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tight groupoid under non-commutative Stone duality.

Mathematics Subject Classification (2020). 46L05; 20M18, 22A22.

Keywords. Inverse semigroups, Stone duality, ample groupoids, Cuntz—Krieger relations.

1. Introduction

In this section, we explain the philosophy behind this paper and provide the context for
the two main theorems (Theorem 1.3 and Theorem 1.4) that we prove; any undefined
terms will be defined later in this paper.

The theory of C*-algebras is the theory of non-commutative spaces. The term
‘non-commutative space’ is mathematical sleight-of-hand — there is no actual space
in the background, unlike in the case of commutative C*-algebras; instead, the
C*-algebra is itself a proxy for what is absent. For some C *-algebras, however,
there is an honest-to-goodness space, to be regarded as an actual non-commutative
space, from which they are constructed. These are the étale groupoid C *-algebras
of Renault [32] which include amongst their number many interesting and important
examples [7,14,15,17,30,32].

It is often the case that the étale groupoids that occur in constructing such C*-
algebras are those whose spaces of identities are locally compact Boolean spaces — by
which we mean 0-dimensional, locally compact Hausdorff spaces. A prime example
of such a space, and one which occurs repeatedly in the theory of C *-algebras, is the
Cantor space. Thus locally compact Boolean spaces are natural generalizations of
the Cantor space. Define a Boolean groupoid to be an étale groupoid whose space
of identities is a locally compact Boolean space. Boolean groupoids are therefore
examples of what can be regarded as (concrete) 0-dimensional, non-commutative
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spaces. Readers should be aware that what we call ‘Boolean groupoids’ are often
called ‘ample groupoids’ in the literature. We shall return to this point later.

Most of the time, Boolean groupoids are studied on their own but, in fact, they
have algebraic counterparts. It is a classical theorem due to Marshall Stone [41—43]
(and sketched in Section 3) that locally compact Boolean spaces stand in duality to
generalized Boolean algebras: from a generalized Boolean algebra, a locally compact
Boolean space, called its Stone space, can be constructed from its set of ultrafilters,
and from a locally compact Boolean space, a generalized Boolean algebra can be
constructed whose elements are the compact-open sets of the space. This classical
duality, which can be viewed as being commutative in nature, has been generalized to
a non-commutative setting [16,23,24,26,27,34] (and sketched in Section 4): locally
compact Boolean spaces are replaced by Boolean groupoids, and generalized Boolean
algebras by what we call Boolean inverse semigroups. Just as in the classical case,
from a Boolean inverse semigroup, a Boolean groupoid, called its Stone groupoid,
can be constructed from its set of ultrafilters and from a Boolean groupoid, a Boolean
inverse semigroup can be constructed whose elements are the compact-open local
bisections. This result suggests two lines of research:

(1) Develop the theory of Boolean inverse semigroups as the non-commutative
theory of Boolean algebras.

(2) Reinterpret results about Boolean groupoids as results about Boolean inverse
semigroups (and vice versa).

The starting point for this paper is two theorems that belong, respectively, to precisely
these two lines of research. The first is a theorem [25,27] which generalizes a well-
known result in the theory of Boolean algebras: namely, that associated with every
distributive lattice is a universal Boolean algebra into which it may be embedded [11].

Terminology. The inverse semigroups in this paper will always have a zero and hom-
omorphisms between them will always be required to preserve it. In addition, if we
work in the category of monoids then homomorphisms between them will always be
required to map identities to identities. If we say ‘semigroup’ we mean that we do
not assume there is an identity. We shall use the term ‘Boolean algebra’ rather than
‘generalized Boolean algebra’ and ‘unital Boolean algebra’ for what is usually termed
a ‘Boolean algebra’. In particular, a ‘Boolean inverse semigroup’ will therefore have
a semilattice of idempotents which is a generalized Boolean algebra — we do not
assume it has an identity.

Theorem 1.1 (Booleanization). From each inverse semigroup (respectively, monoid) S,
we may construct a Boolean inverse semigroup (respectively, monoid) B(S), called

its Booleanization, together with a (semigroup) homomorphism B: S — B(S) which

is universal for homomorphisms from S to Boolean inverse semigroups (respectively,

monoids); this means precisely that if : S — T is any homomorphism to a Boolean

inverse semigroup T, then there is a unique morphism 0':B(S) — T of Boolean

inverse semigroups such that 6’8 = 6.
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The second theorem then answers the question of what the Stone groupoid of the
Booleanization is [25,27].

Theorem 1.2 (The universal groupoid). The Stone groupoid of the Booleanization
B(S) is Paterson’s universal groupoid Gy, (S).

Paterson’s universal groupoid is described in his book [30]. In fact, his
construction came first and it was as a result of thinking about what he was doing
that the above theorem came to be proved. This, then, is the conceptual background
to our paper. We can now turn to the two particular results that we prove here; they
will also exemplify the two lines of research mentioned above and each can be seen
as a specialization of the above two theorems.

The papers of Cuntz and Krieger [4, 5] led to the idea of building C *-algebras
from combinatorial structures. Central to this work has been the presentation of
certain C*-algebras by means of ‘Cuntz—Krieger relations’. The goal of our paper
can now be explicitly stated: it is to describe in abstract terms exactly what these
relations are. There are two new results.

Our first new result is an application of Theorem 1.1 and uses the theory of ideals
of Boolean inverse semigroups described in [44]. It is based on two ideas: that of a
cover of an element and that of a cover-to-join map. (In fact, covers and cover-to-join
maps are important features of frame theory [11] whereas non-commutative Stone
duality can be regarded as part of non-commutative frame theory.) The notion of
a cover was developed in a sequence of papers [22,24,27] but was rooted in the
seminal papers by Exel [7] and Lenz [29]. A subset {ay,...,a,;} of the principal
order ideal generated by the element a is a cover of a if for each 0 # x < a there
exists 1 < i < m such that x A a@; # 0. (As an aside, observe that in an inverse
semigroup, compatible elements have meets [19, Lemma 1.4.11] and all the elements
of a principal order ideal are compatible.)

Terminology. Our use of the word ‘cover’ is a special case of the way this word is
used in [7]. Observe that we only use covers that are contained in principal order
ideals.

