X
P2P

�
�
.f ı �gP

/ � 1P
�

D

X
P2P

�
�
f �

�
1P ı �g�1

P

��
D

X
P2P

�
�
f � .1gPP /

�
D

X
P2P

�
�
f � 1˛.P /

�
D �.f /

for every f 2 L1.G/, as desired.

1In case of ambiguity, invariance shall always mean left invariance.
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(2) Let �WL1.G/! R be a G-invariant mean. Define �WCb.H/! R by

�.f / WD �.f ı  / .f 2 Cb.H//:

It is easy to see that � is a mean. Furthermore, (1) asserts that

�.f ı �g/ D �.f ı �g ı  / D �.f ı  ı '.g// D �.f ı  / D �.f /

for all f 2 Cb.H/ and g 2 H . Hence, � isH -invariant.

We note that Lemma 3.2 readily settles the implication (3)H)(1) of Theorem 1.4.
The remaining part of the proof of Theorem 1.4 will rely on some structure theory
for locally compact groups — most importantly the following remarkable result of
Rickert [23] building on [24]. We recall that a locally compact group G is said to
be almost connected if the quotient of G by the connected component of its neutral
element is compact.
Theorem 3.3 ([23, Theorem 5.5]). Any almost connected, non-amenable, locally
compact group has a discrete subgroup being isomorphic to F2.

Now everything is prepared to prove our main result.

Proof of Theorem 1.4. Evidently, (2) implies (3) as C.G/ is a subgroup of B.G/.
Furthermore, (3) implies (1) due to Lemma 3.2 and the non-amenability of F2.
(1)H)(2) Let G be a non-amenable locally compact group. It follows by classical
work of van Dantzig [4] that any locally compact group contains an almost connected,
open subgroup (see, e.g., [21, Proposition 12.2.2 (c)]). Choose any almost connected,
open (and hence closed) subgroupH ofG. We will distinguish two cases depending
upon whetherH is amenable.
H is not amenable. According to Theorem 3.3, H contains a discrete subgroup F
being isomorphic to F2, and so does G. By a result of Feldman and Greenleaf [7],
the right coset projection � WG ! F nG; x 7! Fx admits a Borel measurable
cross-section, i.e., there exists a Borel measurable map � WF nG ! G such that
� ı � D idF nG . Clearly, the F -equivariant map  WG ! F , x 7! x�.F x/�1 is
Borel measurable. This readily settles the first case: the maps

'WF2 Š F ! C.G/; g 7! �g

and  are as desired.

H is amenable. Since G is not amenable, Lemma 3.1 implies that the action of G
on the setG=H is not amenable. By Proposition 2.1, this means that the coarse space
X WD .G=H;EG/ is not amenable. Due to Corollary 2.3, there exists an embedding
'WF2 D F.a; b/ ! W.X/ such that '.F2/ is semi-regular. Thus, by definition
of W.X/, there exists some finite subset E � G such that

8x 2 fa; bg 8z 2 X 9g 2 EW '.x/.z/ D gz:
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Hence, we find a finite partition P of X along with gP ; hP 2 E (P 2 P )
such that '.a/jP D �gP

jP and '.b/jP D �hP
jP for every P 2 P . Consider

the projection � WG ! G=H; x 7! xH . Since H is an open subgroup of G,
the quotient topology on G=H , i.e., the topology induced by � , is discrete. So,
��1.P / D f��1.P / j P 2 P g is a finite partition of G into clopen subsets. What
is more,

G D
[
�

P2P

��1.'.a/.P // D
[
�

P2P

��1.gPP / D
[
�

P2P

gP�
�1.P /;

G D
[
�

P2P

��1.'.b/.P // D
[
�

P2P

��1.hPP / D
[
�

P2P

hP�
�1.P /:

Therefore, we may define x'W fa; bg ! C.G/ by setting

x'.a/j��1.P / D �gP
j��1.P /; x'.b/j��1.P / D �hP

j��1.P / .P 2 P /:

