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Abstract. In noncommutative differential calculus, Jacobi algebra (or potential algebra) plays the
role of Milnor algebra in the commutative case. The study of Jacobi algebras is of broad interest
to researchers in cluster algebra, representation theory and singularity theory. In this article, we
study the quasi-homogeneity of a potential in a complete free algebra over an algebraic closed
field of characteristic zero. We prove that a potential with finite dimensional Jacobi algebra is
right equivalent to a weighted homogeneous potential if and only if the corresponding class in
the 0th Hochschlid homology group of the Jacobi algebra is zero. This result can be viewed
as a noncommutative version of the famous theorem of Kyoji Saito on isolated hypersurface
singularities.
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1. Introduction

This is our second paper studying the Jacobi-finite potentials, after [7]. Let F D
k⟪x1; : : : ; xn⟫ be a complete free algebra over a field k. A potential ˆ refers to an
element in the vector space Fcyc consisting of elements of F modulo cyclic permuta-
tions. The cyclic derivativeDiˆ of ˆ with respect to xi is an element in F . We can
associate to every ˆ an associative algebra ƒ.F;ˆ/, defined to be the quotient of F
by the closed two sided ideal generated by Diˆ for i D 1; : : : ; n. We call ƒ.F;ˆ/
the Jacobi algebra (or potential algebra) associated to F and ˆ. The Jacobi algebra
is an invariant of the potential. It is natural to ask to what extent the potential is
determined by its Jacobi algebra.
The natural projection from F to ƒ.F;ˆ/ induces a natural map from Fcyc

to ƒ.F;ˆ/cyc. We denote the image of ˆ under this map by Œˆ�. In [7], we proved
that:

Theorem 1.1 ([7, Theorem A]). Assume that k D C. Let ˆ;‰ 2 Fcyc be two
potentials of order � 3. Suppose that the potential algebras ƒ.F;ˆ/ and ƒ.F;‰/
are both finite dimensional. Then the following two statements are equivalent:

https://creativecommons.org/licenses/by/4.0/
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(1) There is an algebra isomorphism  Wƒ.F;ˆ/ Š ƒ.F;‰/ so that �
�
Œˆ�
�
D Œ‰�.

(2) ˆ and‰ are right equivalent, that isˆDH.‰/ for some automorphismH of F .
We call a potentialˆ quasi-homogeneous if Œˆ� D 0. It is easy to check that ifˆ is

weighted homogeneous (seeDefinition 2.8) then Œˆ� D 0, i.e. weighted homogeneous
) quasi-homogeneous. By the above theorem, weighted homogeneous potentials
with finite dimensional Jacobi algebras are completely classified by their Jacobi
algebras. The next question maybe is given an arbitrary potential, how to determine
whether it is right equivalent to a weighted homogeneous potential or not? For a
potential with finite dimensional Jacobi algebra, we show that it is right equivalent
to a weighted homogeneous one if and only if it is quasi-homogeneous.
Theorem 1.2 (Theorem 4.1). Assume that k is an algebraically closed field of zero
characteristic. Let ˆ 2 Fcyc be a potential of order � 3 such that the Jacobi algebra
associated to ˆ is finite dimensional. Then ˆ is quasi-homogeneous if and only if ˆ
is right equivalent to a weighted-homogeneous potential of type .r1; : : : ; rn/ for some
rational numbers r1; : : : ; rn lie strictly between 0 and 1=2. Moreover, in this case,
all such types .r1; : : : ; rn/ agree with each other up to permutations on the indexes
1; : : : ; n.
One can make a formal analogue between the study of potentials with the study of

hypersurface singularities. If we view the complete free algebra as the ring of formal
functions on noncommutative affine space, then Theorem 1.1 is a noncommutative
version of Mather–Yau theorem ([9]) and Theorem 4.1 is a noncommutative version
of Saito’s theorem ([11]). In fact, the proofs of Theorem 1.1 and 4.1 are to some extent
inspired by the proofs of these two classical theorems, although certain conceptional
gap needs to be filled in the noncommutative case.
Jacobi algebras have appeared in many mathematical areas including rep-

resentation theory, topology and algebraic geometry. The finite dimensional
condition should be understood as an analogue of isolated hypersurface singularity.
Finite dimensional Jacobi algebras can appear at least from two sources. The
first is the theory of (generalized) cluster categories ([1]). The cluster category
is defined from a Ginzburg dg-algebra of dimension 3 with finite dimensional
zero-th homology. The zero-th homology of a Ginzburg dg-algebra is a Jacobi
algebra. It also appears in noncommutative deformation theory. Given a 3-Calabi
Yau dg-category with appropriate assumptions, the noncommutative deformation
functor of a noncommutative rigid object in this category is represented by a
finite dimensional Jacobi algebra. For example, if C � Y is a contractible
rational curve in a smooth CY 3-fold Y then the corresponding Jacobi algebra is
precisely the contraction algebra considered by Donovan and Wemyss [5]. It is
natural to propose a conjectured correspondence between three dimensional quasi-
homogeneous hypersurface singularities that admits small resolutions and quasi-
homogeneous potentials associated to the noncommutative crepant resolutions of
these singularities.
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It is well known that weighted-homogeneous hypersurface singularities admit a
lot of good properties. For instance, the monodromy of a weighted homogeneous
hypersurface singularity is semi-simple. Weighted homogeneous potentials also have
some nice properties. For example, the Ginzburg algebra of a weighted homogeneous
potential carries an extra grading. The calculation of Hochschild cohomology can
be greatly simplified using this grading. However, compared with the commutative
case the understanding of the properties of weighted homogeneous potentials is still
quite limited. Theorem 4.1 is one attempt along this line. Note that the vanishing
of the class Œˆ� is fairly easy to check. At least at this point, commutative and
noncommutative cases havemarginal differences. Remember that whether an isolated
hypersurface singularity is weighted homogeneous can be checked by comparing the
Milnor number and the Tyurina number.
The paper is organized as follows. In Section 2, we recall several basic facts

on noncommutative calculus and Jacobi algebras. These facts are well known to
experts and have been reviewed in Section 2 of [7]. We repeat it simply to make the
paper as self-contained as possible. The readers who are familiar with these can skip
Section 2. In Section 3, we prove a Jordan–Chevalley type theorem for decomposition
of derivations on complete free algebras. This result is of independent interest. It
enables us to link quasi-homogeneous potentials to weighted-homogeneous one. In
Section 4, we present the proof of the main theorem.
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2. Preliminaries

