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Abstract. This is the second part of our series about the Higson–Roe sequence for étale
groupoids. We devote this part to the proof of the universal K-theory surgery exact sequence
which extends the seminal results of N.Higson and J. Roe to the case of transformation
groupoids. In the process, we prove the expected functoriality properties as well as the Paschke–
Higson duality theorem.
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1. Introduction

We pursue in this paper our systematic investigation of the secondary invariants
associated with groupoids. Our approach follows the deep program initiated by
N.Higson and J. Roe in their seminal papers [15–17]. The present paper is the
second of our series and is devoted to the statement of the functoriality properties
for our dual Roe algebras as well as to the proof of the Paschke–Higson duality
isomorphism. As a corollary of these constructions, we could obtain the proof of the
existence of the universal Higson–Roe sequence for our étale groupoids. We have
assumed that our groupoid G is the transformation groupoid X Ì � associated with
the action of the discrete countable (infinite) group � on the metrizable space X .
These transformation groupoids are known to be generic in the study of the secondary
invariants of foliations and laminations, see for instance [4,5,9]. Many constructions
are though ready to be generalized to any étale Hausdorff groupoid and the details of
this extension will appear in a forthcoming paper.

In the first paper of this series [7], we have introduced the dual Roe algebras for
étale groupoids and we have deduced the Higson–Roe exact sequence as well as its
compatibility with the Baum–Connes and the Paschke morphisms. With the proof
of the Paschke isomorphism and of the functoriality of our algebras carried out in
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the present paper for transformation groupoids, we complete the picture and obtain
the K-theoretic surgery exact sequence for these groupoids. Let us now explain
more precisely our results. For any proper �-spaceZ together with some usual data,
we denote byD��.X I .Z;L

2Z ˝ `2�1// the dual Roe algebra obtained in this case
following [7] (see Section 2). We first prove the functoriality of theseD�� algebras for
continuous �-coarsemaps as well as of their C �� ideals for Borel �-coarsemaps. To
this end, we have used the notion of Roe–Voiculescu covering isometries described
in an independent appendix. As a corollary, we can introduce the allowed structure
groups for the groupoid X Ì � as follows:

S�C1.X Ì �/ WD lim
�!

Z�E�

K�
�
D��.X I .Z;L

2Z ˝ `2�1//
�
; for � D 0; 1 2 Z2;

where E� is any locally compact universal space for proper �-actions. Along the
process, our techniques also allow to define this K-theory group by using the D��
algebra defined with respect to any fiberwise ample Hilbert module, although the
isomorphism hence obtained is not natural. The above direct limit is taken as usual
with respect to inclusion of �-invariant cocompact closed subspaces Z � E� , and
using the system of group morphisms

iDZ0�Z WK�
�
D��.X I .Z

0; L2Z0 ˝ `2�1//
�
�! K�

�
D��.X I .Z;L

2Z ˝ `2�1//
�
:

This definition is in the spirit of the Baum–Connes assembly map

��� WRK�.X Ì �/ �! K�.C.X/ Ì �/;

which is conjectured to be an isomorphism. Recall that the left hand side is the limit

RK�.X Ì �/ WD lim
�!

Z�E�

KK��.Z;X/:

The main result of the present paper is thus the following generalization of the
Higson–Roe universal exact sequence.

Theorem. There exists a periodic six-term exact sequence:

K0.C.X/ Ìred �/ S1.X Ì �/ RK1.X Ì �/

RK0.X Ì �/ S0.X Ì �/ K1.C.X/ Ìred �/

- -

?

6

� �

where the vertical boundary maps are the Baum–Connes assembly maps .�BCi /iD0;1
for the groupoid X Ì � .
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In the first three sections of this paper, we do not assume the (proper) action to
be cocompact, nor do we assume any Lie structure on our groupoids, so our results
are valid in a wide enough topological category in the spirit of the coarse approach
to primary and secondary index invariants [3, 13, 14]. As explained above, using
cocompact proper actions, we proved that the Higson–Roe exact sequence includes
the classical Baum–Connes map for our groupoid. Under the extra assumption of a
Lie structure on the groupoid, another exact sequencewas obtained byV. Zenobi using
pseudodifferential calculus on adiabatic deformations, in the spirit of the Connes’
tangent groupoid approach, see [24]. WhenX is reduced to the point for instance, the
Zenobi exact sequence turns out to be isomorphic to the classical Higson–Roe exact
sequence, see [25]. For transformation Lie groupoids, it is easy to see for instance
that when the group is torsion free, the Zenobi sequence is again isomorphic to the
one obtained in the present paper. It is thus an interesting task to compare, in this
smooth case, our Higson–Roe exact sequence with Zenobi’s sequence when modified
to take torsion into account.

As a corollary of the above Theorem 5.2, our structure groups S�.X Ì�/ appear
as the precise obstructions for the Baum–Connes conjecture to hold. In view of
invariants of eta type, see again [5] or [3], the following exact sequence will thus play
an important part [6]

K0.C.X/ Ìred �/! S1.X Ì �/! RK1.X Ì �/! K1.C.X/ Ìred �/

In order to achieve the proof of Theorem 5.2, an important step is the Paschke–Higson
duality theorem, which can be stated as follows:
Theorem. With the above notations and assuming the the proper �-space Z is co-
compact, the Paschke–Higson map defined in [7] gives group isomorphisms

Ki
�
Q��.X I .Z; `

2�1 ˝ L2Z//
� P
�! KKiC1� .Z;X/; i 2 Z2:

The groups KKiC1� .Z;X/ are the KK-groups and can be described in purely
topological terms, see for instance [1, 2, 9]. Passing to the inductive limit, we obtain
the allowed universal Paschke–Higson isomorphism which identifies the LHS group
RK�.X Ì �/ in the Baum–Connes map with an inductive limit of dual C �-algebra
K-theory groups.

The proof of Theorem 5.2 then relies on an inspection of the functoriality
properties of all the involved morphisms. More precisely, the following cube is
shown to be commutative for inclusionsZ0 ,! Z of cocompact closed �-subspaces,
and for i 2 Z2:

Ki .Q
�
� .X I .Z

0;L2Z0 ˝ `2�1/// Ki .Q
�
� .X I .Z;L

2Z ˝ `2�1///

KiC1.C
�
� .X I .Z

0;L2Z0 ˝ `2�1/// KiC1.C
�
� .X I .Z;L

2Z ˝ `2�1///

KK
iC1
� .Z0;X/ KK

iC1
� .Z;X/

KiC1.C.X/Ìred �/ KiC1.C.X/Ìred �/
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Notations. For simplicity, all topological spaces used in this paper will be locally
compact Hausdorff and second countable, hence our spaces will always be
paracompact. Given such spaceZ, we shall denote as usual byC0.Z/ theC �-algebra
of complex valued continuous functions on Z which vanish at infinity, while Cc.Z/
will be the subalgebra composed of the compactly supported functions. We shall
also use the bigger multiplier algebra Cb.Z/ composed of the bounded continuous
complex valued functions on Z. For a given C �-algebra B and unless otherwise
specified, all Hilbert B-modules will be countably generated as B-modules. In
particular, all Hilbert spaces will be countably generated. Given Hilbert B-modules
E andE 0, we shall abusively denote by LB.E;E

0/ the space of adjointable operators
fromE toE 0, so in particular such operators areB-linear and bounded. The subspace
ofB-compact operators will be denoted byKB.E;E

0/, and whenE 0 D E, we obtain
the C �-algebras which are rather denoted LB.E/ and KB.E/. Recall that KB.E/

is a closed two-sided involutive ideal in LB.E/. When B D C is the C �-algebra
of the complex numbers, then it is simply dropped from the notation. The notation
L.H/�-str will be used to emphasize that the space L.H/ is rather endowed with the
�-strong topology. So, for instance and given a topological spaceX ,C.X;L.H/�-str/
is the space of continuous functions from X to L.H/ endowed with the �-strong
topology. Given a group � which acts on a set A, we shall denote as it is customary
by A� the subset of A composed of the �-invariant elements.

Acknowledgements. The authorswish to thankP.S. Chakraborty, T. Fack, N.Higson,
V.Mathai, P. Piazza, B. Saurabh, G. Skandalis, R.Willett and V. Zenobi for many
helpful discussions. We are especially indebted to the referee for having read carefully
this manuscript, and for her/his comments to improve it, especially the important
suggestion of removing the cocompactness condition in all the statements of the first
three sections. M.B. thanks the French National Research Agency for support via
the ANR-14-CE25-0012-01 (SINGSTAR). I.R. thanks the Homi Bhabha National
Institute and the Indian Science and Engineering Research Board via MATRICS
project MTR/2017/000835 for support.

2. Review of the Higson–Roe sequence

We review in this first section our results about dual algebras and the Higson–Roe
sequence for étale groupoids, see [7]. The present paper concentrates on the case of
étale groupoids which are associated with countable discrete group actions, so we
briefly recall these results for such groupoids.

We consider a countable discrete group � which acts on the right by
homeomorphisms of the compact metrizable finite dimensional space X . The
groupoid G is the action groupoid X Ì � whose space of units is X and whose
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space of arrows is X � � with the following rules:

s.x; / D x; r.x; / D x; and .x; /.x0;  0/ D .x;  0/ if x0 D x:

The groupoid G desingularizes the space of leaves of a lamination which is
constructed by suspending the action, through the so-called foliation monodromy
groupoid, see for instance [5]. Let .Z; d/ be a given locally compact proper-metric
space which is endowed with an action of our group � . We assume furthermore
that � acts properly on Z and consider the �-space Y D X � Z which is then a
proper �-space.

