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Abstract. In this article we prove that there exists an explicit bijection between nice d -pre-
Calabi–Yau algebras and d -double Poisson differential graded algebras, where d 2 Z, extending
a result proved by N. Iyudu and M.Kontsevich. We also show that this correspondence is
functorial in a quite satisfactory way, giving rise to a (partial) functor from the category of
d -double Poisson dg algebras to the partial category of d -pre-Calabi–Yau algebras. Finally, we
further generalize it to include double P1-algebras, introduced by T. Schedler.
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1. Introduction

Pre-Calabi–Yau algebras were introduced in [9], and further studied in [2] and [3].
However, these structures (or equivalent ones) have appeared in other works under
different names, such as V1-algebras in [12], A1-algebras with boundary in [14],
noncommutative divisors in [15,Remark 2.11], orweakCalabi–Yau structures (see [6]
for the case of algebras, [17] for differential graded (dg) categories and [5] for
linear 1-categories). These references show that pre-Calabi–Yau structures play
an important role in homological algebra, symplectic geometry, string topology,
noncommutative geometry and even in Topological Quantum Field Theory (see [6]).
Following [8], a (compact) Calabi–Yau structure (of dimension n) on a compact
A1-algebraA is a nondegenerate cyclically invariant pairing onA of degree n. In the
sense of formal noncommutative geometry, it is the analogue of a symplectic structure.
The problem with this definition is that for applications related to path spaces,
Fukaya categories, open Calabi–Yau manifolds or Fano manifolds, the hypothesis
of compactness is too restrictive. This was the reason why pre-Calabi–Yau algebras
were originally introduced in [9].

Roughly speaking, a pre-Calabi–Yau algebra can be regarded as a formal non-
commutative Poisson structure on a non-compact algebra because it is a noncommut-
ative analogue of a solution to the Maurer–Cartan equation for the Schouten bracket
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on polyvector fields. More precisely, let A be a Z-graded vector space, and let

C .k/.A/ WD
Y
r�0

Hom
�
AŒ1�˝r ; A˝k

�
for k � 1:

A pre-Calabi–Yau structure on A is a solution

m D
X
k�0

m.k/; m.k/ 2 C .k/.A/

of the Maurer–Cartan equation

Œm;m�gen:neckl D 0

(see [3, Definition 2.5]). Here, Œ ; �gen:neckl is the “generalized necklace bracket",
which is a kind of graded commutator (see [3, Definition 2.4]). Nevertheless, for
our purposes, we will use a different but equivalent version of this notion (see [3,
Proposition 2.7]). A pre-Calabi–Yau algebra essentially is a cyclic A1-algebra
structure on A˚A#Œd � 1� for the natural bilinear form of degree d � 1 induced by
evaluation such that A is an A1-subalgebra (see Definition 4.2).

If pre-Calabi–Yau structures are regarded as noncommutative Poisson structures
in the setting of formal noncommutative geometry, double Poisson algebras are the
natural candidates for Poisson structures in the context of noncommutative differential
geometry based on double derivations as developed in [1] and [16]. Indeed, let

DerA D Der.A;A˝ A/

be the A-bimodule of double derivations, and let

DA D TA.DerA/

be its tensor algebra. Roughly speaking, a double Poisson algebra is an algebra
endowed with a bivector P 2 .DA/2 such that

fP;P g D 0;

where f ; g is a kind of commutator in this context (see [16, Section 4.4]). Besides
their similarity with the commutative notion, double Poisson algebras turn out to
be the appropriate noncommutative Poisson algebras in this setting because they
satisfy the Kontsevich–Rosenberg principle (see [7] and [16, Section 7.5]), whereby
a structure on an associative algebra has geometric meaning if it induces standard
geometric structures on its representation spaces.

Hence, since pre-Calabi–Yau algebras and double Poisson algebras can be
regarded as noncommutative Poisson structures, one should expect some relationship
between them. For instance, W.-K.Yeung [17] proved that double Poisson structures
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on dg categories provide examples of pre-Calabi–Yau structures. Furthermore, given
an associative algebra A, N. Iyudu and M.Kontsevich showed that there exists an
explicit one-to-one correspondence between the class of non-graded double Poisson
algebras and that of pre-Calabi–Yau algebras whose multiplications mi vanish
for i 2 N n f2; 3g, such that m2 is the usual product of the square-zero extension

A˚ A#Œd � 1�;

and m3 sends A˝ A# ˝ A to A and A# ˝ A˝ A# to A# (see [3, Theorem 1.1]).
The first main result of this article is an extension of this correspondence to the

differential graded setting (see Theorem 5.2). Our secondmain result shows that such
a correspondence satisfies a simple functorial property (see Theorems 5.6 and 5.9),
for a suitable notion ofmorphism of d -pre-Calabi–Yau algebras (Definition 5.8). We
remark that this notion does not define a category but a partial category of d -pre-
Calabi–Yau algebras, since not all pairs .f; g/ of morphisms such that the codomain
of f is the domain of g are composable.

Moreover, T. Schedler [13] showed an interesting connection of the classical and
associative Yang–Baxter equations with double Poisson algebras, that he generalized
to L1-algebras, giving rise to “infinity” versions of Yang–Baxter equations and
double Poisson algebras. The latter arise by relaxing the (double) Jacobi identity up
to homotopies, but not the associativity of the multiplication. We recall Schedler’s
definition of double P1-algebras in Definition 6.1, which coincides with the usual
notion of dg double Poisson algebras if the higher brackets vanish. The third main
result of the article states that there is also a correspondence between certain pre-
Calabi–Yau structures on (nonunitary) graded algebras A and double P1-algebras,
giving a different extension of Theorem 5.2 if d D 0 (see Theorem 6.3).

We believe that our results can be a powerful tool to define both new double
Poisson and pre-Calabi–Yau structures. For example, the study of linear and quadratic
double Poisson brackets on free associative algebras, as in [10] or [11], might be
useful to better understand and extend the results obtained by N. Iyudu in [2], where
pre-Calabi–Yau structures on path algebras of quivers with one vertex and a finite
number of loops are studied. Moreover, the results obtained in this article give rise
to a more natural study of quasi-isomorphism classes of dg double Poisson algebras
by considering the associated pre-Calabi–Yau A1-algebras. We remark that the
former problem is in principle specially difficult, as it is usually the case when
dealing with double structures (e.g. double associative algebras, double Poisson
algebras), since, although transfer theorems for strongly homotopic structures over
dioperads or properads are known to hold, they are not explicit. Indeed, as a major
difference with the theory of (al)gebras over operads we can mention that there does
not exist in general a Schur functor construction for dioperads/properads — so there
is, in particular, no bar construction for (al)gebras over dioperads/properads — the
category of (al)gebras over dioperads/properads does not carry any natural model
structure, etc.
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The contents of the article are as follows. We begin in Section 2 by fixing our
notations and conventions, and in Section 3 we review some known definitions and
results related to double Poisson dg algebras. After reviewing the basic definitions
and results onA1-algebras in the first part of Section 4, we recall the crucial notion of
a d -pre-Calabi–Yau structure as well as some additional conditions on A1-algebras
that we will need to prove our main results.

Section 5 is the core of the article. Subsection 5.1 is devoted to prove the
first main result of our article, Theorem 5.2, that establishes the bijection between
fully manageable nice d -pre-Calabi–Yau structures and double Poisson brackets
of degree �d . In Subsection 5.2 we prove our second main result, namely the
functoriality of the previous correspondence (see Theorems 5.6 and 5.9). Finally,
in Section 6, we prove our last main result, Theorem 6.3, that extends the previous
bijection in case d D 0 to include double P1-algebras.

Acknowledgements. The first author is supported by the Alexander von Humboldt
Stiftung in the framework of an Alexander von Humboldt professorship endowed
by the German Federal Ministry of Education and Research. The second author
was supported by the GDRI “Representation Theory” 2016–2020 and the BIREP
group, and is deeply thankful to Henning Krause and William Crawley-Boevey for
their hospitality at the University of Bielefeld. We are very grateful to Yiannis
Vlassopoulos for sharing with us the manuscript [9].

2. Notations and conventions

2.1. Generalities. In what follows, k will denote a field of characteristic zero. We
recall that, if

V D ˚n2ZV
n

is a (cohomological) graded vector space (resp., dg vector space with differential @V ),
V Œm� is the graded (resp., dg) vector space over k whose nth homogeneous compo-
nent V Œm�n is given by V nCm, for all n;m 2 Z (resp., and whose differential @V Œm�
sends a homogeneous v 2 V nCm to .�1/m@V .v/). It is called the shift of V . Given
a nonzero element v 2 V n, we will denote jvj D n the degree of v. If we refer
to the degree of an element, we will be implicitly assuming that it is nonzero and
homogeneous.

We recall that a morphism
f WV ! W

of graded (resp., dg) vector spaces of degree d 2 Z is a homogeneous linear map
of degree d , i.e. f .V n/ � W nCd for all n 2 Z, (resp., satisfying that f ı @V D
.�1/d@W ı f ). A morphism of degree zero will be called closed. Moreover,
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if f WV ! W is a morphism of graded (resp., dg) vector spaces of degree d ,

f Œm�WV Œm�! W Œm�

is the morphism of degree d whose underlying set-theoretic map is .�1/mdf . In this
way, the shift .�/Œm� defines an endofunctor on the category of graded (resp., dg)
vector spaces provided with closed morphisms.

Given any d 2 Z, we will denote by

sV;d WV ! V Œd �

the suspension morphism, whose underlying map is the identity of V , and sV;1 will
be denoted simply by sV . To simplify notation, we write sv instead of sV .v/ for
a homogeneous v 2 V . All morphisms between vector spaces will be k-linear
(satisfying further requirements if the spaces are further decorated). All unadorned
tensor products ˝ would be over k. Since graded vector spaces can be considered
as dg vector spaces with trivial differentials, we will proceed to consider the case
of dg vector spaces. We also remark that N will denote the set of positive integers,
whereas N0 will be the set of nonnegative integers.

2.2. Permutations. Given n 2 N, we will denote by Sn the group of permutations
of n elements f1; : : : ; ng, and given any � 2 Sn, sgn.�/ 2 f˙1g will denote its sign.
Given two dg vector spaces V and W , we denote by

�V;W WV ˝W ! W ˝ V

the closed morphism determined by v˝w 7! .�1/jvjjwjw˝ v; for all homogeneous
elements v 2 V and w 2 W . Moreover, given any transposition & D .ij / with
i < j in the group of permutations Sn of n 2 N elements, it induces a unique closed
morphism

�V;n.&/WV
˝n
! V ˝n;

sending v1 ˝ � � � ˝ vn to

.�1/�v1 ˝ � � � ˝ vi�1 ˝ vj ˝ viC1 ˝ � � � ˝ vj�1 ˝ vi ˝ vjC1 ˝ � � � ˝ vn;

where

� D jvi jjvj j C
�
jvi j C jvj j

�� j�1X
`DiC1

jv`j
�
;

for all homogeneous v1; : : : ; vn in V . More generally, for any permutation � 2 Sn,
written as a composition of transpositions &1ı� � �ı&m, we define the closedmorphism

�V;n.�/WV
˝n
! V ˝n



246 D. Fernández and E. Herscovich

given by �V;n.&1/ ı � � � ı �V;n.&m/. We leave to the reader the verification that this is
independent of the choice of the transpositions used in the decomposition of � . In
fact, it is easy to check that �V;n.�/ sends xv D v1 ˝ � � � ˝ vn to

.�1/�.�;xv/v��1.1/ ˝ � � � ˝ v��1.n/; (2.1)
where

�.�; xv/ D
X
i<j;

��1.i/>��1.j /

jv��1.i/jjv��1.j /j: (2.2)

We will usually write � instead of �V;n.�/ to simplify the notation.

