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Homotopy Poisson algebras, Maurer-Cartan elements
and Dirac structures of CLWX 2-algebroids

Jiefeng Liu and Yunhe Sheng*

Abstract. In this paper, we construct a homotopy Poisson algebra of degree 3 associated to a
split Lie 2-algebroid, by which we give a new approach to characterize a split Lie 2-bialgebroid.
We develop the differential calculus associated to a split Lie 2-algebroid and establish the Manin
triple theory for split Lie 2-algebroids. More precisely, we give the notion of a strict Dirac
structure and define a Manin triple for split Lie 2-algebroids to be a CLWX 2-algebroid with two
transversal strict Dirac structures. We show that there is a one-to-one correspondence between
Manin triples for split Lie 2-algebroids and split Lie 2-bialgebroids. We further introduce
the notion of a weak Dirac structure of a CLWX 2-algebroid and show that the graph of a
Maurer—Cartan element of the homotopy Poisson algebra of degree 3 associated to a split Lie
2-bialgebroid is a weak Dirac structure. Various examples including the string Lie 2-algebra,
split Lie 2-algebroids constructed from integrable distributions and left-symmetric algebroids
are given.
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1. Introduction

The notion of a Lie algebroid was introduced by Pradines in 1967, which is
a generalization of Lie algebras and tangent bundles. Just as Lie algebras are the
infinitesimal objects of Lie groups, Lie algebroids are the infinitesimal objects of Lie
groupoids. See [40] for the general theory about Lie algebroids. The notion of a
Lie bialgebroid was introduced by Mackenzie and Xu in [41] as the infinitesimal of
a Poisson groupoid. To study the double of a Lie bialgebroid, Liu, Weinstein and
Xu introduced the notion of a Courant algebroid in [38] and established the Manin
triple theory for Lie algebroids. There are many applications of Courant algebroids.
See [11,19,20,28,33,48,50-52] for more details. In particular, the relation between
Dirac structures and Maurer—Cartan elements were studied in detail in [35, 38]. The
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notion of a Dirac structure was originally introduced by Courant in [17] to unify
symplectic structures and Poisson structures. Then it was widely studied and has
many applications, e.g. in generalized complex geometry [19,20], in the theory of
D-branes for the Wess—Zumino—Witten model [13], in moment map theories [12],
in Poisson geometry [34,44,45], in Dixmier—Douady bundles [3], in reduction
theory [22], in Lo-algebras [60] and in integrable systems [14]. See [10] for more
details.

Recently, people have paid more attention to higher categorical structures by
reasons in both mathematics and physics. A Lie 2-algebra is the categorification of a
Lie algebra [4]. The 2-category of Lie 2-algebras is equivalent to the 2-category of
2-term Lo-algebras. Due to this reason, an n-term Lo-algebra will be called a Lie
n-algebra. See [30,31,57] for more details of L -algebras. Usually an NQ-manifold
of degree n is considered as a Lie n-algebroid [59]. In [56], a split Lie n-algebroid is
defined using the language of graded vector bundles. The equivalence between the
category of split Lie n-algebroids and the category of NQ-manifolds of degree n was
given in [7].

The notion of a CLWX 2-algebroid was introduced in [37] as the categorification
of a Courant algebroid. There is a one-to-one correspondence between CLWX
2-algebroids and symplectic NQ-manifolds of degree 3, and the later can be used to
construct 4D topological field theory [1,21]. There is also a close connection between
CLWX 2-algebroids and the first Pontryagin classes of quadratic Lie 2-algebroids
introduced in [53], which are represented by closed 5-forms. The notion of a split
Lie 2-bialgebroid was also introduced in [37] and it is shown that the double of a split
Lie 2-bialgebroid is a CLWX 2-algebroid. The split Lie 2-bialgebroid used here is a
direct geometric generalization of the Lie 2-bialgebra introduced in [5, 16]. See [29]
and [6] for the more general notions of an L ,-bialgebra and an L ,-bialgebroid.

The first purpose of this paper is to establish the Manin triple theory for split
Lie 2-algebroids, i.e. to show that two transversal Dirac structures of a CLWX 2-
algebroid constitute a split Lie 2-bialgebroid. The second purpose of this paper is
to study the homotopy Poisson algebra associated to a split Lie 2-algebroid, and
establish the relation between its Maurer—Cartan elements and Dirac structures of the
CLWX 2-algebroid. Upon careful study, we found that we need to take two kinds
of Dirac structures into account, one is called a strict Dirac structure, served for the
first purpose, and the other is called a weak Dirac structure, served for the second
purpose. It is the weak Dirac structures that reflect properties of higher structures
and make the paper containing more meaningful contents. Due to aforementioned
important applications of Dirac geometry, it is natural to explore similar applications
of Dirac structures introduced in this paper, which will be studied in the future.

To study the Manin triple theory for split Lie 2-algebroids, we develop the
differential calculus for split Lie 2-algebroids in Section 3. In particular, we define
the coboundary operator, Lie derivatives, the contraction operator and give their
properties.
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In Section 4, first we define bracket operations [-]s, [, ]s, [, -, -]s on Sym(A[—3])
associated to a split Lie 2-algebroid +4 using the derived bracket [18,25,26], and show
that

(Sym(’A’[_?’])’ [']S’ [" ']S’ [" ) ]S)
is a homotopy Poisson algebra of degree 3. The notion of a homotopy Poisson
manifold of degree n was given in [32] in the study of the dual structure of a Lie
2-algebra. See also [8,9,15,25,42,58] for more applications of similar structures.
Then we use the usual differential geometry language to give a new characterization
of a split Lie 2-bialgebroid.

In Section 5, we introduce the notion of a strict Dirac structure of a CLWX
2-algebroid and establish the Manin triple theory for split Lie 2-algebroids. More
precisely, we show that there is a one-to-one correspondence between Manin triples
of split Lie 2-algebroids and split Lie 2-bialgebroids. Note that a strict Dirac structure
of a CLWX 2-algebroid is defined to be a maximal isotropic graded subbundle whose
section space is closed under the multiplication.

In Section 6, first we introduce the notion of a weak Dirac structure of a CLWX
2-algebroid, which is a Lie 2-algebroid such that there is a Leibniz 2-algebra
morphism from the underlying Lie 2-algebra to the underlying Leibniz 2-algebra
of the original CLWX 2-algebroid satisfying some compatibility conditions. Note
that the image is not closed under the multiplication in the CLWX 2-algebroid
anymore, and this is the main difference between strict Dirac structures and weak
Dirac structures. Such ideas had already been used in [55] to integrate semidirect
product Lie 2-algebras. Then we show that a Maurer—Cartan element  + K, where
HeA 1 ®A_,and K € A3A_,, of the homotopy Poisson algebra

associated to a split Lie 2-algebroid
A=(A2,A-1,l1,15,13,a)

gives rise to a split Lie 2-algebroid structure on #4*[3] such that (H*#, —H", —K")
is a morphism from the split Lie 2-algebroid #4*[3] to the split Lie 2-algebroid +4.
Consequently, the graph of (H f,—H 1) is a weak Dirac structure of the CLWX
2-algebroid A @ A4*[3]. Finally, we generalize the above result to the case of split Lie
2-bialgebroids. We also give various examples including the string Lie 2-algebra,
integrable distributions and the split Lie 2-algebroids constructed from left-symmetric
algebroids.

Acknowledgements. We give our warmest thanks to the referee for valuable comm-
ents and suggestions that improved the paper a lot.
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2. Leibniz 2-algebras

The notion of a strongly homotopy Leibniz algebra, or a Lods,-algebra was given
in [39] by Livernet, which was further studied by Ammar and Poncin in [2]. In [54],
the authors introduced the notion of a Leibniz 2-algebra, which is the categorification
of a Leibniz algebra, and proved that the category of Leibniz 2-algebras and the
category of 2-term Lods.-algebras are equivalent. Here we use a shift 1 version of
Leibniz 2-algebras.

Definition 2.1. A Leibniz 2-algebra 'V consists of the following data:

d
» acomplex of vector spaces V:V_, — V_y,

* bilinear maps [5: V; x V; — V441, where =3 <i 4+ j < =2,
e atrilinear map l3: V_; x V_1 x V_; — V_,,

such that for all w,x,y,z € V_; and m,n € V_;, the following equalities are
satisfied:

(a) dlx(x,m) = l(x,dm),

(b) dly(m,x) = —Ilr(dm, x),

(¢c) lr(dm,n) = —Ily(m,dn),

(d) diz(x.y,2) = b(x,1(y.2)) = 2(la(x, y), 2) = l2(y. [2(x, 2)),

(e1) [3(x,y,dm) = L(x,l2(y,m)) — L2(l2(x, y),m) — x(y, [2(x, m)),
(e2) —l3(x,dm,y) = L(x,l2(m, y)) — L2(l2(x,m), y) — l2(m, l2(x, y)),
(e3) —Il3(dm,x,y) = l2(m,l2(x,y)) + l2(l2(m, x), y) — L2(x, [2(m, y)),
(f) the Jacobiator identity:

ZZ(Xv 13()}’2’ w)) - lz(y,l3(X,Z, U))) + 12(2713()‘:7 Vs w)) - 12(13()(?, va)7 w)
- 13(12()6’ y)vZ’ U)) - 13()’, lZ(X’ Z)v w) - 13(%2’ lZ(X’ U)))
+ 13()6,12()7,2), w) + l3(X,Z, lZ(y’ U))) - 13()6, y’ZZ(Z’ U))) =0.

We usually denote a Leibniz 2-algebra by (V_5, V_1,d, [5, [3), or simply by V. In
particular, if /5 is graded symmetric and /3 is totally skew-symmetric, we call it a Lie
2-algebra. A Lie 2-algebra used in this paper is equivalent to a 2-term L, [1]-algebra.
Definition 2.2. Let 'V and 'V’ be Leibniz 2-algebras. A morphism F from V to 'V’
consists of:

e linear maps Fy: V_y — V’, and F»: V_, — V', commuting with the differen-
tial, i.e.
Fiod=d o F; (D

* abilinearmap F3:V_y x V1 — V/,,
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such that for all x, y,z € V_y, m € V_,, we have

Fily(x,y) — I5(F1(x), F1(y)) = d'F3(x, y),
Frly(x,m) — 1(Fi(x), F2(m)) = F3(x,dm), (2
Fala(m, x) — 15 (F2(m), Fi(x)) = —F3(dm, x),

and

- F2(13(x’ y’Z)) + lé(Fl(x)’ F3()”Z)) - lé(Fl (y)’ F3(X,Z))
+ I3 (F3(x, ), F1(2)) — F3(la(x, y), 2) + F3(x,12(y, 2))
— F3(y, a(x, 2)) + I5(F1(x), F1(y), Fi1(z)) = 0. (3)

In particular, if 'V and 'V’ are Lie 2-algebras and Fj is skew-symmetric, we obtain
the definition of a morphism between Lie 2-algebras.

3. Differential calculus on split Lie 2-algebroids

3.1. Characterization of split Lie 2-algebroids via the big bracket. The notion of
a split Lie n-algebroid was introduced in [56] using graded vector bundles. The
equivalence between the category of split Lie n-algebroids and the category of NQ-
manifolds of degree n was given in [7].

Definition 3.1. A split Lie 2-algebroid is a graded vector bundle A = A_; & A_,
over a manifold M equipped with a bundle map a: A—_; —> TM, and brackets
l;: T (Al A) — T'() of degree 1 fori = 1,2, 3, such that:

(1) (T'(A-2),T'(A-1),11,15,13) is a Lie 2-algebra;

(2) [, satisfies the Leibniz rule with respect to a:
LX', fY) = fL(X',Y) +a(X")(f)Y,

forall X! e T'(A_), f € C®(M),Y € I'(A);
(3) fori # 2,1; are C°°(M )-linear.
Denote a split Lie 2-algebroid by (A—», A_1, 11, 2,13, a), or simply by #A.

