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Structure and K -theory of £7 uniform Roe algebras

Yeong Chyuan Chung and Kang Li*

Abstract. In this paper, we characterize when the £# uniform Roe algebra of a metric space
with bounded geometry is (stably) finite and when it is properly infinite in standard form for
p € [1,00). Moreover, we show that the £ uniform Roe algebra is a (non-sequential) spatial
L? AF algebra in the sense of Phillips and Viola if and only if the underlying metric space has
asymptotic dimension zero.

We also consider the ordered K¢ groups of £# uniform Roe algebras for metric spaces with
low asymptotic dimension, showing that (1) the ordered Ko group is trivial when the metric
space is non-amenable and has asymptotic dimension at most one, and (2) when the metric
space is a countable locally finite group, the (ordered) Ko group is a complete invariant for the
(bijective) coarse equivalence class of the underlying locally finite group. It happens that in both
cases the ordered K¢ group does not depend on p € [1, 00).
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1. Introduction

£2 uniform Roe algebras are C *-algebras associated with discrete bounded geometry
metric spaces, and which reflect coarse geometric properties of the underlying metric
spaces. These algebras have been well-studied and provide a link between coarse
geometry of metric spaces and the structure theory of C *-algebras (e.g., [1, 19,22,
24,28,30,33,40,41,43,48,49]).

In recent years, there has been an uptick in interest in the £# version of uniform
Roe algebras for p € [1, 0o) from both the operator theory community and the coarse
geometry community (e.g., [11,20,29,31,42,45,46,50]). Moreover, £ uniform Roe
algebras belong to the class of L? operator algebras in the sense of N. Christopher
Phillips, and the structure and K-theory of certain L? operator algebras have been
studied (e.g., [6,9, 10, 18,34-37]). Thus it is natural to study the structure and
K-theory for £7 uniform Roe algebras of metric spaces with bounded geometry.

*Both authors are supported by the European Research Council (ERC-677120).
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Definition 1.1. A metric space (X, d) has bounded geometry if for any R > 0, there
exists Ng > 0 such that |Br(x)| < Ng for all x € X, where Br(x) denotes the
closed ball of radius R centered at x.

Let (X, d) be a metric space with bounded geometry so that (X, d) is necessarily
countable and discrete. For a bounded operator T = (Tyxy)x,yex € B({?(X)),
where Ty, = (T'§,)(x), we define the propagation of 7" to be

prop(T) :=sup{d(x,y) : x,y € X, Txy # 0} € [0, 00].

Definition 1.2. Let (X, d) be a metric space with bounded geometry. For 1 < p < o0,
the associated ¢? uniform Roe algebra, denoted by BZ(X), is defined to be the
operator norm closure of the algebra of all bounded operators on £7 (X) with finite
propagation.

In Section 2, we investigate when the £7 uniform Roe algebra B (X) of a metric
space X with bounded geometry is (stably) finite and when it is properly infinite
in standard form as a unital Banach algebra (as defined in [25, Definition 1.1] and
[17, Definition 1.1]).

The (stable) finiteness of B (X) can be characterized in terms of quasidiagonal
set of operators on £7(X) in the sense of Halmos (see [21]) and coarse connected
components of the metric space X. Recall that two elements x and y in a metric
space (X, d) are said to be R-connected for some R > 0 if there is a finite sequence
X0s...,Xp in X with xo = x, x, = y,and d(xj,xj4+1) < Rfori =0,...,n—1.
This is an equivalence relation on X, and the equivalence classes are called the
R-connected components of X. We are able to show the following theorem, which
extends [48, Theorem 2.3] from the p = 2 case to any p € [1, 00).

Theorem A (see Theorem 2.7). Let (X, d) be a metric space with bounded geometry,
and let p € [1,00). The following are equivalent:

() BY(X) is a quasidiagonal set in B({?(X)).

(i) BL(X) is stably finite.
(iii) BL(X) is finite.
(iv) For each R > 0, every R-connected component of X is finite.

For the proper infiniteness in standard form of BZ (X), we give many different

characterizations involving L? Cuntz algebras (95 introduced by Phillips in [34] (see
Definition 2.20), the algebraic Ky group of B (X), normalized traces on B (X),

and paradoxical decompositions of X. The following theorem is an analog of [1,
Theorem 4.9], which only deals with the p = 2 case:

Theorem B (see Theorem 2.21). Let (X, d) be a metric space with bounded geometry,
and let p € [1,00). The following are equivalent:
() BE(X) is properly infinite in standard form: there exists an idempotent e in
BE(X) such that e ~ 1 ~ 1 — e, where ~ denotes algebraic equivalence.
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(i1) X admits a paradoxical decomposition: there is a partition X = X4 U X_ such
that there exist two bijections t+: X — X1 satisfying sup,cy d(x,1+(x)) <oo.

(iii) There is a unital isometric embedding of (9éJ into BE (X).
(iv) [1]o = [0]o in the algebraic K¢ group Ko(BL (X)).
(v) BZ(X) has no normalized trace.

(vi) There is no unital linear functional W of norm one on B({?(X)) such that
V(aT) = ¥ (Ta) forall T € BUP(X)) and all a € BY (X).

In Section 3, we study the group homomorphism Ko(£>°(X)) — Ko(BL (X))
induced by the canonical diagonal inclusion {®(X) < BF(X) for every metric
space X with low asymptotic dimension.

Definition 1.3. A collection W of subsets of a metric space is r-separated if for all
distinct A, B € U, we have d(A4, B) > r. A metric space with bounded geometry
has asymptotic dimension at most d if for any » > 0, there is a decomposition
X = Up U---1 Uy, where each U; in turn decomposes into a uniformly bounded
collection of r-separated subsets.

The main result of Section 3 is the following theorem:

Theorem C (see Theorem 3.5). Let (X, d) be a metric space with bounded geometry.
If the asymptotic dimension of X is at most one, then the group homomorphism
Ko({®(X)) — Ko(BE (X)) induced by the canonical diagonal inclusion is always
surjective for all p € [1, 00).

As a consequence, we deduce the following result:

Corollary D (see Corollary 3.6). If X is a non-amenable metric space with bounded
geometry and it has asymptotic dimension at most one, then Ko(BL (X)) = 0 for
all p € [1, 00).

In order to prove Theorem C, we have to use a quantitative version of K-theory
for L? operator algebras from [10]. The idea of the proof is almost identical to the
one in [30, Section 5] except that the quantitative version of Bott periodicity was
not proved in this setting and we consider suspensions of £7 uniform Roe algebras
instead.

In Section 4, we study structure and K -theory of £7 uniform Roe algebras of metric
spaces with zero asymptotic dimension. We begin with the following characterization
of spaces with zero asymptotic dimension in terms of their £# uniform Roe algebras:

Theorem E (see Theorem 4.4). Let X be a metric space with bounded geometry,
and let p € [1,00). The following are equivalent:

(1) X has asymptotic dimension zero.
(i) BL(X) is an inductive limit of@livzl Mfk, where N,dq,...,d; € N and Mf
denotes B((P ({1,...,d})).
(iii) BZ(X) has cancellation (see Definition 4.2).



4 Y. C. Chung and K. Li

In the remainder of Section 4, we restrict our attention to the case where the metric
space is a countable, locally finite group equipped with a proper left-invariant metric.
Such a metric group is actually a bounded geometry metric space with asymptotic
dimension zero. We compute the ordered K group

(Ko(BZ (1), Ko(BE ()™, [1]o)

for any countable, locally finite group I', showing that it is independent of p (see

Theorem 4.10). As a consequence, the (ordered) Ko group of the associated {7

uniform Roe algebra is a complete invariant for the (bijective) coarse equivalence

class of the underlying countable locally finite group.

Definition 1.4. Let X and Y be metric spaces.

e A (not necessarily continuous) map f: X — Y is said to be uniformly expansive
if for all R > O there exists S > 0 such that if x1, x, € X satisfy d(x1,x2) < R,
then d(f(x1), f(x2)) < S.

* Two maps f,g: X — Y are said to be close if there exists C > 0 such that
d(f(x),g(x)) <C forallx € X.

* Two metric spaces X and Y are said to be coarsely equivalent if there exist
uniformly expansive maps f: X — Y and g:Y — X suchthat f ogand go f
are close to the identity maps, respectively. In this case, we say both f and g are
coarse equivalences between X and Y.

e Wesay amap f: X — Y is a bijective coarse equivalence if f is both a coarse
equivalence and a bijection. In this case, we say X and Y are bijectively coarsely
equivalent.

Corollary F (see Corollary 4.11). Let I" and A be countable, locally finite groups with

proper left-invariant metrics dr and d p respectively. Then the following conditions

are equivalent:
(1) (I',dr) and (A, dp) are coarsely equivalent.

(i) Ko(BY(I")) = Ko(BL(A)) forall p € [1,00).

(iii) Ko(BL(I")) == Ko(BF(A)) for some p € [1,00).