In this section, we collect basic notations and terminologies that are of concern.
Throughout, we fix a base commutative ring k with unit. All algebras are k-alge-
bras, and we denote ˝ D ˝k for the tensor product of k-modules unless specified
otherwise.
Fix an integern � 1. LetF be the complete free algebra k⟪x1; : : : ; xn⟫. Elements

of F are formal series X
w

aww;

where w runs over all words in x1; : : : ; xn and aw 2 k. Let m � F be the ideal
generated by x1; : : : ; xn. For any subspace U of F , let U cl be the closure of U with
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respect to the m-adic topology on F . Note that

U cl D \r�0.U Cmr/:

Recall that (k-)derivation of F in a F -bimoduleM is defined to be a (k-)linear map
ıWF !M satisfies the Leibniz rule, that is

ı.ab/ D aı.b/C aı.b/

for all a; b 2 F . We denote by Derk.F;M/ the set of all k-derivations of F inM ,
which carries a natural k-module structure. We write

Derk.F / WD Derk.F; F /

and call its elements k-derivations of F . Clearly, derivations of F are uniquely
determined by their value at generators xj . Note that Derk.F / admits neither left
nor right F -module structure.
Let F y̋ F be the k-module whose elements are formal series of the formX

u;v
au;v u˝ v;

where u; v runs over all words in x1; : : : ; xn and au;v 2 k. This is nothing but the
adic completion of F ˝ F with respect to the ideal m ˝ F C F ˝ m. It contains
F ˝ F as a subspace under the identification�X

u

a0u u
�
˝

�X
v

a00v v
�
7!

X
u;v

a0ua
00
v u˝ v:

There are two obvious F -bimodule structures on F y̋ F , which we call the outer
and the inner bimodule structures respectively, extends those on the subspace F ˝F
defined respectively by

a.b0 ˝ b00/c WD ab0 ˝ b00c and a � .b0 ˝ b00/ � c WD b0c ˝ ab00:

Unless otherwise stated, we view F y̋ F as a F -bimodule with respect to the outer
bimodule structure.
We call derivations of F in the F -bimodule F y̋ F double derivations of F .

The inner bimodule structure on F y̋ F naturally yields a bimodule structure on the
space of double derivations

Derk.F / WD Derk.F; F y̋ F /:

For any ı 2 Derk.F / and any f 2 F , we also write ı.f / in Sweedler’s notation as

ı.f / D ı.f /0 ˝ ı.f /00: (2.1)
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One shall bear inmind that this notation is an infinite sum. Clearly, double derivations
of F are uniquely determined by their values on generators xj . Thus, we have double
derivations

@

@xi
WF ! F y̋ F; xj 7! ıi;j 1˝ 1:

Moreover, every double derivation of F has a unique representation of the form

nX
iD1

X
u;v

a.i/u;v u �
@

@xi
� v; a.i/u;v 2 k; (2.2)

where u; v run over all words on x1; : : : ; xn, and � denotes the multiplication of the
bimodule structure of Derk.F /. The infinite sum (2.2) makes sense in the obvious
way.
There are two obvious linear maps �WF y̋ F ! F and � WF y̋ F ! F y̋ F

given respectively by

�
�X
u;v

au;vu˝v
�
D

X
w

� X
wDuv

au;v

�
w and �

�X
u;v

au;vu˝v
�
D

X
u;v

av;uu˝v:

Also, putting on Homk.F; F / the F -bimodule structure defined by

a1 � f � a2W b 7! a1f .b/a2; f 2 Homk.F; F /; a1; a2; b 2 F:

Though the mapDerk.F /
�ı�
���! Homk.F; F / doesn’t preserves bimodule structures,

the map
� ı � ı �WDerk.F /! Homk.F; F /

is clearly a homomorphism of F -bimodules. We write

cDerk.F / WD im.� ı � ı �/

and call its elements cyclic derivations of F . Note that by definition cDerk.F /
is an F -sub-bimodule of Homk.F; F /, and hence is itself an F -bimodule. For
each 1 � i � n, let

Dxi
WD � ı � ı

@

@xi
2 cDerk.F /:

These cyclic derivations were first studied by Rota, Sagan and Stein [10]. By (2.2),
every cyclic derivation of F has a decomposition (not necessary unique) of the form

nX
iD1

X
u;v

a.i/u;v u �Dxi
� v; a.i/u;v 2 k: (2.3)

In the sequel, if there is no risk of confusion, we always simply writeDi forDxi
.
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Elements of Fcyc WD F=ŒF; F �cl are called potentials of F . Let � WF ! Fcyc be
the canonical projection. Given a potential ˆ 2 Fcyc, there are two linear maps

ˆ#WDerk.F /! Fcyc; � 7! �.�.�//;

ˆ�W cDerk.F /! F; D 7! D.�/;

where � is any representative of ˆ. Note that all derivations and cyclic derivations
of F are continuous with respect to the m-adic topology on F . Consequently,

�
�
ŒF; F �cl

�
� ŒF; F �cl

for each derivation � 2 Derk.F /, and

D
�
ŒF; F �cl

�
D 0

for each cyclic derivation D 2 cDerk.F /. It follows immediately that the resulting
maps ˆ# and ˆ� are independent of the choice of �.
Lemma 2.1. For any potential ˆ2Fcyc, there is a commutative diagram as follows:

Derk.F /
�ı�ı�// //

�ı�
����

cDerk.F /
ˆ� // F

�
����

Derk.F /
ˆ# // Fcyc:

Moreover, ˆ� is a homomorphism of F -bimodules and hence im.ˆ�/ is a two-sided
ideal of F .

Proof. Let � 2 F be an arbitrary representative of ˆ. Note that

�.ı.�// � �.�.ı.�/// 2 ŒF; F �cl

for all double derivations ı 2 Derk.F / and all formal series � 2 F , the diagram
commutes. The surjection of the maps � , � ı� and � ı � ı� is clear. Also, we have

ˆ�.a �D � b/ D .a �D � b/.�/ D aD.�/b D aˆ�.D/b

for all a; b 2 F andD 2 cDerk.F /, soˆ� is a homomorphism of F -bimodules.