Split Lie 2-algebroids become active research objects recently. See [23,24,43,
54,56] for more examples and applications of split Lie 2-algebroids.

Lemma 3.2. Let (A_p, A_1,11, 12,13, a) be a split Lie 2-algebroid. Then we have:

a o 11 = 0, (4)
a(L(X', YY) =[a(XYH,a¥?)], VXLY'eD(4)). (5)
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Definition 3.3. Let A = (A—, A_1.l1,12,13,a) and A" = (4", A"}, 11,15,15.a")
be split Lie 2-algebroids over the same base manifold M. A morphism F from A
to 4’ consists of bundle maps

Flid_y — A", F*A_,— A,, and F*A%4_, — 4,

such that a’ o F! = a and (F!, F2, F3) is a morphism between the underlying Lie
2-algebras.

In the sequel, we describe a split Lie 2-algebroid structure on 4 = A_1 & A_, us-
ing the graded Poisson bracket {-, -} on the symplectic manifold M:=T*[3](A_1DA_>).
Denote by (x!, &7, 6%, p; & i+ k) a canonical Darboux coordinate on M, where x' is
a coordinate on M, (£7,60%) is the fiber coordinate on A_; & A_», (pi, £, 0k)
is the momentum coordinate on M for (x?,&/,6%). The degrees of variables
(xi, f;‘j, ok, Di. &), k) are respectively (0,1,2,3,2,1).

We introduce the tridegree of the coordinates (x*, £/, 6%, p;, & i 0k) as follows!:

((0,0,0), (0, 1,0), (1, 1,0), (1,1, 1), (1,0, 1), (0,0, 1)).

It is straightforward to check that the tridegree is globally well-defined. Denote by
C" (M) the space of functions on M of degree n. Then the space C” (M) is uniquely
decomposed into the homogeneous subspaces with respect to the tridegree,

cr(My= > P
i+j+k=n
The degree and tridegree of the symplectic structure

w =dx'dp; +de’d§; + dopdo*

is 3 and (1,1, 1) respectively and the degree and tridegree of the corresponding
graded Poisson structure {-, -} is —3 and (—1, —1, —1) respectively.
Now we consider the following fiberwise linear function u of degree 4 on M:

=1y () pi’ + paly (0)E:07
+ Sual (OEEE + 1ak 0807 + Lust ()0 EETER. (6)
where ,U«I;: “2;’ ,u3f.‘j, ;L4f‘j, /Lsfjk are functions on M. The function p can be
uniquely decomposed into

w= M(2,1,1) + M(1,2,1) + M(O,?:,l)’

'We thank the referee for pointing that the third entry is the fiberwise polynomial degree, the second
entry is the fiberwise polynomial degree after applying the Legendre transformation and the first entry is
chosen so that the sum is the total degree.
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where

D = b (0E 67, 2D = () pitl + st (OEETE + pal g 67,
M(0,3,1) — éusgjk(x)gléigj%-k.
Define

lllA_z —> A_l,
[:T(Ai)) xT'(A;) — T'(Ai4j41), —3=<i+j=<-2,

l3: /\3A_1 —> A_2
and a bundle mapa: A_;, — TM by

h(X?) = —{p®"D, X2}
XL YY) = —{u2D X1y,
L(X'.Y?) =—{{p">D X'} v, ()
L'y zh = —{{{u®>D. x"}. vz,
a(X")(f) = —{p">V. X1 1

forall X1, Y1, Z! € T(A_;), X2, Y2 € T(A_»), and f € C®(M).

Theorem 3.4. Let A = A_, ® A_1 be a graded vector bundle and (1 a degree
4 function given by (6). If {i,u} = 0, then (A—>, A—1,11,12,13,a) is a split Lie
2-algebroid, where 1y, 15, I3 and a are given by (7).

Conversely, if (A—p, A_1,11,15,13,a) is a split Lie 2-algebroid, then we have
{i, u} = 0, where u is given by (6), in which /Lllj pLzl] ,u3f‘] u4f-‘j, ,usfjk are given
by:

9 ;
a(gj) = 1 o 110) = paiki, b §) = pafék,

L(Ei.0)) = pay; O 13(E. &5 E) = s 0

3.2. Differential calculus on Lie 2-algebroids. Let A = (A—2, A_1,11,13,13,a)
be a split Lie 2-algebroid with the structure function p. Then we have the generalized
Chevalley-Eilenberg cochain complex (Sym(A*) = Sym*(4*), §), where the
set of k-cochains Sym¥ (A*) is given by

Symt(A*) = ) SymPI(A%)
p+2q9=k
with
SymP4(A*) = (AP A*)) © T'(Sym?(4*,))
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and the differential §: Sym* (4*) —> Symf+1(A*) is defined by?
8C) = {m. . ®)

If there is a Lie 2-algebroid structure on +A*[3], we use 6. to denote the
corresponding differential. The differential § can be written as

§=8+d+34,
where
§: SymP 9 (A*) —> SymP LI (4%),
d: Sym? 9 (A*) — SymP T4 (A*),
and 5 Sym?4(A*) —> SymP 3471 (A%)

are given by
B() = {p®M0 4 de) = (g 80 = (g
In particular, for ! € T'(4*,), we have
Sal(X?) = —(a', [1(X?)), V X?eT(A_).

ForallfeC"o(M),oz1 eF(Afl),azel"(Afz),Xl, y! el"(A_l),YzeF(A_z),
we have

d(NHXY = a(XH(f),
daeHXL YY) =aXH, Y'Y —a@He', X)) — (@', L(X' YY),
de?) (X1, Y?) =a(XH)(?, Y?) — (a2, (X!, Y?)).
For all &® € T'(A*,), we have
S2(XNL, YL, ZY) = — (15X, Y, ZY),e?), VXLYLZ'eT(4).

By the properties of graded Poisson bracket, for all ¢ € Sym* (A*) and ¢, €
Sym’ (A*), we have

8(1 © ¢2) = 8(¢1) © 2 + (—1)¥¢1 © 8(¢p2). )
Define the Lie derivative L°: Sym?*4 (A*) —> Sym?~ 14T (A*) by
LO(¢) = —{n®1D g}, Vo € SymP9(A¥). (10)

2 Sym(A™*) can be embedded into the Poisson algebra C *° (M) through the pullback of the canonical
map T*[3](A—; & A_3) — A_1 & A_>. On the other hand, by the Legendre transformation,
T*[3](A—1 & A_>) is isomorphic to T*[3](A*; & A*,)[3] as graded symplectic manifolds. Thus,
Sym(+A) can also be embedded into the Poisson algebra C°°(M). See [48] for more details on the
Legendre transformation.
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In particular, for all ! € T'(A*,), we have
(L°ah), X2) = (@', 11(X?)), V X?eT(A_).

It is obvious that L%(a!) = I} (a?).
For all X! €T'(A—1), define the Lie derivative

L1 :SymP 4 (A*) —> SymP7(A*)

L =—{n">Y X" ¢} V¢ e SymP9(A%). (11
In particular, for all al e I'(4%;), i = 1,2, we have
(Lo Yy =aX)(Y' o) — (' (X" Y)), VY eT(Ady).
It is straightforward to deduce that
Ly (p0y) = LY 90y +¢OLY ¥, V¢ € SymF(A%), ¥ € Sym (4%). (12)
For all X2 € I'(A_,), define the Lie derivative

L3%,:Sym? 4 (A*) —> SymPTHa71(A%)
by
L2,¢ = —{{n2D X2 ¢}, V¢ € SymPa(AY). (13)

In particular, for all @ € T'(A*,), we have
(L3, Y1) = —(@® (X2 YY), YY'el(Ay).
It is easy to see that

L2,(¢0Y) = L3¢y +(-D* 9O L2, ¥, V¢ € Sym*(A*), ¥ € Sym’ (A*).

(14)
Forall X!, Y! € T'(4_,), define the Lie derivative
L;l,yl :SymP (A*) —> SymPTHa~1(A%)
by
Ly = =@V X1 Y 6}, Vg eSymPI(AY).  (15)

In particular, for all «® € T'(A*,), we have

(L3

Yyt Zh) = =@ LxL YL Zh), VvZ'el(d).
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It is easy to see that
Ly @0¥) =Ly y1d OV + (=1F¢ 0 Ly 1 ¥, (16)

for all ¢ € Sym*(A*), ¥ € Sym! (A*).
Forall X € '(A), a! € T'(4%)), ozjz- € I'(A*,), define the contraction operator

Lx:SymP 4 (A*) — SymP L4 (A*) @ SymP 4L (A*) by
LX((X} @0[160[%@@“;)

)" (X, 0l)a] O 0 @ 0a,00] 0 O]

1 Mm

q
+Y (X0}l 0--0al0al0--0a20--- 0.
ji=1

For any ¢ € Sym* (4*), let us denote by
¢(X1,X2,...,Xk)=LXkLXk_1'~-LX1¢, VX,' EF(A).
Thus, for all X! € T'(A_1), ¢ € Sym*(A*), and ¥; € T'(+), we have

ptq

L)Y Vi) = a(X (Y. Vi) = D (. LX), V).
i=1

The following lemmas list some properties of the above operators.

Lemma 3.5. Forall X' €T (A_;), X2€T(A_,), f €C®(M), and ¢ € Sym* (A*),
we have

Ly f¢ = f(Ly:19) +a(X)()¢. L}Xﬂb = f(Lyi9)+df Oix1¢
L2 ¢ = f(Ly29), Lﬁ«de) = f(L29) —df O ix20,
L1 = 1x1dp + diy1 9, L3¢ = 1x2d¢ — diy2¢.
Lemma 3.6. Forall X',Y' € T(A_y), X2 € T'(A_2), ¢ € Sym*(A*), we have
Ly xiyn® = LyiLyid + Ly Lyi¢ = =Ly y1 L2@) = LO(L1 y19), (A7)
L x1y2® = LxiLy2¢ + Ly Lyid = —L] y2) x19. (18)

Lemma3.7. Forall X', Y! € T(A_y), X? € T'(A-,), a! € T(A*)), a? € T(4%,),
we have

Uy ynda! = Lyyyida! + 1 Lyda = =Ly, o ljal, (19)
tyxt ynde® = Lygiyrda® +iy1 Ly da® = =I7 Ly 102, (20)

le(Xl,Yz)docz — L;llyzdaz + LYzLildaz = _Lll(Y2),X10‘2' 21
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If A*[3] is a split Lie 2-algebroid, we use £°, £!, £2, and £3 to denote the
corresponding Lie derivatives.

4. Homotopy Poisson algebras of degree 3 associated to split Lie 2-algebroids
and split Lie 2-bialgebroids

4.1. Homotopy Poisson algebras of degree 3 associated to split Lie 2-algebroids.
Associated to a Lie algebroid A, we have the Gerstenhaber algebra (I'(A® A), A, [+, ]),
which is also a Poisson algebra of degree —1, where A®4 = Y, A¥A and [-, ] is the
Schouten bracket on I'(A*A). This algebra plays very important role in the theory
of Lie algebroids. Note that I'(A®A) can be understood as the symmetric algebra
of A[—1] and elements in T'(A* A) are of degree k. This algebra can be obtained
by the derived bracket as follows. Consider the shifted cotangent bundle 7*[2] A[1],
which is a symplectic manifold of degree 2. The corresponding Poisson structure is
of degree —2. The Lie algebroid structure is equivalent to a degree 3 function k on
T*[2]A[1] which is fiberwise linear. Then the Schouten bracket on I'(A®A) can be
obtained by

[P, 0] = —{{k, P}, 0}, V P eT(~FA), 0 e T(A'A).

