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Abstract. In this article we prove that there exists an explicit bijection between nice d-pre-
Calabi—Yau algebras and d -double Poisson differential graded algebras, where d € Z, extending
a result proved by N.Iyudu and M. Kontsevich. We also show that this correspondence is
functorial in a quite satisfactory way, giving rise to a (partial) functor from the category of
d-double Poisson dg algebras to the partial category of d -pre-Calabi—Yau algebras. Finally, we
further generalize it to include double Ps-algebras, introduced by T. Schedler.
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1. Introduction

Pre-Calabi—Yau algebras were introduced in [9], and further studied in [2] and [3].
However, these structures (or equivalent ones) have appeared in other works under
different names, such as Voo-algebras in [12], Aoo-algebras with boundary in [14],
noncommutative divisorsin [15, Remark 2.11], or weak Calabi—Yau structures (see [6]
for the case of algebras, [17] for differential graded (dg) categories and [5] for
linear oco-categories). These references show that pre-Calabi—Yau structures play
an important role in homological algebra, symplectic geometry, string topology,
noncommutative geometry and even in Topological Quantum Field Theory (see [6]).
Following [8], a (compact) Calabi—Yau structure (of dimension n) on a compact
Aoo-algebra A is a nondegenerate cyclically invariant pairing on A of degree n. In the
sense of formal noncommutative geometry, it is the analogue of a symplectic structure.
The problem with this definition is that for applications related to path spaces,
Fukaya categories, open Calabi—Yau manifolds or Fano manifolds, the hypothesis
of compactness is too restrictive. This was the reason why pre-Calabi—Yau algebras
were originally introduced in [9].

Roughly speaking, a pre-Calabi—Yau algebra can be regarded as a formal non-
commutative Poisson structure on a non-compact algebra because it is a noncommut-
ative analogue of a solution to the Maurer—Cartan equation for the Schouten bracket
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on polyvector fields. More precisely, let A be a Z-graded vector space, and let

CO(4) =[] som (A[1]®7. A®¥)  fork > 1.

r>0

A pre-Calabi-Yau structure on A is a solution

m = Zm(k)’ m® e c®(4)
k>0

of the Maurer—Cartan equation

[m7 m]gen.neckl =0

(see [3, Definition 2.5]). Here, [ , Jgen.necki is the “generalized necklace bracket",
which is a kind of graded commutator (see [3, Definition 2.4]). Nevertheless, for
our purposes, we will use a different but equivalent version of this notion (see [3,
Proposition 2.7]). A pre-Calabi—Yau algebra essentially is a cyclic Aso-algebra
structure on A @ A*[d — 1] for the natural bilinear form of degree d — 1 induced by
evaluation such that A is an As-subalgebra (see Definition 4.2).

If pre-Calabi—Yau structures are regarded as noncommutative Poisson structures
in the setting of formal noncommutative geometry, double Poisson algebras are the
natural candidates for Poisson structures in the context of noncommutative differential
geometry based on double derivations as developed in [1] and [16]. Indeed, let

Der A = Der(A, A ® A)
be the A-bimodule of double derivations, and let
DA = T4(Der A)

be its tensor algebra. Roughly speaking, a double Poisson algebra is an algebra
endowed with a bivector P € (DA), such that

{P’P}:O,

where { , } is a kind of commutator in this context (see [16, Section 4.4]). Besides
their similarity with the commutative notion, double Poisson algebras turn out to
be the appropriate noncommutative Poisson algebras in this setting because they
satisfy the Kontsevich—Rosenberg principle (see [7] and [16, Section 7.5]), whereby
a structure on an associative algebra has geometric meaning if it induces standard
geometric structures on its representation spaces.

Hence, since pre-Calabi—Yau algebras and double Poisson algebras can be
regarded as noncommutative Poisson structures, one should expect some relationship
between them. For instance, W.-K. Yeung [17] proved that double Poisson structures
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on dg categories provide examples of pre-Calabi—Yau structures. Furthermore, given
an associative algebra A, N.Iyudu and M. Kontsevich showed that there exists an
explicit one-to-one correspondence between the class of non-graded double Poisson
algebras and that of pre-Calabi—Yau algebras whose multiplications m; vanish
fori € N\ {2, 3}, such that m, is the usual product of the square-zero extension

A A*ld —1],

and m3z sends A ® A¥ ® Ato Aand A* ® A ® A* to A* (see [3, Theorem 1.1]).

The first main result of this article is an extension of this correspondence to the
differential graded setting (see Theorem 5.2). Our second main result shows that such
a correspondence satisfies a simple functorial property (see Theorems 5.6 and 5.9),
for a suitable notion of morphism of d -pre-Calabi—Yau algebras (Definition 5.8). We
remark that this notion does not define a category but a partial category of d-pre-
Calabi—Yau algebras, since not all pairs ( f, g) of morphisms such that the codomain
of f is the domain of g are composable.

Moreover, T. Schedler [13] showed an interesting connection of the classical and
associative Yang—Baxter equations with double Poisson algebras, that he generalized
to Lo-algebras, giving rise to “infinity” versions of Yang—Baxter equations and
double Poisson algebras. The latter arise by relaxing the (double) Jacobi identity up
to homotopies, but not the associativity of the multiplication. We recall Schedler’s
definition of double P,-algebras in Definition 6.1, which coincides with the usual
notion of dg double Poisson algebras if the higher brackets vanish. The third main
result of the article states that there is also a correspondence between certain pre-
Calabi—Yau structures on (nonunitary) graded algebras A and double P,-algebras,
giving a different extension of Theorem 5.2 if d = 0 (see Theorem 6.3).

We believe that our results can be a powerful tool to define both new double
Poisson and pre-Calabi—Yau structures. For example, the study of linear and quadratic
double Poisson brackets on free associative algebras, as in [10] or [11], might be
useful to better understand and extend the results obtained by N. Iyudu in [2], where
pre-Calabi—Yau structures on path algebras of quivers with one vertex and a finite
number of loops are studied. Moreover, the results obtained in this article give rise
to a more natural study of quasi-isomorphism classes of dg double Poisson algebras
by considering the associated pre-Calabi—Yau Aso-algebras. We remark that the
former problem is in principle specially difficult, as it is usually the case when
dealing with double structures (e.g. double associative algebras, double Poisson
algebras), since, although transfer theorems for strongly homotopic structures over
dioperads or properads are known to hold, they are not explicit. Indeed, as a major
difference with the theory of (al)gebras over operads we can mention that there does
not exist in general a Schur functor construction for dioperads/properads — so there
is, in particular, no bar construction for (al)gebras over dioperads/properads — the
category of (al)gebras over dioperads/properads does not carry any natural model
structure, etc.
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The contents of the article are as follows. We begin in Section 2 by fixing our
notations and conventions, and in Section 3 we review some known definitions and
results related to double Poisson dg algebras. After reviewing the basic definitions
and results on Aoo-algebras in the first part of Section 4, we recall the crucial notion of
a d-pre-Calabi—Yau structure as well as some additional conditions on A.-algebras
that we will need to prove our main results.

Section 5 is the core of the article. Subsection 5.1 is devoted to prove the
first main result of our article, Theorem 5.2, that establishes the bijection between
fully manageable nice d-pre-Calabi—Yau structures and double Poisson brackets
of degree —d. In Subsection 5.2 we prove our second main result, namely the
functoriality of the previous correspondence (see Theorems 5.6 and 5.9). Finally,
in Section 6, we prove our last main result, Theorem 6.3, that extends the previous
bijection in case d = 0 to include double P.,-algebras.
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by the German Federal Ministry of Education and Research. The second author
was supported by the GDRI “Representation Theory” 2016-2020 and the BIREP
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their hospitality at the University of Bielefeld. We are very grateful to Yiannis
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2. Notations and conventions

2.1. Generalities. In what follows, k will denote a field of characteristic zero. We
recall that, if

V= Dnez |46

is a (cohomological) graded vector space (resp., dg vector space with differential dy),
V [m] is the graded (resp., dg) vector space over k whose nth homogeneous compo-
nent V [m]" is given by V"™ for all n,m € Z (resp., and whose differential 9y ]
sends a homogeneous v € V™ to (—1)™dy (v)). It is called the shift of V. Given
a nonzero element v € V", we will denote |v| = n the degree of v. If we refer
to the degree of an element, we will be implicitly assuming that it is nonzero and
homogeneous.
We recall that a morphism

fiVv—-w

of graded (resp., dg) vector spaces of degree d € Z is a homogeneous linear map
of degree d, i.e. f(V") € Wt for all n € Z, (resp., satisfying that f o dy =
(=% o f). A morphism of degree zero will be called closed. Moreover,
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if f:V — W is a morphism of graded (resp., dg) vector spaces of degree d,
fm]: Vm] — W[m]

is the morphism of degree d whose underlying set-theoretic map is (—1)¢ £ . In this
way, the shift (—)[m] defines an endofunctor on the category of graded (resp., dg)
vector spaces provided with closed morphisms.

Given any d € Z, we will denote by

syq:V — V[d]

the suspension morphism, whose underlying map is the identity of V', and sy,; will
be denoted simply by sy-. To simplify notation, we write sv instead of sy (v) for
a homogeneous v € V. All morphisms between vector spaces will be k-linear
(satisfying further requirements if the spaces are further decorated). All unadorned
tensor products ® would be over k. Since graded vector spaces can be considered
as dg vector spaces with trivial differentials, we will proceed to consider the case
of dg vector spaces. We also remark that N will denote the set of positive integers,
whereas Ny will be the set of nonnegative integers.

2.2. Permutations. Given n € N, we will denote by S, the group of permutations
of n elements {1,...,n}, and given any o € S,, sgn(c) € {£1} will denote its sign.
Given two dg vector spaces V' and W, we denote by

wwV W WV

the closed morphism determined by v ® w — (—1)/*/®ly ® v, for all homogeneous
elements v € V and w € W. Moreover, given any transposition ¢ = (ij) with
i < j inthe group of permutations S, of n € N elements, it induces a unique closed
morphism

ya(c): Ve — ven,

sending v; ® -+ ® v, to

DV ® @V 1®V Vi1 ® Vi1 QV QVjy1 ® & Vp,

where

j-1
e = osllos 1+ (il + o) (Y vel),
{=i+1
for all homogeneous vy, ..., v, in V. More generally, for any permutation o € S,

written as a composition of transpositions ¢; o- - -0 ¢y,, we define the closed morphism

o (0): yen _ yen
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given by 1y, (1) o+ -+ o Ty, (cm). We leave to the reader the verification that this is
independent of the choice of the transpositions used in the decomposition of o. In
fact, it is easy to check that ty ,(0) sends v = v; ® -+ ® v, to

(—l)e(a’ﬁ)vg—l(l) R Q va_l(n), (21)
where
6(0', 6) = Z |va_1(i)||va_1(j)|. (22)
i<J,

o l(@)>c71())

We will usually write o instead of 7y, (o) to simplify the notation.