The notion of a cover in an arbitrary inverse semigroup is a weakening of the
notion of a join. A cover-to-join map from an inverse semigroup to a Boolean inverse
semigroup converts covers to joins: thus, it converts such potential joins to actual
joins. It is the claim of this paper that covers are the abstract form of the concrete
Cuntz—Krieger relations that arise in particular examples. This claim will be justified
in Section 11.

The inverse semigroup S is embedded in its Booleanization B(S) so we may
identify S with its image. Let {ai,...,a,} be a cover of a. Then, in particular,
{ai,...,an}isacompatible setin S and so will have a join in B(S). Inside B(S), we
of course have thatay Vv -+ V a, < a. It follows that the element a \ (a1 V-V am)
is defined in B(S) since we are working in a Boolean inverse semigroup.



282 M. V. Lawson and A. Vdovina

Let I be the additive ideal of B(S) generated by these elements. We call / the
Cuntz—Krieger ideal of B(S). Put T(S) = B(S)/I and let 7: S — T(S) be the
natural map. We call T(S) the tight completion of S.

Theorem 1.3 (Tight completion). Let S be an inverse semigroup (respectively,
monoid). Thent: S — T(S) is a cover-to-join map which is universal for all cover-to-
Jjoin maps from S to Boolean inverse semigroups (respectively, monoids); this means
precisely that for each cover-to-joinmap 0: S — T to a Boolean inverse semigroup T
there is a unique morphism 0':T(S) — T of Boolean inverse semigroups such
that 0't = 6.

The tight completion of an inverse semigroup S should be regarded as the Boolean
inverse semigroup generated by S subject to the abstract Cuntz—Krieger relations.
Our second new result, which is the main theorem of this paper, is a description of the
Stone groupoid of the tight completion of S. This involves what is termed the tight
groupoid G;(S) of an inverse semigroup S, introduced in [7]; it will be explicitly
defined at the beginning of Section 9.

Theorem 1.4. Let S be an inverse semigroup. Then the Stone groupoid of the tight
completion T(S) of S is the tight groupoid G;(S).
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2. Inverse semigroups and groupoids

We assume the reader is familiar with basic inverse semigroup theory [19] and that
of étale groupoids [33].

If s is an element of an inverse semigroup we write d(s) = s~ 's and r(s) = ss~!.
We write e —> f tomean that d(¢) = e and r(a) = f. Green’s relation £ assumes
the following form in inverse semigroups: a O b if and only if there is an element x

such that d(a) = d(b). The order on inverse semigroups will be the usual natural
partial order. The semilattice of idempotents of an inverse semigroup S is denoted
by E(S). More generally, if X is a subset of S then E(X) = E(S) N X. In addition,
define

XT={s€S:EIxeX,x§s} and X¢={s€S:ElxeX,s§x}.

If X = {x} then we write simply x* and xV, respectively. The compatibility
relation ~ in an inverse semigroup is defined by s ~ ¢ if and only if s~# and sz ~! are
idempotents. The significance of the compatibility relation is that being compatible is
a necessary condition for two elements to have a join. A set that consists of elements
which are pairwise compatible is said to be compatible. The orthogonality relation L
in an inverse semigroup is defined by s L ¢ if and only if s71# = 0 = st71. A set
that consists of elements which are pairwise orthogonal is said to be orthogonal.

If G is a groupoid we regard it as a set of arrows. Amongst those arrows are
the identities and the set of such identities is denoted by G,. If g € G we write
d(g) = g 'gandr(g) = gg~!. We write e £ fifd(g) =eandr(g) = f.

Define the equivalence relation O on G by g O h if and only if there exists x € G
such that d(g) 5 d(h). A subset of G is said to be an invariant subset if it is a
union of P-classes. A subset of G, is said to be an invariant subset if it is a union
of D-classes restricted to G,. Observe that a subset X of G, is invariant precisely
when it satisfies the following condition:

glgeX ogglex.

Let G be a groupoid and let X € G, be any subset of the space of identities.
The reduction of G to X, denoted by G|x, is the groupoid whose elements are all
those g € G such thatd(g),r(g) € X. A functor «: G — H is said to be a covering
functor if for each identity e € G the induced function from the set

{g € Gid(g) = ¢}
to the set
{he H:d(h) = a(e)}

is a bijection. Let G be any groupoid. A subset X C G is said to be a local bisection
if x,y € X and d(x) = d(y) then x = y, and if x,y € X and r(x) = r(y)
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then x = y. This is equivalent to requiring that X' X, XX~ ! C G,. In this
paper, we are interested in topological groupoids, that is groupoids which carry
a topology with respect to which multiplication and inversion are continuous, but
more specifically those topological groupoids which are also éfale, meaning that the
domain and range maps are local homeomorphisms.

3. Commutative Stone duality

Classical Stone duality [41-43] is described in the book [11] where it is unfortunately
limited to the unital case. We therefore sketch out the essentials we shall need of
the non-unital theory here. Distributive lattices will always have a bottom but not
necessarily a top. A generalized Boolean algebra is then a distributive lattice with
bottom element in which each principal order ideal is a unital Boolean algebra.
In a distributive lattice, every ultrafilter is a prime filter [43, Theorem 3] and a
distributive lattice is a generalized Boolean algebra if and only if every prime filter
is an ultrafilter [27, Proposition 1.6].

Let X be a Hausdorff space. Then X is locally compact if each point of X
is contained in the interior of a compact subset [45, Theorem 18.2]. Recall that a
topological space is 0-dimensional if it has a basis of clopen subsets. The proof of
the following is by standard results in topology [36]. It is included solely to provide
context.

Lemma 3.1. Let X be a Hausdorff space. Then the following are equivalent.
(1) X islocally compact and O-dimensional.
(2) X has a basis of compact-open sets.

We define a locally compact Boolean space to be a 0-dimensional, locally compact
Hausdorff space and a compact Boolean space to be a 0-dimensional, compact
Hausdorff space. Let By and B; be Boolean algebras. A morphism «: By — B; of
such algebras is said to be proper if B, = im((x)l. Let X and X, be locally compact
Boolean spaces. A continuous map 8: X, — X is said to be proper if the inverse
image under f of each compact set is compact.

Theorem 3.2 (Commutative Stone duality). The category of Boolean algebras
(respectively, unital Boolean algebras) and their proper morphisms (respectively,
morphisms) is dually equivalent to the category of locally compact Boolean spaces
(respectively, compact Boolean spaces) and their proper morphisms (respectively,
continuous maps).