2.3. The closed monoidal structure. Given two dg vector spaces V and W we
will denote by Hom.V;W / the dg vector space whose component of degree d is
formed by all morphisms from V toW of degree d , and whose differential sends an
homogeneous element f 2 Hom.V;W / to

@W ı f � .�1/
jf jf ı @V :

If W D k, we will denote Hom.V;k/ by V #. If f WV ! V 0 is a morphism of
degree d , then

Hom.f;W /WHom.V 0; W /! Hom.V;W /

and Hom.W; f /WHom.W; V /! Hom.W; V 0/

are defined by

Hom.f;W /.g/ D .�1/jf jjgjg ı f and Hom.W; f /.g/ D f ı g;

respectively. If W D k, then Hom.f;k/ will be denoted by f #.
It is easy to check that, given homogeneousmorphisms f WV !V 00 and gWV 0!V ,

then

Hom.g;W / ıHom.f;W / D .�1/jf jjgjHom.f ı g;W /; (2.3)
and Hom.W; f / ıHom.W; g/ D Hom.W; f ı g/: (2.4)

The usual tensor product V ˝ W of vector spaces is a dg vector space for the
grading given by

V ˝W D ˚n2Z.V ˝W /
n;

where
.V ˝W /n D ˚m2ZV

m
˝W n�m;

and the differential sends v ˝ w to

@V .v/˝ w C .�1/
jvjv ˝ @W .w/;

for all homogeneous v 2 V and w 2 W .
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Given f 2 Hom.V;W / and g 2 Hom.V 0; W 0/, the map

ƒV;V 0;W;W 0.f ˝ g/ 2 Hom.V ˝ V 0; W ˝W 0/

is the unique morphism sending v˝w to .�1/jgjjvjf .v/˝g.w/. This gives a closed
morphism

ƒV;V 0;W;W 0 WHom.V;W /˝Hom.V 0; W 0/! Hom.V ˝ V 0; W ˝W 0/:

IfW D W 0 D k, we denote it by �V;V 0 . Moreover, if it is clear from the context, we
will denoteƒV;V 0;W;W 0.f ˝ g/ simply by f ˝ g. Note that, using this notation, the
differential of V ˝W is precisely @V ˝ idW C idV ˝ @W .

It is easy to check that

ƒV;V 0;W;W 0.f ˝ g/ ıƒU;U 0;V;V 0.f
0
˝ g0/

D .�1/jf
0jjgjƒU;U 0;W;W 0

�
.f ı f 0/˝ .g ı g0/

�
; (2.5)

and

�W;V ı �V #;W # D �#W;V ı �V;W ; (2.6)
as well as

�V;W ıƒU #;W #;V #;W #.h# ˝ idW #/ D
�
ƒV;W;U;W .h˝ idW /

�#
ı �U;W ; (2.7)

for any homogeneous morphism hWV ! U .
For later use, we recall that, given v1; : : : ; vn 2 V homogeneous elements of a

graded vector space, and f1; : : : ; fn 2 V # homogeneous elements, then

.f1˝ � � � ˝ fn/
�
�.v1˝ � � � ˝ vn/

�
D
�
��1.f1˝ � � � ˝ fn/

�
.v1˝ � � � ˝ vn/: (2.8)

2.4. The closedmonoidal structure and the suspension. Given d 2Z, and letV ,W
be two dg vector spaces, define the closed isomorphisms

LdV;W WHom.V;W /Œd �! Hom
�
V Œ�d�;W

�
and Rd

V;W WHom.V;W /Œd �! Hom
�
V;W Œd �

�
;

given by

sHom.V;W /;df 7! .�1/d jf jf ı sV Œ�d�;d and sHom.V;W /;df 7! sW;d ı f;

respectively.
Moreover, define also the closed isomorphisms

Ld
V;W W .V ˝W /Œd �!

�
V Œd �

�
˝W

and Rd
V;W W .V ˝W /Œd �! V ˝

�
W Œd�

�
;

given by

sV˝W;d .v ˝w/ 7! sV;d .v/˝w and sV˝W;d .v ˝w/ 7! .�1/d jvjv ˝ sW;d .w/;

respectively.
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3. Double Poisson brackets on dg algebras

The definitions of dg algebras (possibly with unit) and dg (bi)modules are supposed to
be well known. We will recall however the definition of a double Poisson dg algebra,
specially to avoid some imprecision concerning signs that exist in the literature.
The reader might check that the definition coincides with the one introduced in [16,
Section 2.7], for the case where the differential vanishes.
Definition 3.1. Let .A; �A; @A/ be a dg algebra and d 2 Z. A double Poisson
bracket on A of degree �d is a homogeneous morphism of dg vector spaces

ff ; ggAWAŒd�˝ AŒd� �! A˝ A

of degree d satisfying that:
(i) �ff ; ggA ı �AŒd�;AŒd� D �A;A ı ff ; ggA;
(ii) for any a 2 A, the homogeneous map AD.a/WA ! A˝ A of degree jaj � d

given by b 7! ffsA;da; sA;dbggA is a double derivation of A, i.e.

AD.a/ ı �A D .idA ˝ �A/ ı .AD.a/˝ idA/C .�A ˝ idA/ ı
�
idA ˝AD.a/

�
I

(iii)
X
�2C3

�A;3.�/ ı ff ; ; ggA;L ı �AŒd�;3.�
�1/ D 0,

whereC3�S3 is the subgroup of cyclic permutations, and ff ; ; ggA;LWAŒd�˝3!A˝3

is the map�
ff ; ggA ˝ idA

�
ı
�
idAŒd� ˝ sA;d ˝ idA

�
ı
�
idAŒd� ˝ ff ; ggA

�
:

Usually, the identity in (ii) is called the Leibniz property, and (iii) is the double
Jacobi identity.
Remark 3.2. Note that ff ; ggA being a homogeneous morphism of dg vector spaces
of degree d means precisely that�
@A˝ idAC idA˝ @A

�
ı ff ; ggA D .�1/

d
ff ; ggA ı

�
@AŒd�˝ idAŒd�C idAŒd�˝ @AŒd�

�
:

On the other hand, condition (ii) in the previous definition is tantamount to the
following one. Set ff ; gguAWA˝ A! A˝ A to be the map

ff ; gguA D ff ; ggA ı .sA;d ˝ sA;d /:

Then, condition (ii) is equivalent to

ff ; gguA ı .idA ˝ �A/ D .idA ˝ �A/ ı
�
ff ; gguA ˝ idA

�
C .�A ˝ idA/ ı

�
idA ˝ ff ; gguA

�
ı .�A;A ˝ idA/:
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Convention 3.3. Note that the usual definition of double bracket in [16, Section 2.7],
is a map of the form

ff ; ggvdBA WA˝ A! A˝ A

satisfying some axioms. We leave to the reader to verify that the conditions in
Definition 3.1 for our map

ff ; ggAWAŒd�˝ AŒd�! A˝ A

are equivalent to those given in [16, Section 2.7], for the map

ff ; ggvdBA WA˝ A! A˝ A;

where ffa; bggvdBA D ffsA;da; sA;dbggA, and a; b 2 A. It is for this reason that, when
dealing with specific elements a; b ofA, it will be convenient to simply write ffa; bggA
instead of ffa; bggvdBA ( D ffsA;da; sA;dbggA).

We recall that, given any dg algebra .A; �A; @A/, ŒA;A� denotes the dg vector
subspace of A generated by ab � .�1/jajjbjba, for all homogeneous a; b 2 A. Note
that we have the isomorphism of dg vector spaces

AŒd�=
�
ŒA;A�Œd �

�
'
�
A=ŒA;A�

�
Œd �

given by

sA;d .a/C
�
ŒA;A�

�
Œd � 7! sA=ŒA;A�;d

�
aC ŒA;A�

�
:

The following result is proved by the same argument as the one in [16,Corollary 2.4.6].

Proposition 3.4. Let .A; �A; @A/ be a dg algebra provided with a double Poisson
bracket ff ; ggA of degree �d 2 Z. Set

f ; gAWAŒd�˝ AŒd�!
�
A=ŒA;A�

�
Œd �

to be the composition of ff ; ggA, �A, the canonical projection A ! A=ŒA;A� and
sA=ŒA;A�;d . Then, f ; gA induces a map�

A=ŒA;A�
�
Œd �˝

�
A=ŒA;A�

�
Œd �!

�
A=ŒA;A�

�
Œd �

of degree zero, which, together with the map�
A=ŒA;A�

�
Œd �!

�
A=ŒA;A�

�
Œd �

of degree 1 induced by sA;d ı @A ı sAŒd�;�d , gives a structure of dg Lie algebra on
the space

�
A=ŒA;A�

�
Œd �.
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4. Cyclic A1-algebras and pre-Calabi–Yau structures

4.1. A1-algebras. We recall that a nonunitary A1-algebra is a (cohomologically)
graded vector space A D ˚n2ZA

n together with a collection of maps fmngn2N ,
where mnWA˝n ! A is a homogeneous morphism of degree 2 � n, satisfying the
equation X

.r;s;t/2In

.�1/rCstmrC1Ct ı
�
id˝rA ˝ms ˝ id˝tA

�
D 0 (SI.n/)

for n 2 N, where In D f.r; s; t/ 2 N0 � N � N0 W r C s C t D ng. Since we are
going to deal exclusively with nonunitary A1-algebras, from now on, A1-algebras
will always be nonunitary, unless otherwise stated.
Definition 4.1. An A1-algebra .A;m�/ is said to be:
(i) fully manageable if .A;m2; m1/ is a (nonunitary) dg algebra;
(ii) small if the multiplications fmngn2N satisfy that mn D 0, for all n � 4;
(iii) essentially odd if m2i D 0, for all i > 1.

In case (i) we also say that .A;m�/ is a fully manageable extension of the dg
algebra .A;m2; m1/, if we want to emphasize the latter.

Note that given an essentially odd A1-algebra, SI.2p/ is equivalent to

2.p�1/X
rD0

.�1/rm2p�1 ı
�
id˝rA ˝m2 ˝ id˝.2.p�1/�r/A

�
�m2 ı

�
m2p�1 ˝ idA C idA ˝m2p�1

�
D 0; (4.1)

for p 2 N, whereas SI.2p � 1/ is equivalent to

ıp;2m2 ı
�
m2 ˝ idA � idA ˝m2

�
C

pX
iD1

2.p�2/X
rD0

m2i�1 ı
�
id˝rA ˝m2.p�i/C1 ˝ id˝.2.i�2/�r/A

�
D 0; (4.2)

for p 2 N.
Amorphism of (nonunitary)A1-algebras f�WA! A0 between two (nonunitary)

A1-algebras .A;mA� / and .A0; mA
0

� / is a collection of maps ffngn2N , where
fnWA

˝n ! A0 is a homogeneous morphism of degree 1 � n satisfying the equationX
.r;s;t/2In

.�1/rCstfrC1Ct ı
�
id˝rA ˝m

A
s ˝ id˝tA

�
D

X
q2N

X
Ni2Nq;n

.�1/wmA
0

q ı .fi1 ˝ � � � ˝ fiq /; (MI.n/)
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for n 2 N, where

w D

qX
jD1

.j � 1/.ij C 1/

and Nq;n is the subset of elements Ni of Nq satisfying that jNi j D i1 C � � � C iq D n.
A morphism is strict if fn D 0, for all n � 2.

4.2. Cyclic and ultracyclic structures on A1-algebras. Given d 2 Z, a d -cyclic
(nonunitary) A1-algebra is an A1-algebra .A;m�/ provided with a nondegenerate
bilinear form  WA˝ A! k of degree d satisfying that  ı �A;A D  and


�
mn.a1; : : : ; an/; a0

�
D .�1/nCja0j.

Pn
iD1 jai j/

�
mn.a0; : : : ; an�1/; an

�
; (4.3)

for all homogeneous a0; : : : ; an 2 A. If we drop the nondegeneracy assumption on 
in the previous definition, we will say that A is a degenerate d -cyclic (nonunitary)
A1-algebra.

We also introduce the following definition, that will be useful in the sequel. In
order to do so, givenn 2 N consider the injectivemap oll nWSn ! S2n; sending & 2 Sn
to the permutation � defined by �.2i/ D 2&.i/ and �.2i � 1/ D 2&.i/ � 1, for
all i 2 f1; : : : ; ng. Ad -cyclic (nonunitary)A1-algebra .A;m�/with a nondegenerate
bilinear form  WA˝A! k of degree d satisfying that .A;m�/ is essentially odd is
called d -ultracyclic if, for all n 2 N and all permutations & 2 Sn, we have that


�
m2n�1.a&.1/; b&.1/; : : : ; a&.n�1/; b&.n�1/; a&.n//; b&.n/

�
D .�1/�.&

�1;xa;xb/
�
m2n�1.a1; b1; : : : ; an�1; bn�1; an/; bn

�
; (4.4)

for all homogeneous a1; b1; : : : ; an; bn 2 A, where �.&�1; xa; xb/ is the sign given
in (2.2) for � D oll n.&�1/ and xv D a1 ˝ b1 ˝ � � � ˝ an ˝ bn. As before, if we do
not assume that  is nondegenerate in the previous definition, we will say that A is a
degenerate d -ultracyclic (nonunitary) A1-algebra.