2.3. The closed monoidal structure. Given two dg vector spaces V and W we
will denote by Xom (V, W) the dg vector space whose component of degree d is
formed by all morphisms from V to W of degree d, and whose differential sends an
homogeneous element f € Kom (V, W) to

dwo f— (=D fody.

If W = k, we will denote Xom (V. k) by V*. If f:V — V'’ is a morphism of
degree d, then

Kom (f, W): Kom (V', W) — Rom (V, W)
and Kom (W, f): Rom(W, V) — Kom (W, V')
are defined by

Rom (£, W)(g) = (-D)¥lgo £ and  Rom(W. f)(g) = f o g.

respectively. If W = k, then ¥om (£, k) will be denoted by f*.
It is easy to check that, given homogeneous morphisms f:V —V”and g:V' -V,
then

Kom (g, W) o Kom (f, W) = (=) 18 Rom (f o g, W), (2.3)
and Kom (W, f) o Hom (W, g) = Kom (W, f o g). 2.4)

The usual tensor product V' ® W of vector spaces is a dg vector space for the
grading given by

VW =®uez(VQW)",
where
VW) = ®pmezV" @ W™,

and the differential sends v ® w to
() @ w+ (=Dl @ Iw (w),

for all homogeneous v € V and w € W.
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Given f € Hom(V, W) and g € Kom (V’, W’), the map
Avyvww (f ®g) € Hom(V V', W W)

is the unique morphism sending v ® w to (—1)'¢!’l £(v) ® g(w). This gives a closed
morphism

Avyrww: Rom(V, W) @ Kom(V', W') - Rom(V V', W @ W').
If W = W’ = k, we denote it by Ay,;. Moreover, if it is clear from the context, we
will denote Ay, y» ww'(f ® g) simply by f ® g. Note that, using this notation, the
differential of V' ® W is precisely dy ® idy + idy ® dw .
It is easy to check that
Avy ww (f ® g oAvu vy (f ®g)
= DAy ww (f o f®(g0g)). (2.5)

and

Aw,y o Tyrwt = Tiyy 0 Av,w, (2.6)
as well as

Avw o Aye s ye we(h* @ idys) = (Av,wuw(h ® idW))# ocAuw., (2.7)

for any homogeneous morphism 4: V — U.
For later use, we recall that, given vy,...,v, € V homogeneous elements of a
graded vector space, and f1,..., f, € V¥ homogeneous elements, then

(i® @ f) (oW1 ®---Bv) = (07 (/i ®® /) (1 @ ® ). (2.8)
2.4. The closed monoidal structure and the suspension. Givend €7, andletV, W
be two dg vector spaces, define the closed isomorphisms

L4 i Rom(V, W)[d] — Rom (V[—d]. W)
and R,y Kom (V, W)[d] — Kom (V. W[d]),
given by
somvwyd f > (D fosyi_ara and  syomwya f > swa o f.

respectively.
Moreover, define also the closed isomorphisms

£ (Ve W)d] — (VId]) @ W

and RE (V@ W)d] - V & (W[d]).
given by
svewa(V@w) > sy ) @w and  syew,a(v ® w) = (=Dl @ sy g (w),

respectively.
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3. Double Poisson brackets on dg algebras

The definitions of dg algebras (possibly with unit) and dg (bi)modules are supposed to
be well known. We will recall however the definition of a double Poisson dg algebra,
specially to avoid some imprecision concerning signs that exist in the literature.
The reader might check that the definition coincides with the one introduced in [16,
Section 2.7], for the case where the differential vanishes.

Definition 3.1. Let (A, t4,04) be a dg algebra and d € Z. A double Poisson
bracket on A of degree —d is a homogeneous morphism of dg vector spaces

{.haAld]® Ald] — A® A

of degree d satisfying that:

() —{. %40 taparaia) = taa 0§ Bas
(ii) for any a € A, the homogeneous map AD(a): A — A ® A of degree |a| — d
givenby b — {{s4,0a,54,4b}} 4 is a double derivation of A, i.e.

AD(a) o g = (idg ® pt4) o (AD(a) ® id4) + (na ® ida) o (id4 ® AD(a));

(iii) Z t43(0) o {, B otaa) (@) =0,
geCs
where C3 C S; is the subgroup of cyclic permutations, and §f , , } 4.1.:A[d]®3 — A®3
is the map

(€. )4 ®idg) o (idapa) ® 54,0 ®id4) o (idaa) @ . B4)-

Usually, the identity in (ii) is called the Leibniz property, and (iii) is the double
Jacobi identity.

Remark 3.2. Note that {{, }} 4 being a homogeneous morphism of dg vector spaces
of degree d means precisely that

(04 ®idg +ida ®34) o, Ya = (=D B a0 (9a1a) ® idara) + idara) ® agay)-

On the other hand, condition (ii) in the previous definition is tantamount to the
following one. Set {{, }}%: 4 ® A — A ® A to be the map

.04 =8.0a0Gad ®saa).

Then, condition (ii) is equivalent to

. 0% 0 (ida ® pa) = (ida ® pa) o ({{, 3% ®ida)
+ (14 ®idg) o (idg ® . }}4) o (4,4 ® idy).
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Convention 3.3. Note that the usual definition of double bracket in [16, Section 2.7],
is a map of the form

(B AQA—> AR A

satisfying some axioms. We leave to the reader to verify that the conditions in
Definition 3.1 for our map

£ BaAld]® Ald] > A® A
are equivalent to those given in [16, Section 2.7], for the map
{32 ARA—> AQ A,

where {{a, b}}”AdB = {{54,4a,54,4b}} 4, and a, b € A. It is for this reason that, when
dealing with specific elements a, b of A4, it will be convenient to simply write {a, b}} 4
instead of {{a, b}5"8 (= {s4.aa,54.ab} ).

We recall that, given any dg algebra (A4, i4,04), [A, A] denotes the dg vector
subspace of A generated by ab — (—1)¢/1®lpg, for all homogeneous a, b € A. Note
that we have the isomorphism of dg vector spaces

A[d]/([A. Al[d]) ~ (A/[A, A])[d]
given by
sa,a(@) + ([A. AN)[d] — sajia,41.4(a + [A, A]).

The following result is proved by the same argument as the one in [ 16, Corollary 2.4.6].

Proposition 3.4. Let (A, jt4,04) be a dg algebra provided with a double Poisson
bracket {, } 4 of degree —d € 7. Set

{.}a: Ald] ® A[d] — (A/[A. A])[d]

to be the composition of {, 3} 4, L4, the canonical projection A — A/[A, A] and
SA4/14,41,d- Then, {,} 4 induces a map

(4/14. A])ld] & (4/[A, A])d] — (A/[A, A])[d]
of degree zero, which, together with the map
(4/[4, A])[d] — (A/[A, A])[d]

of degree 1 induced by 54,4 © 04 © SA[d],—d, gives a structure of dg Lie algebra on
the space (A/[A, A])[d].
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4. Cyclic A« -algebras and pre-Calabi-Yau structures

4.1. Ao-algebras. We recall that a nonunitary A-algebra is a (cohomologically)
graded vector space A = @,ez A" together with a collection of maps {my},eN,
where m,: A®" — A is a homogeneous morphism of degree 2 — n, satisfying the
equation

Y Dm0 (1§ @ ms ®1d§Y) =0 (SI(n))

(r.s,0)€dn

forn € N, where &, = {(r,s5,1) € Ng x N x Ng : r +s + ¢ = n}. Since we are
going to deal exclusively with nonunitary A..-algebras, from now on, A..-algebras
will always be nonunitary, unless otherwise stated.

Definition 4.1. An A,-algebra (A, m.,) is said to be:
(1) fully manageable if (A, my, m) is a (nonunitary) dg algebra;
(ii) small if the multiplications {m,, },eN satisfy that m, = 0, for all n > 4;
(iii) essentially odd if mp; = 0, forall i > 1.
In case (i) we also say that (A, m.) is a fully manageable extension of the dg

algebra (A, m,, my), if we want to emphasize the latter.
Note that given an essentially odd Ao-algebra, SI(2p) is equivalent to

2(p—1)
D (W mapoyo (dF @mr @ idfCCTHT)
r=0
—may o0 (mzp_l ®idy +idg ® mzp_1) =0, &1

for p € N, whereas SI(2p — 1) is equivalent to

51,’21712 o (m2 ®idy —idg ® I’I’Zz)
p 2(p=2) i
+ Z Z Maj—1 © (idfr & Ma(p—i)+1 ® idf( - )_r)) =0, 4.2

i=1 r=0

for p € N.

A morphism of (nonunitary) Aeo-algebras fo: A — A’ between two (nonunitary)
Aoo-algebras (A, mA) and (A’,m4") is a collection of maps {f,}nen, Where
fu: A®" — A’ is a homogeneous morphism of degree 1 — n satisfying the equation

Z (D" frp14 0 (1d§" @ m? @ id%")

(r,s,t)€q,

=) 3 e0Pm e (fy @@ fi,). (M)

geN jeNa.n
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for n € N, where

q
w=) (-G +1
j=1

and N is the subset of elements i of N satisfying that |i| = i; + -+- + i, = n.
A morphism is strict if f, =0, foralln > 2.

4.2. Cyclic and ultracyclic structures on 4 -algebras. Givend € Z, a d-cyclic
(nonunitary) Aeo-algebra is an Aoo-algebra (A, m,) provided with a nondegenerate
bilinear form y: 4 ® A — k of degree d satisfying that y o 74, 4 = y and

V(mn(ab e 7an)’ a()) = (_1)”""‘“0‘(2;’:1 |ai‘)y(mn(a07 e 7an—1)7an)’ (43)

for all homogeneous ay, ..., a, € A. If we drop the nondegeneracy assumption on y
in the previous definition, we will say that A is a degenerate d-cyclic (nonunitary)
Aoso-algebra.