4. Non-commutative Stone duality

We refer the reader to the papers [23, 24, 27] for all the details omitted in this
section. The paper [26] also played a key role in understanding the part played
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by filters. An inverse semigroup is said to be distributive if it has binary joins of
compatible elements and multiplication distributes over such joins. A distributive
inverse semigroup is Boolean if its semilattice of idempotents is a Boolean algebra.
If X C S is a subset of a distributive inverse semigroup, denote by XV the set of all
joins of finite, non-empty compatible subsets of S. Clearly, X € XV. A morphism
between distributive inverse semigroups is a homomorphism of inverse semigroups
that maps binary compatible joins to binary compatible joins.

Let S be an inverse semigroup. A filter in S is a subset A such that 4 = A" and
whenever a, b € A there exists ¢ € A such that ¢ < a, b. A filter is proper if it does
not contain zero.

Terminology. Proper filters are always assumed to be non-empty.

Observe that A is a filter if and only if A™! is a filter. If A and B are filters then
(AB)" is a filter. Define d(A) = (A7'4)" and r(4) = (4A™")". Then both d(4)
and r(A) are filters. It is easy to check that A is proper if and only if d(A) is proper
(respectively, r(A) is proper). Observe that for each a € A we have that

A= (ad(4)" = (x(A)a)".

We denote the set of proper filters on S by £(S). If A, B € £(S5), then A - B is
defined if and only if d(4) = r(B) in which case A- B = (AB)'. In this way,
£(S) becomes a groupoid; the identities of this groupoid are the filters that contain
idempotents — these are precisely the filters that are also inverse subsemigroups.

Remark 4.1. Let E be a meet semilattice with zero. Then proper filters (recall that
they are always required to be non-empty) on E correspond exactly to the characters
of Exel [7, pp. 3, 40, 53]. However, proper filters can be extended to arbitrary inverse
semigroups and form the basis of the approach to non-commutative Stone duality
developed in this paper. This approach goes back to the paper of Lenz [29] as
developed in [26]. In addition, the term ‘character’ has other meanings in algebra
and so is one that has to be used with caution.

Let S be a distributive inverse semigroup. A prime filter in S is a proper filter
A C Ssuchthatifavb € Athena € Aor b € A. An ultrafilter is a maximal
proper filter. Denote the set of all prime filters of S by G(S). It can be checked
that A is a prime filter if and only if d(A) (respectively, r(A)) is a prime filter. Define
a partial multiplication - on G(S) by A - B exists if and only if d(4A) = r(B), in
which case A4 - B = (AB)". With respect to this partial multiplication, G(S) is a
groupoid; the identities are the prime filters that contain idempotents. For this reason,
it is convenient to define a prime filter to be an identity if it contains an idempotent.
Proofs of all of the above claims can be found in [27]. In a distributive inverse
semigroup all ultrafilters are prime filters whereas Boolean inverse semigroups are
characterized by the fact that all prime filters are ultrafilters [27, Lemma 3.20].

An étale groupoid G is called a Boolean groupoid if its space of identities is a
locally compact Boolean space. As we mentioned before, the term ‘ample’ is often
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used in the literature. See, in particular, [30]. Our term is justified by the fact that there
is now a hierarchy of non-commutative duality theorems with, in particular, Boolean
groupoids generalizing Boolean spaces. Let S be a Boolean inverse semigroup.
Denote by G(S) the set of all ultrafilters of S. Then G(S) is a Boolean groupoid,
called the Stone groupoid of S, where a basis for the topology is given by the
subsets V,, the set of all ultrafilters in S that contain the elementa € S. Let G be a
Boolean groupoid. Denote by KB(G) the set of all compact-open partial bisections
of G. Then KB(G) is a Boolean inverse semigroup under subset multiplication. A
morphism 6: S — T between Boolean inverse semigroups is said to be callitic if it
satisfies two properties:

(1) It is weakly meet preserving meaning that for any a,b € S and any t € T
if t < 6(a), 68(b) then there exists ¢ < a, b such that r < 6(c).

(2) It is proper meaning that im(6)Y = T. Observe that surjective maps are auto-
matically proper.

A continuous functor «: G — H between étale groupoids is said to be coherent if
the inverse images of compact-open sets are compact-open. The following is the
non-commutative generalization of Theorem 3.2.

Theorem 4.2 (Non-commutative Stone duality).

(1) For each Boolean inverse semigroup S, the groupoid G(S) is Boolean and is
such that S = KB(G(S)).

(2) For each Boolean groupoid G, the semigroup KB(G) is a Boolean inverse
semigroup and is such that G = G(KB(G)).

(3) There is a dual equivalence between callitic morphisms and coherent continuous
covering functors.

5. Additive ideals

This section contains those results about Boolean inverse semigroups that are ‘ring-
like’. Specifically, Theorem 5.10 will be the key to proving Theorem 1.4. It will
require a refinement of some of the results proved in [44].

Terminology. In the theory of Boolean inverse semigroups, there are two notions of
‘kernel’. The first, which we shall write as Kernel, is the congruence induced by a
morphism on its domain. The second, which we shall write as kernel, is the set of
all elements of the domain sent to zero. The congruences induced on the domains
of morphisms are called additive congruences. The use of the word ‘additive’
arises from regarding the partially defined binary operation of compatible join as
an analogue of addition in rings. Wehrung provides an abstract characterization of
additive congruences in [44, Proposition 3.4.1] but we shall only need the informal
idea here.
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The fundamental problem in working with Boolean inverse semigroups is that
joins are only defined for compatible subsets. Wehrung [44, Section 3.2] devised
an ingenious solution to deal with this issue that enabled him to show that, despite
appearances, Boolean inverse semigroups form a variety of algebras. Leta,b € S,
a Boolean inverse semigroup. Put e = d(a) \ d(a)d(b) and f = r(a) \ r(a)r(b).
Define

aob= fae.

This is called the (left) skew difference. The element a & b is the largest element
of aV orthogonal to b. Define

aVb=(@ob)vb.

This is called the (left) skew join of a and b. The important point about the left skew
join is that it is always defined and, as we show next, extends the partially defined
operation of binary compatible join.

Lemma 5.1. Let S be a Boolean inverse semigroup. If s ~ t thens Vit = sV t.