4.3. Natural bilinear forms and pre-Calabi–Yau structures. Moreover, as it will
be useful later, given a cyclic A1-algebra .A;m�/ with a nondegenerate bilinear
form  and n 2 N, we will define the linear map SI.n/ WA˝.nC1/ ! k byX

.r;s;t/2In

.�1/rCst ı
�
mrC1Ct ı

�
id˝rA ˝ms ˝ id˝tA

�
˝ idA

�
: (SI.n/ )

Note that the .A;m�/ being a cyclic A1-algebra is equivalent to the vanishing
of SI.n/ as well as (4.3), for all n 2 N.

For the following definition, we first recall the definition of the natural bilinear
form of degree d 2 Z associated with any (cohomologically) graded vector space
A D ˚n2ZA

n. First, set @dA D A ˚ A#Œd �. For clarity, we will denote the
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suspension map sA#;d WA
# ! A#Œd � simply by t , and any element of A#Œd � will be

thus denoted by tf , for f 2 A#. Define now the bilinear form

•cl l

AW @dA˝ @dA! k

by
•cl l

A.tf; a/ D .�1/
jajjtf j •cl l

A.a; tf / D f .a/ and •cl l

A.a; b/ D •cl l

A.tf; tg/ D 0;

(4.5)

for all homogeneous a; b 2 A and f; g 2 A#. Note that •cl l

A has degree d . If there is
no risk of confusion, we shall denote •cl l

A simply by •cl l .
We recall the following crucial definition from [9].

Definition 4.2. Given d 2 Z, a d -pre-Calabi–Yau (algebra) structure on a
(cohomologically) graded vector space A D ˚n2ZA

n is the datum of a .d � 1/-
cyclic A1-algebra on the graded vector space @d�1A D A ˚ A#Œd � 1� for the
natural bilinear form •cl l

AW @d�1A˝ @d�1A! k of degree d � 1 defined in (4.5) such
that the correspondingmultiplications fmngn2N of @d�1A satisfy thatmn.A˝n/ � A,
for all n 2 N. A 0-pre-Calabi–Yau algebra will be simply called a pre-Calabi–Yau
algebra.

This implies in particular that the maps fmnjA˝ngn2N define an A1-algebra
structure on A such that its canonical inclusion into @d�1A is a strict morphism
of A1-algebras.

4.4. Good and nice A1-algebras. We will now introduce the following terminol-
ogy that will be useful in the sequel. Let us first fix some notation. Assume that there
is a decomposition B0 ˚ B1 of a graded vector space B . In many of our examples,
B0 will be a graded vector space A and B1 will be A#Œd � 1�. Then, for any odd
integer n 2 N, the decomposition B D B0˚B1 induces a canonical decomposition

B˝n D Tn;g ˚ Tn;b;

where
Tn;g D

M
Ni2In

Bi1 ˝ � � � ˝ Bin ; Tn;b D
M

Ni2f0;1gnnIn

Bi1 ˝ � � � ˝ Bin ; (4.6)

and
In D

˚
Ni D .i1; : : : ; in/ 2 f0; 1g

n
W ij ¤ ijC1 for all j 2 f1; : : : ; n � 1g

	
:

Note that T1;b D 0. A map mnWB˝n ! B will be called good if mnjTn;b vanishes
and mn.Bi1 ˝ � � � ˝ Bin/ � Bi1 , for all .i1; : : : ; in/ 2 In.
Definition 4.3. Let B be an A1-algebra provided with an extra decomposition
B D B0 ˚ B1. We say that B is:
(i) good if the A1-algebra structure is essentially odd and for every odd integer

n 2 N the multiplication map mn is good;
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(ii) special if the A1-algebra structure is essentially odd and .d � 1/-ultracyclic;
(iii) nice if it is good and small (see Definition 4.1(ii)).

All these definitions apply in particular to a d -pre-Calabi–Yau structure on A,
where we take B D @d�1A D A˚ A#Œd � 1�.

5. Nice pre-Calabi–Yau structures and double Poisson dg algebras

5.1. Relation between objects. We first recall that, given a (nonunitary) dg alge-
bra A with product �A and differential @A, then A# is naturally a dg bimodule over A
via

.a � f � b/.c/ D .�1/jaj.jf jCjbjCjcj/f .bca/;

for all homogeneous a; b; c 2 A and f 2 A#. Moreover, if .M; @M / is any dg bi-
module over A and d 2 Z, then the dg vector spaceMŒd� is a dg bimodule over A
via

a � sM;d .m/ � b D .�1/
d jajsM;d .a �m � b/;

for all homogeneous a; b 2 A andm 2M . In particular, A#Œd � 1� is a dg bimodule
over A. For simplicity, we will write the product of A and its action on any dg
bimoduleM by juxtaposition, or a small dot.

Moreover, given a dg bimoduleM over a (nonunitary) dg algebra A, consider the
dg vector space A˚M with the product

.a;m/ � .a0; m0/ D .aa0; m � a0 C a �m0/:

It is easy to verify that the dg vector spaceA˚M provided with the previous product
is a (nonunitary) dg algebra. In particular, we see thatA˚A#Œd �1� is a (nonunitary)
dg algebra. We leave to the reader to verify the easy assertion that this dg algebra
together with the natural bilinear form of degree d � 1 defined in (4.5) is in fact a
d -pre-Calabi–Yau structure, by takingm1 to be the differential ofA˚A#Œd �1�,m2
its product, and mn D 0, for all n � 3.
Definition 5.1. Let .A; �A; @A/ be a locally finite dimensional (nonunitary) dg
algebra, and consider the d -pre-Calabi–Yau structure on A defined by the dg algebra
structure ofA˚A#Œd �1� described before, together with the natural bilinear form of
degree d � 1 defined in (4.5). A d -pre-Calabi–Yau structure fmngn2Z on A is called
manageable if m2 coincides with the product of A˚ A#Œd � 1� considered before,
and fully manageable if we also have that m1 is the differential of A˚ A#Œd � 1�.

The following result generalizes [3, Theorem 4.2] (see also [4, Theorem 4.2]).
Theorem 5.2. Let d 2 Z, and let A D ˚n2ZA

n be a (nonunitary) dg algebra with
product �A and differential @A. Consider the dg algebra structure on A˚A#Œd � 1�

explained above, with productm2 and differentialm1, as well as the natural bilinear
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form on it of degree d � 1 defined in (4.5). Given any nice and fully manageable
d -pre-Calabi–Yau structure fm�g�2N on A, define the map ff ; ggWA˝ A ! A˝ A

by
.f ˝ g/

�
ffa; bgg

�
D s

a;b
f;g

•cl l

�
m3.b; tg; a/; tf

�
; (5.1)

for all homogeneous a; b 2 A and f; g 2 A#, where sa;b
f;g
D .�1/jbj.jajCjgjC1/. Then,

ff ; gg is a double Poisson bracket of degree �d on the dg algebra A. Moreover, the
map �

fully manageable nice d -pre-CY
structures fm�g�2N on A

�
�!

�
double Poisson brackets

on A of degree �d

�
(5.2)

given by sendingm3 to the double Poisson bracket determined by (5.1) is a bijection.

Proof. We are only going to consider sa;b
f;g

when (5.1) is not trivially zero, i.e. if

jf j C jgj D jaj C jbj C d:

Note that this last identity implies also that sa;b
f;g
D .�1/jbj.jf jCd/.

We will first prove that ff ; gg, as defined in (5.1), is a double Poisson bracket on
the dg algebra A. We remark that we will be using Convention 3.3. Let us start with
the antisymmetric property (i) in Definition 3.1, i.e.

�A;A
�
ffb; agg

�
D �.�1/.jaj�d/.jbj�d/ffa; bgg; (5.3)

for all homogeneous a; b 2 A. Evaluating g ˝ f at both sides of the previous
equation, where f; g 2 A# are homogeneous, it is clear that (5.3) is equivalent to

.g ˝ f /
�
ffa; bgg

�
D �.�1/.jajjbjCjf jjgjCd.jajCjbjC1//.f ˝ g/

�
ffb; agg

�
; (5.4)

for all homogeneous a; b 2 A and f; g 2 A#. Using (5.1) on each side, we obtain
that (5.4) is equivalent to

s
a;b
g;f

•cl l

�
m3.b; tf; a/; tg

�
D �.�1/.jajjbjCjf jjgjCd.jajCjbjC1//s

b;a
f;g
•cl l

�
m3.a; tg; b/; tf

�
: (5.5)

On the left-hand side, using the cyclicity property of •cl l , we obtain that

s
a;b
g;f

•cl l

�
m3.b; tf; a/; tg

�
D s

a;b
g;f
.�1/jtgj.jbjCjtf jCjaj/C3 •cl l

�
m3.tg; b; tf /; a

�
D s

a;b
g;f
.�1/jtgj.jbjCjtf jCjaj/Cjaj.jf jCjbjCjgj/ •cl l

�
m3.a; tg; b/; tf

�
: (5.6)

Hence, comparing (5.5) and (5.6), we see that (5.3) holds if and only if

s
a;b
g;f
D .�1/jajjf jCjgjjbjCd.jajCjbj/s

b;a
f;g
; (5.7)
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where we have used that jaj C jbj C jf j C jgj C d D 0 .mod 2/. Replacing sa;b
g;f

by
its definition, we see that (5.7) holds, so (5.3) does it as well, as was to be shown.

Let us now prove the Leibniz property (ii) in Definition 3.1, i.e.

ffc; abgg D ffc; aggb C .�1/.jcj�d/jajaffc; bgg; (5.8)

for all homogeneous a; b; c 2 A. In order to do so, consider the identity (SI.n/) for
n D 4 for the A1-algebra structure of A˚ A#Œd � 1� evaluated at a˝ b ˝ tf ˝ c,
where a; b; c 2 A and f 2 A# are homogeneous elements. This gives

m3.ab; tf; c/ �m3.a; b:tf; c/ � .�1/
jaja:m3.b; tf; c/ D 0; (5.9)

for all homogeneous a; b; c 2 A and f 2 A#. By applying •cl l .�; tg/, for a general
homogeneous g 2 A#, we see that (5.9) is tantamount to

•cl l

�
m3.ab; tf; c/; tg

�
D •cl l

�
m3.a; b:tf; c/; tg

�
C.�1/jaj •cl l

�
a:m3.b; tf; c/; tg

�
: (5.10)

Using definition (5.1), we see that the first term of (5.10) is precisely

s
c;ab
g;f

.g ˝ f /
�
ffc; abgg

�
: (5.11)

Similarly, using the identity b:.tf / D .�1/jbj.d�1/t .b:f /, for all homogeneous
b 2 A and f 2 A#, and (5.1), the second term of (5.10) becomes

s
c;a
g;b:f

.�1/jbj.d�1/
�
g ˝ .b:f /

��
ffc; agg

�
: (5.12)

Using the identity

.g ˝ .b:f //.v ˝ w/ D .�1/jbj.jf jCjvjCjwj/.g ˝ f /.v ˝ .w:b//;

for all homogeneous b; v; w 2 A and f; g 2 A#, and the fact that

jffc; aggj D jcj C jaj � d;

we conclude that (5.12) is equal to

s
c;a
g;b:f

.�1/jbj.jf jCjajCjcjC1/.g ˝ f /
�
ffc; aggb

�
: (5.13)

Finally, using the cyclicity of •cl l we see that the third term of (5.10) is

.�1/jajCjtgj.jajCjbjCjtf jCjcj�1/ •cl l

�
tg:a;m3.b; tf; c/

�
D .�1/jajCjtgj.jajCjbjCjtf jCjcj�1/C.jajCjtgj/.jtf jCjbjCjcj�1/ •cl l

�
m3.b; tf; c/; tg:a

�
D .�1/jaj.jcjCjbjCjgjCjf j/s

c;b
g:a;f

�
.g:a/˝ f

��
ffc; bgg

�
; (5.14)

where we used the super symmetry of •cl l in the second identity, and tg:a D t .g:a/ in
the last equality. Using the identity

..g:a/˝ f /.v ˝ w/ D .�1/jajjf j.g ˝ f /.a:v ˝ w/;
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for all homogeneous a; v; w 2 A and f; g 2 A#, we conclude that (5.14) is equal to

.�1/jaj.jcjCjbjCjgj/s
c;b
g:a;f

.g ˝ f /
�
affc; bgg

�
: (5.15)

Then, multiplying (5.10) by sc;ab
g;f

and replacing the corresponding terms by the ones
given by (5.11), (5.13) and (5.15), we get

.g ˝ f /
�
ffc; abgg

�
D s

c;ab
g;f

s
c;a
g;b:f

.�1/jbj.jf jCjcjCjajC1/.g ˝ f /
�
ffc; aggb

�
C s

c;ab
g;f

s
c;b
g:a;f

.�1/jaj.jgjCjcjCjbj/.g ˝ f /
�
affc; bgg

�
: (5.16)

Hence, (5.8) holds if and only if

s
c;ab
g;f
D s

c;a
g;b:f

.�1/jbj.jf jCjcjCjajC1/ (5.17)

and .�1/jaj.jcj�d/ D s
c;ab
g;f

s
c;b
g:a;f

.�1/jaj.jgjCjcjCjbj/: (5.18)

Using the definition of sb;a
g;f

together with jf j C jgj D jaj C jbj C jcj � d and
jaj D jaj2 (mod 2), one can easily verify (5.18), so (5.8) holds as was to be shown.
This proves the Leibniz property (ii) in Definition 3.1.