We also introduce the following definition, that will be useful in the sequel. In
ordertodoso, givenn € N consider the injective mapb,,: S,, — S,,, sending¢c € S,
to the permutation o defined by 0(2i) = 2¢(i) and 0(2i — 1) = 2¢(i) — 1, for
alli € {1,...,n}. Ad-cyclic (nonunitary) A..-algebra (A, m,) with anondegenerate
bilinear form y: A ® A — k of degree d satisfying that (A4, m.) is essentially odd is
called d -ultracyclic if, for all n € N and all permutations ¢ € S,, we have that

V(mZn—l (ag(l), bg(l), <o e(n—1)» bg(n—1)7 ag(n))a bg(n))

—1 =%
= (=D ADy(mopp_1(ar. by, ....dn—1.by—1.an). by), (4.4)
for all homogeneous ay, by, ...,a,, by, € A, where e(¢™1,a, 5) is the sign given
in(22)foroc =b,(¢cHand ¥V =a; ®b; ® --- ® a, ® b,. As before, if we do
not assume that y is nondegenerate in the previous definition, we will say that A4 is a
degenerate d-ultracyclic (nonunitary) Aso-algebra.

4.3. Natural bilinear forms and pre-Calabi-Yau structures. Moreover, as it will
be useful later, given a cyclic Ayo-algebra (A, m,) with a nondegenerate bilinear
form y and n € N, we will define the linear map SI(n),: A2+ — k by

Z (=) "y o (myy14¢ 0 (1d]" ® m; ® id%') ®id4). (SI(n),)

(r,s,t)€dp

Note that the (A4,m.) being a cyclic Aso-algebra is equivalent to the vanishing
of SI(n), as well as (4.3), foralln € N.

For the following definition, we first recall the definition of the natural bilinear
Jorm of degree d € 7 associated with any (cohomologically) graded vector space
A = ®uezA". First, set 354 = A @ A*[d]. For clarity, we will denote the
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suspension map s 4# 4: A* — A*[d] simply by ¢, and any element of A*[d] will be
thus denoted by ¢ f, for f € A*. Define now the bilinear form

24:00AR® 0,4 — Kk
by

datfa) = (=) 12 (a,1f) = fa) and da(a,b) =Da(tf.1g) =0,
(4.5)

for all homogeneous a, b € A and f, g € A*. Note that 94 has degree d. If there is
no risk of confusion, we shall denote 4 simply by .
We recall the following crucial definition from [9].

Definition 4.2. Given d € 7, a d-pre-Calabi-Yau (algebra) structure on a
(cohomologically) graded vector space A = @pez A" is the datum of a (d — 1)-
cyclic Aoo-algebra on the graded vector space dy_1A = A @ A*[d — 1] for the
natural bilinear form®4:d;_14A ® 451 A — k of degree d — 1 defined in (4.5) such
that the corresponding multiplications {1, },en of 4_1 A satisfy thatm, (A®") C A,
for all n € N. A 0-pre-Calabi—Yau algebra will be simply called a pre-Calabi-Yau
algebra.

This implies in particular that the maps {m,| &n}nen define an Aso-algebra

structure on A such that its canonical inclusion into d;_; A is a strict morphism
of Axo-algebras.

4.4. Good and nice A -algebras. We will now introduce the following terminol-
ogy that will be useful in the sequel. Let us first fix some notation. Assume that there
is a decomposition By @ B; of a graded vector space B. In many of our examples,
By will be a graded vector space A and By will be A*[d — 1]. Then, for any odd
integer n € N, the decomposition B = By @ B; induces a canonical decomposition

B®n = Tn,g &b Tn,ba
where
The=B,® @B, Thy= B B, ® ®B,. (46
ied, 1€{0,13"\dp,
and

In ={i = (i1,....0n) €40, 1}" 1 ij #ijqpq forall j € {1,....n— 1} }.
Note that 71 5 = 0. A map my: B®" — B will be called good if mann,b vanishes
and m,(B;, ® ---® B;,) C B;,, forall (iy,...,iy) € dy.

Definition 4.3. Let B be an Ay.-algebra provided with an extra decomposition
B = By @ B;. We say that B is:

(i) good if the Ayo-algebra structure is essentially odd and for every odd integer
n € N the multiplication map m,, is good;
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(ii) special if the Aoo-algebra structure is essentially odd and (d — 1)-ultracyclic;
(iii) mice if it is good and small (see Definition 4.1(ii)).

All these definitions apply in particular to a d-pre-Calabi—Yau structure on A,
where we take B = 0514 = A ® A*[d —1].

5. Nice pre-Calabi-Yau structures and double Poisson dg algebras

5.1. Relation between objects. We first recall that, given a (nonunitary) dg alge-
bra A with product 1 4 and differential d 4, then A* is naturally a dg bimodule over A
via

(a-f-b)c)= (_1)|a|(|f|+|b|+\6|)f(bca),

for all homogeneous a,b,c € A and f € A*. Moreover, if (M, d37) is any dg bi-
module over A and d € Z, then the dg vector space M [d] is a dg bimodule over A
via

a-spa(m)-b=(D%spq(a-m-b),

for all homogeneous a,b € A and m € M. In particular, A*[d — 1] is a dg bimodule
over A. For simplicity, we will write the product of A and its action on any dg
bimodule M by juxtaposition, or a small dot.

Moreover, given a dg bimodule M over a (nonunitary) dg algebra A, consider the
dg vector space A & M with the product

(@,m)-(a',m') = (aa’,m-a’ +a-m).

It is easy to verify that the dg vector space A @ M provided with the previous product
is a (nonunitary) dg algebra. In particular, we see that A @ A*[d — 1] is a (nonunitary)
dg algebra. We leave to the reader to verify the easy assertion that this dg algebra
together with the natural bilinear form of degree d — 1 defined in (4.5) is in fact a
d -pre-Calabi—Yau structure, by taking 7 to be the differential of A ® A*[d — 1], m,
its product, and m, = 0, for alln > 3.

Definition 5.1. Let (A, 4,94) be a locally finite dimensional (nonunitary) dg
algebra, and consider the d -pre-Calabi—Yau structure on A defined by the dg algebra
structure of A @ A*[d — 1] described before, together with the natural bilinear form of
degree d — 1 defined in (4.5). A d-pre-Calabi—Yau structure {m, },cz on A is called
manageable if m, coincides with the product of A @ A*[d — 1] considered before,
and fully manageable if we also have that m is the differential of A ® A*[d — 1].

The following result generalizes [3, Theorem 4.2] (see also [4, Theorem 4.2]).

Theorem 5.2. Let d € Z, and let A = ®pez A" be a (nonunitary) dg algebra with
product |1 4 and differential d 4. Consider the dg algebra structure on A ® A*[d — 1]
explained above, with product m, and differential my, as well as the natural bilinear
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form on it of degree d — 1 defined in (4.5). Given any nice and fully manageable
d-pre-Calabi-Yau structure {me}ecN on A, define the map {,}} AQ A > AQ A
by

(f ® 9)({la.b}) = s52d(m3(b.1g.a).1f), (5.1)

for all homogeneous a,b € A and f,g € A*, where sj,’éb, = (=1)/Pllal+lgl+D  Thep,
{. % is a double Poisson bracket of degree —d on the dg algebra A. Moreover, the
map

fully manageable nice d-pre-C Y} { double Poisson brackets 5.2)

structures {Me}ecN 0N A on A of degree —d
given by sending ms to the double Poisson bracket determined by (5.1) is a bijection.

Proof. We are only going to consider s;f when (5.1) is not trivially zero, i.e. if
|f1+1gl=lal+ bl +d.

Note that this last identity implies also that safﬁ = (=1)bI0f1+d),

We will first prove that {, }}, as defined in (5.1), is a double Poisson bracket on
the dg algebra A. We remark that we will be using Convention 3.3. Let us start with
the antisymmetric property (i) in Definition 3.1, i.e.

ta,a({b.a}) = —(=1)la=DWI=D g py. (5.3)

for all homogeneous a,b € A. Evaluating g ® f at both sides of the previous
equation, where f, g € A* are homogeneous, it is clear that (5.3) is equivalent to

(g ® )(fla,by) = —(-)WIPHlsl+dla PO (£ @ ) (b, aly), (5.4

for all homogeneous a,b € A and f,g € A*. Using (5.1) on each side, we obtain
that (5.4) is equivalent to

sg:l}?)(m3(b, tf.a),tg)
:_(_1)(\allb\+|f|\g|+d(|a\+|b|+1))si;g’b(m3(a,zg,b),tf). (5.5

On the left-hand side, using the cyclicity property of %, we obtain that
b
sZ’f%(m3(b, tf.a),1g)
= ngl} (_1)|tg|(\b|+|tf|+|a|)+3 'b(m3(tg, b,tf), a)
— S;:l}(_1)ItgI(\b|+|tf|+|a|)+\a|(|f\+|b|+|g\) 6(m3(a, tg.b), tf). (5.6)
Hence, comparing (5.5) and (5.6), we see that (5.3) holds if and only if

s@b = (<1)lallfI+glblrddal b b, 5.7)
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where we have used that |a| + |b| + | f| + |g| + d = 0 (mod 2). Replacing s;’]} by
its definition, we see that (5.7) holds, so (5.3) does it as well, as was to be shown.
Let us now prove the Leibniz property (ii) in Definition 3.1, i.e.

fle,aby = fe,apb + (=D Dlage by, (5.8)

for all homogeneous a, b, c € A. In order to do so, consider the identity (SI(n)) for
n = 4 for the Ayo-algebra structure of A @ A*[d — 1] evaluatedata ® b @ tf ® c,
where a,b,c € Aand f € A* are homogeneous elements. This gives

ms(ab,tf.c) —ms(a,b.tf.c) — (=)%a.ms(b,tf,c) =0, (5.9)

for all homogeneous a,b,c € A and f € A*. By applying ® (—, tg), for a general
homogeneous g € A*, we see that (5.9) is tantamount to

d(ms(ab,tf.c),tg) = d(ms(a,b.tf,c),tg)+(—1)*d(a.ms(b,tf,c), tg). (5.10)
Using definition (5.1), we see that the first term of (5.10) is precisely
0% (g ® f)({{c.aby). (5.11)

Similarly, using the identity b.(tf) = (—1)21@=D¢(p. f), for all homogeneous
b e Aand f € A* and (5.1), the second term of (5.10) becomes

sg% rEDPED (e @ (b)) (He, al). (5.12)
Using the identity
(g ® (b./)w®w) = (DTN @ v @ (b)),
for all homogeneous b, v, w € A and f, g € A*, and the fact that
[{c.all = lc[ + la| - d.

we conclude that (5.12) is equal to

5o (DI IHEHED (6 @ 1) (e, alb). (5.13)
Finally, using the cyclicity of % we see that the third term of (5.10) is

(= 1)lal+lt Gl 4B+ 1HE=D o (1 ¢ g (b, 1 £, c))
= (—1)lalHlg1al B Fiel=0-+(al+ig DI I+ BIHE=D o 4y (b1 £, ). 1.)