Theorem G (see Theorem 4.13). Let I" and A be countable, locally finite groups with

proper left-invariant metrics dr and d p respectively. Then the following conditions

are equivalent:
(1) (I, dr) and (A, dp) are bijectively coarsely equivalent.

(ii) For every p € [1,00), there is an isometric isomorphism ¢: BE (') — B (A)

such that ¢ (£° (")) = £L>°(A).

(iii) BY (') and B (M) are isometrically isomorphic for some p € [1, 00).

(iv) (Ko(By(T)), Ko(Bi (T)*,[1]0) = (Ko(B (M), Ko(Bi (A)*, [1]o)

Jorevery p € [1,0).
(v) (Ko(B (1)), [1]o) = (Ko(Bi; (M), [1]o) for some p € [1,00).
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We end the introduction by asking the following question:

Question 1.5. Let X be a metric space with bounded geometry. Does the (ordered)
K group of BY (X) depend on p € [1, 00) when X has finite asymptotic dimension?

We have partial answers from Corollary 3.6 for non-amenable spaces with
asymptotic dimension at most one and from Theorem 4.10 for countable locally
finite groups.

2. Finiteness and proper infiniteness of £ ? uniform Roe algebras

In this section, we investigate when the £ uniform Roe algebra of a metric space
with bounded geometry is (stably) finite and when it is properly infinite in standard
form.

The following definition of a (stably) finite (resp. properly infinite) algebra is
based on [25, Definition 1.1] and [17, Definition 1.1].

Definition 2.1. We say that two idempotents e and f in an algebra A are algebraically
equivalent, and write e ~ f, if there exist x,y € A suchthate = xy and f = yx.

We say that e and f are orthogonal (and write e L f)ifef = 0 = fe. We
writee < fifef = fe =e.

An idempotent ¢ in A is said to be properly infinite if there are orthogonal
idempotents e; and e, in eAe such thate; ~ e ~ e5.

A (nonzero) unital algebra A is said to be properly infinite if the unit 14 is a
properly infinite idempotent.

A unital, properly infinite algebra A is said to be properly infinite in standard form
if there exists an idempotent e in A suchthate ~ 14 ~ 14 —e.

An idempotent e in A is said to be finite if whenever f is an idempotent in A
such thate ~ f and f <e,then f =e.

A unital algebra A is said to be finite if the unit 1 4 is a finite idempotent. If M, (A4)
is finite for all n € N, then we say that A is stably finite.

Remark 2.2. There are Banach algebras that are properly infinite but not properly
infinite in standard form. For example, the Cuntz algebras O, 2 < n < o0)
introduced in [13] are C *-algebras that are properly infinite, but only O, is properly
infinite in standard form (see [14] or [15]).

2.1. Finiteness. We will show that finiteness of the £” uniform Roe algebra B (X)
of a bounded geometry metric space X is equivalent to B (X) being stably finite
and is also equivalent to it being a quasidiagonal set of operators on £ (X). It can
also be characterized in terms of coarse connected components of X .

We begin with a lemma providing useful criteria for determining finiteness of a
unital Banach algebra.



6 Y. C. Chung and K. Li

Lemma 2.3. Let A be a unital Banach algebra. The following are equivalent:
(1) A is finite.

(ii) Every left-invertible element in A is invertible.

(iii) Every right-invertible element in A is invertible.

(iv) All idempotents in A are finite.

Proof. (i) = (ii): Suppose thatab = 14. Then 14 = ab ~ ba < 14s0ba = 14.

(il) < (iii): It is straightforward.

(i) = (iv): Suppose that e, f are idempotents in A such thate ~ f and f <e.
There exist x,y € A such that xy = e and yx = f. Moreover, we may assume
that x = xf and y = fy. Lets = y+14—eandt = x + 14 —e. Then
x(ly—e) = 0= (g —e)ysots = 1lgand st = f 4+ 14 —e. Since s is
left-invertible, and hence invertible, we get e = f.

(iv) = (1): It is clear. O

The next definition is adapted from the case of operators on Hilbert space (cf. [8,
Definition 7.2.1]).

Definition 2.4. Let £ be a Banach space, and let A € B(FE) be an arbitrary collection
of operators. We say that A is a quasidiagonal set of operators on E if for each finite
set M C A, each finite set F C E, and each ¢ > 0, there exists a finite rank
idempotent operator P on E of norm one such that ||[S, P]|| < eand | PE —&| < ¢
forall S e M and & € F.

If A = {S}, then we say that the operator S is quasidiagonal.

Proposition 2.5. A left-invertible quasidiagonal operator on a Banach space E is
invertible.

Proof. Let 0 < ¢ < % let S be a left-invertible quasidiagonal operator on E, let
T € B(E) be such that TS = I, and let £ € E be a unit vector. Let P be a
finite rank idempotent operator on E of norm one such that ||[P, S]|| < ¢||T ||}, and
| P& —&|| <e. Then

IPSP —SP|| = I[P, SIP| <e|T|~".

Let W = P —TPSP. Then WP = W, |W| = |T(SP — PSP)| < ¢ and
0o 00
(Z W”T)PSP =Y WP -W)= lim (P-W"")=P.
n=0 n=0 nmee

It follows that PSP is an injective operator on the finite-dimensional space PE, so it
is surjective as an operator on PE. Thus, there exists € PE suchthat P§¢ = PSPn,
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andn =Y 2  W"TPE. Then
1§ —Snll = [l — P§+ PSPy — SPn|
<e+||PSPn—SPn|
<e+elT|™ il

o0
<e+e|T|7' D IWIMIT
n=0

< 3e.

The arguments above show that every unit vector £ € E is in the closure of the
range of S. Since S is bounded below, it follows that S has closed range. Hence, S
is invertible. O

One more ingredient for our result is the notion of a coarse connected component
in a metric space. In a metric space (X, d), two elements x and y are said to be R-
connected for some R > O if there is a finite sequence Xy, ..., X, in X with xo = x,
Xn = y,and d(x;, xj4+1) < Rfori =0,...,n — 1. This is an equivalence relation
on X, and the equivalence classes are called the R-connected components of X. For
convenience, we also consider R = 0, in which case the 0-connected components
are just the points of X. We say that X is coarsely connected if there exists R > 0
such that every pair of points in X is R-connected.

Note that finitely generated groups are 1-connected with respect to any word
metric. Moreover, a countable discrete group I' is finitely generated if and only
if " is coarsely connected with respect to any/some proper left-invariant metric
[3, Lemma 7.2].

Lemma 2.6. [48, Lemma 2.4] Let (X, d) be an infinite metric space with bounded
geometry. The following are equivalent:

(i) Forany R > 0, there is no R-connected infinite sequence {x, }oo, in X.

(i1) The space X has no coarsely connected subspace containing infinitely many
points.

(iii) There exists a sequence of disjoint (non-empty) finite subsets { X, } 7>, of X such
that X = | 3%, X» and limy o0 d (X, LI"Z] X;i) = 0.

The following theorem is a generalization of [48, Theorem 2.3], which deals with

the p = 2 case.

Theorem 2.7. Let (X, d) be a metric space with bounded geometry, and let p €

[1,00). The following are equivalent:

(i) BZ(X) is a quasidiagonal set in B({?(X)).
(i) BZ(X) is stably finite.
(iii) B (X) is finite.

(iv) For each R > 0, every R-connected component of X is finite.
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Proof. (i) = (ii): If B (X) is a quasidiagonal set in B(£”(X)), then note that
M, (Bf (X)) is a quasidiagonal set in B(£”(X)®") for each n € N. It then follows
from Lemma 2.3 and Proposition 2.5 that M,, (B2 (X)) is finite for each n € N,

(i1) = (iii) is trivial.

(iii)) = (iv): The proof of this is essentially the same as that of [48, Lemma 2.5].
Suppose there is an R-connected infinite sequence {x,}-~, in X for some R > 0.
Define an operator S on £ (X) satisfying

S8y =8x,x € X \{xp:n=1,2,...},
Séx, =5xn+l,n =1,2,....

Then S is a non-invertible isometry on £ (X). Moreover, S has finite propagation
since {x, },2, is R-connected. Thus S is a non-invertible but left-invertible element
in BY(X), so BY (X) is not finite by Lemma 2.3.

(iv) = (i): If X is finite with | X | = n, then

B} (X) = M,(C) = B(tP(X))

and (i) is obvious. If X is infinite, then by Lemma 2.6, there exists a sequence of
disjoint finite subsets { X, }>>, of X such that

o] n—1
X=|]X, and ngn;od(xn, | | X,-) = co.
n=1 i=1

The remainder of the proof is the same as that of the implication [(f) = (a)]
in [48, Theorem 2.3] upon replacing £2(X) by £7(X), and we reproduce it here for
the reader’s convenience.

Since the set of finite propagation operators in B (X) is dense in B (X), it
suffices to show that for every finite set M C BJ (X) consisting of finite propagation
operators, every finite set of vectors F' C £7(X), and every ¢ > 0, there exists a finite
rank idempotent operator P € B({?(X)) of norm one such that |[TP — PT| < ¢
and |P§ —§|| <eforallT e M and § € F.