Recall that two words u and v on x1; : : : ; xn are conjugate if there are words
w1; w2 such that u D w1w2 and v D w2w1. Equivalent classes under this equiva-
lence relation are called necklaces or conjugacy classes. Also recall that a word u is
lexicographically smaller than another word v if there exist factorizationsu D wxiw0
and v D wxjw

00 with i < j . This order relation restricts to a total order on each
necklace. Let us call a word standard if it is maximal in its necklace.
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Remark 2.2. Every potential of F has a unique representative, called the canonical
representative, which is a formal linear combination of standard words. Given a
potential ˆ 2 Fcyc, the smallest integer r such that ˆ 2 �.mr/ is called the order
of ˆ. Note that the order of a potential coincides with the order of its canonical
representative.
Definition 2.3. Let ˆ 2 Fcyc be a potential. The Jacobi algebra or the potential
algebra associated to ˆ is defined to be the associative algebra

ƒ.F;ˆ/ WD F=J.F;ˆ/;

where J.F;ˆ/ WD im.ˆ�/ is called the Jacobi ideal of F associated to ˆ. Note that
if k is artinian then

J.F;ˆ/ D .ˆ�.Dx1
/; : : : ; ˆ�.Dxn

//cl

by [7, Lemma 2.6].
We denote by G WD Autk.F;m/ the group of k-algebra automorphisms of F that

preserve m. It is a subgroup of Autk.F /, the group of all k-algebra automorphisms
of F . In the case when k is a field, G D Autk.F /. Note that G acts on F and Fcyc
in the obvious way.
Definition 2.4. For potentials ˆ;‰ 2 Fcyc, we say ˆ is (formally) right equivalent
to ‰ and write ˆ � ‰, if ˆ and ‰ lie in the same G -orbit.
Proposition 2.5 ([4, Proposition 3.7], [7, Proposition 3.3]). Let ˆ2Fcyc andH 2G .
Then,

H.J.F;ˆ// D J.F;H.ˆ//:

Consequently, H induces an isomorphism of algebras ƒ.F;ˆ/ Š ƒ.F;H.ˆ//.
Given a potentialˆ 2 Fcyc, letmˆ WD m=J.F;ˆ/, which is an ideal ofƒ.F;ˆ/.

By [7, Lemma 2.8], the mˆ-adic topology of ƒ.F;ˆ/ is complete. Let

ƒ.F;ˆ/cyc WD ƒ.F;ˆ/=Œƒ.F;ˆ/;ƒ.F;ˆ/�
cl:

Note that if ƒ.F;ˆ/ is finitely generated as a k-module then

ƒ.F;ˆ/cyc D ƒ.F;ˆ/=Œƒ.F;ˆ/;ƒ.F;ˆ/� D HH0.ƒ.F;ˆ//:

The projection map F ! ƒ.F;ˆ/ induces a natural map

pˆWFcyc ! ƒ.F;ˆ/cyc

with kernel �.J.F;ˆ//. For any ‚ 2 Fcyc, we write Œ‚� for the class pˆ.‚/
in ƒ.F;ˆ/cyc.
Definition 2.6. A potentialˆ 2 Fcyc is said to be quasi-homogeneous if the class Œˆ�
is zero in ƒ.F;ˆ/cyc, or equivalently ˆ is contained in �.J.F;ˆ//.
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The following result on quasi-homogeneous potentials is of interest. It is an
immediate consequence of Theorem 1.1.

Theorem 2.7 ([7, Corollary 3.8]). Let k be the complex number field. Letˆ;‰2Fcyc
be two quasi-homogeneous potentials of order � 3 such that the Jacobi algebras
ƒ.F;ˆ/ and ƒ.F;‰/ are both finite dimensional. Then ˆ is right equivalent to ‰
if and only if ƒ.F;ˆ/ Š ƒ.F;‰/ as algebras.

Definition 2.8. Let .r1; : : : ; rn/ be a tuple of rational numbers with 0 < r1; : : : ; rn �
1=2. A potential ˆ 2 Fcyc is said to be weighted-homogeneous of type .r1; : : : ; rn/
if it has a representative which is a linear combination of monomials xi1xi2 � � � xip
such that ri1 C ri2 C � � � C rip D 1.

Lemma 2.9. Let ˆ 2 Fcyc be a potential that is right equivalent to a weighted-
homogeneous potential of a certain type. Then ˆ is quasi-homogeneous.

Proof. By Proposition 2.5, quasi-homogeneous potentials are closed under the action
of G . So we may assume ˆ is itself weighted-homogeneous of type .r1; : : : ; rn/ for
some rational numbers 0 < r1; : : : ; rn � 1=2. It is not hard to see that

ˆ D �
� nX
iD1

rixi �ˆ�.Dxi
/
�
:

The result follows.

The aim of this paper is to study the converse of Lemma 2.9. To this end,
we employ the following geometric point of view. Let DerC

k
.F / be the space of

derivations of F that send m to m. Intuitively, DerC
k
.F / can be seen as the “tangent

space” of the “infinite dimensional Lie group” G at the identity map Id. For every
potential ˆ 2 Fcyc, the action of G on Fcyc yields a “smooth” map

�ˆWG ! Fcyc; H 7! H.ˆ/:

The map ˆ# D ˆ#jDerC
k
.F /
WDerC

k
.F /! Fcyc can be seen as the “differential” of �ˆ

at Id.
It is clear that a potentialˆ 2 Fcyc is weighted-homogeneous of type .r1; : : : ; rn/

if and only if ˆ#.�/Dˆ, where �2DerCk .F / is the derivation given by �.xi /Drixi .
We have the following characterization of quasi-homogeneous potentials in this
perspective.

Lemma 2.10. Suppose that k is a field. Let ˆ 2 Fcyc be a potential of order � 2
such that the Jacobi algebra associated to ˆ is finite dimensional. Then ˆ is quasi-
homogeneous if and only if ˆ#.�/ D ˆ for some derivation � 2 DerC

k
.F /.



Quasi-homogeneity of potentials 407

Proof. The if part is clear by the commutative diagram in Lemma 2.1. Next we show
the only if part. Assume that ˆ is quasi-homogeneous. By [7, Proposition 3.14 (1)],

ˆ D �
� nX
iD1

gi �ˆ�.Dxi
/
�
D .� ıˆ�/

� nX
iD1

gi �Dxi

�
for some formal series g1; : : : ; gn 2 m. Let DerC

k
.F / be the space of double deri-

vations that map m to m y̋ F C F y̋ m, and let cDerC
k
.F / be the space of cyclic

derivations that map m to m. Then the commutative diagram in Lemma 2.1 restricts
to a commutative diagram

DerC
k
.F /

�ı�ı�// //

�ı�
����

cDerC
k
.F /

ˆ� // F

�

����
DerC

k
.F /

ˆ# // Fcyc:

Since
Pn
iD1 gi �Dxi

2 cDerC
k
.F /, the above commutative diagram shows that

ˆ#.�/ D .� ıˆ�/
� nX
iD1

gi �Dxi

�
D ˆ

for some derivation � 2 DerC
k
.F /. This completes the proof.

Remark 2.11. Let �WF ! kJx1; : : : ; xnK be the algebra homomorphism given
by xi 7! xi for i D 1; : : : ; n. It induces a map

z�WFcyc ! kJx1; : : : ; xnK:

We call z�.ˆ/ the abelianization of ˆ for any potential ˆ 2 Fcyc. It is easy to check
the following statements:

(1) The abelianizations of right equivalent potentials are right equivalent as power
series;

(2) The abelianization of a weighted-homogeneous potential is weighted-homogen-
eous of the same type as a power series;

(3) The abelianization of a quasi-homogeneous potential is quasi-homogeneous as a
power series.