Consider the unique homomorphism '�WF2 ! C.G/ satisfying '�jfa;bg D x'. Since
� ı x'.x/ D '.x/ ı � for each x 2 fa; bg, it follows that � ı '�.w/ D '.w/ ı �

for every w 2 F2. Appealing to Remark 1.3, we find a mapping  WG=H ! F2
such that  .'.w/.z// D w .z/ for all w 2 F2 and z 2 G=H . Since the quotient
space G=H is discrete, the map  � WD  ı � WG ! F2 is continuous and therefore
Borel measurable. Finally, we note that

 �
�
'�.w/.x/

�
D  

�
�.'�.w/.x//

�
D  

�
'.w/.�.x//

�
D w .�.x// D w �.x/

for all w 2 F2 and x 2 G, as desired. This completes the proof.

Let us deduce Paterson’s result [22] from Theorem 1.4.

Proof of Corollary 1.5. ((H) This is clear.

(H)) Let G be a non-amenable locally compact group. By Theorem 1.4, there
exist a homomorphism 'WF2 ! B.G/ and a Borel measurable map  WG ! F2
with  ı '.g/ D �g ı  for all g 2 F2. Consider any paradoxical decomposition
of F2 given by P , Q, .gP /P2P , .hQ/Q2Q. Taking a common refinement of suitable
finite Borel partitions of G corresponding to the elements '.gP /; '.hQ/ 2 B.G/

(P 2 P ; Q 2 Q), we obtain a finite Borel partition R of G along with mappings
� WP �R! G and � WQ �R! G such that

'.gP /jR D ��.P;R/jR; '.hQ/jR D ��.Q;R/jR

for all P 2 P , Q 2 Q, and R 2 R. By  being Borel measurable, the refinements
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 �1.P / _R and  �1.Q/ _R are finite Borel partitions of G. What is more,

G D
[
�

P2P

 �1.gPP / [�
[
�

Q2Q

 �1.hQQ/

D

[
�

P2P

'.gP /
�
 �1.P /

�
[�

[
�

Q2Q

'.hQ/
�
 �1.Q/

�
D

[
�

.P;R/2P�R

'.gP /
�
 �1.P / \R

�
[�

[
�

.Q;R/2Q�R

'.hQ/
�
 �1.Q/ \R

�
D

[
�

.P;R/2P�R

�.P;R/
�
 �1.P / \R

�
[�

[
�

.Q;R/2Q�R

�.Q;R/
�
 �1.Q/ \R

�
:

Thus, the data

 �1.P / _R;  �1.Q/ _R;
�
�.P;R/

�
.P;R/2P�R

;
�
�.Q;R/

�
.Q;R/2Q�R

constitute a Borel paradoxical decomposition of G.

4. Further remarks on wobbling groups

We are going to conclude with some additional remarks about wobbling groups,
which we consider noteworthy complements of Corollary 2.3. As van Douwen’s
result [6] shows, the presence of F2 as a subgroup of the wobbling group does not
imply the non-amenability of a coarse space. As it turns out, containment of F2 is
just a witness for positive asymptotic dimension (Proposition 4.3).

Let us once again recall some terminology from [25]. Given a set X , we will
denote by P .X/ the power set of X . The asymptotic dimension asdim.X;E/ of
a coarse space .X;E/ is defined as the infimum of all those n 2 N such that, for
every E 2 E , there exist C0; : : : ;Cn � P .X/ with
� X D

S
C0 [ � � � [

S
Cn,

� .C �D/ \E D ; for all i 2 f0; : : : ; ng and C;D 2 Ci with C ¤ D,
�
S
fC � C j C 2 Ci ; i 2 f0; : : : ; ngg 2 E .

The concept of asymptotic dimension was first introduced for metric spaces by
Gromov [12] and later extended to coarse spaces by Roe [25]. We refer to [25] for a
thorough discussion of asymptotic dimension, related results and examples.

