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Abstract. This paper investigates the K-theory of twisted groupoid C�-algebras. It is shown
that a homotopy of twists on an ample groupoid satisfying the Baum–Connes conjecture with
coefficients gives rise to an isomorphism between the K-theory groups of the respective twisted
groupoid C�-algebras. The results are also interpreted in an inverse semigroup setting and
applied to generalized Renault–Deaconu groupoids and P -graph algebras.
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1. Introduction

A key idea in noncommutative geometry is to access the study of topological
dynamical systems (for example a discrete group acting on a compact space
by homeomorphisms) through a naturally associated noncommutative C�-algebra.
Many of these constructions can be conveniently studied simultaneously in the
framework of topological groupoids. Indeed, large classes of C�-algebras have
been shown to admit groupoid models since Renault’s seminal work on groupoid
C�-algebras in [35]. The range of examples covers crossed products associated
to transformation groups, (higher rank) graph-C�-algebras [23], the uniform Roe
algebra [39], and the C�-algebras associated to various classes of semigroups [29,34]
to name but a few prominent ones. A slight alteration of the construction takes certain
cohomological objects called twists associated with a groupoid G into account. A
twist over G is an extension of G by the trivial circle bundle G.0/ � T .

Twisted groupoid C�-algebras are useful in the study of untwisted algebras [7], but
the addition of a twist as input data has much further reaching consequences: Indeed,
building on the theory of Feldman–Moore in the von Neumann setting [14, 15],
Kumjian and Renault showed [22,36] that whenever a C�-algebra A admits a Cartan
subalgebra, then A is in fact isomorphic to a twisted groupoid C�-algebra. In other
words, (twisted) groupoid C�-algebras appear intrinsically in C�-algebra theory.
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This article is concerned with the K-theory of twisted groupoid C�-algebras.
The main result establishes that the K-theory of a twisted groupoid C�-algebra is
invariant with respect to homotopies of twists for a large class of groupoids and reads
as follows:
Theorem A (see Theorem 4.3). LetG be a second countable ample groupoid, which
satisfies the Baum–Connes conjecture with coefficients and let † be a homotopy of
twists for G. Then the canonical map

qt WC
�
r .G � Œ0; 1�I†/! C �r .G;†t /

given by evaluation induces an isomorphism

.qt /�WK�.C �r .G � Œ0; 1�I†//! K�.C �r .G;†t //:

Some remarks on Theorem A are in order: First, the result is non-trivial since a
homotopy of twists does not result in a homotopy-equivalence of the twisted groupoid
C�-algebras. A basic example is provided by the irrational rotation algebraA� , which
can be realized as a twisted group algebra A� D C �.Z2; !� / with respect to the
2-cocycle !� ..k; l/; .n;m// D e2�i�ln. This cocycle is homotopic to the constant
cocycle but A� is not homotopy-equivalent to C.T2/ since this would require the
existence of a �-homomorphism A� ! C.T2/ of which there are none since A�

is a simple, non-trivial noncommutative algebra. Our second remark concerns the
assumptions of TheoremA: Although the Baum–Connes conjecture with coefficients
is known to be false in general [19], it has been confirmed for large classes of
groupoids, including all amenable groupoids [43]. Thus, our result applies to large
classes of examples.

Many concrete twists arising in examples of interest are actually homotopic
to the trivial twist. In these cases, our result says that the K-theory of the twisted
groupoid C�-algebra does not depend on the twist at all. Examples include the already
mentioned irrational rotation algebrasA� and their higher-dimensional analogues and
the Heegaard-type quantum spheres [25, Example 3.5].

Themotivation for this work is twofold: There is a strong interest in understanding
the K-theory of twisted groupoid C�-algebras coming from the classification program
for simple, unital, nuclear C�-algebras on the one hand and coming from the physics
of quasicrystals on the other.

By the work of numerous researchers (see [42] and the references therein), there is
now a complete classification of separable, simple, unital C�-algebras of finite nuclear
dimension satisfying Rosenberg and Schochet’s universal coefficient theorem (UCT).
The classifying invariant is the so called Elliott-invariant, whose main ingredient is
operator K-theory. Combining the astonishing results from [30,40], every C�-algebra
fallingwithin the scope of classification admits a twisted groupoidmodel. Even better,
the nuclearity assumption in the classification theorems implies that the underlying
groupoid is amenable and hence satisfies the Baum–Connes conjecture. This is
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closely linked to the question whether all nuclear C�-algebras satisfy the UCT and to
the existence of Cartan subalgebras [2].

In another direction, twisted groupoid C�-algebras and their K-theory play an
important role in physics: In the article [45] and the references therein a link
to classification of D-brane charges in string theory is explained. More directly
related to our work is another important application studied in [21]: A twisted
version of Bellissard’s Gap Labelling Conjecture [3]. The classical (untwisted)
version of the conjecture is a statement about the possible gaps in the spectrum of
certain Schrödinger operators which arises in solid state physics. Mathematically,
the conjecture is about a description of the image of a canonical trace map on the
K0-group of a certain groupoid C�-algebra. A twist over that groupoid enters the
picture once one allows for the presence of a non-zero magnetic field.

In conclusion, the K-theory of twisted groupoid C�-algebras plays a major role
in the classification program for simple C�-algebras as well as in the applications
from physics. This provides a strong motivation to study methods that enable the
computation of K-theory for twisted groupoid C�-algebras. This question has been
addressed before in the case of groups by Echterhoff, Lück, Phillips and Walters
in [10] and Gillaspy treated the cases of transformation groups, higher-rank graphs
and group bundles in a series of articles [16–18]. Using the machinery developed by
the author in [5] this article presents a unified approach and considerable extension
of the above mentioned results.

To make the result accessible for readers with different backgrounds we also
interpret Theorem A in the setting of twisted actions of inverse semigroups in the
sense of [8,38]. Finally, we apply our results to semidirect product groupoids arising
from (partial) actions of subsemigroups of groups. These groupoids can be viewed as
a generalisation of the transformation groupoids associated to ordinary group actions.
In particular, we can recover and generalize the main results of [16].