Proof. If s ~ t thens At existsandd(s At) = d(s) Ad(z) andr(s At) = r(s) Ar(?)
by [19, Lemma 1.4.11]. It follows that

set=s\(sAt).
Thus s V¢t = s Vv t, as claimed. L]
Skew join is an algebraic operation and is preserved by all morphisms between
Boolean inverse semigroups. The following result is simple, but useful.
Lemma 5.2. Let 0: S — T be a morphism of Boolean inverse semigroups. If
O(a) ~ 0(b) then 8(a) v 8(b) = 0(a V b).

Proof. The element a Vb exists in S and 8(a Vb) = 6(a) VEO(D). But by
Lemma 5.1 and the assumption that 8(a) ~ 6(b) we get that

8(aVb) = 0(a)v 0(b). O

Let S be a Boolean inverse semigroup. A (semigroup) ideal I of S is said to be
additive if it is closed under binary compatible joins. Recall that if X C S then XV
denotes the set of all finite joins of non-empty compatible subsets of X. The proof
of the following is routine.

Lemma 5.3. Let S be a Boolean inverse semigroup and let X € S. Then (SXS)Y
is the smallest additive ideal in S containing X.

Additive ideals arise from morphisms between Boolean inverse semigroups. Let
0:S — T be a morphism between Boolean inverse semigroups. The set

ker(9) = {s € S:0(s) = 0}
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is called the kernel of 6. Clearly, ker(0) is an additive ideal of S. Similarly, we
define the kernel of an additive congruence to be the class of the zero. However,
Boolean inverse semigroups are not rings and not every morphism is determined by
its kernel. We now examine which are. Let I be an additive ideal of the Boolean
inverse semigroup S. Define the relation 7 on S as follows:

(a,b) e e & Ic <a,bsuchthat (a\c),(b\c) e l.

Then €7 is an additive congruence with kernel /. We shall write S/ I instead of S/e;.
We say that an additive congruence is ideal-induced if it equals g7 for some additive
ideal /. The following result is due to Ganna Kudryavtseva (private communication)
and characterizes exactly which morphisms of Boolean inverse semigroups are ideal-
induced.

Proposition 5.4. A morphism of Boolean inverse semigroups is weakly meet
preserving if and only if its associated congruence is ideal-induced.

Proof. Let I be an additive ideal of S and let ¢ be its associated additive congruence
on S. Denote by v: S — S/ej is associated natural morphism. We prove that v is
weakly meet preserving. Denote the gy-class containing s by [s]. Let [¢] < [a], [b].
Then

[t] = [at™'t] and [f] = [bt™ 1]

By definition there exist u, v € § such that

1

u<t at %t and v <t bt 1,

such that
(t\u), (at™tt \u), (t \v), (bt 1t \v) el

Now
[t] = [u] = [at_lt] and [t] =[v] = [bt_lt].

Since u,v < t it follows that ¥ ~ v and so u A v exists by [19, Lemma 1.4.11].
Clearly, u A v < a,b. In addition [t] = [u A v]. We have proved that v is weakly
meet preserving.

Conversely, let 0: S — T be weakly meet preserving. Put I = ker(6). We prove
that 6(a) = 0(b) if and only if (a, b) € e7. Suppose first that (a,b) € e;. Then by
definition, there is an element

u <a,bsuchthat (@ \u),(b\u)el.
Butthena = (a \u) Vuand b = (b \ u) Vv u. It follows that

0(a) = O(u) = 0(b).
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Conversely, suppose that 8(a) = 8(b). Putt = 6(a) = 6(b). Then by the definition
of a weakly meet preserving map, there exists

¢ <a,bsuchthatt < 0(c).

It follows that
O0(a) = O(c) = 6(b).
Thus,
Bla\c)=0=0(\c).

We have therefore proved that (a \ ¢), (b \ ¢) € I and so (a,b) € ¢;. O

We now develop a refinement of non-commutative Stone duality, Theorem 4.2, by
restricting the class of morphisms considered. As a first step, we prove the following
lemma.

Lemma 5.5. Let 0: H — G be coherent continuous injective functor between
Boolean groupoids. Suppose, in addition, that the image of 0 is an invariant
subspace of G and that 6 induces a homeomorphism between H and this image.
Then 8~':KB(G) — KB(H) is a surjective (and so proper) weakly meet preserving
morphism.

Proof. Since 0 is injective, it induces an injective function between

{he H:d(h) = e}
and the set
{g € G:d(g) = 0(e)}.

Now let g € G be such that d(g) = 6(e). By assumption, 8(H) is an invariant
subset of G. Thus g € 6(H). It follows that there is an 2 € H such that 8(h) = g.
In particular,

0(d(h)) = 6(e).

But 6 is injective and so d(h) = e. We have therefore proved that 6 is a covering
functor. It therefore only remains to prove that 6! is surjective. Let B € KB(H).
Since 6 is a homeomorphism, we know that 8(B) is open in the image of 8. Thus
there is an open subset U of G such that

6(B) = im(0) N U.

However, U is a union of compact-open partial bisections 4; in G. Thus,

6(B) = im(9) N (U A,»).

iel
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But 6(B) is compact and so

6(B) = im(0) N ( U 4i)

i=1
for some finite subset of the compact-open partial bisections A;. It follows that
B=0"14)uU---ub71(4,).

In particular, the elements 6~ !(4;) and 671(A ) are compatible when i # j. We
now apply Lemma 5.2, to construct an element A € KB(G) such that =1 (4)=B. O

We now focus on the relationship between additive ideals of a Boolean inverse
semigroup and appropriate structures in its Stone groupoid. The following result is
essentially proved in [29]. Observe that if / is an additive ideal of .S then

o= "

ecE(I)

is an open invariant subset of the space of identities, and so its complement is a closed
invariant subset of the space of identities. Also, if U € G(S), is an open invariant
subset then

I(U)={seS: V-1, CU}

is an additive ideal. The maps O and | induce an order isomorphism which is then
flipped by taking complements.

Lemma 5.6. Let S be a Boolean inverse semigroup. There is a dual order
isomorphism between the set of additive ideals of S and the set of closed invariant
subspaces of G(S),.

Let G be a Boolean groupoid and let X be a closed invariant subset of G,. Denote
by Ix the additive ideal in KB(G) associated with it as guaranteed by Lemma 5.6.
The following explicit description of Iy is immediate from the constructions and the
definition of an invariant subset.

Lemma 5.7. Let G be a Boolean groupoid and let X be a closed invariant subset
of Go. Then
Acly <= A M ANX =0 A4 'NX =0 <= ANGxy = 2.