As we aim to describe positive asymptotic dimension in algebraic terms, we will
unravel the zero-dimensional case in the following lemma. Let us denote by ŒR� the
equivalence relation on a set X generated by a given binary relation R � X �X .
Lemma 4.1. Let .X;E/ be a coarse space. Then asdim.X;E/ D 0 if and only if
ŒE� 2 E for every E 2 E .
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Proof. (H)) Let E 2 E . Without loss of generality, assume that E contains �X .
As asdim.X;E/ D 0, there exists C0 � P .X/ such that:
(1) X D

S
C0,

(2) .C �D/ \E D ; for all C;D 2 C0 with C ¤ D,
(3)

S
fC � C j C 2 C0g 2 E .

As �X � E, assertion (2) implies that any two distinct members of C0 are disjoint.
Hence, (1) gives that C0 is a partition of X . By (2), the induced equivalence relation
R WD

S
fC � C j C 2 C0g contains E, thus ŒE�. By (3), it follows that ŒE� 2 E .

((H) Let E 2 E . It is straightforward to check that C0 WD fŒE�Œx� j x 2 Xg has
the desired properties. Hence, asdim.X;E/ D 0.

Our proof of Proposition 4.3 belowwill rely upon the following slightmodification
of the standard argument for residual finiteness of free groups. For an element
w 2 F2 D F.a; b/, let us denote by jwj the length of w with respect to the
generators a and b, i.e., the smallest integer n � 0 such that w can be represented as
a word of length n in the letters a; a�1; b; b�1.
Lemma 4.2. Let w 2 F2 with w ¤ e and letM WD f0; : : : ; 2jwjg. Then there exists
a homomorphism 'WF2 ! Sym.M/ such that '.w/ ¤ e and j'.v/.i/ � i j � 2jvj
for all i 2M and v 2 F2.

Proof. Let .k0; : : : ; kn/ 2 .Z n f0g/n � Z and .`0; : : : ; `n/ 2 Z � .Z n f0g/n such
that w D aknb`n � � � ak0b`0 . Of course, jwj D

Pn
iD0 jki j C

Pn
iD0 j`i j. Let

˛i WD
Xi�1

jD0
jkj j C

Xi

jD0
j`j j; ˇi WD

Xi�1

jD0
jkj j C

Xi�1

jD0
j`j j

for i 2 f0; : : : ; ng and let ˇnC1 WD jwj. We will define a map 'W fa; bg ! Sym.M/.
First, let us define '.a/ 2 Sym.M/ by case analysis as follows: if i 2 Œ2˛j ; 2ˇjC1�
for some j 2 f0; : : : ; ng with kj > 0, then

'.a/.i/ WD

†
i C 2; if i is even and i 2 Œ2˛j ; 2ˇjC1 � 2�;
i � 1; if i D 2ˇjC1;
i � 2; if i is odd and i 2 Œ2˛j C 3; 2ˇjC1 � 1�;
i � 1; if i D 2˛j C 1;

if i 2 Œ2˛j ; 2ˇjC1� for some j 2 f0; : : : ; ng with kj < 0, then

'.a/.i/ WD

†
i � 2; if i is even and i 2 Œ2˛j C 2; 2ˇjC1�;
i C 1; if i D 2˛j ;
i C 2; if i is odd and i 2 Œ2˛j C 1; 2ˇjC1 � 3�;
i C 1; if i D 2ˇjC1 � 1;
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and if i …
S
fŒ2˛j ; 2ˇjC1� j j 2 f0; : : : ; ng; kj ¤ 0g, then '.a/.i/ WD i . Analo-

gously, let us define '.b/ 2 Sym.M/ by case analysis as follows: if i 2 Œ2ˇj ; 2˛j �
for some j 2 f0; : : : ; ng with `j > 0, then