By the fact that the degree of « is 3 and the degree of the Poisson bracket is —2, we
deduce that the degree of the Schouten bracketis 3 —2 —2 = —1.

Now for a split Lie 2-algebroid, using the above idea, we define higher bracket
operations on its symmetric algebra using the canonical Poisson bracket on the shifted
cotangent bundle.

Given a split Lie 2-algebroid A = (A_3, A_1,!1,12,13,a) with the structure
function p given by (6), denote by (Sym(A[-3]) = D, Sym* (A[—3]), ©) the
symmetric algebra of 4[—3], in which Sym* (A[—3]) is given by3

SymF(A[-3]) = ) symP9(A[-3]).
p+2q=k

where

Sym??(A[-3]) = [ (AP A_) © T'(Sym?(4_y)).

We will use | - | to denote the degree of a homogeneous element in Sym(A[—3]).
For all P € Sym*(A[-3]), O € Sym! (4A[-3]), R € Sym™ (A[—3]), define

[1s: SymF (A[-3]) —> SymF T (A[-3])

3For the shifted vector bundle #[—3], elements in T'(A—5>) are of degree 1 and elements in T'(A4_1)
are of degree 2.
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by
[P]s = —{n @D, P}, (22)
Define
[, ]s: Sym* (A[—3]) x Sym’ (A[-3]) —> Sym* =2 (A[-3])
by
[P.Qls = —{{u">V. P}, 0} (23)
Define

[, -]s: SymF (A[=3]) x Sym' (A[-3]) x Sym™ (A[-3]) —> Sym* T +m75(4[-3])
by
[P.Q.Rls = —{{{n®>. P}, 0}. R}. (24)
Comparing with (7), it is straightforward to obtain that
Lemma 4.1. With the above notations, forall X', Y, Z' e T'(A_), X? € T'(4_,),

we have

[(X%)s = L(X?), [X' fls =a(X)(f), [X'.Y']s=hLX"Y,
X', X2g = L(X" X%, [XLYL2zYs=0nLx"Y"'2ZY.
For @ € T'(A™), define

la: Sym? 4 (A[-3]) —> Sym? 14 (A[-3]) @ Sym? 47! (A[-3])
by
W(X{ 00X, 0X] O 0X2)
p

=> (@ X)X{ 00X 00X, 00X 00X}
i=1

q
+) )T e X)X 00X, 0X] 00 X200 X,
j=1

where X! € T'(4-[-3]), X2 e I'(A-z[-3)).
For all P € Sym? (A[— 3]) let us denote by

Py, ....00p) = lg, - lgy P, Vo € T(A").

Using the properties of the graded Poisson bracket {-,-}, we get the following
formulas.
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Proposition4.2. Forall Pe SymP!(A[-3]), Qe Sym! 2! (A[-3]), Re Sym!RI(A[-3]),
and We Sym" ! (A[-3]), we have

[P. fQls = fP. Qls + (=DPlsry P © Q.

[P ©Qls =[Pls © @ + (-1)"IP © [Qls.

[P, Q]s = (=D){PI=VACI=D[g P,
[P,Q © Rls =[P, Q]s © R+ (-1I"1C10 o [P, R]s,

[P.O.R]s = (_1)(|P|—3)(|Q|—3)[Q’ P,R]s = (_1)(|R|—3)(|Q|—3)[p’ R, Ols,

[P.O.ROW]s =[P.0.Rls O W + (-)IPIFICI=)RIR 5P 0 W]s.

It is easy to see that for all X € I"(+4), we have

n
X.Y100Yls=) Y10 0LX.Y)0--0OY, VY;el(A).

i=1

Forall X! € T'(A_;), D € Sym?4(A[-3]) and o; € T'(+4*), we have

(IX'. Dls) (a1, ... Upig) =a(X")D(ay. ..., Uptq)
pta
— Z D(O{l ..... L;lai ..... Olp+q).

i=1
Proposition 4.3. Forall P Sym'Pl(A[-3]), 0e Sym! 2! (A[-3]), Re Sym!RI(A[-3]),
and We SymlWl(A[—3]), we have
[P. Ols]s = —[[P]s. Qs + (=D'PI[P.[Q]s]s.
[P.[Q. Rls]s — (=DIPI[[P. Q5. Rlg — ()P[0, [P, Ris]
= (=D'"I[P. 0. RIs]s + (=D)'@![P. 0.[R]s]s — [P.[Q]s. R]s
+ (—D'PI[[P]s. Q. R]s.

and

— (=DPI[P.[Q. R. W]s]s + (-D)PIUICI=D [0 [P, R, W]s]s
+ () IPIHICIEDAREDIR [P Q. W]s]s + [[P. Q. R]s. Wl
— (=D(R=VUIWEED P 015, R W]s + (—D)!PIICI=DI0 [P R]5, W]s
— (—))PIURIFICD[9 R, [P, Wisls — (=1)'PI[P.[Q. R]5. W]s
— (=DPHICIP 0 [R. W]g]s + (—-DIRICHIPIEICIP R [0 W]s]s = 0.

Proof. 1t follows from the graded Jacobi identity for the Poisson bracket {-,-}. We
omit details. O
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To understand the meaning of the above brackets, we need the notion of a
homotopy Poisson algebra ([32,42]).

Definition 4.4. (i) A homotopy Poisson algebra of degree n is a graded commutative
algebra a over a field of characteristic zero with an L[1]-algebra structure {/,,;},,>1
on afn], such that the map

X — Lp(x1,. .0y Xm—1,X), X1,...,Xm—1,X €0

is a derivation of a of degree k := Z:-";ll |xi| + 1 —n(m —1),i.e. forall x,y € a,
we have

Ln(X1s ooy Xm—1,xY) = Ly(X1, ..., Xm—1, X)y + (—1)"‘x‘xlm(x1, e Xm—1,)).

Here, |x;| denotes the degree of a homogeneous element x; € a.

(ii) A homotopy Poisson algebra of degree n is of finite type if there exists a ¢ such
that /,, = 0 forall m > q.

(iii) A homotopy Poisson manifold of degree n is a graded manifold M whose algebra
of functions C *° (M) is equipped with a degree n homotopy Poisson algebra structure
of finite type.

(iv) A Maurer—Cartan element of a homotopy Poisson algebra of degree n is a
degree n element m satisfying

ly(m) + 3la(m.m) + ¢l3(m,m,m) +--- = 0.

The only difference between the above definition and the one provided in [32] is
that we use Lo[1]-algebra here, while in [32] the authors used L-algebra. Since
Lo[1]-algebras and L -algebras are equivalent, there is no intrinsic difference.

The following theorem can be proved quickly using the derived bracket
construction by Voronov in [58]. Here we give another proof using the properties
of [']59 [" ']Sa and ['7 K ']S-

Theorem4.5. Let A be a split Lie 2-algebroid. Then (Sym(A[=3]), [-1s, [ ]s. [ ]s)
is a homotopy Poisson algebra of degree 3.

Proof. By Proposition 4.3, it is obvious that [-]s, [,‘]s, [-,*, ]s define an Lo[1]-
algebra structure on Sym(A[—3])[3]. By Proposition 4.2, the graded derivation con-
ditions for [-]s, [,‘]s, [, ‘]s are satisfied. Thus, (Sym(A[-3]), [-]s. [, s, [ ]s)
is a homotopy Poisson algebra of degree 3. O

Corollary 4.6. Let A = (A_3, A_1,11,15,13,a) be a split Lie 2-algebroid. Then
A*[3] = A%, [3] ® A*,[3] is a homotopy Poisson manifold of degree 3.
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The method of defining higher bracket operations using the Poisson bracket of
the shifted cotangent bundle can be easily generalized to a split Lie n-algebroid.
Consequently, one can obtain a homotopy Poisson algebra of degree n + 1 on the
symmetric algebra Sym(sA[—n — 1]) of a split Lie n-algebroid + and A*[n + 1] is
a homotopy Poisson manifold of degree n + 1. In [32, Example 3.6], it is stated
(but not proved) that the dual of a Lie n-algebroid is a homotopy Poisson manifold
of degree n. The difference is generated by the difference between an L [1]-algebra
and an L-algebra, which is not intrinsic.

4.2. A new approach to split Lie 2-bialgebroids. In this subsection, we extend
some results given in [41, 48] to Lie 2-bialgebroids. The notion of a split Lie 2-bi-
algebroid was introduced in [37] using the canonical Poisson bracket of the shifted
cotangent bundle.

Now assume that there is a split Lie 2-algebroid structure on the dual bundle
A*[3] = A*,[3] ® A*,[3]. The two cotangent bundles M = T*[3](A_; & A_>)
and T*[3](A*, & A*,)[3] are naturally isomorphic as graded symplectic manifold
by the Legendre transformation. By Theorem 3.4, the split Lie 2-algebroid
(A*[3], 11, [p, I3, a) gives rise to a degree 4 function y on M satisfying {y,y} = 0. It
is given in local coordinates (x’, &7, 6K, Di.§;.0k) by

y =1 (0)pb +y2] (E0° + 3v3] ()6%6:6;
+yaf 50, + dysit (E'6:0;6. (25)
According to the tridegree, y can be decomposed into

y = J/(2,1,1) + V(1,1,2) 4 )/(0’1’3)_

Definition 4.7. ([37]) Let 4 and 4*[3] be split Lie 2-algebroids with the structure
functions u and y respectively. The pair (A, 4 *[3]) is called a split Lie 2-bialgebroid
if f@ LD = LD gpg

(2,1,1)

w4y —p@ gy — @ = o (26)

where {-, -} is the graded Poisson bracket on the shifted cotangent bundle
T*[3](A-1 & A-2).

Denote a split Lie 2-bialgebroid by (+4, A*[3]).

Remark 4.8. (1) The condition ;1) = y@211D g due to the invariant condi-
tion (iii) in the definition of a CLWX 2-algebroid (see Definition 5.1).

(2) Note that the function ;4 y contains two copies of the term 31D, which is
of the tridegree (2, 1, 1). Thus, we use the degree 4 function u + y — w1 in the
definition of a split Lie 2-bialgebroid.
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Now using the homotopy Poisson algebra associated to a split Lie 2-algebroid,
we can describe a split Lie 2-bialgebroid using the usual language of differential
geometry similar as the case of a Lie bialgebroid ([41]).

Theorem 4.9. Let A and A*[3] be split Lie 2-algebroids with the structure functions
w and y respectively, such that f3b) = y@ULD - Then (A, A*[3]) is a split Lie
2-bialgebroid if and only if the following two conditions hold:

8:[X, Y]g = —[64(X), Y]g + (—D)XI[X,8,(V)]g, V¥ X,Y € T(A[-3]), (27)
8l Bls = —[8(@), Bls + (—=1)*[a, 8(B)]s. Va, el (A%, (28

where 84 and § are coboundary operators associated to split Lie 2-algebroids A 3]
and A, respectively.