Remark 5.3. Assuming that sa;b
g;f

is just a function of the degrees jaj, jbj, jf j, and jgj
(satisfying that jaj C jbj C jf j C jgj C d D 0 (mod 2)), one can in fact show that
our choice for sa;b

g;f
is the unique solution of (5.7) and (5.18), up to multiplicative

constant˙1. This is in fact how we found such an expression.

Let us now show that ff ; gg is a homogeneous morphism of dg vector spaces of
degree d , i.e.�
@A ˝ idA C idA ˝ @A

��
ffa; bgg

�
D ff@A.a/; bgg C .�1/

jajCd
ffa; @A.b/gg; (5.19)

for all homogeneous a; b 2 A. In order to prove this, consider the identity (SI.n/)
for n D 3 for the A1-algebra structure of A˚ A#Œd � 1� evaluated at b ˝ tg ˝ a,
where a; b 2 A and g 2 A# are homogeneous elements, which gives

m1
�
m3.b; tg; a/

�
Cm3

�
m1.b/; tg; a

�
C .�1/jbjm3

�
b;m1.tg/; a

�
C .�1/jbjCjgjCd�1m3

�
b; tg;m1.a/

�
D 0: (5.20)

Applying •cl l .�; tf /, for an arbitrary homogeneous f 2 A#, we see that (5.20) is
tantamount to

•cl l

�
m1
�
m3.b; tg; a/

�
; tf

�
C •cl l

�
m3
�
m1.b/; tg; a

�
; tf

�
(5.21)

C .�1/jbj •cl l

�
m3
�
b;m1.tg/; a

�
; tf

�
C .�1/jbjCjgjCd�1 •cl l

�
m3
�
b; tg;m1.a/

�
; tf

�
D 0:
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Applying the cyclicity and super symmetry properties of •cl l in the first term, as well
as the fact that m1.th/ D .�1/jhjCd t .h ı @A/ for any homogeneous element h in A#

in the first and third terms, we see that (5.21) is equivalent to

� .�1/jbjCjgjCjajCjf j •cl l

�
m3.b; tg; a/; t.f ı @A/

�
C •cl l

�
m3
�
m1.b/; tg; a

�
; tf

�
C .�1/jbjCjgjCd •cl l

�
m3
�
b; t.g ı @A/; a

�
; tf

�
C .�1/jbjCjgjCd�1 •cl l

�
m3
�
b; tg;m1.a/

�
; tf

�
D 0: (5.22)

By (5.1) andmultiplying (5.22) by .�1/jbj.jajCjgj/Cjgj, we see that (5.22) is tantamount
to

� .�1/jajCjf j
�
.f ı @A/˝ g

��
ffa; bgg

�
� .�1/jajCjbj.f ˝ g/

�
ffa; @A.b/gg

�
(5.23)

C .�1/jbjCd
�
f ˝ .g ı @A/

��
ffa; bgg

�
� .�1/jbjCd .f ˝ g/

�
ff@A.a/; bgg

�
D 0;

where we have used thatm1jA D @A, and jajC jbjC jf jC jgjCd C1 D 0 (mod 2).
Now, using the Koszul sign rule, we obtain that (5.23) is precisely

.f ˝ g/.@A ˝ idA C idA ˝ @A/
�
ffa; bgg

�
D .f ˝ g/

�
ff@A.a/; bgg C .�1/

jajCd
ffa; @A.b/gg

�
; (5.24)

for all homogeneous a; b 2 A and f; g 2 A#, which is clearly equivalent to (5.19).
We shall now prove the double Jacobi identity (see (iii) in Definition 3.1), which

can be explicitly written as

ffc; ffb; aggggL C .�1/
.jcjCd/.jajCjbj/�ffb; ffa; cggggL

C .�1/.jajCd/.jbjCjcj/�2ffa; ffc; bggggL D 0; (5.25)

for arbitrary homogeneous elements a; b; c 2 A, where � 2 S3 is the unique cyclic
permutation sending 1 to 2. In order to do so, consider (SI.n/) for n D 5 evaluated
at a˝ tf ˝b˝ tg˝ c, where a; b; c 2 A and f; g 2 A# are homogeneous elements.
It gives

m3
�
m3.a; tf; b/; tg; c

�
C .�1/jajm3

�
a;m3.tf; b; tg/; c

�
C .�1/jajCjtf jm3

�
a; tf;m3.b; tg; c/

�
D 0: (5.26)

It is equivalent to the following identity, when we apply •cl l .�; th/ for an arbitrary
homogeneous element h 2 A#,

•cl l

�
m3
�
m3.a; tf; b/; tg; c

�
; th

�
C .�1/jaj •cl l

�
m3
�
a;m3.tf; b; tg/; c

�
; th

�
C .�1/jajCjtf j •cl l

�
m3
�
a; tf;m3.b; tg; c/

�
; th

�
D 0: (5.27)
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The following result will be essential to prove the double Jacobi identity.

Fact 5.4. Let a; b; c 2 A and f; g; h 2 A# be homogeneous elements. Then,

.f ˝ g ˝ h/
�
ffa; ffb; cggggL

�
D �a;b;c

f;g;h
•cl l

�
m3
�
m3.c; th; b/; tg; a

�
; tf

�
; (5.28)

where

�a;b;c
f;g;h

D .�1/jhj.jf jCjgj/Cd.jf jCjhj/C.jbjCjcjCjhj/.jajCjbjCjgj/: (5.29)

Proof. First note that, since .f ˝ g/ is a functional applied to ffa; ffb; cgg0gg, we can
assumewithout loss of generality that jffa; ffb; cgg0ggj D jf jCjgj. As a consequence,

.f ˝ g ˝ h/
�
ffa; ffb; cggggL

�
D .�1/jhj.jf jCjgj/.f ˝ g/

�
ffa; ffb; cgg0gg

�
h
�
ffb; cgg00

�
:

(5.30)
Using (5.1) we see that the right member of (5.30) is given by

.�1/jh.jf jCjg/s
a;ffb;cgg0

f;g
•cl l

�
m3
�
ffb; cgg0; tg; a

�
; tf

�
h
�
ffb; cgg00

�
D .�1/jhj.jf jCjgj/C.jbjCjcj�jhjCd/.jajCjgjC1/ •cl l

�
m3
�
ffb; cgg0h

�
ffb; cgg00

�
; tg; a

�
; tf

�
;

where we have used that

jffb; cgg0j D jffb; cggj � jffb; cgg00j D jbj C jcj C d � jhj:

Hence, the previous equalities together with jaj C jbj C jcj C jf j C jgj C jhj D 0

(mod 2) tell us that the identity (5.28) is tantamount to

ffb; cgg0h
�
ffb; cgg00

�
D .�1/d.jbjCjcjC1/C.jbjCjcjCjhj/.jbjC1/m3.c; th; b/; (5.31)

which is equivalent to

l
�
ffb; cgg0

�
h
�
ffb; cgg00

�
D .�1/d.jbjCjcjC1/C.jbjCjcjCjhj/.jbjC1/l

�
m3.c; th; b/

�
;

(5.32)
for all l 2 A# homogeneous of degree jcjC jbjC jhj �d . The left member of (5.32)
is given by

l
�
ffb; cgg0

�
h
�
ffb; cgg00

�
D .�1/.jcjCjbjCjhj�d/jhj.l ˝ h/

�
ffb; cgg

�
; (5.33)

whereas, on the right member,

l
�
m3.c; th; b/

�
D .�1/.jcjCjbjCjhj�d/.jcjCjbjCjhjC1/ •cl l

�
m3.c; th; b/; t l

�
; (5.34)

by the super symmetry of •cl l . By (5.1) and (5.34), the right member of (5.32) gives

.�1/.jcjCjbjCjhjCd/jhj.l ˝ h/
�
ffb; cgg

�
;

which coincides with (5.33), proving (5.32), as was to be shown.
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By Fact 5.4, the first term of the left member of (5.27) is precisely

•cl l

�
m3
�
m3.a; tf; b/; tg; c

�
; th

�
D �c;b;a

h;g;f
.h˝ g ˝ f /

�
ffc; ffb; aggggL

�
;

or, more explicitly,

.�1/d.jf jCjhj/Cjf j.jgjCjhj/C.jbjCjcjCjgj/.jajCjbjCjf j/.h˝ g ˝ f /
�
ffc; ffb; aggggL

�
:

(5.35)
Next, using the cyclicity of •cl l twice and the fact that

jaj C jbj C jcj C jf j C jgj C jhj D 0 .mod 2/;

we see that the second term of the left member of (5.27) is

.�1/d jajC.jbjCjf jCjgj�1/.jajCjcjCjhjCd�1/ •cl l

�
m3.c; th; a/;m3.tf; b; tg/

�
: (5.36)

By the supersymmetry of •cl l , (5.36) coincides with

.�1/d jajCjbjCjf jCjgj�1 •cl l

�
m3.tf; b; tg/;m3.c; th; a/

�
D .�1/d jajC.jbjCjf jCjgj/.jajCjcjCjhj�dC1/ •cl l

�
m3
�
m3.c; th; a/; tf; b

�
; tg

�
;

where we have used the cyclicity in the second line. Fact 5.4 tells us finally that the
second term of the left member of (5.27) is

.�1/jaj •cl l

�
m3
�
a;m3.tf; b; tg/; c

�
; th

�
D .�1/d jajC.jbjCjf jCjgj/.jajCjcjCjhj�dC1/�b;a;c

g;f;h
.g ˝ f ˝ h/

�
ffb; ffa; cggggL

�
;

which, by (2.8), is equal to

.�1/jhj.jf jCjgj/Cd jajC.jbjCjf jCjgj/.jajCjcjCjhj�dC1/

�b;a;c
g;f;h

.h˝ g ˝ f /
�
�ffb; ffa; cggggL

�
: (5.37)

Using the definition of �b;a;c
g;f;h

as well as jajC jbjC jcjCf jC jgjC jhj D 0 (mod 2)
and jxj2 D jxj(mod 2), one obtains that (5.37) is given by

.�1/d.jcjCjgj/C.jbjCjf jCjgj/.jajCjbjCjf j/.h˝ g ˝ f /
�
�ffb; ffa; cggggL

�
: (5.38)

Finally, using the cyclicity of •cl l twice and jaj C jbj C jcj C jf j C jgj C jhj D 0
(mod 2), we see that the third term of the right member of (5.27) is given by

.�1/d.jajCjf j/ •cl l

�
m3
�
m3.b; tg; c/; th; a

�
; tf

�
;

which, by Fact 5.4, coincides with

.�1/d.jajCjf j/�a;c;b
f;h;g

.f ˝ h˝ g/
�
ffa; ffc; bggggL

�
: (5.39)
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By (2.8), we see that (5.39) coincides with

.�1/d.jajCjf j/Cjf j.jgjCjhj/�a;c;b
f;h;g

.h˝ g ˝ f /
�
�2ffa; ffc; bggggL

�
;

which can be further reduced to the form

.�1/d.jajCjgj/Cjhj.jf jCjgj/C.jbjCjcjCjgj/.jajCjcjCjhj/.h˝ g ˝ f /
�
�2ffa; ffc; bggggL

�
:

(5.40)
Since jajC jbjC jcjC jf jC jgjC jhj D 0 (mod 2), it is straightforward to prove

that the product of the sign appearing in (5.35) and the one in (5.38) is precisely
.�1/.jcjCd/.jajCjbj/, whereas the product of the sign appearing in (5.35) and the
one in (5.40) is .�1/.jajCd/.jbjCjcj/. Using these results, plugging (5.35), (5.38),
and (5.40) into (5.27), and multiplying the latter by the sign appearing in (5.35), we
obtain precisely (5.25), as was to be shown.