Since {7 (X) = ,, £¥ (X»), let P, be the idempotent operator

P (X) - @ L7 (X0).
i=1

Then P, is a finite rank idempotent operator of norm one, and the increasing sequence
(P,) converges strongly to the identity. Thus there exists 71¢ such that || P,E —&| < ¢
for all £ € F and n > ng. Since M is a finite set of finite propagation operators and
limy, 00 d (X, |_|;:11 X;) = oo, there exists ny such that

(I — P)TP, = P,T(I — P,) =0

forall T € M and n > ny. Thus, |[TP, — P,T| < ¢ and ||P,£€ —&|| < ¢ for all
T €eM,& e F,andn > max(ng, ng). O
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2.2. Proper infiniteness. We will show that proper infiniteness in standard form
of the £? uniform Roe algebra B (X) of a bounded geometry metric space X is
equivalent to X being non-amenable. We also prove other characterizations involving
L? Cuntz algebras, the K group of B (X), and normalized traces on B2 (X).

Definition 2.8. Let (X, d) be a metric space with bounded geometry. For A C X
and R > 0,let dg(A) = {x € X :d(x,A) < Rand d(x, X \ A) < R}.

(1) Let R > 0 and ¢ > 0. A nonempty finite set F C X is called an (R, ¢)-Fglner

e ORF|
set if F] <e.

(i) (X, d) is said to be amenable if there exists an (R, &)-Fglner set for every R > 0
and ¢ > 0.

Note that amenability is a coarse invariant for (pseudo-)metric spaces with bound-
ed geometry [12, Proposition 3.D.33].

Definition 2.9. Let (X, d) be a metric space. A partial translation on X is a triple
(A, B,t), where A, B C X and t: A — B is a bijection such that the graph of 7 is
controlled, i.e., sup,c 4 d(x,#(x)) < oo.

We call A the domain of ¢, denoted by dom(¢), and we call B the range of ¢,
denoted by ran(?).

Given two partial translations ¢ and #’, we may form their composition ¢ o ¢’
by restricting the domain to (¢')~!(dom(¢) N ran(z’)) and restricting the range to
t(dom(z) Nran(z')).

Note that any partial translation ¢ on X gives rise to an operator V; on £7 (X) with
finite propagation given by

1 ifx =1(y),
V, =
(Vo)xy 0 otherwise.

In fact, the linear span of such operators is dense in B (X) (cf. [1, Section 4]).

Definition 2.10. A mean pu: ®(X) — [0, 1] on a metric space (X, d) is anormalized,
finitely additive map on the set of all subsets of X. A mean is said to be invariant under
partial translations if (A) = w(B) for all partial translations (A4, B,t) on (X, d).

By the Riesz representation theorem, any mean pu on (X, d) induces a linear
functional ¢,: £>°(X) — C of norm one such that ;(Y) = ¢, (1y) for any subset
Y C X, where 1y denotes the characteristic function of Y. Moreover, w is invariant
under partial translations if and only if ¢, (/) = ¢, (f ot) for any partial translation ¢
and any f € £°°(X) supported on ran(z).

Definition 2.11. Let (X, d) be a metric space. A paradoxical decomposition of X is
a partition X = X4 LI X_ such that there exist two partial translations 74-: X — X.
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Theorem 2.12 ([2, Theorem 2.17]). Let (X,d) be a metric space with bounded
geometry. Then the following are equivalent:

(1) (X,d) is amenable.
(i) X admits no paradoxical decomposition.
(iii) There exists a mean u on X that is invariant under partial translations.

Definition 2.13. Let A be a unital Banach algebra. Then a normalized trace on A4 is
a linear functional 7 on A satisfying the following conditions:

@ t(lg) =1,
(i) fIzll =1,
(iii) t(ba) = t(ab) foralla,b € A.
When A is a unital C *-algebra, normalized traces are exactly the tracial states.

Lemma 2.14 ([17, Lemma 1.6]). Let A be a unital, properly infinite algebra in
standard form. Then 1 4 is the sum of two commutators.

Proof. Take an idempotent element ¢ € A such that e ~ 14 ~ 14 —e. Take
ai,bi,az,br € A such that ajb; = e, azb, = 14 —e, and bia; = 14 = baas.
Then[bl,a1]+[b2,a2]=1A—€+1A—(1A—€)=1A. O

Corollary 2.15. Let A be a unital algebra such that My, (A) is properly infinite in
standard form for some n € N. Then there is no linear functional t on A satisfying
t(14) = 1 and t(ab) = t(ba) forall a,b € A.

In particular, if A is a unital Banach algebra such that M,,(A) is properly infinite
in standard form for some n € N, then there are no normalized traces on A.

Proof. Suppose t is alinear functional on A4 satisfying 7(14) = land t(ab) = t(ba)
for all a,b € A. Then for each n € N, 7 extends to a linear functional t, on M, (A)
satisfying t,(1,) = nt(l4) = n, and t,(xy) = 7,(yx) for all x,y € M,(A). On
the other hand, if M, (A) is properly infinite in standard form, then the identity [, is
the sum of two commutators by Lemma 2.14, so t,({,) = 0. O

Remark 2.16. The situation is different if we consider bounded (not necessarily
normalized) traces, i.e., bounded linear functionals t satisfying t(ab) = t(ba).
There are no nonzero (not necessarily normalized) traces on a unital, properly infinite
C *-algebra because every element in such an algebra is a sum of two commutators
[38, Remark 3]. However, there can be nonzero bounded traces on a unital, properly
infinite Banach algebra in general. In [17], there are examples of unital Banach
x-algebras that are properly infinite in standard form and have nonzero, bounded
traces. Moreover, they can be hermitian or *-semisimple (see [17, Definition 1.10]).
Note that all unital C *-algebras are hermitian [16, Proposition 3.2.3(v)] and *-
semisimple [16, Corollary 3.2.13].
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The final ingredient of our theorem is the L? analog of Cuntz algebras that were
defined by Phillips in [34]. These are norm closures of certain representations of
Leavitt algebras on L? spaces.

Ford € {2,3,4,...}, define the Leavitt algebra L, to be the universal complex
associative algebra on generators sy, ..., 84,1, ..., satisfying the relations

(1) tjsj = lforj e{l,...,d},
(i) 151 = 0if j #k,

N d
(i) Y585t = 1.
This is a special case of the algebras introduced by Leavitt [26,27] who considered
these algebras over arbitrary fields.

Definition 2.17. Let A be a unital complex algebra, and let £ be a nonzero complex
Banach space. We say that 7 is a representation of A on E if m is a unital algebra
homomorphism from A to B(E).

For p € [1, 0], we say that a Banach algebra A is an L? operator algebra if
there is a measure space (X, i) and an isometric representation of 4 on L? (X, u).
Clearly, BY (X) is an L? operator algebra on [? (X ). We now recall the definition of
L? Cuntz algebras, which are also L? operator algebras.

Definition 2.18. [34, Definitions 6.3 and 6.4] Let (X, 8, i) and (Y, C, v) be o-finite
measure spaces, and let p € [1,00]. A linear map s € B(L?(X, ), L?(Y,v)) is
called a spatial partial isometry if there exists a quadruple (E, F, S, g) in which
E € B, F € C, § is a bijective measurable set transformation from (£, 8|g, u|g)
to (F,C|F,v|F) such that v|g is o-finite, g is a C-measurable function on F such
that |g(y)| = 1 for almost all y € F, and

($£)(y) = 0)([5:942] )" s €lp ) ity e F.
0 ify ¢ F.

Given a spatial partial isometry s € B(L?(X, n), L?(Y,v)) as defined above,
there exists a unique spatial partial isometry ¢+ € B(L?P(Y,v),L?(X,u)) with
quadruple (F, E, S, (57 1)+«(g)™'). Moreover, the operator s is multiplication
by the characteristic function of E, while the operator st is multiplication by the
characteristic function of F (see [34, Lemma 6.12]). The spatial partial isometry ¢
is called the reverse of s.

Definition 2.19. [34, Definition 7.4] Let p € [1, oo], let (X, i) be a o-finite measure
space, and let p: Ly — B(L?(X, 1)) be a representation. We say that p is spatial
if for each j, the operators p(s;) and p(t;) are spatial partial isometries, with p(z;)
being the reverse of p(s;).

In [34, Theorem 8.7], it is shown that any two spatial representations of L; on
LP(X, ) with (X, p) o-finite give isometrically isomorphic Banach algebras, so the
following definition makes sense.
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Definition 2.20. [34, Definition 8.8] Let d € {2,3,4,...} and let p € [l,0).
Define (95 to be the completion of L; in the norm a +— ||p(a)| for any spatial
representation p of L, on a space of the form L? (X, i), where (X, u) is o-finite.
The algebras O 5 are called the L? Cuntz algebras.

When p = 2, we get the original Cuntz algebra O introduced in [13].
The following theorem is an analog of [1, Theorem 4.9], which deals with the
p = 2 case.