The following result was stated, but not proved, at [30, p. 75].

Lemma 5.8. Let G be a Boolean groupoid and let X C G, be a closed, invariant
subset. Then G|y is a Boolean groupoid with space of identities homeomorphic
to X.
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Proof. By definition, G, is a Hausdorff space with a basis of compact-open sets.
Subspaces of Hausdorff spaces are Hausdorff. Let B be a compact-open subset
of G,. Then it is also closed. It follows that B N X is closed. But BN X C B
and B is a compact Hausdorff space. It follows that B N X is compact. Thus X is
a Hausdorff space with a basis of compact-open subsets and so is a Boolean space.
It is now routine to check that G|y equipped with the subspace topology is an étale
groupoid. O

In the first version of this paper, we assumed that our groupoids were Hausdorff,
but then Enrique Pardo informed us that we could do much better using the following
lemma by Lisa Orloft Clark which, though simple, proved to be the key to removing
HausdorfIness.

Lemma 5.9. Let G be a topological groupoid and let X be a closed invariant subset
of Go. If K C G is compact (in G), then K Nd~Y(X) is compact in G|x.

Proof. Since X is closed invariant, the set d~!(X) is closed in G. It therefore
intersects the compact set K in a closed subset of K which must itself be compact
since closed subsets of compact spaces are compact. O

We now assemble the above lemmas into the proof of a theorem. Let G be
a Boolean groupoid and X be a closed invariant subset of G,. Then G|x is a
Boolean groupoid by Lemma 5.8 and an invariant subgroupoid of G. The embedding
G|x — G is coherent by Lemma 5.9 and so this embedding is a coherent continuous
covering functor. By Lemma 5.5, there is, under non-commutative Stone duality, a
surjective, weakly meet preserving morphism 6: KB(G) — KB(G|x) given by

0(A) =ANG|xy =ANd1(X).

By Proposition 5.4, this morphism is ideal-induced; what that ideal should be is given
by Lemma 5.6 and Lemma 5.7. We have therefore proved the following theorem:;
this, in turn, will deliver for us a proof of Theorem 1.4.

Theorem 5.10. Let G be a Boolean groupoid and X a closed invariant subset of G,.
Then KB(G|x) =~ KB(G)/Ix.

Remark 5.11. The referee pointed out that the above theorem has some interesting
consequences outside of its role in this paper. Let X be a closed invariant subspace
of G, and put U = G, \ X. Then in both the C*-algebra and Steinberg algebra
settings, the set of functions supported on G|y form an ideal in the algebra which
is the kernel of the restriction mapping sending the algebra of G to that of G|y .
The above theorem now guarantees that this mapping is, in fact, surjective since the
inverse semigroup of compact-open local bisections generates both algebras.
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6. The Booleanization of an inverse semigroup

In this section, we describe the structure of the Booleanization B(S) of the inverse
semigroup S described in detail in [25]. This is the basis of Theorem 1.1. The
following is well known [33, p. 12].

Proposition 6.1. Let G be a groupoid. Then L(G), the set of all partial bisections
of G under subset multiplication, is a Boolean inverse semigroup in which the natural
partial order is subset inclusion.

Let S be an inverse semigroup. Construct the groupoid £(S) of proper filters of S
and then the Boolean inverse semigroup L(£L(S)) of all partial bisections of £(S).
For each a € §, define U, to be the set of all proper filters that contains a. The
following is proved in [25].

Lemma 6.2. Let S be an inverse semigroup.

1 Uy = @.
) U, = Uy ifand only if a = b.
3) Ut =U,-.

4) UyUp = Uyp.
(5) U, is a partial bisection.
©) U, NUp = nga,b Us.

There is therefore an injective homomorphism v: S — L(£(S)). Leta € S and
ai,...,a,. Define

Ua;al,...,am =U, N Uacl N---N Uacm.

Clearly, Ug.q,,....a,, is a partial bisection and so an element of L(£(S)). The following
is proved in [25].
Lemma 6.3. Let S be an inverse semigroup.
W) Ughy.oan = Ua
(2) Ua;al,...,am Ub;bl,...,bn = VYab;aby,...,abn,a1b,...,amb-

With this preparation out of the way, define B(S) to be that subset of L(£(S))
which consists of finite compatible unions of elements of the form Uy .4, ,....4,,, - Define

B:S — B(S) by s = Us. Then this is the Booleanization of S [25]. If 6: S — T is
a homomorphism to a Boolean inverse semigroup 7" then there is a unique morphism

—1.,—1 —1.
m 1,01 se-sdm

¢:B(S)—>T
given by
¢ WUaay,..am) = 0(@) \ (0(ar) v --- v 0(ap)) such that ¢ = 6.

For later reference, the topology defined on the groupoid of proper filters of S using
the sets of the form Uy.4, ... 4,, as a basis is called the patch topology.

.....
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Terminology. What we call the ‘patch topology’, the term used by Johnstone [11],
is identical to the topology inherited from the product topology and to what is also
termed the topology of pointwise convergence (see [30, p. 174]). Thus the topologies
used in this paper, in [7] and in [30] are all identical.

7. The tight completion: proof of Theorem 1.3

We can now prove our first main new theorem. The proof we shall give will be based
on Section 6. The notions of cover and cover-to-join map defined in the Introduction
are central. Let S be an inverse semigroup. From Section 6, we shall need the
description of the Booleanization B(S). Define I to be the closure under finite
compatible joins of all elements U4, ... .q,, of B(S), where {ay,...,an} — a.

.....

Lemma 7.1. The set I is an additive ideal of B(S).
Proof. By symmetry, it is enough to prove that if U4, ,....a,, iS such that
{ai,...,am} — a

and Up:p,,..»
have that

is any element then Ugyq,,...a,, Upsp,,....b, € 1. By Lemma 6.3, we

n n

Ua;al,...,am Ub;bl,...,bn = UYab;abq,...,ab, a1 b,....amb-
We prove that

{aby,...,aby,a1b, ..., anb} — ab.

Let 0 < x < ab. Then xb~'h = x and so, in particular, xb~! # 0. Thus,
0 # xb ' <abb™ ! <a.

It follows that there is 0 # y < xb~!, a; for some i. In particular, y = ybb~! and
so yb # 0. Hence 0 # yb < x,a;b. O

By Lemma 7.1, we may therefore form the quotient Boolean inverse semigroup
B(S)/1 =B(S)/er.