The article is organized as follows: After recalling some basic facts about étale
groupoids, groupoid dynamical systems and the associated reduced crossed products,
we turn to the study of twists. We show in Proposition 3.4, that every twist over an
étale groupoid locally admits continuous cross sections and conclude that every twist
over an ample groupoid admits a global continuous cross section. In Section 4 we
prove our main result. The idea is to use the Going-Down principle to reduce to
the case of compact groupoids, where the result can be proven directly. In the two
final sections we look at some examples: First, we interpret our main result in terms
of twisted actions of inverse semigroups, and second, we study certain semidirect-
product groupoids arising from actions of subsemigroups of groups.
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2. Preliminaries

2.1. Étale and ample groupoids. Recall, that a groupoid is a set G together with a
subsetG.2/ � G�G, called the set of composable pairs, a productmap .g; h/ 7! gh

fromG.2/ toG and an inversemap g 7! g�1 fromG ontoG, such that the following
hold:
(1) The product is associative: If .g1; g2/; .g2; g3/2G.2/ for some g1; g2; g32G,

then we also have .g1g2; g3/; .g1; g2g3/ 2 G.2/ and

.g1g2/g3 D g1.g2g3/:

(2) The inverse map is involutive, i.e. .g�1/�1 D g for all g 2 G.
(3) .g; g�1/ 2 G.2/ for all g 2 G and if .g; h/ 2 G.2/, then

g�1.gh/ D h and .gh/h�1 D g:

The fact that multiplication is partially defined implies that multiple elements may
act as (partial) units: The set

G.0/ WD fg 2 G j g D g�1 D g2g

is called the set of units in G. There are canonical maps d WG ! G.0/ given by
d.g/ D g�1g and r WG ! G.0/ given by r.g/ D gg�1, called the domain and range
map respectively.

For subsets A;B 2 G.0/ we will write

GA WD d
�1.A/; GB WD r�1.B/ and GBA WD GA \G

B :

IfA (and/orB) consists just of a single unit u 2 G.0/ we will omit the braces (e.g. we
will write Gu WD r�1.fug/).

In this article we will be concerned with topological groupoids: We say that G is
a locally compact Hausdorff groupoid, if G is a groupoid, which is equipped with a
locally compact Hausdorff topology, such that the multiplication and inversion map
are continuous. The fact thatG is Hausdorff ensures that the unit spaceG.0/ is closed
in G.

A locally compact groupoid is called étale, if d WG ! G is a local homeomorph-
ism, i.e. every point g 2 G has an open neighbourhood U � G, such that d.U /
is open in G and djU WU ! d.U / is a homeomorphism. It follows easily from
the definition that for an étale groupoid G the unit space G.0/ is open in G and for
each u 2 G.0/ the sets Gu and Gu are discrete (in the subspace topology).

The results of the present article apply to a large subclass of the étale groupoids:
An étale groupoidG is called ample, if its space of unitsG.0/ is totally disconnected.
There is a wealth of groupoids studied in the literature that belong to this class,
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e.g. groupoids associated to aperiodic tilings and quasicrystals (see [4]), groupoids
associated to directed graphs (see [24]) and higher-rank graphs (see [23]), groupoids
associated to inverse semigroups (see [34]), and the coarse groupoid studied in large
scale geometry (see [39]).

2.2. Groupoid crossed products. In this short paragraph we remind the reader of
the definitions of groupoid dynamical systems and the associated reduced crossed
products. Let G be an étale groupoid. A groupoid dynamical system .A;G; ˛/

consists of a C0.G.0//-algebra A and a family .˛g/g2G of �-isomorphisms

˛g WAd.g/ ! Ar.g/

such that ˛gh D ˛g ı ˛h for all .g; h/ 2 G.2/ and such that g � a WD ˛g.a/ defines a
continuous action of G on the upper-semicontinuous bundle A over G.0/ associated
with A.

Associated with this data is a C�-algebra called the reduced crossed product. We
will briefly run through the constructions roughly following [20]. Given a groupoid
dynamical system .A;G; ˛/ as above, consider the complex vector space�c.G; r�A/.
It carries a canonical �-algebra structure with respect to the following operations:

.f1 � f2/.g/ D
X

h2Gr.g/

f1.h/˛h.f2.h
�1g//

and
f �.g/ D ˛g.f .g

�1/�/:

See for example [33, Proposition 4.4] for a proof of this fact. For u 2 G.0/ consider
the Hilbert Au-module `2.Gu; Au/. It is the completion of the space of finitely
supported Au-valued functions on Gu, with respect to the inner product

h�; �i D
X
h2Gu

�.h/��.h/:

We can then define a �-representation �uW�c.G; r�A/! L.`2.Gu; Au// by

�u.f /�.g/ D
X
h2Gu

˛g.f .g
�1h//�.h/:

Using this family of representations, we can define a C�-norm on the convolution
algebra �c.G; r�A/ by

kf kr WD sup
u2G.0/

k�u.f /k:

The reduced crossed product A Ìr G is defined to be the completion of �c.G; r�A/
with respect to k�kr .
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3. Twists over ample groupoids

Let us recall the definition of a twist over a groupoid:
Definition 3.1. LetG be a topological groupoid. A twist† overG is a central group-
oid extension

G.0/ � T
i
�! †

j
�! G;

by which we mean:
(1) The map i is a homeomorphism onto j�1.G.0// � †,
(2) the map j is a continuous and open surjection, and
(3) the extension is central meaning that i.r.�/; z/� D � i.d.�/; z/ for all � 2 †

and z 2 T .
We say that † is a continuous twist over G, if j admits a continuous cross section.

Note, that we will canonically identify †.0/ with G.0/ and for all u 2 G.0/ we
have j.i.u; z// D u. Moreover, † admits a canonical left action of T given by

z � � WD i.r.�/; z/�:

Hence a twist can also be viewed as a principal T -bundle over G.
Remark 3.2. Twists over groupoids are closely related to 2-cocycles on them. Recall,
that a 2-cocycle for G is a map !WG.2/ ! T , such that

!.g1; g2/!.g1g2; g3/ D !.g1; g2g3/!.g2; g3/

for all g1; g2; g3 2 G with .g1; g2/; .g2; g3/ 2 G.2/. It is called normalized if in
addition one has

!.g; d.g// D 1 D !.r.g/; g/

for all g 2 G.
Given such a 2-cocycle! onGwecan define a groupoid structure on†! WD G�T

as follows: Two elements .g1; s1/; .g2; s2/ 2 †! are composable if .g1; g2/ 2 G.2/
and their product is defined as

.g1; s1/.g2; s2/ WD .g1g2; s1s2!.g1; g2//:

The inverse of .g; s/ 2 †! is given by

.g; s/�1 WD .g�1; s!.g�1; g//:

If ! is continuous, it is not hard to check that †! is a locally compact Hausdorff
groupoid in the product topology. Thus, we obtain a central extension of groupoids

G.0/ � T
i
�! †!

j
�! G;
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where the first map is the canonical inclusion and the second map is the projection
onto the first factor. Note, that j has a canonical continuous cross section s given
by s.g/ D .g; 1/.

Conversely, startingwith a twist† overG admitting a continuous section sWG!†,
we note that

j.s.gh/�1s.g/s.h// 2 G.0/:

Hence, by exactness we get

s.gh/�1s.g/s.h/ 2 i.G.0/ � T /:

Since i is a homeomorphismonto its image, we obtain a continuousmap!WG.2/ ! T
by letting

!.g; h/ D i�1.s.gh/�1s.g/s.h//:

It is then routine to check that ! satisfies the cocycle identity. It is normalized,
provided that the section s restricts to the identity onG.0/. IfG is an étale Hausdorff
groupoid, this can always be arranged: If sWG ! † is any continuous section, then
define a new section s0WG ! † by s0.g/ D s.g/ for all g 2 G nG.0/ and s0.u/ D u
for all u 2 G.0/. Then s0 is still continuous since G.0/ is clopen in G.