Theorem 2.21. Let (X, d) be a metric space with bounded geometry, andlet p €[1, 00).
The following are equivalent:
() BE(X) is properly infinite in standard form.
(i) M, (BZL (X)) is properly infinite in standard form for some n € N.
(iii) M, (B (X)) is properly infinite in standard form for alln € N.
(iv) X is non-amenable.
(v) There is a unital isometric embedding of OF into Bf (X).
(vi) [1]o = [O]o in the algebraic Ko group Ko(BE (X)).
(vii) BZ(X) has no normalized trace.

(viii) There is no unital linear functional  of norm one on B({P (X)) such that
V(aT) =y (Ta) forall T € BUP(X)) and all a € BE (X).

Remark 2.22. When p = 2, by [1, Theorem 4.9], we can replace “properly infinite
in standard form” by “properly infinite” in statements (i), (ii), and (iii).

Proof. The equivalence between (i) and (iii) is straightforward. We will show (iv)
= (V) = (vi) = (vii) = (viii) = (iv), and (v) = (i) = (ii) = (vii).

(iv) = (v): The case p = 2 follows from [1, Theorem 4.9] so we will consider
p € [1,00) \ {2}. If X is non-amenable, then it has a paradoxical decomposition
X = X, U X, with partial translations P;: X — X;. These partial translations give
rise to elements S; € BY (X). Similarly, P,"': X; — X are partial translations, and
they give rise to elements 7; € B (X). The elements T; and S; satisfy the following
relations:

D T;8; =1fori = 1,2,

) 7;8; = 0ifi # j,
(HI) SlTl + S2T2 =1.
Thus, there is a unital homomorphism p from the Leavitt algebra L, to B (X)
sending the generators s; and #; to S; and 7; respectively. Using [34, Lemma 6.16]
(or directly from the definition), one can check that each S; is a spatial partial

isometry. Then, by [34, Theorem 7.7], p is a spatial representation. Hence, it extends
to a unital isometric homomorphism from O to Bf (X).
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(v) = (vi): Let p: Ly — LP(X, ) be any spatial representation with (X, )
o-finite. Then we have p(t;51) = p(t2s2) = 1 and p(s1t; + s2t2) = 1in OF, and
thus in B (X). Moreover, p(s1t;) and p(sat») are orthogonal idempotents in O,
and thus in B (X). Now,

[1o = [p(s171) + p(s212)]o
= [p(s111)]o + [p(s212)]0
= [p(t1s1)]o + [p(7252)]0
= [1]o + [1]o-

Hence, [1]op = [0]o in Ko(BE (X)).

(vi) = (vii): If r: BY(X) — C is a normalized trace, then it induces a group
homomorphism t,: Ko(BZ (X)) — R with 74([1]g) = (1) = 1 while 74([0]p) =
7(0) = 0.

(vii) = (viii): If ¥ satisfies the conditions in (viii), then its restriction to B (X)
is a normalized trace.

(viii) = (iv): Note that Bf (X) contains £°°(X) as the subalgebra of diagonal
matrices, where elements of £°°(X) act as multiplication operators on £7(X), and
there is a conditional expectation

Eo: BUP(X)) — £°(X),

i.e., Ey is a linear map satisfying

* | Eoll =1,

e Eo(a) =aforalla € £*°(X),

e Eo(aTc) =aEy(T)cforall T € B({?(X)) anda,c € £*°(X).

Infact, Ey is given by the formula Eo(7)(x) =(T'§)(x) forT € B({?(X))and x € X .
Suppose X is amenable, and let ¢,: £*°(X) — C be the linear functional of

norm one associated to a mean p on (X, d) that is invariant under partial translations.
Consider,

‘(ﬂ = ¢M o) EQZ B(ZP(X)) — C.
Then ¥ (1) = 1 and ||y|| = 1. To show that ¥ (aT) = y(Ta) for all a € B (X)

and T € B({?(X)), it suffices to consider the case where a is of the form

1 ifx =t(y),

V, =
(Vo)xy 0 otherwise,

where  is a partial translation on X . This is because the linear span of such operators
is dense in BY (X) (cf. [1, Section 4]).
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A straightforward computation shows that for V; as above and T = (Txy)x,yex €

B(t7 (X)),

T,- ifx e ).
Eo(TV,)(x) = 1710 ;ﬂ)lcerwrizz()

if x € dom(z),

T.
Eo(ViT)(x) = {0”(}6) otherwise

Since Eo(V;T) = Eo(TV;) ot, we have

Y (TVe) = du(Eo(TV)) = $u(Eo(ViT)) = Yy (ViT).

(v) = (i): This follows from OF being properly infinite in standard form.
(1) = (ii) is trivial.
(i1) = (vii): Apply Corollary 2.15.
O

Remark 2.23. In [1], the authors also considered Fglner-type conditions in the
context of Hilbert space operators, and showed that the statements in the theorem
above are all equivalent to the uniform Roe algebra being a Fglner C *-algebra when
p = 2. However, the definitions involve the Hilbert-Schmidt norm (or equivalently,
any of the Schatten p-norms) and it is not clear to us what the analogous definition
should be in the context of operators on L? space when p # 2.

We end this section by establishing a bijective correspondence between means
on X that are invariant under partial translations and normalized traces on B (X).

The proof of the following lemma is exactly the same as that of the p = 2 case
so we omit it and refer the reader to [1, Lemma 4.16].

Lemma 2.24. Let (X, d) be ametric space with bounded geometry, andlet p €[1, 00).

Any normalized trace T on B (X ) is given by T = T|goo(x) 0 E, where E: BY (X) —

£ (X) is given by E(T)(x) = (T8,)(x) for T € BY(X) and x € X.

Proposition 2.25. Let (X,d) be a metric space with bounded geometry, and let

p €[l,00).

(i) Any normalized trace t on BE (X) extends to some unital linear functional ¥ of
norm one on B({P (X)) such that Y (aT) = Yy (Ta) forall T € B({P(X)) and
alla € BY(X).

(i) There is a bijective correspondence between means on X that are invariant under
partial translations and normalized traces on BE (X).

Proof. For (i), we have T = 7|goo(x)0o E by thelemma. Let Eo: B(£? (X)) — £>°(X)
be the conditional expectation, and define ¥ = t|so0(x) © Eo. Following the proof
of (viii) = (iv) in Theorem 2.21 with 7|¢eo(x) in place of ¢,,, one sees that i has
the desired properties.
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For (ii), given a mean p on X that is invariant under partial translations, let
¢u:£°(X) — C be the linear functional of norm one associated to . Then
7, = ¢y 0 E is anormalized trace on B2 (X). On the other hand, given a normalized
trace T on By (X), the formula p;(Y) = t|geo(x)(ly) for ¥ € X defines a mean
on X, and itis invariant under partial translations by the trace property. ForallY C X,

e, (V) = (@)lec oy (Iy) = ¢u(ly) = u(Y),
and by the lemma above,
Tuy =P, o E = tlooxy o E = 1.
Hence, the maps p +— 7, and T +— . are inverses of each other. 0

Corollary 2.26. Let (X, d) be a metric space with bounded geometry, and let p €
[1, 00). Then the following statements are equivalent:

(1) X has a strictly positive mean (i.e., every non-empty open subset has strictly
positive measure) which is invariant under partial translations.

(i) |X| < occ.

(iii) BZ(X) admits a unique normalized trace.

Proof. (i) = (ii): Let i be an invariant mean on X and assume that | X | = oco. For
every non-empty finite subset I of X, we fix xo in F. Itis clear that there is a partial
translation from {x} to {x¢} for each x € F. Hence,

1> u(F) =) plixy) = ) uixo}) = [Flu({xo}).

xeF xeF

Since F can be arbitrary large, it forces w({xo}) = 0. Hence, u is not strictly
positive.

(i) = (i): If | X| = n, we just consider u(A4) = %|A| for A C X.

(i) = (iii): If | X| = n, then BY(X) = M, (C). Let t be any normalized trace
on M,(C) and e;; be the matrix unit for 7, j € {1,...,n}. Itis easy to see that
t(ej;) = 1(e1n) = % and t(e;;) = Ofori # j. Hence, 7 is the standard normalized
trace on M, (C).

(iii) = (ii): From Theorem 2.21 and Proposition 2.25 we know that X is amenable
and admits a unique mean that is invariant under partial translations. Suppose that
|X| = oo. Then we can inductively choose a Fglner sequence (Fy),en in X
consisting of disjoint subsets. Indeed, if F1, ..., Fj, have been chosen, we consider
the space Y = X\(UJ/_, Fi). Since |J;_, F; is finite, Y is an infinite amenable
subspace which is coarsely equivalent to X. Hence, there is F},+1 C Y with the right
property.
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Now we take any free ultrafilter  on N and the formula

() = lim e 3 1)

x€Fy,

defines an invariant mean on £°°(X) by the Fglner property. Let w; and w; be two
different ultrafilters on N. Then there is a subset A of N such that A € w; and
A ¢ wy. It follows that 74, (f) = 1 and 7, (f) = 0for f =), .4 1F, in £°(X).
This is a contradiction to the uniqueness. 0

3. K -theory of properly infinite £? uniform Roe algebras

In this section, we study the homomorphism Ko(£*°(X)) — Ko(BZ (X)) induced
by the canonical diagonal inclusion £*°(X) < BZ(X). When the underlying metric
space X has asymptotic dimension at most one, we show that this homomorphism
is always surjective. As a consequence, if X is a non-amenable metric space with
asymptotic dimension at most one then Ko(BZ (X)) = 0 forall p € [1, c0).