Let .H;U / be a unitary Hilbert space representation of � together with an
ample �-equivariant C.X/-representation � of C0.Y /. Recall that any adjointable
operator T of LC.X/.C.X/ ˝ H/ is given by a field .Tx/x2X of bounded
operators on H which is �-strongly continuous. For instance, for a general C.X/-
representation � of C0.Y / and any f 2 C0.Y /, the operator �.f / can be written
as the �-strongly continuous field .�x.fx//x2X where each �x is a representation
ofC0.Z/ in the Hilbert spaceH . Moreover, it is easy to see that�x.fx/ only depends
on the restriction fx of f to fxg � Z. An adjointable operator is �-equivariant, if
the field .Tx/x2X satisfies the relations

Txg D U
�1
g TxUg ; .x; g/ 2 X � �:

The space of �-equivariant adjointable operators is denoted as usual

LC.X/.C.X/˝H/
� :

We denote by D��.X I .Z;H// and C
�
� .X I .Z;H// the corresponding Roe algebras

as defined in [7], but for our groupoid X Ì � and our specific Hilbert G-module
C.X/ ˝ H . More precisely, D��.X I .Z;H// is defined as the norm closure in
LC.X/.C.X/˝H/ of the following space

fT 2 LC.X/.C.X/˝H/
� ; T has finite propagation
and ŒT; �.f /� 2 C.X;K.H// for any f 2 C0.Y /g:

The ideal C �� .X I .Z;H// is composed of all the elements T of D��.X I .Z;H//
which satisfy in addition that

T�.f / 2 C.X;K.H// for any f 2 C0.Y /:

The finite propagation property here is supposed to hold uniformly onX , so .Tx/x2X
has finite propagation if there exists a constantM � 0 such that for any '; 2 C0.Z/
with d.Supp.'/;Supp. // > M , we have

�x.'/Tx�x. / D 0; 8x 2 X:
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We thus have the short exact sequence of C �-algebras

0! C �� .X I .Z;H// ,! D��.X I .Z;H// �! Q��.X I .Z;H//! 0;

wherewehave denoted byQ��.X I .Z;H// the quotientC
�-algebra ofD��.X I .Z;H//

by its two-sided closed involutive ideal C �� .X I .Z;H//. Applying the topological
K-functor, we end up with well defined boundary maps

@i WKi
�
Q��.X I .Z;H//

�
�! KiC1

�
C �� .X I .Z;H//

�
; i 2 Z2;

which fit in the following periodic six-term exact sequence of topological K-theory
groups

K�.C
�
� .X I .Z;H///

// K�.D
�
�.X I .Z;H///

uu
K�.Q

�
�.X I .Z;H///

@�
ii

The Paschke–Higson map can be described for our specific groupoid G D X Ì � as
the two group morphisms

PZ
i WKi

�
Q��.X I .Z;H//

�
�! KKiC1� .Z;X/; i 2 Z2;

where Ki .Q��.X I .Z;H/// is K-theory of the C �-algebra Q��.X I .Z;H// while
KKiC1� .Z;X/ is the �-equivariant KK-theory of the pair of �-algebras C0.Z/,
C.X/ [19]. It is defined as follows (see again [7]). For i D 0 for instance and starting
with a projection E inQ��.X I .Z;H//, the image of the class of E under PZ

0 is the
class of the �-equivariant Kasparov odd cycle�

C.X/˝H;�Z ; 2E � I
�
;

where the representation �Z is � ı p�2 with p�2 WC0.Z/ ! C0.Y / the morphism
induced by the (proper) second projection p2WY ! Z. A similar definition yields
for i D 1 to the Paschke–Higson map P1.
Remark 2.1. According to [7], the range of the Paschke map is expected to be the
G-equivariant KK-theory of the pair of G-algebras C0.X � Z/; C.X/. However,
it is easy to see that in our case, this latter group is isomorphic to the �-equivariant
KK-theory of the pair of �-algebras C0.Z/; C.X/, i.e.

KK��.Z;X/ ' KK
�
XÌ�.X �Z;X/:

Notice that any �-equivariant Hilbert C.X/-module can be seen as aX Ì�-module.
The previous isomorphism is obtained by using the obvious left action of C.X/ on
any Hilbert C.X/-module, and reciprocally by tensoring with the unit of C.X/.
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An interesting representation � is given by L2.Z/ D L2.Z;�Z/ for a choice
of a Borel �-invariant measure �Z on Z, which we shall always assume to be
fully supported. Finally, recall also that in the case where the proper �-space Z is
cocompact, we have the classical Baum–Connes map (see [1]):

�Z� WKK
�
�.Z;X/ �! K�.C.X/ Ìr �/;

where C.X/ Ìr � is the reduced crossed product C �-algebra. When Z is not
cocompact, one needs to replace the LHS by an inductive limit as we shall explain
later on. The main results that will be needed from the companion paper [7] concern
the case of cocompact actions, and can be gathered as follows:

Theorem 2.2 ([7]). If the �-proper space Z is cocompact, then:

1. The C �-algebra C �� .X I .Z;L
2Z ˝ `2�// is Morita equivalent to the reduced

crossed product C �-algebra C.X/ Ìr � . In particular, we have isomorphisms

Mi WKi .C
�
� .X I .Z;L

2Z ˝ `2�/// �! Ki .C.X/ Ìr �/; i D 0; 1:

2. For i D 0; 1, the following diagram commutes

Ki .Q
�
�.X I .Z;L

2Z ˝ `2�///
@i

����! KiC1.C
�
� .X I .Z;L

2Z ˝ `2�///

Pi

??y MiC1

??y
KKiC1� .Z;X/

�Z
�

����! KiC1.C.X/ Ì �/

3. Functoriality of dual algebras

We proceed now to establish the functoriality of the K-theory groups of the Roe
C �-algebras C �� .X I .Z;H//, D

�
�.X I .Z;H//, and Q

�
�.X I .Z;H//, corresponding

to appropriate classes of maps f WZ0 ! Z. We first prove these functoriality results
for the C �-algebras C �� .X I .Z;H//. Later on we shall show that under the extra
continuity assumption of the maps f , the functoriality properties hold as well for the
C �-algebrasD��.X I .Z;H// and the quotient C �-algebrasQ��.X I .Z;H//.

3.1. Functoriality properties of the Roe ideal. Recall that X is a compact met-
rizable space (of finite dimension). We consider spaces Y which are given as
Y D X �Z, for spaces Z which are proper-metric spaces on which � acts properly,
as isometric homeomorphisms. We always assume that our metric spaces are proper-
metric spaces. Recall that if .Z; d/ and .Z0; d 0/ are metric spaces, then a map
f WZ0 ! Z is metrically proper when the inverse images of bounded sets in Z are
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bounded in Z0. A metrically proper Borel map f WZ0 ! Z is called a coarse map if
given any R > 0, there exists S > 0 such that

d 0.z01; z
0
2/ � R H) d.f .z01/; f .z

0
2// � S for all z01; z

0
2 2 Z

0:

Two coarse maps f1; f2WZ0 ! Z are called coarsely equivalent if there exists a
constantM > 0 such that

d.f1.z
0/; f2.z

0// �M for all z0 2 Z0

Suppose that the proper-metric spaces .Z0; d 0/ and .Z; d/ are endowed with the
action of our countable discrete group � , again by isometries. Then a given map
f WZ0 ! Z is coarsely equivariant if there exists a constantM � 0 such that

dZ.f .gz
0/; gf .z0// �M; 8g 2 � and 8z0 2 Z0:

Definition 3.1. Suppose that the proper-metric spaces .Z0; d 0/ and .Z; d/ are
endowed with the action of � by isometries.
1. A metrically proper Borel map f WZ0 ! Z is called a coarse �-map, if it is coarse
and coarsely equivariant.

2. The proper-metric �-spaces .Z0; d 0/ and .Z; d/ are �-coarsely equivalent if there
exist coarse�-maps f WZ0 ! Z and gWZ ! Z0 such that f ıg is coarsely equivalent
to the identity on Z and g ı f is coarsely equivalent to the identity on Z0.

IfH is a given Hilbert space, we shall denote byH1 the Hilbert space

`2.N;H/ ' H ˝ `2N:

Given a �-equivariant faithful Hilbert space representation .H; �/ of C0.Z/, we get
an ample �-equivariant representation

.`2� ˝H1 ' H ˝ `2�1; �1/

by tensoring by the identity on `2N and further tensoring by the right regular repre-
sentation of � on `2� .

Theorem 3.2. If .Z0; d 0/ and .Z; d/ are �-proper metric spaces with �-invariant
fully supported Borel measures �Z0 and �Z respectively, such that .Z0; d 0/ and
.Z; d/ are �-coarsely equivalent. Then we have a group isomorphism:

K�
�
C �� .X I .Z

0; L2Z0 ˝ `2�1//
� Š
�! K�

�
C �� .X I .Z;L

2Z ˝ `2�1//
�
:

The proof of Theorem 3.2 will occupy the rest of this paragraph. The notion of
Roe covering �-isometry is introduced in Definition A.1. According to Lemma A.3,
given a coarse �-map f WZ0 ! Z between �-proper spaces, there always exist Roe
covering �-isometries for f .
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Lemma 3.3 ([14]). Given a Roe covering �-isometry

W WL2Z0 ˝ `2�1 �! L2Z ˝ `2�1

for the coarse �-map f WZ0 ! Z, the map

AdW WC.X;L.L2Z0 ˝ `2�1/�-str/� ! C.X;L.L2Z ˝ `2�1/�-str/
�

defined by AdW .T / WD W TW � induces a well-defined homomorphism

AdW WC �� .X I .Z
0; L2Z0 ˝ `2�1// �! C �� .X I .Z;L

2Z ˝ `2�1//:

Moreover, the induced map

AdW;�WK�.C �� .X I .Z
0; L2Z0 ˝ `2�1///! K�.C

�
� .X I .Z;L

2Z ˝ `2�1///

is independent of the choice of the Roe covering �-isometry W and will thus be
denoted f�.

Proof. The proof for X D f�g given in [14] extends immediately to our situation,
and we recall the steps of this proof for the sake of completeness. The covering
�-isometry is identified with the isometry between the Hilbert C.X/-modules which
is constant in the X -variable. Notice first that if T 2 C �� .X I .Z

0; L2Z0 ˝ `2�1//

has finite propagation, then so does AdW .T /, precisely because Prop.W / is finite
and

Prop.W T W �/ � 2Prop.W /C Prop.T /:

Moreover, AdW .T / is locally compact as soon as T is. Indeed, if � 2 Cc.Y /, then
there exists �0 2 Cc.Y 0/ such that

�1Y .�/W D �
1
Y .�/W�

1
Y 0 .�

0/;

so that since T is locally compact, we have

�1Y .�/W T W
�
D �1Y .�/W.�

1
Y 0 .�

0/T /W � 2 C.X;K.L2Z ˝ `2�1//:

Let us show now that two Roe covering �-isometries W1 and W2 induce the same
map on K-theory. The operators WiW �j are clearly multipliers of the C �-algebra
C �� .X I .Z;L

2Z ˝ `2�1//, for i; j D 1; 2. Let us show for instance that W1W �2
is such a multiplier. From the finite propagation of W1 and W2 we deduce that
if T 2 C �� .X I .Z;L

2Z ˝ `2�1// has finite propagation, then W1W �2 T has finite
propagation. To show that it is locally compact, we use again the fact that given
� 2 Cc.Z/, there exist �0 2 Cc.Z0/ and �00 2 Cc.Z/ such that

�1Y .�/W1 D �
1
Y .�/W1�

1
Y 0 .�

0/ and �1Y 0 .�
0/W �2 D �

1
Y 0 .�

0/W �2 �
1
Y .�

00/:
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Hence for any T 2 C �� .X I .Z;L
2Z ˝ `2�1//, we have

�1Y .�/W1W
�
2 T D �

1
Y .�/W1�

1
Y 0 .�

0/W �2 T D �
1
Y .�/W1�

1
Y 0 .�

0/W �2 �
1
Y .�

00/T:

The latter operator is hence compact since �1Y .�
00/T is compact.

Now it is easy to check that for T 2 C �� .X I .Z
0; L2Z0 ˝ `2�1//, the following

relation holds�
W1T W

�
1 0

0 0

�
�

�
0 0

0 W2T W
�
2

�
inM2.C

�
� .X I .Z;L

2Z ˝ `2�1//

through conjugation by the unitary matrix

U D

�
I �W1W

�
1 W1W

�
2

W2W
�
1 I �W2W

�
2

�
;

so that .AdW1/� D .AdW2/� on K-theory.