Proof. Let A and #*[3] be split Lie 2-algebroids. Then by the tridegree reason, the
following equalities are automatically satisfied:

{M(I,Z,l)’ M(Z,l,l)} =0, {M(I,Z,l),M(I,Z,l)} + 2{,&(2’1’1), M(0,3,1)} =0,

(12D 03Dy _ . (29)
{y(l,l,z)’ y(2,1,1)} =0. {)/(1’1’2), y(l,l,Z)} + 2{]/(2,1,1)’ )/(0’1’3)} =0,
(yL1), )/(0’1’3)} —0. (30)
If (A, A*[3]) is a split Lie 2-bialgebroid, by the tridegree reason,
(2,1,1)

ety —p@t0 pty —pu®y =0
is equivalent to

(1,2,1) J/(1,1,2)} -0, (1,2, y(0’1’3)} -0,

{u
(12 030y _ ¢ (31)

By (29) and (30), (31) is equivalent to

20y =0, oy 2} =o.
For all X, Y € I'(+), by the graded Jacobi identity and (23), we have

{2y x4 Y
= {u?Y . X3 Y} 4+ ()20 Xy oy vy
= {20 {ly. X} v+ (—DTIIED, 2D vy oy xyy
+ (DX 2D X3 fy v 4 (—DEFED 02D xy vy
= {20 {y. X3 Y+ (DD X gy v
+{y. Hn2Y XY R

{n

= —8:[X. Y]g — [6+(X), Y]s + (D)X, 8.(¥)]s.
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Thus, {y, M(l’z’l)} = 0 if and only if (27) holds. Similarly, we can show that
{u, y@1DY = 0 if and only if (28) holds. We finish the proof. O

At the end of this section, we give some useful formulas that will be used in the
next section.

Proposition 4.10. Let (A, A*[3]) be a split Lie 2-bialgebroid. Then we have
£3,X =X dufls, L3 jo? =—[?.df]s,
forall X' € T(A_y), a? € T(A*,), f € C®(M).
Proof. Forall X,Y € I'(A[-3]) and f € C*°(M), by (27), we have
de[X, fY]s = du(f[X. Y]s) + du(a(X)(/)Y)

= fde[X. Y]s +du(f) O [X, Y]s
+ (d@X)(f) O Y +a(X)(f)ds(Y)).

On the other hand, we have
de[X, fY]s = —[du(X). f¥]5 + (=DFI[X. du(fV)]5
= — fld(X).Y]s = (D¥H Ny diX 0 Y
+ (—DXIX,d fls O Y + du(f) O [X.Y]s
+ (DX FIX, di¥]s + a(X)(f)du(Y).
Therefore, we have
d.@(X)(fN OY = (-D¥yrdX 0Y + (DY [X.defls O V.

For X = X!, we have

du(@(XN)(f) —tapde X' = =[X", di f1s,

which implies that éf’,ngl = —[X!,ds f]s.
The other one can be proved similarly. We omit details. 0

5. Manin triples of split Lie 2-algebroids

The notion of a CLWX 2-algebroid (named after Courant-Liu—Weinstein—Xu) was
introduced in [37] as the categorification of a Courant algebroid [38,48].

Definition 5.1. A CLWX 2-algebroid is a graded vector bundle & = E_, & E_4
over M equipped with a non-degenerate graded symmetric bilinear form S on &, a
bilinear operation

o:T(E;) xT(Ej) — T(Eitj+1), —-3<i+j<-2,
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which is skewsymmetric on I'(E_;) x I'(E-1), an E_5-valued 3-form 2 on E_;,
two bundle maps 0: E_, —> E_; and p: E_; —> TM, such that E_, and E_; are
isotropic and the following axioms are satisfied:

(i) (F'(E-),T(E-1), 0,0, ) is a Leibniz 2-algebra;
(i) foralle! e T'(E_;), e? € I'(E_3), we have
eloe?—e?2oel =DS(el,e?),
where : C®° (M) — T'(E_,) is defined by
S(Df.e') =ple")(f), Ve el(E_y);
(iii) forall €?,e3 € T'(E_,), we have

S((e7). €3) = S(ef. d(e3)):

(iv) forall eq, ey, e3 € I'(8), we have

ple1)S(ea,e3) = S(ey ¢ ez,e3) + S(ez, e1 ¢ e3);

(v) foralle],es, el ei € T(E_y), we have
S(Q(@%,e%, e;)vei) = _S(eév Q(ellv 65764}-))'

Denote a CLWX 2-algebroid by (E_», E_1, 0, p, S, ¢, 2), or simply by &. The
following lemma lists some properties of a CLWX 2-algebroid.

Lemma 5.2. Let (E_2,E_1,0,p,S,0,2) be a CLWX 2-algebroid. Then for all
e1,e2 € T(8), el el el e T(E_y), and f € C®(M), we have

e1 ¢ fea = f(e1 o ex) +pler)(f)ez, (fer) oex = fleroez)+ plea)(f)er
+ S(e1,e2)D f,

p<>8=0, 80@20,
eloDf =DSE,Df). Dfoel =0.

Definition 5.3. Let § = (E_, E_1,9,p, S, ¢, ) be a CLWX 2-algebroid.

(a) A graded subbundle L = L_, & L_; of & is called isotropic if S(X,Y) = 0,
forall X,Y € I'(L).

(b) A graded subbundle L = L_, & L_; of & is called integral if
(i) 3(T(L-2)) € T(L-1);
(i) T'(L) is closed under the operation <;
(iii) Q(T(L-1),T(L-1),T(L-1)) € T'(L-»).



Dirac structures of CLWX 2-algebroids 165

(c) A maximal isotropic and integral graded subbundle L of & is called a strict Dirac
structure of a CLWX 2-algebroid.

The following proposition follows immediately from the definition.

Proposition 5.4. Let L be a strict Dirac structure of a CLWX 2-algebroid
& =(E_,E_1,0,p,8,0,2). Then (L_,L_1,0|1,°|r.R|L,p|L) is a split Lie
2-algebroid.

Definition 5.5. A Manin triple of split Lie 2-algebroids (&; A, B) consists of a
CLWX 2-algebroid & = (E_3, E_1,9,p, S, ¢, 2) and two transversal strict Dirac
structures # and B.

Theorem 5.6. There is a one-to-one correspondence between Manin triples of split
Lie 2-algebroids and split Lie 2-bialgebroids.

Proof. It follows from the following Proposition 5.7 and Proposition 5.8. O

Assume that A = (A_», A_1, 11,2, [3, a) is a split Lie 2-algebroid with structure
function v and A*[3] = (A*,[3], 4%, [3]. li, 2, [3, a) a split Lie 2-algebroid with
the structure function y. Let E_; = A1 ® A*, and E_, = A, @& A*,, and
8 = E_2 (&) E_l.

Letd: E_, —> E_; and p: E_; —> T M be bundle maps defined by

AXZ+al) =L (X?) + Li(ah), (32)

p(X' +a®)(f) = a(X)(f) + a(@)(f). (33)
On I' (&), there is a natural symmetric bilinear form (-, -)4+ given by
(X' +o® + X2+l Y+ B2+ Y2+ )y
= (X" BN + (Y a') + (X% %) + (Y2 a?). (34)
On I'(&), we introduce operations
OlEixE; — Ejtjy1, —3=<i+j=<-2,
by
(X' +a?) o (V! + 42 = b(X LY + Ly B2 — Ly, 0® + b(e?, )
+ LY L XY
X'+a®) o (X2 +al) =L(X! X2 + L;loel + 1y2d(a®) + L(a?, al)
+ £ X7+ 1da(X ),
(X2 +a)o (X' +0a?) =L(X* X") + L3,0% + ixid(@’) + (', o?)

+ &2, X+ 12di(XP).
(33)
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An E_j-valued 3-form 2 on E_; is defined by

Q(Xl +o? Y+ ﬂ27Z1 + )/2) = ZS(XI, YI,ZI) + L}l’ylyz + L;l’zlaz
+ Lo 1 B GBEABEY) L o2 + L p X+ L2, LY (36)

forall X1, Y1, Z'eT (A1), X2, Y2e [ (A_p),al, BleT(A*)),a?, B2, y2eT(4%,).
It is proved in [37] that:
Proposition 5.7. Let (A, A*[3]) be a split Lie 2-bialgebroid. Then

(E—Z’ E—lv 87 ,0, ('9 ')-‘rv <>’ S2)

is a CLWX 2-algebroid, where E_y = A_1 @ A*,, E_, = A_, @& A*,, 0 is given
by (32), p is given by (33), (-, )+ is given by (34), © is given by (35), and 2 is given
by (36).

Conversely, we have:

Proposition 5.8. Let A and B be two transversal strict Dirac structures of a CLWX
2-algebroid & = (E_5, E_1,0,p,S,¢,Q), i.e. & = ADB as graded vector bundles.
Then (A, B) is a split Lie 2-bialgebroid, where B is considered as the shifted dual
bundle of A under the bilinear form S.

The proof is a long and tedious calculation and we include it in the appendix.

6. Weak Dirac structures and Maurer-Cartan elements

Recall that given a Lie algebroid (A4, [-, -], p), there is naturally a Courant algebroid
A @ A*. Given an element 7 € T'(A2A) such that [z, 7] = 0, one can define a
Lie bracket [-, -]y on I'(A*) such that (4*, [-,-]. p o 7*) is a Lie algebroid, which
we denote by A. Moreover, 7% is a Lie algebroid morphism from A} to A and
(A, A7) is a triangular Lie bialgebroid ([41]). The graph of 7#, which we denote by
G: C A @ A* is a Dirac structure of the Courant algebroid A @& A*. In this section,
we generalize the above story to Lie 2-algebroids. First we introduce the notion
of a weak Dirac structure of a CLWX 2-algebroid. Then we study Maurer—Cartan
elements of the homotopy Poisson algebra associated to a Lie 2-algebroid «+ given in
Section 4. We show that a Maurer—Cartan element gives rise to a split Lie 2-algebroid
structure on the shifted dual bundle 4*[3] as well as a morphism from A*[3] to .
We also study Maurer—Cartan elements associated to a Lie 2-bialgebroid and show
that the graph of such a Maurer—Cartan element is a weak Dirac structure of the
corresponding CLWX 2-algebroid. Finally we give various examples including the
string Lie 2-algebra, integrable distributions and left-symmetric algebroids.
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Definition 6.1. A split Lie 2-algebroid (L—5, L1, 11, >, 3, a) is called a weak Dirac
structure of a CLWX 2-algebroid (E_5, E_1, 0, p, S, ¢, Q) if there exist bundle maps

Fi:L_y—E_,, F»L_,—E_ 5, and Fs:A’L_, — E_,,

such that:

(i) Fy and F, are injective such that the image im(F) @ im(F;) is a maximal
isotropic graded subbundle of E_, & E_;;

(ii) (F1, F>, F3) is a morphism from the Lie 2-algebra (I'(L_5), ['(L-1), (1,2, 13)
to the Leibniz 2-algebra (I'(E_»),'(E_1), d, ¢, Q);

(iii) po F; = a.

It is obvious that a strict Dirac structure L given in Definition 5.3 is a weak Dirac
structure, in which F; and F, are inclusion maps and F3 = 0.

6.1. Maurer-Cartan elements associated to a split Lie 2-algebroid.

Definition 6.2. Let A be a split Lie 2-algebroid. A Maurer—Cartan element of
the associated homotopy Poisson algebra (Sym(+4[—3]), [-]s. [, ]s. [+, ]s) given in
Theorem 4.5 is an element

m € Sym*(A[-3]) = A_1[-3] © A_»[-3] & A>A_,[-3]
such that
[m]s + L[m.m]s + £[m.m,m]s = 0. (37)

Anelement me Sym? (A[—3]) consistsofan HeT(A_; ® A_,) and a KeT'(A34_5).
For HeT'(A-1 © A_3), define

HY%T(A*)) > T(A) and H":T(4*,) - I'(4_)
by
(H'(@"),0®) = H(@',a?), (H}@?),a') = H(@? a"),

foralla! e (A*,)),a? €T (4*,). Wehave {a!, H}y=H"a"), {«?, H}=—H"%@?).
For K € T'(A3A_5), define

KP:AZA*, — A,
by
(K*(@% B2).y?) = K(@?, B2 y?). Va2 B2y e T(A%,). (38)

It is not hard to see that

{{K9 O{Z}v ﬂZ} = _Kb(a27 :32)’ {{{Kvaz}v ﬂz}’ yZ} = _K(azv ﬂzv )/2)
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Let 1 be the degree 4 function on 7*[3](A—; & A_,) corresponding to the split
Lie 2-algebroid 4. For H € T'(A_1 ® A_») and K € I'(A3A_,), define

(@' = —(u®"D o'},
# (@2 p7) = —({{in ">, H}, 0%}, 73,
4@, ') = —{{{n">D, v}, 0%} 1),
| dhE @2 B2 yh) = — ({{n"». K} 02} 2. v%)
— SR OPD 1Y, HY, 0%}, 871,97,
ag (@) (f) = —({p">Y, 1}, 0, 11,

(39)

for all &2, B2, y? € T'(A*,), a', B! € T(A*,), f € C®(M). We use the Lie der-
ivatives introduced in Section 3 to give a precise description of the above operations.