We remark, that it is a well-known fact that twists do not generally admit a
continuous cross section and thus are more general than 2-cocycles (see [31]).

As a first goal we wish to show that twists over ample groupoids are automatically
continuous. To this end we need to introduce some technology developed in [46].
Let X be a locally compact Hausdorff space and E be a Hilbert C0.X/-module.
Write E for the associated bundle of Hilbert spaces E D

`
x2X Ex , which can be

equipped with a topology turning it into a continuous Hilbert bundle over X such
that E is isomorphic to the continuous sections of the bundle E ! X vanishing at
infinity denoted by �0.X;E/. Associated with such a module is the groupoid

Iso.E/ WD f.x; V; y/ j x; y 2 X and V WEy ! Ex is a unitaryg;

equipped with the obvious structure:

.x; V; y/.y;W; z/ WD .x; V W; z/ and .x; V; y/�1 WD .y; V �; x/:

It was shown in [46, Proposition 3.3] that Iso.E/ can be equipped with a canonical
Hausdorff topology making it into a topological groupoid.

In a similar spirit one can define the automorphism groupoid of an upper semi-
continuous C�-bundle pWA! X over X by

Aut.A/ WD f.x; ˛; y/ j x; y 2 X; ˛WAy ! Ax is a �-isomorphismg:

Again, Aut.A/ can be equippedwith aHausdorff topologymaking it into a topological
groupoid by [46, Proposition 3.1].
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The two constructions presented above are closely related. If E is a Hilbert
C0.X/-module as above, then we can consider the C�-algebra K.E/ of compact
operators on E. This algebra is a C0.X/-algebra in a canonical way with fibres

K.E/x D K.Ex/:

Consequently, we can form the associated upper semicontinuous C�-bundle denoted
by K ! X , such that

�0.X;K/ Š K.E/

as C0.X/-algebras. Every unitary operator V WEy ! Ex clearly defines a �-iso-
morphism

AdV WK.Ey/! K.Ex/

given by .AdV /.T / D V T V �. Hence we obtain a canonical groupoid homomorph-
ism

AdW Iso.E/! Aut.K/:

It was shown in [46, Proposition 3.4] that Ad fits into a short exact sequence of
topological groupoids

X � T
i
! Iso.E/

Ad
! Aut.K/;

such that Ad is a continuous and open surjection, and i is a homeomorphism onto the
kernel ofAd. Moreover, themapAd admits local continuous sections, in the sense that
for every .x; ˛; y/ 2 Aut.K/ there exists a neighbourhoodN of .x; ˛; y/ 2 Aut.K/

and a continuous map ˇWN ! Iso.E/ such that Ad ıˇ D idN .
We want to apply this machinery to twists over groupoids. Although much of

what follows also works for more general groupoids we restrict ourselves to the class
of étale groupoids at this point to avoid unnecessary technicalities. So let † be a
twist over an étale groupoid G. Consider the complex vector space

Cc.GI†/ WD ff 2 Cc.†/ j f .z�/ D zf .�/g:

Then we obtain a Hilbert C0.G.0//-module E by separation and completion of
Cc.GI†/ with respect to the inner product

hf1; f2iC0.G.0//.u/ D
X

j.�/2Gu

f1.�/f2.�/: (1)

Each of the fibres Eu is a Hilbert space and the following lemma gives a convenient
description of those.

Lemma 3.3. If G.0/�T ! †
j
! G is a twist overG then the fibreEu over u 2 G.0/

can be identified with the Hilbert space obtained by completion of

E0.u/ D ff 2 Cc.†u/ j f .z�/ D zf .�/g

with respect to the inner product hf1; f2i D
P
j.�/2Gu

f1.�/f2.�/:
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Proof. One easily sees that the restriction map Cc.GI†/! E0.u/ factors through
an isometric linear map Eu ! E0.u/. The only issue is the surjectivity of the
restriction map. To this end let f0 2 Cc.†/ be an extension of f . Then f1W†! T
defined by

f1.�/ WD

Z
T
xzf0.z�/ dz;

is an element of E0, that extends f .

Let �W† ! Iso.E/ be the representation given by .�.�/�/.�/ D �.��/. Then
�.z�/ D z�.�/ for all z 2 T and � 2 †. Consequently, denoting the upper
semicontinuous C�-bundle associated to the C0.G.0//-algebra K.E/ by K again,
we obtain a well-defined continuous groupoid homomorphism ˛WG ! Aut.K/ by
˛j.�/ D Ad �.�/. This homomorphism fits into the following commutative diagram:

G.0/ � T † G

G.0/ � T Iso.E/ Aut.K/

id �

j

Ad

˛

The following result seems to be folklore but we could not locate it in the literature,
so we provide a proof.

Proposition 3.4. Let G.0/ � T
i
�! †

j
�! G be a twist over an étale groupoid G.

Then j admits local cross sections in the sense that for every g 2 G there exists a
neighbourhood U � G of g and a continuous map sWU ! † such that j.s.h// D h
for all h 2 U .

Proof. Let E be the Hilbert C0.G.0//-module associated with † and Iso.E/ and
Aut.K/ as above. Since the canonical map AdW Iso.E/ ! Aut.K/ has local cross
sections, so does every pullback along this map. Hence it suffices to show that † is
isomorphic to the pullback groupoid

†0 D f.V; g/ j g 2 G; V WEd.g/ ! Er.g/ unitary with AdV D ˛gg:

First of all, there exists a canonical groupoid homomorphism 'W† ! †0 given
by '.�/ WD .�.�/; j.�//. For the injectivity assume that '.�/ D '.� 0/. Then
j.�/ D j.� 0/, so using exactness we get that there exists a z 2 T such that � 0 D z� .
From the definition of � we get that for any f 2 Cc.GI†/ and any � 2 † such that

d.�/ D r.�/ D r.� 0/

we have f .��/ D f .�� 0/. In particular, we get

f .�/ D f .� 0/ D zf .�/

for all f 2 Cc.GI†/. We conclude that z D 1 and hence � D � 0 as desired.
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For the surjectivity let .V; g/ 2 †0. First choose �0 2 † with j.�0/ D g. Then

Ad �.�0/ D ˛j.�0/ D ˛g D AdV

and hence �.�0/ D zV for some z 2 T . Now put � WD xz�0. Then

j.�/ D g and �.�/ D xz�.�0/ D V

and hence '.�/ D .V; g/ as desired.
Since ' is clearly continuous it remains to prove that it is also open. To see

this we will employ [47, Proposition 1.15]. So let .V�; g�/� be a net converging to
'.�/ D .�.�/; j.�// in†0. In particular we get g� ! j.�/ inG. Since j is an open
surjection we can pass to a subnet and relabel to assume that there exists a net .��/
in † such that j.��/ D g� and �� ! � . Moreover,

Ad �.��/ D ˛j.��/ D AdV�

and consequently �.��/ D z�V� for a suitable net .z�/� in T . Now since T is
compact, we can pass to yet another subnet (and relabel) to assume that the net .z�/�
converges to some z 2 T . Since

�.�/ D lim
�
�.��/ D lim

�
z�V� D z�.�/;

we get z D 1. To sum up we found a (sub)net of .V�; g�/ and a net .z���/� in †
converging to � such that

'.xz���/ D .�.xz���/; j.��// D .V�; g�/:

Corollary 3.5. Every twist † over a � -compact ample groupoid G is continuous.