= (_1)|a|(|C|+|b|+|g|+|f|)s;il;’f ((g.a) ® f) ({{c, b}}), (5.14)

where we used the super symmetry of ? in the second identity, and tg.a = t(g.a) in
the last equality. Using the identity

(ga)® v @ w) = (-)"Vig® favew),
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for all homogeneous a, v, w € 4 and f, g € A*, we conclude that (5.14) is equal to
b
(—Dlellel+Pbitiehse (g ® f)(afe,b}). (5.15)

Then, multiplying (5.10) by s¢ f b and replacing the corresponding terms by the ones
given by (5.11), (5.13) and (5 15) we get

(8 ® f)(fc.aby) = 509584 (—PIIHEHelD (0 @ £)(fe. alb)

+s;afb ;z (~1)lallel+el+ED (o @ £)(alic.b}). (5.16)

Hence, (5.8) holds if and only if

c.ab _ c.a [b](1f1+]cl+al+1)
St —sg’b_f(—l) clria (5.17)
and (—1)lallel=) — geab e pallel+el+15), (5.18)

Using the definition of s together with | f| + |g| = |a| + |p| + |c| — d and

la] = |a|? (mod2), one can eas1ly verify (5.18), so (5.8) holds as was to be shown.

This proves the Leibniz property (ii) in Definition 3.1.

Remark 5.3. Assuming that s@b is just a function of the degrees |a|, |b|, | f], and |g]|
(satisfying that |a| + |b] + | f |+ |g| + d = 0 (mod2)), one can in fact show that
our choice for stl} is the unique solution of (5.7) and (5.18), up to multiplicative
constant 1. This is in fact how we found such an expression.

Let us now show that {{, }} is a homogeneous morphism of dg vector spaces of
degree d, i.e.

(04 ®ida +ids ® 34)({a.bY) = £34(a), b} + (=)' fa, d4(b)}, (5.19)

for all homogeneous a,b € A. In order to prove this, consider the identity (SI(n))
for n = 3 for the Ano-algebra structure of A @ A*[d — 1] evaluated at b ® g ® a,
where a,b € A and g € A* are homogeneous elements, which gives

my(m3(b,tg,a)) + m3(m(b).1g,a) + (—1)|b|m3(b,m1(tg),a)
+ (=15 (b, 1g, mi(a)) = 0. (5.20)

Applying &(—,f), for an arbitrary homogeneous f € A*, we see that (5.20) is
tantamount to

'b(ml (m3(b, tg, a)), tf) + 'b(m3(m1 b),tg, a), tf) (5.21)
+ (=D (ms (b, mi(tg), a), tf) + (=1)OIHETITAY(my (b, 1g, my (@), 1) = 0.
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Applying the cyclicity and super symmetry properties of & in the first term, as well
as the fact that m(th) = (—1)"1+9¢(h 0 34) for any homogeneous element /4 in A*
in the first and third terms, we see that (5.21) is equivalent to

— (_1)\b|+|g|+\a|+|f| ?)(m3(b,tg,a),t(f o aA))
+d(m3(mi(b).1g.a).tf) + (—D)PHEF 2 (my (b, 1(g 0 0.4).a). 1f)
+ (=D)PPIFIEFa= o s (b, 1g, mi(a)), tf) = 0. (5.22)
By (5.1) and multiplying (5.22) by (—1)/?1(el+lgD+lgl 'we see that (5.22) is tantamount
to
— (=D)IH((f 0 04) ® g) (a.bY) — (=DIHPI(f @ g)(a. 04(b)}) (5.23)
+ (=D (f @ (g004))(Ha.b}) — (D (f ® g)({04(a). b}) = 0.

where we have used that m|4 = 34, and |a| + |b| +|f|+|g| +d +1 = 0 (mod 2).
Now, using the Koszul sign rule, we obtain that (5.23) is precisely

(f ® 8)(04 ®idyg +idg ® 04)({{a.b}})
= (f ® O ({0a(@). b} + (1" {a. 04(D)}). (5:24)
for all homogeneous a, b € A and f, g € A*, which is clearly equivalent to (5.19).

We shall now prove the double Jacobi identity (see (iii) in Definition 3.1), which
can be explicitly written as

fle. b, ayyr + (DI DUHPDottp fa, ey
+ (1) FDEHDo2 a e, b = 0, (5.25)
for arbitrary homogeneous elements a, b, ¢ € A, where o € Sj is the unique cyclic
permutation sending 1 to 2. In order to do so, consider (SI(n)) for n = 5 evaluated

ata®tf b ®tg ®c,wherea,b,c € Aand f, g € A* are homogeneous elements.
It gives

m3(m3(a,tf, b),tg,c) + (—l)la‘m;;(a,mg.(tf, b,tg),c)
+ (=D s (a, 2 fms (b, g, ) = 0. (5.26)

It is equivalent to the following identity, when we apply &(—, th) for an arbitrary
homogeneous element 1 € A*,

¥(ms(ms(a,1f,b),1g.c),th) + (=1l d(ms(a,m3(tf.b,1g),c),th)
+ (=D Y (ms(a, tf,m3(b, g, ¢)), th) = 0. (5.27)
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The following result will be essential to prove the double Jacobi identity.

Fact5.4. Leta,b,c € Aand f.g,h € A* be homogeneous elements. Then,

(f®g®h) ({a. {b.chhr) = D‘J’{i’,’jl d(ms(ms(c.th,b),1g,a).tf), (5.28)
where

Dé},zsz — (_1)|h|(|f|+|g|)+d(|f\+|h|)+(|b|+|0|+|h|)(\a|+|b|+|g|)‘ (5.29)

Proof. First note that, since ( f ® g) is a functional applied to {{a, {b,c}}'}}, we can
assume without loss of generality that |{a, {b,c}}'}| = | f|+|g|. Asaconsequence,

(f @ g @h)({{a. {b. cypr) = DMVHEN(F @ g)(a, {b. e} B)n (4D, c}y").
(5.30)
Using (5.1) we see that the right member of (5.30) is given by

()M AN s (b, e} 18, @), 1) h (b, c}")
— (_1)Ih\(|f|+|g|)+(|b|+\0|—|h\+d)(|a|+|g|+1) 'b(mg({{b, cWh ({{b, c}}”), ‘g, a), tf),
where we have used that
[€b, e}l = b, e}l — b, c}"| = |b] + || +d — |hl.

Hence, the previous equalities together with |a| + |b| + |c| + | f| + |g| + || =0
(mod 2) tell us that the identity (5.28) is tantamount to

{{b,C}}/h({{b,C}}//) — (—l)d(|b|+|c‘+1)+(|b|+‘c|+‘h|)(|b|+l)}’n3(C,lh,b), (531)
which is equivalent to

(5.32)
for all | € A* homogeneous of degree |c| + |b| + || — d. The left member of (5.32)
is given by

1(b. e )h(8b.c}") = (~DIHPHH-DUG @ i) (b, c}). (533
whereas, on the right member,
1(m3(c,th,b)) = (—1)UeHIHA=DAHBIFRITY o s (e, th, b), 1),  (5.34)
by the super symmetry of 3. By (5.1) and (5.34), the right member of (5.32) gives
(_1)(ICI+|b|+\h|+d)|h|(l ® h)({{b, c}}),

which coincides with (5.33), proving (5.32), as was to be shown. ]
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By Fact 5.4, the first term of the left member of (5.27) is precisely
b,
d(ms(ms(a.tf.b),1g,c). th) = Oy % (h @ g ® f) (e, {b.a}hr),
or, more explicitly,

(_1)d(|f|+\h|)+|f\(|g|+|h\)+(|b|+|0|+\gl)(la|+|b\+|f|)(h Reg® f)({{c, {{b,a}}}}L).
(5.35)
Next, using the cyclicity of & twice and the fact that

la| + 16| + |c| + | f 1+ |l + [2] = 0 (mod 2),
we see that the second term of the left member of (5.27) is
(_1)d|a|+(|b|+|f|+|g|—1)(la|+ICI+|h|+d—1)fb(m3(c’th7a)’m3([f’b’tg)). (5.36)
By the supersymmetry of 9, (5.36) coincides with
(—)dlal+bIH S el o ms (2, b, tg), ma(e, th, a))
— (_1)d|a|+(|b|+|f|+|gl)(|a\+ICI+\h|—d+1) %(m3(m3(c, th,a),tf, b), tg),

where we have used the cyclicity in the second line. Fact 5.4 tells us finally that the
second term of the left member of (5.27) is

(D) (ms(a, ms(tf.b,tg),c),th)
_ (—l)d|“|+(‘b|+|f‘+|g|)(|a|+‘cl+|h|_d+l)D[;,’j;’%(g ®f® h)({{b, {{a,c}}}}L),
which, by (2.8), is equal to
(—1)hIAf1+lgD+dlal+(bI+fI+gD(al+lel+Al=d+1)

Oac(h @ g ® f)(okb. fa.c}lr). (5.37)

Using the definition of DZ"}’% aswell as |a| + |b| + [c| + f|+ |g| + || = 0 (mod 2)
and |x|? = |x|(mod 2), one obtains that (5.37) is given by

(_1)01(|C|+|g|)+(|b|+|f|+|g|)(|a\-i-|17|+|f|)(;Z Qg f)(a{{b, {a, C}}}}L) (5.38)

Finally, using the cyclicity of & twice and |a| + |b| + |c| + | f| + |g| + |k| =0
(mod 2), we see that the third term of the right member of (5.27) is given by

(— )4 DY (my (m3 (b, tg, ¢), th,a), tf),

which, by Fact 5.4, coincides with

(=D)L (f @ h ® g)(fa, e, biL). (5.39)
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By (2.8), we see that (5.39) coincides with

(_1)d(|a|+|f\)+|f|(|g|+|h|)D‘}:Z:Z(h R f)(az{{a, {c. b}}}}L),

which can be further reduced to the form

(—1)4Ual+gD+RIASI+Igh+(bl+lel+gDlal+elHrD () @ o @ f)(02{{a, {c, b}}}}L)~
(5.40)

Since |a| + |b| + |c| + | f]| + |g] + |k] = 0 (mod 2), it is straightforward to prove
that the product of the sign appearing in (5.35) and the one in (5.38) is precisely
(—1)(|C|+d)(‘“|+|b‘), whereas the product of the sign appearing in (5.35) and the
one in (5.40) is (—1)Ual+dUbI+leD - Using these results, plugging (5.35), (5.38),
and (5.40) into (5.27), and multiplying the latter by the sign appearing in (5.35), we
obtain precisely (5.25), as was to be shown.

