
J. Noncommut. Geom. 15 (2021), 223–240
DOI 10.4171/JNCG/411

© 2021 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license.

Cup product on A1-cohomology and deformations
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Abstract. We propose a simple method for constructing formal deformations of differential
graded algebras in the category of minimalA1-algebras. The basis for our approach is provided
by theGerstenhaber algebra structure onA1-cohomology, whichwe define in terms of the brace
operations. As an example, we construct a minimalA1-algebra from theWeyl-Moyal �-product
algebra of polynomial functions.
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1. Introduction

The concept of homotopy associative algebras (orA1-algebras), which first appeared
in the context of algebraic topology [21], has now evolved into a mature algebraic
theory with numerous applications in theoretical and mathematical physics [13, 22].
String field theory [2, 12], the deformation quantization of gauge systems [15], non-
commutative field theory [1], and higher-spin gravity [14, 18, 19] are just a few
examples where these algebras play a dominant role. It turns out that many of
A1-algebras encountered in applications are obtained by deforming differential
graded algebras (DGA) or their families. The general deformation problem for
A1-algebras has been considered in [3, 11, 16, 20].

In this paper, we propose a simple formula for the deformation of families of
DGA’s in the category of minimal A1-algebras. The basis for our construction is
provided by a cup product on A1-cohomology. As was first shown by Getzler [7],
each A1-structure m 2 Hom.T .V /; V / on a graded vector space V gives rise to
an A1-structure M on the vector space Hom.T .V /; V /. As with any A1-algebra,
the second structure mapM2 induces a multiplication operation, called cup product,
in the A1-cohomology defined by the differential M1 and we use this operation to
deform the original family of A1-structures m.
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The main results of our paper can be summarized in the following:
Theorem 1.1. Given a one-parameter family A D

L
An of DGA’s with differential

@WAn ! An�1, one can define a minimal A1-algebra deforming the associative
product in A in the direction of an (inhomogeneous) Hochschild cocycle � given by
any linear combination of

�n.a1; a2; : : : ; an/ D .a1 � a2/
0
� @a3 � � � @an ; 8ai 2 A :

Here Œ�n� 2 HHn.A;A/ and the prime stands for the derivative of the dot product
in A w.r.t. the parameter. Each solution to the equation a � a D 0 for a 2 A1 can be
deformed to a Maurer–Cartan element of the A1-algebra above.

The theorem above admits various interesting specializations, of which we
mention only one. Let M be a one-parameter family of bimodules over A . Then one
can define the family of graded algebras A D A0

L
A1, where A0 D A, A1 D M,

and the product is given by

.a1; m1/.a2; m2/ D .a1a2; a1m2Cm1a2/; 8a1; a2 2 A ; 8m1; m2 2M : (1.1)

This is known as the trivial extension of the algebra A by the bimodule M. In order
to endow the algebra A with a differential @, we consider the A-dual bimodule

M� D HomA�A.M;A/ :

Each element h 2 M� extends to an A-bimodule homomorphism zhWA ! A by
setting zh.a/ D 0, 8a 2 A. In case ker h D 0, one can easily see that zh is a derivation
of the algebraA of degree�1. Furthermore, it follows from the definition that zh2 D 0.
Hence, we can put @ D zh. The deformation of the algebra A D A0

L
A1 stated

by Theorem 1.1 yields then a deformation of the A-bimodule M in the category of
minimal A1-algebras.

Notice that in the above construction h.M/ is a two-sided ideal in A. Conversely,
given a two-sided ideal I � A, we can set M D I and take h to be the inclusion
map M ,! A. This allows one to canonically associate an A1-algebra to any
pair .I;A/. In the particular case I D A, we get a deformation of the family A

itself. For this reason it is natural to term these and the other deformations following
from Theorem 1.1 the inner deformations of families.

The rest of the paper is organized as follows. In Section 2, we review some
background material onA1-algebras and braces. In Section 3, we define the cohom-
ology groups associated to an A1-structure and endow them with a commutative
and associative cup product. This product operation is then used in Section 4 for
constructing inner deformations of multi-parameter families of A1-algebras and, in
particular, DGA’s. Here we also introduce the concept of local finiteness for families
and show that each inner deformation of a locally finite family of A1-algebras
induces a deformation of the corresponding Maurer–Cartan elements. By way of
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illustration, we finally construct a minimal A1-algebra that deforms the algebra
of polynomial functions regarded as a bimodule over itself. The deformation is
completely determined by a canonical Poisson bracket and can be viewed as a certain
generalization of the Weyl–Moyal �-product.