Lemma 6.3. Forall o, %,y? € T'(A*,), B! € T'(A*)), we have

(=, (40)

[éi(az’ B*) = L}qn(uz)ﬁz - L}qn(ﬂz)az’ (41)

[éi(az’ ﬁl) = L}qn(az)ﬁl - LG(ﬁl)az - dH(Olz, '31)’ (42)
3@ B0 = ~Liae gy~ Lo an B~ Lo g y2)@

—2dK(?, B2 y?) + Lzﬁ(az)’m(ﬂz)yz
3 2 3 2
+ LHﬁ(ﬂz),Hﬁ(;ﬂ)a + LHﬁ(VZ),Hn(az)ﬂ s 43)
ag =ao H*. (44)

We need the following preparation before we give the main result in this
subsection.

Lemma 6.4. Let A = (A—>, A—1,11,12,13,a) be a split Lie 2-algebroid with the
structure function j and H € T(A_; © A_,), K € T'(A3A_,). Then for all
a?, B?,y? € T(4%,), o', B! € T(4*)), we have

[H]s(@") = Li(H (") + H} (f (")), 45)

[Kls(e?. B%) = LK (o?, 7). (46)
[K]s(e? ) = =K (. 1f (B")). 7

3[H. H]g(o?. %) = H¥ (S (2. 7)) — L(H*(@?), H* (%)), (48)
2[H. Hlge? ') = H'(U (. ") — L(H*(?). H'(B"). (49)
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[H, K]s(@? 2.y = K (L (a2, %), yH) + K (H (v*.¢?), B?)
+ K (L (B2, 12),02) — L(H*(@?), K" (B2, y?))
—L(H(y?), K* (0%, B2)) — L(H* (%), K*(y*, a?))
- Hu(l%(b(az,ﬂz))’z + Léb(yz,az)ﬁz + L?{b(’gZ,VZ)az
+2dK (a2, B, y?)). (50)
§LH H Hls(@ 8%7%) = H' L} 0oy oony?” + Lirsony s pm @
L3 o2y ey B) + BHA @A), HA B, HA (). (5D

Proof. By the graded Jacobi identity for the canonical Poisson bracket on 7 *[3]
(A—1 & A_5), we have

[H]s(@") = {{p>"V H} o'}
= —{u@PY HY )} + ({u®D o'} 1)
= L(H* ") + H (1 (1)),
[K]g(@? B?) = {{{in>V K} a2}, B2 = ({u®") (K. o?}}. B7}
= {(u®Y (K. a?}, 7 = —(u®Y K (e?, B}
=LK (0?, ),
[K]s(@? BY) = —{{{u®"D K}.o?} B} = —{{u®"D {K.a?}}. B}
= —{p@Y B (K. o?}} = {1 (B). {K.a?}}
= —K"(@* 1 (B")).
[H. H]s(? p%.) = {{{n">D H}, H}, o}, B}
= {2V H} (H. o?}. B}
+ {{n Y HY HY oY, B

= - {{{M(1’2’1)7 H}v ﬂz}’ {H’ az}}
+ Y By (H, oY, B2

+ {1y, 0%, 1Y, B

= — {p"2Y (H, B} {H o?}}
- {{{:u“(l’z’l)v ﬂ2}7 H}v {H7 az}}

+ {20 (H, o) (H, B2
+ {2 o2y 1Y (H, B2
+ {2 1Y, o), B2 H
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= 2{u>V {H,o?}} {H, B*})
+ (Y {H, o?)), %) H

— ({n 2V (H, B2, @) H)
2D Yo%), B2 H)
= 2H¥H (o2, B2) — 2 (H¥(a?), H*(B?)),

which imply that (45)—(48) hold.
By direct calculation, we have

(HY(IZ (@2, 1)) — L(H*(@?), HY(BY)), B?)
= (H* (1 (o2, %) — L(H*(o?), H* (%)), B).

By (48), (49) follows immediately.
(50) and (51) can be proved similarly. We omit the details. ]

Now we are ready to give the main result in this subsection. Consider the following
function* yg x of degree 4 on M = T*[3](A—1 & A—»):

vk = p @0 + (B2 HY 4 (82D Ky 4+ L@ HY HY. (52)

Theorem 6.5. Let A = (A_», A—1,11,12,13,a) be a split Lie 2-algebroid and
H 4+ K is a Maurer—Cartan element of the associated homotopy Poisson algebra

(Sym(‘A’[_?’])a [']S’ [" ']S’ ['7 Kl ']S)’ ie.
[H+ Kls+3[H+ K. H+K|s+:[H+KH+KH+K]s=0. (53

Then we have:

(i) A*[3] =H(Qi1[3], A*, 3], [f’K, ag) is a split Lie 2-algebroid, where
o Gh

, and ag are given by (40)—(44) respectively;
(i) (H¥* —H"Y —K") is a morphism from the split Lie 2-algebroid
A[3] = (4%, 3], 42,81 1 5 5 ap)

to the split Lie 2-algebroid A = (A—5, A—_1,11,15,13, a);

4The function y i, k is obtained in the following intrinsic way. The map
{H+ K, }:C¥(M) > CZ(M)

is an inner derivation of C°°(M). It follows that e/ TX-} s an automorphism of C°°(M). Thus,
w = et T K3 s also a degree 4 function satisfying {u/, 4’} = 0. Y.k is exactly the projection
of i’ to the subspace

C(2,l,l)(M) ) C(l,l,2)(m) ® C(0’1’3)(M)

of C°(M). See [49] for a similar discussion in Lie algebroids.
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(iii) (A, A*[3]) is a split Lie 2-bialgebroid if and only if
WO u @30 = 0. (2D O30 Hyy =0,

{M(0,3,1)’ {M(Z,l,l)’ K}} =0.

Proof. 1tis straightforward to deduce that (53) is equivalent to the following equations

[H]s =0, (54)
[K]s + 3[H.H]s =0, (55)
[H.K]s + L[H, H H]s = 0. (56)

(i) To show that
A*[3] = (A%, [3], A%, 181 T B 00K )
is a split Lie 2-algebroid, we only need to prove
{va.x.vax} =0,

which is equivalent to the following equations:

Hpt20 Hy p 1Dy =0, (57)
{20 HY, (2D Hyy + 2{u @0 (2D Ky
+ @D (uO>D HY HY =0, (58)
{20 Hy An 2D K+ S0 Y ((p @Y HY HY = 0. (59)

By (54) and the fact that {(:2-D 21D} = 0, we have
(2D 1y, @00y = (2D (H @O0 4 u 2D u G0y HY =0,

which implies that (57) holds.
By (54), (55) and the fact that 1 {;u (12D (L2034 £, C.1D 5, (03.D% = 0, we
have

T A ) R T
+ AR O 1Y, HY
= {20 20 H Y+ 2D 20 Y i
+ {00, p O Y, HY
= {520, 20y 4 @0, O3y By HY =0,

which implies that (58) holds.
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By (55) and (56), we have

{20 1y (2D K
= {20, H, p B0 K — 2D (2D HY K
= {320 G20y HY K — {p 02D (2D HY K
= —{{p@"V uO3V} 1y Ky — (uO2D (2D HY K}
= —{{u>tD Ky Au©>3V HY — {p 2D (u2D 1Y K
= Hu2Y HY =Y ApO3Y Hyy 4+ M2 (u©D HY HY HYY

On the other hand, by the fact that {3121, 113D} = 0, we have

L2 gy @30 g 1y By = 320 HY, HY, (w030 1Y
— 20 gy (O3l HY

Therefore we have
W20 Hy A 20 K 4 0 HL 0 1Y HY = 0,
which implies that (59) holds. Thus, (A*,[3], A*,[3], 17 1 ("X apy = a o H¥)

is a split Lie 2-algebroid.
(ii) By (54) and Lemma 6.4, we obtain

—lLoH"=H¥oIll (60)
By (55) and Lemma 6.4, we have

HYE (2, B2) — L(H (@?), H¥(B?) = —L K" (@2, B?), (61)
(—HYE (@2, BY) — L(HYe?), —-H' (") = —K" (@, 1 (BY)).  (62)

By (56) and Lemma 6.4, we have

K" (F @2, 2).yH) + K (L (v, a?), B + K (1 (B2, y?). &?)
— L(HY %), K" (B2, 7?) — L(H*(y?), K" (@2, %)) — L(H*(B?), K’ (%, a?))

+ Hu( - L?{b(‘xz,ﬂzﬂ/z - Li@(yz,az)ﬁz - L%b(’gz’yz a — ZdK(O‘2 ,82 2)
o+ L3

3 2 3
* Lurwrymep2)Y” T Lasgr)meo2) i) P)

+ I3(HY %), HY(B?), H* (y?)) = 0,
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which implies that

- K@ %).7%) = K (G (r*.e?). ) — K" (G (B%.7%). o)

A CRCEN AN
= I3(H¥a?), H} (%), H* (y?) + L(H*(@?),—K" (B, y?))
+ L(HA?). —K' (@2, %) + L(H*(B). —K'(y*.0%)). (63)
Thus, (H#, —H", —K") is a morphism from the split Lie 2-algebroid
(A%, 3] 45,31 67, 67 575 am)

to the split Lie 2-algebroid (A_», A_1,!1, 12,13, a).

(iii) Note that (4, 4*[3]) is a split Lie 2-bialgebroid if and only if

(2,1,1)

(W+ymg—p Ay — p@Dy =o.

Since (4, ) and (A*[3], ym k) are split Lie 2-algebroids, the above equality is
equivalent to

(20 uG2Y HY =0,
(RO2D, (02D, K3y 4 402, O30, ), Yy = 0,
(u020, ), p @) =0,

By the fact that 4 {p (12D, (120} 4 (@ 0D [ O3Dy = gand {H, u@1-D} =0,
we have
(2D (u20 Y =~ (O3 Hy,

By the fact that {u (121 13D} = 0, we have
{20 1y, p O30y = (2D (O30 Hy
By the fact that {121 113D} = 0 and (55), we have
e O S LN TS N
= {020 O H Y 1Y = 2O B, K,
Thus, (A, A*[3]) is a split Lie 2-bialgebroid if and only if

{M(Z,l,l)’{'u(o,’j,l)’ HY =0, {M(1’2’1)7{M(0’3’1)v H}} =0,
{M(0,3,1)’ {I’L(z’l’l)’ K}} = O

We finish the proof. O
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Remark 6.6. According to Proposition 5.7, given a Lie 2-algebroid
(A—z, A1, 11, 12,13, a),
then
(A @ AX |, A1 ® A5, 0,0, (-, )+, 0, )

isa CLWX 2-algebroid. It is natural to expect that the graph of (H #—H t‘) is a “Dirac
structure”. However, it is straightforward to see that the graph of (H*, —H") is not
closed under the operation ¢ anymore. Thus, it is not a strict Dirac structure defined
in Definition 5.3. But by Theorem 6.5, we can deduce that the graph of (H#, —H?")
is a weak Dirac structure defined in Definition 6.1. We will prove this result for the
more general case of split Lie 2-bialgebroids in the next subsection.