'.b/.i/ WD

†
i C 2; if i is even and i 2 Œ2ˇj ; 2˛j � 2�;
i � 1; if i D 2˛j ;
i � 2; if i is odd and i 2 Œ2ˇj C 3; 2˛j � 1�;
i � 1; if i D 2ˇj C 1;

if i 2 Œ2ˇj ; 2˛j � for some j 2 f0; : : : ; ng with `j < 0, then

'.b/.i/ WD

†
i � 2; if i is even and i 2 Œ2ˇj C 2; 2˛j �;
i C 1; if i D 2ˇj ;
i C 2; if i is odd and i 2 Œ2ˇj C 1; 2˛j � 3�;
i C 1; if i D 2˛j � 1;

and if i …
S
fŒ2ˇj ; 2˛j � j j 2 f0; : : : ; ng; `j ¤ 0g, then '.b/.i/ WD i . It is easy

to check that '.a/ and '.b/ are well-defined permutations ofM , and that moreover
j'.x/.i/ � i j � 2 for each x 2 fa; bg and all i 2 M . Considering the unique
homomorphism '�WF2 ! Sym.M/ with '�jfa;bg D ', we observe that

'�.w/.0/ D
�
'.a/kn'.b/`n � � �'.a/k0'.b/`0

�
.0/ D 2jwj

and thus '�.w/ ¤ e. Also, j'�.v/.i/ � i j � 2jvj for all i 2M and v 2 F2.

For the sake of clarity, we recall that a group is locally finite if each of its finitely
generated subgroups is finite. For a subset S of a groupG, we will denote by hSi the
subgroup of G generated by S .
Proposition 4.3. LetX be a uniformly locally finite coarse space. The following are
equivalent.

(1) asdim.X/ > 0.
(2) W.X/ is not locally finite.

(3) F2 embeds into W.X/.

Proof. We will denote by E the coarse structure of X .
(2)H)(1). Let us recall a general fact: for a finite group G and any set M , the
group GM is locally finite. To see this, consider a finite subset S � GM . The
map f WM ! GS , x 7! .˛ 7! ˛.x// induces a homomorphism hWGG

S
! GM ,

˛ 7! ˛ ı f . It is easily see that S is contained in the finite group h.GGS
/, and so

is hSi.
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Suppose now that asdim.X/ D 0. Consider a finite subset S � W.X/. We aim
to show thatH WD hSi is finite. To this end, we first observe that

'WH !
Y

x2X
Sym.Hx/; ˛ 7! .˛jHx/x2X

constitutes a well-defined embedding. Since D WD
S
fgr.˛/ j ˛ 2 Sg belongs to E ,

Lemma 4.1 asserts that E WD ŒD� 2 E , too. Note that gr.˛/ � E for all ˛ 2 H .
Hence, Hx � EŒx� for every x 2 X . Due to X being uniformly locally finite, there
exists m � 0 such that jEŒx�j � m and thus jHxj � m for every x 2 X . Now, let
M WD f0; : : : ; m � 1g. It follows that the group

Q
x2X Sym.Hx/ is isomorphic to

a subgroup of Sym.M/X , and so is H by virtue of '. Since H is finitely generated
and Sym.M/X is locally finite by the remark above, this implies thatH is finite.

(3)H)(2). This is trivial.

(1)H)(3). Suppose that asdim.X/ > 0. By Lemma 4.1, there exists E 2 E such
that ŒE� … E . Without loss of generality, we may assume that �X � E D E�1.
Hence, ŒE� D

S
fEn j n 2 Ng. For each n 2 N, let us define

Tn WD
˚
x 2 XnC1 j jfx0; : : : ; xngj D nC 1; 8i 2 f0; : : : ; n� 1gW .xi ; xiC1/ 2 E

	
:

Claim. For every n 2 N and every finite subset F � X , there exists x 2 Tn such
that fx0; : : : ; xng \ F D ;.
Proof. Proof of claim Let n 2 N and let F � X be finite. Put ` WD .nC1/.jF jC1/.
Since E 2 E and ŒE� … E , we conclude that E` ª E`�1. Let x0; : : : ; x` 2 X such
that .x0; x`/ … E`�1 and .xi ; xiC1/ 2 E for every i 2 f0; : : : ; `�1g. As�X � E, it
follows that jfx0; : : : ; x`gj D `C1. Applying the pigeonhole principle, we find some
j 2f0; : : : ; `�ng such that fxj ; : : : ; xjCng\F D;. Hence,y0 WDxj ; : : : ; yn WDxjCn
are as desired.