2. A1-algebras and braces

Throughout the paper we work over a fixed ground field k of characteristic zero. All
tensor products and Hom’s are defined over k unless otherwise indicated. We begin
by recalling some basic definitions and constructions related to A1-algebras.

Let V D
L
V l be a Z-graded vector space over k and let T .V / D

L
n�0 V

˝n

denote its tensor algebra; it is understood that T 0.V / D k. The k-vector spaces T .V /
and Hom.T .V /; V / naturally inherit the grading of V . The vector space

Hom.T .V /; V / D
M
l

Homl.T .V /; V / (2.1)

is known to carry the structure of a graded Lie algebra. This is defined as
follows. For any two homogeneous homomorphisms f 2 Hom.T n.V /; V / and
g 2 Hom.Tm.V /; V /, one first defines a (non-associative) composition product [5]
as

.f ı g/.v1 ˝ v2 ˝ � � � ˝ vmCn�1/ D

n�1X
iD0

.�1/jgj
Pi

jD1 jvj j

� f .v1 ˝ � � � ˝ vi ˝ g.viC1 ˝ � � � ˝ viCm/˝ � � � ˝ vmCn�1/: (2.2)

Here jgj denotes the degree of g as a linear map of graded vector spaces1. Then the
graded Lie bracket on (2.1) is given by the Gerstenhaber bracket [4]

Œf; g� D f ı g � .�1/jf jjgjg ı f : (2.3)

One can see that the Gerstenhaber bracket is graded skew-symmetric,

Œf; g� D �.�1/jf jjgjŒg; f � ;

and obeys the graded Jacobi identity

ŒŒf; g�; h� D Œf; Œg; h�� � .�1/jf jjgjŒg; Œf; h�� :

In particular, Œf; f � D 2f ı f for any odd f .

1We define the degree of multi-linear maps as in [12]. A more conventional Z-grading [4, 23] on
Hom.T .V /; V / is related to ours by suspension: V ! V Œ�1�, where V Œ�1�l D V l�1.
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Definition 2.1. AnA1-structure on aZ-graded vector spaceV is given by an element
m 2 Hom1.T .V /; V / obeying the Maurer–Cartan (MC) equation

m ım D 0 : (2.4)

The pair .V;m/ is called the A1-algebra.
By definition, each A1-structure m is given by an (infinite) sum

m D m0 Cm1 Cm2 C � � �

of multi-linear maps mn 2 Hom.T n.V /; V /. Expanding (2.4) into homogeneous
components yields an infinite collection of quadratic relations on themn’s, which are
known as the Stasheff identities [21]. An A1-algebra is called flat if m0 D 0. For
flat algebras, the first structure map

m1WV
l
! V lC1

squares to zero, m1 ım1 D m21 D 0; hence, it makes V into a cochain complex. An
A1-algebra is called minimal if m0 D m1 D 0. In the minimal case, the second
structure map

m2WV ˝ V ! V

endows the space V Œ�1� with the structure of a graded associative algebra w.r.t. the
dot product

u � v D .�1/juj�1m2.u˝ v/ ; (2.5)

associativity being provided by the Stasheff identitym2 ım2 D 0. This allows one to
regard a graded associative algebra as a ‘very degenerate’A1-algebra withm D m2.
More generally, an A1-structure m D m1 C m2 gives rise to a DGA .V Œ�1�; d; �/

with the product (2.5) and the differential d D m1. The graded Leibniz rule

d.u � v/ D du � v C .�1/juj�1u � dv

follows from the Stasheff identity Œm1; m2� D 0.
The composition product (2.2) is a representative of the infinite sequence of multi-

linear operations on Hom.T .V /; V / known as braces. The braces first appeared in
the work of Kadeishvili [10] and were then studied by several authors [6–8]. To
simplify subsequent formulas, let us denote W D Hom.T .V /; V /.
Definition 2.2. Given homogeneous elementsA;A1; : : : ; Am2W andv1; : : : ; vn2V ,
define the braces AfA1; : : : ; Amg 2 W , m D 0; 1; 2; : : :, by the formula

AfA1; : : : ; Amg.v1; : : : ; vn/ D
X

0�k1�����km�n

.�1/�A
�
v1; : : : ; vk1

; A1.vk1C1; : : :/; : : :

: : : ; vkm
; Am.vkmC1; : : :/; : : : ; vn

�
; (2.6)

where � D
Pm
iD1 jAi j

Pki

jD1 jvj j. It is assumed that Af¿g D A.
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It follows from the definition that

AfA1g D A ı A1 : (2.7)

The braces obey the so-called higher pre-Jacobi identities [6]

AfA1; : : : ; AmgfB1; : : : ; Bng D
X

AB-shuffles

.�1/�A
˚
B1; : : : ; Bk1

; A1fBk1C1; : : :g; : : :

: : : ; Bkm
; AmfBkmC1; : : :g; : : : ; Bn

	
; (2.8)

where � D
Pm
iD1 jAi j

Pki

jD1 jBj j. Here summation is over all shuffles of the A’s
and B’s (i.e., the order of elements in either group is preserved under permutations)
and the case of empty braces Akf¿g is not excluded.