To sum up, we have proved that, via (5.1), .A; �A; @A/ is endowed with a
double Poisson dg structure, which in turn means that the map (5.2) is well-defined.
Furthermore, notice that, if fm�g�2N is a small and fully manageable d -pre-Calabi–
Yau structure on A and ff ; gg is the associated double Poisson bracket on A, in
the paragraph including (5.19) we have showed that .SI.3// for fm�g�2N is indeed
equivalent to the fact that ff ; gg is a homogeneous morphism of dg vector spaces of
degree d . Similarly, the equivalent version of the Leibniz property given by (5.9)
shows that the latter is in fact tantamount to the vanishing of SI.4/ •cl l jA˝A˝tA#˝A˝tA# ,
where write tA# instead of A#Œd � 1�. Finally, the double Jacobi identity expressed
by (5.25) shows that it is in fact equivalent to the vanishing of SI.5/ •cl l j.A˝tA#/˝3 .
Moreover, we remark that, since A is a dg algebra, it is easy to see that the family of
Stasheff identities (SI.n/) for the multiplications fm�g�2N on @d�1A is equivalent to
just (SI.n/) for n 2 f3; 4; 5g, since .SI.1// is equivalent to @A ı@A D 0, .SI.2// is the
Leibniz property of @A with respect to the product �A, and (SI.n/) trivially vanishes
for n > 5.

We will finally show that (5.2) is bijective. In order to do so, we first note that,
given any good, small and fully manageable d -pre-Calabi–Yau structure fm�g�2N

on A, it is uniquely determined by m3jA˝A#Œd�1�˝A. Indeed, the fact that the d -
pre-Calabi–Yau structure on A is good tells us that the full m3 on @d�1A is unique,
the manageability hypothesis implies that m1 and m2 are uniquely determined by
the dg algebra structure of A, whereas the smallness assumption tells us mi D 0,
for all i > 3. As a consequence, and using that the identity (5.1) implies that the
associated double bracket ff ; gg completely determinesm3jA˝A#Œd�1�˝A, we conclude
that (5.2) is injective.

We will finally show that it is surjective. By the comments in the previous
paragraph, it suffices to show that, given any morphism

m3W @d�1A
˝3
! @d�1A

of degree �1 on the dg algebra @d�1A described at the beginning of Subsection 5.1,
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whose product and differential are denoted by m2 and m1, respectively, satisfying
that

m3jT3;b D 0; m3
�
A˝ A#Œd � 1�˝ A

�
� A;

m3
�
A#Œd � 1�˝ A˝ A#Œd � 1�

�
� A#Œd � 1�;

and the cyclic identities (4.3), for the natural bilinear form •cl l of degree d � 1, then
the vanishing of SI.4/ •cl l jA˝A˝tA#˝A˝tA# is equivalent to SI.4/ •cl l D 0; furthermore,
SI.5/ •cl l jA˝tA#˝A˝tA#˝A˝tA# D 0 is tantamount to the vanishing of SI.5/ •cl l . We leave
the reader the tedious but straightforward verification that

SI.4/ •cl l jA˝A˝tA#˝A˝tA# D 0

is equivalent to
SI.4/ •cl l j�.A˝A˝tA#˝A˝tA#/;

where � 2 C5 � S5 is any cyclic permutation, whereas SI.4/ •cl l j�.A˝A˝tA#˝A˝tA#/

trivially vanishes if � 2 S5 n C5. Analogously, it is long but easy to verify that

SI.5/ •cl l jA˝tA#˝A˝tA#˝A˝tA# D 0

is equivalent to
SI.5/ •cl l j�.A˝tA#˝A˝tA#˝A˝tA#/;

for any cyclic permutation � 2 C6 � S6, and SI.5/ •cl l j�.A˝tA#˝A˝tA#˝A˝tA#/ is
trivially zero if � 2 S6 n C6. This concludes the proof of the theorem.

5.2. Relation betweenmorphisms. Let .A; �A; @A/ and .B; �B ; @B/ be two double
Poisson dg algebras, with brackets ff ; ggA and ff ; ggB , respectively, of degree �d . A
morphism of double Poisson dg algebras �WA ! B is a morphism of dg algebras
satisfying that

.� ˝ �/ ı ff ; ggA D ff ; ggB ı
�
�Œd �˝ �Œd �

�
:

Since �WA! B is a morphism of dg algebras, B is a dg bimodule over A, so

@d�1� WD A˚ B
#Œd � 1�

has a dg algebra structure, as explained in the first two paragraphs of Subsection 5.1.
Moreover, @d�1� is naturally endowed with a super symmetric bilinear form

•cl l

� W .@d�1�/
˝2
! k

of degree d � 1 given by

•cl l

�.tf; a/ D .�1/
jaj.jf j�dC1/ •cl l

�.a; tf / D f .�.a// (5.41)
and •cl l

�.a; b/ D •cl l

�.tf; tg/ D 0; (5.42)

for all homogeneous a; b 2 A and f; g 2 B#.
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Lemma 5.5. Let .A; �A; @A/ and .B; �B ; @B/ be two dg algebras and let �WA! B

be a morphism of dg algebras. Consider the dg algebra structure on @d�1� D
A˚B#Œd � 1� recalled before, whose product and differential will be denoted bym�2
andm�1 , respectively. Then, @d�1� provided with •cl l

� defined in (5.42) is a degenerate
d -cyclic dg algebra.

Proof. We first remark that, by definition, @d�1� provided with •cl l

� is a degenerate
d -cyclic dg algebra if and only if (4.3) is verified for n D 1; 2, i.e.

•cl l

�

�
m
�
1 .x/; y

�
D �.�1/jxjjyj •cl l

�

�
m
�
1 .y/; x

�
;

•cl l

�

�
m
�
2 .x; y/; z

�
D .�1/jxj.jyjCjzj/ •cl l

�

�
m
�
2 .y; z/; x

�
; (5.43)

for all homogeneous x; y; z 2 @d�1�.
The first equation is trivially verified for x; y 2 A or x; y 2 B#Œd � 1�, and using

a symmetry argument it suffices to consider the case x D a 2 A and y D tf , with
f 2 B#, i.e.

•cl l

�.@A.a/; tf / D .�1/
jtf j.jajC1/ •cl l

�

�
t .f ı @B/; a

�
;

which is equivalent to f ı � ı @A.a/ D f ı @B ı �.a/. Since � is a morphism of dg
algebras, we conclude that (4.3) for n D 1 is always verified.

The definition of •cl l

� tells us that the second equation in (5.43) trivially holds
if x; y; z 2 A, or if there are at least two arguments among x; y; z that belong
to B#Œd � 1�. Finally, the three cases where two arguments of (5.43) are elements
of A and the other is in B#Œd � 1� are clearly equivalent to the identity

•cl l

�.ab; tf / D .�1/
jaj.jbjCjtf j/ •cl l

�.b � tf; a/ D .�1/
jtf j.jajCjbj/ •cl l

�.btf � a; b/;

for all homogeneous a; b 2 A and f 2 B#. The latter is tantamount to

f ı �.ab/ D f .�.a/�.b//;

which is trivially verified for �, since it is a morphism of dg algebras.

Remarkably, the construction provided in Theorem 5.2 is functorial in the
following sense:
Theorem 5.6. Let d 2 Z, and let .A; �A; @A/ and .B; �B ; @B/ be two locally
finite dimensional double Poisson dg algebras, with brackets ff ; ggA and ff ; ggB of
degree�d , respectively. Let �WA!B be a morphism of double Poisson dg algebras.
By Theorem 5.2, @d�1A and @d�1B are provided with the corresponding cyclic
A1-algebra structures fmA� g�2N and fmB� g�2N , respectively.

Consider the dg algebra

@d�1� D A˚ B
#Œd � 1�
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described previously, and define the unique good map

m
�
3 W .@d�1�/

˝3
! @d�1�

satisfying that

m
�
3 .a; tf; b/ D m

A
3

�
a; t.f ı �/; b

�
and m

�
3 .tf; b; tg/ D m

B
3

�
tf; �.b/; tg

�
;

(5.44)

for all homogeneous a; b 2 A and f; g 2 B#.
Then, @d�1� is a fully manageable nice degenerate d -cyclic A1-algebra, such

that the maps

ˆAW @d�1� ! @d�1A and ˆB W @d�1� ! @d�1B

defined by
.a; tf / 7! .a; t.f ı �// and .a; tf / 7! .�.a/; tf /

for all a2A and f 2B#, respectively, are strict morphisms of A1-algebras preserv-
ing the corresponding bilinear forms.

Proof. We first remark that the fact that

ff ; ggB ı
�
�Œd �˝ �Œd �

�
D .� ˝ �/ ı ff ; ggA

implies that

�
�
mA3

�
a; t.f ı �/; b

��
D mB3

�
�.a/; tf; �.b/

�
;

t�1mA3
�
t .f ı �/; a; t.g ı �/

�
D
�
t�1mB3

�
tf; �.a/; tg

��
ı �; (5.45)

for all homogeneous a; b 2 A and f; g 2 B#. Indeed, the first identity follows from

.g ı �/
�
mA3

�
a; t.f ı �/; b

��
D .�1/jtgj.jtf jCjajCjbj/ •cl l

A

�
mA3

�
a; t.f ı �/; b

�
; t .g ı �/

�
D .�1/jaj.jf jCjbjC1/Cjtgj.jtf jCjajCjbj/

�
.g ı �/˝ .f ı �/

��
ffb; aggA

�
D .�1/jaj.jf jCjbjC1/Cjtgj.jtf jCjajCjbj/.g ˝ f /

�
ff�.b/; �.a/ggB

�
D .�1/jtgj.jtf jCjajCjbj/ •cl l

B

�
mB3

�
�.a/; tf; �.b/

�
; tg

�
D g

�
mB3

�
�.a/; tf; �.b/

��
;

whereas the second follows from

t�1mA3
�
t .f ı �/; a; t.g ı �/

�
.b/ D •cl l

A

�
mA3

�
t .f ı �/; a; t.g ı �/

�
; b
�

D �.�1/jtf j.jtgjCjajCjbj/ •cl l

A

�
mA3

�
a; t.g ı �/; b

�
; t .f ı �/

�
D �.�1/jaj.jgjCjbjC1/Cjtf j.jtgjCjajCjbj/

�
.f ı �/˝ .g ı �/

��
ffb; aggA

�
D �.�1/jaj.jgjCjbjC1/Cjtf j.jtgjCjajCjbj/.f ˝ g/

�
ff�.b/; �.a/ggB

�
D �.�1/jtf j.jtgjCjajCjbj/ •cl l

B

�
mB3

�
�.a/; tg; �.b/

�
; tf

�
D •cl l

B

�
mB3

�
tf; �.a/; tg

�
; �.b/

�
D
�
t�1mB3

�
tf; �.a/; tg

���
�.b/

�
:
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We now show that @d�1� is an A1-algebra. The first two Stasheff identities
(SI.n/) are clearly verified, since they only involve the differential and the product of
the dg algebras A and B . Moreover, the Stasheff identity (SI.n/) for n D 3 is also
trivially verified. Indeed, since @d�1� provided with m�1 and m�2 is a dg algebra,
it suffices to show that the contribution of the terms involving m�3 in the Stasheff
identity for n D 3 at an element x1 ˝ x2 ˝ x3, where xi 2 A or xi 2 B#Œd � 1� are
homogeneous elements, vanish. It is easy to see that in this case the Stasheff identity
for n D 3 of @d�1� is a consequence of the corresponding Stasheff identity for n D 3
of either @d�1A or @d�1B .

We now prove the Stasheff identity (SI.n/) for n D 4 at an element x1˝� � �˝x4,
where xi 2 A or xi 2 B#Œd � 1� are homogeneous elements. It is easy to see that the
only cases where there is at least one possibly nonvanishing term are the following

(a) x2 2 B#Œd � 1� and x1; x3; x4 2 A;

(b) x3 2 B#Œd � 1� and x1; x2; x4 2 A;

(c) x1; x3 2 A and x2; x4 2 B#Œd � 1�;

(d) x2; x4 2 A and x1; x3 2 B#Œd � 1�.

The cases (a) and (b) only involve mA3 and mB3 , respectively, so they follow from the
Stasheff identity (SI.n/) for n D 4 of @d�1A and @d�1B , respectively. The proof
for cases (c) and (d) uses the precise same arguments, so we focus on the latter. We
write x1 D tf , x3 D tg with f; g 2 B#, and x2 D a and x4 D b. It is easy to see
that the fourth Stasheff identity evaluated at tf ˝ a˝ tg ˝ b is precisely

mB3
�
tf; �.a/; tg:�.b/

�
�mB3

�
tf; �.a/; tg

�
:�.b/

� .�1/jtf jtf:�
�
mA3

�
a; t.g ı �/; b

��
D 0; (5.46)

or, equivalently,

mB3
�
tf; �.a/; tg:�.b/

�
�mB3

�
tf; �.a/; tg

�
:�.b/

� .�1/jtf jtf:mB3
�
�.a/; tg; �.b/

�
D 0; (5.47)

where we have used the first identity of (5.45) in the last term of (5.46). Since (5.47)
is precisely a particular instance of the Stasheff identity for n D 4 of @d�1B , the
Stasheff identity for n D 4 of @d�1� in the case (c) follows.