To sum up, we have proved that, via (5.1), (A, 4,d4) is endowed with a
double Poisson dg structure, which in turn means that the map (5.2) is well-defined.
Furthermore, notice that, if {m.}ecn is a small and fully manageable d -pre-Calabi—
Yau structure on A and {{,}} is the associated double Poisson bracket on A, in
the paragraph including (5.19) we have showed that (SI(3)) for {me}een is indeed
equivalent to the fact that {{, }} is a homogeneous morphism of dg vector spaces of
degree d. Similarly, the equivalent version of the Leibniz property given by (5.9)
shows that the latter is in fact tantamount to the vanishing of SI(4)y| 40 A®r A% @ A0 A%
where write t A* instead of A*[d — 1]. Finally, the double Jacobi identity expressed
by (5.25) shows that it is in fact equivalent to the vanishing of SI(5)s|(4@ra#)®3-
Moreover, we remark that, since A is a dg algebra, it is easy to see that the family of
Stasheft identities (SI(n)) for the multiplications {4 }ecy On d4_1 A is equivalent to
just (SI(n)) forn € {3, 4,5}, since (SI(1)) is equivalentto d4 0 d4 = 0, (SI(2)) is the
Leibniz property of d 4 with respect to the product 1 4, and (SI(n)) trivially vanishes
forn > 5.

We will finally show that (5.2) is bijective. In order to do so, we first note that,
given any good, small and fully manageable d-pre-Calabi—Yau structure {17 }ecN
on A, it is uniquely determined by m3| @ 4#[4—1]94- Indeed, the fact that the d-
pre-Calabi—Yau structure on A is good tells us that the full m3 on d4_1 A4 is unique,
the manageability hypothesis implies that m; and m, are uniquely determined by
the dg algebra structure of A, whereas the smallness assumption tells us m; = 0,
for all i > 3. As a consequence, and using that the identity (5.1) implies that the
associated double bracket {{ , }} completely determines 73| 4g 4#[¢—1]@ 4- WE conclude
that (5.2) is injective.

We will finally show that it is surjective. By the comments in the previous
paragraph, it suffices to show that, given any morphism

ms: 8d_1A®3 —> ad_lA

of degree —1 on the dg algebra d;_1 A described at the beginning of Subsection 5.1,
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whose product and differential are denoted by m, and m, respectively, satisfying
that

mslr,, =0, m3(A® A*[d —1]® A) C A,

m3(A*ld — 1] ® A ® A*[d —1]) € A*[d —1],
and the cyclic identities (4.3), for the natural bilinear form & of degree d — 1, then
the vanishing of SI(4)y| a9 A0ra*®Ara* 1S €quivalent to SI(4), = 0; furthermore,

SI(O)p| amrat@aerateagrat = 0 is tantamount to the vanishing of SI(5),. We leave
the reader the tedious but straightforward verification that

SI(#)plagasrateaerar =0
is equivalent to
SI(4)elo(a@ A at® Agrat):
where 0 € Cs C Ss is any cyclic permutation, whereas SI(4)y|s (40 A0r4%@ A0t A%)
trivially vanishes if 6 € S5 \ Cs. Analogously, it is long but easy to verify that
SI(5)e|agrat@asiat@asiat = 0
is equivalent to
SI(S)lo(a@iat0 a0 a*0 A0 A%):
for any cyclic permutation 0 € Cs C S¢, and SI(5)y|s(4@rat@40rat@ A0rAt) 1S

trivially zero if ¢ € Sg \ Ce. This concludes the proof of the theorem. O

5.2. Relation between morphisms. Let (A, (4, d4)and (B, up, dp) betwo double
Poisson dg algebras, with brackets {{, }} 4 and {{, }} g, respectively, of degree —d. A
morphism of double Poisson dg algebras ¢: A — B is a morphism of dg algebras
satisfying that
@®¢)oll.ha=1{.}5o(sld]®¢ld]).
Since ¢: A — B is a morphism of dg algebras, B is a dg bimodule over A, so
di_1¢ = A® B*[d — 1]

has a dg algebra structure, as explained in the first two paragraphs of Subsection 5.1.
Moreover, dy_1¢ is naturally endowed with a super symmetric bilinear form

¥¢: (04-19)%% = k
of degree d — 1 given by

dg(tf.a) = (D)0 (a1 ) = f(p(a)) (5.41)
and dp(a,b) =d4(tf,tg) =0, (5.42)

for all homogeneous a,b € A and f, g € B*.
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Lemma 5.5. Let (A, Ly, 04) and (B, up, 0p) be two dg algebras and let p: A — B
be a morphism of dg algebras. Consider the dg algebra structure on d5_1¢ =
A ® B*[d — 1] recalled before, whose product and differential will be denoted by mg
and m?, respectively. Then, 04_1¢ provided withdy defined in (5.42) is a degenerate
d-cyclic dg algebra.

Proof. We first remark that, by definition, d;_;¢ provided with 34 is a degenerate
d-cyclic dg algebra if and only if (4.3) is verified forn = 1,2, i.e.

g (mf(x), y) = (=D (mf (v). x).
dg(my(x.y).z) = (=)D (mP(y. 2), x). (5.43)

for all homogeneous x, y,z € dg—1¢.

The first equation is trivially verified for x, y € A or x, y € B*[d — 1], and using
a symmetry argument it suffices to consider the case x = a € A and y = tf, with
f e B ie.

¥p(a(a).tf) = (=)D (1(f 0 0p), a).

which is equivalent to f o o d4(a) = f odp o ¢(a). Since ¢ is a morphism of dg
algebras, we conclude that (4.3) for n = 1 is always verified.

The definition of d4 tells us that the second equation in (5.43) trivially holds
if x,y,z € A, or if there are at least two arguments among x, y, z that belong
to B¥[d — 1]. Finally, the three cases where two arguments of (5.43) are elements
of A and the other is in B¥[d — 1] are clearly equivalent to the identity

dglab,tf) = (_l)lal(lb\+|tf\)fb¢(b tf.a) = (_1)|tf|(|a\+|b|)fb¢(b[f -a,b),
for all homogeneous a,b € A and f € B*. The latter is tantamount to

foglab) = f(p(a)p(h)).
which is trivially verified for ¢, since it is a morphism of dg algebras. O

Remarkably, the construction provided in Theorem 5.2 is functorial in the
following sense:

Theorem 5.6. Let d € 7, and let (A, jt4,04) and (B, up,dp) be two locally
finite dimensional double Poisson dg algebras, with brackets {,}} 4 and {,} B of
degree —d, respectively. Let ¢p:A— B be a morphism of double Poisson dg algebras.
By Theorem 5.2, d4_1A and 0451 B are provided with the corresponding cyclic
Aoo-algebra structures {m3}een and {mB}een, respectively.

Consider the dg algebra

da—1¢ = A® B*[d 1]
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described previously, and define the unique good map
m%: (04-19)®> = da_16
satisfying that

md(a,tf,b) = mi(a,1(f o$),b) and md(tf.b,1g) =mB(1f,p(b),1g),
(5.44)

for all homogeneous a,b € A and f,g € B*.
Then, 04_1¢ is a fully manageable nice degenerate d-cyclic Aso-algebra, such
that the maps

@Ai 8d_1¢ — 8d_1A and (DB: 8d_1¢ — 8d_1B
defined by
(@.1f) = (a.t(f o)) and (a.tf)w ($(a).1f)

foralla€ A and f € B¥, respectively, are strict morphisms of Aeo-algebras preserv-
ing the corresponding bilinear forms.

Proof. We first remark that the fact that

{080 (dld]®@¢ld]) = (p® ) o . }a
implies that
p(mi(a.t(f 0 9).b)) = m2(p(a).tf.¢(b)).
1T mi(t(f o ¢)a.t(gog)) = (17 'mE (tf. ¢(a).1g)) o ¢, (5.45)

for all homogeneous a,b € A and f, g € B*. Indeed, the first identity follows from

(g 0 9)(m3(a.1(f 0 ).b))
— (_l)ltgl(\tf|+\a|+|b|)?)A (m‘;(a, 1(f o¢), b), (g o ¢))
— (_1)Ial(lf|+|b|+1)+|tgI(Itf|+|a\+|b|)((g o) ® (f o ¢)) ({{b, Cl}}A)
= (_1)Ial(If|+|b|+1)+|tg|(|tf|+|a\+|b|)(g ® f)({{(]ﬁ(b),(]ﬁ(a)}}g)
= (DIl D2 (3 ($(a). 11, 4 (0)).18) = g(m3 ($(a). 1. 4 (1))).

whereas the second follows from

17 'mf (1(f 0 §).a.1(g 0 $))(b) = da(m5 (t(f 0 p).a.1(g°¢)).b)
— —(—1)‘tf|(|tg|+|a|+|b|)2),4(m‘34(a, (g o¢), b), 1(f o ¢))
— _(_1)\al(lgl-Hb|+1)+|tf|(|tg|+\a|+|b\)((f o) R (go ¢)) ({{b,a}}A)
— _(_1)\a|(|g|+\b|+1)+|tf|(|tg|+\a|+|b\)(f ® g)({{¢(b),¢(a)}}3)
— _(_1)\tfl(ltg|+|a|+|b|)be (mg(qb(a), ‘g, ¢(b)), tf)
= dp(m% (1£.¢(a).18). ¢ (b)) = (t"'m3 (1f. $(a).18)) (4 (B))-
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We now show that d;_1¢ is an Ayo-algebra. The first two Stasheff identities
(SI(n)) are clearly verified, since they only involve the differential and the product of
the dg algebras A and B. Moreover, the Stasheft identity (SI(n)) for n = 3 is also
trivially verified. Indeed, since dy_1¢ provided with m‘f and m‘; is a dg algebra,
it suffices to show that the contribution of the terms involving m? in the Stasheff
identity for n = 3 at an element x; ® X, ® x3, where x; € A or x; € B¥[d — 1] are
homogeneous elements, vanish. It is easy to see that in this case the Stasheff identity
forn = 3 of d;_1¢ is a consequence of the corresponding Stasheff identity forn = 3
of either dy_1A or d5_1 B.