Here, the term “right equivalence” and “weighted-homogeneous” for power series
are defined in the obvious way, and a power series is called quasi-homogeneous
if it is contained in the ideal generated by its partial derivatives. Note that these
terminologies are not quite the same as that of [11].
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The next example is due to Brown and Wemyss [3, Example 2.1]. It indicates
that the converse of the third statement above is not true, that is the abelianization of
a non-quasi-homogeneous potential may be quasi-homogeneous.

Example 2.12. Let k be a field of zero characteristic and F D k⟪x; y⟫. Consider
the potential

ˆ D x2y �
X
r�4

.�1/r
yr

r
:

It is not hard to check that the abelianization ofˆ is quasi-homogeneous. We proceed
to show that ˆ itself is not quasi-homogeneous. By a direct computation,

ˆ�.Dx/ D xy C yx and ˆ�.Dy/ D .x
2
C x2y � y3/.1C y/�1:

So,

ƒ.F;ˆ/ D
k⟪x; y⟫

.xy C yx; x2 C x2y � y3/cl
:

Consider the algebra

S D
khx; yi

.xy C yx; x2 � y3 C x2y/
:

A direct computation shows that x3 D 0 in S and all ambiguities of the rewriting
system ˚

yx 7! �xy; y3 7! x2 C x2y; x3 7! 0
	

are resolvable. By theDiamond Lemma (see [2, Theorem 1.2]), S is nine dimensional
with basis

1; x; y; x2; xy; y2; x2y; xy2; x2y2:

Moreover, xy3 D y6 D 0 in S . In particular, S is a local algebra. By a similar
argument of the proof of [7, Lemma 2.8], the canonical morphism S ! ƒ.F;ˆ/

is an isomorphism. By the division algorithm with respect to the above rewriting
system,

ˆ D
3

4
x2y �

1

20
x2y2 ¤ 0 in ƒ.F;ˆ/:

Note that the commutator space Œƒ.F;ˆ/;ƒ.F;ˆ/� is spanned by xy, x2y and xy2.
So,

Œˆ� D �
1

20
x2y2 ¤ 0 in ƒ.F;ˆ/cyc:

Thus, by definition, ˆ is not a quasi-homogeneous potential.
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3. Jordan–Chevalley decomposition of derivations

Throughout, let F be a fixed complete free algebra k⟪x1; : : : ; xn⟫ over a field k,
and let m be the ideal generated by x1; : : : ; xn. We assume that k is algebraically
closed. This section devotes to establish a Jordan–Chevalley type decomposition for
derivations of F that send m to m.
The space of all derivations of F that sendm tom is denoted by DerC

k
.F /. There

is a natural group action of G WD Autk.F;m/ D Autk.F / on DerCk .F / given by

AdH � WD H ı � ıH�1:

This action respects the Lie bracket on DerC
k
.F /. In addition, one has �.f / D bf if

and only if .AdH �/.H.f // D b H.f / for any � 2 DerCk .F /, anyH 2 G , any f 2 F
and any b 2 k.
Definition 3.1. We say that a derivation � 2 DerC

k
.F /

(1) is nilpotent if it induces a nilpotent endomorphism on m=m2;
(2) is semisimple if it has n eigenvectors in m which form a basis in m=m2, or
equivalently there is an automorphism H 2 Autk.F / such that AdH � has
eigenvectors x1; : : : ; xn.

Proposition 3.2. Let � 2 DerC
k
.F / be a semisimple derivation.

(1) A scalar a 2 k is an eigenvalue of � if and only if a 2 Na1 C � � � CNan, where
a1; : : : ; an 2 k are the eigenvalues of the induced map of � on m=m2.

(2) Every formal series f 2 F can be uniquely decomposed into a formal sum

f D
X
a

fa;

wherea runs over eigenvalues of � andfa is an eigenvector of � with eigenvalue a.

Proof. We may assume � has x1; : : : ; xn as eigenvectors with eigenvalue a1; : : : ; an,
respectively. Then every word w D xi1 � � � xip is an eigenvector of � with eigenvalue
ai1 C � � � C ain . The result follows

Proposition 3.3. Let �1; : : : ; �m 2 DerCk .F / be semisimple derivations that commute
with each other, that is Œ�i ; �j � D 0 for all i; j D 1; : : : ; n. Then there exists an
automorphism H 2 Autk.F / such that AdH �1; : : : ;AdH �m all have x1; : : : ; xn as
eigenvectors.

Proof. We prove it by induction onm. Form D 1 there is nothing to prove. Suppose
that the result is true form D p and we proceed to justify the case thatm D pC1. By
the induction hypothesis, we may assume a priori that xi is an eigenvector of �j with
eigenvalue rij for i D 1; : : : ; n and j D 1; : : : ; p. For any p-tuple a D .a1; : : : ; ap/
of scalars, let Fa be the space of formal series which are eigenvectors of �j with
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eigenvalue aj for j D 1 : : : ; p. Since every word is a simultaneously eigenvector of
�1; : : : ; �p , every formal series f 2 F can be uniquely expressed as

f D
X
a

fa; fa 2 Fa;

where a D .a1; : : : ; ap/ runs over all p-tuples of scalars with aj an eigenvalue of �j
for j D 1; : : : ; p. Since �pC1 commutes with �1; : : : ; �p , it follows that if f is an
eigenvector of �pC1 then fa is also an eigenvector of �pC1 with the same eigenvalue
as that of f . Indeed, one has

�j .�pC1.fa// D �pC1.�j .fa// D a�pC1.fa/; j D 1; : : : ; p:

So, if �pC1.f / D bf then �pC1.f / has two decompositions into simultaneous eigen-
vectors of �1; : : : ; �p as

�pC1.f / D
X
a

�pC1.fa/ D
X
a

bfa:

It follows immediately that �pC1.fa/ D bfa.
Let w.xj / WD .rj1; : : : ; rjp/ for j D 1; : : : ; n. Let X1; : : : ; Xs be the partition

of X D fx1; : : : ; xng by the relation that xi � xj if and only if w.xi / D w.xj /. By
permutation, we may assume that

X1 D fx1; : : : ; xl1g; X2 D fxl1C1; : : : ; xl2g; : : : ; Xs D fxls�1C1; : : : ; xng

for some integers 0 D l0 < l1 < l2 < � � � < ls D n. Since �pC1 is semisimple, it has
eigenvectors f1; : : : ; fn 2 m that form a basis of m=m2. By the above discussion,
the set