Proof. By the previous proposition the map j W† ! G admits local cross sections.
Combining this with the assumptions that G is � -compact and totally disconnected,
we can find a countable covering of G D

S
Un by compact open subsets which are

the domains of local sections of j . Using a standard inclusion-exclusion argument
we can recursively define a partition

G D
G
n2N

Vn

into compact open subsets Vn, which are the domains of local sections snWVn ! †

of j . Then we can piece all of these sections together in the obvious way to obtain a
global continuous section sWG ! † of j as desired.

Following [31], we associate a C�-algebra to a twist † over an étale groupoid G
as follows: Consider the complex vector space

Cc.GI†/ WD ff 2 Cc.†/ j f .z�/ D zf .�/g:
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Then Cc.GI†/ becomes a �-algebra with respect to the operations

f1 � f2.�/ D
X

j.�/2Gr.�/

f1.�/f2.�
�1�/ and f �.�/ D f .��1/:

Observe that the summakes sense, since the expression f1.�/f2.��1�/ only depends
on j.�/ 2 G. For each u 2 G.0/ letEu be the fibre of the HilbertC0.G.0//-moduleE
associatedwith† as above. Then, forf 2 Cc.GI†/we can define an operator�u.f /
onEu by�u.f /�/ D f �� . The operator�u.f / is bounded and we defineC �r .GI†/
to be the completion of Cc.GI†/ with respect to the norm

kf kr WD sup
u2G.0/

k�u.f /k:

Remark 3.6. In the literature one often finds a direct construction of the twisted
groupoid C�-algebra associated to a continuous 2-cocycle !, that does not pass
through the canonical extension †! explained above. It is defined as a completion
of the convolution algebra Cc.G/ with product and involution given by

f1 �! f2.g/ D
X

h2Gr.g/

f1.h/f2.h
�1g/!.h; h�1g/

and f �.g/ D f .g�1/!.g; g�1/;

and we will denote it by C �r .G; !/. Note, that both constructions yield the same
C�-algebras, since there is a canonical isomorphism

ˆWC �r .G;†!/! C �r .G; !/;

given by ˆ.f /.g/ D f .g; 1/. One can easily define an inverse map

‰WC �r .G; !/! C �r .G;†!/

by ‰.f /.g; z/ D zf .g/.

We shall need the following version of the Packer–Raeburn stabilisation trick in
the groupoid framework.

Proposition 3.7 ([46, Proposition 5.1]). Let†be a twist over an étale groupoidG. IfE
is the associated HilbertC0.G.0//-module and ˛WG!Aut.K/ is the homomorphism
constructed above, then ˛ defines a groupoid dynamical system .K.E/;G; ˛/ such
that K.E/ Ì˛;r G is Morita equivalent to C �r .GI†/.

For later reference, we also need to briefly recall the construction of the bimodule
that provides the Morita equivalence: Let A0 be the dense subalgebra

�c.G; r
�K/ � K.E/ Ìr;˛ G:
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Following [32, Theorem 6.4] together with the formulas given in the proof of [46,
Proposition 5.1] one then defines a pre-Hilbert bimodule-structure onX0 WD�c.G; d�E/
as follows: For �; � 2 X0 and f 2 A0 define

.f �/.g/ D
X

h2Gr.g/

˛g�1h.f .h
�1//�.h�1g/;

A0h�; �i.g/ D
X

h2Gs.g/

˛gh
�
K.Ex/h�.h/; �.gh/i

�
:

Note that in [46], the authors construct the crossed product by completing
�c.G; s

�K/. Thus, in order to obtain the formulas above we need to pass through
the canonical isomorphism, sending f 2 A0 to the function Lf 2 �c.G; s�K/, given
by Lf .g/ WD f .g�1/.

For �; � 2 X0 and f 2 Cc.GI†/ define

.�f /.g/ D
X

j.�/2Gd.g/

f .��1/�.�/�.gj.�//

and a Cc.GI†/-valued inner product by

h�; �i.�/ D
X

j.�/2Gd.�/

˝
�.��1��1/�.j.��1��1//; �.��1/�.j.��1//

˛
.d.�//

The completionX ofX0 then implements a Morita equivalence betweenK.E/Ìr G
and C �r .GI†/. With this description at hand we can prove the following technical
little lemma, which will turn out useful later:

Lemma 3.8. If .�i /i is a net in X0 converging to � 2 X0 in the inductive limit
topology, then k�i � �k ! 0.

Proof. Let �i WD � � �i 2 X0. We will show, that A0h�i ; �i i converges to zero in the
inductive limit topology. Then it will also converge to zero in the reduced norm and
hence

k� � �ik
2
D kA0h�i ; �i ik ! 0

as desired. By assumption, there exists a compact subsetK � G such that supp.�i / �
K for all i . Since the action of G on itself by multiplication is always proper, the set

C WD fg 2 G j g�1K \K ¤ ;g

is also compact. Now if

0 ¤ A0h�i ; �i i.g/ D
X

h2Gd.g/

˛gh
�
h�i .h/; �i .gh/i

�
;
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there exists some h 2 Gd.g/ such that h�i .h/; �i .gh/i ¤ 0. But then necessarily
h 2 g�1K \ K, which implies g 2 C . Thus supp.A0h�i ; �i i/ � C for all i . Now
let " > 0 be given. ChooseM > 0 such that supu2G.0/ jKuj �M . Then we have

sup
g2G

kh�i .g/; �i .g/ik <

p
"

M

for i large enough. For i large enough we can then compute

kh�i ; �i i.g/k �
X

h2Gd.g/

kh�i .h/; �i .gh/k

�

X
h2Gd.g/

kh�i .h/; �i .h/kkh�i .gh/; �i .gh/k < ";

which finishes the proof.

Remark 3.9. Let † be a twist over the étale groupoid G and H � G a compact
open subgroupoid. Then †0 WD j�1.H/ is easily seen to be a twist over H . Let E
and ˛ be as above. Then we can restrict the action ˛ to an action of H on K.E/jH .
We claim that the resulting crossed productK.E/jH Ìr H is then Morita equivalent
to C �r .H I†0/. The proof is basically the same as in [46, Proposition 5.1], we just
restrict all the appearing bundles to the subgroupoidH and use the fact thatH is an
.H;H/-equivalence.