Denote the elements of B(S)// as elements of B(S) enclosed in square brackets.
Denote by v:B(S) — B(S)/I the natural morphism. Put B(S)/I = T(S), a
Boolean inverse semigroup of course, and t = v8. We prove that : S — T(S) is
universal for cover-to-join maps from S to Boolean inverse semigroups. To do this,
observe that the operations in B(S) are set-theoretic. It follows thatifay,...,a, <a
then

Ua;al,...,am = Ua \ (Uu1 u.--u Uam)‘
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The natural map v is a morphism of Boolean inverse semigroups and so we have that

[Ua;al,...,am] = [Ua] \ ([Ual] U---u [Uam])-

We prove first that 7 is itself a cover-to-join map. Suppose that {a1,...,a,} — a.
Then, by definition

[Ua;al,...,am] = 0.
It follows that
[Ua] = [Ug,] Vv -+-V [Ug,,].

Next, let 8: S — T be a cover-to-join map where 7 is Boolean. Then by Theorem 1.1
and Section 6, the Booleanization theorem, there is a unique morphism of Boolean
inverse semigroups ¢: B(S) — T such that ¢ = 6 and given by

¢(Uu:a1,...,am) = 0(a) \ (9(611) VeV e(am))

However, ¢ is a cover-to-join map and so if {ay,...,a,} — a then
¢Uasay,....am) = 0.
Clearly, I C ker(¢). Thus there is a unique morphism
¥:B(S)/I — T such that yv = ¢.

We therefore have that ¥t = 6. It remains to show that {: T(S) — T is the unique
morphism such that ¥t = 6. Observe that any morphism ¥’ such that /'t = 6 must
map [U,] to 6(a). The result now follows by observing that ¥’ is a morphism and so
is a morphism of unital Boolean algebras when restricted to the principal order ideal
generated by [U,]. It follows that

W,([Ua;cn ----- am]) = 6(a) \ (‘9(@1) ViV Q(Clm))-

This concludes the proof of Theorem 1.3.

8. Tight filters

The material in this section is due to Exel [7] with some ideas from [27]. We begin
with some well-known results on ultrafilters. The following is proved using the same
ideas as in [23, Proposition 2.13].

Lemma 8.1. Let S be an inverse semigroup and let A be a proper filter in S. Then
the following are equivalent:

(1) A is an ultrafilter.
(2) d(A) is an ultrafilter.
(3) r(A) is an ultrafilter.
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Likewise, the following is proved using the same ideas as in [23, Proposition 2.13].

Lemma 8.2. Let S be an inverse semigroup. Then there is a bijection between the set
of idempotent ultrafilters in S and the set of ultrafilters in the meet-semilattice E(S).
In particular, the bijection is given by the following two maps: if A is an idempotent
ultrafilter in S then A N E(S) is an ultrafilter in E(S); if F is an ultrafilter in E(S)
then F7 is an idempotent ultrafilter in S.

The following is a simple consequence of Zorn’s lemma.

Lemma 8.3. Let S be an inverse semigroup. Then each non-zero element of S is
contained in an ultrafilter.

A very useful result in working with ultrafilters is the following [7, Lemma 12.3].

Lemma 8.4. Let E be a meet semilattice with zero. A proper filter A in E is an
ultrafilter if and only if e € E such thate A a # 0 for all a € A implies that e € A.

Let S be an arbitrary inverse semigroup. Associated with S is its Boolean-
ization B(S). The Stone groupoid of B(S) is Paterson’s universal groupoid G, (.S)
which consists of the groupoid of proper filters of S equipped with the patch topology.

Definition. The space of identities of G;,(S) is denoted by X(.5). It is simply the set
of all proper filters of E(.S) equipped with the patch topology.

The following definition was first made by Exel in [7].

Definition. The tight boundary (or spectrum) of S, denoted by 9.5, is the closure of
the set of ultrafilters in X(S).

We shall now characterize the elements of 9SS in algebraic terms. A proper filter A
of S (we reiterate that S is an inverse semigroup, we do not assume that it is a monoid)
is said to be tight if a € A and C — a implies that C N A # @.

Remark 8.5. The reader is alerted to the fact that our use of the word ‘tight’ is a
slight restriction of the way it is used in [7]. The salient point is that Exel wishes to
work in an environment where he can be neutral as to whether his semigroups have
an identity or not. In addition, he only works with unital Boolean algebras (in our
terminology). Nevertheless, Exel’s tight groupoid and ours are the same.

Remark 8.6. To provide some further context: the relationship between covers and
tight filters is analogous to the relationship between joins and prime filters.

The following result was first proved in [7] where the closure of the set of
ultrafilters was characterized in terms of tight filters; it is also implicit in the work
of [29] but there conditions are sought to ensure that the set of ultrafilters is already
closed.

Lemma 8.7. Let S be an inverse semigroup (we reiterate, that we do not assume
that S is a monoid).

(1) Every ultrafilter in E(S) is tight.
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(2) Every open set containing a tight filter contains an ultrafilter.
(3) The set of tight filters in E(S) is a closed subspace of X(S).
(4) The set of tight filters in E(S) is the closure in X(S) of the set of ultrafilters.

Proof. (1) Let A be an ultrafilter. Suppose that it is not tight. Then there is an
element a € A and a cover C — a such that C N A = &; that is, no element of C
belongs to A. It follows by Lemma 8.4, that for each ¢; € C, there is a; € A such
that c; Aa; = 0. Since aq,...,a, € Aitfollowsthate = ay A---Aa,, € A. Now,
also,a € Aandsoa Ae # 0. In particular, a Ae < a. It follows thatc; AaAe # 0
for some ¢;. But ¢; A e = 0, which is a contradiction.

(2) Let A be a tight filter. We prove that every open set containing A contains an
ultrafilter. Let A € Uguq,,....a,,- Since A is tight, it cannot be that {a,...,am}
is a cover of a. Thus there is a non-zero element x < a such that x Aa; = 0
for 1 <i < m. By Lemma 8.3, let F be an ultrafilter that contains x. Then it
clearly cannot contain any of the elements ay,...,a;,. We have therefore proved
that F € Ugqy,....a0-

(3) Let A be an element of X(S) with the property that every open set containing A
contains a tight filter. We prove that A is also a tight filter. Suppose not. Then there is
anelementa € AandacoverC = {cy,...,cn} — asuchthat ANC = @. Itfollows
that A € Uyye,,....c,,- However, the open set Uy, ... ¢, contains no tight filters (since
it is not possible for a tight filter to contain a but omit all the elements cy, ..., ¢y)
but does contain A, which contradicts our assumption on A.