We thus end up, for any coarse �-map f WZ0 ! Z, with the well-defined group
morphism

f�WK�.C
�
� .X I .Z

0; L2Z0 ˝ `2�1/// �! K�.C
�
� .X I .Z;L

2Z ˝ `2�1///

This construction is then clearly functorial in the sense that if f 0 W Z00 ! Z0 is
another coarse �-map, then

.f ı f 0/� D f� ı f
0
�:

Lemma 3.4. If f; gWZ0 ! Z are coarsely equivalent coarse �-maps, then

f� D g�WK�.C
�
� .X I .Z

0; L2Z0 ˝ `2�1/// �! K�.C
�
� .X I .Z;L

2Z ˝ `2�1///:

Proof. ARoe covering �-isometry for f is also a Roe covering �-isometry for g and
vice versa. Indeed, dZ.f .Z0/; g.Z0// � M for some constant M , therefore, if W
is a �-equivariant isometry which has finite propagation with respect to f then it
automatically has finite propagationwith respect to g. Since themaps f� and g� don’t
depend on the choice of the Roe covering �-isometry, the proof is complete.

Theorem 3.2 is now a corollary of Theorem A.3, Lemma 3.3 and Lemma 3.4.
Recall that a metrically proper coarse map f W .Z0; dZ0/ ! .Z; dZ/ is called a

coarse embedding. The map f is coarsely onto if there exists a constant C � 0 such
that

8z 2 Z; 9z0 2 Z0 with dZ.f .z0/; z/ � C :

A �-coarse embedding will be for us a coarse embedding which is coarsely
equivariant.
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Lemma3.5. Letf W .Z0; dZ0/! .Z; dZ/ be a�-coarse embeddingwhich is coarsely
onto. Then f is �-coarse equivalence.

Proof. According to [10], we know that there exists aBorelmaphW.Z; dZ/!.Z0; dZ0/

which is a coarse embedding and which is a coarse inverse to f . Let C be the onto-
constant of f , i.e. such that

8z 2 Z; 9z0 2 Z0 with dZ.f .z0/; z/ � C:

Then the map h is defined in [10] in such a way that it satisfies the relation

dZ.f .h.z//; z/ � C; 8z 2 Z:

Now we have for any z 2 Z and any g 2 �:

dZ.f .h.gz//; f .gh.z/// � dZ.f .h.gz//; gz/C dZ.z; f .h.z///

C dZ.gf .h.z//; f .gh.z///

� C C C CM1

whereM1 is the coarse-equivariance constant for f , i.e. a constant which satisfies

dZ
�
gf .z0/; f .gz0/

�
�M1; 8.z

0; g/ 2 Z0 � �:

Since f is metrically proper, we conclude from the previous estimate that there exists
a constant C 0 � 0 such that

dZ0.h.gz/; gh.z// � C
0;

and hence h is coarsely equivariant as allowed.

We can finally deduce the following important corollary:

Corollary 3.6. If the �-space Z is proper and i WZ0 ,! Z is a coarse inclusion of a
closed �-subspace Z0, then we have a group isomorphism:

iCZ0�Z WK�
�
C �� .X I .Z

0; L2Z0 ˝ `2�1//
� Š
�! K�

�
C �� .X I .Z;L

2Z ˝ `2�1//
�
:

In particular, when Z=� is compact, any closed �-subspace Z0 induces the above
isomorphism iCZ0�Z .

Proof. Indeed, in this case, the inclusion i is automatically a �-coarse embedding
which is coarsely onto. Hence the inclusion map i a �-coarse equivalence according
to the previous lemma. The proof is then completed by applying Theorem 3.2
above.
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3.2. Functoriality of D�-algebras. In order to prove a similar functoriality result
for the D�-algebras, we use the results of [14, Chapter 12] and we shall need
a generalization of Voiculescu’s theorem. Recall the notion of Roe–Voiculescu
covering �-isometry, see Definition A.4.
Lemma 3.7. Let W be a Roe–Voiculescu covering �-isometry for the continuous
�-coarse map f WZ0 ! Z. The map

AdW WC.X IL.`2�1 ˝ L2Z0/�-str/� �! C.X IL.`2�1 ˝ L2Z/�-str/
�

given by
AdW .T / WD .idC.X/˝W /T .idC.X/˝W �/;

yields a well-defined C �-algebra homomorphism

AdW WD��.X I .Z
0; `2�1 ˝ L2Z0// �! D��.X I .Z; `

2�1 ˝ L2Z//:

Moreover, if W1 and W2 are two Roe–Voiculescu covering �-isometries for f , then
they induce the same map on K-theory.

Proof. The arguments in [22, Propositions 3.3.12–3.3.15] can be adapted to our
situation to prove this lemma. Set

Y D X �Z; Y 0 D X �Z0

and let

E WD C.X/˝ L2Z0 ˝ `2�1 and E 0 WD C.X/˝ L2Z0 ˝ `2�1

be the corresponding Hilbert �-equivariant C.X/-modules. Recall the representa-
tions

�Y WC0.Y / ' C.X/˝ C0.Z/ �! LC.X/.C.X/˝ L
2Z/

and �Y 0 WC0.Y
0/ ' C.X/˝ C0.Z

0/ �! LC.X/.C.X/˝ L
2Z0/:

We then set
� WD �Y ˝ id`2�1 and � 0 WD �Y 0 ˝ id`2�1 :

The operator P D idC.X/˝WW � is an adjointable �-invariant projection, and we
thus have a decomposition:

E D PE ˚ .I � P /E:

The representation � then writes in this decomposition

� D

�
�11 �12
�21 �22

�
;
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with each diagonal element �jj for j D 1; 2, being a �-homomorphism modulo
KC.X/.E/ and with the off-diagonal operators �12.�/ and �21.�/ being compact
operators, for any � 2 C0.Y /. Indeed, let us use the standard notation for two
adjointable operators S1; S2 2 LC0.X/.�; �/, we write S1 � S2 if S1 � S2 is a
compact operator. Then given '1; '2 2 C0.Y /, we have

�11.'1'2/ � �11.'1/�11.'2/ D P�.'1/.I � P /�.'2/P

� P�.'1/.idC.X/˝W /� 0.'2 ı f /.idC.X/˝W �/
� P�.'1/.idC.X/˝W /� 0.'2 ı f /.idC.X/˝W �/P

� P.idC.X/˝W /� 0.'1 ı f /� 0.'2 ı f /.idC.X/˝W �/
� .idC.X/˝W /� 0.'1 ı f /� 0.'2 ı f /.idC.X/˝W �/P

D .idC.X/˝W /� 0.'1 ı f /� 0.'2 ı f /.idC.X/˝W �/
� .idC.X/˝W /� 0.'1 ı f /� 0.'2 ı f /.idC.X/˝W �/P

D 0:

A similar computation proves the other claims regarding �22, �12 and �21. Then,
using the following equations for any � 2 C0.Y /:

�21.�/ D �.�/P � P�.�/P and �12.�/ D P�.�/ � P�.�/P;

we deduce that ŒP; �.�/� 2 KC0.X/.E/. Moreover, since W has finite propagation
by property (1), we deduce that P 2 D��.X I .Z; `

2�1 ˝ L2Z//.
Let now T be a given element of D��.X I .Z

0; `2�1 ˝ L2Z0//. Then we have
the following:

� 0.�/T � T� 0.�/

) .idC.X/˝W �/�.�/.idC.X/˝W /T � T .idC.X/˝W �/�.�/.idC.X/˝W /
) .idC.X/˝WW �/�.�/.idC.X/˝W /T .idC.X/˝W �/

� .idC.X/˝W /T .idC.X/˝W �/�.�/.idC.X/˝WW �/
) �.�/.idC.X/˝WW �W /T .idC.X/˝W �/

� .idC.X/˝W /T .idC.X/˝W �WW �/�.�/
) �.�/.idC.X/˝W /T .idC.X/˝W �/ � .idC.X/˝W /T .idC.X/˝W �/�.�/
) Œ�.�/; .idC.X/˝W /T .idC.X/˝W �/� � 0:

Also, we have

Prop..idC.X/˝W /T .idC.X/˝W �// � 2Prop.W /C Prop.T /;

so we get
AdW .T / 2 D��.X I .Z; `

2�1 ˝ L2Z//:
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Let W1 and W2 be two Roe–Voiculescu covering �-isometries for f . Note that

idC.X/˝WjW �j 2 D
�
�.X I .Z; `

2�1 ˝ L2Z// for j D 1; 2;

as we have already shown. We claim that

idC.X/˝W1W �2 and idC.X/˝W2W �1

also belong to D��.X I .Z; `
2�1 ˝ L2Z//. Given this claim, it is easy to

check that for T 2 D��.X I .Z
0; `2�1 ˝ L2Z0//, the following relation holds in

M2.D
�
�.X I .Z; `

2�1 ˝ L2Z///:

.idC.X/˝U/
�
.idC.X/˝W1/T .idC.X/˝W �1 / 0

0 0

�
.idC.X/˝U/

D

�
0 0

0 .idC.X/˝W2/T .idC.X/˝W �2 /

�
;

where U is the self-adjoint unitary matrix

U D

�
id`2�1˝L2Z �W1W �1 W1W

�
2

W2W
�
1 id`2�1˝L2Z �W2W �2

�
:

Hence .AdW1/� D .AdW2/� on K-theory.
Let us show the claim that

idC.X/˝W1W �2 2 D
�
�.X I .Z; `

2�1 ˝ L2Z//

(the proof for W2W �1 follows by symmetry). Since

.idC.X/˝W �1 /�.�/.idC.X/˝W1/ � �
0.� ı f /

� .idC.X/˝W �2 /�.�/.idC.X/˝W2/;

we have:

.idC.X/˝W1W �1 /�.�/.idC.X/˝W1W
�
2 /

� .idC.X/˝W1W �2 /�.�/.idC.X/˝W2W
�
2 /:

Since WjW �j 2 D
�
�.X I .Z; `

2�1 ˝ L2Z// for j D 1; 2, we get

�.�/.idC.X/˝W1W �1 W1W
�
2 / � .idC.X/˝W1W

�
2 W2W

�
2 /�.�/

) Œ�.�/; idC.X/˝W1W �2 � � 0:

Again,
Prop.W1W �2 / � Prop.W1/C Prop.W2/;

so in fact W1W �2 2 D��.X I .Z; `
2�1 ˝ L2Z// and we are done.
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As a corollary of Lemma A.5 and Lemma 3.7, we deduce:

Proposition 3.8. Any continuous �-coarse map f WZ0 ! Z induces a well defined
group morphism

f�WK�
�
D��.X I .Z

0; `2�1 ˝ L2Z0//
�
�! K�

�
D��.X I .Z; `

2�1 ˝ L2Z//
�
;

as well as a well defined group morphism

f�WK�
�
Q��.X I .Z

0; `2�1 ˝ L2Z0//
�
�! K�

�
Q��.X I .Z; `

2�1 ˝ L2Z//
�
:

Corollary 3.9. If i WZ0 ,! Z is a coarse inclusion of a closed �-subspace, then we
have well defined induced group morphisms:

iDZ0�Z WK�
�
D��.X I .Z

0; L2Z0 ˝ `2�1//
�
�! K�

�
D��.X I .Z;L

2Z ˝ `2�1//
�

and

i
Q
Z0�Z WK�

�
Q��.X I .Z

0; L2Z0 ˝ `2�1//
�
�! K�

�
Q��.X I .Z;L

2Z ˝ `2�1//
�
:

In particular, if Z is cocompact and i WZ0 ,! Z is the inclusion of a closed
�-subspace, then the group morphisms iDZ0�Z and iQZ0�Z are well defined.