In [7], Getzler have shown that any A1-structure m on V can be lifted to a flat
A1-structureM on W by setting

M0.¿/ D 0 ;

M1.A/ D m ı A � .�1/
jAjA ım ;

Mk.A1; : : : ; Ak/ D mfA1; : : : ; Akg ; k > 1 :

(2.9)

Indeed, by the definition of the composition product (2.2)

.M ıM/.A1; : : : ; An/

D

X
0�i�j�n

.�1/"M
�
A1; : : : ; Ai�1;M.Ai ; : : : ; Aj /; AjC1; : : : ; An

�
; (2.10)

where " D
Pi�1
jD1 jAj j. This gives

.M ıM/.A1; : : : ; An/

D

X
0�i�j�n

.�1/"mfA1; : : : ; Ai�1; mfAi ; : : : ; Aj g; AjC1; : : : ; AngX
1�i�n

.�1/"mfA1; : : : ; Ai�1; Ai ım;AiC1; : : : ; Ang

C .�1/
Pn

iD1 jAi jmfA1; : : : ; Ang ım : (2.11)

Using the pre-Jacobi identities (2.8), one can rewrite the last term as

.�1/
Pn

iD1 jAi jmfA1; : : : ; Ang ım

D

X
1�i�n

.�1/"
�
mfA1; : : : ; Ai�1; Ai ım;AiC1; : : : ; Ang

CmfA1; : : : ; Ai ; m;AiC1; : : : ; Ang
�
:
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Then the r.h.s. of Eq. (2.11) takes the form of

.m ım/fA1; : : : ; Ang D mfmgfA1; : : : ; Ang

D

X
mA-shuffles

.�1/"mfA1; : : : ; Ai�1; mfAi ; : : : ; Aj g; AjC1; : : : ; Ang :

Hence,
.M ıM/.A1; : : : ; An/ D .m ım/fA1; : : : ; Ang D 0 :

In what follows we will refer to (2.9) as the derived A1-structure.2
Remark 2.3. There is also another way to define an A1-structure on W by that
on V . The corresponding structure maps are given by

Mk.A1; : : : ; Ak/ D mfA1; : : : ; Akg k � 0 ;

see [9, Thm. 7] or [23, Prop. 2.5]. Contrary to Getzler’s construction (2.9) this
A1-structure is not flat.

3. A1-cohomology

If .V;m/ is anA1-algebra, then the first map of the derivedA1-structure (2.9) makes
the graded vector space W D

L
W n into a cochain complex w.r.t. the differential

M1WW
n
! W nC1:

Let Hn.W / denote the corresponding cohomology groups.3 Following [16], we
refer to them as A1-cohomology groups. The most interesting for us are the
groupsH 1.W / andH 2.W /, which control the formal deformations of the underlying
A1-structure m. Let us give some relevant definitions.

When dealing with formal deformations of algebras, one first extends the ground
field k to the algebra kJtK, with the formal variable t playing the role of a deformation
parameter. Since kJtK is commutative, the graded Lie algebra structure onW extends
naturally to W ˝ kJtK and then to its completion W D W y̋ kJtK w.r.t. the t -adic
topology. By definition, the elements of W are given by the formal power series

mt D m
.0/
Cm.1/t Cm.2/t2 C � � � ; m.i/ 2 W : (3.1)

The natural augmentation "W kJtK ! k induces the k-homomorphism � WW ! W ,
which sends the deformation parameter to zero. We say that anMC elementmt 2 W1

is a deformation of m 2 W 1 if �.mt / D m or, what is the same, m.0/ D m in (3.1).

2Do not confuse with the derived A1-algebras in the sense of Sagave [17].
3For an associative algebra A, this cohomology is simply the Hochschild cohomology of the algebra.

In that case one normally uses a more standard notationHHnC1.A;A/ for the groupsHn.W /.
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Extending now the homomorphism mt from V to V D V ˝ kJtK by kJtK-linearity
and t -adic continuity, we get an A1-algebra .V ; mt / which is referred to as the
deformation of the algebra .V;m/. The element m.1/ in (3.1) is called the first-order
deformation of m.