Yi WD
˚
.f1/w.xli

/; .f2/w.xli
/; : : : ; .fn/w.xli

/

	
consists of simultaneous eigenvectors of �1; : : : ; �pC1. Moreover, Yi induces a
spanning set of the subspace Vi � m=m2 spanned by Xi , so we may choose

hli�1C1; : : : ; hli 2 Yi ;

which form a basis of Vi for i D 1; : : : ; s. By the inverse function theorem (cf. [7,
Lemma 2.13]), the algebra homomorphism T WF ! F given by xi 7! hi is an
automorphism. We have

.AdT�1�j /.xi / D T
�1.�j .hi //

D T �1.rijhi / D rijxi ; i D 1; : : : ; n; j D 1; : : : ; p:

So, AdT�1�j D �j for j D 1; : : : ; p. In addition, hi is an eigenvector of �pC1 by
the construction, so AdT�1�pC1 has x1; : : : ; xn as eigenvectors. TakeH D T �1, the
result follows.
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A derivation � 2 DerC
k
.F / is called principal if �.x1/; : : : ; �.xn/ are all

homogeneous of degree 1, that is they are all linear combinations of the generators
x1; : : : ; xn.
Lemma 3.4. Let � 2 DerC

k
.F / be a principal derivation with a decomposition � D

� 0 C � 00 such that � 0 2 DerC
k
.F / is principle semisimple derivation, � 00 2 DerC

k
.F /

is principle nilpotent derivation and Œ� 0; � 00� D 0. Then for any homogeneous formal
series f 2 F and any scalar b 2 k, there exists a homogeneous formal series h 2 F
of the same degree as f , such that

.� � b/h � f

is an eigenvector of � 0 with eigenvalue b (eigenvectors always include the zero vector).

Proof. Suppose f is of degree p. Let F.p/ be the space of homogeneous formal
series of degree p. For any scalar c, let F.pIc/ be the space of formal series in F.p/
which are eigenvectors of � 0 with eigenvalue c. From the property that � 00 commutes
with � 0, we have that � 00 acts nilpotently on F.pIc/. Since the restriction map of
� � b � Id on F.pIc/ is equal to the restriction map of .c � b/ � Id � � 00 on F.pIc/, it is
invertible when c ¤ b. Note that there exist scalars c1; : : : ; cq 2 k such that

F.p/ D F.pIc1/ ˚ � � � ˚ F.pIcq/:

So f has a decomposition f D f1 C � � � C fq with fi 2 F.pIci / for i D 1; : : : ; q.
If ci ¤ b then define hi 2 F.pIci / to be the preimage of fi under the restriction map
of � 0 C � 00 � b � Id on F.pIci /, which is invertible by the above discussion; and if
ci D b then define hi D 0. Now consider the formal series

h D h1 C � � � C hq 2 F.p/:

Clearly, if b 62 fc1; : : : ; cqg then

� 0.h/C � 00.h/ � b � h � f D 0 2 F.pIb/I

and if b D ci for some i then � 0.h/C � 00.h/ � b � h � f D �fi 2 F.pIb/.

Theorem 3.5 (Jordan–Chevalley decomposition). For every derivation �2DerC
k
.F /,

there exists a unique pair of derivations �S ; �N 2 DerCk .F / such that

� D �S C �N ;

�S is semisimple, �N is nilpotent and Œ�S ; �N � D 0. Moreover, any derivation in
DerC

k
.F / commutes with � if and only if it commutes with �S and �N .

The above decomposition of a derivation analogs to the Jordan–Chevalley de-
composition of linear endomorphisms of finite dimensional vector spaces over an
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algebraically closed field (see [8, Proposition 4.2]). We refer to �S (resp. �N ) the
semisimple part (resp. nilpotent part) of � .
We will use the following notation in the argument given below. Let r � 0 be an

integer. For any derivation � 2 DerC
k
.F /, we write �Œr� to be the induced endomorph-

ism of � on F=mrC1. Note that if � is semisimple (resp. nilpotent) as a derivation
then �Œr� is semisimple (resp. nilpotent) as a linear endomorphism. For any formal
series f 2 F , we write f.r/ (resp. f.�r/) the sum of terms of degree r (resp.� r) that
occurs in f . In addition, for any derivation � 2 DerC

k
.F /, we write �.r/ 2 DerCk .F /

to be the derivation given by xi 7! �.xi /.r/ for i D 1; : : : ; n.

Proof. First we show the uniqueness of the decomposition. Suppose that � D � 0SC�
0
N

and � D � 00S C �
00
N are two such decompositions. Then,

�Œs� D .�
0
S /Œs� C .�

0
N /Œs� and �Œs� D .�

00
S /Œs� C .�

00
N /Œs�:

Since .� 0S /Œs�; .�
00
S /Œs� are semisimple and .�

0
N /Œs�; .�

0
N /Œs� are nilpotent, one gets

.� 0S /Œs� D .�
00
S /Œs� and .� 0N /Œs� D .�

00
N /Œs�

by [8, Proposition 4.2 (a)], for every integer s � 0. Therefore, � 0S D �
00
S and �

0
N D �

00
N .

This prove the uniqueness of the decomposition.
Next we show the last statement. The converse implication is clear. To see

the forward implication, assume � 2 DerC
k
.F / is a derivation commutes with � .

By [8, Proposition 4.2 (b)],

Œ�; �S �Œs� D Œ�Œs�; .�S /Œs�� D 0; s � 0:

Therefore, Œ�; �S � D 0 and hence Œ�; �N � D Œ�; �� � Œ�; �S � D 0. This proves the last
statement.
Finally, we show the existence of the decomposition. Note that the action of G

on DerC
k
.F / respects the Lie bracket, preserves semisimpleness and nilpotentness of

derivations. So we may assume a priori that the restriction of �.1/ on F.1/ is of the
Jordan normal form with respect to the ordered basis x1; : : : ; xn, that is there exists
positive integers l1; : : : ; lr with

l1 C � � � C lr D n

and scalars

a1 D � � � D al1 ; al1C1 D � � � D al1Cl2 ; : : : ; al1C���Clr�1C1 D � � � D an

such that �.1/.xi / D aixi for i D 1; l1C1; l1Cl2C1; : : : ; and �.1/.xi / D aixiCxi�1,
otherwise. Let � 0

.1/
be the derivation given by xi 7! aixi for i D 1; : : : ; n, and let

� 00
.1/
WD �.1/ � �

00
.1/
. Clearly, � 0

.1/
is principle semisimple, � 00

.1/
is principle nilpotent,

and Œ� 0
.1/
; � 00
.1/
� D 0.
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We proceed to recursively construct an infinite sequence of n-tuples of�
h
.s/
1 ; : : : ; h