We finally prove the Stasheff identity (SI.n/) for n D 5 at an element x1˝� � �˝x5,
where xi 2 A or xi 2 B#Œd � 1� are homogeneous elements. It is easy to see that the
only caseswhere there are possibly nonvanishing terms are either ifx2; x4 2 B#Œd�1�

and x1; x3; x5 2 A, or if x1; x3; x5 2 B#Œd �1� and x2; x4 2 A. Since the arguments
for both cases are the same, we only consider the former case, for which we write
x2 D tf , x4 D tg, with f; g 2 B#Œd � 1�, and x1 D a, x3 D b, x5 D c. The
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corresponding Stasheff identity then reads

mA3
�
mA3

�
a; t.f ı�/; b

�
; t .gı�/; c

�
�.�1/jajmA3

�
a; t

�
t�1mB3

�
tf; �.b/; tg

��
ı�; c

�
C .�1/jajCjtf jmA3

�
a; t.f ı �/;mA3

�
b; t.g ı �/; c

��
D 0; (5.48)

or, equivalently,

mA3
�
mA3

�
a; t.f ı�/; b

�
; t .g ı�/; c

�
� .�1/jajmA3

�
a;mA3

�
t .f ı�/; b; t.g ı�/

�
; c
�

C .�1/jajCjtf jmA3
�
a; t.f ı �/;mA3

�
b; t.g ı �/; c

��
D 0; (5.49)

where we have used the second identity of (5.45) in the second term of (5.48).
Since (5.49) is precisely a particular case of the Stasheff identity of @d�1A for n D 5,
the Stasheff identity of @d�1� for n D 5 follows. Taking into account that the Stasheff
identities for n � 6 trivially vanish, because the higher productsm�n of @d�1� vanish
for n � 4, we conclude that @d�1� is an A1-algebra. Moreover, @d�1� is by
definition small, and it is clearly fully manageable with respect to the dg algebra
structure fixed at the beginning of this subsection.

We now show that •cl l

� satisfies the cyclicity property (4.3) with respect tom�3 , i.e.

•cl l

�

�
m
�
3 .x; y; z/; w

�
D �.�1/jwj.jxjCjyjCjzj/ •cl l

�

�
m
�
3 .w; x; y/; z

�
;

for all homogeneous w; x; y; z 2 @d�1�. It is easy to see that the only nontrivial
cases are either if x; z 2 A and w; y 2 B#Œd � 1�, or if x; z 2 B#Œd � 1� and
w; y 2 A, both of which are tantamount to

•cl l

�

�
m
�
3 .a; tf; b/; tg

�
D �.�1/jtgj.jajCjbjCjtf j/ •cl l

�

�
m
�
3 .tg; a; tf /; b

�
; (5.50)

for all homogeneous a; b 2 A and f; g 2 B#. By definition, the left member of (5.50)
is precisely .�1/jaj.jbjCjf jC1/..g ı�/˝ .f ı�//.ffb; agg/, whereas the right member
is

� .�1/jtgj.jajCjbjCjtf j/ •cl l

�

�
mB3

�
tg; �.a/; tf

�
; �.b/

�
D •cl l

�

�
mB3

�
�.a/; tf; �.b/

�
; tg

�
D .�1/jaj.jbjCjf jC1/.g ˝ f /

�
ff�.b/; �.a/gg

�
:

They clearly coincide, since � is a morphism of double Poisson dg algebras.
Combining this with the previous lemma we see that •cl l

� satisfies the cyclicity
property (4.3) with respect to m�n , for all n 2 N.

It is easy to verify thatˆA andˆB commute with the corresponding differentials
and the corresponding products, since � is a morphism of dg algebras. To prove that
they are strict morphismsA1-algebras, it suffices to show thatˆA ım�3 D mA3 ıˆ

˝3
A

andˆB ım�3 D mB3 ıˆ
˝3
B . Since both identities are proved by the same arguments,
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we will only consider the former, evaluated at x1 ˝ x2 ˝ x3, for homogeneous
x1; x2; x3 2 @d�1�. By definition ofm

�
3 andmA3 , the only nontrivial cases are either

when x1; x3 2 A and x2 2 B#Œd � 1�, or x1; x3 2 B#Œd � 1� and x2 2 A. The first
case is direct from the definition of ˆA, whereas the second follows from the second
identity in (5.45).

It remains to show that ˆA and ˆB commute with the corresponding bilinear
forms, i.e.

•cl l

� D •cl l

A ıˆ
˝2
A D •cl l

B ıˆ
˝2
B ;

but this is straightforward. The theorem is thus proved.

A direct consequence of the previous theorem is the following result.

Corollary 5.7. Assume the same hypotheses as in Theorem 5.6. If the morphism
of double Poisson dg algebras �WA ! B is a quasi-isomorphism, then the
strict morphisms of degenerate cyclic A1-algebras ˆAW @d�1� ! @d�1A and
ˆB W @d�1� ! @d�1B are also quasi-isomorphisms.

Motivated by the previous theorem, we introduce the following.

Definition 5.8. Let A and A0 be two d -pre-Calabi–Yau algebra structures on the
graded vector spaces A and A0, respectively. A morphism from A to A0 is a triple
.C;ˆ;‰/, where C is a degenerate .d � 1/-cyclic A1-algebra, and ˆWC ! A and
‰WC ! A0 are strict morphisms of A1-algebras that preserve the corresponding
bilinear forms.

We say that a morphism .C;ˆ;‰/ from A to A0 and a morphism .C 0; ˆ0; ‰0/

from A0 to A00 are composable if there exists a triple .C 00; ˆ00; ‰00/, where C 00 is
a degenerate .d � 1/-cyclic A1-algebra, ˆ00WC 00 ! C and ‰00WC 00 ! C 0 are
strict morphisms of A1-algebras that preserve the corresponding bilinear forms and
‰ ı ˆ00 D ˆ0 ı ‰00. The composition of .C;ˆ;‰/ and .C 0; ˆ0; ‰0/ is then defined
to be .C 00; ˆ ıˆ00; ‰0 ı‰00/.

The proof of the following result follows exactly the same pattern as the (last part
of the proof of) Theorem 5.6, so we leave it to the reader.

Theorem 5.9. Let d 2 Z, and let .A; �A; @A/, .B; �B ; @B/ and .C; �C ; @C / be
three locally finite dimensional double Poisson dg algebras, with brackets ff ; ggA,
ff ; ggB and ff ; ggC of degree �d , respectively. Let �WA! B and  WB ! C be two
morphisms of double Poisson dg algebras, and let � D  ı�. Following Theorem 5.6,
consider the morphisms .@d�1�;ˆA; ˆB/ and .@d�1 ;‰B ; ‰C / induced by �
and  , respectively.

Consider the fully manageable nice degenerate d -cyclic A1-algebra @d�1� on
A˚ C #Œd � 1�. Then the maps

‡� W @d�1� ! @d�1� and ‡ W @d�1� ! @d�1 
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defined by
.a; tf / 7! .a; t.f ı  // and .a; tf / 7! .�.a/; tf /

for all a 2 A and f 2 C #, respectively, are strict morphisms of A1-algebras
preserving the corresponding bilinear forms, and satisfying that

ˆB ı ‡� D ‰B ı ‡ :

As a consequence, .@d�1�;ˆA; ˆB/ and .@d�1 ;‰B ; ‰C / are composable morph-
isms and their composition is .@d�1�;ˆA ı ‡� ; ‰C ı ‡ /.

This result tells us that the constructions in Theorems 5.2 and 5.6 define a (partial)
functor from the category of locally finite dimensional d -double Poisson dg algebras
to the partial category of d -pre-Calabi–Yau algebras provided with the morphisms
introduced in Definition 5.8, that preserves quasi-isomorphisms.

6. Pre-Calabi–Yau structures and double P1-algebras

We now introduce the definition of a double P1-algebra. It is essentially the same
as the one presented in [13, Definition 4.1], up to some sign differences.
Definition 6.1. A double P1-algebra is a (nonunitary) graded algebraAD˚n2ZA

n

providedwith a family of homogeneousmaps ff: : : ggpWA˝p!A˝p indexed byp2N,
where ff: : : ggp has degree 2 � p, satisfying that:
(i) �A;p.�/ ı ff: : : ggp ı �A;p.��1/ D sgn.�/ff: : : ggp , for all � 2 Sp;
(ii) for all p 2 N and homogeneous elements a1; : : : ; ap�1 2 A, the homogeneous

map
AD.a1; : : : ; ap�1/WA! A˝p

of degree ja1j C � � � C jap�1j C 2 � p given by a 7! ffa1; : : : ; ap�1; aggp is a
double derivation of A, i.e.

ffa1; : : : ; ap�1; abggp D ffa1; : : : ; ap�1; aggpb

C .�1/
jaj
�
pC

p�1P
jD1

jaj j
�
affa1; : : : ; ap�1; bggp; (DLeib1.p/)

for all homogeneous a; b 2 A;
(iii) for all p 2 N,

pX
iD1

.�1/i.pC1/
X
�2Cp

sgn.�/�A;p.�/ ı ff: : : ggi;p�iC1 ı �A;p.��1/ D 0;

(DJac1.p/)
where

ff: : : ggi;p�iC1 D
�
ff: : : ggi ˝ id˝.p�i/A

�
ı
�
id˝.i�1/A ˝ ff: : : ggp�iC1

�
:
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Let A be a double P1-algebra with brackets ff: : : ggpWA˝p ! A˝p for p 2 N.
Given p 2 N and n � p, we define ff: : : ggp;LWA˝n ! A˝n as ff: : : ggp ˝ id˝.n�p/A .
Remark 6.2. We leave to the reader the straightforward verification that a double
P1-algebra .A; �A/ with brackets fff: : : ggpgp2N satisfying that ff: : : ggp D 0 for
all p > 2 is a double Poisson dg algebra of degree zero, with ff ; ggA D ff: : : gg2
and @A D ff: : : gg1. Indeed, Jac1.1/ means exactly that @A is a differential, Jac1.2/
is precisely the fact that ff ; ggA is a morphism of closed dg vector spaces, Jac1.3/ is
the double Jacobi identity for ff ; ggA, Leib1.1/ means exactly that @A is a derivation
of the graded algebra .A; �A/ and Leib1.2/ is the Leibniz identity for ff ; ggA. The
antisymmetry conditions given in the previous definition and in Definition 3.1(i) are
clearly equivalent. The identities (DLeib1.p/) for p > 2 and (DJac1.p/) for p > 3
are trivially verified.
Theorem 6.3. LetA D ˚n2ZA

n be a (nonunitary) graded algebra with product�A.
Consider the graded algebra structure on @�1A D A ˚ A#Œ�1� described in the
first two paragraphs of Subsection 5.1, with product m2, as well as the natural
nondegenerate bilinear form of degree �1 given by (4.5). Then, given a good
manageable special pre-Calabi–Yau structure fm�g�2N on A, we define the family of
maps fff: : : ggpgp2N with ff: : : ggpWA˝p ! A˝p given by

.f1˝� � �˝fp/
�
ffa1; : : : ; apggp

�
D s

a1;:::;ap
f1;:::;fp

•cl l

�
m2p�1.ap; tfp; : : : ; a2; tf2; a1/; tf1

�
;

(6.1)
for p 2 N and all homogeneous a1; : : : ; ap 2 A and f1; : : : ; fp 2 A#, where

s
a1;:::;ap
f1;:::;fp

D .�1/
jap jjf1jC.pC1/.jap jCjf1j/C

pP
jD1

.p�j /jaj jC
pP
jD1

.j�1/jfj j

.�1/

P
1�i<j<p

jai jjaj jC
P

1<i<j�p

jfi jjfj jC
P

1<i�j<p

jfi jjaj j

: (6.2)

Then, fff: : : ggpgp2N determines a structure of a double P1-algebra on the graded
algebra A. Moreover, the map�

good manageable special
pre-CY structures fm�g�2N on A

�
�!

�
double P1-algebra

structures fff: : : gg�g�2N on A

�
(6.3)

given by sending fm�g�2N to the family of maps fff: : : gg�g�2N determined by (6.1) is
a bijection.