Two formal deformations mt and zmt of one and the same A1-structure m are
considered as equivalent if there exists an element w 2 W0 such that

zmt D e
twmte

�tw
D

1X
nD0

tn

nŠ
.adw/n.mt / :

This induces an equivalence relation on the space of first-order deformations and
it is the standard fact of algebraic deformation theory (see e.g. [16]) that the space
of nonequivalent first-order deformations is isomorphic to H 1.W /. If in addition
H 2.W / D 0, then each first-order deformation extends to all orders.

Since the differential M1 is, by definition, an inner derivation of the graded Lie
algebra W , the Gerstenhaber bracket (2.3) induces a Lie bracket on the cohomology
space H �.W /, for which we use the same bracket notation. The graded Lie algebra
structure onH �.W / can further be extended to the structure of a graded Poisson (or
Gerstenhaber) algebra w.r.t. a cup product. The latter is defined as follows.

By definition, the second structure map

M2WW ˝W ! W

of the derived A1-algebra obeys the identity

M1.M2.A;B//CM2.M1.A/; B/C .�1/
jAjM2.A;M1.B// D 0 (3.2)

for all A;B 2 W . From this relation we conclude that (i) M2.A;B/ 2 W is
an M1-cocycle whenever A and B are so, and (ii) the cocycle M2.A;B/ is trivial
whenever one of the cocycles A and B is an M1-coboundary. To put this another
way, the mapM2 descends to the cohomology inducing a homomorphism

M �2 WH
n.W /˝Hm.W /! HnCmC1.W / :

We can interpret this homomorphism as a multiplication operation making the
suspended vector space H ��1.W / into a Z-graded algebra. More precisely, we
set

a [ b D .�1/jAj�1M2.A;B/ ; (3.3)

where A;B 2W are cocycles representing the cohomology classes a; b2H ��1.W /.
The properties of the cup product are described by the following proposition.

Proposition 3.1. The cup product (3.3) endows the spaceH ��1.W /with the structure
of an associative and graded commutative algebra.
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Proof. Associativity follows immediately from the Stasheff identity

M2 ıM2 D �ŒM1;M3� :

The r.h.s. obviously vanishes when evaluated onM1-cocycles modulo coboundaries,
while the l.h.s. takes the form of the associativity condition

.a [ b/ [ c � a [ .b [ c/ D 0 :

The proof of graded commutativity is a bit more cumbersome. Consider the
cochain

D.A;B/ DM1.A ı B/ �M1.A/ ı B � .�1/
jAjA ıM1.B/ ;

which measures the deviation of M1 from being a derivation of the composition
product. Using the definitions (2.7) and (2.9), we can write

D.A;B/ D mfAfBgg � .�1/jAjCjBjAfBgfmg �mfAgfBg C .�1/jAjAfmgfBg

� .�1/jAjAfmfBgg C .�1/jAjCjBjAfBfmgg : (3.4)

It follows from the pre-Jacobi identities (2.8) that

mfAgfBg D mfA;Bg CmfAfBgg C .�1/jAjjBjmfB;Ag :

Applying similar transformations to the other terms in (3.4), we find that all but two
terms cancel leaving

D.A;B/ D �M2.A;B/ � .�1/
jAjjBjM2.B;A/ :

It remains to note that for any pair of cocycles A and B the cochain D.A;B/ is a
coboundary, whence

a [ b D .�1/.jaj�1/.jbj�1/b [ a :

Notice that for graded associative algebras the associativity of the cup
product (3.3) takes place at the level of cochains. This product, however, may
not be graded commutative until passing to the Hochschild cohomology.
Proposition 3.2. The cup product and the Gerstenhaber bracket satisfy the graded
Poisson relation

Œa; b [ c� D Œa; b� [ c C .�1/jaj.jbjC1/b [ Œa; c� 8a; b; c 2 H �.W / :

Proof. The Poisson relation follows from the identity

ŒA;M2.B; C /� � .�1/
jAjM2

�
ŒA; B�; C

�
� .�1/jAj.jBjC1/M2

�
B; ŒA; C �

�
D .�1/jAj

�
M1

�
AfB;C g

�
�M1.A/fB;C g � .�1/

jAjAfM1.B/; C g

� .�1/jAjCjBjAfB;M1.C /g
�
;

which holds for all A;B;C 2 W . One can verify it directly by making use of the
pre-Jacobi identities (2.8).
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Thus, the cup product and the Gerstenhaber bracket define the structure of a
graded Poisson algebra on the A1-cohomologyH �.W /.
Remark 3.3. The structure of a graded Poisson algebra on the Hochschild
cohomology HH �.A;A/ of an associative algebra A was first observed by
Gerstenhaber [4]. One can view the two propositions above as a straightforward
extension of Gerstenhaber’s results to the case of A1-algebras.