We now prove the Stasheff identity (SI(n)) forn = 4 atan element x; ® - - - ® X4,
where x; € A or x; € B*[d — 1] are homogeneous elements. It is easy to see that the
only cases where there is at least one possibly nonvanishing term are the following

(@) xp € B*[d — 1] and x1, x3, x4 € 4;
(b) x3 € B¥[d — 1] and x1, x5, x4 € A4;
(¢) x1,x3 € Aand x,, x4 € B¥[d —1];
(d) x2,x4 € Aand x1,x3 € B¥[d —1].

The cases (a) and (b) only involve m’3‘1 and mf , respectively, so they follow from the
Stasheft identity (SI(n)) for n = 4 of d4—1 A and d;_ B, respectively. The proof
for cases (c) and (d) uses the precise same arguments, so we focus on the latter. We
write x; = tf, x3 = tg with f,g € B¥ and x, = a and x4 = b. Itis easy to see
that the fourth Stasheff identity evaluated at 1 f @ a ®@ tg ® b is precisely

m3 (tf.¢(a).1g.0(b)) —m2 (tf.¢(a).1g).¢ ()
— (=)t fp(mi(a,t(g 0 ¢),b)) =0, (5.46)

or, equivalently,

mB(tf. ¢(a),tg.0 (b)) —m2(tf.4(a),18).¢(b)
— (=Dt fmB (p(a), 18,9 (b)) =0, (5.47)

where we have used the first identity of (5.45) in the last term of (5.46). Since (5.47)
is precisely a particular instance of the Stasheff identity for n = 4 of d;_; B, the
Stasheff identity for n = 4 of d;_1¢ in the case (c) follows.

We finally prove the Stasheff identity (SI(n)) forn = 5 atanelement x; ®- - -® x5,
where x; € Aorx; € B¥[d — 1] are homogeneous elements. It is easy to see that the
only cases where there are possibly nonvanishing terms are either if x5, x4 € B*[d —1]
and x1, X3, x5 € A,orif x1, x3,x5s € B¥[d —1] and x5, x4 € A. Since the arguments
for both cases are the same, we only consider the former case, for which we write
Xo = tf, x4 = tg, with f,g € B*[d — 1], and x; = a, x3 = b, xs = ¢. The
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corresponding Stasheff identity then reads

m§ (m4 (a.t(f o9).b).t(gop).c)—(—=1)m5 (a.t(t7'm% (1. ¢(b).1g)) 0. )
+ (=D (@, t(f o ), mi (b, t(g 0 p),c)) =0, (5.48)

or, equivalently,

m4 (mg(a, t(f o), b), t(god),c)— (=D)1me(a,m§(t(f o9),b,t(g09)),c)
+ (=D i d (@, 1 (f o ¢),mi (b, t(g 0 p).c)) =0, (5.49)

where we have used the second identity of (5.45) in the second term of (5.48).
Since (5.49) is precisely a particular case of the Stasheff identity of d;_, A forn = 5,
the Stasheftf identity of 0;_;¢ for n = 5 follows. Taking into account that the Stasheff
identities for n > 6 trivially vanish, because the higher products mf of d45_1¢ vanish
for n > 4, we conclude that d;_1¢ is an Ayo-algebra. Moreover, dy_1¢ is by
definition small, and it is clearly fully manageable with respect to the dg algebra
structure fixed at the beginning of this subsection.
We now show that b4 satisfies the cyclicity property (4.3) with respect to m‘_f i.e.

(3 (mg(x, y,z), w) — _(_1)\w\(\X\+|y|+|Z|)fb¢(m‘g(w, x, ), Z)’

for all homogeneous w, x, y,z € dg—1¢. It is easy to see that the only nontrivial
cases are either if x,z € A and w,y € B¥[d — 1], or if x,z € B¥[d — 1] and
w, y € A, both of which are tantamount to

dp(m2(a,1f,b),tg) = —(—1)ltEllalH I+ DYy (108 (10, a,1f),b),  (5.50)

for all homogeneous a, b € A and f, g € B*. By definition, the left member of (5.50)
is precisely (—1)@l(BIH/ D (g0 ) @ (f 0 ) (b, al}), whereas the right member
is

_ (_1)\tgl(laH-Ib\-i—Itfl)'b¢(még (tg, b(a), tf), ¢(b))
= (m% (¢(a). 1.4 ()).1g)
= (=)D (e @ £)(fp (D). p(@)}).

They clearly coincide, since ¢ is a morphism of double Poisson dg algebras.
Combining this with the previous lemma we see that 34 satisfies the cyclicity
property (4.3) with respect to mﬁ, foralln € N.

It is easy to verify that ® 4 and ® p commute with the corresponding differentials
and the corresponding products, since ¢ is a morphism of dg algebras. To prove that

they are strict morphisms Ao-algebras, it suffices to show that ® 4 omg’ = m’3‘1 o) <I>§3

and ®p o m? =mbo @%3. Since both identities are proved by the same arguments,
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we will only consider the former, evaluated at x; ® x, ® x3, for homogeneous
X1, X2, X3 € 0g_1¢. By definition of m? and m?, the only nontrivial cases are either
when x1,x3 € A and x, € B¥[d — 1], or x;, x3 € B¥[d — 1] and x, € A. The first
case is direct from the definition of ® 4, whereas the second follows from the second
identity in (5.45).

It remains to show that ®4 and ®p commute with the corresponding bilinear
forms, i.e.

¥ = b4 00%? =g 0 0%,

but this is straightforward. The theorem is thus proved. O

A direct consequence of the previous theorem is the following result.

Corollary 5.7. Assume the same hypotheses as in Theorem 5.6. If the morphism
of double Poisson dg algebras ¢: A — B is a quasi-isomorphism, then the
strict morphisms of degenerate cyclic Aoo-algebras ®4:045_1¢ — d5_1A and
®dp:0y_1¢9 — 04_1B are also quasi-isomorphisms.

Motivated by the previous theorem, we introduce the following.

Definition 5.8. Let A and A’ be two d-pre-Calabi—Yau algebra structures on the
graded vector spaces A and A’, respectively. A morphism from A to A’ is a triple
(C, ®, W), where C is a degenerate (d — 1)-cyclic Aoo-algebra, and ®: C — A and
W:C — A’ are strict morphisms of A.-algebras that preserve the corresponding
bilinear forms.

We say that a morphism (C, ®, ¥) from A to A’ and a morphism (C’, @', V)
from A’ to A” are composable if there exists a triple (C”, ®”, W"), where C” is
a degenerate (d — 1)-cyclic Aeo-algebra, ®”:C” — C and ¥":C" — C’ are
strict morphisms of A,-algebras that preserve the corresponding bilinear forms and
Vo ®" = @ o W”. The composition of (C, P, V) and (C’, ', ¥') is then defined
tobe (C”,® o @, W o P"),

The proof of the following result follows exactly the same pattern as the (last part
of the proof of) Theorem 5.6, so we leave it to the reader.

Theorem 5.9. Let d € 7, and let (A, jt4,04), (B,up,dp) and (C, uc,dc) be
three locally finite dimensional double Poisson dg algebras, with brackets {§, }} 4,
£, %8 and §, ¢ of degree —d, respectively. Let p: A — B and y: B — C be two
morphisms of double Poisson dg algebras, and let v = ¥ o¢p. Following Theorem 5.6,
consider the morphisms (04_1¢, ®4, Pp) and (04_1Y¥, Vg, Y¢) induced by ¢
and , respectively.

Consider the fully manageable nice degenerate d-cyclic Aoo-algebra d;_1v on
A @ C*[d — 1]. Then the maps

T¢2 ad_lu — 3d—1¢ and T,/,i ad_lv — 8d_11ﬁ
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defined by
(a.tf) = (a.t(f o)) and (a.1f) > (¢(a).1f)

foralla € A and f € C* respectively, are strict morphisms of Aso-algebras
preserving the corresponding bilinear forms, and satisfying that

@B()TbZZ‘PBO’Tw.
As a consequence, (0g—1¢, P4, Pp) and (041, Y, Y¢) are composable morph-
isms and their composition is (0g—1v, ®4 0 Ty, W 0 Ty).

This result tells us that the constructions in Theorems 5.2 and 5.6 define a (partial)
functor from the category of locally finite dimensional d-double Poisson dg algebras
to the partial category of d-pre-Calabi—Yau algebras provided with the morphisms
introduced in Definition 5.8, that preserves quasi-isomorphisms.

6. Pre-Calabi-Yau structures and double P,-algebras

We now introduce the definition of a double P,-algebra. It is essentially the same
as the one presented in [13, Definition 4.1], up to some sign differences.

Definition 6.1. A double P,-algebra is a (nonunitary) graded algebra A =@, cz A"
provided with a family of homogeneous maps {. .. }} ,: A®? — A®? indexed by p €N,
where {{. .. }}, has degree 2 — p, satisfying that:
(i) ta,p(@)of...}potap(c™) =sgn(0){...}p, forallo € S,;
(ii) forall p € N and homogeneous elements a1, ...,a,-1 € A, the homogeneous
map
AD(ay,...,ap—1): A — A®?
of degree |ai| + -+ + |ap—1| +2 — p givenby a — {ai,...,ap—1,al}pisa
double derivation of A, i.e.

flar,....ap—1.ab}}, = {ar,....ap—1.a}}pb

Ial(p+1_)il la, I)
J=1

affa.....ap-1.b}p. (DLeibo(p))
for all homogeneous a, b € A;
(iii) forall p € N,

p
D DI N sen(0)Ta,p(0) 0 {f. . Bip-it1 0 Ta (07 =0,

i=1 oceCp

(DJaceo(p))
where

£ Mg = (L. ®id®P ) 0 (1d®V @ .. Bpit1).
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Let A be a double Py -algebra with brackets ...} ,: A®? — A®? for p € N.
Given p € Nandn > p, wedefine {... }}, 1: A®" - A®"as {...}}, ® idf(n_p).
Remark 6.2. We leave to the reader the straightforward verification that a double
Po-algebra (A, q) with brackets {{{...}},}pen satisfying that {...}}, = 0 for
all p > 2 is a double Poisson dg algebra of degree zero, with {,}}4 = {...}}»
and 04 = {... }}1. Indeed, Jacoo (1) means exactly that d 4 is a differential, Jacyo(2)
is precisely the fact that {{, }} 4 is a morphism of closed dg vector spaces, Jacoo(3) is
the double Jacobi identity for { , }} 4, Leibso (1) means exactly that d 4 is a derivation
of the graded algebra (A, it 4) and Leiby(2) is the Leibniz identity for {, }} 4. The
antisymmetry conditions given in the previous definition and in Definition 3.1(i) are
clearly equivalent. The identities (DLeibs (p)) for p > 2 and (DJac(p)) for p > 3
are trivially verified.