Lemma 3.1 ([7, Lemma 17]). Let (X, d) be a metric space with bounded geometry.
Then, for any R > 0, the space X can be written as a finite disjoint union of R-
separated subsets, i.e., X = ]_[:-121 X; and for each i we have d(x, y) > R whenever
X, y are distinct points in X;.

Using the lemma above, given R > 0, we can find a finite set T of partial
translations such that for any pair of points x, y € X with d(x, y) < R, there exists
t € T suchthatf(y) = x. These partial translations can be described in the following
way:

Fix R > 0, and write X as adisjointunion X = [ [_, X; of S-separated sets with
S > 2R. Let t;; be the map that sends y € X; tox € X; if d(x,y) < R. For each
x € X;, there is at most one y € X; with d(x, y) < R since X is S-separated with
S > 2R. Conversely, foreach y € X there is at most one x € X; withd(x,y) < R.
Hence, #;; is a partial translation. Moreover, observe that if 7;; € BJ(X) is the
partial isometry associated to #;;, then T}; is the transpose of T;;.

We will use these partial translations in the proof of the following lemma, which
generalizes Lemma 2.5 and Lemma 2.6 in [32] dealing with the case where X is a
discrete group and p = 2.

Lemma 3.2. Let (X,d) be a metric space with bounded geometry, let A and B
be nonempty subspaces of X, and let p € [1,00). Then 14 is in the closed two-
sided ideal in BY (X) generated by 1p if and only if there exists R < oo such that
d(x,B) < Rforall x € A.
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Proof. (=): Suppose that 1 4 belongs to the closed two-sided ideal generated by 1 5.
Then there exist finite propagation operators 71, ..., Ty, S1,...,S, € BEY(X) such
that |[14 —>_"%_, T;15S;|| < 1. In particular,

n
HIA -y E(T,-1BS_,-)H <1,
j=1

where E: BY (X) — £*°(X) is the conditional expectation.
Now note that if 7, S € B (X) have finite propagation, then

E(TIBS)(X) = Z Tx,zSz,x =0

z€B

if d(x, B) > prop(T'). Thus for all x € A, we have
d(x, B) < max {prop(T;)}.
1<j<n

(«<): Suppose that there exists R < oo such that d(x, B) < R for all x € A.
Using this R and writing X as a disjoint union X = ]_[;'=1 X; of S-separated sets
with § > 2R, we get a finite set of partial translations #;; as described above. Let us
consider the associated spatial partial isometries 7;; in BZ(X). We claim that

n
la=fla Y TjilpT;
ij=1
for some f € £>°(X) C BJ(X). It then follows that 14 is in the closed two-sided
ideal in B (X) generated by 1.
To prove the claim, first observe that for x, y € X, we have

T;j if x = s
(TjilBTij)xy - Z(Tji)xz(Tij)zy = {ZZGB( lj)zy y

z€B

0 if x # y,

where we have used the fact that 7; is the transpose of T;;, and that all entries
in T;; are either O or 1 with at most one nonzero entry in each row. In particular,
T;;1pT;; € £°(X) C B,,I,)(X) and

ZzeB(Tij)zy lnyAﬂXJ,

1T 15T5i )y =
(LaTjil8Tij)yy {0 ify ¢ AN X;.

Note that . 5(7ij)y is either O or 1 for each y € A. Also, foreach y € AN X;
and ¢ > 0, there exists z € B such that d(y,z) < R + ¢, and z € X; for some i, so

we have .,
(Z 1AT,-1-13T1-,~) ef{l.2.....n}
i,j=1 yy
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for each y € A. Hence,
n
la= fly4 Z T;i1pTij
ij=1

for some f € £*°(X) C BY(X). O

Recall that an idempotent in a Banach algebra A is full if it is not contained in
any proper, closed, two-sided ideal in A.

Lemma 3.3 (see [30, Lemma 5.3] for p = 2 case). Let p € [1,00). If (X,d) isa

non-amenable metric space with bounded geometry, then [e]o = [0]o in Ko(BE (X))
for every idempotent e € {°(X) that is full in BY (X).

Proof. Lete = 14 be an idempotent in £>°(X) that is full in BY (X). Then e and 1y
generate the same closed two-sided ideal in BY (X), so there exists R > 0 such that
d(x,A) < R for all x € X by the previous lemma. In particular, the inclusion

A < X is a quasi-isometry. Thus, A is non-amenable, so we have [e]o = [0]o
in Ko(BZ (A)) by Theorem 2.21. The inclusion map B (A) — BZ(X) maps e to
the diagonal idempotent 14 in BZ (X) so [e]o = [0]o in Ko(BE (X)). O

Lemma 3.4 (see [30, Lemma 5.4] for p = 2 case). If (X,d) is a non-amenable
metric space with bounded geometry, then [e]g = [0]o in Ko(BE (X)) for every
idempotent e € £°°(X) and every p € [1, 00).

Hence, the homomorphism Ko({>® (X)) — Ko(BE (X)) induced by the diagonal
inclusion £°(X) < B (X) is the zero map for all p € [1, 00).

Proof. By assumption, X admits a paradoxical decomposition X = X; U X, with
partial translations ¢;: X — X; for i = 1,2. These partial translations give rise to
S; € BY(X), and their inverses give rise to T; € BY(X) such that 7;S; = 1y and
SiT; = 1x, fori = 1,2. Since 1x = T;1x,S;, we see that 1x, and 1x, are full
idempotents in BY (X).

Let e = 14 be an idempotent in £>°(X), where A is a subspace of X. Then,
e = lanx, + lanx,. Since

(Ix —lanx,)1lx, = 1x, = 1x,(1x — l4nx,)
and (Ix —lanx)1x, = 1x, = 1x,(1x — lanx,),
we conclude that 1y — 14nx, and 1x — 14nx, are full idempotents in BL(X). By
Lemma 3.3,
[1x —1anx,Jo = [1x — lanx,Jo = [Oo

in Ko(B#(X)). Since X is non-amenable, we also have [1 x]o = [0]o in Ko(BZ (X))
by Theorem 2.21. Hence, [e]o = [Llanx,]o + [lanx,]o = [0]o in Ko(BL(X)).
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To show that the homomorphism Ko({*°(X)) — Ko(BZ (X)) induced by the
diagonal inclusion is zero, note that there is a group isomorphism

dim: Ko(C(BX)) — C(BX,Z)

satisfying dim([e]o)(x) = Tr(e(x)) for every x € BX, e an idempotent in
M,(C(BX)) for some n € N, and Tr denoting the standard non-normalized trace
on M, (C). In particular, every idempotent in M, (£>°(X)) is equivalent to a direct
sum of idempotents in £°°(X). Since every idempotent in £°°(X) has the trivial Ky
class in Ko(Bf (X)), so does every idempotent in M, (£>°(X)). O

The main result of this section is the following theorem:

Theorem 3.5 (see [30, Theorem 5.2] for p = 2 case). Let (X, d) be a metric space
with bounded geometry. If the asymptotic dimension of X is at most one, then
the homomorphism Ko({>® (X)) — Ko(BL (X)) induced by the canonical diagonal
inclusion is always surjective for all p € [1, 00).

Before proving the theorem, we note the following result, which is an immediate
consequence of Lemma 3.4 and Theorem 3.5.

Corollary 3.6 (see [30, Corollary 5.5] for p = 2 case). If (X, d) is a non-amenable
metric space with bounded geometry and it has asymptotic dimension (at most) one,
then Ko(BE (X)) = 0 forall p € [1, 00).

The proof of Theorem 3.5 uses a controlled or quantitative version of K-theory
for L? operator algebras from [10]. We state some of the necessary results that we
shall use, and refer the reader to [10] for more details.

Definition 3.7. An L? operator algebra A is filtered if it has a family (4,),>¢ of
linear subspaces indexed by non-negative real numbers r € [0, 00) such that

e A, C Ay ifr >,
. ArAr/ C Ar+r/ for all r, r’ > 0,
* Uyso Ar is dense in 4.

If A is unital with unit 14, we require 14 € A, for all » > 0. The family (A4, ),>o0 is
called a filtration of A.

Given a filtered L? operator algebra A with a filtration (A4, )0, one may consider
(e, r, N)-idempotents and (e, r, N)-invertibles, where 0 < & < %, r > 0, and
N > 1. Then one defines appropriate homotopy relations and goes through the
standard procedure in the definition of K-theory of Banach algebras to arrive at the
controlled K-theory groups Kg’r’N(A) and Kf’r’N(A). For each triple (e,7, N),
we have homomorphisms c: K;’i’r’N (A) — Ki(A). In the case of Ky, this map
is given by applying holomorphic functional calculus to an (g, r, N)-idempotent to
obtain an idempotent; in the case of K, this map arises from the fact that every
(e, r, N)-invertible is invertible.
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The next two lemmas describe properties of these homomorphisms that we will
need in the proof of Theorem 3.5.