4. Inner deformations of families

4.1. Families of algebras. LetAt be an n-parameter, formal deformation of anA1-
algebra A, i.e., the A1-structure on At is given by an element

m 2 W D W Jt1; : : : ; tnK

such thatmım D 0 andmjtD0 gives the products inA. Herewe allow the deformation
parameters ti to have non-zero Z-degrees contributing to the total degree jmj D 1

of m as an element of W1. For the sake of simplicity, however, we restrict ourselves
to the case where all the degrees jti j are even. Extension to the general case is
straightforward (see Remark 4.3 below). In the following we will refer to At as a
family of A1-algebras.

Let us denote

m.i1i2���ik/ D
@km

@ti1@ti2 � � � @tik
2 W :

Clearly,

jm.i1i2���ik/j D 1 � jti1 j � � � � � jtik j:

Taking the partial derivative of the defining relationmım D 0w.r.t. the parameter ti ,
we get

Œm;m.i/� DM1.m.i// D 0 :

In other words, the cochain m.i/ is a cocycle of the differentialM1 associated to the
A1-structure m. So, m.i/ defines a cohomology class ofH 1�jti j.W/.

Denote by Dm the subalgebra in the graded Poisson algebra H �.W/ generated
by the cocycles m.i/.
Proposition 4.1. The Gerstenhaber bracket on W induces the trivial Lie bracket
on Dm.

Proof. Differentiating the relation m ım D 0 twice, we get

Œm;m.i;j /� D �Œm.i/; m.j /� :

Hence, the bracket Œm.i/; m.j /� is anM1-coboundary. By Proposition (3.2) this result
is extended to arbitrary cup products of m.i/’s.
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4.2. Inner deformations. We see that the algebra Dm is generated by the cup pro-
ducts of the partial derivatives m.i/, so that the elements of Dm are represented by
cup polynomials4

� D

LX
lD0

ci1���ilm.i1/ [m.i2/ [ � � � [m.il / ; (4.1)

where ci1���il 2 kJt1; : : : ; tnK. Note that with our restriction on the degrees of t ’s the
graded associative algebra Dm D

L
D l
m is purely commutative as it consists only

of even elements.
Proposition 4.2. Letm 2 W1 be an n-parameter family of A1-structures and let�
be a cocycle representing an element ofD l

m. Thenwe can define an .nC1/-parameter
family of A1-structures zm 2 W Jt0; t1; : : : ; tnK as a unique formal solution to the
differential equation

zm.0/ D �Œ zm� (4.2)

subject to the initial condition zmjt0D0 D m. Here the new formal parameter t0 has
degree 1 � l .

Proof. It is clear that Eq. (4.2) has a unique formal solution that starts as

zm.t0/ D mC t0�Œm�C o.t
2
0 / :

Differentiating now the cochain �.t0/ D Œ zm; zm� by t0, we get

@�

@t0
D 2Œ zm.0/; zm� D Œ�Œ zm�; zm� D 0 :

With account of the initial condition �.0/ D Œm;m� D 0 this means that �.t0/ D 0;
and hence, zm defines an .nC 1/-parameter family of A1-structures.

We call the deformations of Proposition 4.2 the inner deformations of families of
A1-algebras.
Remark 4.3. Geometrically, we can think of the r.h.s. of (4.2) as a vector field �
on the infinite-dimensional space W . Then the A1-structures form a submanifold
M � W defined by the quadratic equation Œm;m� D 0. The cocycle condition
Œm;�� D 0 means that the vector field � is tangent to M and generates a flow ˆ�t0
on W , which leaves M invariant. Therefore,

zm D ˆ�t0.m/ �M:

Proceeding with this geometrical interpretation, we can consider the commutator
J�;�0K of two vector fields � and �0 associated with some elements of Dm. The

4By abuse of notation, we write the cup product for the cocycles rather than their cohomology classes.