4. Homotopies of twists

Our goal is to prove that the K-theory of C �r .GI†/ only depends on the homotopy
class of †. We will start by formalizing what we mean by a homotopy: Given
a locally compact Hausdorff groupoid G, consider the trivial bundle of groupoids
G� Œ0; 1�with the product topology. This bundle is itself a locally compact groupoid,
where .g; s/ and .h; t/ are composable if g and h are composable inG and s D t . In
this case we define their product by

.g; s/.h; s/ WD .gh; s/

and an inverse by

.g; s/�1 WD .g�1; s/:

Consequently, the unit space is given by G.0/ � Œ0; 1�.

Definition 4.1. A (continuous) twist † over G � Œ0; 1� is called a (continuous)
homotopy of twists for G.
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If † is a homotopy of twists over G then † is a continuous field of groupoids
over Œ0; 1� in the sense of [1, Definition 8.9] since for all � 2 † we have

prŒ0;1�.d.�// D prŒ0;1�.r.�//:

In particular, for each t 2 Œ0; 1� we obtain a twist †t over G by letting

†t WD
�
prŒ0;1� ır

��1
.†/ D †jG.0/�ftg:

If G is ample, then each †t is a continuous twist by Corollary 3.5, so one may
wonder if † is always continuous as a twist over G � Œ0; 1�. Although G � Œ0; 1� is
no longer ample, this can be arranged by a standard patching argument:
Proposition 4.2. Let G be a � -compact ample groupoid and † be a homotopy of
twists for G. Then † is automatically a continuous homotopy of twists, in the sense
that there exists a continuous section sWG � Œ0; 1�! †.

Proof. We start to prove a preliminary claim: Suppose V � G is an open subset
and 0 � a < b < c � 1 are such that there exist continuous sections

s1WV � Œa; b�! † and s2WV � Œb; c�! †:

Then we claim that there exists a continuous section

sWV � Œa; c�! †:

Indeed, since s1 and s2 are continuous sections, we can define a continuous map
f WV ! T by

f .g/ D s1.g; b/s2.g; b/
�1:

Then
zs2.g; t/ WD f .g/s2.g; t/

is still a continuous section, but it has the virtue that zs2.g; b/ D s1.g; b/ for all g 2 V .
Hence we can piece s1 and zs2 together to obtain the desired function

sWV � Œa; c�! †:

We now return to the proof of the proposition: Fix g 2 G for the moment. For
each t 2 Œ0; 1�we can apply Proposition 3.4 to find a compact open neighbourhood Vt
of g and some open interval Ut � Œ0; 1� and a continuous section

st WVt � Ut ! †:

Using compactness of Œ0; 1� and intersecting the resulting finite number of neigh-
bourhoods among the Vt we find a finite sequence of numbers

0 D t0 < t1 < � � � < tn D 1;
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a compact open neighbourhood V of g, and finitely many continuous sections

si WV � Œti�1; ti �! †:

Now we successively apply the first paragraph of this proof to obtain a continuous
section

sg WV � Œ0; 1�! †:

Finally, we use � -compactness to proceed as in the proof of Corollary 3.5 and piece
these sections together to a globally continuous cross section sWG � Œ0; 1�! †.

For every t 2 Œ0; 1� we obtain a canonical �-homomorphism

qt WC
�
r

�
G � Œ0; 1�I†

�
! C �r .GI†t /;

which for f 2 Cc.G� Œ0; 1�I†/ is given by qt .f / D fj†t . An argument very similar
to the proof of Lemma 3.3 shows, that qt is surjective. The main goal of this article
is to prove the following result:

Theorem 4.3. Let G be an ample groupoid, which satisfies the Baum–Connes
conjecture with coefficients and let † be a homotopy of twists for G and t 2 Œ0; 1�.
Then

.qt /�WK�
�
C �r
�
G � Œ0; 1�I†

��
! K�.C �r .G;†t //

is an isomorphism.

The following result settles the case of continuous homotopies of twists over
compact groupoids.

Proposition 4.4 ([17, Proposition 3.1]). If † is a continuous homotopy of twists on
a compact Hausdorff groupoid G, then the canonical �-homomorphism

qt WC
�
r

�
G � Œ0; 1�I†

�
! C �r .GI†t /

is a homotopy equivalence.

The rough idea in proving Theorem 4.3 is to use the Going-Down principle
to reduce the question to the case of compact groupoids and then appeal to
Proposition 4.4 above. Before proceeding to the precise form of the Going-Down
principle we are going to use, the reader may wish to recall the definitions of Le
Gall’s KKG-theory [28], the topological K-theory Ktop

� .GIA/ of a groupoid with
coefficients in a G-algebra A, and the Baum–Connes assembly map [44]

�AWKtop
� .GIA/! K�.A Ìr G/:

See also [5, 6] for a detailed overview.
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Theorem 4.5 ([5, Theorem 7.10]). Let G be an ample, second countable, locally
compact Hausdorff groupoid and let A and B be separable G-algebras. Suppose
there is an element x 2 KKG.A;B/ such that

KKH
�
C.H .0//; AjH

� �˝ resG
H
.x/

! KKH
�
C.H .0//; BjH

�
is an isomorphism for all compact open subgroupoids H � G. Then the Kasparov-
product with x induces an isomorphism

� ˝ xWKtop
� .GIA/! Ktop

� .GIB/:

From now on fix a homotopy of twists † over an étale Hausdorff groupoid G.
Consider the canonical HilbertC0.G.0/�Œ0; 1�/-moduleE, defined as the completion
of Cc.G � Œ0; 1�I†/ with respect to the inner product defined in equation 1. Now
by Proposition 3.7 and the discussion thereafter we obtain an action ˛ of G � Œ0; 1�
on K.E/. Observe, that there is a canonical action of G on G.0/ � Œ0; 1� given by

g � .d.g/; t/ D .r.g/; t/;

such that
G � Œ0; 1� Š G Ë

�
G.0/ � Œ0; 1�

�
:

Taking this point of viewwe can use the pushforward construction (see for example [5,
Proposition 3.10]) to obtain an action ˇ of G on K.E/. One has the following:
Proposition 4.6 ([27, Theorem 3.8]). The canonical map

ˆW�c
�
G � Œ0; 1�; r�K

�
! �c.G; r

�K/

given byˆ.f /.g/.t/ D f .g; t/ is a �-homomorphism and extends to a �-isomorph-
ism

ˆWK.E/ Ì˛;r
�
G � Œ0; 1�

�
! K.E/ Ìˇ;r G:

On the other hand for each t 2 Œ0; 1� we can apply (the proof of) Proposition 3.7
to the twist †t over G, in order to obtain a Hilbert C0.G.0//-module Et and an
action ˛t of G on K.Et /. Let us record the following easy observations concerning
the relationship between E and Et :
Lemma 4.7. The restriction map

Cc.G � Œ0; 1�I†/! Cc.GI†t /; f 7! fj†t

extends to a surjective bounded linear map pt WE ! Et .