6.2. Weak Dirac structures and Maurer—Cartan elements associated to a split
Lie 2-bialgebroid. Let A = (A_5,A_1,[1,[2,13,a) be a split Lie 2-algebroid
with the structure function p and A*([3] = (4%, [3], A*,[3]. l1, [2, [3, a) a split Lie
2-algebroid with the structure function y such that (A, A*[3]) is a split Lie 2-bialg-
ebroid. Let H € I'(A_; ® A_») and K € T['(A34_,). Define A to be the degree 4
function on T*[3](A—; & A_,) by?

A=y+yux—p®"Y,

where yg g is given by (52). Write A = A@LD L AMLL2) L A0.13) where
AGLD _ y(z,l,l) _ M(2,1,1)
ALL2) _ )/(1’1’2) n {M(l,z,l)’H}’
0,1,3) _ .,(0,1,3) 1,2,1) 1¢s,,(0,3,1)
A =y + {u K} + S JHY HY.
For all o2, B2, y? € I'(A*,), a!, B! € T(A*,), and f € C®°(M), define

(@) = ~{u@D oy = 17 (@"),
dn@)(f) = —{y"?2 + {n2Y Hy o2} £} = @+ ag)@)(f).
W2 ) = —{{y®? + (2 Hy o} B2 = (1o + ) (@ B2,
T2 Y = —{y®P? + (u>D Hy o?) B} = (L + EDe?. BY).
K @2 B2y = — {Hy O 4 (2D K} a2}, g2y
— MOV HY HY o2} B y7)
(I3 + G5 @2 B2, v,

(64)
where ag, [f and If K are given in Lemma 6.3.

5The function A is obtained by taking the projection of e +X.3 (1 4+ y — 1 (2-1:D) (o the subspace
C(z,l.l)(M) @ C(l’l’z)(M) %) C(O’l’?’)(eM)
of C°°(M). See the footnote 4 for more explanation of Yz, k-
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The following result is a higher analogue of [38, Section 6].

Proposition 6.7. With the above notations, if H + K satisfies the following Maurer—
Cartan type equation:

—8«(H+K)+3[H+ K. H+Kls+L[H+K H+ K, H+ K]g =0, (65

where 8 is the differential corresponding to the split Lie 2-algebroid A*[3], then we
have {A, A} = 0. Consequently,

A*[3] = (A%, 3], A%, 3. 0 B G dn)
is a split Lie 2-algebroid.

Proof. First, note that (65) is equivalent to the following equations

§«H =0, (66)
8K —dyH + 3[H, H]s = 0, (67)
—8.H —d.K + [H,K]s + L[H, H, H]s = 0. (68)

On the other hand, {A, A} = 0 is equivalent to
{A(1,1,2)’A(2,1,1)} —0. {A(l,l,z)’A(l,l,Z)} + 2{A(2’1’1), A(0’1’3)} —0.
{/\(1,1,2)7 A(0,1,3)} =0.

By {y(1:1:2) y @10}y = o, {1 (1.2:D) »@.LDY = 0 and (66), we have

{A(l,l,2)7A(2,1,1)} — {y(l,l,Z) + {//L(l’z’l),H},)/(z’l’l)} — {{/_L(l’z’l),H},)/(z’l’l)}
= {020 (H,y @I = 2D 51 = 0.

By {)/(1’1’2),V(l’l’z)}+2{)/(2’1’1), )/(0’1’3)} =0, {M(l’z’l),M(l’z’l)}+2{ﬂ(2’l’l),
u©@3Dy = 0, {12 .20y = (66) and (67), we have
{A(l,l,z)’A(l,l,z)} 4 Z{A(Z,l,l)’A(O,I,S)}

— {{)/(1,1,2)7 y(l,l,Z)}l_'; %{V(Z,l,l)’ );(;),i,?a)} + %{y(l’l’zZ)lﬁ1{“‘(1,2’11;’1[_1}}
+ 2D H (0D H Y 4 20y @D (2D, K

+ @Y {30 1Y HY
= =240 el + 20, 20 1y, 1Y _
—(p20 20 1Y H Y = 2(u 0D, 5K
+ {2, OV} HY, H)Y

=2{u" 20 8K + (2, (u 2D, 1Y, HY
+ {520 p 20 4 @D O30y iyl

—{u 20 {20 H Y H Y = 242D, 6K
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By {u(2D, p20% + 2fp @1 O30y = 0, {y1D 4030y = 0
and (67), we have

{20 (20 K HY = (3D, w020y Ky, HY
= _{{{M(Z,l,l), /’L(O:”l)}’ K}’ H} = _{{M(Z,l,l), K}7 {I‘L(O’?’,l)’ H}}
= L0 Y HL O, H Y 4 (8D, HY O,
= Y HY HY O30 HY = Ly O82 (u 3D HY, HYL

By the fact that {p (12D ;1 (03D} = 0, we have

2D L0 L H L H Y = =3 {20 L H O H
— U0 H O H H

By {y(l,l,Z)’ V(O,l,?,)} =0, {y(l,l,Z),M(l,Z,l)} =0, {M(I,Z,l), y(0,1,3)} = 0 and (68),
we have

{A(1,1,2)’ A(0’1’3)}

= (D 2D K Ly D O H )
RO R PRI N R Ty S

+ 3 U 1y, (3D 1Y, 1Y

- _ {M(I,Z,l)’ d*K} _ {M(I,Z,l)’ g*H}
RO, H (02D K+ Ly S (D, H)

+ RO HYL O 1L Y

= {(pO2Y {u2Y HY K
+ w20 OV HY 1Y, Hyy — (02D, (2D H Y K

+ {0 2D Ky Y+ Sy O (D HYL H
+ 32D HY (O30, 1Y HY

= — ™D Hy Hy O H
— 220 {03 1y By 4 MY By, HY (p O3 B

= g2 O3 1Y Y+ 0 (e 1Y oY
+ 20 L @Y YL H Y =0,

Thus, we have {A, A} = 0. By Theorem 3.4,
A*[3] = (4%, [3]. A%, 3. TH T2 T qy)

is a split Lie 2-algebroid. O
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Define vector bundles G_; and G_; by
G_1 = (& + H (@?) | &® e T(A%y)}, G ={a' - H@") |a' e T(4Z))},

which are subbundles of A_; @& A*, and A_, @ A*, respectively. Denote by
g = G_1 ® G_,. Define
19:G_y — G_y, 12:T(Gi)xT(G;) — T(Gi+jt1).
lf:/\3G_1 —>G_y, and a%:G_, —TM
by
If (@' — H' ") = If (") + H*(} @"),
1% (@? + H¥ (), B* + HY(B?))
= (I + (@2, %) + H¥ (1, + ) (0?, %)),
1% (a® + H¥e?), B — H'(BY))
= (b + )% pY) — HY (2 + E) (@2, 1)),
152 + H¥(a?), B + H (B2, y? + H (¥?))
= (5 + ) @2, 2 y?) — HY (13 + 5 @2, 82,12)),
a®(@* + HY (%) = (a + ap)(a?),

(69)

forall a2, B2, 92 € T'(4*,), al, Bl € T(A*)).
By Proposition 6.7, we have

Corollary 6.8. Let (A, A*[3]) be a split Lie 2-bialgebroid, H € T'(A_, © A_,) and
K € T'(A3A_,). If H + K satisfies the Maurer—Cartan type equation (65), then
Sy = (G-2,G_4, lg lg lg a%) is a split Lie 2-algebroid.

It is not hard to see that

§+H e T(O?A_) @T(N2A, 0 A_) @ T(A*AL,),
5+K e T(A2A, 0 A_) @ T(A*A,).

We need the following preparation before we give the main result in this subsection.

Lemma 6.9. For all o, %, y?,{? € T(A*,) and o', B, y' € T(A*)), we have

S« H(a', ") = (—[H]s (@), B'); (70)
8 K(@? B2, y") = (~[Kls(@? B?).y") = (~[Kls(e?. y"). B?): 1)
deH (@, B2, y") = (£ HF (B?) — L HA @) — HE (h(e?, 7)), y") (72)

= (2L H (") — 1,18 H (@?) — H (L (e?, yh)), B2); (73)
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S*H(a /32 )’ C )= (- azﬂzHﬁ(Vz)_:C 2Hﬁ(“2)
— 3, H¥(B%) — H”(13<a B2y, ) (74)
K@ B2.77.0%) = (2L K (B2 7?) + 14,28. (K" (@ %) — £} K" (@ 1?)
— K @ 8.7 — K (B2 1 (@ y)
+ K@ 51 (8%, 7%). %), (75)
Proof. The proof is similar to that of Lemma 6.4. We omit the details. 0

Now we are ready to give the main result in this paper, which says that the graph
of a Maurer—Cartan element is a weak Dirac structure defined in Definition 6.1.

Theorem 6.10. Let (A, A*[3]) be a split Lie 2-bialgebroid, H € T'(A—; © A_3)
and K € l:(/\3A_2). If H 4 K satisfies the Maurer—Cartan type equation (65), then

(11,15, —K") is a morphism from the Lie 2-algebra
(N(G=2).T(G-1). 17 15 .1F)
to the Leibniz 2-algebra
(F'(E—2),T(E-1),0,0,Q)

underlying the CLWX 2-algebroid given in Proposition 5.7, where 11 and i, are
inclusion maps from G_1 and G_, to E_; and E_; respectively and

]E:b: /\2G_1 — FE 5
is defined by
Kb (@ + H¥(a?), B2 + H} () = K (o>, B2).

Consequently, the split Lie 2-algebroid g = (G-, G_q, llg, lf, lf, ag) is a weak
Dirac structure of the CLWX 2-algebroid given in Proposition 5.7.

Proof. First by the fact that H is symmetric, i.e. H(a?,a!) = H(a!,a?), it is
obvious that the graded subbundle ¥5 is maximal isotropic.
Then by (66), we have —/; o H' = H¥ o] 1, which implies that

i1olf =do0i,. (76)
By (48) and (72), we have
(—8+K —du H + 3[H, H]s)(@*. B>, —)
= —d.H(e? . p>.-) + ([Kls + 3[H. H]s (. B*.-))
= H¥ (1%, %) = L, HF (B?) + L po HA (&%) + HAY (@2, B7)
— L(HY ), H (B) + LK (@, B7).
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Thus, by (67), we deduce that
1F (@ + H¥a?). B> + H¥(B?) — (¢* + H¥(@?)) o (B> + H*(B?))
= H¥ (L. B7) + 4 (&%, %) — £, HH(B?)
+ £ HY ) - L(H(02). H(8?)
= —L1K'(@2 %) = L K* (@ + H* (). B> + H¥(B%).  (7])
Similarly, by (49) and (73), we have

(—8+K —duH + 3[H, H]s)(e?, B, -)
= —d.H(@? B'.-) + ([K]s + 3[H. H]s(e?. B".-))
= —£LHWBY) + 11de HY (@) + HY (I (e, B))
+ HY(F (2. ) — L(H*@?), H'(BY)) — K" (@, 1T (B")).