Cup product on A1-cohomology and deformations 233

vector field J�;�0K, being tangent to M, defines an M1-cocycle. It would be
interesting to study the Lie algebra of vector fields generated by the elements of Dm

in more detail.
If we now allow some of the parameters ti to have odd degrees, then an odd vector

field� may not be integrable in the sense that J�;�K ¤ 0. In this case Eq. (4.2) for
the flow should be modified as

zm.0/ D �Œ zm� �
1

2
t0J�;�KŒ zm� :

Since .t0/2 D 0, the solution is given by

zm D mC t0�Œm�

and it is obvious that zm ı zm D 0.

4.3. Deformation of MC elements. Let .V;m/ be a flat A1-algebra. Then, when-
ever it is defined, the MC equation reads

m.a/ WD

1X
nD1

mn.a; : : : ; a/ D 0 (4.3)

for jaj D 0. A solution a 2 V 0 to this equation is called an MC element of the
A1-algebra .V;m/ and the set of all MC elements, called the MC space, is denoted
by MC.V;m/.

In order to ensure the convergence of the series (4.3) one or another assumption
about .V;m/ is needed. For example, one may assume thatmn D 0 for all n > p, so
that the series (4.3) is actually finite. This is the case of DGA’s. Another possibility
is to consider the scalar extension V ˝ mA, where mA is the maximal ideal of an
Artinian algebra A; the multi-linear operations on V extend to those on V ˝mA by
A-linearity. Neither of these approaches, however, is appropriate to our purposes.
What suits us is, in a sense, a combination of both.
Definition 4.4. Wesay that ann-parameter family ofA1-structuresm2W Jt1; : : : ; tnK
is locally finite if for each k there exists a finite N such that

m.i1���ik/jtD0 2

NM
nD0

Hom.T n.V /; V / :

With the supposition of local finiteness, the MC equation (4.3) for an element
a 2 V Jt1; : : : ; tnK gives an infinite collection of well-defined equations on the Taylor
coefficients of a. Furthermore, we have the following statement, whose proof is left
to the reader.
Proposition 4.5. Any inner deformation of a locally finite family of A1-algebra is
locally finite.
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The next proposition shows that inner deformations of locally finite families are
always accompanied by deformations of their MC spaces.
Proposition 4.6. Let zm be an inner deformation of a locally finite family of A1-
structuresm. Then eachMCelement form can be deformed to that for zm, establishing
thus a monomorphism MC.V;m/!MC.V; zm/.

Proof. In order to simplify the formulas below we restrict ourselves to inner
deformations that are generated by monomials

�Œ zm� D zm.i1/ [ zm.i2/ [ � � � [ zm.il / :

The generalization to arbitrary cup polynomials (4.1) will be obvious.
Suppose that a 2MC.V; zm/, then

zm.a/ D 0 : (4.4)

Differentiating this identity by ti , we get

zm.i/.a/C zmfDig.a/ D 0 :

Here byDi we denoted the operator of partial derivative,Dia D @a=@ti . Therefore,
when evaluated on MC elements, the deformation equation (4.2) can be written as

zmfD0g.a/ D ��Œ zm�.a/ : (4.5)

More explicitly, the r.h.s. of this equation is defined by

�Œ zm�.a/ D �. zm.i1/; zm.i2/; : : : ; zm.il //.a/

DM2.: : : .M2.M2.M2. zm.i1/; zm.i2//; zm.i3//; : : : ; zm.il //.a/ :

Here we used the definition of the cup product (3.3).
Again, when evaluated onMCelements, the expression zmfDig.a/ can be replaced

withM1.Di /.a/. This allows us to write

�Œ zm�.a/ D ��.M1.Di1/; zm.i2/; : : : ; zm.il //.a/ :

Since M1. zm.i// D 0, the repeated use of Rel. (3.2) allows us to rewrite the last
expression as

�Œ zm�.a/ D .�1/lM1.�.Di1 ; zm.i2/; : : : ; zm.il ///.a/

or, equivalently,

�Œ zm�.a/ D .�1/lmf�.Di1 ; zm.i2/; : : : ; zm.il //g.a/ :

Thus, Eq. (4.5) takes the form

mfD0g.a/ D �.�1/
lmf�.Di1 ; zm.i2/; : : : ; zm.il //g.a/ :
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We will definitely satisfy this equation if require that

D0a D �.�1/
l�.Di1 ; zm.i2/; : : : ; zm.il //.a/ : (4.6)

This gives a differential equation for a 2 V Jt0; t1; : : : ; tnK w.r.t. the formal ‘evolution
parameter’ t0 of degree 1 � j�j.