Proof. It is routine to check, that the restriction map is bounded and linear. Using an
argument similar to the proof of Lemma 3.3 one sees that the restriction map

Cc
�
G � Œ0; 1�I†

�
! Cc.GI†t /
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is surjective. This is not quite enough to conclude that pt is surjective. However, if
it WG

.0/ ! G.0/� Œ0; 1� denotes the inclusion at t 2 Œ0; 1�, then pt factors through an
isometric linear map i�t E ! Et . Since this map is isometric, it is enough to know
that the dense subset Cc.GI†t / is contained in the image to conclude surjectivity.
Using, that the canonical map

E Š E ˝C0.G.0/�Œ0;1�/ C0
�
G.0/ � Œ0; 1�

�
! i�t E

is surjective, the result follows.

We can use an argument similar to the proof of Lemma 3.3 again, to show that
for u 2 G.0/ we can canonically identify the Hilbert spaces E.u;t/ and .Et /u and
hence also K.E/.u;t/ with K.Et /u. Let X and Xt be the equivalence bimodules
obtained from applying Proposition 3.7 to the twists† and†t , respectively. We have
the following:
Proposition 4.8. The canonical restriction map

�c
�
G � Œ0; 1�; d�E

�
! �c.G; d

�Et /; � 7! �jG�ftg

extends to a bounded linear map ‰t WX ! Xt and factors through an isomorphism

‚t W q
�
t .X/! Xt

of Hilbert C �r .GI†t /-modules.

Proof. From the definition of the respective inner products it is obvious that

h‰t .�/; ‰t .�/i D qt
�
h�; �i

�
for all �; � 2 �c.G � Œ0; 1�; d�E/. It follows that ‰t is bounded and hence extends
to all of X . Define

‚t W q
�
t X D X ˝qt C

�
r .GI†t /! Xt

on elementary tensors by ‚t .� ˝ a/ D ‰t .�/a. Then ‚t extends to an isometric
map on all of q�t X , since for �; � 2 X and a; b 2 C �r .GI†t / we can compute

h� ˝ a; �˝ bi D
�
qt
�
h�; �i

�
a
��
b

D
�
h‰t .�/; ‰t .�/ia

��
b

D h‰t .�/a;‰t .�/bi

D h‚.� ˝ a/;‚.�˝ b/i:

Finally, to see that‚t is surjective, it is enough to show that it has dense image. First,
let � 2 �c.G; d�Et / be of the form

� D ' ˝ e
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with ' 2 Cc.G/ and e 2 Et , i.e. �.g/ D '.g/e.d.g//. Since pt WE ! Et is
surjective, we can find an element e0 2 E such that pt .e0/ D e. Also, pick any map

'0 2 Cc
�
G � Œ0; 1�

�
;

such that '0.g; t/ D '.g/. Then '0 ˝ e0 2 X such that ‰t .'0 ˝ e0/ D � . Now
if � 2 �c.G; d�Et / is arbitrary we can approximate it in the inductive limit topology
by finite sums of elements of the form '˝ e as above. An application of Lemma 3.8
completes the proof.

Let

x 2 KK
�
K.E/ Ìr G;C �r

�
G � Œ0; 1�I†

��
and xt 2 KK

�
K.Et / Ìr G;C �r .GI†t /

�
be the canonical KK-equivalences associated to the equivalence bimodulesX andXt
respectively.
Lemma 4.9. For each t 2 Œ0; 1� restriction of functions induces a G-equivariant
�-homomorphism ˆt WK.E/! K.Et /, such that the following diagram commutes:

K�.K.E/ Ìr G/ K�.K.Et / Ì˛t ;r G/

K�.C �r .G � Œ0; 1�I†// K�.C �r .GI†t //

.ˆt ÌG/�

.qt /�

� ˝ x � ˝ xt

Proof. Recall thatK.E/ is a C0.G.0/ � Œ0; 1�/-algebra. Let K.E/ denote the assoc-
iated bundle. Similarly K.Et / is a C0.G.0//-algebra with associate bundle K.Et /.
For f 2 �0.G.0/ � Œ0; 1�;K.E// D K.E/ and u 2 G.0/ define

ˆt .f /.u/ WD f .u; t/:

Then
ˆt .f / 2 �0

�
G.0/;K.Et /

�
Š K.Et /

and it is straightforward to verify, that ˆt is a G-equivariant �-homomorphism. To
see commutativity of the diagram, it is enough to check that

Œˆt ÌG�˝ xt D x ˝ Œqt �

in KK.K.E/ Ìr G;C �r .GI†t //. Since all the elements involved can be represented
by Kasparov-triples, where the operator is zero, these products are easy to describe:
The element on the left hand side can be represented by the triple

.Xt ; ˆt ÌG; 0/;
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while the right hand side is given by the class of

.X ˝qt C
�
r .GI†t /;  ˝ 1; 0/;

where  is the left action of K.E/ Ìr G on X . From Proposition 4.8 we have an
isomorphism of right Hilbert C �r .GI†t /-bimodules

‚WX ˝qt C
�
r .GI†t /! Xt

given on elementary tensors by � ˝ a 7! �jG�ftga. Thus, to complete the proof, we
observe that ‚ intertwines the left actions of K.E/ Ìr G.

Proof of Theorem 4.3. Fix t 2 Œ0; 1�. In light of Lemma 4.9 and the fact that G
satisfies the Baum–Connes conjecture with coefficients (and the naturality of the
Baum–Connes assemblymap), it is enough to show thatˆt WK.E/! K.Et / induces
an isomorphism

.ˆt /�WKtop
� .GIK.E//! Ktop

� .GIK.Et //:

Hence we are in the position to apply [5, Theorem 7.10] to deduce that it is enough
to show that

.ˆt ÌH/�WK�.K.E/jH ÌH/! K�.Et /jH ÌH/

is an isomorphism for all compact open subgroupoids H � G. Using Remark 3.9
and the same arguments as in Lemma 4.9 for H , we conclude that it is enough to
prove that

.qt /�WK�
�
C �r
�
H � Œ0; 1�I†

��
! K�.C �r .H I†t //

is an isomorphism. SinceG is ample,† is a continuous homotopy of twists by Prop-
osition 4.2. Clearly, the restriction of † to H has the same property. Consequently,
we may apply Proposition 4.4 to finish the proof.