Lemma 3.8 ([10, Proposition 3.20]). Let A be a unital filtered L? operator algebra.

Let u be an invertible element in M, (A), and let 0 < ¢ < 2—10. Then there exist

r >0, N > 1 (depending only on ||u|| and |[u~"|), and [v] € Kf’r’N(A) with v an

(e, r, N)-invertible in M, (A) such that [v] = [u] in K1(A).

Lemma 3.9 ([10, Proposition 3.21]). There exists a (quadratic) polynomial p with

positive coefficients such that for any filtered L operator algebra A, if 0 < & <

sopwy @nd [elern. [flern € Ko™ (A) satisfy c(le) = e([f]) in Ko(A),

then there exist v’ > r and N' > N such that [e]y(Nyer' N = [floW)er’ N’

in KENErN (g),

Definition 3.10. Let A be a filtered L? operator algebra with filtration (A, );>0. A

pair (Z, J) of closed ideals of A4 is a controlled Mayer—Vietoris pair for A if it satisfies

the following conditions:

e For any r > 0, any positive integer n, and any x € M,(A,), there exist
x1 € M,(I N A;) and x, € M,(J N A;) such that x = x; + x, and
max ([ x|, [[x2[) < [lx]|;

* [ and J have filtrations (I N A,),>0 and (J N A;),>o respectively;

* There exists ¢ > 0 such that for any r > 0, any ¢ > 0, any positive integer n,
any x € My,(I N A;) and y € M,(J N A,) with |[x — y| < &, there exists
ze M,(I NJ N Acr)such that max(||z — x||, |z — y||) < ce.

Remark 3.11. In [10], there is a more general definition of a controlled Mayer—

Vietoris pair that involves subalgebras instead of ideals, but we use this slightly

simpler version here as it is sufficient for our purposes. We also note that this

is slightly different from the definition of a uniformly excisive pair of ideals used

in [30].

Theorem 3.12 ([10, Theorem 5.14]). Given a triple (g, ro, No) € (0, 2—10) x [0, 0o) x

[1, 00), there exist (e1,r1, N1) and (g2, 12, Na) with g; > &9, ri > 1o, and N; > Ny

such that for any filtered L? operator algebra A and any controlled Mayer—Vietoris

pair (I, J) for A, if x € Kfo’rO’NO (A), then there exists d.x € Kg'"! N1 (I NJ) with
the property that if 0.x = 0, then there exist y € Kfz’rz’Nz (I)andz € Kfz’rz’Nz(J)

suchthatx =y + z in Kfz’rz’Nz (A).

Now let us return to the setting of Theorem 3.5. Let X be a metric space
with bounded geometry. For any subset U of X and r > 0, let U denote the

r-neighborhood of U, i.e.,

UM ={xeX:dxU) <r}.

For an element in M, (B (X)), we define its support to be the union of the
supports of all its matrix entries, and its propagation to be the maximum of the
propagation of its matrix entries.
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Assume that X has asymptotic dimension at most one. Then for any R > 0, there
is a decomposition X = U U V such thateachof U = | |;c; Ui and V = | |;¢; V;
are disjoint unions of uniformly bounded R-separated sets. For such a decomposition,
and for r > 0, consider the following subspaces of B (X):

N, = {a € BL(X) : supp(@) < | J U x U, prop(a) = rf.

iel
NY), = {a € BY(X) :supp(a) C U Vj(r) X Vj(r),prop(a) < r},
jeJ
NUNV), = {a € BP(X) : supp(a) U (Ui(r) n Vj(r)) « (Ui(r) n Vj(r))}.
iel,jeJ

Now for r > 0, define

Ar =UU)r + (V) +UU N V),
Iy =N(U)r + U NV),,
Jr =NWV)r + U NV),,

andlet A=\J,5¢ Ar, I =U,5¢ Ir,and J =m. We observe that A= BJ (X).
Lemma 3.13. The subspaces A,. I., and J, provide filtrations for A, I, and J,
respectively. Moreover, I and J are ideals in A.
Proof. Given r,s > 0, it is fairly straightforward to check that:
@) NWU)r - NU)s € NU)r+s,
(i) NV, - NV )5 S NV )r4s,
(i) NUNV), - NUNV)s CNU NV)psts,
(iv) NU)y - N(V)s € NU N V)rpss
V) NU)-NU NV)s SRU NV )rys,
vi) NWV), - NUNV)s SNUNV)rys. O

Lemma 3.14. The pair (I, J) is a controlled Mayer—Vietoris pair for A.

Proof. For a subset Y of X, we will let 1y denote the characteristic function of Y
regarded as a diagonal element in BZ (X). We will also write 1y for 1y ® I,, €
M, (B (X)).

Letn € Nandr > 0. Givena € M, (A,), we have

a = ZlUia—i—ZlV_/a

iel jeJ
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with " c; lu,a € My(1y), 3y 1v;a € My(Jr), and
max (H Z ly;a ), | Z 1VjaH) < |all.
iel jed

Suppose that a € M, (I,) and b € M,(J;) are such that |a — b| < e. Let y
be the characteristic function of Uie I Ui(r), and let y’ be the characteristic function
of Ujes V7. Then, ay’.bx € Myu(I2r N Jar),

lla =bxll = llax —bxll <& and |b—ay'|l = by —ay'|l <e.

Hence, letting ¢ = "X/T’be e M, (I, N Jar), we have |la —c|| < gs and |b —c|| < %8.
O

Now we are ready for the proof of Theorem 3.5. In the proof, we will actually
use the fact that the pair of suspensions (S7, SJ) is a controlled Mayer—Vietoris pair
for SA rather than working directly with I and J (cf. [10, Remark 5.6]). This is
because a controlled version of Bott periodicity was not proved in [10].

Proof of Theorem 3.5. The p = 2 case was proved in [30, Theorem 5.2] so we will
assume that p € [1,00) \ {2}.
Suppose that
x € Ko(Bf (X)) = K1(SBJ (X)),

and x is represented by an invertible u € M, (SBf (X)), where SBY (X) denotes
the unital algebra obtained by adjoining a unit to SB (X). Consider the controlled
Mayer—Vietoris pair (S1,SJ) for SA = SBJ(X). By Lemma 3.8, given 0 <
g0 < %, there exists ro/zw > 1 (depending only on |lu|| and |u~!|), and a
quasi-invertible v € M,,(SBE (X)) with propagation at most rq such that

[v] € KOO NO(SBP(X)) and [v] = x

in K1(SBY(X)). Let (e1,r1, N1) and (g2, 12, N») be associated to (g9, 1o, No) as in
Theorem 3.12.

By the assumption on asymptotic dimension, there exists a decomposition X =
U UV such that each of U = | |;¢; Ui and V = | |, V; are disjoint unions of
uniformly bounded r-separated sets with r > 3 max(r, r»). Note that since 2r; < r,
MU N V),, is a direct product of matrix algebras of uniformly bounded sizes, and
thus a Banach algebra direct limit of a directed system of finite direct sums of such
matrix algebras (see [49, Lemma 8.4] or the proof of Theorem 4.4 (i) = (ii) in the
next section). By continuity of the K; functor, we have

Ko(SMUU N V),,) = Ki(RU N V),,) = 0.
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Consider,

dc[v] € KVONU(ST N ST) = KN (SRU N V).

By Lemma 3.9, d.[v] = 0 in K2°’ N (Sl N SJ) for some v’ > ry and N’ > Nj.
Then, by Theorem 3.12, there exist y € K} T2:N2 (S 1) and z € K™ N2($7) with
[v] = y 4 z in K& NZ(SB”(X)) and thus
x = c(y) +¢)
in K{(SBf (X)) = Ko(Bf (X)), where ¢ denotes the respective compositions
K22 N2 (1) k22N (§BP(X)) — K (SBP (X)),
K22N2 (5 7) - KE2"2N2(SBP (X)) — K, (SB2(X)).
Recall that these compositions take a quantitative K-theory class represented by a
quasi-invertible element (which is actually invertible) and send it to a K-theory class

represented by the same element.
On the other hand, since 3r, < r, there is a factorization

KfQ,rz,Nz(SI) — Kfz,rz,Nz (SB;I;(X)) — K; (SBlf(X))

K (S( [Ties B(Zp(Ui(rZ)))))

and similarly for J and V;. Since [];<; B(¢? (Ui(rZ))) is a direct product of matrix
algebras of uniformly bounded sizes, any element in its K¢y group is equivalent to
something in the image of the map on K-theory induced by the diagonal inclusion

12Uy — [ B2 (US)).
iel
and similarly for V. Hence x is in the image of the homomorphism induced by the
canonical diagonal inclusion. O

4. P uniform Roe algebras of spaces with zero asymptotic dimension

In this section, we study the structure and K-theory of £ uniform Roe algebras of
metric spaces with zero asymptotic dimension. We start by recalling the following
equivalent definition for asymptotic dimension zero (see Definition 2.1 in [30]):
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Definition 4.1. Let (X, d) be a metric space with bounded geometry. For r > 0,
let ~, be the equivalence relation generated by the relation xRy < d(x,y) < r.
Then X has asymptotic dimension zero if and only if for each r > 0, the relation ~,
has uniformly finite equivalence classes.