(4) Let A be a filter such that every open set containing A contains an ultrafilter.

Then, by part (1), it is certainly the case that every open set containing A contains a

tight filter. It follows by part (3), that S is itself a tight filter. O
The following is proved as [27, Lemma 5.9].

Lemma 8.8. Let S be an inverse semigroup and let A be a proper filter in S. Then
the following are equivalent:

(1) Ais atight filter.
(2) d(A) is a tight filter.
(3) r(A) is a tight filter.
The following is now immediate.

Corollary 8.9. The tight boundary is a closed, invariant subspace of the space of
identities of the universal groupoid.

Remark 8.10. Exel’s definition of a tight character [7, p. 54] and our definition of a
tight filter are two ways of looking at the same class of objects. The explanation for
these different characterizations simply boils down to the nature of the basis that one
chooses to work with; Exel’s is more generous and ours more parsimonious. In our
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filter setting, Exel’s basic open sets have the form Uy y where X and Y are finite sets
and Uy y is defined to be those proper filters that contain all of the elements of X
but omit all of the elements of Y. When X is non-empty, it is easy to show that Uy y
is equal to a set of the form Uy, ,... 4, for some a and subset {a,...,a,} < av.
When X is empty, we have that Ugy = |J,cy Ue; observe that the sets U, are
compact in the (Hausdorff) patch topology and so closed. We now use the fact that
the sets of the form Uy, ... 4, form a basis for the patch topology.

9. The Stone groupoid of the tight completion: proof of Theorem 1.4

We can now prove our second main result. Let S be an inverse semigroup. By
Corollary 8.9 and Lemma 5.8, it follows that the reduction G, (S)|ss is a Boolean
groupoid; it is the tight groupoid of S [7] and can simply be regarded as the groupoid
of tight filters with the restriction of the patch topology. We denote this groupoid
by G;(S). We call the associated Boolean inverse semigroup KB(G;(S)) the tight
semigroup of S. There is a map from S to KB(G;(S)), which we shall denote by 7,
which takes a to the set of tight filters containing a, a set we shall denote by U}. By
Lemma 8.7 and Lemma 8.3, @ # 0 implies that U} # @.

Lemma 9.1. The map n is a cover-to-join map.

Proof. We begin with an observation Let ay,...,a; < a. Then

an NGt (S) =@ if and only if {a,...,am} — a.

.....

Suppose first that {a;,...,a,} — a then any tight filter containing @ must contain
at least one of the a;, for some i. It follows that

Ua;al,...,am N Gt(S) =40.
Conversely, let Ug.q,,....a,, N G:(S) = @. Suppose that {ay,...,an,} is not a cover
of a. Then there is some 0 # x < a suchthat x Ag; = O forall 1 <i < m.
By Lemma 8.3, there is an ultrafilter A containing x. But, clearly, a; ¢ A for

all 1 <i <m. Thus A € Ug,q,,...a,,- But ultrafilters are tight filters by Lemma 8.7.
This contradicts our assumption that Ug.4,,....a,, N G:(S) = 9. It follows that

{ay,....am} — a.
Let{a;,...,am} — a. Then

n@) Vv ---vnlam) < nla).

Suppose that the inequality were strict. Then there would be a tight filter containing a
that omitted ay, .. ., a,, but this is impossible by the first part of the proof. It follows
that

m

n@) = \/ na). O

i=1
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We shall now prove that the Stone groupoid of the tight completion is the tight
groupoid. Recall that by Theorem 1.2, G(B(.S)) is just the universal groupoid G, (.5).
By Corollary 8.9, 9 is a closed invariant subspace of the space of identities of G, (.S).
Thus by Theorem 5.10, we have the following isomorphism of Boolean inverse
semigroups:

KB(Gu(S)las) = KB(Gu(S))/1as.
By definition, Gy, ()]s = G (S) is the tight groupoid. By Theorem 1.2, the Boolean
inverse semigroup KB(Gy (S)) is just B(S), the Booleanization of S. We therefore
have that
KB(G/(S)) = B(S)/Is.

It therefore remains to identify the elements of the additive ideal I3g5. To do this,
it is enough to identify the elements of the form Uy.q4,.....q,, Which belong to Ijs.
Howeyver, from the definitions,

am

Ué:al,...,am = g ifand only if {ai,...,am} — a.

Thus the elements of the form Uy, ,....q,, Which belong to Iys are precisely those
for which {a1,...,am} — a. We have therefore proved that

B(S)/Iys = T(S),

the Boolean inverse semigroup described in Section 7. It is now immediate by
Theorem 4.2, that the Stone groupoid of the tight completion of S is the tight
groupoid.

This concludes the proof of Theorem 1.4.

10. Tiling semigroups

Kellendonk associated inverse semigroups with (aperiodic) tilings and then showed
how to construct étale groupoids and C *-algebras from them [14, 15]. The
construction of the inverse semigroups was formalized in [16] and the construction
of the étale groupoid from the inverse semigroup was described in [29].

Within the framework of this paper, inverse semigroups were being considered
in which the tight filters were the ultrafilters. Meet semilattices with this property
were termed compactable in [22], where they were characterized [22, Theorem 2.10]
in terms introduced by [29]. A more concrete sufficient condition was formulated
as [22, Proposition 2.14]. This theme was taken up in a more general frame in [24]
where an inverse semigroup was termed pre-Boolean if every tight filter was an
ultrafilter. Neither of the terms ‘compactable’ or ‘pre-Boolean’ is satisfactory but
these examples show that a single term is needed to signify that all tight filters are
ultrafilters; the term finitely complex is a possibility. Both papers [8] and [27] focus
on the inverse semigroups constructed from tilings and the conditions on the tiling
that force the tight filters to be ultrafilters.
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11. Abstract and concrete Cuntz—Krieger relations

We may summarize what we have found in this paper as follows. Let S be an inverse
semigroup andlet{ay,...,a,} — abeacoverof the element @ in S. Then this gives
rise to arelation @ = \//L, a; in the Booleanization B(S) of S (with an appropriate
abuse of notation). When B(S) is factored out by all such relations, we have proved
that we get the tight completion T(.S) of S; in this case, its Stone groupoid is precisely
Exel’s tight groupoid G;(S).