5. Twisted actions of inverse semigroups

In this section we phrase our results in terms of twisted actions of inverse semigroups.
These have been studied by several authors and we will recall the definition in the
setting we want to work in for the readers convenience. In what follows we will
write E for the lattice of idempotents in an inverse semigroup S . For convenience,
we will also assume that there is an element 0 2 S such that 0s D s0 D 0 for
all s 2 S . If a semigroup does not have a zero element, one can adjoin a zero element
and extend the multiplication in the obvious way.
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Definition 5.1. A twisted action � of an inverse semigroup S on a locally compact
Hausdorff space X is a triple

� D
�
fDsgs2S ; f�sgs2S ; f!s;tgs;t2S

�
;

consisting of a family of open subsets Ds of X whose union covers X , a family of
homeomorphisms �sWDs!Ds� , and a family of continuous maps !.s; t/WDst!T ,
such that the following hold:
(1) The pair .fDsgs2S ; f�sgs2S / defines an action of S on X , i.e. �r ı �s D �rs;
(2) !.s; t/.��1r .x//!.r; st/.x/ D !.r; s/.x/!.rs; t/.x/, whenever x 2 Dr \Dst ;
(3) !.s; e/ D 1se and !.e; s/ D 1es for all s 2 S and e 2 E.

It is routine to check that a twisted action of S on X as defined above induces a
twisted action ofS onC0.X/ in the sense of [38] and [8]. Following [8, Theorem 7.2],
for any such twisted actionwe can construct an étale groupoidG with unit spaceX and
a twist † over G such that the twisted groupoid C�-algebra C �r .GI†/ is isomorphic
to the twisted crossed product C0.X/ Ìr

�;!
S . It follows from [8, Proposition 7.4]

that twisted actions in the sense above yield groupoids with continuous twists since
we insist on condition .3/ above. One should note that Buss and Exel study a
more general version of twisted actions. But since our main result applies to ample
groupoids (and hence to continuous twists), we can stick to the definition given above
without loosing any generality. More precisely, we have the following interpretation
of Corollary 3.5 in the setting of inverse semigroups:
Corollary 5.2. Let S be an inverse semigroup and X be a totally disconnected
locally compact Hausdorff space. Then every twisted action � of S onX in the sense
of [8, Definition 4.1] is a twisted action in the sense of Definition 5.1.

Another obstruction to apply our main results is the requirement that the groupoid
in question must be Hausdorff. The groupoid associated to a twisted action of an
inverse semigroup is constructed as a certain groupoid of germs. The question when
such a groupoid is Hausdorff is a subtle one. It has been studied by Steinberg and
was refined by Exel and Pardo. In order to state their result recall, that there is a
canonical order relation on an inverse semigroup S given by

s � t , s D ts�s for all s; t 2 S:

Theorem 5.3 ([12, Theorem 3.15]). Let .fDsgs2S ; f�sgs2S / be an action of the
inverse semigroup S on a locally compact Hausdorff spaceX and letG.�/ denote the
associated groupoid of germs. Then G.�/ is Hausdorff if and only if for every s 2 S
the union

S
fe2E We�sgDe is closed relative toDs�s .

In particular, if S is a weak semilattice then the groupoid of germs G.�/ is
Hausdorff for any action � of S on a locally compact Hausdorff spaceX such thatDe
is clopen for every e 2 E (see [41, Theorem 5.17]).
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The previous discussion applies in particular to twisted versions of the canonical
action of S on the spectrum of its idempotents: Recall, that a character on the
idempotent semilattice E of S is a non-zero map

�WE ! f0; 1g;

such that
�.ef / D �.e/�.f / and �.0/ D 0:

The set of all characters

yE D f�WE ! f0; 1g j � is a characterg

is called the spectrum of E. Equipped with the topology inherited from the product
topology on f0; 1gE , the spectrum yE is a locally compact, totally disconnected
Hausdorff space. There is a canonical action of S on yE given as follows: For s 2 S
let

Ds WD f� 2 yE j �.s
�s/ D 1g and �sWDs ! Ds�

be given by
�s.�/.e/ WD �.s

�es/:

Then each Ds is clopen in yE and � is an action of S on yE. The groupoid of germs
of this action is usually called the universal groupoid of S and denoted by G.S/
(see [11, 34] for more details on this construction).

By [8] again, twisted actions of S on yE are in one-to-one correspondence with
continuous twists over the universal groupoidG.S/ of S . A twisted action of S on yE
whose underlying action is the canonical one described above (i.e. the data mainly
consists of a family of maps !s;t WDst ! T satisfying the appropriate conditions
from Definition 5.1) will also be called a twist over S or a 2-cocycle on S .

In light of the above discussion there is an obvious notion of homotopy of twisted
actions:

Definition 5.4. A homotopy of twisted actions of S on X is a triple�
fDsgs2S ; f�sgs2S ; f!r;sgr;s2S

�
consisting of a family of open subsets Ds of X whose union covers X , a family of
homeomorphisms �sWDs ! Ds� , and a family of continuous maps

!.r; s/WDrs � Œ0; 1�! T ;

such that �
fDs � Œ0; 1�gs2S ; f�s � idŒ0;1�gs2S ; f!.r; s/gr;s2S

�
is a twisted action of S on X � Œ0; 1�.
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Note that a homotopy defines a family of twisted actions of S on X , indexed by
the unit interval Œ0; 1�.

Invoking [8, Theorem 7.2] again, a homotopy of twisted actions provides us with
an étale groupoid G with G .0/ D X � Œ0; 1� and a twist † over G such that

C �r .G I†/ Š C0
�
X � Œ0; 1�

�
Ìr�;! S:

Since in our definition of homotopy the action ofS onX does not depend on t 2 Œ0; 1�,
the groupoid G is just the trivial bundle of groupoids G D G � Œ0; 1�, where G is the
groupoid of germs associated to the action .fDsgs2S ; f�sgs2S / of S onX . Hence the
following result is a direct consequence of Theorem 4.3 and [43]:

Theorem 5.5. Let .fDsgs2S ; f�sgs2S ; f!s;tgs;t2S / be a homotopy of twisted actions
of S on a locally compact totally disconnected Hausdorff space X . Suppose further,
that:

(1) for every s 2 S the union
S
fe2E We�sgDe is closed relative toDs�s , and

(2) the action � of S on X is amenable in the sense of [13, Definition 3.2].

Then the evaluation homomorphism

qt WC0
�
X � Œ0; 1�

�
Ìr��id;! S ! C0.X/ Ìr�;!t S

induces an isomorphism in K-theory.

Specialising to the canonical action of S on yE again we get the following: For a
homotopy of 2-cocycles ! on S and t 2 Œ0; 1� let !t be the 2-cocycle on S given by

!tr;s.�/ WD !r;s.�; t/:

Given a 2-cocycle ! D .!s;t /s;t2S on an inverse semigroup S let

C �r .S; !/ WD C0.
yE/ Ìr�;! S:

Then we have the following immediate corollary:

Corollary 5.6. Let S be an inverse semigroup. Suppose that S is a weak semilattice
and that the canonical action of S on yE is amenable. If! is a homotopy of 2-cocycles
on S , then

K�.C �r .S; !
0// Š K�.C �r .S; !