Proof. We will first prove that the family of brackets fff: : : ggpgp2N defined by (6.1)
gives indeed a double P1-algebra structure on the graded algebra A. In other words,
we shall prove that this bracket satisfies the conditions of Definition 6.1. As explained
in the first paragraph of the proof of Theorem 5.2, we can assume without loss of
generality that

pX
jD1

jaj j C 2 � p D

pX
jD1

jfj j

in (6.2), otherwise the identity (6.1) trivially holds.
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We will first prove the antisymmetric condition (i) given in Definition 6.1, i.e.

.�1/�.�;xa/�
�
ffa�.1/; : : : ; a�.p/ggp

�
D sgn.�/ffa1; : : : ; apggp; (6.4)

for all homogeneous a1; : : : ; ap 2 A, where xa D a1 ˝ � � � ˝ ap and �.�; xa/ was
defined in (2.2). Evaluating f1˝� � �˝fp at both members of the previous equation,
where f1; : : : ; fp 2 A# are homogeneous, it is clear that (6.4) is equivalent to

.f1 ˝ � � � ˝ fp/
�
�ffa�.1/; : : : ; a�.p/ggp

�
D sgn.�/.�1/�.�;xa/.f1 ˝ � � � ˝ fp/

�
ffa1; : : : ; apggp

�
; (6.5)

for all homogeneous a1; : : : ; ap 2 A and f1; : : : ; fp 2 A#. Using (2.8) on the left
member as well as (6.1) on each side, we obtain that (6.5) is equivalent to

s
a�.1/;:::;a�.p/
f�.1/;:::;f�.p/

.�1/�.�;
xf / •cl l

�
m2p�1.a�.p/; tf�.p/; : : : ; a�.1//; tf�.1/

�
D sgn.�/.�1/�.�;xa/sa1;:::;ap

f1;:::;fp
•cl l

�
m2p�1.ap; tfp; : : : ; a1/; tf1

�
; (6.6)

where xf D f1 ˝ � � � ˝ fp . By the ultracyclicity property of •cl l , the left member of
the previous equation is precisely •cl l .m2p�1.ap; tfp; : : : ; a1/; tf1/ multiplied by

s
a�.1/;:::;a�.p/
f�.1/;:::;f�.p/

.�1/�.�;
xf /.�1/�.o

l|
p.�/;fa/; (6.7)

where fa D f1 ˝ a1 ˝ � � � ˝ fp ˝ ap . Hence, comparing (6.6) and (6.7), we see
that (6.4) holds if and only if

s
a�.1/;:::;a�.p/
f�.1/;:::;f�.p/

D .�1/�.�;
xf /.�1/�.o

l|
p.�/;fa/ sgn.�/.�1/�.�;xa/sa1;:::;ap

f1;:::;fp
: (6.8)

Replacing s
a1;:::;ap
f1;:::;fp

by its definition and considering the case where � is any
transposition of two successive elements, it is easy but lengthy to show that the
antisymmetric condition (6.8) holds, which in turn implies that (6.4) holds, as was to
be shown.

We shall now prove the Leibniz identity given in Definition 6.1(ii) for a fixed
p 2 N. In order to do so, let us consider the identity (SI.n/) of the A1-algebra
structure of @�1A for n D 2p. Since theA1-algebra structure on @�1A is essentially
odd, (SI.n/) for n D 2p reduces to (4.1), which, evaluated at

a0 ˝ b0 ˝ tf1 ˝ a1 ˝ � � � ˝ tfp�1 ˝ ap�1;

gives
� .�1/ja0ja0:m2p�1.b0; tf1; a1; : : : ; tfp�1; ap�1/

Cm2p�1.a0b0; tf1; a1; : : : ; tfp�1; ap�1/

�m2p�1.a0; b0:tf1; a1; : : : ; tfp�1; ap�1/ D 0;

where a0; b0; a1; : : : ; ap�1 2 A, and f1; : : : ; fp�1 2 A# are homogeneous elements.
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Applying •cl l .�; tfp/ to the previous equation, for an arbitrary homogeneous fp 2 A#,
we get

�.�1/ja0j •cl l

�
a0:m2p�1.b0; tf1; a1; : : : ; tfp�1; ap�1/; tfp

�
C •cl l

�
m2p�1.a0b0; tf1; a1; : : : ; tfp�1; ap�1/; tfp

�
� •cl l

�
m2p�1.a0; b0:tf1; a1; : : : ; tfp�1; ap�1/; tfp

�
D 0: (6.9)

By the cyclicity property of •cl l , the identity .tfp/:a0 D t .fp:a0/ as well as (6.1),
we see that the first term in the left member of (6.9) is

�s
ap�1;:::;a1;b0
fpa0;fp�1;:::;f1

.�1/�.fp:a0 ˝ fp�1 ˝ � � � ˝ f1/
�
ffap�1; : : : ; a1; b0ggp

�
;

where

� D ja0j
�
p C jb0j C jfpj C

p�1X
jD1

�
jaj j C jfj j

��
:

Taking into account the identity

.f1:a˝ f2 ˝ � � � ˝ fm/.v1 ˝ � � � ˝ vm/

D .�1/
jaj

mP
jD2

jfj j

.f1 ˝ � � � ˝ fm/.a:v1 ˝ v2 ˝ � � � ˝ vm/;

for all homogeneous a 2 A, v1; : : : ; vm 2 M and f1; : : : ; fm 2 M #, where M is
a graded A-bimodule, we conclude that the first term in the left member of (6.9) is
precisely

� s
ap�1;:::;a1;b0
fp :a0;fp�1;:::;f1

.�1/
ja0j
�
pCjb0jCjfp jC

p�1P
jD1

jaj j
�

.fp ˝ � � � ˝ f1/
�
a0ffap�1; : : : ; a1; b0ggp

�
: (6.10)

On the other hand, using (6.1), we see that the second term of the left member of (6.9)
is precisely

s
ap�1;:::;a1;a0b0
fp ;:::;f1

.fp ˝ � � � ˝ f1/
�
ffap�1; : : : ; a1; a0b0ggp

�
: (6.11)

Similarly, by the identity b0:tf1 D .�1/jb0jt .b0:f1/ and (6.1), the third term of the
left member of (6.9) is

� s
ap�1;:::;a0
fp ;:::;f2;b0:f1

.�1/
jb0j
�
pCjb0jCjf1jC

p�1P
jD0

jaj j
�
.fp˝� � �˝f1/

�
ffap�1; : : : ; a0ggpb0

�
;

(6.12)
where we have used that

.f1 ˝ � � � ˝ fm�1 ˝ a:fm/.v1 ˝ � � � ˝ vm/

D .�1/�
0

.f1 ˝ � � � ˝ fm/.v1 ˝ � � � ˝ vm�1 ˝ vm:a/;
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for all homogeneous a 2 A, v1; : : : ; vm 2 M and f1; : : : ; fm 2 M #, whereM is a
graded A-bimodule, and

�0 D jaj
�
jfmj C j

mX
jD2

jvj j
�
:

Replacing (6.10), (6.11), and (6.12) into (6.9) and comparing it with equation
(DLeib1.p/), we see that the latter holds if and only if

s
ap�1;:::;a1;a0b0
fp ;:::;f1

D s
ap�1;:::;a0
fp ;:::;f2;b0:f1

.�1/
jb0j
�
pCjb0jCjf1jC

p�1P
jD0

jaj j
�
;

s
ap�1;:::;a1;a0b0
fp ;:::;f1

D .�1/ja0j.jb0jCjfp j/s
ap�1;:::;a1;b0
fp :a0;fp�1;:::;f1

: (6.13)

It is rather tedious but straightforward to check that our choice (6.2) satisfies the
previous identities, so the Leibniz property is verified.

Remark 6.4. As in Theorem 5.2, assuming that sa1;:::;ap
f1;:::;fp

is just a function of the
degrees ja1j; : : : ; japj and jf1j; : : : ; jfpj (satisfying that

Pp
jD1 jaj j C jfj j D p � 2

(mod 2)), one can also show that our choice for sa1;:::;ap
f1;:::;fp

is the unique solution of (6.8)
and (6.13), up to a multiplicative constant ˙1. This is again how we found such an
involved expression. In fact, the uniqueness of such a solution (up to multiplicative
constant) already holds if one considers (6.8) for only cyclic permutations and (6.13).

We will now prove (DJac1.p/) for p 2 N. In order to do so, we consider (SI.n/)
for n D 2p�1. Since theA1-algebra structure on @�1A is essentially odd, it reduces
to (4.2). Since m2 is associative, the first term in the left member of (4.2) vanishes,
so it is equivalent to

pX
iD1

i�1X
rD0

m2i�1 ı
�
id˝2rA ˝m2.p�i/C1 ˝ id˝.2.i�1�r//A

�
C

pX
iD1

i�2X
rD0

m2i�1 ı
�
id˝.2rC1/A ˝m2.p�i/C1 ˝ id˝.2.i�1�r/�1/A

�
D 0:

If we evaluate it at a1˝ tf1˝ � � � ˝ ap�1˝ tfp�1˝ ap and we apply •cl l .�; tfp/, for
homogeneous a1; : : : ; ap 2 A and f1; : : : ; fp 2 A#, it gives

pX
iD1

i�1X
rD0

.�1/
rC

rP
jD1

.jaj jCjfj j/

•cl l

�
m2i�1

�
a1; tf1; : : : ; ar ; tfr ;

m2.p�i/C1.arC1; tfrC1; : : : ; arCp�iC1/; tfrCp�iC1; : : : ; ap
�
; tfp

�
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C

pX
iD1

i�2X
rD0

.�1/
rCjarC1jC

rP
iD1

.jai jCjfi j/

•cl l

�
m2i�1

�
a1; tf1; : : : ; ar ; tfr ; arC1;

m2.p�i/C1.tfrC1; arC2; : : : ; tfrCp�iC1/; arCp�iC2; : : : ; ap
�
; tfp

�
D 0: (6.14)

Using the cyclicity of •cl l , the terms appearing in the first two lines of (6.14) can
be rewritten as

pX
iD1

i�1X
rD0

.�1/˛ •cl l

�
m2i�1

�
m2.p�i/C1.arC1; tfrC1; : : : ; arCp�iC1/;

tfrCp�iC1; : : : ; ap; tfp; a1; tf1; : : : ; ar
�
; tfr

�
; (6.15)

where

˛ D
�
r C

rX
jD1

�
jaj j C jfj j

���
p � r C

pX
jDrC1

�
jaj j C jfj j

��
:

Concerning the terms in the last two lines of (6.14), we first use the cyclicity of •cl l

to movem2.p�i/C1.tfrC1; arC2; : : : ; tfrCp�iC1/ to the last argument of •cl l . Then, we
apply the super symmetry of •cl l to flip its two arguments, and then again the cyclicity
of •cl l . After these computations, the terms in the last two lines of the left member
of (6.14) become

pX
iD1

i�2X
rD0

.�1/ˇ •cl l

�
m2.p�i/C1

�
m2i�1.arCp�iC2; tfrCp�iC2; : : : (6.16)

: : : ; ap; tfp; a1; tf1; : : : ; ar ; tfr ; arC1/; tfrC1; : : : ; arCp�iC1
�
; tfrCp�iC1

�
;

where

ˇ D
�
rCp� iC1C

rCp�iC1X
jD1

�
jaj jCjfj j

���
iCrC1C

pX
jDrCp�iC2

�
jaj jCjfj j

��
:

Before proceeding further, we will provide the following useful result:

Fact 6.5. Let a1; : : : ; ap 2 A and f1; : : : ; fp 2 A# be homogeneous elements. Then,
given any i 2 f1; : : : ; pg,

i�a1;:::;ap
f1;:::;fp

.f1 ˝ � � � ˝ fp/
�
ffa1; : : : ; ai�1; ffai ; : : : ; apggp�iC1ggi;L

�
(6.17)

D •cl l

�
m2i�1

�
m2.p�i/C1.ap; tfp; : : : ; aiC1; tfiC1; ai /; tfi ; : : : ; a2; tf2; a1

�
; tf1

�
;
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where

i�a1;:::;ap
f1;:::;fp

D .�1/
.pC1/.iC1/C

i�1P
jD1

.i�j /jaj jC
pP
jDi

.j�1/jaj jCpjf1jC
pP
jD2

.j�1/jfj j

.�1/

P
1�j<k<i

jaj jjak jC
P

i�j<k�p

jaj jjak jC
P

1<j<k�p

jfj jjfk jCjf1j
pP
jDi

jaj j

.�1/

P
1<j�k<i

jak jjfj jC
P

i<j�k<p

jak jjfj jC
p�1P
jDi

pP
kDiC1

jaj jjfk j

: (6.18)