Nowwe can evaluate zm on a formal solution to Eq. (4.6). It follows from the course
of the proof above that the partial derivative D0. zm.a// depends on zm.a/ linearly
thereby vanishes on (4.4). This means that the vector zm.a/ 2 V Jt0; t1; : : : ; tnK is
zero whenever it vanishes at t0 D 0. But the last condition is just the definition of an
MC element ajt0D0 2MC.V;m/.

4.4. Minimal deformations of DGA’s. We now apply the above machinery of inner
deformations to the case of DGA’s. Recall that a DGA A is given by a triple .V; @; �/,
where V D

L
V l is a graded vector space endowed with an associative dot product

and a differential @WV l ! V l�1.
Remark 4.7. Here we equip a DGA with a differential of degree �1. From the
perspective of A1-algebras, it is more natural to consider differentials of degree 1.
As was discussed in Section 2, a DGA structure on V can then be interpreted as a
‘degenerate’ A1-structure on V Œ1� involving only a linear map m1 and a bilinear
map m2, both of degree 1. Actually, there is not much difference between the two
definitions as one can always relate them by the degree reversion functor �. By
definition, �V is a graded vector space with .�V /l D V �l . Clearly, the k-linear map
V ! �V respects the product while reverting the degree of the differential.

Let At be a one-parameter deformation of A, with t being a formal parameter
of degree zero. In order to make the DGA At into a family of A1-algebras, we
define the tensor product algebra At ˝ kJuK, where u is an auxiliary formal variable
of degree 2. Here we consider kJuK as a DGA with trivial differential. Multiplying
now the differential @ in At by u yields the differential d D u@ in At ˝ kJuK of
degree 1. This allows us to treat the DGA At ˝ kJuK as a 2-parameter family of
A1-algebras with m1 D d and m2 defined by (2.5). On the other hand, given a
two-parameter family of A1-structures m with the parameters t and u of degrees 0
and 2, respectively, we can define the sequence of cocycles

�n D m.t/ [ m.u/ [m.u/ [ � � � [m.u/Ÿ
n

; n D 0; 1; 2; : : : : (4.7)

Here the subscripts t and u stand for the partial derivatives of m w.r.t. t and u.
Keeping in mind that the cup product has degree 1 while jm.u/j D �1, we conclude
that j�nj D 1 for all n. By Proposition 4.2, each cocycle �n gives rise to a formal
deformation ofm with a new deformation parameter s of degree zero. The deformed
A1-structure zm is defined by the differential equation

zm.s/ D �nŒ zm� (4.8)
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with the initial condition zmjsD0 D m. The parameter u plays an auxiliary role in
our construction. Setting u D 0, we finally get, for each n, a family xm D zmjuD0 of
A1-structures parameterized by t and s; both the parameters are of degree zero. By
construction, xm starts with m2 and the first-order deformation in s is given by

xm.1/.a1; a2; : : : ; anC2/ D .a1 � a2/
0
� @.a3/ � @.a4/ � � � @.anC2/ ;

where the prime denotes the partial derivative of the dot product inAt by t . Evaluating
xm ı xm D 0 at the first order in s, we get

Œm2; xm
.1/�.a0; a1; : : : ; anC2/ D �a0 � Nm

.1/.a1; a2; : : : ; anC2/

�

n�1X
kD0

.�1/ja0jC���Cjak j xm.1/.a0; : : : ; ak�1; ak � akC1; akC2; : : : ; anC2/

C .�1/ja0jC���CjanC1j xm.1/.a0; a1; : : : ; anC1/ � anC2 D 0 :

Therefore, xm.1/ is a Hochschild cocycle of the algebra At representing an element
of HHnC2.At ;At /. If the cocycle m.1/ is nontrivial, then it defines a nontrivial
deformation of the algebra At in the category of A1-algebras. Notice that the
resulting A1-structure xm is minimal as, by construction, xm1 D 0. For this reason
we refer to xm as a minimal deformation of the DGA structure m. In such a way we
arrive at the first statement of Theorem 1.1.

In the special case that the differential @ does not depend on t , the r.h.s. of Eq. (4.8)
is independent of u, so that the whole dependence of zm of u is concentrated in the
first structure map zm1 D u@. This means that all the structure maps constituting zm
or xm are differentiated by @.

Being determined only by the first and second structure maps, the A1-algebra
At˝kJuK is evidently locally finite in the sense of Definition 4.4 and so is its minimal
deformation defined by xm 2 W Jt; sK. At s D 0, the A1-structure xm reduces to the
product inAt and theMCequation takes the form5 a�a D 0. ApplyingProposition 4.6
to a solution a yields then an MC element

xa D aC
X
k>0

aks
k

for the minimal A1-algebra .V; xm/, that is, xm.xa/ D 0. This proves the rest part of
Theorem 1.1.