Thus, by (67), we deduce that

¥ (e + HY@?), B! — H'(B")) — (& + H*(@?) o (B' — H' ("))
— —K(@® + H¥(a?), 17 (8" — HY(BY)). (78)
By (50), (51), (74) and (75), we have

(—8xH — diK + [H, K]s + L[H, H, H]5)(@?, %%, -)
=22 g HY (v?) + L35 o HH @F) + L3, o HF (B?) + H(3(e?, B2, 7))
— 20K (%, 7%) = 1,2 du (K" (0%, 7)) + £ K' (@7, %)
+ K" (L (e?. B%). ¥) + K" (B2 L(@?, v?) — K (@?, L (B2, y?))
+ K (@, B%).y%) + K (3 (. e?). B) + K* (15 (B2 y?). &)
— L(H}?), K" (B%.v%) — L(H*(y?). K" (@®. %))
— L(HYB?). K" (y*.a?) + H'(E K @, B2 y?))
+ I (H*?), HY (%), H*(y?)).
Thus, by (68), we deduce that
—1f (@ + H¥a?). B2 + HY(B?).y* + H* (y?))
— (@ + H¥ (@) o K*(B* + H¥(B?).y* + H* ()
+ (B2 + HY(B) o K* (@2 + H* (%) y* + H (y?))
— K@ + HY (o). B2 + H¥ (%) o (0 + H* (v?))
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+ KP(1F (@2, B2) + HHE (02, ). % + H (y?)
— K@ + H¥ (@), 15 (8%, v%) + H*IE (B, v2)
+ KP(B% + HA(B2). 15 (. ) + HIE (0%, %))
+ Q@ + HA @), B2 + HE(B?), y* + HA (%) = 0. (79)
By (76)—(79), we deduce that (i, i5, K b) is a morphism from the Lie 2-algebra
(N(G-2), T(G). 1f 15 1F)

to the Leibniz 2-algebra (I'(E_»),'(E_1), d, ¢, ).
Finally, it is obvious that

p(? + H¥(a?)) = a(H*(@?)) + a(@?) = a? (o + H* (2?)).
Therefore, the split Lie 2-algebroid
(G2.G_1.1§.15.1%.a%)

is a weak Dirac structure of the CLWX 2-algebroid (E_5, E_1, 9, p, (-, )+, ©, )
given in Proposition 5.7. 0

6.3. Examples. In this subsection, we give some examples of Theorem 6.5 including
the string Lie 2-algebra and split Lie 2-algebroids constructed from integrable
distributions and left-symmetric algebroids.

Example 6.11. Let (g, [-,-]5) be a semisimple Lie algebra and B(, -) its killing form.
Recall that the string Lie 2-algebra (R[2], g[1],[1, [2, [3) is given by

=0, bLx,y =[xylg Lxwv)=0 I(xyz2)= B(x, [y,Z]g),

forall x,y,z € g, v € R. Wehave g O R = gand AR = 0. It is straightforward to
see that any /& € g is a Maurer—Cartan element of the associated homotopy Poisson
algebra. Furthermore,

WR*~R—g and h':g* — R
are given by
h¥(s) = sh, h%a) = (h,a), VseR, acg.

The Lie 2-algebra (g*[2], R[1], I, (2, (%) given in Theorem 6.5 (i) is given by
=0, C@s,0)=0, B, p)=adyp, (s, t,w) =0,

forall B € g*,s,t,w € R.
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Moreover, the Lie 2-algebras (g*, R, " [’2’, [}3‘) and (R, g,/1,[5,[3) define a Lie
2-bialgebra, whose double is the Lie 2-algebra (R & g*[2], g @ R[1], 9, ©, ) given
by

d=0,

(X,S) < (y’ t) = ([xv y]gv O)a
(x,5) o (u,a) = (u,) o (x,5) = (0,adyor + adj,a),
Q((x,5), (,1). (2.1)) = (B(x. [v.2lg), —rB¥([x. y15)
— st‘([y, Z]g) — tBﬁ([z, x]g)),
for all (x,s), (y,1),(z,r) € g® R and (u, ) € R & g* and B*: g —> g* is given
by (BF(x),y) = B(x. ).
Let (A4,[-,-]4,a4) be a Lie algebroid and V:T'(4) x I'(E) — TI'(E) a repre-
sentation of Lie A on a vector bundle E. Then it is straightforward to see that
A = (E[2], A[1], 11, 12,13, a)

is a split Lie 2-algebroid, where [y = 0, /3 = 0,a = a4, and

L(X.Y)=[X.Y]s, L(X.e)=Vxe., VX.Y eT(A), ecI(E).

Proposition 6.12. With above notations, let H € T'(A ® E) and K € T'(A3E).
(i) If[H,H]s = 0, then (E*, [f,aH) is a Lie algebroid, where app = a4 o H¥
and [g is given by

(H(eF,ed) = Vien® — Vienei: Vei.es €T(EY).  (80)

Here V* is the dual representation of V on E*.

(i) If [H,H]s = 0O, then [H, K]s = 0 if and only if K is a 3-cocycle on the Lie
algebroid (E*, I ag).

Proof. (i) By (41), it is straightforward to deduce that [g is given by (80). Since
/1 = 0, we obtain
H =1y =o.

Thus, [ satisfies the Jacobi identity and (E*, (£ ap) is a Lie algebroid.

(ii) Forall e], e}, e3,e; € T'(E™), we have

((H.K]s(e].e5.€3).e5)
= (K" (' (1. €3).€3) + K" (U (e3. e}). ) + K (15 (3. €3). e})
— L(H*e}). K"(e5.€3)) — L(H*(e}). K" (e}, €3)) — (H*(e3). K" (e} . €}))

2 2 2
_ HH(LKb(eT,eg‘)e; + LKb(e;‘,ef)e; + LKb(e;,ej;)eT + 2dK(ef, e5,€3)), )
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= K([H(el,e%) ey, ey) + K([H(e3, D, b62,64) + K([H(ez, e3), elb,e4)
—( H(e *)K (e5.€3),ex) — Hn(e*)K (e1.e5),e5) — (Vy Hi(e *)K (e3.e7).e5)

+ (Vi K (€1 €3).3) + (Vuen K (€3, €0).€3) + (Vigun K (€5 €3). €7)

—2ag(ey)K(er,e5.€3)

= K(H (e}, e3),ex el) + K (eX,e}). e5,el) + K(E (eX,e3),ef . e})
—am(e])K(e5,e5.e5) + K(ez,e3,VI*{ﬂ(e*)e4) —am(e3)K(el,e5.ey)
+ K(e. e3, VHn(e;)e4) —ap(e3)K(ez.e1.e;) + K(e3. ef, V;Iu(e;)eD
+an () K(el, e, e3) — K(ef, €3, Vigy(rye3) + an(€g) K(e3, 3, ef)
— K(e3, €7, Z”(e})e;) +an(e;)K(ey. e5.e7) — K(e;. €3, V;n(ez)er)
—2ag(e])K(e] 5 e3)

= K(1j (e].€3). 5. ¢5) + K(5 (e3. €D). €5, €7) + K(5 (e5. €3). €] ¢])
+ K(el, ex, (et e) + K(ef, ex, (F (eX,e})) + K(eX, el 1 (X, e]))
e e K(E5,¢5¢5) — an(€)K(eh. e, e]) — am e K(el. e )
+ ap(e3)K(ey. e, e3)

= —(dHK)(eT,e;,e;k,eI),

where d# is the coboundary operator on the Lie algebroid (E*, [}, ag) with the

coefficient in the trivial representation. Thus, [H, K]s = 0 if and only if K is a
3-cocycle. O

Corollary 6.13. Let H € T(A ® E) and K € T(A3E) such that [H, H]s = 0,
[H,K]s = 0. Then

A*[3] = (A%, E* (U (0K )
is a split Lie 2-algebroid, where llH =0, and

(e}, e3) = Vl*iﬁ(e’f)e; — ;In(e;)ef,
(e}, ) = Shren B + (V.H (B),ef) —d H e}, B),
Ket ez eX) = (V.K (e}, el).eX) + (V.K (eX. e}). e3)
+(V.K (e, €3), ef) — 20" K(ef, e}, 3),

foralle}, ek, ex € T(E*), B € ['(A*). Here £x:T'(A*) —> I'(A*) and d* are the
Lie derivative and the differential for the Lie algebroid A, respectively. Furthermore,
(H¥, —H"Y —KP") is a morphism form the split Lie 2-algebroid A*[3] to the split Lie
2-algebroid A and (A, A*[3]) is a split Lie 2-bialgebroid.
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According to Proposition 6.12 and Corollary 6.13, we can give the following
example in which the Lie algebroid is given by an integral distribution and the
representation is given by the Lie derivative on its normal bundle.

Example 6.14. Let ¥ C TM be an integral distribution on a manifold M and
FL C T*M its conormal bundle. Then
(FH2. F 1.1 1. 1. a)

is a Lie 2-algebroid, where /; = 0, I3 = 0, a: ¥ —> TM is the inclusion map
and /, is given by

L(X1,X2) = [X1.X2]. L(X.§) = £x& VX1, X2, X e[(F), £ e T(FY),

where £ is the usual Lie derivativeon M. Then H € ¥ @ ¥ satisfies [H, H]g = 0
if and only if

H¥ (L)@ = Ligsp@1) = [H¥ (1), H¥ @), Vai,a e T(FH)),

where L1: # x(F1)* — (F1)* is the Lie derivative on the Lie 2-algebroid defined
by (11). In fact, there is a natural isomorphism between TM/¥ and (F1)*. For
any Y € I'(TM), we denote by Y its image in I'(TM/ ) of the natural projection
pr: TM — TM/¥ . Then we have

LYY =[X,Y], VX eT(F),Y e(TM).
Suchan H € ¥ © ¥+ induces a Lie algebroid ((¥1)*, [-,-]z. ag), where

[, 2]g = L - L a1, ag=H' Voa,ael(FhH.

1 o 1
H¥(@)™2 H¥(a2)

Let K € T'(A3F 1) be a 3-cocycle on the Lie algebroid ((F1)*,[, -]z, an).
Then there is an induced Lie 2-algebroid
(F*RLED LG = 0,1 m [ mk. an = HY),

where

1 1
@1, 2]g = LHrt(O,l)O‘2 - LHﬁ(az)al’

(.0 = sgu(a)e — Ly — d¥ H(a,0),

[0y, a2, 03]p x = — 2‘1?(1{(“1’“2’ @3)) — Li(b(al,az)a?’

2 2
Lo @sa® ~ Lkv (@0 ¥

for all o, 0, 2,003 € T((F1)*), 0 € T(F*). Here £¥:F x F* — F* and
d¥  AkF* — AKH1E* are the Lie derivative and the differential for the Lie
algebroid ¥ respectively. Furthermore, it is straightforward to deduce that the
relation between L2 and the Lie derivative £ is given by

(Lo, X) = —(LxE.0). VX eD(F).£ eT(Fh).a e D((FH)).
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The notion of a left-symmetric algebroid, also called Koszul-Vinberg algebroid,
was introduced in [36,46,47] as a geometric generalization of a left-symmetric
algebra (pre-Lie algebra). Let (A4,-4,a4) be a left-symmetric algebroid. Define a
skew-symmetric bilinear bracket operation [-, ] 4 on I"'(A4) by

[x.,Ja=x-ay—y-ax, Yx,yeTl(A4).

Then, (A4, [, ]4,a4) is a Lie algebroid, and denoted by A€, called the sub-adjacent
Lie algebroid of (A, -4, a4). Furthermore, L: A —> ®(A) definedby LxY =X -4 ¥
gives a representation of the Lie algebroid A on A, where ©(A) denotes the first
order covariant differential operator bundle of the vector bundle A.