Proof. By (6.1), the right member of (6.17) coincides with

s
a1;:::;ai�1;bi
f1;:::;fi

.f1 ˝ � � � ˝ fi /
�
ffa1; : : : ; ai�1; biggi

�
; (6.19)

wherebiDm2.p�i/C1.ap; tfp; : : : ; aiC1; tfiC1; ai /, whereas the left member of (6.17)
is by definition i�a1;:::;ap

f1;:::;fp
times

.�1/

pP
jDiC1

iP
kD1

jfj jjfk jC
P

i<j<k�p

jfj jjfk j

� .f1 ˝ � � � ˝ fi /
�
ffa1; : : : ; ai�1; c1ggi

� pY
jDiC1

fj .cj�iC1/; (6.20)

where c1 ˝ � � � ˝ cp�iC1 D ffai ; : : : ; apggp�iC1. As a consequence, (6.17) is tanta-
mount to

i�a1;:::;ap
f1;:::;fp

s
a1;:::;ai�1;bi
f1;:::;fi

•cl l

�
m2.p�i/C1.ap; tfp; : : : ; aiC1; tfiC1; ai /; tgi

�
D .�1/z.gi ˝ fiC1 ˝ � � � ˝ fp/

�
ffai ; : : : ; apggp�iC1

�
; (6.21)

for all gi 2 A# homogeneous of degree i C 1 � p C jai j C
Pp
jDiC1

�
jaj j � jfj j

�
,

where

z D

pX
jDiC1

iX
kD1

jfj jjfkj C
�
i C 1 � p C jai j C

pX
jDiC1

�
jaj j � jfj j

��� pX
jDiC1

jfj j
�
:

Using (6.1) on the left member of (6.21) we conclude that
i�a1;:::;ap

f1;:::;fp
D .�1/zs

a1;:::;ai�1;bi
f1;:::;fi

s
ai ;:::;ap
gi ;fiC1;:::;fp

:

After using (6.2) in the previous identity and a lengthy but straightforward comp-
utation, the statement follows.

Applying Fact 6.5 to (6.15) we obtain that the first two lines in (6.14) give exactly

pX
iD1

i�1X
rD0

i�ar ;:::;a1;ap ;:::;arC1
fr ;:::;f1;fp ;:::;frC1

.�1/˛.fr ˝ � � � ˝ f1 ˝ fp ˝ � � � ˝ frC1/�
ffar ; : : : ; a1; ap; : : : ; arCp�iC2; ffarCp�iC1; : : : ; aiC1ggp�iC1ggi;L

�
; (6.22)
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where

˛ D
�
r C

rX
jD1

�
jaj j C jfj j

���
p � r C

pX
jDrC1

�
jaj j C jfj j

��
;

whereas the same result applied to (6.16) tells us that the latter is precisely

pX
iD1

i�2X
rD0

i�arCp�iC1;:::;a1;ap ;:::;arCp�iC2
frCp�iC1;:::;f1;fp ;:::;frCp�iC2

�
frCp�iC1˝� � �˝f1˝fp˝� � �˝frCp�iC2

�
�
ffarCp�iC1; : : : ; arC2; ffarC1; : : : ; a1; ap; : : : ; arCp�iC2ggiggp�iC1;L

�
.�1/ˇ ;

(6.23)

where

ˇ D
�
rCp� iC1C

rCp�iC1X
jD1

�
jaj jCjfj j

���
iCrC1C

pX
jDrCp�iC2

�
jaj jCjfj j

��
:

Let � 2 Sp be the unique cyclic permutation sending 1 to 2. Using (2.8), we see
that (6.22) and (6.23) are equivalent to
pX
iD1

i�1X
rD0

i�ar ;:::;a1;ap ;:::;arC1
fr ;:::;f1;fp ;:::;frC1

.�1/˛
0

.fp ˝ � � � ˝ f1/ (6.24)�
��rffar ; : : : ; a1; ap; : : : ; arCp�iC2; ffarCp�iC1; : : : ; aiC1ggp�iC1ggi;L

�
;

where

˛0 D
�
r C

rX
jD1

�
jaj j C jfj j

���
p � r C

pX
jDrC1

�
jaj j C jfj j

��
C

rX
jD1

pX
kDrC1

jfj jjfkj;

and
pX
iD1

i�2X
rD0

i�arCp�iC1;:::;a1;ap ;:::;arCp�iC2
frCp�iC1;:::;f1;fp ;:::;frCp�iC2

.�1/ˇ
0

.fp ˝ � � � ˝ f1/ (6.25)�
��.rCp�iC1/ffarCp�iC1; : : : ; arC2; ffarC1; : : : ; a1; ap; : : : ; arCp�iC2ggiggp�iC1;L

�
;

where

ˇ0 D
�
rCp� iC1C

rCp�iC1X
jD1

�
jaj jCjfj j

���
iCrC1C

pX
jDrCp�iC2

�
jaj jCjfj j

��
C

rCp�iC1X
jD1

pX
kDrCp�iC2

jfj jjfkj;
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respectively. Furthermore, if we reindex (6.25) by setting

i 0 D p � i C 1 and r 0 D r C p � i C 1;

the former becomes

pX
i 0D1

p�1X
r 0Di 0

i�ar0 ;:::;a1;ap ;:::;ar0C1
fr0 ;:::;f1;fp ;:::;fr0C1

.�1/ˇ
00

.fp ˝ � � � ˝ f1/�
��r

0

ffar 0 ; : : : ; ar 0�i 0C2; ffar 0�i 0C1; : : : ; a1; ap; : : : ; ar 0C1ggp�i 0C1ggi 0;L
�
; (6.26)

where

ˇ00 D
�
r 0C

r 0X
jD1

�
jaj jCjfj j

���
r 0CpC

pX
jDr 0C1

�
jaj jCjfj j

��
C

r 0X
jD1

pX
kDr 0C1

jfj jjfkj:

On the other hand, after a tedious but straightforward calculation, we see that, for
all i 2 f1; : : : ; pg and r 2 f0; : : : ; i � 1g,

i�ar ;:::;a1;ap ;:::;arC1
fr ;:::;f1;fp ;:::;frC1

.�1/˛
00

D .�1/
.pC1/.iCr/C

rP
jD1

.i�j /jaj jC
rCp�iC1P
jDrC1

.j�1/jaj jC
pP

jDrCp�iC2

.i�j /jaj j

.�1/

pP
jD1

.j�1/jfj jC
P

1�j<k�p

jaj jjak jC
rCp�iC1P
jD1

pP
kDrCp�iC2

jaj jjak j

.�1/

P
1�j<k�p

jfj jjfk jC
P

1�j�k�p

jaj jjfk jC
rCp�iC1P
jDrC1

pP
kD1

jaj jjfk j

; (6.27)

and for all i 2 f1; : : : ; pg and r 2 fi; : : : ; p � 1g

i�ar ;:::;a1;ap ;:::;arC1
fr ;:::;f1;fp ;:::;frC1

.�1/ˇ
00

D .�1/
.pC1/.iCr/C

r�iC1P
jD1

.j�1/jaj jC
rP

jDr�iC2

.i�j /jaj jC
pP

jDrC1

.j�1/jaj j

.�1/

pP
jD1

.j�1/jfj jC
P

1�j<k�p

jaj jjak jC
r�iC1P
jD1

pP
kDr�iC2

jaj jjak j

.�1/

P
1�j<k�p

jfj jjfk jC
P

1�j�k�p

jaj jjfk jC
� r�iC1P
jD1

jaj jC
pP

jDrC1

jaj j
�� pP
kD1

jfk j
�
: (6.28)

The Koszul sign rule tells us that, for i 2 f1; : : : ; pg and r 2 f0; : : : ; i � 1g,

ffar ; : : : ; a1; ap; : : : ; arCp�iC2; ffarCp�iC1; : : : ; aiC1ggp�iC1ggi;L

D .�1/x̨
�
ff: : : ggi;p�iC1 ı �

r
�
.ap ˝ � � � ˝ a1/; (6.29)
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where

x̨ D .p � i � 1/
� rX
jD1

jaj j C

pX
jDrCp�iC2

jaj j
�
C

rX
jD1

pX
kDrC1

jaj jjakj;

whereas, for i 2 f1; : : : ; pg and r 2 fi; : : : ; p � 1g, we have that

ffar ; : : : ; ar�iC2; ffar�iC1; : : : ; a1; ap; : : : ; arC1ggp�iC1ggi;L

D .�1/
x̌�
ff: : : ggi;p�iC1 ı �

r
�
.ap ˝ � � � ˝ a1/; (6.30)

where
x̌ D .p � i � 1/

� rX
jDr�iC2

jaj j
�
C

rX
jD1

pX
kDrC1

jaj jjakj:

Using
Pp
jD1 jfj j D p�1C

Pp
jD1 jaj j (mod 2) in the last term of the right member

of (6.27) and utilizing this result together with (6.29) in (6.24), we see that the latter
is equivalent to
pX
iD1

i�1X
rD0

.�1/.pC1/.iCr/Cy̨.fp˝� � �˝f1/
��
��r ıff: : : ggi;p�iC1ı�

r
�
.ap˝� � �˝a1/

�
;

(6.31)
where y̨ is given by

pX
jD1

.p � j � 1/jaj j C

pX
jD1

.j � 1/jfj j C
X

1�j<k�p

jaj jjakj

C

X
1�j<k�p

jfj jjfkj C
X

1�j�k�p

jaj jjfkj:

The precise same argument but involving instead (6.30) and (6.28) in (6.26) yields
that the latter is tantamount to
pX
iD1

p�1X
rDi

.�1/.pC1/.iCr/Cy̨.fp˝� � �˝f1/
��
��r ıff: : : ggi;p�iC1ı�

r
�
.ap˝� � �˝a1/

�
:

(6.32)
As a consequence, (6.14) is exactly

.�1/y̨
pX
iD1

p�1X
rDi

.�1/.pC1/.iCr/.fp˝� � �˝f1/
��
��rıff: : : ggi;p�iC1ı�

r
�
.ap˝� � �˝a1/

�
:

(6.33)
Since sgn.�/ D .�1/pC1, we obtain precisely (DJac1.p/), as was to be shown.

We will show that (6.3) is bijective. Note first that, given any good and
manageable d -pre-Calabi–Yau structure fm�g�2N on A, it is uniquely determined
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by m2qC1j.A˝A#Œ�1�/˝q˝A, for all q 2 N0. Indeed, the fact that the pre-Calabi–
Yau structure on A is good tells us that the full m2qC1 on @�1A is unique,
and the manageability hypothesis implies that m2 is uniquely determined by the
algebra structure of A. As a consequence, and using that the identity (6.1)
implies that the corresponding double bracket ff: : : ggqC1 completely determines
m2qC1j.A˝A#Œ�1�/˝q˝A, we conclude that (6.3) is injective.

We will finally show that (6.3) is surjective. It suffices to prove that, given any
collection of good morphisms

m2qC1W @�1A
˝.2qC1/

! @�1A

of degree 1 � 2q for q 2 N0 on the graded algebra @�1A, whose product is
denoted by m2, satisfying the cyclic identities (4.3), for the natural bilinear form •cl l

of degree �1, then the vanishing of SI.2p/ •cl l jA˝.A˝A#Œ�1�/˝p is equivalent to
SI.2p/ •cl l D 0; and SI.2p � 1/ •cl l j.A˝A#Œ�1�/˝p D 0 is tantamount to the vanishing
of SI.2p � 1/ •cl l , for all p 2 N. We leave to the reader the tedious but straightforward
verification that the vanishing of

SI.2p/ •cl l jA˝.A˝A#Œ�1�/˝p

and that of
SI.2p/ •cl l j�.A˝.A˝A#Œ�1�/˝p/

are equivalent, for any � 2 C2pC1, whereas SI.2p/ •cl l j�.A˝.A˝A#Œ�1�/˝p/ trivially
vanishes if � 2 S2pC1 n C2pC1. Similarly, it is long but easy to verify that

SI.2p � 1/ •cl l j.A˝A#Œ�1�/˝p D 0

is equivalent to
SI.2p � 1/ •cl l j�..A˝A#Œ�1�/˝p/ D 0;

for any cyclic permutation � 2 C2p � S2p , and SI.2p � 1/ •cl l j�..A˝A#Œ�1�/˝p/ is
trivially zero if � 2 S2p n C2p . This concludes the proof of the theorem.
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