Since N WD F2 n feg is countable, we may recursively apply the claim above and
choose a family .xw/w2N such that
(i) xw 2 T2jwj for every w 2 N ,
(ii) fxw;0; : : : ; xw;2jwjg \ fxv;0; : : : ; xv;2jvjg D ; for any two distinct v;w 2 N .
Let w 2 N and define Dw WD fxw;0; : : : ; xw;2jwjg. Due to Lemma 4.2, there exists
a homomorphism 'w WF2 ! Sym.Dw/ such that 'w.w/ ¤ e and

'w.v/.xw;i / 2
˚
xw;j j j 2 f0; : : : ; 2jwjg; ji � j j � 2jvj

	
for all v 2 F2, i 2 f0; : : : ; 2jwjg. Since .xw;i ; xw;iC1/ 2 E for i 2 f0; : : : ; 2jwj�1g,
it follows that gr.'w.v// � E2jvj for all v 2 F2. AsDw andDv are disjoint for any
distinct v;w 2 N , we may define a homomorphism 'WF2 ! Sym.X/ by setting

'.v/.x/ WD

(
'w.v/.x/; if x 2 Dw for some w 2 N;
x; otherwise;



About von Neumann’s problem for locally compact groups 1545

for v 2 F2 and x 2 X . By construction, ' is an embedding, and furthermore

gr.'.v// � �X [
[˚

gr.'w.v// j w 2 N
	
� E2jvj 2 E

for every v 2 F2. Hence, the image of ' is contained in W.X/, as desired.

Remark 4.4. The assumption of uniform local finiteness in Proposition 4.3 is needed
only to prove that (2) implies (1). In fact, a similar argument as in the proof of
(1)H)(3) (not involving Lemma 4.2 though) shows that the wobbling group of
any coarse space not being uniformly locally finite contains an isomorphic copy
of
Q
n2N Sym.n/, hence F2.

One might wonder whether Proposition 4.3 could have been deduced readily
from van Douwen’s result [6] on F2 embedding into W.Z/. However, there exist
uniformly discrete, uniformly locally finite metric spaces with positive asymptotic
dimension whose wobbling group does not contain an isomorphic copy of W.Z/ (see
Example 4.7). We clarify the situation in Proposition 4.5.

As usual, a group is called residually finite if it embeds into a product of finite
groups, and a group is called locally residually finite if each of its finitely generated
subgroups is residually finite. Let us recall from [25] that a map f WX ! Y between
two coarse spaces X and Y is bornologous if, for every entourage E of X , the set
f.f .x/; f .y// j .x; y/ 2 Eg is an entourage of Y .
Proposition 4.5. Let X be a coarse space. The following are equivalent.

(1) There is a bornologous injection from Z into X .

(2) W.X/ is not locally residually finite.

(3) W.X/ contains a subgroup being isomorphic to W.Z/.

Remark 4.6. (i) For groups there is no difference between positive asymptotic
dimension and the existence of a bornologous injection of Z: a group has asymptotic
dimension 0 if and only if it is locally finite, and any group which is not locally
finite admits a bornologous injection of Z by a standard compactness argument (see,
e.g., [14, IV.A.12]). However, for arbitrary coarse spaces, even uniformly locally
finite ones, the situation is slightly different (see Example 4.7).

(ii) One may equivalently replace Z by N in item (1) of Proposition 4.5: on the one
hand, the inclusion map constitutes a bornologous injection from N into Z; on the
other hand, there is a bornologous bijection f WZ! N given by

f .n/ WD

(
2n; if n � 0;
2jnj � 1; if n < 0;

.n 2 Z/:

Unless explicitly stated otherwise, we always understand N as being equipped with
the coarse structure generated by the usual (i.e., Euclidean) metric.
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(iii) Any bornologous injection f WX ! Y between two coarse spaces X and Y
induces an embedding 'WW.X/! W.Y / via

'.˛/.y/ WD

(
f
�
˛.f �1.y//

�
; if y 2 f .X/;

y; otherwise:
.˛ 2 W.X/; y 2 Y /:

Hence, by (ii), the groups W.N/ and W.Z/ mutually embed into each other, and
thus Z may equivalently be replaced by N in item (3) of Proposition 4.5.