As a final remark we note that the above construction of minimal deformations
carries over verbatim to the case of smooth (i.e., not formal) families of DGA’s At .
An interesting example of a smooth family of algebras is considered below.

5Notice that the differential @ does not contribute to the MC equation, contrary to what one might
expect. From the viewpoint of the DGA the element a has degree 1, so that @a is of degree 0, and not 2.
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4.5. Example. Let us illustrate the construction of the previous subsection by the
example of the polynomial Weyl algebra AmŒt �. As a vector space AmŒt � coincides
with the space kŒt; x1; : : : ; x2m� of polynomials in 2mC 1 variables. Multiplication
in AmŒt � is given by the �-product

a � b D a � b C

1X
kD1

tk.a
k
� b/ ; (4.9)

where

a
k
� b D

1

kŠ
!i1j1 � � �!ikjk

@ka

@xi1 � � � @xik

@kb

@xj1 � � � @xjk

and!ij is a skew-symmetric, non-degenerate matrix with entries in k. The �-product
is known to be associative but non-commutative. Clearly, one may regard AmŒt � as a
one-parameter deformation of the usual polynomial algebra kŒx1; : : : ; x2m� with the
commutative dot product.

As was explained in the Introduction, we can turn the polynomial Weyl algebra
into a family of DGA’s At simply treating AmŒt � as a bimodule over itself. The
family At is concentrated in degrees 0 and 1, so that the underlying k-vector space is

V D V 0 ˚ V 1 with V 0 D AmŒt � D V 1:

Multiplication is defined by the rule (1.1) and the differential @ is completely specified
by declaring @WV 1 ! V 0 to be the identity homomorphism of AmŒt � onto itself.

Following prescriptions of Subsection 4.4, we can now produce a two-parameter
family of A1-structures xm generated, for example, by the cocycle �1 of (4.7).
The family is parameterized by the initial parameter t and a new deformation
parameter s of degree zero. The explicit expression for xm resulting from the
deformation equation (4.8) appears to be rather complicated. The situation is slightly
simplified if we put tD0. This corresponds to a deformation of the polynomial
algebra kŒx1; : : : ; x2m�, considered as a bimodule over itself, in the category of
minimal A1-algebras.

A direct, albeit tedious, calculation shows that the only nonzero maps mn 2
Hom.T n.V Œ1�/; V Œ1�/ constituting the A1-structure m D xmjtD0 are given by

mn.a; b; u3; : : : ; un/ D s
n�2fn.a; b; u3; : : : ; un�1/ � un ;

mn.a; u2; : : : ; un/ D s
n�2fn.a; u2; : : : ; un�1/ � un ;

mn.u2; b; u3; : : : ; un/ D �s
n�2fn.u2; b; : : : ; un�1/ � un ;

(4.10)

where a; b 2 V 0, u2; : : : ; un 2 V 1, and the fn’s are defined by

fnC1.a1; a2; : : : ; an/

D

X
a1

k1
� a2 � a3 � � � al1C1›

l1

k2
� al1C2 � � � al1Cl2C2œ

l2

k3
� � � �

kp

� an�lpC1 � � � an�1 � an�
lp
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for all ai 2 kŒx1; : : : ; x2m�. Here, to save space, we omit parentheses specifying
the order of multiplication; it is understood that all the multiplication operations are
performed from left to right and summation runs over all k’s and l’s obeying the
(in)equalities

pX
jD1

lj D

pX
jD1

kj D n � 2 ; lj � 1 ; kj � 1 ; p � 0 ;

lp � kp ; lp�1 C lp � kp�1 C kp ; : : : ; l2 C � � � C lp � k2 C � � � C kp :

In particular, for n D 2 (which means p D 0) we recover the original bimodule
structure for the polynomial algebra kŒx1; : : : ; x2m�:

m2.a; b/ D a � b ; m2.a; u/ D a � u ; m2.u; b/ D �u � b ;

and the first-order deformation is given by

m3.a; b; u/ D s.a
1
� b/ � u ;

m3.a; u1; u2/ D s.a
1
� u1/ � u2 ;

m3.u1; b; u2/ D �s.u1
1
� b/ � u2 :

It is not hard to see that this deformation is nontrivial. Finally, for all n

mnC2.a; b; 1; : : : ; 1/ D s
na

n
� b ;

which allows us to regard (4.10) as a certain A1 generalization of the Weyl–Moyal
�-product (4.9) to the case of a ‘non-constant deformation parameter’ u.
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