In this paper, we treat the relations of the form a = \/]—, a; as Cuntz—Krieger
relations — let us call them abstract Cuntz—Krieger relations. It is natural to ask
what evidence there is for this terminology. Of course, Cuntz—Krieger relations are
defined in rather concrete situations so to justify our claim, it is enough to check that
in those concrete situations, the abstract Cuntz—Krieger relations above give all and
only the concrete Cuntz—Krieger relations. First of all, we may restrict our attention to
relations involving only idempotents. The following is proved as [24, lemma 3.1(1)];
it is a consequence of the fact that the principal order ideals at and d(a)¢ are order
isomorphic.

Lemma 11.1. Let S be an inverse semigroup and let 0: S — T be a homomorphism
to a Boolean inverse semigroup. Then 60:S — T is a cover-to-join map if and only
if 0: E(S) — E(T) is a cover-to-join map.

Next, we may focus on those relations determined by certain distinguished
idempotents. The following is proved as [24, lemma 3.1(2)].

Lemma 11.2. Let S be an inverse semigroup and let {e;:i € I} be an idempotent
transversal of the of the non-zero D-classes. Let 0:S — T be a homomorphism
to a Boolean inverse semigroup. Then 0 is a cover-to-join map if and only if it is a
cover-to-join map for the distinguished family of idempotents.

Example 11.3. Our first example goes right back to the origin of the Cuntz—Krieger
relations and Cuntz’s original paper [4]. We shall treat everything in the context of
(Boolean) inverse semigroups. An inverse semigroup S is said to be 0-bisimple if it
has exactly one non-zero D-class. Let S be a 0-bisimple inverse monoid. Then, in
the light of Lemma 11.1 and Lemma 11.2, we can focus entirely on the covers of the
identity.

An inverse semigroup is said to be E*-unitary if 0 # e < a, where e is an
idempotent, implies that ¢ is an idempotent. In [29, Remark 2.3], it is proved
that an E*-unitary inverse semigroup is a A-semigroup. The most important class
of examples of E*-unitary, 0-bisimple inverse monoids are the polycyclic inverse
monoids P, (n > 2). Recall that

1

R -1, _
P, ={ai,....an:a; a; = 1,a; 'a; =0).

The tight completion of P,, denoted by C,, and called the Cuntz inverse monoid, was
constructed in [20, 21], developing aspects of [2], and was further studied in [28].
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Representations of C,, by certain kinds of partial bijections were constructed in [12],
based on the work in [3], and subsequently extended in [10]. We need only focus on
the covers of the identity. An immediate example is the cover

{ajai’, ... apa,'}y — 1.
Observe that {ai,...,a,} is a maximal prefix code in the free monoid A =
{ai,...,an}*. 1In fact, the covers of 1 are in bijective correspondence with the

maximal prefix codes of Ay. The following is immediate from [27, Section 4.1];
recall that in an inverse semigroup if e is an idempotent then aea™! is an idempotent:
let S be an inverse semigroup. If {ey, ..., e} — e, where e is an idempotent, and @
is any element, then either

aea ' =0 or {aeia”!,... aema”'t — aea™!.
By this result and [1, Proposition I1.4.7], we therefore have the following: the Cuntz—
Krieger ideal of B(P,) is generated by

1\ (@1a;* v - vapa,b).

We may therefore regard the Cuntz inverse monoid as being the quotient of the

Booleanization B( P, ) factored out by the relation given by 1 = alal_1 V---Vagya, L

Example 11.4. The Cuntz inverse monoids can be generalized to what we call then
Cuntz—Krieger monoids, CK g, where G is a finite graph [13]. Thus we now consider
the paper [5] from our perspective.

From a (finite) directed graph G, one constructs a free category and from
that, in a manner reminiscent of the way in which the polycyclic inverse monoids
are constructed from free monoids, one constructs the so-called graph inverse
semigroups Pg. The tight completion of Pg is called the Cuntz—Krieger semigroup,
CKg. In[13, Theorem 2.1] an abstract characterization of graph inverse semigroups
is given. In particular, each non-zero £-class has a unique maximal idempotent. We
may therefore restrict attention to covers of maximal idempotents.

If the graph G has the property that the in-degree of each vertex is finite, then
each maximal idempotent e is pseudofinite defined as follows: denote by € the set
of all idempotents f such that /' < e and e covers f; the idempotents in € are
therefore those immediately below e; we assume that € is finite and that if g < e then
g < f < eforsome f € e. It follows that for each maximal idempotent, we have
that e — e.

The inverse semigroups Pg are E*-unitary (and so are A-semigroups) and their
semilattices of idempotents are unambiguous which means that if 0 # e < i, J,
where e, i, j are all idempotents, theni < j or j < i. This implies that we can
restrict attention to covers that consist of orthogonal elements (as in the case of
maximal prefix codes in free monoids) [13, Corollary]. By an argument analogous
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to the one used in [13, Lemma 3.9], the Cuntz—Krieger ideal of B(Pg) is generated
by elements of the form
(V)

fee
where e is a maximal idempotent in Pg.

The two examples above show that what we term ‘abstract Cuntz—Krieger
relations’ do agree with the concrete Cuntz—Krieger relations at least for suitably
nice Cuntz—Krieger algebras. The most general class of structures for which concrete
Cuntz—KTrieger relations have been introduced are the higher-rank graphs [9, 18,31,
35].

The relationship between what we term ‘abstract Cuntz—Krieger relations’ and
‘concrete Cuntz—Krieger relations’ was the subject of [6] and served as one of the
inspirations for our work. The authors there prove a theorem, ([6, Theorem 3.7]),
which in our terminology states that for the inverse semigroups arising as the inverse
semigroups of zigzags in the countable, finitely aligned categories of paths of
Spielberg [37] the abstract and concrete Cuntz—Krieger relations coincide. This
result therefore applies in particular to finitely aligned higher-rank graphs.

Remark 11.5. It is worth noting that the Introduction to Spielberg’s paper [37]
focuses on the nature of the concrete Cuntz—Krieger relations. In addition, it also
highlights the nature of the boundary which we have termed the ‘tight boundary’.

Remark 11.6. The referee pointed out to us that our Theorem 1.4 extends [40,
Corollary 5.3] to the non-Hausdorff setting.
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