Example 6.15. Let (A4, -4, a4) be a left-symmetric algebroid. Then
A= (A[2], A[1], 1, 12, 13, a4)
is a split Lie 2-algebroid, where /; = 0, [3 = 0, and /5 is given by
L(X,Y)=1[X,Y]a, L(X,n)=L%n VX, Y el (A), neTl(4").
Here L* is the dual representation of L. Let H € A © A* be given by
H(X,§) = (X&), VX eTl(A), EeTl(4%).

That is, H# = id4 and H" = id4+. Then we have [H, H]s = 0. In fact, it follows
from
SIH H]s(X.Y,) = HHX 4 Y =Y -4 X) = L(H*(X), H¥(Y))
=[X,Y]u—[X,Y]a=0.
Furthermore, the induced Lie algebroid structure on A = (A4*)* is exactly the sub-
adjacent Lie algebroid A¢. For a K € T'(A3A4*), by Proposition 6.12, [H, K]s = 0
if and only if K is a 3-cocycle on the sub-adjacent Lie algebroid A°. Under these

conditions,
A*[3] = (A*[2], A[1], T L (0K g

is a split Lie 2-algebroid, where [f’ =0, and
GX.Y) = [X.Y]a B(X.§)=LxE,
(K(X,Y,Z) = R,KP(X,Y) + Ry K2 (Z, X)
+ RYK®(Y. Z) + ¢ (K(X.Y. Z)).
forall X,Y,Z € I'(A) and § € I'(A*). Here Ry : A* —> A™ is the dual map of the
right multiplication Ry, ie. (Ry§.Y) = —(£§,Y -4 X).

Since left-symmetric algebras are left-symmetric algebroids naturally, the
following example is a special case of the above example.
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Example 6.16. Let (g, -) be a 3-dimensional left-symmetric algebra generated by the
following relations

e1-ep =2e;, er-ex=ey e1-e3=e3, e-€3=e3-€ =ey,

where {e1, e5, e3} is a basis of g. The corresponding sub-adjacent Lie algebra struc-
ture is given by
[elseZ]g = €, [61,63]9 = e3.

The dual representation L* of the sub-adjacent Lie algebra g€ on g* is given by
* ok * * % * * %k *
L, ey =—2ey, L,e;=—e, L,e3=—e;3,
* ok __ * * ok *
Lezel = —é€3, Le3el = =€,
where {e], e, e3} is the dual basis.

The dual map of the right multiplication R is given by

* ok * * ok * * ok *
R, ey = —2e;, R, ey =—e3, R, e, =—ey,

Rj el = —e5, R;e; =—ej.
Let H € g © g* be given by

H(x.§) =(x.§). Vxeg §eg”

That is, H = Z?=1 e; © e For any constant number ko, set K =kge] Anej Aej and
then K is a 3-cocycle on the sub-adjacent Lie algebra g¢. Thus,

(a* 2] ol1], 1, 12 (225

is a Lie 2-algebra, where [f’ =0,andforall x,y € g, § € g*,

e, y) = yle B, =L, 1K (er, en,e3) = —4koe?.

A. The proof of Proposition 5.8

Proof. Let A = A_1 ® A, and B = B_; & B_,. Since the pairing § is
nondegenerate, B_; is isomorphic to A*,, the dual bundle of A_,, via (0?2, X?) =
S(a?, X?) for all X2 € T'(A—2), @ € T'(B_;), and B_, is isomorphic to A* , the
dual bundle of A_1, via (@', X1) = S(a!, X') forall X! € ['(4_), a! € T'(B_,).
Under this isomorphism, the graded symmetric bilinear form S is given by (34).
By Proposition 5.4, both 4 and $B are split Lie 2-algebroids, and denoted by
(A 11,15, 13,a) and (B; 1,15, [3,a). We use § and 8, to denote their differentials,
respectively.
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By (iii) in Definition 5.1, we deduce that [; = /{". By (ii) and (iv) in Definition 5.1,
we deduce that the brackets between I'(+4) and I'(B) are given by (35). By (v) in
Definition 5.1, we deduce that the (A—, & B_;)-valued 3-form €2 is given by (36).

Next, we will use the following two steps to show that (27) in Theorem 4.9 holds.

Step 1. We will show that
S« [ X1 Y g = —[8+(X ). Yo + [X1.8.(YD]g. VXL Y'eT(4_)). (81
In fact, since for all X! € T'(A_y), 8,(X!) = 0, we have
e[ X1 Y ' g = —[0u(X"). Y ']g + [X " 8u(Y )]s (82)
Forall X!, Y! € I'(A_;) and ! € I'(B_,), by (e) in Definition 2.1, we have
X'o'oah)—X'o¥Hoa' — Yo (X' oal) =", Y, [} (").
By (17), this condition is equivalent to

1 1 X+ X i di YY) —idia (X YY)

vl

- LL;Iald*Xl — lz(Xl,tald*Yl) =0.
By direct calculation, we have

(LLIYlald*Xl,az) = a(@®)a(Y (X', a') —a@®) (!, L(X', Y
— (X' b(Lye'.a?);
(X' 1diY 1), 0?) = a(XDa@) (Y, ') —a(X ) (@' ), Y
—a(Ly @) (Y a!) + (Y b(Lye? ah));
(o1 [de X1 Y 5. 0?) = a(Y e X (@' o) —du X ' (Ly 10!, 0?)
—d.X'(a", Ly, a?)
= a(YHa@?) (X', a') —a(¥H(k(a',¢?), XT)
—a@®)aY (X al) +a@® (', LI, X))
+ (Xl,lz(Li,lal,az)) —a(L;Iaz)(Xl,al)
+ (Xlﬁ[Z(L1Y1a27al)>‘
Then by the above formulas, we have

0= LLlylald*xl + (X, 11de YY) — i dela (X1, YY)

— 1 e X = L(X ' 1 1di YY)

yl

=t (= [de(X 1), Y g + [X 1 du(Y )]s — dul X' Y ]g).
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which implies that
de[X1, Y Yg = —[de(X), Vg + [X . du(Y V5. (83)
Forall X! € T'(A_;) and o2, B2, y2 € T'(B_), by (f) in Definition 2.1, we have
a?oQ(B%,y% X )= y2, X ) +y*o(@?, B2, X ) -l (0?, 2, y*)o X!
—Q((e?, 7). y% X 1) = QB2 L(e®,y?), X 1) = (%, y% a® o X1)
+ Qe k(% y). X + Q@ y?. B2 o X1) — Q@ B2 y* 0 XT) =0,

which is equivalent to

Lizz’yledaz — ‘zzz’yledﬂz + Li;zﬁzdeyz —i1x1dlz(@?, B2, 7%
+(e? B2 Ly y?) + B2 o? Ly ) + (% y* Lya®) = 0. (84)
By direct calculation, we have
(Lizz'szldaz — szzqyledﬂz + Lizzﬂledyz —iy1diz(@?, B2, 9?), 71
= (—l(y% @ Ly 7)) = 3(a?, B2, Ly1y?) — (B2 y%, Lyia®), X 1)
—a(X) {2 2,9, Y1) +a(Y {2, B2,y%), X 1)
+ (3@ B2y . L(X YD) (85)
On the other hand, we have
B X' Y152 B2 v
= —a(Y)(I3@% %, y*), X) + (3% 0% Ly %) + 3(e®, B2, Ly v?)
+ (82,92, L;laz),Xl),SA*[Xl, YYs(a?, 82,12
= (e % y"). L(X". VD).
Then by (84) and (85), we have
(= B Y g + (X1 8 )]s = 8ulX .Y g) @ 87, 7)
= a(Y ) (3@ B%y?), X') = (la(y?.a® Ly %) + 3(@®, B2, Ly v?)
+ (8% Y% Lyie?), X 1) —a(X ) (1@, %, y%), Y1)
+ (% e Ly B2) + (@, B2, Ly v?)
+ (A% Y2 Lya®), Y1) + (0?2, y%), L(X ', Y1) =0,
which implies that
Sl X1, Y g = —[8(X1), Y g + [X1. 8. (Y D). (86)
Thus, by (82), (83), and (86), (81) follows immediately.
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Step 2. We will show that

S [X 1, Y2g = —[8:(X ), Y2 g +[X 1, 8:(Y )]s, VX' €T (4-1),Y? € T(A-2).
For X! € T'(A_;), Y? € T'(A_,), by (a) in Definition 2.1, we have &7
Bl X1, Y25 + [B(X 1), Y2 — [X 1, 8.(Y?)]5, )
= (~Li(LX", Y + L(X', 1(Y?),a') =0,
which implies that
S [X1.Yg = —[6.(X 1), Y2 + [X 1. 8.(Y?)]s. (88)

Forall X! e I'(A_;), Y? € I'(A_,) and a? € T'(B_1), by (e;) in Definition 2.1,
we have

Xlo@ oY) —X'oa?)oV?—a?o (X' oV?) =Q(X', a2 [,(Y?)).
By (21), this condition is equivalent to
L(X' £L,Y?) + ctﬂdazd*xl — :ﬁlL;{lazyz
+hL(ELXLY?) —ELL(X Y?) =0.
By direct calculation, on the one hand, we have
(X', £,,Y?), %) = a(XHa(@?)(Y?, %) —a(X)(Y?, L(«?, 7))
—a(@)a(X)(r?, %) + a@®) (B> L(X',Y?))
+ (Y2 e LY, B2):
(U 2002 X1, B2) = a(Lp X (Y2, 0%) — a(B) (@ (X1, Y?))
- (Xl’ [2(132’ L?IZO[Z));
(L1 2V 2 B7) = Ly @) (V2 57) — (Y2 (L e, f2):
((£hX",Y?), %) = a(@®) (B> (X', Y?) + (X', (a?, L3, 8):
(Lo2b(X1,Y?), %) = a@®) (B2, (X', Y?) — (L(X',Y?), L(a?, B?)).
On the other hand, we have
{to2da[X 1, Y25, B%) = a(@®)(B*, (X', Y?)) —a(B?) (@, (X', Y?))
— (X', Y?),L? 2));
—de X' (L3,0%, B%) + du X (L3, 7, 0?)
a(B)(a? (X', Y?) + (X1, (8% L}.a?))
—a(@) (B2 (X", Y?) — (X', (e?, LT, 8%);

(te2[ds (X 1), Y15, B?)
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(te2[X 1, d (Y?)]5, %) = a(X Da(@®)(Y?, %) — a(X Da(p?)(Y?, &?)
—a(X) (Y% L@ B) —a(Lye®) (Y2, B)
+a(B?)a(X ) (Y2 o) —a(B?)(e? (X', Y?))
+ (Y2 L(Ly 02 B2)) —a(@®)a(X)(Y?, B?)
+a(@®) (B2 (X Y?) + a(Ly B2 )
+ (Y2, L@ Ly B).

Then by the above formulas and p(X! ¢ a?) = [p(X1), p(a?)], we have
0=DLX"N LY+ LardeX! =&, lazyz
X

+hL(ELXN YY) - 2LhL(Xx' Y?)
= 12 (= [de(X 1), Y25 + [X 1, du(Y?)]s — du[X ", Y %),

which implies that
du[ X1, Y?]g = —[du(X 1), Y25 + [X . du (Y )] (89)
By a direct calculation, we have
Be(X1). Y2 s(@® B2 y?) = [X1.5.(Y )] (2. 2. ?)
= 8. [X". Y?g(a? B2y =0,
which implies that
8u[X'.Ys = —[8.(X"). Vg + [X".6.(Y)s. (90)

Thus, by (88), (89) and (90), (87) follows immediately.
By (81) and (87), for all X,Y € I'(4[—3]), we have

8e[X. Y]g = —[8:(X). Y]g + (=DFI[X, 8,.(Y)]s.

which implies that (27) in Theorem 4.9 holds.
Similarly, we can show that (28) also holds. Therefore, (4, B) is a split Lie
2-bialgebroid. O
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