Theorem 6.3. Let A = ®,cz A" be a (nonunitary) graded algebra with product i 4.
Consider the graded algebra structure on d_1A = A @ A*[—1] described in the
first two paragraphs of Subsection 5.1, with product m,, as well as the natural
nondegenerate bilinear form of degree —1 given by (4.5). Then, given a good
manageable special pre-Calabi-Yau structure {me}ecN 0on A, we define the family of
maps {{... % p}pen with {... )} p: ABP — A®P given by

(fi®®fp)({ar,....ap}p) = s(}::::::[}z d(map—1(ap.tfp.....a2.1f2,a1),1f1),

6.1)
or p € N and all homogeneous ay,...,a, € Aand fi,..., f, € A", where
for p € N and all h » € Aand € A* wh
. lapll i+ (p+Dapl 4D+ 3 (p=plaj 1+ 3 G=DIf|
gAbedr _1) J=1 J=1
Sroesfp
Y st Y UGG Y illa)
(_1)l§!<]<p I<i<j=<p 1<i<j<p X (62)

Then, {{...}}p} pen determines a structure of a double Pu,-algebra on the graded
algebra A. Moreover, the map

good manageable special } { double Pyo-algebra 63)

pre-CY structures {Me}ecN 0n A structures {{{. .. Jle }oen on A

given by sending {me}ecN to the family of maps {{. .. }}e }eeN determined by (6.1) is
a bijection.

Proof. We will first prove that the family of brackets {{{. .. }} ,} pen defined by (6.1)
gives indeed a double Py,-algebra structure on the graded algebra A. In other words,
we shall prove that this bracket satisfies the conditions of Definition 6.1. As explained
in the first paragraph of the proof of Theorem 5.2, we can assume without loss of

generality that
P p
dlajl+2—p=)_Ifjl
j=1 J=1

in (6.2), otherwise the identity (6.1) trivially holds.
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We will first prove the antisymmetric condition (i) given in Definition 6.1, i.e.

(=)o (Lagqy, - - aop)p) = sen(@)far, ..., aphp, (6.4)

for all homogeneous ay,...,a, € A, where a = a1 ® --- ® a, and €(0,a) was
defined in (2.2). Evaluating f; ® --- ® f, at both members of the previous equation,
where fi,..., fp € A" are homogeneous, it is clear that (6.4) is equivalent to

(fi® - ® fp)(olasqy. - dom)}ip)
=sgn(0) (=D (fi® - ® fo)({ar.....ap}p). (6.5)

for all homogeneous ay,...,a, € Aand fi,..., fp € A*. Using (2.8) on the left
member as well as (6.1) on each side, we obtain that (6.5) is equivalent to

S O (DO (map1 (Ao Lo (p)s - -+ Ao ) L)
— sgn(o)(_1)f("ﬁ)s;::::f:‘}i'b(mm—l(ap, tfp.....a1).tf1), (6.6)

where jT = f1 ® - ® fp. By the ultracyclicity property of ?, the left member of

the previous equation is precisely d(mzp—1(ap,tfp.....a1),tf1) multiplied by
Ao (1)ro(p) . 1\e(0,f) (__1\€(6p(0), fa)
ng(l),...,fc(p)( 1) ( 1) ? > 6.7)

where ﬁ = f1®a ® - ® fp ®ap. Hence, comparing (6.6) and (6.7), we see
that (6.4) holds if and only if
S o) = (D O o) (DD (6

Replacing saf:x by its definition and considering the case where o is any
transposition of two successive elements, it is easy but lengthy to show that the
antisymmetric condition (6.8) holds, which in turn implies that (6.4) holds, as was to
be shown.

We shall now prove the Leibniz identity given in Definition 6.1(ii) for a fixed
p € N. In order to do so, let us consider the identity (SI(n)) of the Ao.-algebra
structure of 0_; A forn = 2p. Since the Axo-algebra structure on d_; A4 is essentially
odd, (SI(n)) for n = 2 p reduces to (4.1), which, evaluated at

Ay ®by@tfi®a1 @ - ®tfp_1 ®dp_1,

gives
— (=DMlag.mzp_1(bo. tf1 a1, ... 1fp-1,ap-1)
+myp_1(aobo.tfi,ar,....tfp—1,ap—-1)
—map—1(ao,bo.tfr.a1,....tfp—1.ap—1) =0,

where ag, bg.ay,...,ap—1 € A,and fi,..., fp—1 € A* are homogeneous elements.
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Applying d(—, 1f,) to the previous equation, for an arbitrary homogeneous f, € A",
we get

—(—1)|“°|'6(a0.m2p_1(b0, tfi,ay, ..., tfp_l,ap_l), tfp)
+ ?)(mZp—l(aObO’ tfi,a1,....tfp—1,ap-1), ffp)
— 6(M2p_1(a0, bo.[fl, al, ..., tfp_l,ap_l), [fp) =0. (6.9)

By the cyclicity property of 3, the identity (1f)).ao = t(fp.ao) as well as (6.1),
we see that the first term in the left member of (6.9) is

=G (D (o ® fpo1 ® - ® f)({lap-r... a1 boly),

where

p—1
e = laol (p + Ibol + 1 £l + Y (laj + 1£:1))-
j=1
Taking into account the identity

(f1.4® @@ fm)(V1 @+ ® V)

jal 3 |
= (=D =" (f1 ® - Q fm)avi ®v2 Q- ®vm),
for all homogeneous a € A, vy,..., vy € M and fi,..., fu € M*, where M is
a graded A-bimodule, we conclude that the first term in the left member of (6.9) is
precisely

—1
laol (p+lbol+1fol+ 3 la;1)

gAp=1a1 »bo =

=5 fp.ao, fp Lo S1N
(fo ®-+® fi)(aofap—1.....a1.bo}}p). (6.10)

On the other hand, using (6.1), we see that the second term of the left member of (6.9)
is precisely

S (@@ fi)({ap-r.. . andobollp).  (6.11)

.....

Similarly, by the identity bg.t f; = (—1)!%0l¢(bg. f1) and (6.1), the third term of the
left member of (6.9) is

1bol (p-+lbol+1f1 1+ T Ia )
j‘ﬁlfzia% 7D i=0 " (fp @ ® f1)({ap—1.-...a0}} pbo).
(6.12)

-

where we have used that

(fl - Q fm—l ®a-fm)(vl SRR vm)
=D ® @ fr)V1 ® - ® Ut ® Upn.a),
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for all homogeneous a € A, vq,...,V, € M and fi,..., fm € M*, where M is a
graded A-bimodule, and

= [al (1 fml +| > [v,1)-
j=2

Replacing (6.10), (6.11), and (6.12) into (6.9) and comparing it with equation
(DLeibso (p)), we see that the latter holds if and only if

p—1
ol (p+1bol+171 1+ ¥ laj )
=

gap—to ~at,aobo _ gAp—15:00 (—1)

fp, S fp, J2:b0. f1 ’
ap—1,-ai,a0bo _ laol(1bol+1fp1) g@p—1> »a1,bo

Sfp,---,fl =D p-a0sfp—1s-S1" (6.13)

It is rather tedious but straightforward to check that our choice (6.2) satisfies the
previous identities, so the Leibniz property is verified.

Remark 6.4. As in Theorem 5.2, assuming that s fl’ .’ ff, is just a function of the
degrees |a1],...,|ap| and | fi|,....|fp| (satisfying that Z —lajl+1fil=p—2

(mod 2)), one can also show that our choice for s fi’ ” fi is the unique solution of (6.8)

and (6.13), up to a multiplicative constant £-1. This is again how we found such an
involved expression. In fact, the uniqueness of such a solution (up to multiplicative
constant) already holds if one considers (6.8) for only cyclic permutations and (6.13).

We will now prove (DJacs (p)) for p € N. In order to do so, we consider (SI(n))
forn = 2p—1. Since the Ao-algebra structure on d_; A is essentially odd, it reduces
to (4.2). Since m, is associative, the first term in the left member of (4.2) vanishes,
so it is equivalent to

p i—1
33 it o (A5 @ magpoiyen @G
i=1r=0
p i—2 .
t Z ZmZi—l © (idf(zrﬂ) Q@ ma(p—i)+1 & idf(zo_l_r)_l)) = 0.

i=1r=0

If we evaluate itata; ® 1/1 ® - ®ap—1 ®tfp—1 ® ap and we apply d(—,1f,), for
homogeneous ay,...,ap, € Aand f1,..., fp € A*, it gives

Pzl S (a1

ZZ(_I) j=1 . ?)(mzi—l(alatflv"‘7ar’tfr’

i=1r=0

Ma(p—iy+1(@r+1:Lfr 410 Qrgp—i+1): Lfrtp—it1s- - ,ap), lfp)
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P22 a4 Y (il AD
+) 2 D = d(mai-r(ar.tfis....ar iy arir,
i=1r=0

Mo(p—iy+1(Lfr41.Ar a2, oo U fr g pmid1)s Arap—it2. ... dp). 1fp) = 0. (6.14)

Using the cyclicity of 9, the terms appearing in the first two lines of (6.14) can
be rewritten as

p i—1

Z Z(—l)%(mzi—l (Ma(p—iy41(@r 41, Lfr41s e oo Argp—ig1)s

i=1r=0
tfr-l—p—i-i—lv---aap’tfpvalvtfl,---yar),tfr), (6'15)

where

o= (r+2r:(|aj|+|fj|))(l9—r+ i (las1+ 1£31)).

j=1 j=r+1

Concerning the terms in the last two lines of (6.14), we first use the cyclicity of
tomove ma(p—iy+1(tfr41,ar42, ..., fr4+p—i+1) to the last argument of &. Then, we
apply the super symmetry of  to flip its two arguments, and then again the cyclicity
of d. After these computations, the terms in the last two lines of the left member
of (6.14) become

p i—2

Z Z(_l)ﬂg(mz(p—i)+l (mai—1(@ryp—iv2.tfrip-ita. ... (6.16)

i=1r=0

coap tfpiantfi, oo ar tfr arer) g, 7ar+p—i+1)7[fr+p—i+1)7

where
r+p—i+1 p
,B:(r+p—i+1+ > (|a,~|+|f,~|))(i+r+1+ > (|a,-|+|f,~|)).
j=1 j=r+p—i+2