.s/
n

�
of formal series in F for s � 1 such that
(1) h.s/i is homogeneous of degree s for i D 1; : : : ; n;
(2)

�
Ad.H .s/ı���ıH .1//�

�
.xi /.�s/ is an eigenvector of � 0.1/ with eigenvalue ai for i D

1; : : : ; n, whereH .r/ 2 G is the automorphism given by xj 7! xj C h
.r/
j for j D

1; : : : ; n.
Take h.1/1 D � � � D h

.1/
n D 0, then the case that s D 1 is fulfilled. Suppose that the

required tuple .h.s/1 ; : : : ; h
.s/
n / has been constructed for s D 1; : : : p. To simplify the

notation, let
�.p/ WD Ad.H .p/ı���ıH .1//�:

By construction,
.�.p//.1/ D �.1/

and �.p/.xi /.�p/ is an eigenvector of � 0.1/ with eigenvalue ai for i D 1; : : : n. By
Lemma 3.4, we may choose a homogeneous formal series h.pC1/i of degree p C 1
for i D 1; l1 C 1; : : : such that

'
.pC1/
i WD .�.1/ � ai /

�
h
.pC1/
i

�
� �.p/.xi /.pC1/

is an eigenvector of � 0
.1/
with eigenvalue ai ; and then apply Lemma 3.4 again, we may

also choose inductively on other i a homogeneous formal series h.pC1/i of degree
p C 1 such that

'
.pC1/
i WD .�.1/ � ai /

�
h
.pC1/
i

�
�
�
�.p/.xi /.pC1/ C h

.pC1/
i�1

�
is an eigenvector of � 0

.1/
with eigenvalue ai . It is easy to check that�

H .pC1/
��1
W xi 7! xi � h

.pC1/
i C H.O.T.; i D 1; : : : ; n:

Here, H.O.T. is an abbreviation for “higher order terms”. So, for i D 1; : : : ; n one
has�
Ad.H .pC1/ı���ıH .1//�

�
.xi /

D
�
AdH .pC1/�.p/

�
.xi /

D H .pC1/
�
�.p/

�
xi � h

.pC1/
i

��
C H.O.T.

D �.p/
�
xi � h

.pC1/
i

�
.�pC1/

CH .pC1/
�
�.p/

�
xi � h

.pC1/
i

�
.1/

�
.pC1/

C H.O.T.

D �.p/.xi /.�pC1/ � �.1/
�
h
.pC1/
i

�
CH .pC1/

�
�.1/.xi /

�
.pC1/

C H.O.T.

D �.p/.xi /.�p/ � '
.pC1/
i C H.O.T.
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Here, the third equality holds because

H .pC1/.f / D f.�pC1/ CH
.pC1/.f.1//.pC1/

modulo mpC2 for any formal series f 2 F ; the fourth equality holds because

�.p/
�
h
.pC1/
i

�
.�pC1/

D �.1/
�
h
.pC1/
i

�
and �.p/.f /.1/ D �.1/.f.1//

for any formal series f 2 F ; and the last equality holds because �.1/.xi / is either
aixi or aixi C xi�1 depending on i . Consequently,�

Ad.H .pC1/ı���ıH .1//�
�
.xi /.�pC1/

is an eigenvector of � 0
.1/
with eigenvalue ai for i D 1; : : : ; n.

Now let
g
.s/
i WD

�
H .s/

ı � � � ıH .1/
�
.xi /

for i D 1; : : : ; n and s � 1. Since g.sC1/i � g
.s/
i 2 msC1 for s � 1, the infinite

sequence �
g
.1/
i ; g

.2/
i ; g

.3/
i ; : : :

�
converges to a formal series gi . Clearly,

.gi /.�s/ D
�
g
.s/
i

�
.�s/

; s � 1:

Let H 2 G be the automorphism given by H.xi / D gi for i D 1; : : : ; n. It is easy
to check that

.AdH �/.xi /.�s/ D
�
Ad.H .s/ı���ıH .1//�

�
.xi /.�s/; s � 1;

so .AdH �/.xi / is an eigenvector of � 0.1/ with eigenvalue ai . In addition, one has

.AdH �/.1/ D �.1/;

so AdH � � � 0.1/ is a nilpotent derivation. Let

�S WD AdH�1� 0.1/ and �N WD AdH�1

�
AdH � � � 0.1/

�
:

Then �S is semisimple, �N is nilpotent and � D �S C �N . Moreover,

AdH Œ�S ; �N � D
�
� 0.1/;AdH � � �

0
.1/

�
D
�
� 0.1/;AdH �

�
D 0:

Thus, Œ�S ; �N � D 0 and this completes the proof.
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4. Noncommutative Saito theorem

This section is devoted to establish a noncommutative analogue of the well known
Saito’s theorem on hypersurfaces of isolated singularity. Throughout, let F be a
fixed complete free algebra k⟪x1; : : : ; xn⟫ over a field k. We assume that k is
algebraically closed and of characteristic 0, and we consider the rational number
fieldQ as a subfield of k in the natural way.
Theorem 4.1 (NC Saito Theorem). Let ˆ 2 Fcyc be a potential of order � 3

such that the Jacobi algebra associated to ˆ is finite dimensional. Then ˆ is quasi-
homogeneous if and only ifˆ is right equivalent to a weighted-homogeneous potential
of type .r1; : : : ; rn/ for some rational numbers r1; : : : ; rn lie strictly between 0

and 1=2. Moreover, in this case, all such types .r1; : : : ; rn/ agree with each other up
to permutations on the indexes 1; : : : ; n.
We address the proof of the above theorem after several lemmas.

Lemma 4.2. Develop a formal series f 2 F in eigenvectors of a semisimple deri-
vation � 2 DerC

k
.F / as f D

P
a fa. Then f 2 ŒF; F �cl if and only if fa 2 ŒF; F �cl

for each eigenvalue a of �.

Proof. Since any automorphism of F preserves ŒF; F �cl, we may assume that � has
x1; : : : ; xn as eigenvectors. The result follows from the facts that the commutator of
any two words is an eigenvector of � and every formal series in ŒF; F �cl is a formal
sum of such commutators.

Lemma 4.3. Let ˆ 2 Fcyc be a potential such that ˆ#.�/ D b � ˆ for some scalar
b 2 k and some nilpotent derivation � 2 DerC

k
.F /. Then either ˆ D 0 or b D 0.