1//:

6. Applications

6.1. GeneralizedRenault–Deaconu groupoids. Our results apply nicely to actions
of certain semigroups studied in the literature. Recall the following definition [37]:
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Definition 6.1. Let P be a subsemigroup of a discrete group � containing the
identity element e of � and let X be a locally compact Hausdorff space. Then a
(continuous) left action of P consists of a family of local homeomorphisms .Tp/p2P
with TpW dom.p/! ran.p/ such that:
(1) dom.p/; ran.p/ are open subsets of X for all p 2 P ,
(2) dom.e/ D ran.e/ D X and Te D idX , and
(3) for allp; q2P wehavex2dom.pq/ if and only ifx2dom.q/ andTq.x/2dom.p/

and in that case Tpq.x/ D .Tp ı Tq/.x/.
Moreover, such an action is called directed, provided that for every pair of elements
p; q 2 P with dom.p/\ dom.q/ ¤ ; there exists an upper bound r 2 P of p and q
such that dom.p/ \ dom.q/ � dom.r/:

For example, every action of an Ore semigroup is directed, and the action of a
quasi-latticed ordered semigroup on its spectrum is directed.

Given a directed action T of P on X , where P is a subsemigroup of the discrete
group � one can define the semidirect product groupoid (or generalized Renault–
Deaconu groupoid) G.X;P; T / of the action as the set

f.x; 
; y/ 2 X � � �X j 9p; q 2 P W 
 D p�1q and Tp.x/ D Tq.y/g;

and equip it with the groupoid structure it inherits as a subset ofX ���X , equipped
with the obvious groupoid structure over X . It can be shown that the sets

Z.U; p; q; V / D f.x; p�1q; y/ 2 G.X;P; T / j x 2 U; y 2 V g;

with U; V ranging over the open subsets of X and p; q 2 P form a basis for a
locally compact Hausdorff topology on G.X;P; T / giving it the structure of an
étale groupoid over X , such that the canonical homomorphism cWG.X;P; T / ! �

given by c.x; 
; y/ D 
 is continuous (see [37, Proposition 5.12] for the details).
In particular, if X happens to be totally disconnected, then G.X;P; T / is an
ample groupoid. Moreover, if the ambient group � is amenable then the groupoid
G.X;P; T / is topologically amenable by [37, Theorem 5.13]. Hence we can apply
our main result to twists over such groupoids.

The following lemma illustrates how twists on such a semidirect product groupoid
can arise in practice. We omit its routine proof.
Lemma 6.2. Let .X; P; T / be a directed action of P � � on a locally compact
Hausdorff space X . If !W�2 ! T is a (normalized) 2-cocycle for � , then

z!WG.X;P; T /.2/ ! T I z!..x; 
; y/; .y; 
 0; z// WD !.
; 
 0/

defines a continuous (normalized) 2-cocycle on G.X;P; T /. Moreover, if

!1; !2W�
2
! T

are cohomologous then so are �!1; �!2.
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Similarly, homotopies of 2-cocycles on � induce homotopies of continuous
2-cocycles on G.X;P; T /.

Example 6.3. Consider the case .P; �/ D .Nk;Zk/. It is a well-known fact that
every class inH 2.Zk;T / has a representative of the form

!‚.n;m/ D e
ih‚n;mi

for a skew symmetric real k�k-matrix‚. Each of these cocycles is clearly homotopic
to the constant 2-cocycle!1. It follows that the associated twists†‚ (via the previous
lemma and Remark 3.2) over G.X;Nk; T / are all homotopic to the trivial twist and
hence

K�
�
C �r .G.X IN

k; T /I†‚/
�
Š K�

�
C �r .G.X;N

k; T //
�
:

We remark that certainly not all twists on G.X;P; T / arise in this way, unless X
is zero-dimensional. To see this consider the ordinary Renault–Deaconu groupoid
G.X;N; �/ associated to a local homeomorphism

� WX ! X:

In this case the ambient group is Z and it is well known, that every 2-cocycle on Z
is a coboundary, and hence the cohomology group H 2.Z;T / is trivial. On the
other hand it was observed in [9] that the group of (isomorphism classes of) twists
Tw.G.X;N; �// is isomorphic to the sheaf cohomology group H 1.X;S/ of X ,
where S is the sheaf of germs of continuous T -valued functions on X . If X is
zero-dimensional, then H 1.X;S/ vanishes and hence ordinary Renault–Deaconu
groupoids (i.e. the case where P D N/ over totally disconnected spaces do not admit
any non-trivial twists.

This begs the following question: If .X; P; T / is a directed action of P � � on a
locally compact totally disconnectedHausdorff spaceX , is every twist onG.X;P; T /
induced by a 2-cocycle on �?

6.2. P-graphs. Interesting examples of the semidirect product groupoids studied
above arise from higher-rank graphs or more general P -graphs as introduced in [26,
37]. Let P be a subsemigroup of a countable discrete group � . According to [37,
Definition 6.1] a (discrete) P -graph ƒ is a small category ƒ endowed with a degree
functor d Wƒ! P satisfying the unique factorisation property.

Associated with a P -graph ƒ is a canonical action Tƒ of P on the infinite path
space Xƒ, which in turn gives rise to the ample groupoid Gƒ WD G.Xƒ; P; Tƒ/.

Let us specialise to the case where P D Nk � F for some countable abelian
group F . By [26, Proposition 5.7, Corollary 5.10] every 2-cocycle c on ƒ gives
rise to a continuous 2-cocycle !c and hence a twist †c on Gƒ such that C �.ƒ; c/ is
canonically isomorphic to C �.GƒI†c/.
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A homotopy of 2-cocycles for a P -graph ƒ is a family .ct /t2Œ0;1� of 2-cocycles,
such that for each pair .�; �/ 2 ƒ�2 the map t 7! ct .�; �/ 2 T is continuous.
Following the line of argument in [16, Proposition 3.8] every homotopy of 2-cocycles
on ƒ gives rise to a continuous homotopy of twists over Gƒ � Œ0; 1�.
Corollary 6.4. Let P D Nk � F for some countable abelian group F . Let ƒ be a
row-finite P -graph with no sources and let .ct /Œt2Œ0;1� be a homotopy of 2-cocycles
on ƒ. Then

K�.C �.ƒ; c0// Š K�.C �.ƒ; c1//:

Proof. Since Zk � F is amenable, so is Gƒ by [37, Corollary 6.19]. Thus, Theo-
rem 4.3 implies that

K�.C �.ƒ; c0// Š K�.C �r .GƒI†c0//
Š K�.C �r .GƒI†c1// Š K�.C �.ƒ; c1//:

We expect this result to hold in much greater generality. In fact we believe it is
true for all .r; d/-proper P -graphsƒ (in the sense of [37]), where P is a quasi-lattice
ordered subsemigroup of a countable discrete amenable group � . This would require
a generalisation of several results in [26] to more general P -graphs, which we did
not seriously attempt.
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