Before proceeding further, we will provide the following useful result:

Fact6.5. Letay,...,ap € Aand f1,..., f, € A* be homogeneous elements. Then,
givenanyi € {1,..., p},

DU (i@ ® fo)(Har.. . aiy fai. . aplpivihiL) (6.17)

= 2)(m21—1(m2(p—1)+1(apa tfpa e 7al+17tﬁ+17a1)7tﬂ3 e 7a27tf27a1)5 tfl)a
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where
ay,a (p+DGE+D+ Z @—=Pla;l+ Z (=Dlajl+plf1l+ Z G-=DIf;]
o = e s =

Y lalladd X lajllaglt X fIAHAL S lal
J =1

( 1)1</<k<z i<j<k<p 1<j<k=<p

> lakllfil+ X \ak||f1|+Z Z Iaj\lfk\
( 1)1<j<k<l i<j<k<p =i k=i+ . (618)

Proof. By (6.1), the right member of (6.17) coincides with
S i @@ fi)(far. .. aicbidi) (6.19)

1,

where b; =myp—iy+1(@p.tfp. ..., aix1.tfi+1,a;), whereas the left member of (6.17)
is by definition ’ El'}i ‘}‘; times

f Z\f,llfk|+ 2 1Sl

( ])] =i+l <j<k=p
P
(i@ f)llar.....ai-1.c1}) 1_[ filcj—i+1), (6.20)
j=i+1
where ¢ ® --- ® ¢p—i+1 = {ai.....ap}p—i+1. As a consequence, (6.17) is tanta-
mount to

lDi’:j‘i af: (Jl’i v l%(mZ(p—i)—H(ap’tfp’u-,ai+17tfi+l,ai)7tgi)
= (D8 ® fir1 @ ® fp)({{ai.....ap}p-it1). (6:21)

for all g; € A* homogeneous of degree i + 1 — p + |a;| + Z] _ig1 (lajl = 1£51).
where

D i D V4
> Sl =p il + Y (al-160)( D 141).
j=i+1lk=1 J=i+1 J=i+1

Using (6.1) on the left member of (6.21) we conclude that

zDal, sAdp (—I)Z al,...,a,-_l,b,-sai,...,ap

fls 5fl9 fla'“’fi gi’fi-i-lﬁ'“’fp.
After using (6.2) in the previous identity and a lengthy but straightforward comp-
utation, the statement follows. O

Applying Fact 6.5 to (6.15) we obtain that the first two lines in (6.14) give exactly

p i—-1

DB I D, ®® 1 ® fr®-® fra1)

icir=0 o
({ar.....ar.ap. ... aripiva. {arspivi. - @Giv1}p-it1}fiL). (6.22)
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where

o= (4 X (e +1A0) (p-r+ 3 (asl +17,D),

j=r+1
whereas the same result applied to (6.16) tells us that the latter is precisely

p i—2

Z Z"Da’“’*i“""’al’u[’ """ Grp-ita (frap—i+1® @ fi® f[p® ® frip—i+2)

Jrdp—it1so S 15 Dses Srtp—it2
i=1r=0

({{ar-i-p—i—i-l, . 7ar+29 {{ar—i—l’ e 7a1a aps e yar+p—i+2}}i}}p—i-i—l,L)(_l)ﬂ,
(6.23)
where

r+p—i+1 )4

B=(r+p—i+1+ > (las +15D) (F+r+14 D (ail+150).

j=r+p—i+2

Let o € S, be the unique cyclic permutation sending 1 to 2. Using (2.8), we see
that (6.22) and (6.23) are equivalent to

p i—1
> E S D (fp @@ fi) (6.24)
i=1r=0
(0 far,....a1,ap,....ar4p—it2. §arsp—it1. ... Qix1 8 p—i+1}i,L),
where
r p r D
o = (r+ 2 (sl +150) (p=r+ X (ayl+15D) + 22 X sl
Jj=1 j=r+1 j=lk=r+1
and
p i—2
i Ay 4+ p—i+1s+Q15Qpse-s@r 4 p—j+2 _ ﬂ/ .
Yoy a1 (S @ ® ) (6.25)
i=1r=0
(o= P MG, it A2, e 1s o Q1A Argpi 2 i S p—i 1,1 )
where
r+p—i+1 p
ﬂfz(r+p—i+1+ 3 (|aj|+|fj|))<i+r+1+ 3 (Iaj|+|fj|))
j=1 j=r+p—i+2
r+p—i+1 P

+ Y UAlAL

j=1  k=r+p—i+2
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respectively. Furthermore, if we reindex (6.25) by setting
i"=p—i+1 and r=r+p—i+1,

the former becomes

p p-1
i a,/,...,al,ap,...,a,/+1 _ ﬂ// .
Z Z I:‘fr/ ..... f],fp,...,fr/+1( 1) (fp® ®f1)
i'=1r'=i’
(O'_r/{{ar’,---,ar’—i’+2,{{ar’—i’+l,---,alyap,---,ar’+l}}p—i’+l}}i’,L)a (626)
where
r’ )4 r’ D
g = <r’+2(|aj|+|fj|)>(r/+p+ > (|aj|+|fj|))+2 AR
j=1 j=r'+1 J=lk=r'+1

On the other hand, after a tedious but straightforward calculation, we see that, for
alli e {l1,...,ptandr € {0,...,i — 1},

I @rseees A15Apse..s ar41 (_l)a//

.fl‘a"'aflafﬁ""’fr+l
r r+p—i+1 p
(P+DGE+r)+ X (—Dlajl+ X G-Dlajl+ > Gi—jla,l
- (— ji=1 J=r+1 J=r+p—it2
P r+p—i+1 P
> G-DIf5+ X lajllagl+ X2 > lajllagl
(—1)/=1 1<j<k=p J=1 k=r{p-it2
r+p—i+1 p
DO TIT/ TS SRV AN S SN IY Py
(=1)1=s<k=p I<j<k=<p Jj=r+1 k=1 , 6.27)
andforalli e {l,...,p}andr €{i,...,p—1}
I @rse@1,8p,..,qr41 _ ﬂ”
DA fps o D
r—i—+1 r
G+DG++ Y G-Dlajl+ ¥ G-plajl+ 3 G-Dlay|
— (— J=1 Jj=r—i+2 J=r+1
P r—i+1 p
S U-DISI+ Y lallagl+ XY layllag]
(_1)/:1 1<j<k=<p Jj=1 k=r—i+2
r—i+1 D D
T maE S el (S e+ S lal) (2 1)
(_])151<k5p l<j<k=p Jj=1 j=r+1 k=1 . (6‘28)

The Koszul sign rule tells us that, fori € {1,..., ptandr € {0,...,i — 1},

Rar,....a1.ap, ..., Qryp—i+2, War+p—i+1s -+ Ait1} p—i+1}}i,L
= (D*({.. Bip-iv100")(ap ®---®ay), (6.29)
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where

r P rop

a=p-i-D( X+ Y )+ YD lajllal,
j=1 j=r+p—i+2 j=lk=r+1
whereas, fori € {l,...,p}andr € {i,..., p — 1}, we have that
far,....ar—iv2. 8ar—i+1,....a1,ap, ..., @r41 8 p—i+1}}i.L
= (DP (. Bip-it100")(ap ® - ®ar), (630)

where

r r V4
B=—i=D( X lal)+ X D layllal

j=r—i+2 J=lk=r+1

Using >-7_, | fil = p—1+3%_, |a;| (mod2) in the last term of the right member
of (6.27) and utilizing this result together with (6.29) in (6.24), we see that the latter
is equivalent to

p i—1

DY (EVEITE (@@ fi)((07 ok . Bip-it1007) (@, ®--®ay)),

i=1r=0

(6.31)
where & is given by
p p
=i =Dlaj|+>_G=DIfil+ D lajllax]
=1 j=1 1<j<k=<p
+ > A+ DD laslll-
1<j<k=p 1<j<k=p

The precise same argument but involving instead (6.30) and (6.28) in (6.26) yields
that the latter is tantamount to

p p—1
DD (EHNERE (£ @@ fi)((07 ok . ip-it100)(@p®---®ar)).
i=1r=i (632)
As a consequence, (6.14) is exactly
~ p p_l .
DI N ()EEN (o0 fi) (0 ok Bipmi+1007) (@p®---®ar)).
s (6.33)

Since sgn(o0) = (—1)?*!, we obtain precisely (DJaco(p)), as was to be shown.
We will show that (6.3) is bijective. Note first that, given any good and
manageable d-pre-Calabi—Yau structure {me}ecn On A, it is uniquely determined
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by mag+1lagati—1))®a@4> for all ¢ € Np. Indeed, the fact that the pre-Calabi—
Yau structure on A is good tells us that the full my441 on 0_1A is unique,
and the manageability hypothesis implies that m, is uniquely determined by the
algebra structure of A. As a consequence, and using that the identity (6.1)
implies that the corresponding double bracket {{...}};4+1 completely determines
M2g+1|(4@4*[—1])® 04> WE conclude that (6.3) is injective.

We will finally show that (6.3) is surjective. It suffices to prove that, given any
collection of good morphisms

mzq+1:8_1A®(2q+l) —0_14

of degree 1 — 2qg for ¢ € Ny on the graded algebra d_;A, whose product is
denoted by m,, satisfying the cyclic identities (4.3), for the natural bilinear form %
of degree —1, then the vanishing of SI(2p)y|sgagat[—1])®» 1S equivalent to
SI(2p)e = 0, and SI(2p — D)p|(4ga#[—17)®» = O is tantamount to the vanishing
of SI(2p — 1)y, for all p € N. We leave to the reader the tedious but straightforward
verification that the vanishing of

SI2p)l aeca® at—11)®7
and that of

SI2 Pyl (a0 a0 at[—1])®7)

are equivalent, for any o0 € Cap11, whereas SI(2p)y |y (ae(a0 44— 1))@y trivially
vanishes if 0 € Spp41 \ C2p+1. Similarly, it is long but easy to verify that

SI(2p — Dal(agat—1per =0
is equivalent to

SI2p — Dylo(agat—1@r) =0,

for any cyclic permutation 0 € Czp S Sip, and SIQ2p — )yl (agat[-1])®7) 18
trivially zero if o € S, \ C3,. This concludes the proof of the theorem.
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