Proof. As already observed, the inclusion i WZ0 ,! Z is obviously continuous.
Therefore, the corollary follows from Lemma 3.7.

4. Paschke–Higson duality

We devote this section to the proof of the Paschke–Higson duality theorem for
�-families. The classical version of this duality theorem can be consulted for instance
in [12, 20]. In view of our main interest in this paper, namely the universal Higson–
Roe sequence, we shall assume our proper �-spaces to be cocompact.

4.1. Statement of the theorem. We shall need some classical results due to Pimsner–
Popa–Voiculescu [21] which in turn extend the classical theorem of Voiculescu. The
goal of this section is the proof of the following Paschke–Higson duality

Theorem 4.1. With the above notations and assuming that the action of � on Z is
proper and cocompact, the Paschke map gives group isomorphisms

Ki
�
Q��.X I .Z; `

2�1 ˝ L2Z//
� P
�! KKiC1� .Z;X/; i 2 Z2:

This theorem is already interesting when Z is compact and � is trivial. In this
case, we get the following result which is a rephrasing of classical results from [21]:
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Theorem 4.2 (Paschke duality theorem, the non-equivariant case). For any fiberwise
ample C.X/-representation of C.X �Z/ in the Hilbert module C.X/˝H , we have
group isomorphisms

Ki .Q
�.X I .Z;H///

P
�! KKiC1.Z;X/; i D 0; 1:

Let us explain the relation with the PPV work in this non-equivariant case. Set

p2WX �Z ! Z

for the second projection. A C.X/-representation

y� WC.X �Z/! LC.X/.E/

on a Hilbert C.X/-module E corresponds to a family of representations

�x WC.Z/! L.Ex/

on the associated field of Hilbert spaces, given by localizing at x. Notice that one
can use the homomorphism p�2 to deduce a representation � WC.Z/ ! LC.X/.E/,
which is the one associated with this field .�x/x2X of Hilbert space representations.

In the terminology of the seminal paper [21, Sections 1 and 2] which considers
the case of the free module

E D C.X/˝H;

the C.X/-representation y� WC.X � Z/ ! LC.X/.E/ is fiberwise ample, that is the
corresponding field of representations is composed of ample representations (see
more precisely Definition 4.4 below), if and only if theX -extension associated to the
representation � WC.Z/ ! LC.X/.E/ has trivial ideal symbol, i.e. the X -extension
that � induces is homogeneous. If for instance � is a given ample representation
of C.Z/ in the Hilbert space H , then the associated C.X/-representation y�
of C.X � Z/ in LC.X/.C.X/ ˝ H/ is clearly fiberwise ample. Any fiberwise
ample representation

y� WC.X �Z/! LC.X/.C.X/˝H/

gives rise to a trivial X -extension through its associate representation � , as follows.
Let

B WD �.C.Z//C C.X/˝K.H/ � LC.X/.C.X/˝H/

and if p is the Calkin projection for the Hilbert module C.X/˝H , then we also set

� WD p ı � WC.Z/! LC.X/.C.X/˝H/=C.X/˝K.H/

which is then amonomorphism. This yields the trivialX -extension in the terminology
of [21]:

0! C.X/˝K.H/ ,! B
�
�! C.Z/! 0



The Higson–Roe sequence for étale groupoids. II 17

with � given by the composite map

B ! B=C.X/˝K.H/
Š
�! �.C.Z//

Š
�! C.Z/:

As mentioned above this X -extension is in fact homogeneous.
Then, we can rewrite the main theorem from [21] that is used here:

Proposition 4.3 ([21]). Let y�1 and y�2 be two fiberwise ample C.X/-representations
of A D C.X �Z/ in the Hilbert modules C.X/˝H1 and C.X/˝H2 respectively.
Then there exists a unitary S 2 LC.X/.C.X/˝H1; C.X/˝H2/ such that

S�y�2.'/S � y�1.'/ 2 C.X/˝K.H1/ for all ' 2 C.X �Z/:

Proof. This proposition is a corollary of the more general statement proved in [21,
Proposition 2.9]. More precisely, the two C.X/-representations y�1 and y�2 yield
the representations �1 and �2 of C.Z/, associated as above by composing with p�2 .
Since the ideal symbols of �1 and �2 are homogeneous, the PPV theorem insures the
existence of a unitary S 2 LC.X/.C.X/˝H1; C.X/˝H2/ such that

S��2.f /S � �1.f / 2 C.X/˝K.H1/ for all f 2 C.Z/:

But then for any given continuous function u on X , we have by definition of C.X/-
representations:

S�y�2.u˝ f /S � y�1.u˝ f / D S
�
ı ŒRu ı y�2.1˝ f /� ı S �Ru ı y�1.1˝ f /;

whereRu is multiplication on the right by u, say the module structure ofC.X/˝H1.
So, S� being C.X/ linear, we get

S�y�2.u˝ f /S � y�1.u˝ f / D Ru ı ŒS
��2.f /S � �1.f /�

Since S��2.f /S ��1.f / is a compact operator of the Hilbert module C.X/˝H1,
the proof is complete.

Theorem 4.2 is then an easy corollary of the previous proposition. Indeed, let us
treat the case i D 0 since the argument is similar for i D 1. Given a projection P in
Q�.X I .Z;H//, the triple .�; C.X/˝H; 2P � I / is a Kasparov cycle for the pair
of C �-algebras .C.Z/; C.X//. Moreover, it is easy to check that this yields a well
defined group morphism

K0.Q
�.X I .Z;H///

P
�! KK1.Z;X/

obtained by setting

P
�
ŒP �

�
D
�
.�; C.X/˝H; 2P � I /

�
:
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An inverse for the map P is then constructed as follows. Let y 2 KK1.Z;X/ be
represented by a Kasparov cycle .� 0; E 0; F 0/. Thanks to the Kasparov stabilisation
theorem, we can assume without lost of generality that E 0 is a submodule of some
C.X/˝H 0. Replacing � 0 by � 0 ˚ � and F 0 by diag.F 0; id/, one can also assume
that � 0 is fibrewise ample. So, by Proposition [4.3], there is a unitary

S 2 LC.X/.C.X/˝H
0; C.X/˝H/

such that
S��.f /S � � 0.f / 2KC.X/.C.X/˝H

0/

for any f 2 C.Z/. Then the cycle .�; C.X/˝H;SF 0S�/ is equivalent to the cycle
.� 0; E 0; F 0/. Setting

zP 0 D
S.1C F 0/S�

2
;

it is not difficult to check using the conditions on aKK-cycle, that zP 0 is a projection
inQ�.X I .Z;H//. The map P 0WKK1.Z;X/! K0.Q

�.X I .Z;H/// given by

P 0
�
Œ� 0; E 0; F 0�

�
D Œ zP 0�

can then be verified to be a well-defined group homomorphism, and to be an inverse
to P .

Our strategy to prove Theorem 4.1 will be, no surprise, to use an extended version
of the Pimsner–Popa–Voiculescu theorem.

4.2. Proof of the Paschke–Higson theorem. Consider the finite dimensional com-
pact metrizable spaceX and the locally compact metric spaceZ. Finite dimension is
needed in order to apply the results of [21] which used theMichael selection theorem.
We consider the proper second projection

p2WX �Z ! Z

so that any C.X/-representation

y� WC0.X �Z/! LC.X/.E/

in the Hilbert C.X/-module E induces using p�2 , a representation

� WC0.Z/! LC.X/.E/

which is associated with the field �x WC0.Z/ ! L.Ex/ of Hilbert spaces repre-
sentations in the associated field of Hilbert spaces, obtained by localizing at any
given x 2 X .
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Definition 4.4. The C.X/-representation

y� WC0.X �Z/! LC.X/.E/

will be called a fibrewise ample representation if for any x 2 X , the representation
�x WC0.Z/! L.Ex/ is ample, i.e. for any x 2 X , �x is non-degenerate and one has

�x.f / 2K.Ex/ H) f D 0; for any f 2 C0.Z/:

The right regular representation of � in the Hilbert space `2� is denoted �, and
its tensored product by the identity of `2N is the unitary representation �1 of �
in `2�1. We shall use the following generalization of the PPV theorem, whose
detailed proof is tedious and is expanded in [8].

Theorem 4.5. Let y�1 and y�2 be two fiberwise ample �-equivariant representations
of A D C0.X � Z/ in the Hilbert �-equivariant C.X/-modules C.X/ ˝ H1 and
C.X/ ˝ H2 respectively. Then, identifying each y�i with the trivially extended
representation

�
y�i 0
0 0

�
that is further tensored by the identity of `2�1, there exists a

�-invariant unitary operator with finite propagation

W 2 LC.X/.C.X/˝ .H1 ˚H2/˝ `
2�1; C.X/˝ .H2 ˚H1/˝ `

2�1/;

such that

W �y�2.'/W � y�1.'/ 2 C.X/˝KŒ.H1 ˚H2/˝`
2�1�; for all ' 2 C0.X �Z/:

Using Theorem 4.5, we can now give the details of the proof of the Paschke–
Higson theorem.

Proof of Theorem 4.1. We shall construct a group homomorphism

P 0WKK1�.Z;X/! K0.Q
�
�.X; .Z; `

2�1 ˝ L2Z//;

which will be an inverse for the Paschke–Higson morphism P . The argument is
similar to [11, Appendix A], except that we don’t use Kasparov’s generalization of
Voiculescu theorem and rather apply the PPV result.

Step 1. Let Œ.�; E; F /� 2 KK1�.Z;X/. We may assume as usual that � is non-
degenerate and that F is self-adjoint. We may also replace if necessary L2Z by its
amplification .L2Z/1 if needed. We assume for simplicity that this amplification is
not needed. We first proceed to some reductions in order to be in position to apply
Theorem 4.5. Adding a degenerate cycle of the form

Œy�Y ; L
2Z ˝ C.X/; id�
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and using the non-equivariant Kasparov stabilization theorem, we obtain a cycle of
the form

Œ�1; L
2Z ˝ C.X/; F1�;

which endowedwith the transported�-action, lies in the sameKK1� -class as Œ�; E; F �.
More precisely, the representation �1 is the transport of the representation � ˚ y�Y
via conjugation with the unitary given by Kasparov stabilisation isomorphism

E ˚ L2Z ˝ C.X/ Š L2Z ˝ C.X/:

The representation is then fiberwise ample with our assumptions. Note that the
�-action in the new cycle, is also taken to be the transport through the Kasparov
isomorphism of the �-action on E ˚ .L2Z ˝ C.X// (with the second component
endowed with its usual �-action inherited from the action on Z). In particular this
action V may differ from the original �-action on L2Z˝C.X/. The operator F1 is
of course the transport of F ˚ id via the same Kasparov isomorphism.