We will show that a metric space X has asymptotic dimension zero if and only
if BY(X) is a spatial L? AF algebra (see [18, Definition 9.1]) if and only if BZ (X)
has cancellation in the following sense:
Definition 4.2 ([5, Section 6.4]). Let A be a Banach algebra. We say that A has
cancellation of idempotents if whenever e, f, g, h are idempotents in A withe L g,
fLhe~ f,ande+ g~ f + h,theng ~ h.

We say that A has cancellation if M, (A) has cancellation of idempotents for
alln e N.

We will need the following useful characterizations.

Proposition 4.3 ([5, Proposition 6.4.1]). Let A be a unital Banach algebra. Then the
Jollowing are equivalent:

(1) A has cancellation of idempotents.
(i) Ife, f are idempotentsin Aande ~ f,then1 —e ~1— f.
(iii) Ife, f areidempotentsin A ande ~ f, then there exists an invertible element u
in A such that ueu™ = f.
The following theorem is an analog of [30, Theorem 2.2].

Theorem 4.4. Let X be a metric space with bounded geometry, and let p € [1, 00).
The following are equivalent:

(1) X has asymptotic dimension zero.

(i) BL(X) isaninductive limit of subalgebras isometrically isomorphic to @,1(\;1 M :k
with norm
l@i,....an) |l = max (a1, ..., lan]),

where N,dq,...,d; € N, and M; denotes B(Kp({l,...,d})).’

(iii) BE(X) has cancellation.

Proof. (i) = (ii): Assume that X has asymptotic dimension zero. Then for each r >0,
the equivalence classes for the relation ~, in Definition 4.1 are uniformly finite. We
will write I, for the collection of all equivalence classes for ~,. Fix atotal orderon X .
For each finite subset A C X, let f4: A — {1,...,|A|} be the order isomorphism
determined by the total order.

Consider the collection & of ordered pairs (r,®), where r > 0 and ® =
{P1,..., Py} is a partition of [, into finitely many nonempty sets, which we think
of as colours, such that equivalence classes with the same colour have the same

IThis is a non-sequential analogue of a spatial L# AF algebra in the sense of [18, Definition 9.1].
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cardinality. Fix (r, ®). Let ny,...,ny be the cardinalities of the sets in each of the
colours Py,..., Py of @, and let B = @;Nzl M,i.. For each A € I, with colour P;,
let ugi:€P({1,...,|A|}) — £P(A) be the invertible isometry determined by fj4.
Define
¢: B — [] BU”(4) € BU (X))
Ael,
by

N
(@), —~ 1_[ 1_[ uA,,-aiuZ}i.
i=1AeP;
The image of ¢ is contained in B (X) since the sets A € I, are uniformly bounded,
and we denote this image by 4, .

Define a partial orderon & by (r, ®) < (s, Q) ifr <sand 4, p C As,q. Weleave
the reader to verify that this is indeed a partial order (or see the proof of (1) = (2)
in [30, Theorem 2.2]).

It remains to be shown that the union U(r,@)e& A, p is dense in BZ(X). For this,
it suffices to show that any finite propagation operator in B2 (X) can be approximated
by an element of the union. Lete > O and leta € B (X) have propagation at most r.
Then a is contained in []4.; B(£?(A)), which we identify with [] 4, M/, il usmg
the bijections f4. Write a4 for the component of @ in the relevant copy of M
Set

N =max{|A4|: A € I,},

and forn € {1,..., N}, choose an (g/2)-dense subset {by.1,...,bn m,} of the ball
of radius ||a|| in M,f. For each A, there exists m(A) € {1, ..., m,} such that

laa = biagmall < &/2.

Set
Pom=1{A €l :|A] =n,m(A) = m},

and define
C={Pym:ne{l,...,Nyyme{l,...,My}, Pym # 9}.
Then the element b = (b| 4|,m(4)) 41, is in A, @ and

lla —b| = sup [laa —bjajmall <&,
Ael,
which completes the proof.

(ii) = (iii): This follows from the fact that M,? has cancellation for all n € N,
and that cancellation is preserved under taking finite direct sums and taking inductive
limits.

(ili) = (i): Assume that the asymptotic dimension of X is not zero. By [30,
Lemma 2.4], there exist » > 0 and S, = {x(n) x,(,'f,z} C X for each n > 1 with
the following properties:
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* m, —ooasn — oo,

« foreachn andeachi € {1, .. -1}, d(x(") x(") ) <2rand d(x("), (")1) €
lir,@ + Dr],

* the sequence (inf,, -, d(Syn, Sm));=; is strictly positive and tends to infinity as n
tends to infinity.

Define
o0
e U{xin), (n)_l}
n=1

oo
B = .y,

00
C = U{Xgn),..., r(:z}
n=1

Let p be the characteristic function of A U (X \ C) and let ¢ be the characteristic

function of B U (X \ C). Then p and ¢ are equivalent idempotents. Indeed, let
v € B({?P(X)) be defined by

O xeX\C,

8y > 38 x=xi(")forsomenandie{l,...,mn—l},
1+1
0 X =x,(,73 for some n,

and let w € B(£?(X)) be defined by
Sy x e X\C,
Sx > 38w x= x(n) forsomen andi € {2,...,my,},
i—1

n
0 x—xl)forsomen

Then, v, w € BY (X), wv = p,and vw = ¢. Now suppose B2 (X) has cancellation.
Then, by Proposition 4.3, 1 — p and 1 — g are equivalent idempotents, say yz = 1 —p
and zy = 1 — ¢ for some y,z € B (X). We may also assume that y = (1 — p)y
(see [5, Proposition 4.2.2]). Note that 1 — p and 1 — ¢ are, respectively, the
characteristic functions of

{x,(,fz :n e N} and {xgn) :n e N},

There exists a € B (X) with finite propagation s > 0 such that ||y —a|| < 1/]|z].
There also exists n such that d (xi"), E) > 5. Lete € BP(X) be the characteristic
function of xﬁ"). Then (1 — p)ae = 0. But then,

[yel = (1 =p)yell = (1 = )y —a)e| < |ly —al < 1/]z]

so |le]l = (1 —q)e|| = ||zye]l < 1, which is a contradiction. Hence, B (X) does
not have cancellation. O
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In the rest of this section, we will restrict our attention to the case where the metric
space is a countable, locally finite group equipped with a proper left-invariant metric.
Such a metric group is actually a bounded geometry metric space with asymptotic
dimension zero. The main result is that the ordered K group (with order unit)
of the associated £7 uniform Roe algebra is a complete invariant for the bijective
coarse equivalence class of the underlying countable locally finite group. Along
the way, we also compute (Ko(BZ (I")), Ko(BZ(I'))™, [1]o) for a countable, locally
finite group I', showing that it is independent of p.

Definition 4.5. A discrete group I is locally finite if every finitely generated subgroup
of I is finite.

Every countable discrete group can be equipped with a proper left-invariant
metric d that is unique up to bijective coarse equivalence [47, Lemma 2.1]. In fact,
local finiteness of a countable group I can be characterized in terms of the asymptotic
dimension of the metric space (I", d) as follows.

Theorem 4.6 ([44, Theorem 2]). Let I' be a countable group equipped with any
proper left-invariant metric d. Then the following are equivalent:

(1) T is locally finite.
(ii) (T, d) has asymptotic dimension zero.
We may then apply Theorem 4.4, Theorem 2.7, and a couple of straightforward

observations to obtain the following result, which is an analog of [28, Corollary 5.4]
(see also [41]).

Corollary 4.7. Let I' be a countable group equipped with any proper left-invariant

metric, and let p € [1,00). Then the following are equivalent:

(1) T is locally finite.

(i) BY(I') is an inductive limit of subalgebras isometrically isomorphic to
@IILI M{fk with norm ||(ay,...,ay)|| = max(|lai|,...,||lan]]), where
N,dy,...,dy € N, and M; denotes BUP({1,...,d})).

(iii) BZ(T) has cancellation.

(iv) BZ(T) is stably finite.

(v) BE(T) is finite.

(vi) BE(T) is a quasidiagonal set in B({? (I")).