Proof. Suppose ˆ ¤ 0. Let f be the canonical representative of ˆ. Develop f as

f D
X
i�p

f.i/

with f.i/ homogeneous of degree i and f.p/ ¤ 0. Since � is nilpotent,

�r.mp/ � mpC1

for some r � 0. So �r.f / has a decomposition

�r.f / D
X
i�pC1

�r.f /.i/

with �r.f /.i/ homogeneous of degree i . Then

brf.p/ C
X
i�pC1

�
brf.i/ � �

r.f /.i/
�
D brf � �r.f / 2 ŒF; F �cl:

Consequently, brf.p/ 2 ŒF; F �cl. Since f.p/ is in the canonical form, brf.p/ D 0

and hence b D 0.
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Lemma 4.4. Let ˆ 2 Fcyc be a potential such that ˆ#.�/ D b � ˆ for some scalar
b 2 k and some derivation � 2 DerC

k
.F /. Then ˆ#.�S / D b � ˆ and ˆ#.�N / D 0,

where �S and �N are the semisimple part and the nilpotent part of � , respectively.

Proof. Let f be the canonical representative of ˆ. Develop f in eigenvectors of �S
as f D

P
a fa. Since �.�.f / � bf / D ˆ#.�/ � b �ˆ D 0, where � W F ! Fcyc is

the projection map, we haveX
a

�N .fa/C .a � b/fa 2 ŒF; F �
cl:

Since �S .�N .fa// D �N .�Sfa/ D a�N .fa/, it follows that .a � b/fa C �N .fa/ is
an eigenvector of �S with eigenvalue a. Then Lemma 4.2 tells us that

�.fa/#.�N / � .b � a/ � �.fa/ D �
�
�N .fa/C .a � b/fa

�
D 0

for every eigenvalue a of �S . So by Lemma 4.3, either a D b or fa 2 ŒF; F �cl for
every eigenvalue a of �S . Now we have two cases. If b is not an eigenvalue of �S
then f 2 ŒF; F �cl and hence �S .f /� bf 2 ŒF; F �cl; if b is an eigenvalue of �S then

f � fb D
X
a¤b

fa 2 ŒF; F �
cl;

and hence
�S .f / � bf D �S .f � fb/ � b.f � fb/ 2 ŒF; F �

cl:

In both cases,
ˆ#.�S / � b �ˆ D �.�S .f / � bf / D 0:

Finally, ˆ#.�N / D ˆ#.�/ �ˆ#.�S / D 0.

Lemma 4.5. Let ˆ 2 Fcyc be a potential with finite dimensional Jacobi algebra.
Suppose

ˆ D �.glC1xlC1/C � � � C �.gnxn/C �.h/;

where l < n, glC1; : : : ; gn 2 k⟪x1; : : : ; xl⟫ and all monomials in h 2 F are of total
degree � 2 in xlC1; : : : ; xn. Then l � n=2 and there are at least l nonzero formal
series among glC1; : : : ; gn.

Proof. Let kJx1; : : : ; xlK be the commutative algebra of power series in l indetermin-
ates. Let a be the image of the Jacobi ideal J.F;ˆ/ under the algebra homomorphism

� WF ! kJx1; : : : ; xlK

given by xi 7! xi for i D 1; : : : ; l and xi 7! 0 for i D l C 1; : : : ; n. Clearly, a is a
finite codimensional proper ideal of kJx1; : : : ; xlK generated by �.glC1/; : : : ; �.gn/.
By the well known Krull’s height theorem, a has at least l generators as a two-
sided ideal of kJx1; : : : ; xlK, so there are at least l nonzero power series among
�.glC1/; : : : ; �.gn/. The result follows immediately.
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Lemma 4.6. Let ˆ 2 Fcyc be a potential of order � 3 such that the Jacobi algebra
associated to ˆ is finite dimensional. Suppose that ˆ#.�/ D b � ˆ for some non-
zero b ¤ 0 and some semisimple derivation � 2 DerC

k
.F / that has x1; : : : ; xn as

eigenvectors. Thenˆ is weighted-homogeneous of type .r1; : : : ; rn/ for some rational
numbers r1; : : : ; rn lie strictly between 0 and 1=2.

Proof. By assumption, �.xi / D aixi for i D 1; : : : ; n, where ai 2 k. Let c1; : : : ; cp
be a basis of the vector spaceQa1 C � � � CQan CQb overQ. Then

.a1; : : : ; an; b/
T
D D � .c1; : : : ; cp/

T

for some matrixD D .dij / of type .nC 1/ � p with rational number entries. Since
b ¤ 0, the last row of D is nonzero. Without lost of generality, we may assume
dnC1;1 ¤ 0. Define

.r1; : : : ; rn/ WD .d1;1=dnC1;1; : : : ; dn1=dnC1;1/:

Clearly, for any integers m1; : : : ; mn, if m1a1 C � � � CmnanDb, then

.m1; : : : ; mn;�1/ �D D 0;

and hencem1r1C � � �Cmnrn D 1. Let f be the canonical representative ofˆ. One
has

�.f / D bf

because �.f / and bf are both canonical representative of b � ˆ. It follows that for
any word w D xi1 � � � xis that occurs in f , one has

m1a1 C � � � Cmnan D ai1 C � � � C ais D b;

where mi is the occurrences of xi in the word w, and therefore

ri1 C � � � C ris D m1r1 C � � � Cmnrn D 1:

It remains to show 0 < r1; : : : ; rn < 1=2.
Now for any real number " � 0, let P" (resp. Q") be the number of indexes i

among 1; : : : ; n such that ri � �" (resp. ri � 1=2C "). We claim that for every real
number " � 0,

P" � Q2"C1=2 and Q" � P2":

To see the first inequality, we may assume r1; : : : ; rP"
� �", up to permutation on

indeterminates. Then f contains no word constitutes with letters x1; : : : ; xP"
. By

Lemma 4.5 and the assumption that all terms of f has degree � 3, there are at
least P" indexes i among P"C1; : : : ; n such that ri � 1C2", and so P" � Q2"C1=2.
The second inequality can be proved similarly.
From the above two inequalities, one has P" � P4"C1 and Q" � Q2"C1=2 for

every real number " � 0. It follows that P0 D Q0 D 0, or otherwise the finite set
fr1; : : : ; rng is not bounded, which is absurd. Consequently, all rational numbers
r1; : : : ; rn lie strictly between 0 and 1=2.
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Proof of the equivalence statement of Theorem 4.1. The “if” part is Lemma 2.9.
Next we proceed to show the “only if” part.
Assume that ˆ is quasi-homogeneous. By Lemma 2.10,

ˆ#.�/ D ˆ

for some derivation � 2 DerC
k
.F /. Then by Lemma 4.4,

ˆ#.�S / D ˆ:

Choose an automorphismH 2 Autk.F / such that the derivation

AdH �S D H ı �S ıH�1

has x1; : : : ; xn as eigenvectors. Note that

H.ˆ/#.AdH �S / D H.ˆ/:

Then by Lemma 4.6, H.ˆ/ is weighted-homogeneous of type .r1; : : : ; rn/ for some
rational numbers r1; : : : ; rn lie strictly between 0 and 1=2. The result follows.