Step 2. EmbedL2Z˝C.X/ equivariantly in `2�˝L2Z˝C.X/ via an equivariant
isometry

S WL2Z ˝ C.X/! `2.�/˝ L2Z ˝ C.X/;

defined by the following formula which uses a cut-off function c 2 Cc.X �Z/:

S.e/ D
X
g2�

ıg�1 ˝ �1.g
p
c/.e/ for e 2 Cc.Z �X/;

where the �-action on L2Z ˝C.X/ is given by the action V from Step 1, while the
�-action on `2.�/˝ L2Z ˝ C.X/ is given by the right regular representation of �
on `2� tensored by the same action V . Notice that S� is induced by the formula

S�.ıg ˝ e/ D �1.g
�1
p
c/.e/;

and hence we get that the projection SS� is induced by the formula

SS�.ık ˝ e/ WD
X
g2�

ıg�1 ˝ �1
�p
.gc/.k�1c/

�
.e/:

Now the Kasparov �-equivariant cycle�
S�1.�/S

�; SS�.`2� ˝ L2Z ˝ C.X//; SF1S
�
�

represents the same KK� -class as Œ�1; L2Z ˝ C.X/; F1�. Note that since

S�1.�/ D .id`2� ˝�1.�//S;

the projection SS� commutes with id`2� ˝�1 and we have the relation

S�1.�/S
�
D SS�.id`2� ˝�1.�//SS�
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where id`2� ˝�1 is viewed as a representation on `2�˝L2Z˝C.X/ as usual. Hence
the right hand side is a representation in theHilbertmoduleSS�.`2�˝L2Z˝C.X//,
indeed we have more precisely

SS�.id`2� ˝�1.�// D .id`2� ˝�1.�//SS�:

Adding a degenerate cycle of the form�
P 0.id`2� ˝�1/.�/P 0; P 0.`2� ˝ L2Z ˝ C.X//; idImP 0

�
where P 0 is the projection .id`2�˝L2Z˝C.X/�SS�/, we obtain a cycle�

�2 WD id`2� ˝�1; `2� ˝ L2Z ˝ C.X/; F2 WD .F1 ˚ id/
�

which represents the same KK� -class as the cycle obtained in Step 1. Notice that
we have here

P 0.id`2� ˝�1/.�/SS� D 0 and SS�.id`2� ˝�1/.�/P 0 D 0:

Step 3. Adding degenerate cycles to

Œ�2; `
2� ˝ L2Z ˝ C.X/; F2�

we may pass to a new �-equivariant Kasparov cycle�
�12 WD id`2N ˝�2; `

2�1 ˝ L2Z ˝ C.X/; F12 WD diag.F2; id; id : : :/
�

which represents the same KK� -class. Let us further add the degenerate cycle�
0; `2�1 ˝ L2Z ˝ C.X/; 0

�
to

Œ�12 ; `
2�1 ˝ L2Z ˝ C.X/; F12 �

with the�-action now taken as the one coming canonically from the�-action onX�Z
tensored with the right regular representation on the factor `2� and extended trivially
on `2N. We obtain in this way a new �-equivariant Kasparov cycle�

�3 WD �
1
2 ˚ 0; `

2�1 ˝ .L2Z ˚ L2Z/˝ C.X/; F3 WD F2
1
˚ 0

�
still remaining in the same KK� -class. Note that in the direct sum the first factor
has a �-action coming from Step 1 while the second factor carries the canonically
induced action.

Step 4. Since �3 is fibrewise ample and of the form id`2�1 ˝�1 ˚ 0, we are now in
position to apply Theorem 4.5, so we obtain a �-invariant unitary W such that

W�3.f /W
�
� .y�1Y .f /˚ 0/ 2KC.X/

�
`2�1 ˝ .L2Z ˚ L2Z/˝ C.X/

�
;
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for all f 2 C0.X � Z/. By Kasparov’s homological equivalence Lemma B.1, the
cycles �

�3; `
2�1 ˝ .L2Z ˚ L2Z/˝ C.X/; F3

�
and

�
y�1Y ˚ 0; `

2�1 ˝ .L2Z ˚ L2Z/˝ C.X/; F4
�
;

live in the same KK� -class. Here of course F4 WD WF3W
�. It is worth pointing

out that:
(a) the equivariant unitary W interchanges the copies of `2�1 ˝ L2Z ˝ C.X/ in
the direct sum with the two different �-actions as described in Step 3.

(b) if W and W 0 are two equivariant unitaries intertwining �2 ˚ 0 and y�1Y .f /˚ 0
up to compacts, then the unitary W 0W � intertwines y�1Y .f / ˚ 0 with itself up to
compacts, so another application of Kasparov’s homological equivalence LemmaB.1
applied to S D W 0W � and the representations �1 D �2 D y�

1
Y ˚ 0 shows as well

that the cycles �
y�1Y ˚ 0; `

2�1 ˝ .L2Z ˚ L2Z/˝ C.X/;WF3W
�
�

and
�
y�1Y ˚ 0; `

2�1 ˝ .L2Z ˚ L2Z/˝ C.X/;W 0F3.W
0/�
�

are in the same KK� -class.

Step 5. Let zF3 be the .1; 1/-entry in the matrix decomposition of F3. Then the cycle

Œy�1Y ˚ 0; `
2�1 ˝ .L2Z ˚ L2Z/˝ C.X/; F4�

is in the same KK� -class as the cycle

Œy�1Y ; `
2�1 ˝ L2Z ˝ C.X/; F5 WD W11 zF3W

�
11�:

Notice that the off-diagonal entries in the matrix decomposition of F4 are locally
compact and that the cycle corresponding to the .2; 2/ element is degenerate. Lastly,
we modify F5 so that it is �-invariant by using the properness and cocompactness of
the action. This is done by replacing as usual F5 by

Av
�
y�1Y .
p
c/F5y�

1
Y .
p
c/
�

for a compactly supported continuous cut-off function c. The cycle for this latter
operator induces the same KK� -class since it is a locally compact perturbation
of F5. Note that the new �-equivariant replacement has finite propagation as well;
the propagation being bounded above by diam.supp.c//. We continue to denote
by F5 the new �-invariant operator, by abuse of notation.

Step 6. We are now in position to define define the allowed inverse map

P 0WKK1�.Z;X/! K0.Q
�
�.X I .Z; `

2�1 ˝ L2Z//
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by setting

P 0
�
Œ�; E; F �

�
WD

h
q
�1
2
.W11W

�
11 C F5/

�i
where

qWD��.X I .Z; `
2�1 ˝ L2Z//! Q��.X I .Z; `

2�1 ˝ L2Z//

is the quotient projection. The operator F6 WD q.12 .W11W
�
11CF5// is then a projec-

tion inQ��.X I .Z; `
2�1˝L2Z//, see Lemma 4.6 below. Let us check now that P 0

is well defined.
Indeed, if Ft ; t 2 Œ0; 1� is an operator homotopy betweenKK� -cycles .�; E; F0/

and .�; E; F1/, then tracing the construction of the map P 0 above, one easily deduces
that the corresponding projections F 06 and F 16 are operator homotopic via F t6 ,
t 2 Œ0; 1�. Suppose on the other hand that .�; E; F / is degenerate, then it is operator
homotopic to the cycle .�; E; id/. Again tracing the construction of F6 we see that it
is given by q.W11W �11/. Therefore, we have

P 0
�
Œ�; E; F �

�
D P 0

�
Œ�; E; id�

�
;

while due to property (3) in the proof of Lemma 4.6 below we have that

q.W11W
�
11/ D q.id/:

By a straightforward adaptation of the Eilenberg swindle argument in [14, Proposi-
tion 8.2.8], it is easily seen that

Œid� D 0 2 K0.D��.X I .Z; `
2�1 ˝ L2Z//

and thus
ŒF6� D q�Œid� D 0 2 K0.Q��.X I .Z; `

2�1 ˝ L2Z//:

Finally, by using Remark (2) in Step 4 above, one obtains invariance under unitary
equivalence of cycles. Thus P 0 is well-defined and it is also straightforward to check
that it is a group homomorphism.

It is now clear, using property (3) in the proof of Lemma4.6 below, thatP P 0 D id,
so that P is surjective. Indeed, we have by definition of P that P .F6/ is represented
by the cycle �

�1Y ; `
2�1 ˝ L2Z ˝ C.X/; .F5 CW11W

�
11/ � id

�
:

Note that since the operator F5 C W11W �11 � id is a locally compact perturbation
of F5 due to property (3) in the proof of Lemma 4.6, the cycle�

�1Y ; `
2�1 ˝ L2Z ˝ C.X/; F5 CW11W

�
11 � id

�
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is in the same KK� -class as�
�1Y ; `

2�1 ˝ L2Z ˝ C.X/; F5
�
;

which by the constructions in Steps 1–5 above, is in the same class as the original
cycle .�; E; F / that we started out with in Step 1. This shows that P P 0 D id
on KK1�.Z;X/.

We now show by direct inspection that P is injective. Indeed, if the image cycle

Œ�1Y ; `
2�1 ˝ L2Z ˝ C.X/; 2P � id�

is degenerate, one shows that an Eilenberg swindle argument applies as follows. The
operator F WD 2P � id then satisfies the following relations:

ŒF; �1Y .a/� D 0 and �1Y .a/.F
2
� id/ D 0; 8a 2 C.X/:

In particular, the first relation implies that

ŒP; �1Y .a/� D 0 for all a 2 C.X/;

and the second relation implies that P 2 � P D 0, since �1Y is a non-degenerate
representation. Therefore P 2 Proj.D��.X I .Z; `

2�1 ˝ L2Z// is a degenerate
element and is susceptible to an Eilenberg swindle again as in [14, Proposition 8.2.8].
Therefore the class

ŒP � D 0 2 K0.D
�
�.X I .Z; `

2�1 ˝ L2Z//;

thus
q�ŒP � D 0 2 K0.Q

�
�.X I .Z; `

2�1 ˝ L2Z//:

In general, if there exists an operator homotopy between the class

.�1Y ; `
2�1 ˝ L2Z ˝ C.X/; 2P � id/

and a degenerate cycle, the operator homotopy lifts to a homotopy of projections
in Q��.X I .Z; `

2�1 ˝ L2Z/, which connects the operator P to a degenerate
projection inD��.X I .Z; `

2�1 ˝L2Z// and therefore is zero in K-theory. Unitary
equivalences and direct sums can also be handled similarly.