Proof of Proposition 4.5. (1)H)(3). This is due to Remark 4.6(iii).

(3)H)(2). It suffices to show that W.Z/ is not locally residually finite. A result
of Gruenberg [13] states that, for a finite group F , the restricted wreath product
F oZ D F .Z/ Ì Z (i.e., the lamplighter group over F ) is residually finite if and only
if F is abelian. For n � 1, the action of Sym.n/ oZ on Z D

S
�
n�1
rD0 nZC r given by

.˛;m/:.nkC r/ WD n.mCk/C˛mCk.r/ .˛ 2 Sym.n/.Z/; m; k 2 Z; 0 � r < n/

defines an embedding of Sym.n/ o Z into Sym.Z/, the image of which is contained
in W.Z/ as supz2Z jz � .˛;m/:zj � n.jmj C 1/ for every .˛;m/ 2 Sym.n/ o Z.
Since the embedded lamplighter groups are finitely generated and not residually
finite for n � 3, it follows that W.Z/ is not locally residually finite.

(2)H)(1). LetE denote the coarse structure ofX . IfX is not locally finite, then there
exist E 2 E and x 2 X such that EŒx� is infinite, and any thus existing injection
f WZ ! X with f .Z/ � EŒx� is bornologous. Hence, we may without loss of
generality assume that X is locally finite. On the other hand, there must exist E 2 E

and x 2 X such that ŒE�Œx� is infinite. Otherwise, W.X/ would have to be locally
residually finite: for any finite F � W.X/, as E WD

S
fgr.˛/ j ˛ 2 F g 2 E , the

homomorphism

hF i !
Y

x2X
Sym

�
ŒE�Œx�

�
; ˛ 7!

�
˛jŒE�Œx�

�
x2X

would embed hF i into a product of finite groups. So, let E 2 E and x 2 X such that
ŒE�Œx� is infinite. Without loss of generality, we may assume that �X � E D E�1.
Therefore, ŒE� D

S
fEn j n 2 Ng. We conclude that EnŒx� ¤ EnC1Œx� and thus

Rn WD
˚
f 2 XN

j f0 D x; jff0; : : : ; fngj D nC 1; 8i 2 NW .fi ; fiC1/ 2 E
	

is non-empty for all n 2 N. As .Rn/n2N is a chain of closed subsets of the compact
topological space

Q
m2N E

mŒx�, we have R WD
T
n2N Rn ¤ ;. Since any member

ofR is a bornologous injection fromN intoX , this implies (1) by Remark 4.6(ii).
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Example 4.7. Let I be a partition of N into finite intervals with supI2I jI j D 1.
Consider the metric space X WD .N; d / given by

d.x; y/ WD

(
jx � yj; if x; y 2 I for some I 2 I;

max.x; y/; otherwise;
.x; y 2 N/:

It is easy to see that X is uniformly locally finite. Moreover, by Lemma 4.1 and
the unboundedness assumption for the interval lengths, it follows that X has positive
asymptotic dimension. On the other hand, essentially by finiteness of the considered
intervals, there is no bornologous injection from N into X . Due to Proposition 4.5,
this readily implies that W.Z/ does not embed into W.X/.

The interplay between certain geometric properties of coarse spaces on the one
hand and algebraic peculiarities of their wobbling groups on the other is a subject of
recent attention [3,16]. It would be interesting to have further results in that direction,
e.g., to understand if (and how) specific positive values for the asymptotic dimension
may be characterized in terms of wobbling groups.

Acknowledgements. The author would like to thank Andreas Thom for interesting
discussions about Whyte’s variant of the von Neumann conjecture, as well as Warren
Moors and Jens Zumbrägel for their helpful comments on earlier versions of this
note.
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