Proof. The equivalence of (i), (ii), and (iii) follows from Theorem 4.4, while the

equivalence of (iv), (v), and (vi) follows from Theorem 2.7. The fact that any

unital Banach algebra with cancellation will be stably finite can be seen easily using

Lemma 2.3(ii) and Proposition 4.3(iii), so we have (iii) = (iv). Finally, to get

(v) = (i), note that if T" is not locally finite, then Z quasi-isometrically embeds

into I" so that BY (Z) c B (I"). However, BY (Z) is not finite so B (") is not finite

as well. O
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In the following we will compute the ordered Ko group of BY(I") when I' is a
countable locally finite group. Recall that a countable group I is locally finite if and
only if there exists an increasing sequence

fe} =TI CILC---

of finite subgroups of I" such that I' = ( J;—, I's. Such a sequence of finite subgroups
gives rise to a proper left-invariant metric d on I" given by

d(g.h) =min{n e N : g7 'h e T}

forg,h eT.
The following proposition can be proved in the same way as in the C*-algebra
case and we omit the proof, referring the reader to [28, Proposition 4.5] for details.

Proposition 4.8. Let I' be a countable, locally finite group. Consider the triple
(I ATn 152, d) as above. For each n € {0,1,2,...}, define k, = |I'y| and r, =
kn+1/kn. Then for every p € [1, 00),

BY(T') = lim ( [ M2 (<C),¢n),
i=1

where ¢n(T1, Tz, . ) = (diag(Tl, ooy Tn), diag(T,n+1, ooy T2rn)7 .. )

From Proposition 4.8 and [28, Proposition 4.1], one sees that the ordered K¢ group
of BY(I) is a sequential inductive limit of £°(N, Z) when T is a countable, locally
finite group. Moreover, it is not hard to see that the connecting homomorphism ¢,
(n=0,1,2,...) induces the following map on K, groups:

n: (N, Z) — £*°(N, Z),
an((my,my,...)) = (my + - +my, , Mp, 41 + -+ Map,,...).
Continuity of the K functor then gives
(Ko(BL(I). Ko(BZ(D)™) = lim(E*(N, Z), €2(N, Z)* a).
‘We now proceed to describe the inductive limit more explicitly. Define

(J+Dkn

ngn) = %(ml,mz,...) €L®(N,Z): Z m; =0forall j =0,1,2,...7%,
i=jkp+1
e,0)
Hr =) HP.
n=0

Note that {Hr(,n)}ff’zo is an increasing sequence of subgroups of {>*°(N, Z) since k,
divides k4 for each n.
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Proposition 4.9 ([28, Proposition 4.6]). Let «,, and Hrt be as above. Then
li_r)n((ﬁoo(N,Z),Koo(N,Z)Jr,an) ~ ((*®(N,Z)/Hr, (> (N, Z)* /Hr),

where (> (N, Z)" /Hr is the collection of all elements in {>°(N, Z)/Hr that can be
represented by positive sequences.

Now we can explicitly describe the ordered K group of BZ (I") for any countable
locally finite group I' (see [28, Theorem 4.7] for p = 2 case):

Theorem 4.10. Let I" be a countable, locally finite group, and let {e} = T'o C 'y C

I’y C --- be an increasing sequence of finite subgroups of I’ with I’ = U?:o Iy.
Define k,, = ||,
(+Dkn
H = (mi.ma...) € 0®(NZ): Y my=0forall j =0,1,2,...¢.
i=jkn+1

o0
Hr = | ) HY.
n=0

Then for every p € [1, 00),
(Ko(BZ(I)). Ko(BE ()T, [1]0) = (£*°(N, Z)/Hr . £>°(N, Z)* /Hr, [1]),

where 1 denotes the constant sequence with value 1.
In particular, the ordered Ko group of B (') for a countable, locally finite
group T does not depend on p.

Proof. From the preceding result and remarks prior to that, we now only need to
keep track of the order unit [1]y. The K class of the unit of [[7=; C in £>°(N, Z)
is given by the constant 1 sequence. The result then follows since the structure
map £*°(N,Z) — £*°(N, Z)/Hr for the inductive limit is simply the quotient map
(cf. the proof of [28, Proposition 4.6]). L]

The following corollary generalizes [28, Corollary 4.9]:
Corollary 4.11. Let I" and A be countable, locally finite groups with proper left-
invariant metrics dr and dp respectively. The following are equivalent:
(1) (T, dr) and (A, dp) are coarsely equivalent.
(2) Ko(Bi(T)) = Ko(Bi/ () forall p € [1,00).
(3) Ko(Bi/ () = Ko(By (A)) for some p € [1,00).

Proof. The implication (1) = (2) is a consequence of [11, Theorem 3.4], while the
implication (2) = (3) is obvious, so it remains to show (3) = (1).

Suppose I' and A are not coarsely equivalent. Then by [4, Corollary 8] it must
be the case that one of them is finite while the other is infinite since all countably
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infinite, locally finite groups are coarsely equivalent to each other. Assume without
loss of generality that A is finite. Then for every p € [1, 00), we have

Ko(B)(I')) = £>(N,Z)/Hr
by the previous theorem, and
Ko(BZ(A)) = Z.

These two groups are not isomorphic, for instance because {*°(N, Z)/Hr is not
singly generated. O

Now we recall the notion of supernatural numbers and how it enables us to
determine whether two countable, locally finite groups are bijectively coarsely
equivalent. We will use this in the proof of Theorem 4.13, which is the main
result of this section.

Let I" be a countable, locally finite group, and let {p1, p>,...} be the set of all
prime numbers listed in increasing order. For each j € N, define

n;j = sup{m € N : p divides | F'| for some finite subgroup F of I'}.

The sequence {n ,} ~, is called the supernatural number associated to I", which we
denote by s(I"). We usually think of a supernatural number {n ,} 2, as a formal
product ]_[]_1 pJ , o we say that p divides s(I') if m < n;. We say that two
supernatural numbers are equal if they are equal as sequences.

Theorem 4.12 ([39, Theorem 5] and [28, Theorem 3.10]). Let I" and A be countable,
locally finite groups with proper left-invariant metrics dr and d p, respectively. Then
the following are equivalent:

(1) (I, dr) and (A, dp) are bijectively coarsely equivalent.
(ii) T and A have the same supernatural number, i.e., s(I') = s(A).

Finally, we come to the main result of this section, which generalizes [28,
Theorem 4.10].

Theorem 4.13. Let I" and A be countable, locally finite groups with proper left-
invariant metrics dr and da respectively. Then the following conditions are
equivalent:

(1) (T, dr) and (A, dp) are bijectively coarsely equivalent.

(2) For every p € [1,00), there is an isometric isomorphism ¢: BY (I') — BEY(A)
such that ¢ (£>°(I")) = £L°(A).

(3) BZ(T') and BE (A) are isometrically isomorphic for every p € [1, 00).
(4) BE(T) and BL (M) are isometrically isomorphic for some p € [1,00).

(5) For some p € [1,00), there is an isometric isomorphism ¢: BY (I') — BEY(A)
such that ¢ (£°(T")) = £L°(A).
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(6) (Ko(Bi/ (), Ko(Bi/ (T)*, [1]o) = (Ko(Bi/ (A)), Ko(Bi (A)) T, [1]o)
forevery p € [1, 00).

(1) (Ko(B (), Ko(Bi/ (T)*, [1]o) = (Ko(Bi/ (M), Ko(Bi (A)) T, [1]o)
Jor some p € [1, 00).

(8) (Ko(By (), [1]0) = (Ko(Bi (M), [1]o) for every p € [1, 00).

9) (Ko(BZ (). [1]o) = (Ko(Bi (M), [1]o) for some p € [1, 00).

Proof. The equivalences of statements (1) through (5) follow from [11, Theorem 2.6],
[28, Theorem 4.10] and [23, Lemma 8]. It is obvious that (3) = (6) = (8) = (9),
and that (6) = (7) = (9). Thus, it remains to show that (9) = (1).

The proof of (9) = (1) is identical to the proof of [28, Theorem 4.10], but we
include the details here for the convenience of the reader. For simplicity, we write A
for BY (") and B for BY(A). Let

¢: (Ko(A), [14lo) = (Ko(B).[18]o)

be an isomorphism. Suppose, for the purpose of contradiction, that (I, dr)
and (A, dp) are not bijectively coarsely equivalent. Then the associated supernatural
numbers s(I") and s(A) are different by Theorem 4.12. Without loss of generality,
we may assume that there is a prime number p and a positive integer r such that p”
divides s(I") but not s(A). Let {I';}72, and {A,}2, be increasing sequences of
finite subgroups of I' and A, respectively, with I' = | J;—o [ and A = (J,—y An.
Define k, = ||, H™, and Hr as in Theorem 4.10. Similarly, define k,, = |A,|,
HI(\") and Hy.

Since p” divides s(I"), it divides k, for some n. Let g be any idempotent in
[172, My, (C) with pointwise rank k,/p”. Then,

P"(Iglo) = [1lo
in Ko(A). Let [¢']o = #(qlo) € Ko(B). Then,
p"([¢'lo) = [18lo.
Write [¢']o = [(m1,ma. .. )] € €°(N,Z)/Hy. Then,
(p'my—1,p'my—1,..)e H™

for some positive integer . In particular, p”(my +mz +---+my ) —k, = 0, which
is impossible because p” does not divide &, for it would divide s(A) otherwise, so
we have reached a contradiction. O
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