We have used in the previous proof the following lemma:
Lemma 4.6. The operator F6 used above is a projection in the C �-algebra

Q��.X I .Z; `
2�1 ˝ L2Z//:

Proof. Notice that the matrix elements of the Voiculescu unitary W satisfy the
following properties for any f 2 C0.X �Z/, denoting w D W11:
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1. Wij is �-invariant and has finite propagation, for 1 � i; j � 2;
2. �12 .f / � w�y�1Y .f /w � 0, w�12 .f /w� � y�1Y .f / � 0, W �12�2.f / � 0, and
y�1Y .f /W12 � 0;

3. y�1Y .f /.ww
� � id/ � 0 and .w�w � id/�2.f / � 0;

4. Œww�; y�1Y .f /� � 0;
5. ŒwF3w�; y�1Y .f /� � 0;
6. y�1Y .f /..wF3w

�/2 � ww�/ � 0.
All these properties can be checked by straightforward verification. Let us check for
instance property (6):

y�1Y .f /..wF3w
�/2 � ww�/ � wF3w

�
y�1Y .f /wF3w

�
� y�1Y .f /ww

�

� wF3�
1
2 .f /F3w

�
� y�1Y .f /ww

�

� w�12 .f /F
2
3w
�
� y�1Y .f /ww

�

� w�12 .f /w
�
� y�1Y .f /ww

�

� y�1Y .f / � y�
1
Y .f /ww

�
� 0:

Since
y�1Y .�/.F

2
6 � F6/ � y�

1
Y .�/..wF3w

�/2 � ww�/ � 0;

by the finite propagation of F6 in Step 6 in the proof of Theorem 4.1 and since w has
finite propagation, we get the conclusion.

5. The universal HR sequence

Our goal in this section is to provide the universal Higson–Roe sequence for these
locally compact étale groupoids. We denote by E� a locally compact Hausdorff
model for the classifying space of proper �-actions. So, � acts properly on E� with
the usual contractibility condition, see [23]. It is not true in general that the action
of � on E� is cocompact and we introduce the following definition.
Definition 5.1. We introduce the analytic surgery group S1.X Ì �/ associated with
the transformation groupoid X Ì � as:

S�C1.X Ì �/ WD lim
�!

Z�E�

K�
�
D��.X I .Z;L

2Z ˝ `2�1//
�
; for � D 0; 1 2 Z2;

where the direct limit is taken with respect to inclusion of �-invariant, �-compact
closed subspaces Z � E� , and using the system of group morphisms

iDZ0�Z WK�
�
D��.X I .Z

0; L2Z0 ˝ `2�1//
�
�! K�

�
D��.X I .Z;L

2Z ˝ `2�1//
�

associated with inclusions of cocompact closed subspaces of E� .
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Similar to the case of countable groups, the groups S�.X Ì�/ can be interpreted
as defect groups and will enter in a long exact sequence involving the Baum–Connes
maps, see [15–17] and also [7].

Recall on the other hand that the LHS group in the Baum–Connes morphism for
the groupoid X Ì � can be described as follows (see [2]):

RK�.X Ì �/ WD lim
�!

Z�E�

KK��.Z;X/;

where the limit is again taken with respect to the inductive system associated with the
inclusions i WZ0 ,! Z of �-compact closed subspaces of E� and using the induced
functoriality morphisms i�WKK��.Z

0; X/ ! KK��.Z;X/. We are now in position
to state the main theorem of this section.
Theorem 5.2. There exists a six-term exact sequence in K-theory:

� � � ! RK0.X Ì �/
�BC
0
���! K0.C.X/ Ìred �/! S1.X Ì �/

! RK1.X Ì �/
�BC
1
���! K1.C.X/ Ìred �/! � � �

where �BC� is the Baum–Connes assembly map for the groupoid X Ì � , � D 0; 1.
More precisely, we we have the six-term exact sequence which can be written as

(� D 0 and � D 1)

RK�.X Ì �/ //�BC
�C1 K�.C.X/ Ìred �/

ww
S�C1.X Ì �/

ff

Remark 5.3. Note that when X D ? is reduced to a point, we recover the classical
analytic surgery sequence of Higson–Roe [15, 16] for the group � .

An obvious important corollary is the following:
Corollary 5.4. The groupoid X Ì � satisfies the Baum–Connes conjecture if and
only if the groups S�.X Ì �/ are trivial.

Notice thatXÌ� satisfies the Baum–Connes conjecture if and only if the group �
satisfies the Baum–Connes conjecture with coefficients in the C �-algebra C.X/.
Therefore, for all the discrete groups � which satisfy the Baum–Connes conjecture
with commutatives coefficients, we get the vanishing of the defect groups S�.X Ì�/
for all compact �-spaces X as above. The proof of Theorem 5.2 uses most of
the results proved before as well as the Paschke duality isomorphism explained in
Section 4. Let us start with the following:
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Proposition 5.5. Assume that � acts properly and cocompactly on the locally
compact (Hausdorff) space Z and let i WZ0 ,! Z be a closed �-invariant subspace
as before. Then we have a commutative diagram of group homomorphisms
(i D 0; 1 2 Z2):

Ki .Q
�
�.X I .Z

0; L2Z0 ˝ `2�1///
i
Q

Z0�Z
����! Ki .Q

�
�.X I .Z;L

2Z ˝ `2�1///

PZ0

�

??y PZ
�

??y
KKiC1� .Z0; X/

i�
����! KKiC1� .Z;X/

where the vertical maps P �� are the Paschke duality isomorphisms described in
Theorem 4.1.

Proof. Let us treat the case i D 0. Consider the representation

� WC0.Z/! LC.X/.L
2Z ˝ `2�1 ˝ C.X//

given by � WD �1Z ˝ idC.X/. Similarly we define

� 0WC0.Z
0/! LC.X/.L

2Z0 ˝ `2�1 ˝ C.X//:

Let W WL2Z0 ˝ `2�1 ! L2Z ˝ `2�1 be a Roe–Voiculescu covering �-isometry
for the inclusion map i WZ0 ! Z. Then the map iQZ0�Z is induced by

AdW WQ��
�
X I .Z0; L2Z0 ˝ `2�1/

�
! Q��

�
X I .Z;L2Z ˝ `2�1/

�
Therefore, the composite map

PZ
0 ı i

Q
Z0�Z

is given for P 0 2 Proj.Q��.X I .Z;L
2Z ˝ `2�1/// by the formula

PZ
0 ı i

Q
Z0�Z

�
ŒP 0�

�
D
��
�;L2Z ˝ `2�1 ˝ C.X/; 2.W ˝ idC.X//P 0.W � ˝ idC.X// � id

��
:

Let i�WC0.Z/! C0.Z
0/ be the restriction map. Then the composite map i� ı PZ0

0

is given by

i� ıPZ0

0

�
ŒP 0�

�
D
��
� 0 ı i�; L2Z0 ˝ `2�1 ˝ C.X/; 2P 0 � id

��
:

Consider the projection S D WW � which induces a decomposition ofL2Z˝`2�1
into a direct sum H1 ˚H2, where H1 WD Im.S/ and H2 WD Im.id�S/. There is
a corresponding decomposition of the Hilbert module L2Z ˝ `2�1 ˝ C.X/ into
orthocomplemented submodules:

L2Z ˝ `2�1 ˝ C.X/ D E1 ˚E2



28 M.-T. Benameur and I. Roy

where E1 D Im.S ˝ idC.X// and E2 D Im..id�S/ ˝ idC.X//. In particular, the
operator

W ˝ idC.X/WL2Z0 ˝ `2�1 ˝ C.X/! E1

is then a unitary isomorphism. Now, the operator

2.W ˝ idC.X//P 0.W � ˝ idC.X// � idL2Z˝`2�1˝C.X/
2 LC.X/.L

2Z ˝ `2�1 ˝ C.X//

can be expressed in matrix form as follows:

2.W ˝ idC.X//P 0.W � ˝ idC.X// � id

D

�
.W ˝ idC.X//.2P 0 � id/.W � ˝ idC.X// 0

0 � idE2

�
:

Therefore we have the following chain of equivalences in KK1�.Z;X/:

.� 0 ı i�; L2Z0 ˝ `2�1 ˝ C.X/; 2P 0 � id/
�
�
.W ˝ idC.X//.� 0 ı i�/.�/.W � ˝ idC.X//; E1;

.W ˝ idC.X//.2P 0 � id/.W � ˝ idC.X//
�

�
�
.S ˝ idC.X//�.�/.S ˝ idC.X//; E1; .W ˝ idC.X//.2P 0 � id/.W � ˝ idC.X//

�
�
�
.S ˝ idC.X//�.�/.S ˝ idC.X//˚ ..I � S/˝ idC.X//�.�/..I � S/˝ idC.X//;

E1 ˚E2; .W ˝ idC.X//.2P 0 � id/.W � ˝ idC.X//˚� idE2
�

D
�
�;L2Z ˝ `2�1 ˝ C.X/;

2.W ˝ idC.X//P 0.W � ˝ idC.X// � idLZ˝`2�1˝C.X/
�
:

The first equivalence is induced by unitary conjugation, the second equivalence is
due to Lemma B.1 and the last equivalence corresponds to addition of a degenerate
cycle. Hence, the proof is complete for i D 0. The proof for i D 1 is similar and is
omitted.

Corollary 5.6. The Paschke duality isomorphisms described in Theorem 4.1, induce
the two well defined isomorphisms

P�W lim
�!

Z�E�

K�
�
Q��.X I .Z;L

2Z˝ `2�1//
� Š
�! RK�C1.X Ì�/; � D 0; 1 2 Z2:

Proposition 5.7. With the same assumptions as in Proposition 5.5, we have a comm-
utative diagram of group isomorphisms (i 2 Z2):

Ki .C
�
� .X I .Z

0; L2Z0 ˝ `2�1///
iC
Z0�Z
����! Ki .C

�
� .X I .Z;L

2Z ˝ `2�1///

MZ0

�

??y MZ
�

??y
Ki .C.X/ Ìred �/

id
����! Ki .C.X/ Ìred �/:
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Here M�� is the Morita isomorphism described in [7, Section 2], applied to the
transformation groupoidG D X Ì� and for the cocompact properG-spacesX�Z0
and X �Z.