To see the uniqueness statement of Theorem 4.1, we need the following lemma.
Lemma 4.7. Letˆ 2 Fcyc be a potential of order� 3 such that the Jacobi algebra as-
sociated toˆ is finite dimensional. Given two semisimple derivations �; �2DerC

k
.F /

that commute with each other, if ˆ#.�/ D ˆ#.�/ then � D �.

Proof. By Proposition 3.3, we may assume � and � both have x1: : : : ; xn as eigen-
vectors with eigenvalue r1; : : : ; rn and s1; : : : ; sn respectively.
Let f be the canonical representative of ˆ. We claim that for each 1 � i � n,

the formal series f either has a monomial of the form xai for some a � 3 or has a
monomial with exactly one occurrence of letters other than xi . Indeed, if the first
case doesn’t happen, then

ˆ D �.f / D
X
p¤i

�.gp � xp/C �.h/;

with gp 2 k⟪xi⟫ and with all monomials in h has at least two occurrences in letters
other than xi . By Lemma 4.5, there is at least one p such that gp ¤ 0, so the claim
follows.
Construct an n � n matrix A D .aij / with entries in N as follows. For each

1 � i � n, choose a monomial in f either of the form xai for some a � 3 or of
the form xbi xpx

c
i with b C c � 2 and p ¤ i . Such a choose is assured by the

above argument. Define the i -th row of A to be aei or .b C c/ei C ep , according
to the choice of the monomial, where ei ; ep denote the canonical coordinate. Since
�.f / D �.f /, it follows that

A � .r1; : : : ; rn/
T
D A � .s1; : : : ; sn/

T :
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Moreover, since
ai i >

X
p¤i

aip; i D 1; : : : ; n;

it follows that A is an invertible matrix. Therefore, ri D si for i D 1; : : : ; n, and
hence � D �.

Proof of the uniqueness statement of Theorem 4.1. Replacing ˆ by an appropriate
potential in its orbit, we may assume ˆ is itself weighted-homogeneous of type
r D .r1; : : : ; rn/ with r1 � � � � � rn. Suppose that H.ˆ/ is weighted-homogeneous
of type s D .s1; : : : ; sn/ for some automorphismsH of F . To see the result we must
show that r D s up to permutations.
Let � be the semisimple derivation of F given by �.xi / D rixi , and let � WD

AdH�1�, where � is the semisimple derivation given by �.xi / D sixi . Develop �.xi /
in eigenvectors of � as

�.xi / D
X
a

�.xi /a; i D 1; : : : ; n:

Then define for each eigenvalue u of � a derivation �u 2 DerCk .F / by

�u.xi / D �.xi /riCu:

Let f be the canonical representative of ˆ. Then,

�.f / D f and f D �.f / D
X
u

�u.f / mod ŒF; F �c

where u runs over all eigenvalues of � . It is easy to check that �u.f / is an eigenvector
of � with eigenvalue 1C u. Then by Lemma 4.2, one gets

�0.f / D f mod ŒF; F �cl; (4.1)
and �u.f / D 0 mod ŒF; F �cl; u ¤ 0: (4.2)

It is easy to check that Œ�; �0� D 0. So

Œ�; .�0/S � D 0

by Theorem 3.5. One has ˆ#.�0/ D ˆ by Equation (4.1), and hence

ˆ#..�0/S / D ˆ

by Lemma 4.4. In addition, ˆ#.�/ D ˆ. Therefore,

� D .�0/S
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by Lemma 4.7. Thus, the characteristic polynomial of the induced endomorphism
of �0 on m=m2 is

.t � r1/.t � r2/ � � � .t � rn/:

Note that the characteristic polynomial of the induced endomorphism of � onm=m2,
which equals to that of the induced endomorphism of � on m=m2, is

.t � s1/.t � s2/ � � � .t � sn/:

It remains to show that the induced linear endomorphisms of � and �0 on m=m2,
denoted by z� and z�0 respectively, have the same characteristic polynomial.
We first claim that the linear part of �.xi /riCu D �u.xi / is zero for u < 0. Indeed,

since
nX
iD1

�u.xi / �Dxi
.f / D �u.f / mod ŒF; F �cl;

it follows from equation (4.2) that
nX
iD1

�u.xi / �Dxi
.f / D 0 mod ŒF; F �cl; u ¤ 0:

Let �WF ! kJx1; : : : ; xnK be the algebra map given by xi 7! xi . Then

�.Dx1
.f //; : : : ; �.Dxn

.f //

generates a finite codimensional ideal of kJx1; : : : ; xnK and so they form a parameter
system. By [6, Theorem8.21A (a,c)], any permutation of the sequence �.Dx1

.f //; : : : ;

�.Dxn
.f // is regular. Since

nX
iD1

�.�u.xi // � �.Dxi
.f // D 0; u ¤ 0;

it follows that for each 1 � i � n one has

�.�u.xi // 2
�
�.Dx1

.f //; : : : ;4�.Dxi
.f //; : : : ; �.Dxn

.f //
�
; u ¤ 0:

SinceDx1
.f /; : : : ;Dxn

.f / are all eigenvectors of � of eigenvalue � 1=2 but �u.xi /
is an eigenvector of � of eigenvalue ri C u < 1=2 for u < 0, it follows that

�.�u.xj // D 0; u < 0:

Since the linear part of �u.xi / coincide with the linear part of �.�u.xi //, the claim
follows.
Now note that

r1 D � � � D rl1 < rl1C1 D � � � D rl2 < � � � < rlp�1C1 D � � � D rn
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for some integers 0 D l0 < � � � < lp D n. By the above claim, for lqC 1 � i � lqC1
one has

z�.xi / D

lqC1X
jDlqC1

aj i � xj C
X

j>lqC1

aj i � xj ;

z�0.xi / D

lqC1X
jDlqC1

aj i � xj :

Compare the matrices of z� and z�0 with respect to the basis x1; : : : ; xn, one gets that
the characteristic polynomial of z� and z�0 are equal. This completes the proof.

Remark 4.8. By the statements displayed in Remark 2.11, the uniqueness part of
Theorem 4.1 follows readily from [11, Lemma 4.3]. However, we give a direct
demonstration as above for completeness and reader’s convenience. Our argument is
essential the same as that of Saito’s, but with more details. Of course, some tricks
are employed to deal with the noncommutativity. In addition, our argument used
Lemma 4.7 (and hence Proposition 3.3), which has an interest in its own right.
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