Proof. LetW WL2Z0 ˝ `2�1 ! L2Z ˝ `2�1 be a Roe covering �-isometry over
the inclusion i WZ0 ,! Z. Then the map idC.X/˝W sends C.X/˝ Cc.Z0; `2�1/
inside the Hilbert module L2XÌ�.X � Z/ ˝ `

2�1, see [7, Section 2]. Indeed, the
isometry W has finite propagation and sends any continuous compactly supported
function from Cc.Z

0; `2�1/ to a Z-compactly supported class in L2.Z; `2�1/.
Moreover, we have for any ˛ 2 C.X/ and � 2 Cc.Z0; `2�1/:

h˛ ˝W�; ˛ ˝W�iC.X/Ì�.x; / D Œx̨.
�˛/�.x/hW�; �.W�/iL2Z˝`2�1 :

But W is a �-equivariant isometry from L2Z0 ˝ `2�1 to L2Z ˝ `2�1, so we
deduce

h˛ ˝W�; ˛ ˝W�iC.X/Ì�.x; / D Œx̨.
�˛/�.x/h�; �.�/iL2Z˝`2�1 :

This shows that

h˛ ˝W�; ˛ ˝W�iC.X/Ì� D h˛ ˝ �; ˛ ˝ �iC.X/Ì� :

Moreover the induced isometry, denoted

yW WL2XÌ�.X �Z
0/˝ `2�1 ! L2XÌ�.X �Z/˝ `

2�1;

is adjointable. In particular, it is Cc.X � �/-linear but this can be checked immed-
iately, as for � 2 Cc.X �Z0; `2�1/ and f 2 Cc.X � �/ one has

yW .�f / D yW

�X
2�

f ./.�/

�
D

X
2�

f ./.idC.X/˝W /.�/

D

X
2�

f ./.idC.X/˝W /� D yW .�/f:

In a similar computation, one sees that

.idC.X/˝W / ıˆX�Z
0

D ˆX�Z ı . yW ˝� idEXÌ� /:

We have denoted hereˆX�Z the isomorphism of [7, Proposition 2.16] for the proper
cocompact space X � Z, and similarly for X � Z0, but that we have tensored with
the identity of the �-representation `2�1. So, we have

ˆX�Z W
�
L2XÌ�.X �Z/˝ `

2�1
�
˝� EXÌ� �! C.X/˝ L2Z ˝ `2�1;

and similarly for ˆX�Z0 .
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Notice now that the Morita isomorphism for X �Z as recalled in Section 2, and
tensored with the identity of `2�1, is given as Kasparov product with the class in

KK
�
C �� .X I .Z;L

2Z ˝ `2�1//; C.X/ Ìred �
�

of the Kasparov cycle�
.ˆX�Z� /�1; L2XÌ�.X �Z/˝ `

2�1; 0
�
:

See again [7] for the details. Indeed ˆX�Z� is the map

T 7! ˆX;Z ı .T ˝� id/ ı .ˆX;Z/�1;

which induces an isomorphism from the compact operators ofL2XÌ�.X�Z/˝`
2�1

to the C �-algebra C �� .X I .Z;L
2Z ˝ `2�1//. The same construction works for Z0

in place of Z.
On the other hand, the Kasparov product iCZ0�Z˝MZ

� is represented by the cycle�
L2XÌ�.X �Z/˝ `

2�1; .ˆX�Z� /�1 ı AdidC.X/˝W ; 0
�
:

Using the isometry yW we also see that the class MZ0

� can be represented by the cycle�
Ad yW ı.ˆ

X�Z0

� /�1; yWL2XÌ�.X �Z
0/˝ `2�1; 0

�
:

which in turn coincides with the cycle�
.ˆX�Z� /�1 ı AdidC.X/˝W ; yWL

2
XÌ�.X �Z

0/˝ `2�1; 0
�
:

It thus remains to show that this latter cycle is equivalent to the cycle�
.ˆX�Z� /�1 ı AdidC.X/˝W ; L

2
XÌ�.X �Z/˝ `

2�1; 0
�
:

Notice though that for any T 2 C �� .X I .Z
0; L2Z0 ˝ `2�1//, and any � in the range

of the projection id� yW yW � on the Hilbert module L2XÌ�.X � Z
0/ ˝ `2�1 over

C.X/ Ìred � , we have�
.ˆX�Z� /�1 ı AdidC.X/˝W

�
.T /.�/ D 0;

since � 2 Ker. yW �/ and by the relation

.ˆX�Z� /�1 ı AdidC.X/˝W D Ad yW ı.ˆ
X�Z0

� /�1:

Therefore, the cycle�
.ˆX�Z� /�1 ı AdidC.X/˝W ; L

2
XÌ�.X �Z/˝ `

2�1; 0
�

is indeed equivalent to the cycle�
.ˆX�Z� /�1 ı AdidC.X/˝W ; yWL

2
XÌ�.X �Z

0/˝ `2�1; 0
�
:
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To sum up, we have proved the following:
Proposition 5.8. With our notations, we have a commutative cube (for i 2 Z2),
i.e. all the square faces commute:

Ki .Q
�
� .X I .Z

0;L2Z0 ˝ `2�1/// Ki .Q
�
� .X I .Z;L

2Z ˝ `2�1///

KiC1.C
�
� .X I .Z

0;L2Z0 ˝ `2�1/// KiC1.C
�
� .X I .Z;L

2Z ˝ `2�1///

KK
iC1
� .Z0;X/ KK

iC1
� .Z;X/

KiC1.C.X/Ìred �/ KiC1.C.X/Ìred �/

Proof. We have shown in Proposition 5.7 that the front vertical square commutes
with all arrows as isomorphisms and with the bottom horizontal morphism being the
identity. The top horizontal square commutes, because we may use the same Roe–
Voiculescu covering �-isometry over the inclusion i WZ0 ,! Z in order to define
iC� and iQ� . The back vertical square commutes by Proposition 5.5. The bottom
horizontal square is commutative as a classical result from the construction of the
Baum–Connes map using the Michschenko idempotent and not depending on the
choice of a particular cut-off function, see for instance [23]. The two remaining
squares, say the left and right side squares, commute for any étale groupoid G
by [7, Theorem 3.3].

Theorem 5.2 is now essentially proved, but let us finish this section by explaining
the main steps of this proof for the sake of completeness.

Proof of Theorem 5.2. For any proper cocompact �-space Z, we have the six-term
exact sequence (i 2 Z2):

Ki .Q
�
�
.X I .Z;L2Z ˝ `2�1///

@ // KiC1.C�� .X I .Z;L
2Z ˝ `2�1///

uu
KiC1.D

�
�
.X I .Z;L2Z ˝ `2�1///

ii

which is associated with the short exact sequence of C �-algebras

0! C �� .X I .Z;L
2Z ˝ `2�1// ,! D��.X I .Z;L

2Z ˝ `2�1//

! Q��.X I .Z;L
2Z ˝ `2�1//! 0:

According to the Paschke isomorphism of Theorem 4.1 and the Morita isomorphism
we deduce a six term exact sequence:

KKiC1� .ZIX/ //�BC
iC1 KiC1.C.X/ Ìred �/

uu
KiC1.D

�
�.X I .Z;L

2Z ˝ `2�1///

hh
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where one has to replace the morphisms by their compositions with the appropriate
isomorphisms (Morita or Paschke). We have for instance shown in [7, Section 3] that
the composite map of the Boundary map @ with the inverse of the Paschke map is
nothing but the Baum–Connes map �BC for the �-space Z.

By using Proposition 5.8, we see that the natural map from the corresponding
six-term exact sequence associated with a closed �-subspace Z0 of Z to that of
the space Z is morphism of six-term exact sequences. Hence we may take the
direct limit of each of the components of these exact sequences with respect to
the inductive limit of all closed cocompact �-subspaces of the (locally compact)
classifying space E� for proper �-actions. This yields precisely the universal
Higson–Roe six-term exact sequence associated with the transformation groupoid
X Ì � as stated in Theorem 5.2.

A. Covering isometries

This appendix reviews some standard constructions of isometries associated with
coarse maps between proper metric spaces. In this appendix, Our metric �-spaces
will be proper but not necessarily cocompact and their metrics will always be assumed
to be �-invariant. We start with the notion of Roe covering isometry.
Definition A.1. [14] Suppose that .Z0; d 0/ and .Z; d/ are proper metric �-spaces.
Let f WZ0 ! Z be a coarse map. An isometry

W WL2Z0 ˝ `2�1 �! L2Z ˝ `2�1

is called a Roe covering �-isometry for f , if it is �-equivariant and has finite
propagation with respect to f , i.e. there exists an R > 0 such that

�1Z .�/W�
1
Z0.�

0/ D 0;

8� 2 Cc.Z/ and �0 2 Cc.Z0/ with dZ.supp.�/; f .supp.�0/// > R. In this case
the propagation ofW , denoted Prop.W /, is the least constant R satisfying the above
condition.

As we shall see below, every �-equivariant coarse map f WZ0 ! Z admits a Roe
covering �-isometry. In fact, only a coarse version of the �-equivariance of f is
needed.
Definition A.2. Suppose that .Z0; d 0/ and .Z; d/ are proper metric �-spaces. A
coarse map f WZ0 ! Z is coarsely equivariant if there exists a constantM � 0 such
that

d.f .gz0/; gf .z0// �M; 8g 2 � and z0 2 Z0:

Lemma A.3. Given a coarse and coarsely equivariant map f WZ0 ! Z between the
proper �-spaces, there always exist Roe covering �-isometries for f .
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Proof. By the classical construction of (non-equivariant) covering isometries, see
for instance [14, Chapter 6], there always exists such a finite propagation isometry
V WL2Z0 ! L2Z. We use a cut-off function c 2 C.Z0/ together with the averaging
procedure explained in [11, Appendix A] to get a �-invariant isometry

W W `2�1 ˝ L2Z0 ! `2�1 ˝ L2Z:

More precisely, recall that the cut-off function c 2 Cb.Z0/ satisfies the following
conditions:
� For any compact subspaceK 0 inZ0, the set fg 2 �; gK 0 \ Supp.c/ ¤ ;g is finite.

�
P
g2� g c D 1.

The existence of c is ensured since � acts properly on Z0 (see for instance [23]).
Then we may apply the results of [11], Appendix A for X D f�g, and deduce that
there exists a family .Ug/g2� of �-invariant operators on `2�1, such that

U �g Ug0 D ıg;g0 id and
X
g2�

UgU
�
g D id :

Set then
W WD

X
g2�

.Ug ˝ idL2Z/Eg.id`2�1 ˝V�Z0.
p
c//E 0

g�1
:

HereE andE 0 are the unitary representations of� in `2�1˝L2Z and `2�1˝L2Z0
respectively, obtained by tensoring the unitary representations X and X 0 in L2Z
and L2Z0, with the right regular action on `2� tensored further with the identity
of `2N. Notice that using the regular representation in `2� is not important here as
the formula for W doesn’t depend on this choice of representation. The operator W
is then an isometry which can be written as

W D
X
g2�

Ug ˝XgV�Z0.
p
c/X 0

g�1
:

It is then obvious, since c is vertically compactly supported (support condition
on c) and from the properness of the action of � on Z as well, that this sum
is locally finite. More precisely, for any given compactly supported continuous
function � 0 2 Cc.Z0/, the support of �Z0.

p
c/X 0

g�1
� 0 is only non-empty for a finite

number of g’s, depending of course on the chosen � 0. Since V has finite propagation,
the isometry W has finite propagation as well. Moreover, since dZ and dZ0 are
�-invariant, the propagation of W is estimated by the propagation of V plus the
propagation of the action of � . Indeed, consider � 2 Cc.Z/; �0 2 Cc.Z0/ such that

dZ.supp.�/; f .supp.�0/// > PropV CM1;
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whereM1 satisfies:

d.f .gz0/; gf .z0// �M1; 8g 2 � and z0 2 Z0;

then we have:

�1Z .�/W�
1
Z0.�

0/

D

X
g2�

�1Z .�/.Ug ˝ idL2Z/Eg.id`2�1 ˝V�Z0.
p
c//E 0

g�1
�1Z0.�

0/

D

X
g2�

.Ug ˝ idL2Z/�1Z .�/Eg.id`2�1 ˝V�Z0.
p
c//E 0

g�1
�1Z0.�

0/

D

X
g2�

.Ug ˝ idL2Z/Eg�1Z .g
�1�/.id`2�1 ˝V�Z0.

p
c//�1Z0.g

�1�0/E 0
g�1

D

X
g2�

.Ug ˝ idL2Z/Eg.id`2�1 ˝.�Z.g�1�/V�Z0.g�1�0//�Z0.
p
c//E 0

g�1

D 0

since for any g 2 � any z 2 Supp.�/ and any z0 2 Supp.�0/, we have

dZ.g
�1z; f .g�1z0// � dZ.g

�1z; g�1f .z0// � dZ.g
�1f .z0/; f .g�1z0//

D dZ.z; f .z
0// � dZ.g

�1f .z0/; f .g�1z0//

> .PropV CM1/ �M1;

so that
dZ.supp.g�1�/; f .supp.g�1�0// > PropV;

and hence the term �Z.g
�1�/V�Z0.g

�1�0/ vanishes. Note that in the above
computation we have also used the fact that the sum is finite. Thus we get

PropW � PropV:

We now show that W is a �-equivariant isometry, i.e. for any h 2 � ,

WE 0h D EhW

This is shown in the following routine computation:

WE 0h D
X
g2�

.Ug ˝ idL2Z/Eg.id`2�1 ˝V�Z0.
p
c//E 0

g�1
E 0h

D

X
g2�

.Ug ˝ idL2Z/Eg.id`2�1 ˝V�Z0.
p
c//E 0

g�1h

D

X
g02�

.Uhg0 ˝ idL2Z/Ehg0.id`2�1 ˝V�Z0.
p
c//E 0

.g0/�1
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D

X
g02�

..Uhg0 ˝ idL2Z/Eh/Eg0.id`2�1 ˝V�Z0.
p
c//E 0

.g0/�1

D

X
g02�

Eh.Ug0 ˝ idL2Z/Eg0.id`2�1 ˝V�Z0.
p
c//E 0

.g0/�1

D EhW;

where in the second last line we have used the equivariance property of the family of
isometries Ug ; g 2 � with respect to the right regular action � on `2� , i.e.

Ug.�h ˝ idL2Z/ D .�h ˝ idL2Z/Uh�1g for g; h 2 �:

We also used the more restrictive notion of Roe–Voiculescu covering �-isometry.

Definition A.4. Let f WZ0 ! Z be a continuous �-equivariant coarse map. A
bounded operator W 2 B.`2�1 ˝ L2Z0; `2�1 ˝ L2Z/ will be called a Roe–
Voiculescu covering �-isometry for f , if it satisfies the following properties:

1. W is a �-equivariant isometry;

2. W has finite propagation with respect to f ;

3. For any � 2 C0.Z/, we have W ��1Z .�/W � �
1
Z0.� ı f / 2K.`2�1 ˝ L2Z0/.

So, a Roe–Voiculescu covering �-isometry for f is a Roe covering �-isometry
for f which satisfies the extra condition (3.).

Lemma A.5. For any continuous coarse and coarsely equivariant map f WZ0 ! Z,
there exists Roe–Voiculescu covering �-isometries for f .

Proof. The Hilbert space `2N ˝ `2�1 ˝ L2.Z/ equipped with the representation
id`2N ˝�

1
Z of C0.Z/ is a very-ample representation (i.e. a countably infinite direct

sum of a fixed ample representation), so by [14, Lemma 12.4.6], there exists an
isometry

V W `2�1 ˝ L2.Z0/! `2N ˝ `2�1 ˝ L2.Z/

which has finite propagation and satisfies the condition:

V �.id`2N ˝ id`2�1 ˝�Z.�//V �.id`2�1 ˝�Z0.� ıf // 2K.`2�1˝L2.Z0//;

8� 2 C0.Z/:

Again, this isometry is not �-equivariant in general. We first compose V with a
unitary u1W `2N˝`2N ! `2N to get back from `2N˝`2�1 to `2�1, and obtain
the isometry:

xV WD .u1 ˝ id`2� ˝ idL2Z/ ı V W `2�1 ˝ L2.Z0/! `2�1 ˝ L2.Z/:
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Since u1 ˝ id`2� ˝ idL2Z commutes with the representation id`2�1 ˝�Z , it is
straightforward to check that xV has propagation bounded above by PropV , and it
satisfies the intertwining property:

xV �.id`2�1 ˝�Z.�// xV � .id`2�1 ˝�Z0.� ı f // 2K.`2�1 ˝ L2Z0/;

8� 2 C0.Z/:

Finally, using a cut-off function c 2 Cb.Z0/ as in the proof of Lemma A.3, we
replace xV by a �-invariant isometry W in the same way as in that proof, i.e.

W WD
X
g2�

.Ug ˝ idL2Z/Eg xV .id`2�1 ˝�Z0.
p
c//E 0

g�1
:

That the isometryW is a Roe covering �-isometry for f is clear, see again the proof
of Lemma A.3. It remains to verify Condition (3.). We have for � 2 C0.Z/:

W ��1Z .�/W D
hX
g2�

.Ug ˝ idL2Z/Eg xV .id`2�1 ˝�Z0.
p
c//E 0

g�1

i�
� .id`2�1 ˝�Z.�//

hX
h2�

.Uh ˝ idL2Z/Eh xV .id`2�1 ˝�Z0.
p
c//E 0

h�1

i
D

hX
g2�

.E 0
g�1

/�.id`2�1 ˝�Z0.
p
c// xV �E�g .U

�
g ˝ idL2Z/

i
� .id`2�1 ˝�Z.�//

hX
h2�

.Uh ˝ idL2Z/Eh xV .id`2�1 ˝�Z0.
p
c//E 0

h�1

i
D

X
g2�

.E 0
g�1

/�.id`2�1 ˝�Z0.
p
c// xV �E�g .U

�
g ˝ idL2Z/

� .id`2�1 ˝�Z.�//.Ug ˝ idL2Z/Eg xV .id`2�1 ˝�Z0.
p
c//E 0

g�1
;

which gives

W ��1Z .�/W D
X
g2�

.E 0
g�1

/�.id`2�1 ˝�Z0.
p
c// xV �.E�g .id`2�1 ˝�Z.�//Eg/

� xV .id`2�1 ˝�Z0.
p
c//E 0

g�1

D

X
g2�

.E 0
g�1

/�.id`2�1 ˝�Z0.
p
c// xV �.id`2�1 ˝�Z.g�1�//

� xV .id`2�1 ˝�Z0.
p
c//E 0

g�1

�

X
g2�

.E 0
g�1

/�.id`2�1 ˝�Z0.
p
c//.id`2�1 ˝�Z0.g�1� ı f //

� .id`2�1 ˝�Z0.
p
c//E 0

g�1

D

X
g2�

.E 0
g�1

/�.id`2�1 ˝�Z0.c�.g�1� ı f //E 0g�1
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D .id`2�1 ˝�Z0.� ı f //
X
g2�

.id`2�1 ˝�Z0.gc//

D .id`2�1 ˝�Z0.� ı f //
D �1Z0.� ı f /:

B. Kasparov’s homological lemma

We have used a classical result due to Kasparov but in the context of groupoid
equivariantKK-theory, see [18, Section 7, Lemma 2]. This is a classical result, well
known to experts, but we add it for completeness. So, G is here an étale Hausdorff
locally compact groupoid and we assume for simplicity that the space of units X is
compact. LetA;B be unital nuclear separableG-algebras and suppose that HG is an
absorbingG-Hilbert B-module, i.e. any countably generatedG-Hilbert B-module is
isometric to an orthocomplemented G-submodule of HG . Denote by EG.A;B/ the
set of triples .�;HG ; F /, where � WA! LB.HG/ is a G-equivariant representation
and F is a G-invariant operator modulo compact operators, which satisfies the usual
conditions of a KK-cycle:

ŒF; �.a/�; �.a/.F 2 � I /; �.a/.F � F �/ 2K.HG/; 8a 2 A

The equivalence relation on such triples is generated by unitary equivalence by
G-invariant unitaries, addition of degenerate cycles and operator homotopy.
LemmaB.1 (Kasparov’s homologicalKKG-equivalence lemma).LetA;B be nuclear
separableG-algebras and consider aG-equivariant representation�1WA!LB.HG/.
If .�2;HG ; F / 2 EG.A;B/ and there exists aG-invariant unitary S 2 L.HG/ such
that

S��1.a/S � �2.a/ 2K.HG/

then the cycles .�2;HG ; F / and .�1;HG ; SFS
�/ define the same KKG-class.

Proof. The proof in [18, pp. 561–562] can be used to prove the statement as follows.
Consider a pair .�; P /, where �WA ! LB.HG/ is a G-equivariant representation
and P 2 LB.HG/ is a G-invariant operator modulo compact operators such that we
have:

ŒP; �.a/�; �.a/.P 2 � P /; �.a/.P � P �/ 2K.HG/; 8a 2 A:

Any such pair gives rise to aKKG-class given by .�;HG ; 2P�id/ and conversely
a triple .�;HG ; F / representing a KKG-class gives rise to a pair .�; .F C 1/=2/
satisfying the above conditions. Two such pairs .�1; P1/ and .�2; P2/ are called
homological if P1�1.a/ � P2�2.a/, 8a 2 A. Homological pairs give rise to the
same KKG-class by the proof of [18, Section 7, Lemma 2]. Indeed, an explicit
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operator homotopy between the KKG-classes induced by .�1; P1/ ˚ .�2; 0/ and
.�1; 0/˚ .�2; P2/ is induced by the operator homotopy for pairs:��

�1 0

0 �2

�
;

1

1C t2

�
P1 tP1P2

tP2P1 t2P2

��
for 0 � t � 1:

Note that the direct sum HG ˚ HG is endowed with the diagonal G-action, with
respect to which the above operator matrix isG-equivariant up to compact operators.
Thus the operator homotopy goes through well-definedKKG-classes. We now claim
that .�1;HG ; SFS

�/ and .S�2S�;HG ; SFS
�/ are in the sameKKG-class. Indeed,

if we define:

P1 D
1

2
.SFS� C I / D P2; �1 D �1; �2 D S�2S

�;

then the pairs .P1; �1/ and .P2; �2/ are homological, and then give rise to theKKG-
classes of .�1;HG ; SFS

�/ and .S�2S�;HG ; SFS
�/, respectively. We then have a

chain of KKG-equivalences:

.�2;HG ; F / � .S�2S
�;HG ; SFS

�/ � .�1;HG ; SFS
�/:
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